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SUMMARY

The aim of this research was to investigate the integration of
computer—-aided drafting and finite-—element analysis in a linked
computer—-aided design procedure and to develop the necessary
software.

The Be'zier surface patch for surface representation was used
to bridge the gap between the rather separate fields of drafting and
finite~element analysis because the surfaces are defined by
analytical functions which allow systematic and controlled variation
of the shape and provide continuous derivatives up to any required
degree.

The objectives of this research were achieved by establishing :

(i) A package which interpretes the engineering drawings of
plate and shell structures and prepares the Be'zier net necessary
for surface representation.

(ii) A general purpose stancd-alone meshed-surface modelling
package for surface representation of plates and shells using the
Be'zier surface patch technique.

(iii) A translator which adapts the geometric description of
plate and shell structures as given by the meshed-surface modeller
to the form needed by the finite-element analysis package. The
translator was extended to suit fan impellers by taking advantage of
their sectorial symmetry.

The linking processes were carried out for simple test
structures , simplified and actual fan impellers to verify the
flexibility and usefulness of the linking technique adopted.

Finite-element results for thin plate and shell structures
showed excellent agreement with those obtained by other
investigators while results for the simplified and actual fan
impellers also showed good agreement with those obtained in an
earlier investigation where finite—element analysis input data were
manually prepared.

Same extensions of this work have also been discussed.

Key Words .
COMPUTER-ATDED DESIGN, DRAFTING, GEOMETRIC MODELLING,F.E.M, LINKING




ACKNCOWLEDGEMENTS

I hereby express my sincere gratitudes to my supervisor ,
Mr. T. H. Richards , Head of Mechanical Engineering Division ,
without whom this research would not have been campleted. He was

understanding , patient and kind ; he was more than a supervisor.

The author would also like to thank Mr. P. Cooley for
introducing him to the basic theory of geometric modelling during

the Masters programme.

I also thank all my brethren who have supported me in prayers

throughout the duration of this work.

Finally , I owe my wife , Ngozi and our daughters , Chioma and
Chineye much thanks for their bearing the yoke with me throughout
the period of the research and especially during the very

difficult times.

(1ii)




DEDICATION

I humbly dedicate this work to the LORD for ;
HE is gracious :
HE is loving and

HIS mercies endureth for ever.

(iv)




LIST OF CONTENTS

Title Page
Summary
Acknowledgements
Dedication

List of Contents
List of figures
List of tables

Notations

CHAPTER 1

INTRODUCTICN

CHAPTER 2
REVIEW OF THE LITERATURE RELATED TO THE GEOMETRIC
AND STRUCTURAL DESIGN OF ROTATING FAN IMPELLERS
2.1 General Introduction
2.2 Thin walled Centrifugal Fan Impellers

2.2.1 Types of blade
2.3 Review of the relevant literature

2.3.1 Geametric definition of fan impellers

2.3.2 Structual design of fan impellers

(xiii)

10

13

2.4 The benefits of adopting Be'zier technique for geometric

definition of fan impellers

2.5 Closing remarks

19

21




CHAPTER 3

GECMETRIC MODELLING

3.1 Introduction 23
3.2 Wireframe modelling 24
3.3 Surface modelling 28

3.3.1 General principles. of surface construction
3.3.2 Cartesian or tensor product definition
3.3.3 Lofting definition
3.3.4 Generalized Coons or Transfinite definition
3.3.5 Hierarchy of surface definition
3.4 Solid modelling 35
3.4.1 Constructive Solid Geometry (CSG) representation
3.4.2 Boundary representation (B-rep) scheme
3.4.2.1 Planar face boundary representation
3.4.2.2 Curved face boundary representation
3.4.3 Sweep representation
3.4.3.1 Translational sweeping
3.4.3.2 Rotational sweeping
3.3.4.3 General sweeping

3.5 Closing remarks 47

CHAPTER 4

FINITE ELEMENT MODELLING FOR STRESS ANALYSIS IN DESIGN :
APPLICATION TO ARBITRARY THIN PLATE AND SHELL STRUCTURES

4,1 Introduction 48
4.2 Outline of the Finite Element Method process 50

4.2.]1 Definition of the finite element mesh




4.2.2 Displacement function
4.2.3 Formulation of the stiffness equations
4.2.4 Solution of the stiffness equations
4.2.5 Determining element streses and strains
4.3 Representation and descritization of arbitrary surfaces
for finite element analysis of thin plate
and shell structures 54
4,3.1 Introduction
4,3.2 Surface representation and surface mesh for analysis
4,3.3 The Semiloof element
4.3.3.1 Geametry and nodal configuration
4,3.3.2 Shape function polynomials

4.4 Closing remarks 64

CHAPTER 5
THREE~DIMENSIONAL SURFACE MODELLING USING
BERNSTEIN - BE'ZIER METHODS AND COMPUTER IMPLEMENTATION
5.1 Introduction 65
5.2 A review of Bernstein approximation 69
5.2.1 Convergence properties
5.2.2 Probability interpretation
5.2.3 The Bernstein basis
5.2.4 The Bernstein operator
5.2.5 Bernstein approximation for functions
of more than one variable
5.3 Be'zier curves : Geametric application of Bernstein 77

approximation

(vii)




5.3.1 Vector - valued defintions
5.4 Be'zier surfaces

5.5 Concentrating Be'zier meshes

81

86

5.6 Software implementation of the 3-D surface modeller :SUFACE

5.6.1 Camputer configuration

5.6.2 Structure of the developed program
5.6.2.1 main program SUFACE
5.6.2.2 subprogram SURFACE
5.6.2.3 subroutines XYBY and YZBY
5.6.2.4 subroutine MESHXY and MESHYZ
5.6.2.5 subroutine DRAW

5.7 Closing remarks

CHAPTER 6
AUTOMATIC INTERPRETATION OF ENGINEERING DRAWING FOR
’IHREE—DIMENSIONAL SURFACE REPRESENTATION
6.1 Introduction
6.2 Review of the literature related to interpretation

of engineering drawings
6.3 Basic concepts

6.3.1 Reference line

6.3.2 Control polygon data for various shapes
6.4 Cyclic symmetry (rotationally periodic structures)
6.5 Matching
6.6 Separating engineering drawing views

6.6.1 "Boxing" round a view

6.6.2 Isolating data of a view

(viii)

109

110

112

117

124

125

126

88




6.6.3 Storing data of the view
6.7 The program structure 130
6.7.1 Subprogram C
6.7.2 Subprogram Co
6.7.2.1 subroutine CONTROL
6.7.2.2 subroutine DIM-BLADE
6.7.2.3 subroutine DOCUMENT

6.8 Closing remarks 163

CHAPTER 7
TRANSLATION OF'DRAFTING/MODELLER CEOMETRY INTO FINITE-ELEMENT
ANALYSIS INPUT DATA.
7.1 Introduction 164
7.2 Mesh generation —— A gap between CAD and FEM 165
7.2.1 Mesh generation after geametric modelling
is camplete

7.2.2 Mesh generation by gecmetric modeller

7.3 Integrating CAD and FEM via Be'zier surface 170
representation

7.4 Theoretical background 172

7.5 The program structure 178

7.5.1 subroutines MESH4 and MESH3Q
7.5.2 subprogram MERGE

7.6 Material property specification , 201
load and boundary conditions

7.7 Computation of geometrical and inertial properties 204

of surfaces




7.7.1 Theoretical background

7.7.2 The program structure
7.7.2.1 subroutine BASECONE
7.7.2.2 subroutine RELATIVE-XYZ

7.8 Closing remarks ' 216

CHAPTER 8

ILIUSTRATIVE EXAMPLES

8.1 Square plate convergence study 219
. 8.1.1 Orthographic view of a thin square plate

8.1.2 Be'zier net resulting fram the interpreting module
8.1.3 Geometric model resulting from the processes in the
geametric model
8.1.4 Translating gecmetric model data into finite element data
8.1 .5 Accuracy of geometric data from drafting / modeller
processes
8.1.6 Results from finite element analysis

8.2 Cylindrical shell roof 225
8.2.1 Orthographic views of cylindrical shell roof
8.2.2 Be'zier net resulting fram interpreting module
8.2.3 Gecmetric model resulting fram the gecmetric modeller
8.2.4 Translating gecmetric model data into finite element data
8.2.5 Accuracy of geametric data from drafting / modeller
processes
8.2.6 Results fraom finite element analysis

8.3 Simplified fan impeller 234

(x)




8.3.1 Orthographic views of simplified fan impeller
8.3.2 Be'zier net of simplified fan impeller
8.3.3 Geametric model resulting fram the geametric modeller
8.3.4 Translating geametric model data into finite element data
8.3.5 Accuracy of geometric data from drafting / modeller .
processes
8.3.6 Results from finite element analysis

8.4 Actual fan impeller 243
8.4.1 Orthographic views of actual fan impeller
8.4.2 Be'zier net of actual fan impeller
8.4.3 Geametric model resulting fram the geametric modeller
8.4 .4 Translating geometric model data into finite element data
8.4.5 Accuracy of gecmetric data fram drafting / modeller
‘processes
8.4.6 Results from finite element analysis

8.5 Closing remarks 251

CHAPTER ©
SUMMARY /GENERAL DISCUSSION , CONCLUSION , & RECOMMENDATION FOR

FURTHER WORK

9.1 Summary and general discussion 252
9.2 Conclusion 255
9.3 Suggestion for further work 257




APPENDICES 259 .

REFERENCES




LIST OF FIGURES

CHAPTER ONE

1.1 Gecmetric modelling

1.2 Drafting

1.3 Finite-element analysis

1.4 Geametric modelling , drafting and

finite-element analysis

CHAPTER TWO

2.1 Centrifugal fan impeller

2.2 The basic Coons' patch

CHAPTER THREE

3.1 Example of an ambigous wireframe having
three valid solutions

3.2 Solid wireframe and profile lines

3.3 Cartesian product surface definition

3.4 Lofting (in u-direction)

3.5 Lofting (in v-direction)

3.6 Generalized Coons' or transfinite definition

3.7 Constructive solid geametry (CSG)

3.8 A boundary representation (graph of ocbject, face,
edge and vertex nodes)

3.9 Representation of local shape modification operations

3.10 Translational sweeping

3.11 Rotational sweeping

(xiii)

12

15

26

27

32

33

33

34

39

41

43

45

46




3.12 General sweeping ( may produde dangling edge )

CHAPTER FOUR

4,1 Idealization of two-dimensional structure using
triangular and quadrilateral elements

4,2 Be'zier representation (a possible scheme fér
generating finite-element mesh on a surface)

4.3 Semi~-loof configuration

4.4 Semi—~loof element topology

4.5 Nodal comfiguration of the semi-loof shell

element (quadrilateral type)

CHAPTER FIVE

5.1 Sequence of Be'zier curve (full line) approximating
a hand drawn curve (dashed line)
5.2 Typical Be'zier surface and net

5.3 The Bernstein basis functions for a linear space PS

5.4 A Be'zier curve for a 9-sided polygon

5.5 A Be'zier curve for ald-sided polygon

5.6 Relationship between number of subdivisions in u-v
directions and number of meshes in a Be'zier
surface patch

5.7 Be'zier mesh concentration around lower

left-hand side of patch
5.8a Be'zier surface with uniform grid size
5.8b The same patch with radial mesh concentration

5.9 Be'zier surface (made up of boundary , XY and YZ curves)

(x1iv)

46

51

60

60

62

67

68

70

80

80

85

87

87

87

95




5.10 Flowchart of main program SUFACE

5.11 Flowchart of subprogram SURFACE

5.12 Flowchart of subroutine XYRY

5.13 Flowchart of subroutine YZBY

5.14 Flowchart of subroutine MESHXY

5.15 Flowchart of subroutine MESHYZ

5.16 Flowhcart of subprogram DRAW

CHAPTER SIX

6.1 Reference line in elevation‘helps in obtaining

the z—-value

6.2 Distortion of Be'zier polygon

6.3 Flat straight edge possible with Be'zier technique

6.4 Flat curved edged shape possible

with Be'zier technique

6.5 Flat curved shape without hole possible

with Be'zier technique

6.6 Cross—sectional curve makes any shell shape

possible with Be'zier technique

6.7 A typical sector of disc

6.8 Flowchart for program INTERFACE

6.9 Flowchart for subprogram TRANSFER

6.10 Flowchart for

6.11 Flowchart for

6.12 Flowchart for

6.13 Flowchart for

6.14 Flowchart for

subroutine LINE
subroutine ARC
subroutine DELELTED
subroutine DATA

subroutine ROX

(xv)

96

97

102

102
106

107

108

118

120
120

121

122

123

125

133
134

135

136

137

137

138




6.15 Flowchart for subroutine CLIP 139

6.16 Flowchart for subroutine VIEWS-DATA 140
6.17 Flowchart for subroutine D-LINE 141
6.18 Flowchart for subroutine C 143
6.19 Maximm and minimum heights at inner/outer 147

radii of cone

6.20 Flowchart for subprogram Co 148
6.21 A typical Be'zier net for a sectorial structure 154
6.22 Effect of control polygon on sectorially 155

symmetric objects
6.23 Evaluating number of grids in v-direction 156

for hollow disk

6.24 Surface variation given by a curve 158
6.25 Flowchart for subroutine CONTROL 159
6.26 Typical Be'zier net for impeller blade 160
6.27 Flowchart for subroutine DIM-BLADE 161
6.28 Flowchart for subroutine DOCUMENT 162

CHAPTER SEVEN

7.1 Pseudo-mesh generation for finite—element analysis 171
incorporated in geametric modeller (Be'zier technique)

7.2 Surface grid topclogy 174

7.3 Division of four-sided grid to give two 174

triangualar elements

7.4 Basic numbering for a suface patch 181
7.5 Flowchart for subprogram PATCH 187
7.6 Flowchart for subroutine MESH 4 192

(xvi)




7.7 Flowchart for subroutine MESH3Q

7.8 Flowchart for subpogram MERGE

7.9 Camplete finite—element data input

7.19 Menu for supplementary finite element
analysis input data

7.11 Graphical determination of geametric and
inertial properties of a Be'zier surface

7.12 Flowchart for subprogram GEOM-DATA

7.13 Flowchart for subrotine BASECONE

7.14 Flowchart for subroutine RELATIVE-XYZ

CHAPTER 8

8.1 Orthographic views of a thin square plate

8.2 Be'zier net for a thin square plate

8.3 gemetric model of a thin square plate

8.4 Different meshes for convergence study

8.5 Convergence of deflecfion for a square plate under
concentrated lcad at centre

8.6 Orthographic views of a cyindrical shell rcof

8.7 Be'zier net for a cylindrical roof

8.8 Geametric model of a cylindrical roof

8.9 Cylindrical shell roof under its cwm weight

8.10 Geametric accuracy of gecametric modeller for

cylindrical roof
8.11 A cylindrical shell roof: finite—element
to and exact solution

8.13

{xvii)

195

199

206

211

215

215

219

220

220

221

224

225

226

227

228

230

232~
233




8.14 Orthographic views of simplified fan impeller

8.15 Be'zier net of simplified fan impeller

8.16 Gecmetric model of simplified fan impeller

8.17 Membrane force and bending moment / unit length

to

8.20

8.21 Orthographic view of actual fan

8.22 Be'zier net of actual fan

8.23 Geametric model of actual fan

8.24 Principal stresses on inside the backsheet:
actual fan impeller

8.25 Longitudinal stress on tip and root of blade:

&8.26 actual fan impeller

8.27 Principal stresses on inside the conesheet:

actual fan impeller

(xviii)

235
236

237

241~
242

243

244

245

249

249~

250

250




LIST OF TABLES

CHAPTER 8

8.1 Clamped square plate under concentrated load

8.2 Geametric accuracy of drafting/modeller
processes for square plate

8.3 Geametric accurace of drafting/modeller
processes for cylindrical shell roof

8.4 Geametric accuracy of drafting/modeller

processes for simplified fan impeller

(xix)

223

223

229

239




NOTATIONS

The following notations are used throughout the thesis :

ﬁ Impeller blade angle
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fraom vector P(u,v)

Linear operators
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Element strain energy

Potential energy of loading
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Curvilinear ccordinates
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CHAPTER 1

INTRODUCTION

Camputer-Aided Design (CAD) is a relatively recent technique in
which man and computer are blended into an efficient design team. A
fairly recent topic of research in CAD is the integration of its
features such as camputer aided drafting , geometric modelling ,
analysis (finite-element analysis and geometric and inertial
properties) and kinematics. These features have developed
independently since the early 1958's and the evolution of CAD is

integrating these diverse technologies.

The conventional way of conveying shape information fram the
designer to the manufacturing shop was in the form of engineering
drawings on paper prepared on a drawing board. With the evolution of
computers having interactive graphics facilities , automated
drafting systems became very effective in speeding up the production
of engineering drawings. Traditionally ,it was not until the first
prototype became available for test , that the engineer was able to
get full 3-dimensional appreciation of a design product. Errors
detected when the prototype was ready were only reluctantly
remedied , rather large factors of safety are used and certain

campramises accepted.

Later on , 3-dimensional modelling systems emerged. In CAD ,
a distinction is made between the drafting system and the modeller.
A drafting system permits the generation and manipulation of

graphics entities such as lines , arcs and points ; little attempt




is made at interpreting their meaning. With its aid , the user is
able to generate objects quickly in close dialogue with the system.
Graphical output gives the illusion of reality , but no built-in
rules govern the consistency of the resulting objects. A modeller on
the other hand generates graphical output very similar to the
drafting system , but it contains additional information sufficient

to assert consistency of the design within the given damain.

Geometric modelling is considered the "core" of integrated CAD
systems because other CAD features use it as starting point. The
geometric model can be submitted for finite—element method (FEM)
stress analysis , or it may serve as an input for autamated drafting
to produce engineering drawings of the part , or may be used as a
basis for generating Numerical Control (NC) instructions for making

parts on autcmated machine tools.

where a 3-dimensional modelling capability is an integral part
of CAD system , the question of whether to use 3-dimensional
facilities to produce 2-dimensional drawings or to produce
3-dimensional output from simple 2-dimensional drawings is often
raised. The answer to this question is dictated by the efficiency
with which a system produces 3-dimensional output from simple 2-
dimensional drawings and the complexity of the geametry involved.

In the design of engineering products made fram thin
sheetmetal , 3-D surface modellers are most appropriate. Thus ,
centi‘ifugal fan impellers usually fabricated from thin sheetmetal

into a backsheet , conesheet and the blades between them , can be




best represented by a surface modeller. One of the most successful
and recent CAD modelling techniques is the Be'zier surface patch ,
conceived by Be'zier [7]. It was chosen for this work because it
suits the definition of any surface whether simple or sculptured
(free-form). Other benefits of this technique are enumerated in

Chapter 2.

The combination of surface modeller (Fig. 1.1l) and drafting
(Fig. 1.2) on one side , and finite—element analysis (Fig. 1.3) on
another side , in a CAD system is of mutual benefit for the
followihg reasons (Fig. 1.4) : the representation of an object
within the geometric modeller can be utilized directly for the
definition of a finite element mesh at the data—-generation stage of
the analysis. This removes the need for a camplete re-definition of
the object or in other cases , taking the 3-dimensional model of a
component previously created in the system and automatically

generating meshes on the surface.

Meshed-surface modelling if seen in a new light , will make
possible a closing of the gap between the rather separate fields of
drafting and finite—element analysis for shell type structures.
Primarily , surface modelling is used for surface representation. In
an extended form it may now serve as an interface between drafting
and finite—element analysis by adapting the description of an object

as given by the one representation to the form needed by the other.
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The objective of the research described in this thesis was the
development of a surface modeller based on the Be'zier surface
representation to link drafting and finite element analysis of
plate/shell structures and in particular , fan impellers. In order
to attain this goal , the following steps were found to be necessary

(i) Developing a surface modeller which provides convenient
geametric construction capabilities for models of simple and ccmplex

(free—form) surface-based entities.



(ii) Implementing a program to interprete orthographic views of
a 2-dimensional drafting package , MEDIA [15] for input to the

surface modeller.

(iii) Translation of gecmetric data created by the modeller for
input to the finite element analysis programs , SMILOF and IMPSMF

[13] for general thin plate and shell structures.

(iv) Extending the translation program to suit fan impellers by
taking advantage of their sectorial symmetry.
(v) Utilization of the gecmetric data of the surface model for

calculation of gecmetric and inertial properties of the model.

The choice of internal representation for the modeller is an
essential factor in meeting the requirements of CAD-FEM integration.
The Be'zier method adopted for this work is very adequate for the

geametric representation of plate and shell structures.

The following chapters describe in detail , the role of a
surface modeller as a link between drafting and a finite—element
analyser of thin plates and shells. In Chapter 2 , a literature
survey of the geometric and structural design of rotating fan
impellers is given. The reasons for adopting the method of Be'zier
technique for internal representation for the modeller are

enumerated.

In Chapter 3 , the three main aspects of geametric mcdelling —
wireframe , surface and solid modellings are treated.

-6 -



Chapter 4 treats the basic steps in finite—element method. The
geometric representation of thin plate and shell using modern CAD
modelling techniques are discussed. The semilcof element is treated

briefly as a useful element for such structures.

Chapter 5 expands the theory of Be'zier surfaces which leads to
the algorithm for surface representation. A computer implementation

for the Be'zier surface technique is also presented.

In Chapter 6 , review of literature relevant to the
interpretation of engineering drawing for input to the surface
modeller is given. The basis of interpretation are presented. A few
Be'zier "nets" which are useful for surface representation are
presented to show how interpreted orthographic views can be
converted to the appropriate surface. Cyclic symmetry which occurs
in fan impellers is taken into consideration in constructing the

Be'zier nets. The program for interpretation is also presented.

Chapter 7 presents the translation of the gecmetric data of
the modeller to finite-element analysis input data for the
application programs SMILOF and IMPSMF [13] which were developed for
analysis of thin plate and shell structures as well as fan
impellers. The geometric data of the modeller is also used for

calculating geametric and inertial properties of the model.

In Chapter 8 , a number of examples of processes starting fram

drafting , through interpretalion , geometric modelling and

-7 -



translation to input to finite element analysis are shown.

In Chapter 9 , the summary of the work reported in this

thesis , conclusion and suggestions for further work are presented.



CHAPTER 2

REVIEW OF THE LITERATURE RELATED TO THE GEOMETRIC

AND STRUCTURAL DESIGN OF ROTATING FAN IMPELLERS

2.1 GENERAL INTRODUCTION

The design of fan impellers usually assumes two distinct
stages, viz: preliminary and detailed design. During the preliminary
design, the designer uses one-dimensional flow analysis based on
previous experience to specify the inlet and outlet blade angles and
the "skeletal" dimensions(such as inlet and outlet diameters and
axial length of the impeller). This is then followed by a detailed
design in which the complete impeller geometry is specified and

subsequently refined by means of successive stress analyses.

During the detailed design stage the designer repeatedly
adjusts the shape éf the blades until he finds a suitable gecmetry
that cambines acceptable aerodynamic performance with low stress
levels. The process of continual refinement of the shape can be
expensive, tedious, and time-consuming, since at each stage the
gecmetrical data for the necessary stress analysis must be prepared.
This task is greatly simplified when a simple flexible system of
geometry definition for the components of a fan impeller is
available. The essential requirements for such a system may be

summarised as follows:

(i) Be able to provide initial definition of the impeller

shape.



(ii) Be able to provide gecmetric data for stress analyses in
intervening phases.

(iii) Be able to allow consequent geometry modification and
re-definition.

In this chapter several methods for the definition of the shape

of fan impeller are reviewed.

2.2 THIN WALLED CENTRIFUGAL IMPELLERS

It is probable that the majority of all fans are of the
centrifugal or radial flow type. Such a fan consists of an impeller
running in a casing having a spirally shaped contour (See Fig.2.1).
The air enters the impeller in an axial direction and is discharged
at the periphery, the impeller rotation being towards the casing
ocutlet. The amount of work done on the air, evident in the pressure
development of the fan, depends primarily on the angle of the blades
with respect to the direction of rotation at the periphery of the
impeller. The impeller is the most highly stressed part of the fan.
The stresses in the impeller are caused by rotational, aerodynamic
and temperature effects , but the most important are the stresses

caused by rotation.

2.2.1 TYPES OF BLADES

Three main forms of blade are cammon and are shown in Fig. 2.1.

These are:
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(a) the backward bladed impeller, in which the blade tips incline

away from the direction of rotation, and the blade angle [ is less

than 9gP.

(b) the radial bladed impeller, where the blade tips are radial,

that is, B = 9g8°.

(c) the forward bladed impeller, where the blade tips incline toward

the direction of rotation, and the blade angle p is said to be

greater than og°.

- 11 -
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Backward fan impellers are commonly used for ventilation of
commercial buildings where their improved efficiency is of advantage
, radial fan impellers being used as draught fans on large boilers
and forward fan impeller are commonly used for ventilation of

commercial buildings in view of their campact size for a given duty.

2.3 REVIEW OF THE RELATED LITERATURE

In this section , the literature related to the geometric and

structural design of rotating fan impeller are reviewed.

2.3.1 GEOMETRIC DEFINITION OF ROTATING FAN IMPELLERS

Several methcds for the definition of the shape of centrifugal

fan impellers are reviewed in this section.

An early choice of many designers for the definition of
impeller geometry was conic sections (for example, circular arc,
ellipse, parabola, hyperbola etc), for both the hub and shroud
contours and the impeller blades. A general description of the

blade surface geametry using conic sections is, for example,

ro= a.r2 + 2brz + c22 + 2dr + 2ez + £
where the parameters a, b, ¢, d, e and f determine the inlet and

outlet angles and the blade curvature. Moore [1] quoted examples of

elliptical bladed impellers which fall into this category.
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An alternative procedure was suggested by Whitfield et al [21].

This made use of Lamé's ovals of the general form

(¢ +2)/0 +l(z + c)/a} =1
where Y is either r or 6 to define the blade surface shape. For any
known end conditions, inlet location and slope, and exit location
and slope the constants a, b, ¢ and d can be determined and a series
of possible profiles rapidly obtained by varying e and f. Because
the analytic solution was difficult to handle and had a nurber of

complex cambinations where solutions did not exist, the procedure

was modified by defining a Lame oval with zero inlet slope and

infinite outlet slope.

Both of these methods allow considerable freedom of shape
through adjustment of the parameters a, b, ¢, etc., but are

obviously not suitable for a general method of fan impeller design.

Jansen and Kirschner [3] described an early
computer-based general work. They specified the blade shape by
straight line elements fram hub to shroud. The disadvantage here
was that no equations were developed for the blade surface. Smith
and Merryweather [4] described a similar computer-—aided design
method in which the impeller blade is represented by 'patches', a
particular variety of three—dimensional surface studied by Coons
[5].‘ They chose a "cubic-linear' patch because its analytic form is
such that it is imagined to be generated either by an infinite
number of cubic curves lying in the direction of changing u, or by

an infinite number of straight lines lying in the direction of
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changing v (Fig. 2.2). The co-ordinates along curves such as AB and

MN (Fig. 2.2) are given by equation of the form

3 2
au +bu +cu+d
X X X X

b
i

aLP +k>u24'c11+ d
Y Y Y Y

et
I

z =zau3-+k>u2+-C11+ d
z z 4 z
with v =0 along AB, v = 1 along MN and with 9 < v < 1 for
intermediate curves. The boundaries AM and BN are represented by
linear equations:
x=ev+ £
X X
=ev+f
7 Yy Yy
z=ev+ £
z z
with u = 2 along 2M, u = 1 along BN, and @ < u < 1 for intermediate

straight lines lying in the surface.

/

Z

Fig. 2.2 The kasic Coons’ patch.
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The disadvantage however is that the slope at patch corners must be

known by the user.

Most recently, Casey t6] has adopted the interpolation formulae
due to Be'zier [7] for the geometric definition of impeller
blades.The methods of both Coons and Be'zier fall into a new class
of geometries that has been recently developed for numerical
controlled machining and manufacturing. Casey did not deal with the
surface definition of the conesheet since he considered unshrouded
impellers. In his approach, the control polygon points which are
required as input data for Be'zier patches are manually supplied by
the designer.

The research project described in the present thesis is aimed
at implementing Be'zier patches to the geometric description of
plate and shell structures and in particular , that of a fan
impeller (consisting of the backsheet, blades and consheet) as well
as deriving the control polygon points autamatically fram a

two~view engineering drawing.

2.3.2 STRUCTURAL DESIGN OF ROTATING FAN IMPELLERS

One of the essential requirements of a design system is the
capability to determine stresses and deflections in a structure
being designed. In the past, the theoretical methods used to
estimate the stress levels in rotating impellers proved to Dbe
unsatisfactory due to a general lack of knowledge regarding their

effectiveness with regard to calculation accuracy. Consequently an
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efficient method is required which gives an accurate and overall
stress pattern that exists in thin wall rotating fan impellers under
tﬁe action of rotational locads. Experimental methods such as strain
gauge measurements are also available for stress analysis of
complicated structures such as rotating impellers. However,
experimental methods are time consuming and expensive when campared
with modern methods of analysis based on digital computers which

have became very cammon and cheap.

There are few references [8] - [18] dealing with the stress
analysis of fan impellers, and for many years the conventional
method used to obtain the stress distribution in fan impeller has
been that suggested by Haerle [1l1]. This method involved the
seperate treatment of the backsheet and consheet as rotating
profiled discs with the blade loadings added at the appropriate
radii. The changing thickness of section is catered for in discrete
steps, and the percentage blade load to be added to the backsheet
and conesheet at each step is derived fraom an empirical relationship

depending on the blade width.

The disadvantages of this method is that it assumes that the
impeller stresses are axisymmetric and take no account of the
camplex geametry of the impeller or the discontinous nature of the
blade loading, which can in same cases cause large bending stresses
in the backsheet and conesheet. Therefore, when applied to

centrifugal fan impellers, this method of analysis involves



approximations that result in large factors of safety having to be

included.

Bells' work [12] on the rotating fan impellers was the first
which attempted to apply the finite-element method for obtaining the
stress level in these structures. The analysis was based on the
plane triangular shell element described by Zienkiewicz [29], in
which the bending and membrane behaviour are separately represented.
The centrifugal force was calculated at the centre of the element
and cne third of the force was applied to each nocde of the element.
There were significant discrepancies between the results for the
bending maments between the experimental and finite element analysis

in area of backsheet—blade and conesheet-blade intersections.

Jweeg [13] applied an approach similar to that of Bell and used
the sophiscated Semiloof shell elements developed by
Irons [14] : these are most suitable for analysing thin shell
structures with sharps corners having junctions between blades and
sheets (backsheet and conesheet). He assumed that the fan structure
is cyclically symmetric and so only a sector of the fan structure
needed to be considered. The use of the Semiloof element for
discretization gave good agreement between the finite element
predictions and experimental data for the stresses in the regions of

backsheet-blade and conesheet-blade interaction.

However, Jweeg did not develop any automatic finite element

mesh generation routine for discretization of the fan impeller
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surfaces. Althouch his work provides the Stress Engineer with an
accurate method of assessing the stress levels of fan impellers , it
has the disadvantages that manual construction of the element meshes
and preparation of the vast amount of input data is required. The
research project described in this present thesis is aimed at
developing a method which overcames thése disadvantages by

integrating the structural design with geametrical design.

2.4 THE BENEFITS OF ADOPTING BE'ZIER TECHNIQUE FOR GEOMETRIC

DEFINITION OF FAN IMPELLERS.

In section 2.1, we have laid down the essential requirements
for a flexible system of geametry definition which can be integrated
in a modern caomputer-aided design system (where geametric definition
system,drafting,analysis and scmetimes kinematics are integrated).
The method of Be'zier for surface definition meets such
requirements. We want to be able to define the fan impeller
geometrically, and straightaway utilize the goemetric defintion for
stress analysis of the structure without recourse to any stand—alone
finite element mesh generator. The particularly elegant technique
developed by Be'zier has been adopted in the present work for the

following reasons:

(1) The definition of the geametry of any surface, whether simple or
sculptured is possible.
(1ii) The backsheet, blades, and conesheet surfaces can be defined by

equations of the same type.
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(iii) The shapes produced are general enough to be used in the
design of new fan impellers and in approximation of the gecmetry of
existing ones.

(iv) The designer is the focal point because he can control the
so-called polygon points, thereby providing a good interface between
a user who does not necessarily have any mathematical skills and the
mathematics representation he is controlling. This makes this
technique suitable for incorporation into a camputer-aided design
(CAD) procedure for fans.

(v) The surfaces are defined by algebraic functions which allow
systematic and controlled variation of the shape and provide
continous derivatives up to any required degree.

(vi) The great advantage of using a parametric description for all
of the surfaces is that the coordinates of the points on the surface
can then be simply obtained by specifying the values of the
parametric coordinates (u,v). By this means the geametric data of
the backsheet, blades and conesheet surfaces can be generated for
any nmuber of points and in any suitable distribution for subsequent
stress anaysis, especially by the finite element method.

(vii) The finite element meshes obtained are very suitable for the
. Semiloof element where only nodal positions are necessary for its

gecmetric descriptions.
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2.5 CLOSING REMARKS.

The discussions in Section 2.4 revealed that the work in
Ref.[13] used the finite element method , together with a new class
of elements which are most suitable for thin structures with
intersection areas (blade-backsheet and blade-conesheet) for
reasonable stress modelling. However, there was no autamnatic mesh
generation routine for discretizating the impeller structure. Manual
geometric construction of the complex impeller structure and
preparation is tedious and error prone. In Section 2.3, modern
techniques for surface generation which usefully lend themselves for
mesh representation were reviewed.

The work reported here deals with the translation of the
geametric definition of plate and shell structures and in
particular ,that of the fan impeller (using Be'zier technique ) from
the ‘patch' representation into the reguired finite element
idealisation through an interface program for use in the finite
element analysis program in Ref.[13]. Other application programs
such as the programs to calculate section properties of the fan (
e.g surface area, centroid, area moments of inertia, principal
moment of inetia) should be able to derive their input data fram the
gametric definition system. This aspect of the method should prove

useful in the camputer—aided design procedure for fan impellers.

In the next chapter, different types of geometric
modellers,which are systems for geometric defintions as already
mentioned in the previous section , are discussed. In chapter 4, the

finite element method is briefly explained. Thereafter, the



mathematical foundations of Bernstein-Be'zier surfaces are given.
The fan impeller is then modelled and its geametric data translated
into finite element meshes for analysis. The finite elements
obtained are suitable for Semilcof elements used in Ref.[13] since

only geometric representation in terms of nodal positions are

needed.
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CHAPTER 3

CGEOMETRIC MODELLING

3.1 INTRODUCTION

Geometry is central to the design and production of mechanical
parts. In the early times, artisans relied on physical models. As
mass maufacturing increased, engineering drawings on paper were
adopted as the primary medium of geametric specification because of

their usefulness in cammnicating geametry between human beings.

With the advent of camputers, there was a drift fram drawing on
paper to drawing using computers [16]. The representation,
manipulation, and storage of part size and shape in a computer
memory is known as geometric modelling. Geometric modelling is
considered as one of the most important features of a CAD systefn
because many design functions use it as a starting point. For
example, the geametric model may be used as a framwork to create a
more detailed finite element mcdel of the structure. Or it may serve
as an input for autcmated drafting to produce engineering drawings
of the part. In another application, the geametric model may be used
as a basis for generating numerical control (N C) instructions for

making parts on autcmated machine tools.
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Geametric models typically are created with pictures drawn on
the screen of a CAD graphics terminal. Consequently, the user need
not have knowledge of camputers or progranmm‘.ngA to perform gecmetric
modelling. As a result, the geometric pictures on CAD screens are

now virtually synonymous with the geametric models they represent in

canputer memory.

Geametric models could be 2D for representing plane parts,
2 1/2 types for representing parts of constant section with no side—
wall details, and full 3D models for representing the most general
shapes. The first two are adequate for many parts but recent
research in geometric modelling concentrate on developing more
sophiscated 3D modelling capabilities. There are essentially three
categories of 3D modelling which are treated here: wire frames,

surface and solid modelling.

3.2 WIRE FRAME MODELLING.

Most 3D modelling aré presently done with sc—called wire frames
made of inteconnected lines ( or wires ) to represent the edges of
the physical objects being modelled. An operator at a CAD terminal
creates a wire-frame model by merely specifying points and lines in
space; the terminal screen being used in much the same manner as a

drawing board to create various views of the model.

The system constructs various line segments based on points

specified by the user and cammands chosen fram a function menu. The
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user may also produce curved lines using similar techniqus. Circles
may be gnerated autcmatically from a centre point and a radius or
three points on the circumference. In this same manner, the user
also may produce conics, which are camplex curves such as ellipses,
hyperbolas, and parabolas. Most systems can generate splines, which
are smooth curves fitted through a series of arbitrary user-
specified points. Moreover application programs could scan through
such internal representation to produce point-to-point NC code for

drilling and punching.

In the 1979's , the'2D lines and arcs were generalised to
segments of 3D space curves ; these can be projected autamatically
onto other views to produce orthographic, perspective and isometric
views. Many other features help the user to create the model, such
as duplication of specific details on the model, temporarily erasing
selected lines and arcs from the screen without deleting them in the
computer memory, recalling erased items to the screen at any time,
enlarging a part of the model (zocming) to add minute details and

later reducing it to the proper size.

While such 3D wire frame systems are clearly useful, they
exhibit same serious deficiences. An example (Fig. 3.1) provided by
Markowsky and Wesley [17], who described an interesting program for
generating all possible solids that a valid wireframe may represent,
is used to highlight some of the deficiencies of wireframe

representation.
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Some of the shortcomings of wire frame representation are as

follows :

(i) The user, rather than the system, is expected to detect such

ancanalies as a missing edge.

(ii) The user needs to supply much information to describe simple

cbjects.

(iii) Blended, rounded, or otherwise skewed surfaces are not readily
represented. For example, considering Fig.3.2 where a simple
cylinder is represented, the profile line shown is usually not

included in the wire frame.

These limitations make it difficult to use a wireframe system
for many forms of autamatic processing such as autamatic sectioning

and volume, weight , centre of gravity and other mass properties

calculations.
Ve
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wireframe’

Fig. 3.2 Solid wireframe and profile lines.



3.3 SURFACE MODELLING

The next step towards increased camplexity is the treatment of
surfaces in space. With surface models, the outside faces of an
object are represented by various surface types pieced together in
the computer. Surface models are considered the best suited in
applications where complex 3D geometries must be designed,
especially where the application is primarily concerned with the
shell of objects such as sheet-metal and thin molded-plastic parts.
Moreover, the approach is often sufficient in finite-element
modelling and NC programming where parts have complex contours.
Therefore, surface modelling systems find much application in the
design and manufacture of automobiles, aircraft, ships, machine

parts, glassware, and clothing industries.

3.3.1 GENERAL PRINCIPLES OF SURFACE CONSTRUCTION

Scmetimes the shape of a surface can be described analytically,
e.g., in the form of cylinders, spheres, revolving conics, etc.
However, in most cases, such an analytical description is not given,
as in the case of car bodies, aircraft wings or ship hull, and the
designer must resort to a constructive approach, creating surfaces

fram simpler data.

Curves can be constructed by interpolating or approximating a
given set of scalar values specifying points or derivatives. Forrest
[18] presented an enlightening survey of varicus ways of specifying

curves by various combination of data. A substantial amount of



literature on this topic is available [19]. However, we are
concerned with a constructive approach to surface representation.
Basically, there are three ways in which surfaces can be constructed
fram such data, and these are cartesian or tensor product, lofting

and generalised Coons' or transfinite.

A curve is represented (in the general case of a curve in 3-

space) in a parametric form

P(u)=[ X(u) y(u) z(u) 1
(parametric representation in ordinary coordinates).Generally, the

curve—generating algorithms may be represented by an operator ¢u

applied to the vector-valued function P(u) representing the

data [18]. Hence,

Q(u) = ¢u(P(u))

In the same way , a point on a surface in 3-space may be

described in parametric form by the function

P(U) = E X(U,V), Y(U,V), Z(U,V) ]I

and the surface—generating procedure may be symbolically denoted by

Qu,v) = ¢u V(P(u,V)),

4

where P(u,v) represents the data from which Q(u,v) will be

constructed.
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These notations are used in discussing the various ways of

surface construction.

3.3.2 CARTESIAN OR TENSOR PRODUCT DEFINITION

The most widely used approach to surface representation is to

use the operators QSu and QSV to operate on the variables u and v

simultanecusly. Mathematically, we take the tensor product of the

cperators, leading to the surface approximation

Qlu,v) = 6.8, (B(a, ).

The effect of this operation is that ¢u operates on the data
P(uj,v) while ¢V operates simultaneously on the data P(u,vj),

leading to the extraction of fixed vectors i.e vectors with constant
u and contant v, and multiplying these vectors by both u and v
blending functions. The fixed vectors can be associated with the
nodes of a rectangular grid in the parameter (or u-v) plane as shown
in Fig.(3.3). We are thus constructing a surface entirely in terms
of zero-variate data since the fixed vectors will be generally point

vectors or derivative vectors at fixed points.
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3.3.3 LOFTING DEFINITION

Lofting is often used in applications where the surface to be
constructed primarily stretches in cne direction ( e.g in aircraft
or ship building industries). The surface is defined in terms of a
single family of curves. The surface definitiocn is simply by one of

the two oOperations

0, v) = §_(2(a,v)
or Q(U,V) = ¢V(P(ulv))

In this surface definition, once a surface has been defined by one
family of functions, say functions of constant u, then a check is
made on the other family of univariate functions, of constant v.
These are then adjusted iteratively until both families of curves
are satisfactory. Fig.3.4 and Fig.3.5 illustrate the lofting

technique.

3.3.4 GENERALIZED COONS' OR TRANSFINITE DEFINITICN

Instead of approximating a bivariate operator as a product of
two sets of univariate operators ( Section 3.3.2 ), or simply as one
of the univariate operators (Section 3.3.3 ), one may employ the
principle of superposition on two campatible families of univariate
curves. Thus the method enables us to loft a surface in two
directions simultaneously, thereby combining the capabilities of

both methods of lofting ¢u and ¢V. We are thus using data wich make
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up all the grid lines (Fig. 3.6) rather than just one set as with

lofting. A simple addition of the two operators , ¢u and ¢V ,

however, would render , at the points of intersection of the two
families of intepolates, twice the value of the approximand.To

correct this, the following operation must be performed [201:

Qlu,v) =g o @ (P(uv)) =1[g +¢ -9 . g 1(ea,v)).

where @ ® @ is called the boolean sum approximation.
u v

Qlu, vl

1/n

K - g 1/m

Fig. 3.3 Cartesian product surface definition.
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Fig. 3.4 Lofting (in u-direction)

(u,v)
U
%

Fig. 3.5 Lofting (in v-direction)
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Fig. 3.6 Generalised Coons or transfinite definition

3.3.5 HIERARCHY OF SURFACE DEFINITION.

At the top of the hierarchy is the definition of the surface
directly as a surface, e.g by specifying that the surface shall be
conical shell,cylindrical or sculptured (free-form). Forrest [21]
has shown that the cartesian and lofting forms of surface

definitions are particular types of the extended Coons' surface
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definition. Therefore, in the hierarchy comes Coons' method followed

by lofting and finally the cartesian product definition.

The choice of the type of surface definition depends on the
application. For example, in the aircraft industry where the
aerodynamic behaviour of the fuselage and wings are important,
lofting is chosen. When stress analysis is the primary application,

the cartesian product definition will suffice.

3.4 SOLID MODELLING

Three-dimensional solid geometry plays an important role in
many engineering fields, and is vital to the industries which
produce discrete goods. Solid modelling is a computer
representation of physical solids and such reprsentation is a source
of data for procedures which compute useful properties of the
object. Solid modelling evolved in the early 196@'s and could be
traced to Robert's work [22]. Since then progress in solid modelling
has been very rapid. The history of the field is well treated by
Requicha and Voelcker [23] and we shall not attempt to repeat such
treatment here. Solid modelling began with little theoretical
support and various unrealiable theories were devised, however, an
adequate theory, based on rigorous mathematics of topology was
published by Requicha [24] in the late 1978's. Since then
commercially accepted solid modellers have been tested by such a

mathematical framework. Details of the mathematical framework for
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characterizing certain important representations are contained in

reference [24].

Representation schemes for solid objects should satisfy the
following criteria [24]:

Validity: it is required that there exist a real 3-D object
corresponding to any given representation. We want to avoid a single
line dangling in space or nonesense 3-D objects.

Campleteness: All the operations we provide in a system must be
applicable to all possible representations of solids within the
schema used. For example, if hidden—line removal could be applied to
convex solids but not to non-convex ones, we would consider the
schema as incamplete.

Uniqueness: there should exist only one 3-D obiject
corresponding to any given representation. It therefore means that a
representation scheme that is ambiguous is not unique.

Conciseness: the schema for representation of solids should not
contain redundant information in the database.

Fase of creation and modification: in order to minimize
computational effort during interaction with the 3-D model, the
internal representation should be as close as possible to the mental
schema that the operator prefers when building or mofifying a solid
or an assembly of solids.

Efficiency: the internal representation determines the
efficiency of the algorithms operating on the internal
representation of solids. Since different representations may be

better suited for different algorithms,it may be preferable to
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maintain some redundancy in the data model, while violating the

principle of conciseness for the sake of greater efficiency.

Requicha [24] has classified six families of unambiguous
schemes for representing solids. However, in reality only three of
them are used by most of the cammercial solid nodellere: these are
constructive solid geametry (CGS), boundary representation (B-rep)
and sweep representation. These three schemes are discussed here and
the reader is advised that the sweep representation is the least

understood, in a theoretical sense.

3.4.1 CONSTRUCTIVE SOLID GEOMETRY (CSG) REPRESENTATION

In this representation an object is described in terms of
elementary shapes, or primitives. The constructive solid geometry
representation is based on a two—level scheme. On the second level,
bounded primitive volumes are cabined by Boolean set operations.
The leaf nodes are either primitive leaves which represent subsets
of three-dimensional Euclidean spaces (solid primitive shapes sized
and positioned in space), oOr transformation leaves which contain the
defining arguments of rigid motions. The branch nodes are operators,
which may be either regularized union, intersection,or difference
[25] or may be rigid motions (Fig.3.7). An explantion of why
regularization is necessary is given in reference [26]. Each subtree
that is not a transformation leaf represents a set resulting from
applying the indicated combinational or motional operators to the

sets represented by the primitive leaves. On the lower level,
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bounded volume primitives are defined on the bases of half-spaces
(one half-space for a sphere, three for a circular cylinder, six for
a square block). In simple cases, as when only rectangular blocks
are used, the half-spaces may be defined by parameters (like size,
position and orientation) associated with the volume primitive,

rather than being represented explicitly in the schema.

The solid scheme is the most compact of all known
representations, at least for the class of commonly machined parts.
For a complex part, the number of leaf nodes is, in practice,
approximately equal to the mumber of distinct surfaces on the part.
Other possible advantages are the ability to emulate the
manufacturing process in the tree and the ability to handle genus of
parts efficiently. The main advantage of CGS is that it guarantees
the validity of uniqueness of the mcdel: a boundary representation

can always be derived in a unique way.



BRranch node.

Leaf node

[

Fig.3.7 Constructive solid gecmetry (csG).
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3.4.2 BROUNDARY REPRESENTATION (B-REP) SCHEME.

In this representation, a solid is defined by its boundaries.
Each surface is planar or sculptured and bounded by edges of an
adjacent boundary. Boundaries of a solid usually are represented as
unions of faces, with each face represented in terms of its boundary
(union of edges) , together with data which define the surface in
which the face lies. We distinguish between planar face and

sculptured surface boundaries:

3.4.2.1 PLANAR FACE BOUNDARY REPRESENTATION

Fig.3.8 provides an example of a planar face boundary
representation which is a graph coﬁtaining object, face, edge and
vertex nodes. Here, the information associated with the components
of surface (face, edge and vertex) can be considered in two parts
[27]. One is the geametry, including the physical dimensions and
locations in space of each component. The other is the topology,
describing the connections between the components. The geometry
defines points,lines and planes. Topology regards a point as a
vertex that bounds a line to define an edge. Similarly, a ring of
edges provides bounds on a surface to define a face. Both gecmetry
and topology are necessary for a camplete shape description when the

face is planar.
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3.4.2.2 CURVED FACE BOUNDARY REPRESENTATION

Most practical engineering objects have planar as well as
curved surfaces. Therefore there is the need to integrate simple and
doubly-curved (sculptured) surface designlcapability into solid
modelling functions. Even if we restrict our attention to the
treatment of rather conventional machine parts, we must sanetimes
process various kinds of camplex surfaces which arise as a result of

rounding and filleting operations.

Kimura [28] has incorporated a complex surface design
capability in a 3-D solid modelling system. A brief summary of the
technique for handling such boundary representation is as follows:

(i) Use a local shape modification operations (such as "swing"
(Fig.3.9a) and "round" (Fig.3.9b)) to construct a solid with curved
surface

(ii) Generate pertinent surface patches by any known method of

free—form surface design (e.g Be'zier surface technique).



Fig. 3.9a Swing modification

I Round;

Fig.3.9b Round medification

Fig.3.9 Representation of local shape modification cperations
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3.4.3 SWEEP REPRESENTATIONS

The basic notion embodied in sweep schemes is that a "solid
set" of points can be unambiguously represented as the cartesian
product of an "area set" and a "trajectory set". The three main
types of sweep schemes are translational, rotational and general

sweeping.

3.4.3.1 TRANSLATIONAL SWEEPING

In this case, consider a 2-D set area A (see Fig.3.1d) lying in
a plane and a line segment B perpendicular to the plane, known as
the trajectory set. As the area set moves along the trajectory, a
solid is swept cut. Representing such a 3-D solid reduces to that of
representing the 2-D area set since the representation of the

trajectory in this case is trivial.

3.4.3.2 ROTATIONAL SWEEPING.

A rotational sweeping scheme may be described in an analogous

manner to translational sweeping except that the trajectory in this

case is rotating. Such a scheme is shown in Fig.3.1ll and is useful

in representing axi-symmetric solids.
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3.4.3.3 GENERAL SWEEPING.

Here, a curve may be swept along ancther curve as in Fig. 3.12.
A dangling edge may occur which makes the resulting solid not to be

homogenous. This type of sweep representation is not popular.

B (Trajectory’
rajes Y Iéweep

— A (Area’

Fig. 3.10 Translational sweeping
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he
éFrB {(Trajectory)
l

Sweep

Fig. 3.11 Rotational Sweep

B (Trajectory)

A (Rrea)l

S —

Dangling edge.

Fig. 2.12 General sweeping (may produce dangling edge).
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3.5 CLOSING REMARKS

Since the present work is concerned with thin plate and shell
structures , the surface modelling method was chosen for surface
representation. 3D wireframe and solid modelling techniques are not

suitable for the mcdelling of thin plates and shells.

The cartesian product and transfinite definitions in surface
modelling are very useful tools when the geametry of the surface
model is to be translated into fnite element analysis data since
they produce meshed-surfaces. However , the cartesian product was
chosen for this work because it is simple and yet very suitable for

meshed surface representation.

In Chapter 5 , the Be'zier technique for surface modelling is
presented. The mathematical foundations are summarized and a

computer implementation based on the cartesian product definition is

presented.
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CHAPTER 4

FINITE ELEMENT MODELLING FOR STRESS ANALYSIS IN DESIGN:

APPLICATION TO PLATE/SHFLL STRUCTURES AND FAN IMPELLERS

4,1 INTRODUCTICN

The finite element method is one of the most powerful methods
for analysing a structure on a computer. In the finite element
method, a continuum, with infnite degrees of freedom is approximated
to be an assemblage of sub-regions each with a specified but now
finite nurber of degrees of freedom. The behaviour of each sub-
region or element is described by a set of assumed functions
representing the stresses or displacement. The assumed functions are
usually in the form of polyncmials and an acceptable representation
of the overall real situation is obtained by using a sufficient
number of elements. In contrast to the Ritz method, all the
integrations required to define the appropriate functional must be
evalu.ated in a piecewise manner from element to element and the

total contribution obtained by summation.

The advent of the digital camputer in the early 1950's enabled
the stress engineer, using the techniques of matrix algebra, to deal
with problems which were considered camplex. This represented the
beginning of the finite element method as a significant tcol for the
stress engineer. It was not until the early 1960 's that the
stiffness finite element was formulated in terms of the principle of

stationary total potential energy. Since then, the finite element



method has been the subject of a very extensive literature with
references such as [29] and [39] being typical of the many books

available.

Until recently, the finite element method was so expensive that
it was restricted to industries such as aerospace or nuclear
engineering that required precise analysis almost regardless of
cost. But now, mainframe camputers and special programs required to
do the analysis are being offered at low cost through timesharing
and leasing. Minicomputers and terminals are more powerful and less
expensive than ever. And modelling techniques have been developed to
provide accurate results with lower labour and computer-processing
costs. With these new features, finite—element analysis is spreading
rapidly throughout general industry. Most new automobiles are
analysed with the finite—elemént method. And the technique is being
applied to construction machinery, agricultural equipment, pumps,
air compressors, machine tools, hame appliances, electric motors,
fans, turbines, and numerous other products. Moreover, the technique
is even being applied to many solid camponents that were hitherto
considered too camplex for rigorous stress analysis. These include

parts such as engine blocks, engine heads and manifolds.
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4.2 OUTLINE OF THE FINITE ELFEMENT PROCESS

The displacement (stiffness) formulation is by far the most
widely used form of the finite—element technique. The sub-regions or
elements behave according to a prescribed function which describes
an assumed displacement and / or stress field. The process can be

summarised as follows:

4.2.1 DEFINITION CF THE FINITE ELEMENT MESH.

The continuum is discretized into appropriate sub-regions or
elements. Elements are connected at points called nodes that form a
network known as a mesh. The total pattern of elements representing
the entire structure is called the model. Different types of
elements are available such as rods, shells or cubes, depending on
the geametry of the structure. In the case of a three-dimensional
surface such as shell, it may be divided up into triangles and
quadrilaterals. Distribution of elements may be uniform but they
have to be clustered around regions of high stress level. A typical

model is shown in Fig. 4.1l.
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typical

slsment

///
=
<

typical

node

Fig. 4.1 Idealtsation of two-dimensional

structurs using triangular slemenis

4.2.2 DISPLACEMENT FUNCTION.

The choice of the displacement function is crucially important
as it governs the assumed element behaviour. Polynanial series are
the most widely used approximating functions in the finite element
method and the degree of the polynamial governs the ability of the
element to approximate the true displacement field. For a desired
accuracy in any particular problem, fewer higher order elements are
required as compared to simpler ones. Usually, the same form of
function is used in all the elements of discretisation, but mixed
element types are acceptable. When different types of elements are

used, then these functioms need to be different in the different

types of element.
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To ensure convergence to the correct result the choice of a

suitable polynamial must meet the following requirements:

(i) The approximating function and certain of its derivatives must
be continuous within the element and there must be compatibility
between adjacent elements. This means that the chosen approximating

function does not imply openings or overlaps between elements.

(ii) Displacement pattern must be able to accomodate rigid body

movarnents.

(iii) The function must include the state of constant strain.
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4,2.3 FORMULATION OF THE STIFFNESS ECQUATION.

Based on the assumed displacement of the previous section, the
strain distribution, and consequently the total potential energy of

the discrete approximation to the continuum may be determined fram

V=U+P=Z(U+P) 4.1
e e
e
where Ug is element strain energy and Pe is the potential energy of

the loading on the element.

The equilibrium condition OV = @ leads to the stiffness

equations
[Kl{q} = {Q} . -

Here, [K] is a stiffness matrix, whilst {q} and {Q} are vectors

of generalised coordinates and generalised forces respectively.

4.2.4 SOLUTION OF THE STIFFNESS EQUATIONS

A number of routines are available for solving the stiffness
equation (4.2). These routines are commonly based on the Gaussian
elimination or Cholesky decomposition processes. The stiffness
matrix is symmetric and sparsely populated, and by suitable choice
of nodal numbering scheme, the non—zero elements of the stiffness

matrix are clustered in a narrow band along its leading diagonal.
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Therefore, efficient routines exploit these properties in order to

reduce the storage requirements demanded of the camputer.

4.,2.5 DETERMINING ELEMENT STRESSES AND STRAINS.

The element strains are easily calculated from the displacement
shape function using the normal strain-displacement relations once
the nodal displacements have been computed. Hooke's law is then
applied to obtain the stresses. Equilibrium conditions are only
satisfied in same average manner; consequently the stress field is

discontinuous from element to element with the usual models

employed.

4.3 REPRESENTATION AND DESCRITIZATION OF ARBITRARY SURFACES FOR

FINITE FLEMENT ANALYSIS OF THIN PLATE AND SHELL STRUCTURES.

4.3.1 INTRODUCTION.

The finite—element method has proven to be a powerful tool that
can be applied not only to thin plate and conventional thin shell
structures with simple mathematical descriptions but also to
so-called thin arbitrary shells. In practice, however, while the
method has been widely used for structures in the former category,
the relatively few reported applications to arbitrary shapes have
been hampered by the difficulty in generating digital descriptions

of the structures suitable for the analysis phase. Finite—element
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analysis requires the definition of a network of ncdal points, each

of which must be characterised by spatial coordinates.

Examples of arbitrary shells of practical interest include
portions of various transportation structures such as aerospace,
ships and rail vehicles, with the most obvious instance being

autanocbile bodies.

There is a tendency for analysis of arbitrary or ccmplex shell
structures to use finite—element formulations based on simple
geametry concepts, such as flat or facet elements for which only the
three spatial coordinates of each node are required to define the
geametry [14]. In addition, same formulations of thin doubly-curved
or thin plate-shell structures having sharp corners and multiple
junction regions are based upon geametric descriptions in terms of

nodal positions only, such as the Semiloof element (1331, [147.

Related to the problem of the geametric representation of the
thin plate—shell structures is the question of discretization for
stress analysis. Not only do finite-element approaches require the
identification of certain geometric parameters at nodes and other
locations, but selection of the arrangement of nodes and elements is
also a concern that becomes crucial when the geometry becomes
complex or arbitrary. A capability for rapid mesh generation which
embodies the calculation of all required geametric information is
desirable if the finite—element method is to be implemented

effectively for the analysis of arbitrary plate—shell structures.
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Such a facilty permits significant shortening of the preprocessing
and, when coupled with graphic devices allows mesh design, i.e. the
consideration of a number of alternative descritisations prior to

analysis.

The generation of a mesh on a surface in three dimensions may
be considered a generalisation of the discretisation process used
for two-dimensional planar dcmains. Three popular methods have been
employed: laplacian, isparametric and transfinite mappings. In the
laplacian mapping, one may generate locations of a number of
specific boundary and interior points and construct the mesh by
joining the points [31]. Kamel and Shanta [32] have described the
application of this approach to three-dimensional surfaces. The
second technique is isoparametric mesh generation in which
curvilinear coordinates are constructed on regions with boundaries
consisting of ralatively low order polynomials [33].The third
approach, known as transfinite interpolation is an extension of the
isoparametric curvilinear coordinate technique, in which generalized
multivariate interpolation is used to map a damain such as a unit
square onto the domain to be described. Gordon and Hall [34]

demonstrated how this technique can be applied to surfaces in three—

dimensional space.

The objective of the research project described in the present
thesis has been to develop a unified approach to the geometric
problems associated with the finite—element analysis of arbitrary

thin plate-shell structures of which the fan impeller is typical. In
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particular, the representation of arbitrary surfaces has been
effected in a manner which leads to natural approaches for the
automatic discritization into a mesh of finite elements. The basis
for the unified approach is the approximate representation of the

surface geametry as discussed in section 3.3.

4.3.2 SURFACE REPRESENTATION AND SURFACE MESH FOR STRESS ANALYSIS.

Recall that the various surface representations have been
discused in section 3.3, and that our objective is to effect a
chosen representation of arbitrary surfaces in a manner which leads
to natural approaches for the autcmatic discretization into a mesh
of finite elements.In section 2.5, reasons for choosing the Be'zier
technique (which is a cartesian product surface) for the geometric

definition of fan impellers were given.

Therefore, given a Be'zier surface representation as shown in
Fig.4.2 , the first step in the further preprocessing is the

defintion of a finite element mesh appropriate for analysis.

The approa-ch adopted in this research project is to use the
parametric lines also employed in the display mesh for the finite-
element description as shown in Fig. 4.2, In other words, the finite
element mesh is just a simple mapping from a rectilinear mesh in
parametric space, i.e., the u-v plane. The element boundaries always
conicide with constant curvilinear coordinate lines. The numbering

of the nodal points, which affects the bandwidth of the global
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stiffness matrix and consequently the camputational efficiency, can

be made nearly optimﬁm.

Usually, such a mesh is made up of quadrilaterals. We must
include facilities to obtain other types of elements such as
triangular meshes, as well as being able to upgrade the simple
quadrilateral and triangular meshes respectively. Details of such
techniques for transfer of the simple quadrilateral to triangular,

as well as upgrading them are discussed in section 7.

/]
//// \\\&

//// NANEAN

¢

Fig. 4.2 Ba’zter surfacse repressntation:
{a possible schems for generating

finite slament mesh on a surfacse)
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4,3.3 THE SEMILOOF ELEMENT.

Since the Semiloof element was adopted for the development of
the finite element stress analysis program to which the gecmetric
modeller developed in this work is linked , it became necessary to

summarize the geametric description of the element.

A large number of plate and shell structures are thin with
sharp corners and multiple junction regions. The Semiloof thin
shell element was developed by Irons [14] to meet the practical
needs of analysing such camplicated structures. The element is non-—
conforming and therefore owes its usefulness to the fact that it has
passed the patch test [29]. Basically, the element adopts the well-
known isoparametric concepts for geometrical and generalised
displacement definitions and the version coded to date is an 8-noded
parabolic model. The element has proved to be very efficient for

engineering thin shell applications.

4,3.3.1 GEOMETRY AND NODAL CONFIGURATION.

The quadrilateral and triangular Semiloof shell elements are
shown in Fig. 4.3 where the local coordinate system , isoparametric
curvilinear coordinate system and global reference system are also

illustrated. It is seen that three types of nodes are considered :

(i) corner and midside nodes at which three global displacement

camponents are taken as nodal parameters.
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Fig. 4.4 Semt-loof element topology
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(ii) loof nodes which are located at the Gauss points along the
element sides. The nodal variables at the loof nodes are two
rotations normal to the side at two points along each side,
positioned at a distance of 1/2V3 (side length) from the centre.

(iii) central node at which the nodal parameters are chosen to be
the three local displacement components together with the two

rotations.

These will give a total of 32 d.o.f. for a quadrilateral and 24
for a triangular element. The numbering sequence is ordered by
starting at any corner node and progressing round the element as

shown in Figs. 4.4 (a) and 4.4 (D).

4.3.3.2 SHAPE FUNCTION POLYNOMIALS.

Semiloof element is a non-conforming which passes the patch

test and the element adopts the well-known isoparametric 8-noded
parabolic model. Scame measure Of Cl-oontinuity is maintained by the
introduction of the normal rotation variables at the locof nocdes on

the element periphery.

The following shapes functions in terms of curvilinear
coordinate system (¢,7) are used for quadrilateral elements (

E, = 5, Mo = MM ). ( refer to Fig. 4.5 )

(a) For corner nodes
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Fig. 4.5 Nodal configuration of the
semiloof shell element
(gquadrilateral type)
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Ny = l/4<1 + §o><1 + 770><§o + Mo ~ 1) e 43

(b) For midside nodes

i 1/2<1 - §2><1 + n0> ,  £=0 .. 44
N, = 1/2(1 - nz)(‘l + §O> , 7, =0 - 45

(c) For loof nodes ( given in Ref [35] )

2
il

N; = 3/32 <3§2 - "2> + 18-[3§o(1 - n2>+ 3n0§ 3¢ 41y -1 +3§2_§<§2— n2>u
fo= £ 4.6
2
N, = 3/32 <3n2- §2>+ %[3%(1 —§2)+3§0 an? + g, -1 +§:}§n<n2- : )ﬂ
m= 1 .47

(d) Central node : the bubble function

2 _ n? ... 48
(-2 )

The consideration of this shape function has been given in

Ref.(36).
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4.4 CLOSING REMARKS

In this Chapter, the outline of the finite element process was
presented. An important features of the process is the definition of
the finite element mesh. This feature forms a basis for linking
drafting and the rest of the finite element analysis process via
geometric modelling. This is beéause bulk of the input data to a
finite element analysis program is made up of the geometric and
topological definitions of the finite element mesh while the
remaining are the material properties , boundary and loading
conditions. Therefore , a geometric modeller such as the one
discussed in Chapter 5 which meshes the model should be most

suitable for bridging drafting/finite element analysis gap.

The meshes resulting fraom the surface modeller of Chapter 5 can
be translated for use as semiloof elements since only the ncdal
coordinates are required for the definition of semiloof elements
which adopt the well-known isoparametric concepts for gecmetric

definitions.
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CHAPTER 5

THREE-DIMENSIONAL SURFACE MODELLING USING

RERNSTEIN-RBE 'ZIER METHCDS AND COMPUTER IMPLEMENTATION.

5.1 INTRODUCTICON.

For a long time , the autamobile , aircraft and ship—~tuilding
industries have developed various practical schemes, based largely
upon the theory of linear approxirhation, for the mathematical
descripticn of arbitrary gecmetric shapes. This is part of a study
that Forrest [37] has termed "camputational gecmetry". According to
Forrest, first we need a satisfactory and suitable general
mathematical method for describing or , more appropriately, defining
very general free-form curves and “sculptured" surfaces such as
those found for instance on hulls, autcmobile and aircraft bodies.
Moreover, an adequate interface between the undelying mathematical
technique and the designer or user who may have little mathematical
training is essential. A successful computer—-aided design (cap)
system should appeal to the designer. It must be simple , intuitive
and easy to use. Ideally, an interactive design system makes no
mathematical demand on the user other than those to which he has

been formerly accustamed through drafting and design experience.

one such CAD system — SYSTE'ME UNISURF , has been developed by

Be'zier [38]. The system is different from most CAD systems in
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several ways. Be'zier approached the system from an instinctive
gecmetric direction. The designer sketches a curve on the

board , and draws an (open) polygon about the sketched curve

(See fig. 5.1) which in a crude way mimics the gross shape property
of the curve. Then , the vertices of the polygon are digitized and
the corresponding "Be'zier curve" camputed and automatically drawn
by an automatic computer-driven drafting machine. Because of scame
descrepancy between the expected and drawn curves, the polygon is

adjusted iteratively until an acceptable curve is obtained.

This way of designing curves is easily generalised to a method
for designing surfaces simply by using the cartesian product form of
the one dimensional case. The (open) Be'zier polygon becomes the
"Be'zier ngt" , that is , a piecewise bilinear net. The relationship
between a Be'zier net and a Be'zier surface is illustrated in

Fig. 5.2.

The Be'zier technique is described in details in this chapter.
A computer program was implemented using the Be'zier technique for
surface representation. The computer program is capable of
representing any free—form surface. In particular, we have applied
it to the geometric representation of a fan impeller : reasons for

and advantages of the choice of +he Be'zier technique have been

enumerated in section 2.4.
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Fig. 5.1 Seguencse of Bezier curves(full line)

approximating a hand drawn curve

{(dashed Tlines),

L fot)
W £ - 67 -
T



Be’'zisr net Be’zisr surface

Fig. 5.2 Typical Bes’zier surface and net



5.2 A REVIEW OF BERNSTEIN APPROXIMATION.

The basis of the Be'zier technique is the Bernstein polynomial
approxXimation. Therefore , in order to understand the gearetric
properties of Be'zier surfaces , an understanding of the properties
of the Bernstein polynomial approximation is essential. The
approximation theoretic basis of Bernstein approximation is

described here.

The Bernstein polynomial [39] approximation of degree m to an

arbitrary function f:[d,1]-> R is :

m
B [frul 2 _£(i/m) ¢, (u) ceeee (5.1)
- 4
where the weighting functions ¢i are , for u € [@,1] , the discrete

binomial probability density functions for a fixed probability u ,

given by

g, () = "ot (1-)T T i1, ce e (5.2)

Fig.5.3 shows the graphs of the weights as a function of u.

- 69 -



L .\
8 .4 .6 .8 1

Fig. 5.3 The Bernstein kasts functions for a
linear space B , t.e polynomials
of degree 5.

5.2.1 THE CONVERGENCE PROPERTIES

Consider a second degree (i.e. m = 2) BRernstein approximation

to the function £(u) = o , where u € [8,1] . Consider the following

nodal points : £(8) , £(1/2), £(1) having corresponding nodal

function values :

£(g) =9

£(1/2) =1/4
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£(1) =1

Making use of these nodal values in equation 3.1 , we have :

BmEuz;u] =+ u(l-u)/2 ... 5.3

th .
More generally , the m™ degree Bernstein approximation to

f(u) = u2 is

Bm[uz;u] = + u(l-u)/m ... 5.4

which clearly shows the slow convergence (like i/m) of the Bernstein

approximation Bm[ f] to the primitive f.

5.2.2 PROBABILISTIC INTERPRETATION.

Bernstein approximation theory has a probabilistic
interpretation. From probability theory and statistics , we can give
the following meaning to Bm[f;u] :

Let u be the probability of the occurrence »of a given event in each
of m Bernoulli trials. Then the probabilities of 2,1,....,m

occurrences of this are @,(u) , g (1) 4 eee @ (u) , respectively.

Moreover , if f(i/m) represents the "value" of obtaining exactly i
occurences , then expression (5.1) is the expected "value" of the

m+l trials. Of course for u = @ the expected value is simply £(3) ;

and for u = 1 it is £(1).
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In general , for any value of u € [d,1] , Bm[fru] is a convex

linear cambination of the values of f at the m+l nodal points
£(9) ,£(i/m) ,...., £(1/m) , £(1). Moreover, the approximation can
be thoucht of as a statistically smooth convex linear cambination of

these nodal points.

5.2.3 THE BERNSTEIN BASIS.

The polynamials Bm[f;u] are called Bernstein polynomials, and

they form the Bernstein basis for the function f with degree m at
most. Recalling same of the elementary properties of the binomial

probability densities :

g, () >0  (i=0,1,..,m) gﬁéi(u) =1 for u € [9,1] — 5.5.

3,0 =178, =0 (1m0

¢i(j)(®) =g -,- (50,1, 0000,i71)

9, V@) = mt / (i)

¢i(j)(l) =0 ( 50,1, .000.,mi-1) i=1,2,..,m1
i(m-i)m - D)™/ (i) —— 5.6
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6.0 =1:8 D0 =0 (50,1,.....00)

These relations serve campletely to characterise the Bernstein

. m _ .
basis {¢i(u)}i = @ for the linear space P of the polygons of degree

Forrest [40] has shown that the maximum of such a function

¢i(u) occurs at the value u=i/m (i # @ , m) and is

¢i(i/m) = mCiil(m--i)mml/mm e 5.7
Observe that for i # 9 , m :

¢i(u) <1 for u € [9,1], N 5.8

and that %(z) =1, ¢g(1) =0 , and ¢m(®) =g, ¢m(l) = 1 , which

immediately imply that the two endpoint values £(9) and £(1) are ,
in general , the only values which are interpolated by the Bernstein

polynomial. The graph of the Bernstein basis functions for m = 5 is

shown in Fig. 5.3.

From the above relations involving the values of the ¢i(u) and

their derivatives at the endpoints of the unit interval it is a

simple matter to see that the endpoint derivatives of the Bernstein

polynamial itself are given by :
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i L

d 1 . PO
Atu=9 : ——— . = IRRY S ;
u P Bm[f'ujlu=® M'E 1) 3,1ij(l/m)
At u=1 :‘—ii.-B [f-u]f = i(-l)j 1 ;
atom 7 e 7 Ty )7 E /)50

It is seen fram these last expressions that the i'th derivatives at
the endpoints u = @ , 1 are determined by the values of f£(u) at that
endpoint and at the i points nearest to the endpoint. For the first

derevatives (i=l) :

Bilfrul| g = ml£(L/m) - £(2)]
Bplerul| g = mlE(D) - £(m-L)/m] ceeer 5.10

which means that the polynamial is tangent at the endpoints to the

straight line joining the endpoint to the neighbouring interior

point.
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5.2.4 THE BERNSTEIN OPERATOR

Bm is a linear operator and has the property :
+ =
B [af + bgl = aB [f] + bB_[g]
where a and b are real nurbers.
Recall example 5.2.1 , for a second degree Bernstein approximation
to the function f(u) = u” :
BmEuz;u] =+

We observe that Bm[f;u] # f .

5.2.5 BERNSTEIN APPROXIMATION FOR FUNCTIONS OF MORE THAN ONE

VARTABLE.

The natural cartesian (tensor) product generalisation of the

Berstein operator for the case of a bivariate function is the linear

operatorA

m n
Bm,n[f7u’V] = BmBn[f;u,v] = Z:@Z@gﬁi(u)vj(v)f(l/m,]/n)
1=0 =
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where ¢i and . are the binomial densities of equation 5.2. B is
] m,n

’

simply a product of the univariate operators Bm and B_. These
n

operators are cammutative , as long as f is continuous :

BmBnEf] = BanEf] teeeas5.12

The properties of the univariate Bernstein polynomial are

carried over to the bivariate form. For example , B n[ f] coincides

m
with £ , in general, only at the four corners of the (u_,v) unit
square — (9,90) , (9,1) , (1,6) , (1,1). However , along the four

boundaries of the square , B_ n[f] reduces to the appropriate
1

Bernstein polynamial approximation to the value of f on that edge.

For example,

14

m
B [fru,vl| =B [f,0] =Za¢i(u)f(i/m,®) cee.5.13
1=

In the interior, the values of B_ n[f] are simply convex weighted

14

conbinations of the values of f at the (m+l)x(n+l) points of the

cartesian product partition.

Four possibilites are considered in the Bernstein approximation

for functions of more than one variable. These are the operators Bm

and B themselves in parametric form , the cartesian product
n

operator B B in (5.11) and the Boolean sum operator given by
m n
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(B, ® B )£l =B [£] + B [£] - (8 B )L£] S+ 5,13

m n
-—ZQSi(u)f(i/m,v) £ ¥, (e, 3/n)
_ =¢ m n =92
=22 G WY Ei/m i) 5.14
=0 j=0

The cartesian product of equation 5.11 is a very particular case of
equation 5.14 by replacing the arbitrary univariate functions
£(i/m,v) and £(u,j/n) by their Bernstein approximations of degree n

and m , respectively.

The Bernstein approximation for functions forms the basis for
Be'zier curves and surfaces. The Be'zier polygon and net vertices
correspond to the nodal points (See section 5.2.1) of the function

being approximated.

5.3 BE'ZIER CURVES : GEOMETRIC APPLICATION OF BERNSTEIN

APPROXTMATION.

Be'zier surfaces are made up of Be'zier curves in the u and v
directions. Therefore , it is usual to study Be'zier curves in some

detail and then extend the idea to Be'zier surfaces.

An arbitrary curve in the plane or space cannot be regarded as

a single-valued function of one of the coordinates , irrespective of

how the coordinate system is chosen. If we decide to represent all

our curves as polynomial functions , of one variable , then the
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function becames indeterminate when the curve has a vertical tangent
at a point. Axis independence , and tangency conditions have led to
the use of parametric or vector-valued methods for the
representation of curves and surfaces. Thus instead of defining all
our curves in the form y = £(x) and surfaces in the form z = £(x,y)
we make use of what are known as vector-valued functions.

Planar curves simply take the form :

P(u) = [X(u) , Y(u)l.

Space curves simply take the form :

P(u) = [X(u) , Y(u) , z(u)l

and surfaces take the form :

P(u, v) = Xu, v), Yu, v), 2(u, v)]

where P is a point vector. Throughout the discussion that follows ,

the parametric form will be used.

5.3.1 VECTOR-VALUED DEFINITIONS

let P(i=0, 1 ,.000.,m be (m+l) ordered points in
i



three—dimensional Fuclidean space. In what follows we will refer to

the (open) polygon formed by joining successive points as the

Be'zier polygon P = P_P ,....P .
g1 m

The Be'zier curve associated with the Be'zier polygon P is the

vector-valued Bernstein polynamial Bm(u) given by
m
B_(u) =§¢i(u)Pi ..... 5.15

where the ¢i(u) are the Bernstein basis functions of equation 5.2.

Same examples of Be'zier curves are shown in Figs 5.4 and 5.5. It is
observed that the curves are tangent at the endpoints to the
straight line joining the endpoint to the neighbouring interior

point (See section 5.2.3)

The right hand side of the expression (5.15) is essentially the
formulation due to Forrest [40]. This is an approximation to the

discrete data {Pi} rather than to a continuous primitive function

that is defined over the interval [4,1].

Figs. 5.4 and 5.5 illustrate the relationship between the
Be'zier polygon and the plane curves. Same interesting observations

are apparent fram these figures : that the curve Bm(Pg Py ...,Pm)

is tangent at Py to the leg PP, and is tangent to the leg P__ P

at the second endpoint. This can be verified analytically by

recalling expression 5.1¢ for the first derivative of a Berstein

polynamial. Fram that , it is clear that the tangent vector at Pg is
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Fig. 5.4 A Bezier curve for

@ S-sided polygon

Fig5.5 A Bezier curve for a

18-sided polygon.

- 80 -



in the direction P, - Py + and at P, the tangent vector has the

direction Pm - Pnrl'

5.4 BE'ZIER SURFACES.

The idea of Be'zier curves is extended to Be'zier surfaces by
merely introducing vector-value functions for f£(u,v) in the basic
surface formulae for the cartesian product approximation
(equation 5.11) and for the Boolean sum (equation 5.14). In the
cartesian form of the extension , the Be'zier polygon is replaced

net".Pp=1{p,. ,1i=0,1,....m; =0, 1

with the Be'zier
1]

,-ocon}
If we substitute the function

1 ] = ) ... 5,16
f(i/m, j/n) Pij 5
into equation 5.11 the result is the Be'zier surface B[P] that

corresponds to the Be'zier net P.

(ur zzzjz:gé wj(V).Pij

i=0 j=0

..5.17

where the @¢. and Y. are the usual binomial density functions of
i j

equation 5.2.

Consider now the cubic Be'zier curve. Since it is cubic ,
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1\11 =n = 3 and there is a contro] polygon consisting of the four

control vertices [Vij] rwhere 1 =9 ,....,3and =0 ,....,3. From

equation 5.2 , the Bernstein polynamial is

Ql(u) = 3u.(l—u)2
Q2(u) = 3u . (1l-u)
Q3(u) = u3 , foru [9,11] ........ 5.18

Canbining equations 5.2 and 5.15 , the Be'zier curve is

By (u) = (l-u)3.Pg + 3u.(1-u)2.pl + 3u2.(l—u).P2 + u3.P3

These equations can be recast in matrix notation. From equation 5.15

» the curve can be expressed as

By(u) = [Qy(u) 0, (u) 0,(uw) Q31 [By ,vveeesPs

Fram equation 5.18 , the polynamials can be written as
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[0y (1) Q) () 9y(w) Qy(w] = [d® & u 1].[8]

where
-1 3 =3 1
B = 3 -6 3 4
-1 3 g 0
1l ¢ 9 o

Fram equation 5.19 , the curve can be rewritten in the following

matrix form :
_ 3 2 + N
By(u) = [u” u” u 11.[BL.[P,..., P,] 5.0

One of the premises in the development of the Be'zier
formulation was the relationship between the derivatives of the
polynamial and the edges of the control polygon. Fram equation

5.19 , it is observed that

B,(0) = Py

By(1) = P,

2 (@) = (e, - 7,

B;l)(l) =m(2, - ) ,vhere m =3
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In statement form , the curve begins at the first vertex (V,) and
ends at the last vertex (V3) and is tangent to the control polygon

at these vertices (see section 5.2.3).

A Be'zier surface is a tensor product of Be'zier curves. It is
defined by a set of control vertices, in three - dimensional X, Y/ 2
space that is organised as a two dimensional graph with a
rectangular topology. The set of control vertices is called a

control hull (Be'zier net).(Refer to fig. 5.2.)

‘ v .
Given a Be'zier net [P% : Py ”"'Pm,n] , equation 5.17 for

the Be'zier surface can be written in matrix form as :

B _(uv) = [05(w) ,0 ) ....,Q (WI1.[P] [Hy(v), .4 (n]*

m,n n

5.21

where P = .+ ¢ ¢« ¢« o ¢ o o

The total number of Be'zier mesh in a Be'zier surface patch is
determined by the number of subdivisions in the u and v directions.
Suppose there are N, divisions in u-direction and N divisions in

v-direction as shown in Fig. 5.6. Then there a Nux N, rectangular

grid is generated.
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5.5 CONCENTRATING BE'ZIER MESH.

The surface modelling technique described so far is based on
uniformly spaced nodes on each side of a Be'zier mesh. There are
many instances , however , where , it is necessary to concentrate
the Be'zier mesh (and consequently the finite element mesh after
translation) since certain-areas of the model could have stress
concentration and a fine mesh will lead to greater accuracy in
calculating stresses at such points. A Be'zier mesh concentration
factor may be specified , to the surface modelling program developed
in this section in both x and y directions which permits a Be'zier
mesh to be concentrated in any part of the model. A model is shown
in Fig. 5.7 with mesh concentrated in two parts by specifying a

concentration factor SX in the x~direction and SY in the in the

y-direction. Fig. 5.8a shows a sector with the Be'zier meshes
concentrated in the inner edge (see fig. 5.8b) in order to increase
the accuracy in calculating stresses in the mcdel.

The global coordinates X, and Yy of the nodal points in the basic

mesh are given as follows :

(i,—1)

s’ -1
X, = _—
i (Ny—1)
St -1 |
iy _1
s~ 5.22
Slmllarly,'Yi = gi;:;{:;— .
y

The optimum value of the scale factor is 1 < SX,Sy < 3 [65].
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5.6 SOFTWARE IMPLEMENTATION OF THE 3-D SURFACE MODELLER

5.6.1 COMPUTER SYSTEM CONFIGURATION

The total package produced in this work is mounted on Hewlett—
Packard 9845B(System 45) desktop computer. The system 45 has a
usable screen size of 200mm by 162.5mm which can accamodate 568x455
dot resolution. The refresh rate is 60 Hz and display speed is 3180

m/s.

The language available is an enhanced version of BASIC. The
system ROM has 120K bytes and the read / write memory is 187K
bytes. There are two tape cartridge units having capacity of 217K
bytes each and an HP9845 flexible disc drive for disks having 500K

bytes storage capacity.

Graphics display can be dumped onto either the built-in

lineprinter , the external Hewlett—Packard 9827A flat-bed plotter or

the Benson drum plotter.
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5.6.2 STRUCIURE OF THE PROGRAM

This section describes the structure and operation of the
program SUFACE developed to generate irreqular surfaces in three—
dimensional space using the Be'zier methods discussed already in
this chapter. Recall that there are three basic ways in which a
surface can be represented (section 3.3). The method employed in the
work reported here is the cartesian (tensor) method of section 5.2.5
in which the surfacégi% defined by a grid of points , only four of
which (the surface corner points) lie on the surface. Examples of
such cartesian product surfaces are UNISURF surfaces [38] (Be'zier
operators) , Numerical Master Geametry [41] (spline operators) and
FMILL [42] (hybrid of bicubic Hermite and spline operators). Of the
three methods of surface representation , the cartesian (tensor)
method is probably the best suitable for interactive design [40]

because no knowledge of the tangents at the endpoints of the Be'zier

polygon is required by the user.

The objectives of the 3-D surface modelling system are :

1. The system should provide convenient geometric construction

capabilities for models camposed of surface-based entites.

2. The gecmetric data created by the mcdeller should be usable as

input to application programs , such as finite element modelling and

surface area and section properties calculations thereby making this

system the "core" of a computer—aided engineering environment.
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3. The interface should be campatible with a 2-D drafting system so
that some "control" data needed for surface modelling could be

derived fram the 2-D drafting system when so desired.

5.6.2.1 SUFACE

This is the master program and it has been developed in a
highly interactive mamner so that the user finds it easy to use. The
function keys of the HP9845 have been used so that the user only
selects the key(s) appropriate to his/her need. When each function
is campleted , the model created is displayed and no further action
takes place until another function key is depressed. The various
function keys and the corresponding options available are shown in

the flowchart of this program.
The remaining part of this chapter describes the subprogram

SURFACE which is accessed using function keys #7 or #12 for the

representation of models.
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5.6.2.2 Subprogram SURFACE

This is the subprogram for surface representation and the
following steps indicate how the processes carried out in the

subprogram are organised :

1. The Be'zier net coordinates , the angle of orientation of the
surface and the number of subdivisions in u and v directions are

read .

2. The combination of m ( the number of vertices in the u-
direction)taken i at a time , where i =8 , 1, 2 ,¢.e...,m ,is
obtained and stored in an array. The same is done for n , where j =
g, 1, 2,...,n and these values stored in ancther array.

3. The boundary curves are drawn.

4, Fram the input data as well as the cambinations obtained in

step 2 , the curves of constant v are drawn in a piecewise form.

5. Steps 2 - 3 are repeated for drawing curves of constant u.

6. The nodal coordinates of grid corners are stored in an array in
some logical order for further interpretation and are used in

application programs such as finite element analysis , surface area

and inertial properties of the mcdel.
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7. Input data could be modified and steps 2 - 6 repeated until the

designer is satisfied with the model.

Following the flowchart for the program , it can be seen that
the first thing it does is to read the coordinate values for the
Be'zier net , starting fram the left-hand position of the polygon
(open) J.n X-Y plane and working to the right , then progressing fram
one polygon to the other in the X-Z plane. These , X , vV , 2
coordinates are stored in arrays in an ordered form. These ,
together with the number of divisions in the u and v directions of a
patch as well as the angles at which the surface is to be oriented
in space , are input to the program via the keyboard or from a
database if the suface modeller is interfaced with a 2-D drafting

package.

From the given number of divisions in the u and v directions ,
the corresponding combinations are respectively obtained and the dot
product of these cambinations is obtained and stored in an

array G for use in most of the subroutines.

The next procedure to be accessed is XYBY , which determines
the boundary curves in the u—direction. The first coordinate values
in the first and last polygon (open) of the Be'zier net are

required. The local coordinates can be specified using this

information and the corresponding global cartesian coordinates are

generated through the probability density function Q(u). A loop

(having u values fram zero to unity in steps of g.1) is established

- G2 -



which controls this operation. Within the loop , each local
coordinte value returned from the routine XYBY is termed a ‘“new"
coordinate value. The routine DRAW is then accessed to draw frem the

preceeding (old) coordinate to the new coordinate. In this manner

the curves are drawn in a piecewise fashion.

A similar operation to that of the preceding paragraph is
carried out for determining the boundary curves in the v-direction.

- This time , the procedure YZBY is accessed.

Having drawn the boundary curves , the internal grids have to
be represented. Therefore the next procedure to be accessed is
MESHXY , which determines the internal curves in the u-direction.The
input data for this routine are the number of Be'zier meshes in the
u-direction and the x , vy , z coordinates of the polygon (open)
within the Be'zier net. The curves are dealt with in turn , starting
fram the left-hand corner and traversing each polygon (open) , then
progressing from one row of the polygon (open) to the other . The
local coordinates of the piece-wise linear curves in the u-direction
can be obtained using this informaton and the corresponding global

cartesian coordinates generated , through the probabililty density
. . . m
function Q(u) and the corresponding carbinations Ci. There are two

loops (each control variable varying from zero to unity ) that

control this
operation , namely U which is an outer loop and V an inner loop.

Within the loops the routine DRAW is accessed in a similar manner as

the boundary curves representation.
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A similar operation is carried out for determining the internal
curves in the v-direction. However , the procedure MESHYZ is
accessed. The corresponding global cartesian coordinates are

generated through the probability density function Q(v) and the
corresponding combinations an. T™wo loops (each control variable

varying fram zero to unity) control the operation. The outer loop is
U while the inner loop is V. The DRAW routine is again accessed
several times within these loops to draw the curves required.

Fig. 5.9 shows a Be'zier net and the corresponding surface.

Because we are interested in more than just a graphical
representation of the surface , it is essential to record the
coordinate values at the corners of the grids. To avoid
duplication , this is done only after the routine MESHYZ has been
accesed. These coordinate values are important for application

programs that rely on the 3-D surface modelling database.
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Fig. 5-] Flowchart far subprogram SURFACE

( START )

E¢x)="C,

" values:i=1,...N
F(x)="C: values:i=1,.,.M
GUE*)=E{*),F(*%); (NxMImatrix

FOR K=1 TO M STEP M-!

Xs=Xo (K,
Ys=Yo (K,
Zs=Zo (K,

1)
{3
£

A%CH&L DRAW:Move toXs,Ys,Zj%7

= FOR U=8 T0O 1

STEP Du

XE=Yf=Zf=0

GOSUB XYBY

AVEHLL DRAW:Draw to XF,YF,ZE/V

NEXT

NEXT

K
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FOR K={ TO N STEP N-1

Xs=Xo(1,K)
Ys=Yo(1,K)
Zs=Zo(1,K)

l

AZ,CRLL DRAW: Move to Xs,Ys,Zij7

FOR V=@ TO { STEP Dv

Xf=YfmZ$=0

GOSUB YZBY

AyﬁCRLL DRAW:Draw to x¢,v¢,z§;7

-

1 NEXT V

l

NEXT K

FOR V=@ TO | STEP Dv

|

Xf=Yf=Zf=0

FOR U=@ TO | STEP Du

XfmYFf=Zf=0

|

l GOSUB MESHXY

l

é CALL DRAW:Draw to XF,Y?,ZF&

{

NEXT U

NEXT V
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FOR U=@ TO { STEP Du

Xf =Yf=Zf=g

FOR V=@ TO | STEP Dv

Xf=Yf=Zf=@

GOSUB MESHYZ

// CALL DRAW:Draw to Xf,Yf,zf/
I

GOSUB X-YZ

?

NEXT V

NEXT U

END
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5.6.2.3 Subroutines XYBY and Y7RY

Both of these subroutines function in the same way and campute
the x , v , and z coordinates for the ends of the segments generated
alohg the two boundary u-curves and the two boundary v-curves of
each surface patch with parameters u and v running from zero to

unity along the relevant boundaries as shown in the figure below.

u=g

rlu, 13 __ >

v=Qg u=i
v=g

rlu,vi=IX{u,v),Y{u,v},Zlu,v)]

The coordinates are computed from the vector-valued Bernstein-

Be'zier polynamial written as

p
X = X(g,v) D 0. (0%
=g
= = P=N,u=46,..1;
Y = Y(u,v) ZQi(u,v)yi , when

Z = 7(u,v) ———ZjQi(u,v)zi , when P=M , v=4,..1;
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Qi(u.v) are the Bernstein basis functions and x. , y, and z, are the
i i i

coordinates of the control points on the Be'zier polygon along the

boundary under consideration.

The steps for the routine are as follows :
1. The counter loop I or J is constructed and represents the nurber
of control points in a Be'zier polygon along the boundary under
consideration.
2. Within the loop , for the two u-curves , the Bernstein

polynomials Qu(u,d) , Ql(u,ﬁ),.....,QN(u,@) are evaluated with the

value of u running from zero to unity. For the two v=curves , the

Bernstein polynomials Q@(@,v) , Ql(ﬁ,v),.....Q (9,v) are also

M
evaluated with the value of v running fram zero to unity. These are
multiplied each time by the corresponding control vertex ccordinates

and summed up to give blended Be'zier curves.

Boundary u-curves and v-curves are very useful in representing
the outline of a 3-D surface model when meshes in the interior of
the surface patches are not required. Boundary curves can also Dbe
used in conjunction with subdivision to develop a fast occlusion
algorithm for surface / surface intersections. If the boundary
curves of two surface patches do not occlude one another , neither
can the interior meshes of the surface patches. However , if they do

interfere , subdivision can be used as a means of resolving the

interference.

- 101 -



Fi3-5'12 Flowchart for subroutins XYBY

( START )

FOR J={ TO N

H=G{ J, KI¥UALT~13%(1-UYAN=-T)

XfmXf+Xo( K, JT)*H
Yf=Yf+Yo( K,JT)*H
ZfmZf+Zal K, J)%H

NEXT J

(ARETURN )

Fig- 5-13  Flowchart for subroutine YZBY

( START )

FOR J=1 TO M

H=G( K, JI*¥VALT-13%({=VIA(M-T)3

Xf=Xf+Xo( J,KI*H
Yf"Y‘F*‘YO( JIK)*H
Zf=Zf+Zo( J,KI*H

NEXT - J

( RETURN )
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5.6.2.4 Subroutines MESHXY and MESHYZ

Again , both of these subroutines function in the same way and
compute the x , y and z coordinates for the four corners of the
surface grids. The technique adopted by this routine is the
cartesian product form in which we extract vectors with constant u
and v blending functions. The fixed vectors can be associated with
the nodes of a rectangular grid in the parameter plane as shown in
the diagram below. The fixed vectors are point vectors and are

computed from the Bernstein-Be'zier surface approximation given by

Typtcal conirol
point

Grtd
Grtd
node \ *\
QY ——u
X = X(ug,v) = aXij
Y = Y(u,v) = aYij
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z = 7(u,v) = az. .
1]

m n
where a =ZZ Qi(u'V)Qj(U:V) . and Qi(U,V) + Q.(u,v) being the
i=dj=0 ]
Bernstein blending functions. Xij . Y.j Z.,. are the control
i3, Tij

vertices of the Be'zier net taken in order.

m n
The expression X = X(u,v) =ZZ Qi(u,v)Qj(u,v))§ (applicable to

y and z) is a weighted average of the (m + 1)*(n + 1) control

vertices with the Bernstein polynamials being the weighting factors

and it defines an (m x n)@ - degree Be'zier surface [43]. In

otherwords, suppose there are MxN vertices defining a Be'zier net ,

then the surface represented is an (M—-l)*(N—l)thdegree Be'zier

surface.

The steps of the routine can be identified as follows :
1. The outer loop has a counter L which represents the nurber of
control points in a Be'zier net along cne of the directions. The
loop runs from zero to the number of control points in that
direction minus one.
2. Along the direction under consideration , only one term of the
blending function is dbtained at a time and this is determined by

the counter L. For example if L = @ , then Q4(u,v) is obtained ; if
L=1, then Ql(u,v) is obtained , and so on.

3. An inner loop J is constructed , within which the blending
functions in the other direction are determined , multiplied

together with the blending function fram step 2, and in conjuction
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with the associated control points , the global coordinates of each

node of the surface grids are found.
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HQ.SJA Flowchart for subroutine MESHXY-

( START )

FOR L=@ TO  M-{

I=VAL%X(1-VIAIM-L)

FOR J=8 TO N-1

H=UAT% ({-UJAIN=-T)

Xf=Xf + Xol L,JIXG(J,LI*H*I

Yf=Yf + Yol L,J3I*G(J,LI*H*I

Zf=Zf + Zol L, J3*G(J,LI%H*I

NEXT J

NEXT L

(—RETURN 4)
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Fig. 5-15. Flowchart for subroutine MESHYZ.

(o)

FOR L=8 TO  N-!

I=UAL*®({-U3AIN~-L)

FOR J=8 TO M-1

H=VAT%(1-VIA(M-T)

XfmXf + Xo( J,LI*¥G(L,JI*H*I

Y=Y+ + Yol J,LI*GUL,J)I*Hx*I

Zf=Zf + Zo( J, LI*G{L,JI%H*I

NEXT J

NEXT L

D
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5.6.2.5 Subprogram DRAW

The rotations about the x , y and z axes can be cambined into a
general rotation matrix [R]. Expressions for these rotations are
available from standard graphics textbooks. The rotation matrix is
- very useful for rendering three-dimensional surface models. A
compact form of the general rotation matrix was used for the
subprogram DRAW. The COSINE of the angles of rotations about the x ,
y and z axes are given by Cl , C2 and C3 repectively while the SINE

of these angles are given by S1 , S2 and S3 respectively.

Fig. 5.16. Flowchart for subprogram DRAW

(-STHRT )

X2={C2%C3 %X + (S3%Cl + SI*C3I*C23 %Y
+ (SI%83 - CI*C3%82)%Z

Y2= —(S3%C2I*X + (CI*C3 — S1%S2%53)*Y

+ (S1%C3 + CI*52%83)%Z

IF Pen=1 THEN DRAW X2,Y2

IF Pen=2 THEN MOVE X2,Y2

(T~SUBEND _)
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5.7 CLOSING REMARKS

In this chapter , the mathematical foundation of Be'zier
surface technique has been presented. The develcpment of a
stand-alone general purpose surface modelling package has been
described. The master program SUFACE is highly interactive and
accesses different modules by means of the HP9845 special
function keys. The subprogram SURFACE is the heart of the surface
modeller. The subprogram DRAW is repeatedly accessed to display the

model.

The package is highly versatile and can receive control data
fram a 2-D engineering drawing interpretation module such as the one
described in the next chapter or directly fram the key board. By
suppplying control data on the key board , the user can model any
complicated surface such as car bodies or aeroplane fuselage and

wings.
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CHAPTER 6

AUTOMATIC INTERPRETATION OF ENGINEERING

DRAWING FOR 3-D SURFACE REPRESENTATION

6.1 INTRODUCTION

Since earliest times engineers have used drawings to
communicate and record ideas so that they would not be forgotten.
For every manufactured object there are drawings that describe its
physical shape completely and accurately , communicating the
drafter's ideas to the machinist or foundry worker. For this reason

, engineering drawing is referred to as the language of industry.

The majority of drawings used in mechanical drafting for
completely describing an object are multiview drawings. The drafter
represents the part which appears as three-dimensional (width ,
height , depth) to the eye on the flat plane of the drawing paper or
board. Multiviews of the object are systematically arranged on the
paper or board to convey the necessary information to the reader.
Features are projected from one view to another. This type of

drawing is called an orthographic projection.

In one-view drawing , the third dimension may be expressed by a
note or descriptive words. Simple parts are represented by one-view
drawings. Frequently the drafter decides that only two yiews are

necessary to explain fully the shape of an object. For this reason ,

some drawings consist of two adjacent views only. Two views are
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usually sufficent to explain fully the shape of axisymmetric

objects.lf three views were used , two of them would be identical.

With the advent of computers , one of the possible ways of
specifying the geametry of mechanical parts in CAD follows a
two-step procedure : input of a graphic - oriented 2-D
representation corresponding to the orthographic views :; and
interpretation of this data to give the explicit 3-D description.
Assuming that the user has already drawn the orthographic views , we
concern ourselves here with the problem of automating the

interpretation step.

Work on this problem has so far concentrated on 3-D solid
cbjects. Even for the 3-D solid cbjects , emphasis have been on the
class of polyhedral parts. There are little or no automatic
capabilities at all for 3-D surface objects such as are encountered
in fan impellers where the substructures are described by their

middle surfaces and thickness

Generally , available 3-D surface modellers require the
user manually to define the coordinates of the boundary curves on
the surface. These values are keyed in fram the camputer keyboard or
digitized on a digitizing table. These input data are then
manipulated as many times as necessary until the desired model is

Obtained. In some cases , stylised methods are used manually to

extract 3-D data from orthographic views.
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This thesis presents a new approach for autcmatic construction
of a 3-D surface model from engineering projections. By construction
we mean being able to obtain the Be'zier nets for the Be'zier
surface on the basis of the line / arc segments in the engineering
drawing. The principles of interpreting a 3-D solid or surface
object remain the same up to a point. When a substructure of a 3-D
surface model is fully interpreted , the control polygon (when
Be'zier surface technique is used) has to be constructed. But scme
difficulties arise at this stage : appropriate Be'zier nets have to
be constructed for any structure to be fully interpreted , taking

into account the nature of the surface.

The basic concepts , principles and step by step description of

the algorithm are presented.

©.2 REVIEW OF LITERATURE RELATED TO INTERPRETATION OF ENGINEERING

DRAWINGS

The problem of reconstruction of an object from multiple
engineering projections has been dealt with by several researchers.
There are three basic methods available. One of them is manual ,
in which the user points the cursor to related points in the
different views. The other two are the use of algebraic topology and
heuristic techniques. Methods which reconstruct an object from
photographs and X-rays are deliberately left out since these are not

in themselves engineering drawings which are the concern here.
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Sutherland [44] has assetbled a data input system which makes
it quite easy and convenient to enter three-dimensional data from
multiple two-dimensional views of the object being digitized. The
system uses a large—area tablet to provide the simultaneous use of
multiple views of the object. The user indicates points in three
dimensions by pointing to them in two views simultanecusly with two
digitizing pens. A program deduces which views are being used from
the positions of the two pens and consequently derives the three-
dimensional positon of the point indicated. The limitation of this
method of interpreting engineering drawings is that the user

interprets the drawing for the camputer program.

Idesawa [45] described a wireframe reconstruction of a solid
figure from three views. The method used is based on finding sets of
coplanar edges and fitting them together to form solid objects. Any
edge line which can not be any boundary of faces is eliminated as a
ghost line. The limitations in his reconstruction method are the
constraint that only polyhedra are dealt with and ambiguities are
not handled. When a solid contains a curved surface , in order to
identify the surface , some proper lines are added on the curved
surface , and each segment of the surface divided by the lines is

regarded as a different face .

The historical trend has been to free the user of as many
constraints as possible. However , the relaxation of constraints has
led to the possibility of multiple solutions to a given problem and

workers have tended to concentrate on heuristic approaches to find a
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probable solution. Preiss [46] reported such a heuristic approach
for plane-faced body that allows complete freedam of input. In his
approach , after the input data has been suitably organised , the
loops of lines that represent the projections of each face in each
view are found. The leftmost lower point for each view is found and
at each subsequent point the first right turn is taken until the
loop closes. This process is repeated until all 2-D loops are
identified. Each line of each loop are interpreted by appropriate
calculations using each view. All the edges interpreted using
appropriate conditions fram a 2-D loop must create a valid 3-D face.

Hidden faces are then evaluated until the interpretation is

complete. The faces are then assembled into a solid body.

Adelfeld [47] has combined model-guided recognition and
heuristic techniques for interpreting three-view representations. In
the model-guided recognition concept , some classes for the
modelling objects are defined in such a way that a variety of
shapes are included within each single class. They could be uniform
thickness or rotationally symmetric objects. In his approach ,
Aldefeld considered uniform thickness objects only , with each
object oriented such that its base is parallel to one of the
coordinate planes. All elementary loops are found and a score is
assigned to each loop according to the heuristic search strategy.
The loop with the highest score is assumed to represent the base
silhouette of one or more objects. All the interpretation of this
candidate loop is sought with the aid of the model - guided

recogniton algorithm. The shortcamings of his work include the fact
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that his algorithm can not distinguish between solid and hollow

objects , restrictions are imposed on the spatial orientaion of the

objects and a restricted classes of objects is handled.

Lafue [48] also described a program that generates solids fram
2-D projections for polyhedra.The user is constrained to draw the
views in a face-wise manner and to draw all faces projected onto a
view whether they are visible or not. Holes in faces are only
acceptable when the user adds artificial edges to the faces
containing them ; moreover every closed loop of edges that does not
separate the object into two regions requires that such artificial
.edge pbe added. During the search for solution these artificial edges
are ignored. The identification of an object starts with the
tablet—-coordinates and aggregating them into 3-D vertices by
associating each vertex of a view with those of cother views sharing
with it the same value of cammon coordinates. The next stage is to
identify true and false faces. The general principle here is to
aggregate faces having a cammon property (such as containing a given
edge or a given vertex) in sets and impose on these sets scme rules
which determine the maximum and minimum number of possible true
faces contained in the sets. Whenever several of the sets contain at
least one cammon face , a "mini-theorem prover” is run to choose the
right faces. When all true faces have been identified , then they
are carbined into a body. The limitations of Lafue's technique are

that the views must be described in terms of faces and that

"artificial edges" need to be included.
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Unlike all the methods that have been discussed so far , Wesly
and Markowsky [17] solved the reconstruction problem for a plane-
faced body by using the concept of algebraic topology. In their
algorithm , each vertex in the wireframe (the ordered pair of
vertices and edges) is considered and a list is formed of edges for
which the vertex is an endpoint. For each noncollinear pair of edges
in the list , the plane equation is camputed and a list formed of

distinct planes at the vertex. The planar edge and vertex lists are

then processed to obtain virtual faces which are candidates for

faces of the object. Illegal intersections between virtual faces are

checked and handled accordingly. Then virtual faces are fitted

together to form virtual blocks. The final stage of the object
description is to fit the virtual blocks together. The algorithm is

restricted to straight edged and planar faced objects.

None of these techniques discussed automatically
interprets engineering drawings describing 3-D objects composed of
shells. One of the objectives of the research project desribed in
the present thesis is aimed at formulating algorithms that can
automatically interprete such engineering drawings and represent

their surfaces in a camputer.
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6.3 BASIC CONCEPTS

The concepts defined in this section are useful in

understanding how the algorithm discussed in section 6.7 works.

6.3.1 REFERENCE LINE

It is necéssary to define a "reference line" on the elevation ,
preferably along the lowest edge of the elevation. It does not
matter whether or not the lower edge is horizontal or inclined. The
user defines the reference line by digitizing two points on the
lowest edge of the elevation. Recall that to define a 3-D surface
requires X , y , z coordinates. Each view has only two of these
space coordinates at the nodes , therefore the third is found fram
another view. If the reference line is placed along the lowest edge
of the view in the elevation , then the z coordinates can be
obtained. Considering a "convex cone" (in this section and in fan
impeller work , "cone" may not be a true straight sided cone) and
referring to Fig. 6.1 , we see that the x and y coordinates are
easily read from the plan and the corresponding z coordinate for
each node is read from the elevation very easily if the reference
line is drawn at the lower edge of this view. In other words , all

nodes along this line have zero value with respect to others in the

elevation.
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6.3.2 CONTROL PCLYGON DATA FOR VARIOUS USEFUL SHAPES

Recall that the Be'zier surface is drawn using control
polygons. Once a sub-structure is fully interpreted , its
corresponding Be'zier net data need to be calculated. Therefore in
this section , we consider some shapes which are useful in
engineering applications and which are useful for constructing the
surfaces of general plate and shell structures. The Be'zier nets for

these shapes are also constructed.
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(i) Flat and straight edged shapes

In this and all other examples to be discussed , 1t should be
noted that the minimum number of control polygons required to

define a surface patch is four , each havirng four vertices.

A control polygon (Fig. 6.2a) can be distorted to give the
shape of the curve desired. In order to represent a straight line ,
all the vertices on a control polygon are made collinear (Fig.
6.2b). It is an easy matter to verify that the condition of end
points tangency is met. In fact , it is not necessary to space the
vertices equally along the distorted polygon. The start and finish
points only can be used fully to define the characteristic polygon.
Taking advantage of this distortion characteristic , edges of a flat

straight edged object can be fully defined as in Fig. 6.3



Bezier curve

curve
Fig. 6.2a A Bezter Fig. 68.2b The samse
control polygon polygon disterted
and curve until points
become collinear

Fig. 6.2 Distortion of Bezier polygon

44
P4 {
f P34
P31
P24
1
{a) R control Pit Plid
po lygon (b} Bezisr
net

Resulting flat
surface

mmE

Fig. 8.3 Flat straight edge
possible with Bezier technique
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(ii) Disc with hole

Consider a disc of radius R measured from the centre as shown
in Fig. 6.4a. It is lcgical to consider the surface mapped out into
increasingly overlapping rectangles fram near the centre outwards as
shown in Fig. 6.4b. For a constant value of y , arcs are dotained
which have increasing diameter from near the centre towards the
ocuter diameter. For example the arc Al......Dl has a radius Rl which
is smallest and the radii of various arcs are in inreasing magnitude
until the maximum value of R4 for arc A4.......D4 is reached.
Al.....Dl is the first characteristic polygon while A4.....D4 is the

last. The corresponding arcs are drawn in that order also.

A closer observation of Fig. 6.4b shows how to represent a
circular shape having a hole. The hole is represented by Al.....Dl.
The smaller the dimensions of Al.....Dl , the smaller the dimension
of the hole. The designer can then control the size of the hole by

controlling the dimensions of the control polygon Al.....Dl.

R
Vv Z
Shape to be Bezier net
mode | Ted. in dashed lines.

(a) (h)

Fig. 6.4 Flat curved edged shaps
possible with Bezier technigus



(iii) Disc without a hole

The excellence of Be'zier technique for surface design lies on
the flexibility which the designer has in manipulating the polygons
to obtain any desired surface pattern. Advantage is taken of the
degenerate property of Be'zier surface. Consider Fig. 6.5a having
the characteristic polygon defined by vertices A ,B , C and D. The
polygon could be distorted until the vertices coincide at a point.
This concept is very useful in the representation of a disc without
a hole. We simply make Al.....Dl to coincide at the centre of the
disc. Such a simple intuitive alteration results in the same disc ,

but this time not having a hole as shown in Fig. 6.5c¢

f x *

f H/'B/’CJ'DJ

j (a) The same
R D polygon
distorted
until it
becomes a
point.

(a) Bezier polygon
R,B,C,D

{c) Resulting shape
without hole

Fig. 6.5 Flat curved shape
without hole possible(Bezier tech)
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iv) Curved surfaces

The preparation of the data for the characteristic polygon of
curved surfaces is more camplex than all that have been discussed so
far. This is not surprising because the mathematics of curved
surfaces is naturally more camplex than those of simpler shapes. We
need to know before hand how the surface should lock and then
graphically represent a cross-section of it. This then gives us an

idea of how the z-—coordinate has to vary.

Consider the cross—section of a "conical" shell as shown in
Fig. 6.6. The cross—section enables us to visualize how z varies for
given x and y values. The Be'zier net can then be constructed with
the z coordinates varying according to the graph of the cross-—

section.

Cross—section

of curved surface
helps in
visualizing
Z-vartation

\NZ
Nr )
Fig. 6.6 Cross—sectiocnal curve

makes any shell shape
possible with Bezier tech.




6.4 CYCLIC SYMMETRY (ROTATIONAILY PERICDIC STRUCTURES )

Rotationally periodic structures consist of identically coupled
sub—structures positioned symmetrically about an axis. In these
structures , one can recognise a repetition of geometry. If the
geometry of the structure is defined for any radial or axial

position at some angle 6 , it will be identical at (O + ngy )
where 9@ is 27/N ; n and N being integers , and N is structure

dependent ( the number of identical substructures that constitute
the structure ). Structures which posses the property of cyclic
~ symmetry include rotating fan impellers , bladed turbine discs,

centrifugal pumps and cooling towers.

Fig. 6.7 shows a sector of a disc . If the geometry is
completely defined for an angular segment of 277/8 , then the rest of
the disc can be generated by repeated rotation of the segment
through 27/8 radians. In gecmetric modelling terms , the sector is
replicated 8 times. As we shall see in Chapter 7 , the use of a
sector for a cyclically symmetric structure such as fan impellers
conserves camputer time and storage. Many CAD systems implement this

technique and finite element analysts have found the technique very

useful.
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7
a
Fig. 6.7 A typical sector of disc
(aa——ob boundaries)

The principle of cyclic symmetry is used in the construction of
a Be'zier net when the interpretation of the sub-structures is
complete. The program autamatically constructs the Be'zier nets and

frees the user of the task.

6.5 MATCHING

Sub-parts of a total object are inter-related via same matching
conditions which follow from the cbject's shape and from the rules
governing the preparation of engineering drawings. For instance , a

match between primitives (e.g. , line or arc ) P; and P, in two

different views can be defined by

P =P, if ARS(P,) = ABS(P,) ,

1 2

1

where ABS denotes the absolute length of the primitive that the two

views have in cammon.
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6.6 SEPARATING ENGINEERING DRAWING VIEWS

Before begining the interpretation of an engineering
drawing , the 2-D drafting data must be suitably organised. For the
MEDIA drafting program , an interface program has been written which
separates engineering drawing views and organise the data into a
suitable form for the interpreting module. A sumary of the relevant

steps are as folows :

1. "Mask" a view.

2. Isolate the data of the view.
3. Store the data of the view.

4. When steps 1 —— 3 are completed for the different views that
completely describe the object , interprete the views and extract

the 3-D data.

It was necessary to include steps 1 === 3 in the data

preparation stage for the interpretation process because the 2-D

drafting package MEDIA , does not descriminate between the data of

one view from that of another view.

Each of these steps is treated briefly to show the underlying

principles involved. Details of standard graphics operations are
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omitted since these are well treated in text bocks in references

[49] and [50].

6.6.1 "BOXING" ROUND A VIEW

Before the geometry of a view is isolated , @ box is drawn
round the view. The user only needs to digitize the ccordinates of
diagonal corners of the box. The subprogram BOX then automatically
calculates the remaining corner coordinates of the box and draws a
dashed line around the perimeter of the box. The corner coordinates

of the box are stored in the arrays B  and By and these are used in

subsequent steps.

Assuming XA ' YA and XC R YC are the coordinates of the

diagonal corners of the box , then

=%
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6.6.2 ISOLATING DATA OF A VIEW

Once a view is masked , the next task is to remove details in
the geometry of the view which may unecessarily complicate the
interpretation of the object and then store the relevant gecmetry in

an array.

The subprogram TRANSFER was written for this task and the way
it operates is that it searches through the database of the 2-D
drafting program. Each record (except the first ten) of the file
storing the drafting data , stores the "start" and "finish"
cocrdinates of items drawn. The first two data are the "start" x and
y coordinates while the last two are the "finish" x and y
coordinates (not necessarily so for arcs and labels). The signs for
the data in each file record are used as codes for identifying which
items are lines(full , dashed or chained) , arcs (full , dashed or
chained) , labels etc. Therefore , the subprogram TRANSFER is able
to identify and extract data related to these items and ignore items
such as label , centre lines , dimmension lines etc . The relevant
lines and arcs are then stored sequentially in the order in which

they were drawn , in array B.

The start and finish points of the relevant items are tested if

they are campletely enclosed by the "box" drawn round the view under
consideration. Subprogram CLIP is accessed for this task and the way

the test is carried out is illustrated as follows :
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Consider a primitive AB inside the "box" EFGH

A set of conditions must be met if the primitive AB is enclosed by

the "box" :

2% %

>
YA,YB Y‘E
<
Y‘A,YB Y.(3

All primitives whose start and finish points lie inside the "box"

are stored in the array B.

The subprogram DRAW is accessed which uses the corner

coordinates of the "box" as the "window corners” and so resets the
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LOCATE and SCALE values of the drafting program in such a way that
the item when redrawn occupies the whole of the screen. In graphics

terms , the view has been "windowed".

6.6.3 STORING DATA OF THE VIEW

A separate subprogram VIEWS-DATA was written to store the data
of the view under consideration. This is because the user could
change his mind when a view has already been isolated and may decide
to make modifications in the drawing. However , when the user is
ready to store the data of a view , this subprogram , when
accessed , CREATES and ASSIGNS a temporary file to store the number

of primitives and the gecmetric data obtained from section 6.6.2.

6.7 THE PROGRAM STRUCTURE

The program structure of the processes involved in separation
of engineering drawing views of the MEDIA drafting program and the
interpretation is discussed here. Following the flowchart of the
program INTERFACE , it is observed that when a view is to be "boxed"
, then the subprogram BOX is accessed after which control transfers
to an appropriate point in the 2-D drafting program. When isolation
of a view is required , two subprograms TRANSFER and DRAW are
accessed. Then for storing the data of such views , the subprogram
VIEW-DATA is accessed. These different operations are not
sequential , rather the user selects the required operaton from a

menu. This makes the process of separating the view very
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interactive. When the views that fully describe the object have been

separated , the user can then decide to instruct the program to

begin interpretation.

The interpretation of the drawing for 3-D surface
representation will be ccmpleté when each sub-structure tl.qat makes
up the 3-D surface structure is identified and the "key" cocordinates
defining the sub-structure are found. Two subprograms have been
written : one subprogram C ,caters for plate structures while the
other subprogram Co , caters for shell structureé.’Ihe user has plate
or shell options. The subprograms for general plate structures is
capable of interpreting intersecting plate structures which are
cammonly encountered in engineering applications. On the other
hand , the subprogram for shell structures has been developed to
handle general folded shells. It has been further developed to be
able to interprete a fan impeller which is an assemblage of plate
and shell structures. The steps showing how the subprcgrams are

organised are as follows:

1. The input data is organised by separating the drawing into

views and establishing the number of primitives in each view.

2. The principles of matching primitives in the different views and

where applicable , cyclic symmetry , are used for interpretation of

the substructures of an object.This is then followed by identifying

these substructures.
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3. Construction of the Be'zier nets for each interpreted sub-

structure.

Steps 1 and 3 are common to each of the subprograms and
therefore are treated in details once. Step 2 is treated for general

plate and shell structures.

Temporary files which were used to store the views data are

then purged and the gecmetric modeller is accessed.

The flowcharts for the different subprograms whose operations
have been fully treated in sections 6.6.1 — 6.6.3 are also included
in this section. Moreover , the details and flowcharts for the
subprograms C and Co which interprete the plate and shell structures

respectively are also given.
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ﬁg.&B. Flowchart for program INTERFACE

Isolating YES A;/

<;a view ? TRANSFER DRAW '

Cw" 'ng data N YES /' rEws-DATA //———
of a view ?

<;Interpretation ? ;} NO

YES
<inisymmetric ? 4>r—Draw—type=1

Braw—-type=2

]
L

Digitize ends of

referencse line
[ TO

<:braw—type=?i/

< 7

J
Purge temporary
files

Rccess surface
modsller

END
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Fig. 6.9. Flowchart fon subprogram TRANSFER

{ START )

Vo=

FOR Ip=18 TO I

"Zy GOSUB LINE &Lj7<;SGN(D(Ip,I))>Q AND SGN(D(Ip,E)))éé}

YES

NO

) cosus are (3

NG{D{Ip,133>83 AND SGN(D(Ip,E))<Gj>

YES

7
'jgosua DELETED 4171(8@N<D(Ip,1))

YES /
{
YES [
\_

ABS{D{Ip, 1))

NEXT

NO |
<@ AND SGN(D(Ip,E))<8>
NO !
— i
AGS(D(Ip, 13I=@ AND ABS(D(Ip,233=83 |
NO |
{8 AND ABS(D(1p,2)>8 7)|
i
NG 5
Ip

<_SUBEND _)
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Flowchart fopr subroutine L INE

( START )

EGN(D(Ip,S)HQ AND SGN(D(Ip,43358 ? —YES

Fig. 6.10.

NO
YES
SGN(D(Ip,33)3>@ AND SGN(D(Ip,433¢Q ? |

NO
YES
<iGN(D(Ip,13)=@ AND SGN{(D(Ip,4358 ? )———————

NO
GOSUB DARTA

//cm_s_ cLIP /
(Trap=1 7} NO

YES
Vo=Vo+1

FOR J=1 TO 4

|

B{Vo,J)=ABS(D(Ip,J33

NEXT J

( RETURN )
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At 3

Fig.6.11. Flowchart for subroutins ARC

( STRRT }

<_?GN(D(Ip,SJ)<8 AND SGN(D(Ip,4)3>3 ? WTES

NG

<SGN(D(Ip,3))>8 AND SGN(D(Ip,433<8 ?

YES |

NO

<SGN(D(Ip,3))>Q AND SGN(D{(Ip, 43353 ?}YES

NO
GOSUB DATR

;
57 CcRLL CLIP AV

(Trap=1 ?}~7N0

YES
Vo=Vo+!

FOR J=1 TO 4

|

B(Vg, JI=RBS(D(Ip,J})
——— s e

NEXT J

B{Vo,53=ABS(D(Ip+l, 1))
B(Vo,63=ABS(D(Ip+1,23)
Ip=Ip+!

(ﬁRETURN )

N
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At

Fig.6.12. Flowchart for subroutine DELETED

( STRRT >

ABS(D(Ip+1,133>3 AND ABS{D{Ip+1,23352 &\ NO

ABS{D(Ip+1,3))=0 AND ABS{(B{(Ip+1,4)3=0 ?

YES

Ip=Ip+1

1 RETURN ,

EFig. 613. Flowchart for subroutins DATAR

( START )

MAT Xg=ZER
MAT Yg=ZER

Xg(1)=ABS(D(Ip, ))
| Yg(1)=ABS(D(Ip,2))
Xg{2)=ABS(D(Ip,3))
Yg(23=RBS(D(Ip,4))

‘ RETURN ’

- 137 -



Bt 2

Eig.6.14.

Flowchart for subroutine BOX

START

Bx (13=Bx (4 3=X
By{(13=By(23=Y

YES

Bx{23=Bx (3)=X
y(43=By(3)=Y !

t

Box=1
LINE TYPE 8

FOR Ip=!{ TO 4

J=Ip+1

YES
J=5 J=1

el

NG
MOVE Bx(Ip),By(Ip)

DRAW Bx(J3,By(J}

————~——~{§EXT Ip

{ SUBEND }
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e S

—£ig:6.15. Flowchart for subprogram CLIP

( START )

<Eg(1)<Bx(1) AND Xg{23<Bx(1)

NO

<%g(1)>Bx(3) AND Xg(23>Bx(3)

NG

<}g(1)<By(1) AND Yg(23<By(1)

NO

<Eg(1)>By(3) AND Yg(2)>By(3)

o

Trap=1

YES
7
YES
7
YES
?
YES
?
Trap=0

( SUBEND )
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Eig.6.16. Flowchart for subprogram VIEWS-DATRA

’ | | START )

Figs="VIEN"&VALS(Figs)

YES
~<Lngs>2 ?v~>

NO

NO
<~ths<>1 ?ﬁj>“—‘

YES

/1th3<>2 ?->

’ | NO

YES

CRERTE Ftg$,Vo,2586
ASSIGN Fig$ TO #Figs$+2
) PRINT #Fig$+2 ;B(%)

RSSIGN #Ftgs+2 TO *

Figs=Figs+!

(SUBEND )
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Fig.-6.17.

Flowchanrts fop subroutinaes D-LINE & J=ARC

D-LINE :
( STRRT }
—/

MOVE B{It,13,B(It,2>

DRAW B{(It,3),B(It,43

‘ RETURN )

D-ARC;

( STRRT)

MOVE B{(It,1),B(It,2)

U=B(It,5)
V=B(It,8)

// CALL POLAR

CALL POLAR /

A2=A2+360% (A1>=R2)
A3=MIN(36@-D(1, 1}/R/PI, 15)
| A3=(A2-A1)/INT((A2-A1I/A3+.5)
S1=Sin(A1-A3)

C3=Cos (A3)
S3=51n{A3)

FOR A=A! TO A2 STEP A3

C2=CI%C3-51%53
S2=81%C3+52%C!
Cl1=C2
Cl=C2

ﬁEEgzzz]-jbeAW ,ﬂ{EETu@D
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6.7.1 Subprogram C

The flowChart for this subprogram shows that its first major
task is to read the geametric and topological data for each view
obtained from section 6.6. The gecmetric data for the elevation is
transformed through the routine IDENTIFYNODE2 to obtain the z-
coordinates of primitives in this view by making use of the

reference line (see section 6.3.1) as a datum.

Within the loop IP , the program distinguishes between lines

and arcs. For a line , the end-points coordinates are used when the
main subroutine of *he interpretation module , ZED is accessed. The
subroutine ZED has a loop J which checks the end-point coordinates
against all the points in an adjacent view if they match. The
matching concept of section 6.5 is used but this time P is a point
rather than the length of a primitive. In this way , the program
extracts the z-coordinate values for all points in a view. The
subprogram SEARCH2 is then accessed to store the x , v, z
cuordinates. When all primitives have been treated in this way , the
program then obtains the topology of the different substructures.

e loops IP control this operation and the subroutine SEARCHI is

wrcessed to update the topology array . TOP1.

- 142 -



Fig.-6-18. Flowchart fgn subprogram C
Read data
for vﬂews

—FOR Ip=1 T0O Stopl |

STINGUISH ) e
—1_FOR K=1 TQ 2 |

N(1)=X1(Top1(1p,K)J
N(2)=Y}(Topl(Ip,K))

F—LFOR J=1 _TO N2_]

Ns(1)=X2(Top2(J,I)—Stopl)
Ns(2)=Y2(Top2(J,1)—Stop1)
Ns(3)=22(Top2(J,2)~StopI)
NF(1)=X2(Top2(J,2)~8topI)
Nf(23=Y2(Top2(J,2)-Stop!)
Nf(33=22(Top2(J,2)-Stopl}
Ni(1)=X1{Top1(I,K))
Ni(2)=—P

I
Z%/POLRR
AL ONG-L INE ALONG-LINE //
> )J
< Ns(3308 2 <Nf(33=8 ? >
Z(13=NC1) -

Z(23=N(2)>
Z({33=Ns(3)

Z{13=N(13
Z(23=N(2)
Z3=Nf(3)

| 1
/' serrcH2 [/ /A seArcHz

NEXT J r

NEXT K
NEXT Ip
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LFOR Ip=1 TO Stop!
|

— FOR K=Stopl TO Nel |
|

XLy =X1(K) D>—

|
<Y LCIpy=Y1(K) ?‘§>—1

T13=I |
T(2)=K+Dec

—1FOR Ip=1 TO Stop! |

ARrc ?

— FOR I=1 10 2 |
// SEARCH //

| NEXT J |

NEXT Ip

SUBEND
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6.7.2 Subprogram Co

The program reads the data as in section 6.7.1 and then
commences the interpretation of the views by using the concept of
matching descussed in section 6.5. For all the primitives {lines and
arcs) in the elevation of the engineering drawing , denocted by view

V2 , @ search is made for all the circles in the plan , denoted by
view Vl for a match. During the matching proces all circles in view
Vl are represented by their corresponding diameters. Each time a

match is found , the topology (start and centre points) of the
circles in the plan view are recorded together with .the
Qorresponding z-values in the elevation. An outer loop is used for
the elevation data while an inner loop is established for extracting

the data for the plan and executing the matching operations.

Next , the "depth" search strategy is used to identify the
circles which meets the match condition. This is done by comparing
the values of the z—coordinates. When a sub-structure nearest to the
reference line is found , it is identified by a code equals 1.

Oiher substructures are given codes as they are identified and these
«odes are useful for assembling the substructures. Using these codes
arnd a control variable the subprogram is able to identify whether

tise model is a fan impeller or not. For models other than fan
impeller, the subroutine CONTROL is accessed to construct the

relevant Be'zier nets after which the subprogram exits.
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However , the interpretation of a fan impeller is discussd in
detail here.For fan impeller ,two loops are established to carry out

this function. Within the outer loop Ip , the start and finish

points of each line in the plan are cbtained. Within the loop J , a
routine ALONG-ARC is accessed to find out whether or not the start
point of each line (within the outer loop) lie on the outer part of
the base (cone). A flag is returned to determine the state of the
line element. If the flag is equal to unity then a further test is
required to determine if the end point lies on the outer part of the
base (cone). If the flag again equals unity , then the line element
is a candidate that defines a blade. The angles at the start and
finish of the line are obtained to determine whether the blade is
radial or inclined. Moreover , the length of the blade is evaluated.
Because of symmetry , only half of the blades are processed. This is

important for the construction of the Be'zier net of the blades.

Once the interpretation is completed , the Be'zier nets for the
siub-structures (backsheet , blade and conesheet) are constructed.
The first thing that is done before the construction commences is to
determine from the z-coordinates of the two circles bounding the
cone , the value of the z—coordinates at the inner and outer parts

¢ the cone (Y, and YO) as well as the inner and outer radii of the
i

backsheet and conesheet (Ri and Ro) as shown in Fig. 6.19.
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The scales of the 2-D drafting program are re-organised to give

equivalent scales with which the Be'zier nets are constructed.

Using the number of control points in u and v-directions (M and
N) respectively and the appropriate radii for values of control

parameters Dxl ,....,Dx4 + the routine CONTROL is accessed to

construct the relevant data for the Be'zier net for the backsheet.
The corner points coordinates of the blade on the backsheet as well
as those of the conesheet together with the angle of the blade are
used for input to the routine DIM-BIADE to construct the Be'zier net
for the blade. Lastly, the same procedure as that of the backsheet
is repeated fof the conesheet using appropriate data to construct
the Be'zier net. The data are held in the database for later use by

the surface mcdeller.

Before the program exits , it checks if inconsistent dimensions
were input to this module and if so aborts and informs the user
hirough the thermal printer. However , if the interpretation and
construction phase are successful , the stand-alone surface modeller

is accessed and data are read from the database.

APY

‘ Reference
; y Xline
le—Rt—%_J
—Ro

Fig. 6.19 Maxtmum and minimum heights
at inners/outer radii of cone
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Fig. 6.22 Flowchart for subprogram Co

( srarT )

Read plan & elevation

geometric & topolsgical

data from temporary files

FOR J=1 TO N2

Ns (13=X2(Top2(J, 13-Stop1)
Ns (23=Y2(Top2(J, 1)-Stop!}
Ns (33=Z2(Top2(J, 13-Stopl)
Nf(13=X2(Topl2(J,23~Stopl)
Nf(23=Y2(Top2(J,2)-Stop!)
NFf (3)=Z2(Top2(J,2)-Stopl)

VA

L1=ABS{(RI*COS(RL))

FOR Ip=1! TO Stop!l

/-

<1E-3 ?
NO

AthHLL POLAR [&7

<;Toplpr.33\\ YES
/

L2=2*%R2
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I

/RBS(L1-12)\ YES
\_rie-az )
| NO

Tp=Tp+1{

B(Tp,3)=Ns (3)
B(Tp,43=Nf (3}

B{Tp, {)=Top1(Ip, 1)
B{Tp,23=Top1(Ip,3) ——o<:>

NEXT Ip

NEXT J

B(Ip,3)<1E-3
OR B{Ip,4)<{E-37

NO ' YES
B(Ip,3)>1E-3 3
<iOR B(Ip,4)>1E—37j>*“B(Ip.5) 3
NG
NEXT Ip

FOR Ip=1 TO Stopl

FOR J=1 TO Tp

<I{E-3 7

<(HBS(B(J.1)—Top1(Ip,1))> YES

NQ
NEXT J
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Tp=Tp+1

BlTp, 1)=Top1(Ip, 1)
B(Tp,2)=Top!(Ip,3)
B(Tp,3)=B(Tp, 4)=G

CALL POLARR

Ye=Y1(B(Tp,2))

R1=R
Xc=X1(B(Tp,2))

NEXT Ip

FOR Ip={ TO Stopl!

{ Top1(Ip,33>1E-3 ? >

. YES

NO

Xs=X{{Topl(Ip,13)
Ys=Y1(Topl(Ip, 1))
Xf=X1{Topl(Ip,25)
Yf=Y1(Topl(In,23)

YES

<1Ys<-Yc AND  \

Yei=Ye P/
| ND

FOR J=1 TO Tp

X1=X2=X1(B(J, 1))
Yi=Y2=Y{(B(J, 1))
U=X{(B(J,2))}
V=Y1(B(J,2J))

//cALL ALONG-ARC //

(}est1<>1*}

Blade=Blade+!
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YES
(Blades1 7 —t—
NO

CALL POLAR y
Hngie2=INT<aa)g

CALL POLAR
Hng]el-INT(HIJ/

[/ CALL RLONG-ARC //-
Test2<>1 \ vYgg

?
NO
Blade=B1ade+1

(31ade>1 7*>7YE5

INO
[ CALL POLAR
Ang1e2=INT(R2)
/ CARLL POLAR 1
Hnglel-INT(Hl)(
CALL POLAR
Lb=R2 /

NEXT J

NEXT Ip

|

Print no. of blades
and semicons angls
into database

M=5
N=4
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FOR Ip={ TO Tp

{ BtIp,55¢53 §>___.<:>

/<AL poLer /]
l

Xe=X1(B(Ip,23)

Ye=Y{[B(Ip,2))

Cone=Cone+1

Xx(Cone }=R
Yy(Cone)-ﬂHX(B(Ip,3),B(Ip,4))

Yo=MIN(Yy(1)3,Yy(2))
Yt=MAX{Yy (1), Yy(2))
Ro=MAX{Xx (13, Xx(2))
Rm=MIN(Xx{13),Xx(2))
Scalex=129%F3/123,13/18
Scaley=80%F3/108.7.5

(Code=@ ? }—GOSUB IN-LINE

Xol(t,1)=Yol(i,13=Za(i,13=8 ?
whers i=1,...,4

YES NO
Terminate (COdO"B 7}-@
NG \_YES
Dx { =Rm
Dx2=Dx3=R1
Dx4=Ro

l

/] GosuB CONTROL Aﬁ;_<:>
/| GOSUB DOCUMENT
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|

Dx=1Dx4=Ro
Dx2=Dx3=Rm

}

GOSUB CONTROL
GOSUB DOCUMENT

NEXT Ip __®

J

X2=Xa (M,N3}/Scalex
X1=Ro+Rm*COS{(Anglsl}
Z2=Zg(M,N}/Scalex
Z1=Rm*SIN(Rngls!}

GOSUB DIM-BLADE
GOSUB DOCUMENT

GOSUB EMPTY

|

M=N=4
DOx {=Dx4=Rg
Dx2=Dx3=Rm

//GOSUB CONTROL //

Yoll, j3=Yi*Scaley

Yo(2, j3=8,886235%Yi*Scale

Yo(3, 3=8.8123%Yi{*Scaley

Yo(4, $)=8.781253%Yi%5cale
whers j=1,...,M

Y

Y

C

Xolt,13=Yoli,[)=Zc(i,13=0 7
where i=1,...,M

>_

Terminate

B no

END
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6.7.2.1 Subroutine CONTROL

This subroutine is the key to the construction of the Be'zier net
for the backsheet and conesheet. In order to make the routine as
general as possible , the y-coordinates of the control points are
defined separately. Consider a typicai sector of a backsheet (ARCD)
shown in Fig. 6.21 with the Be'zier net AFER 1eees,DHGC. In the

u-direction there are four control points (i.e. A . F, E, B) for
each row. However along the v-direction the user may specify any

. reasonable number of control points (usually 4 or 5 in mumber).

AZ
D
G
/A
. C
B
Anglel
Y A Bngled 3 X

Fig. 8.21 A typical Bezier
net for a sectorial
structure

Notice that the value & can be controlled to give different
Cuwvatures for the sector. The larger the value the more curved the
&tje becomes and this would not be acceptable because when the
sector is replicated , discontinuities are observed as in Fig.

6.22a. A reasonable value of & is therefore chosen to give the

Sector in Fig. 6.22b
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The shape of the sector is controlled by the values of the
start and finish angles Anglel ang Angle2. Anglel takes any of the
values 2mi/N , i € [@,(N/2-l)] + where N is the total number of
sectors that constitute the camplete structure. Angle2 takes any of

the values 2Hj/N . J €[9,N/2]. For example if i =6 , j =1 and N

o . .
=12 , a 307~ sector is obtained. However . 1f § =N/2 , we obtain a
semi-circular portion of the structure , i.e Angle2 =18g°.

/(f-dkconﬁnuﬁy

(a) Large value aof & (b} O can be chosen
causes to give smooth
discontinuity sector boundariss

Fig. 8.22 Effect of control polygon
on sectorially symmetric chkjects

The left-hand boundary of the cone or blade along the horzontal
centre line is taken to be the origin from where the coordinates of
th control points are measured. The number of grids in the

v-iirection D, is evaluated as shown in Fig. 6.23

- 155 -



¥

Origin

—_—

= -
VO NET

-——-Ro-——%

Ro+Ri

Dx=ABS(Dx(-Dx2)/(M-1)

Fig. 6.23 Evaluating no. of grids
in v—direction for hellow
disk,

- 156 -



A loop J, controls the operation of this routine. Expression
for ROM gives the actual coordinate for the iner part of the
structure being considered , while ROML gives the corresponding
coordinate for the control polygon point at the coordinate
considered. These are used for establishing the x-coordinates.
Similarly , expressions RAM and RAMl are established for the z-
coordinates. Using the angles Anglel and Angle2 , the coordinate
values for x and z are obtained automatically for control points

such as A,¥,E,B,....D,H,G,C as the value of J changes within the

loop.

Notice from Fig. 6.24 that if the y-coordinates for all the
control points are the same then a flat surface is obtained. If the
y-coordinates decrease linearly from the inner to outer edge , a
straight edge cone is obtained. However , if the variaton follows a
curve , then a shell is obtained whose surface lies on the equation
of the curve. This is the technique used for the surface definition
of the conesheet. If the variation of the y-coordinates is arbitrary
then the a free—form surface is obtained. For arbitrary surface ,

the Be'zier net data are input as numerical data on the key board.
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Y AR curve showing
surface variatiaon

——
>
————e

- X

Corresponding
Bezier surface

Fig. 8.24 Surface vartation
given by a curve
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Fig. 8.
g. 6.25 Flowchart fan Subroutine CONTROL

Dx=HBS(Dx1—Dx2)/(M—1)

FOR J={ TO M

|

Rom=((J—I)*Bx+Dx3+Dx4)*Scalex
Rom!={{+Eps/1088)*Rom
Ram={({J-1)%Dx+RmI*1.26316%Scalsx
Rami{={{+Eps/123)%Ram

Xa{J, | )=Rom*Cos (Anglel)
Xo(J,2)=Rom1*Cos((S*Rngle1+ﬂngle2)/4)
Xo(J,3)=Rom!*¥Cos{{Anglel+3%Angleld ) 4)
Xo(J, 4)=Rom*Cos (Angled)

ZolJ, )=Ram*Sin{fAnglel)
Zo(J,2)=Rami*Sin((3%Anglel+Anglel) /4)
Zol(J,3)=Ram{¥Sin({Anglel+3%Anglis2) 4)

Zo(J,4)=Ram*Sin{Anglisl)

NEXT J

RETURN
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6.7.2.2 Subroutine DIM-BIADE

The principle underlying this subroutine is the same as that of
the routine CONTROL except that this time a sector is not considered
for the blade. Repetition of the details is therefore avoided.
However , the key data needed for the Operation are considered. The
corner coordinates of the blade are supplied together with the
number of control points in the u and vdirections respectively. The
routine automatically calculates the coordinates of the control

points of the Be'zier net. Refer to Fig. 6.26.

X1,Y1,Z1¢
N\ X2,Ye2,z2

N

/l/)‘
X2,Yo,Z2

V4
X1,Yo,21!

Fig. B8.26 Typical Bezier nel
for impeller. blade
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Floswchart for subroutins DIM-BLADE

Yi=Y4i
Y2=8.78125x%Yi

Fig-6.27.

De Ix=(X2~X1)/(N~1)
Delz=(Z2-Z1)/(N~1}
Delyl=Y1/(M-1)
Dely2=Y2/(M-1)

Dely=(Dely2-Delyl)/(N-1)

FOR Kp=1 TO M

FOR Jp=1 TO N

|

Xo{Kp,Jp)=(X1+{(Jp~1)%Dalix3I*Scalex
Yo(Kp,Jpl)=(Kp-1)%{Delyl+{(Jp—-13*%¥Dely)*Scalsy

ZolKp,Tp)={Z1+(Jp-1)*Delzi*Scalex

K
ot aNYES Ko tke, Tp3=0

NO

NEXT Jp

NEXT Kp

RETURN
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6.7.2.3 Subroutine DOCUMENT

As the name implies , this routine merely records the nurber of

control points in u and v di
po directons as well as all the Be'zier net

coordinates in an orderly manner into the database

Fig.628. Flowchart for subroutine DOCUMENT

( sTART )

PRINT #2;M,N

|

FOR J=1 TO M

FOR K=1 TO N

PRINT #2;Xo(J,K3,Yo(J,K},Zol(J,K)

NEXT K

|

NEXT J

|

RETURN

1T £



6.8 CLOSING REMARKS

In this chapter , the principle of inter-relationship between
sub-parts of a total object via same matching conditions has been
applied to the interpretation of engineering drawings. A program
which interpretes engineering drawings of plate and shell structures
fram the MEDIA drafting program and prepares the Be'zier net data
for use in the geometric modeller described in Chapter 5 has been
discussed. The user can access the program by using function key #6
in the drafting package. Since the MEDIA drafting program cannot
descriminate between the data of one view fram that of another
view , several subprograms were written in order to isolate the data
of each view. This step can be ommitted for drafting packages that

can store the geometric data of different views separately.
The module for shell structures has been extended to

interprete fan impellers which are assemblage of plate and shell

stractures.
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CHAPTER 7

TRANSIATION OF DRAFTING /MODFLIER GECMETRY

INTO FINITE-ELEMENT ANALYSIS INPUT DATA.

7.1 INTRODUCTION

Real life objects to be designed are three-dimensional by
nature , whereas the traditional tools used by engineers in design
(drawing sheets , board and camputer screens) are necessarily
two-dimensional. This contradiction is implicit in traditional
drafting. The basic elements comprising any drawing outline are

points , lines and curves.

There is therefore no direct link between drafting , which is
two-dimensional and finite element analysis of real life objects
which are oriented in space. However , the development of three-—
dinensional meshed-surface modellers have offered a suitable link

between drafting and three-dimensional finite element analysis.

Such modellers can also provide data on the surface properties
of components. The ready availability of component areas and
proerties can be a definite asset to component manufacturers using
thin plate and shell structures such as in aerospace and autcmobile
iniustries where camplex gecmetries are encountered.

In this Chapter , the linking of drafting and finite—element

analysis via meshed-surface modelling (Be'zier technique) is
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considered for general thin plate and shell Structures and also for

fan impellers in particular. Surface properties camputation from the
modeller geametric data is also treated to reinforce the usefulness

of the geametric modeller in integrated cap system.

7.2 MESH GENERATTION —— A GAP BETWEEN CAD AND FEM

The process of mesh generation if seen in a new light , will
make possible a closing of the gap between the rather separate
fields of camputer—aided drafting and finite element analysis. In
the past the process of mesh generation formed part of the

data-preparation stage for finite—element analysis. In an extended
form it may now serve as an interface between Drafting and FEM by
adapting the description of an object as required by one form to the
form needed by the other. At the present state of the art , an

autamated mesh generation could prove most valuable to an integrated

computer—aided design system.

Within the context of bridging the gap between CAD and FEM

there are two distinct methods for mesh generation of a gedmetric

moi:l and these are described in this section.
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7.2.1 MESH GENERATION AFTER GEOMETRIC MODELLING IS COMPLETE

In this case , the mesh generator receives the geamnetric model
(usually 3-D solid) from a gecmetric modeller and rapidly generates
the finite element meshes and prepares input data for a finite
element analysis program. A general survey of cammercial packages

currently available may be found in Fredrikson et. al. [51]. In this

section , we review the pioneering work of Worderweber [52] and one

of the key cammercially available packages , FEMGEN [53].

Wordenweber investigated methods for autcmatic generation of
finite element meshes from shapes already defined in a geometric
modeller. He applied the theory of decompositon of shapes into
triangular or tetrahedra for two and three-dimensional , planar and
curvilinear objects. In decamposing the cbject , he used the Euler
formula which gives the minimum number of triangles in polygons and
polvhedra. A set of operations were formulated which operate on and

decompose a topological polygon or polyhedra. For the case of a

poiygon , Wordenweber used a set of operations :

Operation OPl subracts one triangle and vertex.

Operation OP, removes the last triangle ; it thus decreases by

@

one the multiplicity and subtracts three vertices.
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ration OP . d joini i
Ope j eletes a hole by joining an interior to an

exterior web. It reduces the genus and adds two vertices

The set of operations shown below is both necessary and sufficient

for the decamposition of topological polyhedra.

aYyN
A O -

G-

These topological operations guarantee closure. A set of simple

tents were arranged to ensure conformity.

When the domain has been fully decomposed into triangular
Meshes , neighbouring meshes are then assembled together. Together
the decomposition and assembly will now generate a mesh for a given

pPolygon.
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Similar operations were included for curved surfaces and solid

objects. Wordenweber's work is considered one of the pioneering
works in bridging the gap between a geocmetric modeller and finite
element analysis. However , the major drawback in his work is the
use of simplex elements i.e three-sided triangular elements , say,

whilst quadrilateral elements were not considered.

The general purpose finite element mesh generator FEMGEN has
became established as a bridge between CAD and FEM systems. FEMGEN
is interfaced to about five commercially available CAD systems (e.g.
ROMIIUS) on one side and about fifteen commercially available FEM

systems(e.g. NASTRAN) on the other side. A model fram a 3-D modeller

-
¢

received by FEMGEN through its interface and such a model is
known as a "body". The first task on receiving geametry from a CAD
Sy: tem is to remove detail in the geometric model which 1s of no
re'evance to the intended finite element analysis or may

uniecessarily complicate the finite element model. The next task 1is

te divide the model into "Femgen bodies" which requires some

knowledge of the character of FEMGEN bodies in general and knowledge

of the character of the mesh of finite elements which would be

- 168 -



-

suitable for the analysis of the relevant load case or cases. The

podies are defined by splitting existing lines , sketching new lines

, defining scame FEMGEN surfaces (

plane , sphere , cylinder and cone)

all with the graphical cursor and defining bodies between pairs of
surfaces. After adjusting the divisions on the sides of the surfaces
as Jjudged necessary , each body may then be test-meshed. Node

symbols are then added to the picture. Then if all the test meshes

indicate that the character and quality of the mesh should be
acceptable , the user may instruct FEMGEN to generate the whole mesh
, which will be almost entirely properly connected , each body with

its neighbour.

Both of these methods generate mesh on an object which has

already been represented by a separate mcdeller.

7.2.2 MESH GENERATION BY GEOMETRIC MODELLER

The idea introduced by Coons [5] and Be'zier [7] for modelling
ernjineering objects makes it possible to approximate and describe
ciiplex shapes as a collection of finite surface "patches". This
aproach has stimulated a great deal of research in modelling shapes
bei:ause it naturally marries CAD to FEM since the surface is
actually based on a mesh of curves. This aspect of object mcdelling
haz been fully treated in Chapter 5. However , & further interface

program is needed to translate the geometry from the patch

representation into the required finite element idealisation. The

treatment of this aspect is discussed in section 7.4.
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There i1s no known published literature on how the "patch"
representation is translated into the required finite element
idealisation , however , there is scarce literature which shows that

such a geometric mcdelling technique is useful for bridging the gap

petween CAD and FEM.

Golden [541] used B-spline functions for the gecmetric
representation of models and obtained the finite element meshes from
the geametric constructions. However , there was no indication as to
how the finite element meshes are obtained from the gecometric

constructions.

Came [55] in discussing the design procedure for centrifugal
compressors at the National Gas Turbine Establishment showed that
once the geametric definition of the compressor is complete , the
geometric data can be translated from the "patch" representation

into the required finite element idealisation.

7. INTEGRATION OF CAD AND FEM VIA BE'ZIER SURFACE REPRESENTATION

The Be'zier surface representation falls into the category of
section 7.2.2 and plays a dual role of geometric modelling and
psudo idealization for finite element analysis. This class of
gesmetric modellers are considered best for linking CAD and FEM
because they remove the need for a. complete redefinition of the

object for analysis and invariably save computer time and memory.

The integrated geametric modelling (Be'zier surface representation)
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and finite—element analysis in a CAD System can then be represented

by Fig. 7.1.

Stress engineers , evident from published literatures , have
accepted this geometric modelling technique for geometric

representation of simple and camplex engineering shells. One of such -

publications is that by Gallaghar [56].

In the present work , CAD and FEM are integrated via Be'zier
surface representation. This has been specifically applied to fan
impellers. This method is not only useful for general surface models
but also in the Boundary-representation (refer to Chapter 3) of

solid objects.

ob ject

definttion
+ display
mesh
////L\\\ generation ‘\\\

optimum data

S~ L

altera- analysis
tion

\\1////- JF* display\
results

Fig. 7.1 Pseudo mesh generation for
finite—elemsnt analysis
incorporated in geometiric
modelling (Beztser teschnique)




7.4 THEORETICAL BACKGROUND

The basis of the translation of the geametry fram the “patch"
representation into the finite-~element idealization is the use of
the expressions derived to store the topology of the corner nodes of

Be'zier patches.

The way the surface modeller , SUFACE (refer to Chapter 5)
records the coordinate values of the surface grids is shown in
Fig. 7.2a. As can be seen , the coordinates are recorded when the
curves are drawn in the v-direction for constant u-values. These
coordinateé recorded in a "particular" manner are the information
available for the translation process. From these , (see fig. 7.2a)

, we seek to identify each Be'zier mesh topology (see fig. 7.2b).

In the surface modeller SUFACE , the number of Be'zier meshes
in the u and v directions specified by the user are used to cbtain
the four corners topology of the Be'zier net. This is very useful
for obtaining the topology of each grid in turn.

The author has devised the following set of formulae to meet

the needs of the present scheme:
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= + *
N N Nx (Ny'*'l)

3 1 7.1

N, =N, + N

where 1 is th number that identifies the first node of the first

grid , Nx is the number of subdivisions along the u~-direction and
Ny is the subdivision along the v-direction for a surface patch. The

elegance of these formulae is that they are recursive and therefore
can be used to assemble together different patches having different
numbers of subdivisions. This application is evident in nodal

renumbering scheme discussed in section 7.5.

Consider the patch shown in Fig. 7.2a where Nx=3 , Ny=4 and

i=l. Fram the formulae ,

N =1
N2=l+4=5
N, =1+ 3*%(4+1) = 16

N, =16 + 4 = 20

which give the corner node numbers at A,B,C and D respectively.
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Given the number of subdivision in the u and v directions , it
is therefore possible to obtain the topology of the four-sided
Be'zier meshes and upgrade them to eight-node quadrilateral finite

elements and six-node triangular finite elements.

In the present scheme the nodal points of the mesh are created
and numbered from the lower left-hand corner , Vertically and from
colum to column . From this information the element nodal
connections can be established using an appropriate rule. It can be
seen fram figure (7.3) how a quadrilateral is formed and the shaded
area shows how this region is divided to give two triangular

elements.

In the case of the actual model of a fan impeller , the inner
radii of the backsheet and cone may or may not be equal and the

blade is not radial.

\
V)Y Sector—2

Sesctor—1{

Consider the case where the inner radius of the cone is greater

than that of the backsheet. In this case the backsheet has to be
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divided into two regions known as Sector-l and Sector-2 , where

Sector—-2 is cammon to the backsheet and Conesheet. Denoting Sector-1

as Sl and Sector-2 as S2 , the following Boolean operators can be

applied :
B =S1TU S2
C=B Nsi

where B refers to the region of the backsheet and C refers to the

region of the cone.

The practical implication of this boolean operation is that the
meshes on Sl and S2 have to be differently generated and then merged

together to obtain that of the backsheet.

Another interesting point to note is that once Sector-l is
ccmpletely numbered , the first point in Sector-2 has a number
having unit wvalue greater than the last point of Sector-1.
Atrempting to merge S1 and S2 will result in the problem of
rermbering S2 since it shares a common boundary with Sl.

Nosies 2 & 9, 4 & 13, 6 & 17 and 8 & 21 are camon. The first step

thisrefore is to renumber S1 and S2 as shown below.




The final stage of the translation of the Be'zier patches into

finite elements involves "tying" together automatically the

different finite element meshes. an algorithm which performs this
function finds the coincident nodes (those with the same X,y and z

coordinates within the surface patch) using the following principle:

For example, two points are coincident if
ABS(X1-X2) < Del

and ABS(Y1-=Y2) < Del

and ABS(Z1-Z2) < Del

where Del is a positive very small number, say 1E-3.

The higher numbered node is first deleted from the node list.
The node list is then renumbered from the first coincident node to
the last node number in a sequential order to avoid having
unsequenced node numbers. The elament connection array will also be

updated according to the new node numbering seguence.

The program structure is given in section 7.5 where further

invormation is given on the translation processes.
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7.5 THE PROGRAM STRUCTURE

There are ample rewards to be gained once the surface design

(Ref. Section 5.7) is completed. The geametric data for input to the
finite element analysis package is derived from the database of the

surface modeller.

The program PATCH which is the driving unit for the translation
of CAD data for input to FEM for plate and shell structures as well
as the fan impeller has been written as a subprogram and can be
accessed using the ON KEY function of the desk top camputer (Hewlett
Packard HP9845B). It is linked to other subprograms using the LINK

statement available in the HP9845B camputer.

The program operates by considering each Be'zier patch in
turn , starting from the left-hand corner of each Be'zier patch ,
and moving vertically through a column and then from column to
colum. The following steps indicate how the program is organised :

1. The corner node numbers of each patch are read fram an array B.

2. The Be'gzier meshes of the model are interpreted using the corner

ncz numbers of step 1 and same constructed loops.

3. The interpreted four-sided Be'zier meshes are then upgraded to

6~sided triangular or 8-sided quadrilateral finite elements.
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4. The node co-ordinates and element connections are found

5. Steps 2~4 are repeated for the remaining patches until the whole

array B has been scanned.

6. The total finite element meshes are then merged and the data of

step 4 are updated .

7. By using the key #J, the user accesses the menu so that other
data such as material property , boundary and loading conditions are

interactively added.
8. The total finite element data is then stored in a specified file.

The generated data can be used in the SMILOF or IMPSMF finite

element analysis programs.

The Be'zier patches are dealt with in turn , starting from
the left-hand colum of Be'zier meshes and working vertically , then
progressing fram colum to colum. Two loops are established which

&itrol this operation , namely IB and J.

Following the flowchart , it is observed that the first
suirroutine to be encountered is SIDE. This routine determines the
firite element nodal co-ordinates for the nodes along the left-hand
Vertical edge of each Be'zier mesh as the program works through

colums of Be'zier meshes. Mid-side nodes are interpolated and as
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the subroutine accesses another subroutine PO to store the nodal
coordinates , a node number is allocateq to each set of nodal
coordinates. A similar routine MID ig encountered which determines
the finite element nodal co-ordinates for mid-side nodes between
adjacent vertical edges of the Be'zier meshes. When triangular

elements are considered , then the subroutine MID determines the

nodal co-ordinate at the centroid of each Be'zier mesh.

Consider a Be'zier patch of twelve Be'zier meshes as shown in
figure (7.4). As previously stated , the program cperates on each
Be'zier mesh in turn , generating the element nodal coordinates. In
the present exami)le Be'zier mesh 1 would be operated on first ,
generating nodal co-ordinates 1-3 and 18-12. In order to achieve
this an expression must be available which can define the node
numbers along the vertical edge and mid-side nodes between adjacent
vertical edges within the Be'zier mesh under consideration. This
expression has been developed through the controlling variables IB

and J mentioned already.
Tix» main control variables are
Mls,le,T,A'B,C,D,Ndel,NﬁlandN®2

Ti@ corner node numbers and subdivision in the vertical direction of
the Be'zier patch are used to construct a nested loop system which
can be used in identifying each Be'zier mesh topology and geometry.

The outer loop , denoted by J . is used to traverse the Be zler
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patch horizontally using the specified patch subdivision. The inner
loops each denoted by K are used +o increment the vertical node
numbering and are limited by the number of the Be'zier patch
subdivision. One of the inner loops deals with edge ncdes while the
other deals with mid-side nodes between adjacent edges. For example
in Fig. 7.4a , the outer loop , denoted by J deals with Be'zier
patch node numbers 1 , 6 , 11 and 16. One of the inner loops then
deals with the edge nodes 1 and 2 , 2 and 3 , 3 and 4 and then

4 and 5 in that order and access is made to the subroutine SIDE +o
interpolate the mid-side nodes .This subroutine then accesses
ancther subroutine PO for storing the coordinates and ensuring that
duplication of nodal coordinates is avoided. Therefore after the
first cycle of this loop , the coordinates 1--9 of Fig. 7.4b are
obtained. An overall numbering scheme is also incorporated in the
subroutine PO. The other inner loop considers mid-side nodes along
the dashed line (between vertical edges) in Fig. 7.4a and again
access is made to subroutine MID to interpolate nodal coordinates
along this dashed line. After the cycles of both inner loops are
campleted , the outer loop autcmatically sets the next nodes to be
¢onsidered as 6--10, then 11--15 and finally 16—20. However , when
t.2 last edge (nodes 16--20) are considered , the inner loop which

d.-termines the mid-side nodes between adjacent edges does not

finction.

Using these variables it is possible to define the element ncdes

within any of the Be'zier mesh , thus
Y
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FOR J = NU1 TO N@3 STEP Ndel
MLE =30
Mls = J + Ndel - 1

where NO1 is the first corner node number of 5 Be'zier patch and ng3

is the third corner node number (refer to équation 7.1). For this
the vertical direction plus one. In this case Ndel = 5. por the

first cycle of the outer loop , T =1, 1t follows that M1f = 1 and

Mls = 5,

The first inner loop then operates within the limits of MILf and

Mls (refer to Fig. 7.4a) :

FOR K = M1f TO Mls-1

For K = MIf = 1 then T = 2. Therefore the co-ordinates of nodes 1
and 2 sre used to access subroutine SIDE which interpolates these
Values to obtain the mid-side node co-ordinates. For K = MLf + 1 = 2
then T = 3 ang the process continues until K = Mls - 1 = 4 in which

Cse T = 5.
R e limits
The second inner loop then commences within the sam
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FOR K = MLf TO Mls - ]
T=K+1
A=K
B=T

C =B + Ndel

D =A + Ndel

WherlK:le:lthen

D=1+5=6¢6

Therefore the corner nodes of the first Be'zier mesh are
identified.The subroutine MID when accessed , uses adjacent nodes A
+ B and C , D to obtain mid-side nodes and the node at the centroid
of each Be'zier mesh is easily obtained fram these information for

uss: when triangular elements are dealt with.
When the loop cycle for the control variable J is completed ,
then all the Be'zier meshes would have been identified and the

filsite element nodes obtained. Other patches are then considered

wiinh the help of the outermost loop designated by IB.

The next subroutine to be accessed is NODAL. In this
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suproutine , the total node number is Obtained and the number for
each node 1s read into an array NODE. These are used later for

merging all finite element meshes Obtained from the processes

described in this section.

It was observed that the way that element connections are
numbered vary with the application programs SMITOF and IMPSMF. While
the element connection proceed in a clockwise manner in IMPSME , 1t
proceeds in an anti-clockwise manner in SMILOF. Therefore , two
subroutines have been written for element connections and using the
variable S , the program branches to the appropriate subroutine to
obtain the element connections for either SMILOF or IMPSMF. Details
and flowharts of the subroutines(known as MESH3Q and MESH4 for
triangular and quadrilateral elements respectively) that establish
the element connections for the application program SMILOF are
presented in this section while those of IMPSMF(known as MESS3 and

534 for triangular and quadrilateral elements respectively) are

anitted since the operations are similar.

The final routine to be encountered is the merge algorithm
which was saved in a data file MERGE .It can be accessed using the
LISK statement of the HP9845. When linked , the subprogram MERGE 1s
ca:led which merges the total finite element meshes.

Before the subprogram exits , the element nodal connections

' j rograms
are arranged in a format acceptable to the application progr

SMILOF and IMPSMF.
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The flowchart for the main subprogram PATCH as well as the
flowcharts of subroutines and Subprogram refered to in this secti
ion

are also found in this chapter.
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Fig.?.5 Flowchart fop subprogram PATCH
A\ STARRT

Limit=50g

_lxesFi____
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FOR J=B(Ib,1) TO B{(Ib,3)
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Mis=J+B(1b,?)

Mif=]
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NEXT K

—

FOR K=M1f TO Mls-1 [
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B=T
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1

//cosuB Mid J/

[ NEXT K

NEXT J
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7.5.1 Subroutines MESH4 AND MESH3Q

These subprograms cperate in the same fashion and determine the
element connections for the quadrilateral and triangular finite

elements respectively. The elements are de“ined by six nodes in the

triangular element and eight nodes in the quadrilateral element. The

numbering sequence is shown below.

The numbering sequence is important and is used to identify the

shape of the element , via its nodal coordinates.

(a) “"MESH4"

The element connections for quadrilateral elements are
determined by this subroutine.The recast form of the recursive
formulae of equation 7.1 is used automatically to determine the
first node nutber of the finite element for each Be'zier patch. This
node number becomes Nlt which is updated each time a patch is

treated. A set of expressions which yield the element connections

for each finite element is given as follows:
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N1 = N1t

N2 = N1 + Inc

N3 = N2 + 2

N4 = N1 + 2

N5 = N1 + 2*(Inc + 1) - J9 N )
N6 = N3 - 1

N7 = N5 +1

N8 = NL + 1

where Inc is three times the number of subdivision in

v=direction plus two.

These element connections are then held in the array ICON for use

in the merge algorithm.

The steps involved in this subprogram shown in the

cvresponding flowchart are as follows:

‘vision in
l. The parameter Inc is determined from the number of supdivision

the v~direction.
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2. Two counter loops K& and Jg dare constructed to control the scheme .

for the element connection using the eXpressions in equation 7.2.

3. The element nodal connections are held in array ICON and the

numbering scheme for element connection updated.
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Fig. 7.6 Flowchart gp subraout i
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(b) "DIESH3Q"

As has been already mentiocned , this routine operates in the
same fashion as the subprogram MESH4. The element connections for

one triangle of a quadrilateral element is given as

N1 = Nlt

N2 N1 + 2*(2*Incy +.l)
N3 = N2 + 2

N4 = N1 + 2*Incy + 1

N> =N2 +1

wheve Inc equals four times the number of mesh in v-direction plus

2. ¥or the other triangle of a Be'zier mesh ,

N7 = N1
N8 = N3
NS = N1 + 2
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N1g = No

N1l = N1@ + 1

n

N12 = N1 +1

7.4

The following steps correspond to the flowchart for the

subroutine MESH3Q.

1. The variables INCX and INCY are initialised as limits for loops

KZ and J¥ respectively.

2. Variable INC which is part of the numbering scheme is set as a

function of variable INCY.

3. Each Be'zier mesh breaks down into two triangular elements , thus
tw: sets of element nodal connections need to be camputed. Variables
NI....N6 are used to compute the nodal connections of one triangle

while variables N7...N12 are used for the other triangle.

4. The element nodal connections are held in array ICON.
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Incx=B(Ib,8)
Incy=B(Ib,?}

Mitheo |

FOR KB=! TO Inc§:]
[

Inc=4*Incy+2

Ni=N{¢
I

FOR JB8=1 TO Incx
I

1

NZ=N1+2% (2%Incy+1)
N3=N2+2
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NBE=N4+{
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Icon(If, 1)=NI
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|
N7=N1
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Ioon(If,1)=N?
Icon(If,2)=Ng
Icon(I?,3)=N8
Icoan?,4)=N1@
Icon(I¥,5)=N11
Icon(If,83=N1i2
Ni=Ni+2

|

NEXT Jg
l

NIt=Nit+Inc

|

NEXT K@
|

- 196 -




7.5.2 Subprogram “MERGE"

As the name implies , thig subprogram Merges all the finite

elements into the total mesh using the principles established in
section 7.4. Two loops Ip and K are used to Ccampare each node's x
y , z coordinate values with other nodes , where Ip is used to
identify the node under consideration and K for all other higher
nodal values. Each time a pair of coincident nodes is encountered ,
the node having the lower ncde number held in array NODE is stored
in an array NEW while the one with higher node number is stored in
an array ICOLD. These two arrays have a counter ICO which counts the
number of times coincident nodes are encountered. The value of the
higher node number initially stored in array NODE is then replaced

by a value of -1 to show that it is a candidate to be deleted.

Another loop IP is then used to search through the arrays NEW and

IOLD and all nodes having value of -1 in the array NODE are deleted.
A counter ISUB is used to count how many times coincident nodes are

encountered. When all nodes have been examined the old numbering is
chenged to a new numbering sequence and the element connection
chinged to correspond with the new node nurbering.

i in this subprogram
A summary of the sequence of operations 1n

which corresponds to the flowchart MERGE is given as follows :

i ' ode
1. All coincident nodes are found while the lower and higher n

: IOLD.
nutbers at such points are held in array NEW and
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1 1
step 1 and the total number of coincident noed
es.

3. With this n
. ew numbering
S
equence , a new element connection i
n is

obtained.
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Ico=g
Zone={F-3
Itotn=g
LTi=Ltmit~1

f
Llﬂ-g?

FOR Ip={ TO L1

<:Node(Ip);E—>L_
Il

l

J=Ip+1
|

T1FOR K=J TO Limit

< Node (K)=g >—
|

R=ABS(X(Ip)}~-X{K))
B=ABS{Y{Ip)~-Y(K)})
C=RBS{Z{Ip)-Z(K))

[

<
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Ico=Ico+!
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NEXT Ip

=END

Isub=0
Ki=1

|
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Ico=Igo+! !
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T
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7.6 MATERIAL PROPERTY SPECIFICATICN

: TORD AND BOUNDARY CONDITIONS

The data input (see fig. 7.9) for any finite-element analysis

program is made up of geametric , materia] and loading data. So

far , only the geometric data Preparation has been discussed and
this is the most difficult task for complex structures. The present
trend is to duplicate the finite element model data in a database
and a temporary file. Depending on the specific format of the
finite—-element analysis program , the user then specifies
interactively the lcadings , boundary conditions , thickness and
material properties. Wu and Abel [57] adopted this method of adding
these data after the geometric data have been derived from a

modeller.

In the present research , the same trend of separating the

geometric data fram the camplementary finite element analysis input
data is adopted because of its advantages. Once the finite element
model has been fully described and edited ,the user can then access
a m2nu specially designed for the specification of the material

premerties as well as the load and boundary conditions. This makes

it flexible to use the same geometric data for different finite-

ai imself
eliment analysis programs. The user only has to acguaint himsel:

wiih the specific format of the a particular application program and

ti ecify the
whire necessary include his own editing progran to sp Y

i and boundary
material property specification as well as loading

conditions.
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interactive method in specifying such data are as follows :

(1) The common geametric data held in the databse and the temporary
file can be used repeatedly for different analysis programs provided
a small editing program is available for the addition of the

material properties , boundary and lcading conditions.
(ii) Preprocessing time is greatly shortened.

(iii) The opportunity for making errors is significantly reduced

since a visual check can be made through the graphic devices.

(iv) Since'all errors can be deleted prior to dumping the input data
to a finite element analysis program, cost normally associated with

running such program is substantially reduced.

In the context of the work reported in this thesis , a menu

(sce fig. 7.10) is available for the user to specify the material

priperties , boundary and loading conditions for the stress analysis

pr gram IMPSMF [13] . The menu is accessed through the overlay key

i : Y iC
#2. Numbers corresponding to the menu items are keyed to the numeri

i ] of
padi on the keyboard , which provides an important alternative way

seiecting an option.




7.7 COMPUTATION OF AREA PROPERTTIES OF SURFACES

The automatic computation of the geometrical ang inertial

properties for geometrically complex surfaces has become an

important function (module) in integrated CAD systems. The

importance of the module in a CAD System arises from the fact that
these properties such as surface area , moments of inertia and
principal axis direction are important in the calculation of certain

stresses in a variety of engineering structures.

A nurber of schemes for the calculation of these properties
have been devised for 2-D general shapes . Wilson and Farrior [58]
have developed a scheme to achieve this when the boundary is
described in terms of straight lines and circular arcs. Miles and
Tough [59] described a method for approximating the boundary by a
set of piecewise continous cubics with prescribed endpoint gradients
and then using Green's theorem to evaluate the relevant integrals.

Howaver , none of these schemes is integrated in a CAD system.

Lee and Requicha [60] have given the requirement of integrating
i i - tem
a ¢:ometrical and inertial properties module in a GAD / CAM sys

i as iated
the the methods for calculating these properties may De associa

i resentation
"naturally" with the representation schemes. The rep

in section 3. They
schemes (surface and solid) are those referred to in

' i resentation
discussed the association of the different solid rep

| 1 methods.
schemes and the "natural" computational
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In another publication , Lee and Requicha [61 ] outlined

algorithms which operate on solids represented in CSG (refer to

section 3.4.1). The algorithms generate a collection of cells whose

union approximates the solid » and compute *he geometrical and

inertial properties of the solid by adding the contributions of the

individual cells.

Boyse [62] has considered the surface area of a 3-D solid as
composed of sets of elements that completeley cover the surface of
the solid. The area is computed through an integration method. He
also considered the computation of the mass properties through
nunerical integration. The solid is considered broken down into each
piece of long , thin bar which approximates to a parallelepiped with
a square cross section. In his treatment , the mass properties for
each bar is camputed and then summed to obtain the mass properties

for the solid.

In the present scheme , the area properties of each Be'zier

mesh are computed and then summed up to obtain the overall

are.. properties of the surface.

7.7.,1 THEORETICAL BACKGROUND OF THE ALGORITHM

The basis of the scheme is the graphical method of determining

moments of area in reference [631.
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Consider a Be'zier surface (spg £ig. 7.11) covered wi
) red with

adrilateral Be'zi i
qu 2ler meshes. Suppose it ig required to determine

the second mament of area of the surface patch about the centroidal
axis X — X. A convenient axis W — W is assumed outside the patch
parallel to X — X. Advantage is taken of the fact that the Re'zier
surface is already divided into Be'zier meshes + €ach having an area
AA at a distance y from the axis W — W . Since in the direction of
v each Be'zier has the same thickness Ay , the areas will be

proportional to their widths x.

% —

C o v
?
L
R B
AR | T
=~
v o] —_ = = |- - L X
N ?
s/,
- T .
|
’ !
: !
A ~—J
Y B |
W | S (o)
(al
Fig. ?./]1 Graphical determination of

geometrical and inertial properties
of a Be’zier surface.

The area A , centroidal ccordinate g . first and second area

MCients of area I  and Ixx respectlvely about the X axis , Iy an
X

product area moments IXV are

IYV respectively about the y axis . the

given by the following standard expressions :
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st

=y x.AA /A, similarly for ¥ and 7

I, =2%4A » similarly for I, and I
Z

2
I =) X AA , similarly for I
xy Z y for vy and Izz

I =) xyAA , similarly for T and I
xy 2 Y xy vz

=TI+ A.i-(2 (by parallel axes theorem)

When the opposite sides of a Be'zier patch are parallel (such
as AC and BD in Fig. 7.11) then the Be'zier meshes are considered as
rectangles and it is an easy matter to evaluate the properties.
Howaver , consider the case of a sectér of the typical backsheet of
a fan impeller in Fig. 7.1lb. The Be'zier mesh ABCD may be
considered as having AB and CB as being parallel and so the forrmlae
for trapezoid [64] applies. Approximating the arc along AB or CD as

stiaight lines does not lead to a marked loss in accuacy when the

.
) e'zier meshes on a
Be'zier meshes are many. However , for few B

sector , there is a marked loss of accuracy.
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7.7.2 THE PROGRAM STRUCTURE

GEOM-DATA is written as a subprogram which can be accessed by
the geametric modeller of section 5. The way the program operates is
by considering each colum (in v~direction)

Oof the Be'zier meshes

and then from row to row (in the u-direction). a summary of how the

program is organised is as follows :
1. The corner coordinates of each Be'zier mesh are obtained.

2. Each Be'zier mesh is considered as a trapezium and the length of

the parallel sides and the distance between them is determined.

3. For each Be'zier mesh , the area and the distance between the

grid's centroid and the chosen axis W —— W are determined.

4. Using these data for all Be'zier meshes , the centroid of the

wheie structure is determined.

5. " repeating steps 1 —— 2 and using appropriate expressions ,

: ! 'zier mesh
the second moments of area about the centroid of each Be z

. . ive distance between
are obtained. For each Be'zier mesh , the relative C

id of
the centroid of the whole structure and that between the centroi

: e second moments of
each Be'zier mesh is obtained. Consequently , th

Y and Z and the
area , principal second moments of area about X

Principal axis direction are determined.
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structure to
consider. The other two loops control the selection of each column
(in v=direction) of the Be'zier meshes and then from row to row (in

the u—-direction).

The four corner coordinates of each Be'zjer mesh are obtained
and the subroutine BLADE is accessed when the blade is considered ,
while the subroutine BASECONE is accessed when either the backsheet
or the conesheet is considered. These subroutines can be accessed
for any geametric shape. Their functions are identical and they
evaluate the lengths of the parallel sides of each Be'zier mesh
(considered as trapezoid) and the distance between them. Using these
data , the area of each grid is calculated. The subroutine
RELATIVE—XYZ is accessed to determine the distance of the centroid
of each area from the chosen axis W =-- W. The product of this
distance and the area is taken and summed up for all the grids and

the centroidal position for the whole structure is evaluated using

the appropriate expressions in section 7.7.l.

+ 1 +he whole
Since the evaluation of the area propertles of the whole

i 1ti been
str.cture is only possible when the centroidal position has

i similar to
found ( applies when graphical method 1S adopted) , loops

i each grid once
the ones just mentioned are constructed to consider g
'zier mesh about
More. This time the second moment of area of each Be zle
the distance H

i A over
1ts own centroidal axis is evaluated. More '
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between each centroid axis and the chosen axis W —— is obtained
for each grid and the product of its squared value with that of the
corresponding area is taken. This value ig added to the second
moment Of area about the centroid for each Be'zier mesh (parallel

axes theorem). The principal second moments Of area as well as the

principal axes direction are then evaluated.
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Ne=1{/Dc+1

FOR Ik=!{ TO Wh

|

{FOR Im=B{Ib, () TO B{Ik,3)-Nc STEP Ne

Neol{)=Im

FOR Jf=Im TO Im+Nec-2

1

Ns=Ns+{
Necol23=Ncoll)+{
i Neo{3)=Ncol(2)+!
Neo(43=Nco(3)-1
GOSUB COORDS

(Ib<>1 AND Ik<dWh ?>-—-

| GOSUB BLADE

NG YES

rﬂ(1b<>1 AND Ib<>NhAz>

YES

NO
GOSUB BRSECONE
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RUNSI=1/2%Hx (L1410}
Rr(1)=9r(1)+RBS(R(NS))
GOSUB Relative-xyz

Ax (Ns }=ABS(A(Ns Y %X)

Ry {Ns3=RBS(RINs ) xY}

Az {Ns )=ABS(A(Ns %73
ny(Ns)=BBS(BINs)*X*Y)
sziNsl=HBS(R(Ns)*X*Z)
Ryz (Ns3=ABS(R(Ns IxY*Z)
Rxo(1)=8xo(1)+9x(Ns)
Rys{1)=ARys({3+Ry (Ns)
Azol1)=Azc (1Y+Az (Ns)
nyo(1)=ﬂxyo(1)+ﬁxy(Ns)
szo(1)=szo(1)+Hyz(N&)
Neo{{3=Nca(2)

NEXT Jf

NEXT Im

NEXT Ik

|

R=ARr (1}
Xb=Axo{{I/Arll)
Ye=Ryc{(1)/Rrll)]
Zh=Rzo (1Y/Ar{1)
Xyb=Axyo ({3/Ar (1)
Xzh=Rxz(13/Br(l)
Yzb=Ryzo(13/Ar{1)
Ns =@

MAT Nco=ZER

\S)

=

o
i




[
FOR TmeBilp [ ore————

OR Im=B(Ib, 1) TO B{Ib,3)-Nc STER Nc>
— = K ———— T T T O

Neo(1)=In

FOR Jf=Im TO Im+Ng-2

DI P |

Ns=Ns+1

; Neo {23=Neo({y+1
Neo(33=Nco(2)+Ne
Noc{(4)=Nca(33-1
GOSUB COORDS

| (Te<> 1 AND To<swn 7)
l

(Ib<>1 AND Ti<sWh ?}

GOSUB BRSECONE

1

B=_1{

C=L2

D=H

Ix=DA3/36%{BA2+4%B*¥C+CA2)/(B+C)

Iy=D/36%(B+C) % (BA4+CA4+2%BXCx (BAZ+CAZ3
~A% (BA3+3%¥BA2¥L-3%BXCA2-CA3)
+AA2% (BAZ+4 %B*¥C+CA2) )

|

!

g Iz=Ix+Iy

| | Dxy=DA2/72%(B+CI%(C{3¥BAZ-3XB*C-CAR)
+BA3-AX (2XBAZ+BXBXC+2XCA2) )

GOSUB Relative—-xyz
Hx=RBS ({Xb-X)
Hy=RBS(Yb-Y)
Hz=RBS(Zb-Z)
Hx y=Hx¥Hy 1

| SRS e




Ixx(l)=Ixx(1)+Ix+R(Ns)*HxA2
Iyy(IJ-Iyy(1)+Iy+R(Ns)*HyA2

Ixy(1)=Ixy(1)+ny+H(Ns)*ny
Neo(13=Ngg (2}

NEXT J¢

NEXT Im

NEXT Ib

l

Ixx=Ixx{(1)

Iyy=Iyy{1)

Izz=Ixx+Iyy

Ixy=Ixy(1)
Teta=1/2%ATN(2%Ixy/{Iy~Ix))
I11=1/2%{Ix+1Iy)
122=SQR{1/4%(Iy~Ix3A2+IxyA2)
I{=I11+1I22

I2=I11-I22

|
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2 .13 Flowchart fop Subroutine BASECONE

STRRT

L1=SQR((X(1)~X(4))A2+(Y(I)-Y(4))A2

HZU13=Z(4)3A2)
L2=SQR((X(Z)—X(S))A2+(Y(2)-Y(3))A2

‘ +(Z(23-Z(3))A23
L=SQR((X(1)—X(2))A2+(Y(1)—Y(2))A2)

HZ)=Z(2)yA2)
H=SQR(LA2(I/2%(LI—L2))A2

|

{ RETURN |

Fig.714 Flowchart for subroutine RELATIVE~XYZ

| START >

Xeen=1/Type* (X{1)+X(2)+X(3)+X(4))

Yeen=1/Typa*{(Y{1)+Y(2)+Y{(3)+Y{4))
Zean=1/Type*(Z{(1)+Z(2)+Z(3)+Z{4))
X=ABS{Xcen—Xd)

Y=ABS(Ycen-Yd)

Z=ABS{Zcen-7Id)

@TTURN }
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7.8 CLOSING REMARKS

In this chapter , the translation of tpe geometric dat
a

resulting from the drafting/ modeller Processes into finite element

input data has been discussed.

The translation module has been designed to transform ang
prepare input data (in the right format) for the application
programs SMILOF and IMPSMF. In preparing the input data for the
program IMPSMF' , advantage was taken of sectorial symmetry for
models such as fan impellers. Moreover , for the actual fan , the
merging of parts of the sector for the backsheet was found to be
useful in obtaining accurate nodal numbering and element

connections.
In the next chapter , different examples are given to confirm

the wiability of using surface modelling as a bridge between

drafting and finite element analysis of plate/shell type structures.
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CHAPTER 8

ILLUSTRATIVE EXAMPLES

In order to verify that the geometric modeller described in
Chapter 5 successfully links drafting and finite-element analysis ,
a number of examples were tested. It is not intended in this section
to demonstrate the capabilities of the type of element used for
stress analysis , rather emphasis is placed on the accuracy with
which the geometric modeller transfers the geometric data (i.e
dimensions) from the drafting package to the three-dimensional form
suitable for input to the finite-element stress analysis program.
All examples discussed here have been investigated by Jweeqg [13]
using the semiloof element and the stress analysis program SMILOF
and IMPSMF ; moreover , he carried out some experimental work to
confirm the finite element analysis results. In his work , input
date were manually prepared and so it is worthwile , first , to
compare accuracy of input geometry from the modeller discussed in
chap:er 5 and then the finite—element results using such input data.
If tnere is no loss of accuracy in geametric data resulting from the
draf ~ing / modeller processes then it is in1perative that the finite
elemnsnt result will be exactly the same as that obtained by Jweeg.

in geometric
Descrepancies can only arise from loss of accuracy g
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+ the following
steps are essential in order to Pass data from the drafting pack
A age

to the finite element analysis program :

(1) The orthographic views of the mode] under consideration are
drawn using the MEDIA drafting package.

(ii) The interpreting module » when accesseqd |, interpretes the

engineering drawing and prepares appropriate Be'zier nets which are
essential for the geametric modeller discussed in chapter 5. Various
shapes such as those illustrated in section (6.3.2) can be handled.
(iii) The modeller then uses the Be'zier net data as a basis for
modelling the object and displaying it in three-dimensional form.
(iv) The translating module further transforms the geometric model
data to obtain the nodal coordinates and element connections. It is
possible to reduce the dimensions of a structure if only part of it
is essential for analysis. Sectorial symmetry is exploited for
repeating structures. Additional parameters are automatically
calculated by the translator when sectorial symmetry exists.
(v) Finally , material properties and loading conditions are
interactively added to the data of (iv) above fully to define the
finite element input data. This is then dumped onto an input file
for ‘he finite element analysis program SMILOF or IMPSME.

Several examples are presented in the rest of this chapter tO

demc:istrate the capabilities of the programs developed in

i i i in order
chapters 5 , 6 and 7. Moreexamples are given ifi Appendix A

i i le
t0 reinforce the capability of the interpreting modu

: drafting
(see chapter 6) in passing geometric data from the

1 ‘n chapter 5. In
Package , MEDIA to the surface modeller described in o

in plate/shell
all the examples , the middle surfaces of thin I

218 -



structures are considered and hence their thicknesses ar )
2 € not shown

in the orthographic views.

8.1. SQUARE PLATE CONVERGENCE STUDY

The convergence study of a thin Square plate has been carried
out and this is the simplest of all the examples presented in this
chapter. Because the aim is to demonstrate the fact that the
drafting / modeller / finite-element analysis interfacing works ,
emphasis in on the different steps involved in the interfacing
processes. Therefore only clamped edges boundary condition and

central concentrated load is treated.

8.1.1 Othographic views of a thin square plate
The "line" geometric definition function of the drafting

package was used to draw the views as shown in Fig. 8.1.

Plan
—_—— - _Refersncs line
Y
L.
Elev—-
At ian.

Fig. 8.1 Orthographic views of a thin
square plate.
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8.1.2 Be'zier net resulting from the interpreting module

The Be'zier net for a flat plate shown in fig. 8.2 is very
similar to the final gecmetric model. This data is the input to the

geametric modeller.

\Y

L Y
1] L

V4

Fig. 8.2 Be’zier net for a thin

square plats,

8.1.3 Geametric model resulting from the processes in the geometric

ITDdeller

Any number of meshes can be chosen for the u and v directions.

Facilities are available to reduce the model size when symmetry

nl
conditions are encountered. For example , for a square plate , only

: , the
One juarter of the model needed to be considered. Therefore

modei was reduced accordingly as shown in Fig. 8. 4.

L.

0.{.‘ a thln

Fig. 8.3 Geometiric mode !

L T S



8.1.4 Translating gedmetric model data into finite element data

Given any number of meshes in the u and v directions the

translating module transforms the gedmetric model data into finite
element analysis data ( refer to chapter 7). For example , for the

square plate , four uniform finite element meshes were

considered :(I1X1) , (2X2) , (3X3) and (4X4) (see fig. 8.4).

Vv I T
l ] 172 Flexural rigidity,
]
U L___Jl_ .
o 12+ D=Ey _
1201-y?®3
(1X13 mesh (2X2) mesh
(3X3) mesh (4X4) mesh

Fig. 8.4 Different meshes for
convergence study.



8.1.5 Accuracy of gedmetric data from drafting / modeller process
es

For flat plates , it is observed that there is no loss of accuracy
in the dimensions when the Be'zier nets of the othographic views
are constructed and submitted to the geometric modeller for display

of the model. For example , a square plate having sides of length

200m was used for test and the modeller exactly reproduced the
dimensions without loss of accuracy. The dimensions of the plate in
the drafting module and after it has been modelled for input to

finite element analysis are shown in Table 8.2.

8.1.6 Results fram finite element analysis

The interfacing processes are camplete when the data in
section 8.1.4 are dumped onto a finite element analysis program. In
order to study the rate of convergence , the deflection results were
plotted and also campared with the results obtained from Jweeg's
work. The results were also compared with the exact solution given

by Tirnoshenko , Ref.[66] as shown in Fig. 8.2. The numeric results

, the
Pres.anted in Table 8.1 shows a rapid rate of convergence to

. r , it
eXact solution given by Timoshenko for displacements. MOreove
. ing drafting and
clearly shows that the new approach of interfacing drafting

. ) . . technigque 1is not on
finite element analysis via Be'zier surface q

ion. Fig. 8.5 shows a
feasible but also approaches the exact solution. Fig

. modeller
Camparison with the result of Jweeg i SI1NCe the



transfers the exact dimensions to the fini
inite element pr
ogram , the

result agrees perfectly with that obtained by Jweeg. Mor
. eover , it

serves to confirm the fact that the semiloof element used
used in his

work approaches the exact solution with 3 minimm number of g
egrees

of freedam.

Mesh in symmetric quater (IXD | €2X2) |(3X3) | (4X4) | Exact

‘ Concentrated Central
load (P) deZIection 7818 | 8871 |5888 (5882 |55892
18 XD
P17

Table (8.1 Clampsd square plats undsr concentratd
{ load (P).

! Loss of
jLength [Width
| ! jaccuracy (%)
Process |1 (mm) §T(mm) in modeller |
| | |
| | | |
Drafting | 209 | 2e@ ; 8 |
| | i
Modeller i | |
!
& FL.E. J 200 ] 208 | 2 J

Table 8.2 Geometric accuracy of geometric

mode ] ler for square plats



W

(mm)

1.2

1.14

=
o

(Ix1)Messh (2x2)3Mesh

(3x3)Mesh

deflection

Central

0.8+

s Present &
Ref. [13]

— = Number of degree of freedom
ser one quarter of the plate

of deflections for =

Fig. 8.5 Convergence
trated

square plate under concen

load at centre

- 224 -



8.2 CYLINDRICAL SHELL ROOF

Cylindrical shell roof loaded by its own weight was tested to
show that the developed programs can handle not only engineering
structures composed of flat plates having straight edges but also
shells having curved surfaces. For the cylindrical shell roof
tested , the edges are straight and supported by diaphragms which
are assumed to be infnitely rigid in their plane and infinitely
flexible out of it. This is one of the most typical examples used as

a performance test for shell finite element programs

8.2.1 Orthographic views of cylindrical shell roof

The "three points on circumference" geometric definition
function of the drafting package was found to be best for drawing

one of the orthographic views of the cylindrical shell roof shown in

Fig. 2.6. T )

Plan v ’

Ele- /_\____Rew“erence line
/ Y

vation /
/R L_a.x
fae®

. f
Fin 8 8 Orthaarapghic views ©



8.2.2 Be'zier net resulting from j
an _Interpretin
g mdule

The length of the r
©Of in the orthographic viey aligns with th
| | | e
z-direction when interpretation of views is complete
as shown in

Fig. 8.7.

Fig. 8.7 Be’zier net for a
cylindrical shell roof
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.2.3 Geametric model resulting from the geametric model]
— eller

The geometric model of the Cylindrical roof is shown in

Fig. 8.8 and once more only a quarter of the model is considered
e

pecause of symmetry.

1s2

{a) Model {b) R quarter of
mode! considered
due to symmetry

Fig. 8.8 Geometric model of a cylindrical
shell roof,

8.2.4 Translating the geometric model data into finite element data

Four types (shown in fig. 8.9) of mesh were considered for the

geam:tric model of fig. 8.8 by specifying the nutber of meshes along

the -, and v directions of the model when the geomtric modeller was

. inite
accensed. The translation module prepares input data for the £

ndri is not considered as
element analysis program. The cylindrical roof is not

i module in
8 periodic structure , therefore the translation '

C s i data such as the
Preparing the finite element analysls input , OMIES

i
\S]
\e}
~
\




array containing the numbers of nodes having similar behavioyr

node number and angle of skewed nodes ( refer to [13])

@ @ E=3EBps i

v=0g
Mesh A Mesh B t=3inches
shel]
wt.=881b/f¢
Mesh C Mesh D

Fig. 8.8 Cylindrical shell roof
under its cwn weight.
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8.2.5 Accuracy of gedmetric data fram drafing / modeller proc
esses

The accuracy with which the geametric Mmodeller translates the

geometric data form the drafing package to the finite element

analysis program for the cylindrical roof was examined by
considering the height of the nodal points along the circumference.
These heights correspond to the z-values of the nodal coordinates
and they are campared with the actual values anticipated at such
nodal points. As an example , the z-coordinate values for a (4¥4)
mesh are campared with expected values in Table 8.3. The modelled
surface and the actual surface are shown in Fig. 8.18. and it is
cbserved that the gecmetric modeller discussed in chapter 5 mimics

the actual surface almost exactly. Therefore , it is anticipated
that the finite element result for the cylindrical rcof will more or

less be the same as those in reference [13] since the same elements

and program were used.

Nodal Drafting |{Modeller|Loss of
points & F.E. accuracy(%)
(Rctuall in modeller
A 25 i 23 8 !
B 24 .62 24.28 1.4
]
Cc 23.5 22.87 2.7 |
A
D 21.65 21.87 2.6
—
E 19.15 19.15 8
o

ric
tric accuracy of geome®

Table 8.3 Geome ical roof.

modeller for cylind’
(Refer to Fig-810)




N

SN S S S o |

Fig. 8.10 Geometric accuracy of
gecmetric modeller
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8.2.6 Results from finite element analysis

The comparison between the results of the finite element

approach using the Be'zier bicubic surface for idealization of

finite elements for meshes A,B and C (gee fig. 8.9) and of the

analysis of Jweeg [13] as well as the analysis of Scordelis and Io
(67] , is given in Figs. 8.11- 8.13. The displacements membrane
forces and bending moments are considered in these figures. It is
observed that there exists good agreement between these sets of
result. This emphasises the fact that the use of a meshed-surface
modeller to prepare for the finite element analysis of shell
structures from a drafting geometric data yields accurate results.
This point is obvious from Table 8.3. Since the modeller transfers
and transforms 2-D drafting geometric data accurately to the
analysis module. Concerning the Semiloof element used in the
analysis program, it is observed that a high rate of convergence to
the exact solution exists. Acccurate results are observed even with

the ciarsest mesh such as mesh A.
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=--Ref. [13]
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(a) M¢ at central section
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i
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—+—-Ref.[13]

Exact solution

roof of Fig. 8.8

Fig. 8.13 A cylindrical shell
exact solutions

finite element and
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g.3. SIMPLIFIED FAN IMPEIIFR |,

In order to confimm the technique of exploiting the sectorial

symmetry described in Chapter 6 , and the fact that the modeller can

handle intersecting structures, it was decided to study the flow of

data of a simplified radial fan impeller from drafting, via medeller

to the finite element analysis program. Attention was given to the

accuracy with which the geametric modeller passes on dimensions of
the impeller on to the analysis module. Finite element results were

studied in detail and compared with results obtained by Jweeg.

8.3.1 Orthographic view of Simplified Fan Impeller .

The orthographic views for the simplified fan impeller drawn in
the drafting module is shown in Fig. 8.14. These views are
interpreted by the interpreting module to prepare the Be'zier nets

discuzsed in Section 8.3.2.
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Elevation ¢
+ 7
‘ B
; X
—— 100
225 —

8X45° radial
blades,

—— —

- 109
Y

Plan
LX

<~

Fig. 8.14 Orthographic views of
simplified fan impeller
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8.3.2 Be'zier net of Simplified Fan Impeller

orthographic views is campleted. This technique is extremely useful
pboth in surface rendering by the gecmetric modeller and in finite

element stress analysis. In the case of analysis, this technique
conserves camputer memory while in the case of surface rendering by
the geametric modeller, the sector can be replicated several times
to define the camplete mbdel.

It was observed that if any of the blades aligns with the X-

axis, the finite analysis program IMPSMF which was used for the

analysis, returns error message.

Y
|

-

E/‘ ~
yvﬁ/" N'—\ﬂr o
i":, () ~X
(a,: gh/ (b)
backsheet o lade

Fig. 8.15 Be’zier nets for
simplified fan impelier

ich align with
This was because the program does not accept blades whi

user 1is requested to input an

the X-axis. For this reason, the

. . 1ade nearest tO the
initial angle (see Fig. 8.15¢) with which the bla
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X-axis should be positioned. All other blades are thep shifted by

 the same angular displacement.

8.3.3 Geanetric model resulting from the gecmetric modeller

The gedmetric modeller utilizes the Be'zier nets (see

fig. 8.15) of the interpreted orthographic views (see fig. 8.14)for

the construction and display of the geametric model shown in

Fig. 8.16.

———

\/v

Fig. 8.15 Geametric model of
simplified fan impeller
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8.3.4 Translating geometric mode] data into finite element da
=S en ta.

Unlike the models already considered in the earlier sections,
the translation of the geametric model dats into finite element data
is quite complicated because of the way that the analysis program
IMPSMF accepts input data for fan impellers. The nodal coordinates
and element connections of one half of the impeller sector is first
dealt with, then the blade and finally the second half of the
impeller sector.

Specifications of the boundary conditions are assigned
according to the inétructions given in Ref. [13]. In order to be
able to campare results with those of Jweeg, quadrilateral elements
were chosen.

The translating module autcamatically establishes the numbers of
nodes having similar behaviour, node number and angle of skewed

nodes. However, it omits the semi-cone angle since this 1s not

required for the simplified impeller.

8.3.5 Accuracy of geometric data from drafting/modeller processes -

. . 4 l
i1 the case of the simplified fan impeller, it is only

1 ] of the
neg : ] the dimensions
esaa [‘y to examj ne the accy]racy w]_th Wthh

j ia modeller to the
backsheet are transfered from the drafting, ¥29

urs
oss accuracy occ
analysis module since we have observed that no 1

for flat plates (which represents the blade) -
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A typical result of (4 X 2)

elements on the backsheet along the

circumference of the inner radius js
pPresented here g
O as to see

clearly the accuracy of the gecmetric modeller. It ig Observed that
a

the modeller models the geometry accurately with an error of onl
Y

13.

Nodal Drafting Modeller Modellar
point| (ARctual) & F.E, Errar(%)
Radius (mm) Radius (mm)}
R 1892 108 '
B 189 88 ! |
|
|
c 108 9s .
G E C 4 !
T D | 198 39 l
|
E | 120 100 e
| : f
F 0 tge | 93 t |
+
¢ | 1og 88 L
H 129 83 !
I 188 108 o
R SSR—
Table 8.4 Study of accuracy of 1ified

geometric mod

fan impeller
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The results of the membrane force and bending moment per unit
length obtained by Jweeg [13] was used as a reference solution in
order to cAmpare the results obtained from the drafting / modeller /
finite element analysis processes. The results drawn on Figs. 8.17
to 8.20 have shown good agreement for the two selected sections on
the backsheet i.e at ©=22.5° ang 37.5° .

It is observed that the membrane force and bending moment per
unit length drawn on Figs. 8.17 to 8.20, decreases as the radius
increases and approaches zero at the free end of the impeller.
Moreover, as expected, the maximum bending moment occurs at the
inner edge near the intesection of the backsheet with the blade. The

high value in this region is due to the action of the blade.
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8.4 ACTUAL FAN IMPELLER

s

8.4.1 Orthographic views of actual fan impeller

The model chosen was typical of one in commercial production.
It was a 65¢mm diameter lamminar , backward bladed impeller with

dimensions of the backsheet , blades and the conesheet as shown in

fig. 8.21. Elevation ¢
! f
i
: T 227
{62 l
X
[
L——eaa——-l
—— 323 ™
ax45 inclined
i blades.
Y
A
L .
Plan

L~ viBsws of



8.4.2 Be'zier net prepared by i
Interpretion
module

m—————

After the engi j
dineering drawing has been int
Nterpreted b
Y the

inte Ietatio
Ip InOdule 7 SeCtorial Smnetry iS h
n then exploited i
n

preparing the Be'zier nets for the camponents of
§ Of the fan impe
Therefore , onl ' i "
, Y a sector is utilized. The Be'yi
€r nets for the

backsheet , blades and conesheet are shown in fig. 8.22

{al (b} (¢l

1

backsheet b1ade conesheet

Fig. 8.22 Be’zier nsts for
actual fan impeller )
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several times.

Fig. 8.23 Geometric model of
actual fan impeller

nto finite element data

8.4.4 . . .
8.%.4 "ranslating geometric model data 1

Since the actual fan impeller was cectorially symuetric , only

3 sector of the impeller was analysed. This sector comprised part of
the backsheet , one complete blade and a part of the conesheet. A

triangular element was used.
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Given the nurber of mesheg along the y and v directj
ons , the
modeller displays the meshed surface and th
€ translating medule
autcomatically computes the following data nodal coordj
. lnates ,

elements connections , the semi-cone angle , the array containi
' ntaining

the numbers of nodes having similar behavioyr + the node number ang

angle of skewed ncdes.

In this analysis , the inner edges of the fan impeller were
assumed to be built in and the displacements at the gecmetrically
corresponding nodes on the sector boundaries a--a and b--b were

prescribed to be the same.

8.4.5 Accuracy of geametric data from drafting/modeller processes

The discussion on the geometric accuracy of the modeller for
flat plates and simplified fan impeller are enough evidences that
the backsheet and the blades of the actual fan impeller are
accurat.ely modelled within the error of 1%. The conesheet goemetry

1s alsc modelled accurateley within the error of 13.



8.4.6 Discussion of the finite o

5.4.6 lement analzsis results for the

actual fan impeller

The results in Ref. [13] formed the basis of comparisop ith
wi
the results of the drafting/modeller/finite element processes. It
s. 1
was decided to present the results in graphical form so that it will

be easier tO observe the correlations between results

The finite element results for the inside of the backsheet of
the actual fan impeller along the line = 27.5° are shown in fig.
8.24. (Refer to appendix B where codes are given to designate the
backsheet , blade and conesheet and where relevant expressions for
stresses on the inside/outside surfaces are also given). It is
observed that the maximum stress occurs near the blade/backsheet
juction. This was anticipated because of the interaction of the

blade with the backsheet.

For the blade results , the calculated stresses on the root and
tip surfaces are presented in the form of longitudinal stresses. It
, ) , d
is obscived that the stress distribution at the backsheet/blade

' j ion which
Junction is higher than that at the conesheet/blade junction

] +raining moment than
Implies: that the backsheet applies a greater restral g

the Conasheet.,
i 2 served that
For the conesheet finite element results , 1t 1S ob

unction which as
the Stresses are higher near the ~onesheet/blade ]
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explained for the backsheet » was due to the action of the blade on

the conesheet.
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8.5 CLOSING REMARKS

The Be'zier technique for surface representation has been used to
bridge the gap between drafting and finite element analysis for
shell type structures. It has been successfully applied to finite
element data preparation for shell type structures and in

particular , to a fan impeller. The finite element results showed
good agreement with the results in Reference [13] where the input
data were manually prepared. The correlation in results has
confirmed the fact that Be'zier technique is suitable for
idealization of models for finite element analysis for shell type

structures.

Whilst developing the linking process for the actual fan
impeller , some logic errors were observed in the application
program IMPSMF (subprogram SKEWIM2) where the counter COUNT which is
dependent on the number of skewed nodes on the backsheet and
conesheet was wrongly represented;the same ancmaly was observed for
the counter JN. The linking processes for this model repeatedly

crashed until these errors were removed.
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CHAPTER 9

SUMMARY /GENERAL DISCUSSION , CONCLUSION

AND RECOMENDATION FOR FURTHER WORK

The main reason for undertaking this research was to
investigate the linking of drafting and finite element analysis and
to see if a surface based geometric modeller could bridge the gap
between these two. The program itself demonstrates that such a
method is feasible. In this Chapter , the summary , conclusion and

recommendations for further work are presented.

9.1 SUMMARY AND GENERAIL, DISCUSSION

9.1.1 Sumary

The summary of the research reported in this thesis are as

follows :

1. A computer program has been written which "understands" the
meaning of a standard engineering drawing. The program prepares
three~dimensional data from an existing two—-dimensional general
drafting package , MEDIA , for input to a surface-based geometric

modeller. The program has been tested on a number of plate and shell

structures.

2. A computer program SUFACE based on Bernstein-Be'zier polynamial

patches for the definition of meshed—-surfaces have been developed.
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The input data to this program is the Be'zier net resulting fram the
interpretation of a standard engineering drawing discussed in
section 9.1. The drafting / surface modeller interface has been

tested on a number of plate and shell structures.

3. A translation module has been developed to translate the
geamnetric data from the modeller » SUFACE , into a form suitable for
input to the finite element analysis programs SMILOF and IMPSMF for

general thin plate and shell structures.

4. The translation module was extended to take advantage of the

sectorial symmetry of rotating fan impellers.

5. An application program GEOMDATA was developed which derives its
input data from the geometric modeller , SUFACE , for the

computation of gecmetric properties of any surface medel.

6. The finite element analysis results from the drafing / modeller /
finite element analysis interface for £hin square plate ,
cylindrical shell roof were campared with results in Reference [13]
and other researchers while the results for simplified and actual

fan impellers were campared with results in Reference [131].

9.1.2 General discussion

The meshed-surface geometric modelling technique based on

Bernstein—Be'zier polyncmial patches which was used in this research
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work has been found to bridge the gap between the rather separate
fields of drafting and finite—element analysis for plate/shell type
structures. This technique is very useful for bridging the gap
because the geometric modelling technique creates "pseudo meshes"
which can be easily translated into finite element meshes. Time for
input data preparation for finite element analysis is therefore
greatly reduced. The linking of these separate fields has been made
automatic by developing an interpretation module which acts as an
interface between the drafting package and the geometric modeller

developed in this research.

The Faculty of Engineering CAD laboratory has a commercial
package , PIGS which is the interactive graphics suite for PAFEC
finite element system. Finite element models are created using PIGS
either by digitised input or interactive modelling ; both of which
are manual. If detailed information about the model is available on
engineering drawings , then digitised input is used , ctherwise
those nodes which form the basic outline of the model are
interactively supplied. The library of PAFEC finite elements known
as PAFBICCK is the key to the generation of meshes by PIGS.

However , in the case of the work reported in this thesis , the
interpretation of the engineering drawing is done by the developed
programs and the meshes are autamatically generated by the Be'zier

surface technique. This new technique is very suitable in an

integrated CAD system.
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9.2 CONCLUSIONS

The following conclusions are drawn from the results of the

research :

1. The camputer program developed to interprete engineering drawings
for the construction of plate and shell structures in
three-dimensional space (a number of examples are given in chapter 8

and Appendix A) is reliable.

2. The stand-alone meshed-surface modeller , SUFACE , developed for
three-dimensional surface construction is extremely versatile. It
has two data-input points : one , from the engineering drawing
interpretation module and the other , fram manual input via camputer
key bcard. Using the second method , a user can very easily model
very complicated engineering surfaces such as doubly-curved shell

structures.

3. The use of Bernstein-Be'zier polynomial patches for the
construction of thin plate and shell structures proved to be
satisfactory for finite element idealization in an integrated CAD
package for the HP9845B computer. Good agreeement was obtained
between the drafting / modeller / finite element analysis interface

results and results from finite element analysis when exact model

geametry was manually input.

4. The membrane forces and bending moments obtained for

the cylindrical shell roof and the membrane forces ,
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bending maments as well as the principal stresses on the backsheet ,
blade and conesheet of the fan impeller obtained fram drafting /

modeller / finite element analysis interface agreed well with those

cbtained in Reference [13].

5. It is possible to instruct the modeller to prepare finite element
analysis input data for only a part of a model if symmetry exists.
For example , only a sector is considered in a fan mocdel. The major
advantage of exploiting sectorial symmetry is that computer memory

is conserved during computation.

©. The accuracy of the finite element results depends on the number
of elements for the model specified in the geometric modeller. The
greater the number of elements the more accurate the results would
be. However , memory capacity of the present facility limits the
size of elements that can be handled for input to the application

programs SMILOF and IMPSMEF.

7. The application program GECMDATA derives its input data fram the
geametric modeller , SUFACE and automatically computes the area

properties of the model.

8. The different programs developed in this research work meet the

requirements of different modules of a camputer-aided design (CAD)
system. Therefore , a significant outcame of the research is that an

integrated CAD system has been developed with drafting (MEDIA) ,
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modeller (SUFACE) , finite-element analysis (SMILOF/IMPSMF) , and

area properties (GEOMDATA) as its different modules.

9.3 SUGGESTIONS FOR FURTHER WORK

The outcame of this research is the beginning of ample rewards
to be reaped. The manner in which these rewards would be realised

are matters discussed in this section :

1. Development of efficient algorithm for the computation of
surface / surface and curve / surface intersection of plate and
shell structures. This is obviously an area that is viable for

further research and References [68] and [69] are recammended.

2. Developing a technique for the display of thickness of
plate/shell structures by the geometric modeller discussed in
chapter 5. At the moment , only the middle surfaces of models are

displayed by the gecmetric modeller.

3. The key to a successful integrated CAD system is an efficient
unified data-base. It is suggested that a unified data-base be
developed to integrate the CAD functions (drafting , surface

modeller , area properties and finite element analysis) of the

present research.

4. The Hewlett Packard 9845B with only 187K bytes memory capacity

and floppy disc of .5M bytes memory size is inadequate for a CAD
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system. The execution time for the finite element analysis programs
SMILOF and IMPSMF' is prohibitive for substantial numbers of degrees
of freedom. Therefore , it is suggested that firstly , the memory
capacity of the camputer be increased and secondly , a hard disc be

used to improve execution time.
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APPENDICES

APPENDIX A

FURTHER EXAMPLES OF DRAFTING/MODELLER /FINITE~ELEMENT

ANALYSIS PROCESSES

Further examples are considered to reinforce the capability
of the interpreting module for drafting/modeller interface. The
gecmetric models and translated finite—element input data are also

given.

A.l Exanple 1

A.l.1l Orthographic view

p— 120 —=

zZ

Plan 128 l
Y

l I l Elevation
X

FIG. A-l Orthographic view of Example |
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A.l.2 Be'zier net

Pcfchi

\

Patch 2

FIG. A2 Be’zier net of Example !

A.l.3 Geanetric model

&;@é

FIG. R.3 Geomstric model of Example |
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A.l.4 Finite-element input data fram the translating module

The translating module translates the gecmetric model data of
section A.l.3 into the form suitable for the application program

SMILOF for stress analysis :

(Enlarged)

FIG. R.4 Fintte element mods! of Example I
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Type af 2lement (Gartis 1

Ho. of job to be saoluved CHiobr= 1
Moo of elements (Helemt )= é

Ha. of nodes (Mrnodel= 37

Ho. of sets3s of forces fHsstfza= |

Prirczipal ztreszes (Friwmci= 1

Hoo of nodes where zkewed boundary conds. (Hskwd= A
Mo, of materials (Nmati:= 1

Tupe of output (Prnto=
Gravity =ffect (Chii= 8
Hormal distributed pressures (Cha)= @

()

Rotaticonal speed (Omgl= 4

Moo of nodes hawvwing similar behawviowr tHkX= @
g B 8

g 135.2982 8
8 38.3923 8
8 45.8835 B
B 5l1.1848 @
15.2%54 8 B9
15.2964 61.1345 @
15.29564 38.35%23 4
29,5923 8 @
38.5328 15.2%82 @
38.5328 39.3%23 9
38.592¢ 45.8885 49
38.5%28 £1.1845 9
45.388%92 9 9

45,8892 ¢6&l.1348 B
45.8892 38.35223 8
51.1856 @8 9

51.18586 15.2%6z2 9
51,1856 38.5323 8
£1.1356 45,8383 ¢
61,1356 61,134 4o
51.1856 B 25.78583
61,1856 ©1.1348 25.7E83
51,1356 3@.,5923 26.7533
51.1856 B S53.3383
£1.1356 15.2982 S53.3383
51,1856 3B8.53%23 S53.33e3
£1.1356 45.8835 53.3383
61.1356 &£1.13486 ©3.3383
£1.1856 B 39.3043
61.1856 61.1345 59.3848
51.1856 39.5323 24,3943
51.1856 B 187.873
51.1856 15.2962 187.873
51.1855 39,5923 197,873
£1.13856 45.8385 1987.873
51.1856 £1.15846 187,873
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Elezment
1 9

3 11
3 17

connection
11 3 1

5

s Icondsr:
5] 1

= ]
¢ <

11 13 21 13 15 28 1 12 1
1y 25 &7 1% 22 26 23 13 1
13 27 29 21 23 23 24 29 1
25 33 35 ¥ 39 34 31 26 1
27 35 3¥y 2% 31 35 32 23 1
Mo.of like elems,thickmess & z2tring of like nodes:
8 .5 1 2 3 4 5 & 7 8
Na. of spec. wnodes,like nodes,code,presc. 1aadfdf5p % mode stringl
24 13 1 9 8 ©® S5 B 13 18 21 24 23 3z 33 34 33 38
g 9 S5 9 14 17 22 25 3w 3 5 84 &4 B8 2 3 4 1 4 9
No. of spec. midnodss,like midnodes,cods,presc. loof nodesi nods
12 12 3 @ 2 4 6 3 14 18 22 24 3B 32 34 36
Elastic constants (E,u,pri 210088 2% ,80999880873

End of

checking
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A.2 Example 2

A.2.1 Orthographic view

e— 70 —

i
|

122 Pian
|
?

z
v L

Elevation

S

FIG. R.5 Orthographic view of
Example 2

A.2.2 Be'zier net

FIG. B.6 Be’zier nets of Example 2
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A.2.3 Geometric model

FIG. R.7 Geometric model of Example 2

A.2.4 Finite—element input data fraom translator
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Tupe of =lement (Qorti=s 1
Nz, of job to be solwed fHjobr= 1
Mo. of =lements (Hslemti= 3
Ma. of nodes (Mnoder= 37 )
Mo. of sets of forces (Mzstfs)= |
Principal stresses (Princs= 1
Ho., of nodes where skswed boundary conds. (Hakwr= 8
Mo. of materials (Hmatl»= 1
Twpe of output (Prnti= 3
Grauvity =ffect (Chtiy= A
Mormal distributed pressure (Chas= a
Rotational speed (Qmgl= 8
Mo, of nodes having similar behawiour tHk»= @
3 9 61.134
@ 24.3552 #©1.134
@ 49.7124 B1.134
3 74.5688 ©51.1824
@ 99.4251 #£1.184
1{7.2986 B 51.184
17.2886 99.4251 51.134
17.2086 43.7124 6£1.184
24,4171 B B1.184
34,4171 24.85562 £1.134
34,4171 43.7124 51.124
24,4171 74.35882 £1.124
24,3171 99.4251 £1.124
51.8257 8 &1.134
51,6257 99.42%51 £1.134
51,6257 49.7124 51.184
£9.38342 A &51.134
£8.8342 24,3562 £1.184
£3.3342 49.71z24 £1.124
65,3342 74,5838 51,124
£3.3342 99.4251 £1.,124
53.8342 9 @
55,8342 24.8362 a
55.8342 43.7124 5]
£3.8342 T74.5688 5]
£9.8242 99.4251 a
52.8342 B8 26,5916
53.8342 99.4251 38,5918
£8.3342 49.7124 38,5916
£3.8342 8 91.7766
s2.8342 99,4251 91.778585
55,2342 49,7124 31 FTTES
£53.8342 8 22,369
53,2342 24,3382 122,383
53,8342 49,7124 122.38%3
£3.8342 T4, 533 122.38°%3
£8.8342 99.4251 122,357
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TTETem=nt

connections
1 9 11 3 5 18 7
3 11 13 5 7 12 =2
9 17 19 11 14 13
11 13 21 12 13 298
22 17 19 24 27 13
x4 19 21 25 23 28

17 33 2% 19 38 34
19 35 3 21 31 3s

Mo.aof like slems,thickns
g .5 1 2 3 4 3 5
Ma. aof zpec. nodes,like
27 29 1 A 4 B 3
32 33 34 3 38 37 3
0 e -1 1
No. of spesc. midnodes,li
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Teooni#y:
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23 23 1
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21 18 1

32 28 1
23 % string of like nodes:

7 3
nndpz.uudn.presz. toadsdisp %
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Z19@eaE .29 L 98sBanaars
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checking
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A.3 Example 3 (No finite element inpyt data included)

A.3.1 Orthographic view

! Plan

/1 N L

Elevation

FIG. A9 Orthographic view of
Example 3
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Fig. A-10 Bezier nets for Example 3

of Example 3

Fig.ﬂ.ﬂ (eometric maodel
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APPENDIX B

B.l IDENTIFICATION OF RACKSHEET, BIADE & CONESHEET OUTPUT RESULTS

The nodal connections and material number for each element are

specified using the following sequence in the translation module :

3 2 2 4 Z 3
6 4 84 L6
—_—
1 | 3 o

There are (7*Qort + 1) colums for the element and nodal connections
matrix , where Qort = & or triangular element and Qort = 1 for
guadrilateral element. Assuming M is the material number , then the

translator records the nodal connections for the program IMPSME as :

123456M for triangular element , and

12345678M for quadrilateral element.

The element type (backsheet , blade or conesheet) 1is stored in the
(7+2*Qort+1 )th colum. Therefore , using the codes in this column ,
it is easy to identify the output results that relate to any of the

substructures of the fan impeller.



B.2 RELEVANT EXPRESSIONS FOR STRESSES

In this section of the appendix , the expressions for the
stresses of a surface layer of shell at a distance z from the middle
‘surface are presented. For the imner surface , the value of z equals

£/2 while for the outer surface , z = =t/2 as shown below

t/2

X — Middle
Tt/z surface

il

The normal and shearing stresses are given as follows :

Q
]
|
+
._.J
R
ol
N

14 &3
N M
Xy t +
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