
Advanced Data Driven Visualisation for
Geo-spatial Data

Anthony Jones and Dan Cornford

School of Engineering and Applied Science, Aston University, Birmingham B4 7ET,
UK,

d.cornford@aston.ac.uk,
WWW home page: http://www.ncrg.aston.ac.uk/~cornfosd

Abstract. Most current 3D landscape visualisation systems either use
bespoke hardware solutions, or offer a limited amount of interaction and
detail when used in realtime mode. We are developing a modular, data
driven 3D visualisation system that can be readily customised to specific
requirements. By utilising the latest software engineering methods and
bringing a dynamic data driven approach to geo-spatial data visualisa-
tion we will deliver an unparalleled level of customisation in near-photo
realistic, realtime 3D landscape visualisation. In this paper we show the
system framework and describe how this employs data driven techniques.
In particular we discuss how data driven approaches are applied to the
spatiotemporal management aspect of the application framework, and
describe the advantages these convey.

1 Introduction

In this paper we describe the basis for an extensible geo-spatial landscape visu-
alisation system that is capable of supporting near photo-realistic rendering in
realtime. In particular the framework is designed to allow the type and behaviour
within the application to be controlled directly using data driven approaches as
well as exposing a set of interfaces which are at a very abstract level and can
be implemented as plug-ins. The research brings together elements from modern
software engineering, computer games programming and Geographic Informa-
tion Systems (GIS).

In Section 2 we briefly review the visualisation applications that are cur-
rently available and the state of the art in software engineering, especially data
driven programming. Section 3 describes the application framework which is
based around a central application hub that hosts the connection between a
range of services providing the basic functionality of the core system. We de-
scribe the main subsystem components and how data driven methods will be
applied as part of a scene management system. Finally in Section 4 we discuss
the scene and render systems in more detail. We conclude with a summary of
possible extensions to the design.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78883546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Background

Current geospatial representation and management libraries, as well as libraries
supplying additional rendering functionality (for example, OGRE1 and Open
Scene Graph2) and commercial applications responsible for producing computer-
based renderings based on geographical information (for example, WorldPerfect3

and LandXplorer4) offer either limited functionality or are very expensive and
often require specialised hardware to run effectively. In contrast many modern
computer games place a heavy emphasis on geospatial representation (such as
Microsoft Flight Simulator 20045) and these function with increasingly realistic
3D graphics on relatively modest graphics hardware. However the direct appli-
cation of a game engine to the 3D visualisation of landscape data has several
drawbacks. In particular much of the game logic system and Artificial Integel-
ligence would not be appropriate in the visualisation system, and secondly the
priorities of the gaming world are different from the user requirements in land-
scape visualisation.

Geospatial visualisation applications in the field of GIS commonly rely on a
low detail data sample of a world model for any given depicted scene. Visuali-
sation data is either extrapolated from the world model (for example, geometry
may be an extrusion of a topography layer or the 3D mesh equivalent of a Digi-
tal Elevation Model), or sourced from data that is supplementary to the world
model such as high resolution satellite imagery. There is little attempt to add
detail or clutter in order to improve the immersive quality of the viewer; the fo-
cus of such renderings remains the underlying world model, and its emphasis is
the information implied by the given data sample. Whereas modern GIS visual-
isation systems commonly rely on the application of photograph-based textures
in order to increase visual quality, we aim to enhance user immersion through
the addition of natural entropy and the augmentation of the low resolution data
sets upon which GIS often rely.

Another major element of the framework’s design is its use of Data-Driven
Programming (DDP), which will increase the application’s flexibility and exten-
sibility through measured exposure of system functionality. In traditional Ob-
ject Oriented Programming, objects are described using class definitions, which
typify the state and behaviour of the modelled real-world object. Objects with
shared state or behaviour are commonly organised into a hierarchy of class inher-
itance, where child classes exhibit the state and behaviour of their parent types.
In DDP, state and behaviour are described separately from their owning objects
as components. Each component represents a closely related collection of state
and behaviour which together depict a single facet of overall object function-
ality. Each object thus becomes an aggregation of parameterised components,

1 http://www.ogre3d.org/
2 http://www.openscenegraph.org/
3 http://www.metavr.com/products/worldperfect/worldperfect.html
4 http://www.landex.de/
5 http://www.microsoft.com/games/flightsimulator/

which together describe the object as a whole. By using data to describe compo-
nent parameters and combinations, a class hierarchy can be defined using one or
more data files, which collectively drive the logical composition of its constituent
run-time objects.

The obvious benefits of DDP are increased extensibility and flexibility; the
definition of new object types and behaviours when linked to a scripting lan-
guage, as well as the modification and instantiation of existing ones, can all be
achieved via data manipulation without access to application code. In the con-
text of visualising GIS information, the use of DPP enables the user to assemble
information rich virtual environments through the combination and extension of
existing scene object descriptions. For example, an illustration for visual impact
assessment can be quickly tailored to highlight proposed items, add vegetation,
buildings and people, or simply increase foreground detail to increase user im-
mersion.

3 The application framework

Figure 1 provides an overview of the application framework. The framework’s
overall design is highly modular, which in turn leads to increased flexibility and
extensibility. Loosely based on the design of an object composition framework
presented in [1], the framework separates overall application functionality into a
number of coherent, loosely coupled responsibilities, each of which is represented
in the framework by an abstract interface (illustrated via the inner octagon in
Figure 1). The concrete implementation, and thus the run-time behaviour, of
each subsystem may be provided by the user in the form of a dynamically linked
library6 (the outer octagon in Figure 1 denotes such concrete implementations).
The behaviour of each subsystem is data driven, with further extensibility pro-
vided through the use of application plug-ins7. During application execution, the
central framework hub performs dynamic allocation and binding of sub-system
implementations to their respective interfaces; the hub also acts as an interme-
diating interface between the various subsystems. A brief introduction to the
subsystem responsibilities follows.

Assets and Resources

Fundamental framework subsystems represent an asset8 processing pipeline, pro-
viding an abstraction of the low-level data access and decompression capabilities,
upon which a resource9 caching sub-system resides. Data access is via a proxy
6 That is, a .DLL file on windows systems
7 A plug-in is a portion of code that is compiled into a dynamically linked library –

plug-ins commonly extend application functionality via a dedicated exposed inter-
face.

8 In the context of the application framework, an asset is the optimised data file.
9 In the context of the application framework, a resource is a run-time equivalent of

an asset.

Application
Entry
Point

Framework
Hub

Asset
System

Resource
System

Task
System

Binding
System

Render
System

Scene
System

Input
System

The application is configured via
command-line arguments and an
optional settings file.

The Render System is configured by the
application’s configuration file.
A number of rendering techniques can be
used and modified via a programmable
rendering pipeline. Clients add support
for new rendering methods by providing a
technique plugin.

The Scene System is configured by
the application’s configuration file.
Clients add support for new types of
scene object by providing a scene
object plugin. Scene descriptions can
be fully tailored via a data-driven
scene specification and management
system.

The Input System is configured by
the application’s configuration file.
Clients add support for input
devices by providing a device
polling plugin.

The Task System is configured
by the main application settings
file.
Clients may also provide
additional task plugins to
perform specific run-time
behaviours.

The Resource System
is configured via the
application command-
line and settings file.

The Asset System is configured
via the application command-line
and settings file.
The Asset System’s functionality
may be extended by modifying its
pre-processing tool.

The Binding System
is configured by the
application’s
configuration file.

Fig. 1. An overview of the application framework showing the core systems.

resource handle, which supports one of an enumerated range of basic resource
types, including a binary stream, attribute tree, multi-dimensional array, and 3D
mesh. A pre-processing stage performs the necessary collection and conversions
from original source data to the appropriate asset data format.

Run-time Binding

In order to facilitate a data-driven methodology, the application framework in-
cludes a flexible and powerful binding system that manages associations between
identifiers and memory locations via an information rich run-time type informa-
tion (RTTI) system. The binding system is responsible for mapping variable
identifiers and component attributes to their respective memory ranges; it is
also required to manage a registry of exposed variables and functions, and to
provide for type-safe, run-time bindings to them. The framework’s input sys-
tem, which is responsible for controlling and monitoring user input via a variety
of devices, is a logical extension of the binding system. The input system uses
configuration data to bind a given device plug-in, which performs device polling,
to one or more run-time variables, whose values are then made available to the
remainder of the system.

Application Tasks

The framework’s task system manages the application’s overall behaviour, which
takes the form of an iteration over a number of distinct time slices10, each con-
sisting of a multitude of interspersed subsystem operations or events occurring
in a given order. Tasks submitted to the task system are ordered and subse-
quently triggered according to their priority value, although triggering may be
deferred until a later time slice, delayed by a given duration, or processed after
an absolute time. When triggered, a task is provided with a summary of the
task system’s status, along with access to the framework hub and hence the ap-
plication framework as a whole. The task objects themselves are either function
objects or function pointers, and are both defined and supplied by subsystem
implementations.

Scene Representation and Rendering

The most complex of the framework’s subsystems are the scene and visualisation
systems, which respectively represent and render a given virtual scene at run-
time. The scene system design incorporates a component-based scene graph and
dynamically adjusting spatial partitioning system (see Section 4), and will thus
embody behavioural, topological and geographical properties of virtual run-time
objects. The scene system will also support continuous virtual worlds by stream-
ing scene content in and out of the simulation as required. The render system is
designed to make use of the most recent release11 of the OpenGL graphics pro-
10 The application framework calls each time slice an application tick
11 Version 2.0 at the time of writing; a specification is available here: http://www.

opengl.org/documentation/specs/version2.0/glspec20.pdf

gramming API, including support for both vertex and fragment shader programs.
This aims to increase rendering efficiency by minimising render state changes,
while maximising visual detail through the use of image-based techniques and
effective lighting, shading and shadows.

4 Geospatial scene management and visualisation

Geospatial scene management

The problem of runtime representation of a given geospatial virtual scene is com-
prised of two sub-problems, which coincide with the topological and geometric
properties of the scene. While open-source libraries are available to solve these
problems (for example OGRE and Open Scene Graph), they tend to be fea-
ture rich at the expense of performance, and do not take advantage of emerging
methodologies that can greatly increase an application’s flexibility and exten-
sibility. The application framework design integrates such strengths by incor-
porating a novel, performance oriented scene management system that extends
contemporary techniques.

In every geospatial scene there exists a hierarchical topological relationship
between the scene, its constituent objects, and their properties. The hierarchical
relationship can be described using a tree structure that is commonly referred
to as a scene graph12, with nodes representing objects and properties, and arcs
denoting the relationships between them (most notably ownership). As scene de-
scriptions become large, the run-time efficiency of storing and manipulating them
is reduced; data-driven, component-based methods [2–4] can be used to counter
this. In a scene graph, objects (nodes) have properties with values, which are
propagated down to the leaves unless they are overloaded en route by an equiva-
lent property with a differing value. To reduce data duplication and its associated
storage and processing overheads, scene objects can inherit from a template or
archetype design, with property commonalities stored at the archetype level,
and only distinctive values stored at the instance leaves. A component based
design lends itself well to DDP13, increases flexibility and extensibility as scene
object inheritance hierarchies are not necessarily fixed by the software code, and
is well suited to the application of design patterns such as the Abstract Factory,
Composite, and Prototype patterns [5].

The problem of geometric management is commonly solved with the use of
a spatial representation system, which usually takes the form of a hierarchical
simplification of the scene through the use of spatial divisions in order to re-
duce the time complexity of spatial processing such as collision detection and
frustum culling. Spatial division algorithms are well-known in the field of GIS
(where they often serve an additional purpose in the linearization of a 2D or

12 http://en.wikipedia.org/wiki/Scene_graph
13 Component-centric methods actually enforce DDP as properties consist of nothing

but data associations

3D representation’s memory layout); examples include B-trees14 and Octrees15,
although more advanced algorithms allow for dynamic adjusting of the dividing
predicates in order to accommodate scenes containing moving objects [6].

Visualisation

While past incarnations of graphics hardware and software interfaces have utilised
a fixed functionality pipeline for transform and rasterisation, today’s hardware
and APIs have adopted a flexible programmable pipeline that exposes aspects of
the geometry and image-based processing functionality to the client. Programs
written in a dedicated langauge, known as shaders, stipulate the appearance
of objects in a given virtual scene by specifying tailored transform functions
alongside light, material and surface characteristics.

The framework’s render system will exploit such exposures by making use of
shaders provided as part of data-driven scene descriptions. The resulting com-
bination of shader technology and DDP will allow the user to customise the
visual output of simulations to meet their own requirements. We anticipate a
particular interest in techniques related to lighting, shading and shadows [7], [8],
which have been shown to influence the sense of presence when viewing virtual
environments [9].

5 Summary and Future work

In this paper we have described the basis of a data-driven geo-spatial landscape
visualistion system that will be used to support realtime, near photo-realistic
rendering. We have described the core design of the system, showing how data-
driven programming can be used to increase its flexibility, particularly the scene
system. We also introduce data-driven programming as a tool for data integra-
tion, which remains an open problem for a number of GIS applications [10].

The research is still in progress, and we intend to explore the relation be-
tween dynamic data driven approaches to GIS and visualisation solutions and
the developing Geography Markup Language (GML), a Resource Description
Framework like set of eXtensible Markup Language schema for describing fea-
tures that exist in the real world16. The use of GML maps strongly to the data
driven aspects of this software, and the sematic structure implied in the GML
schema and well written application schema that use GML could facilitate the
semi-automatic generation of visualisations using web (feature) services.

14 http://en.wikipedia.org/wiki/B-tree
15 http://en.wikipedia.org/wiki/Octree
16 The GML standard and associated web feature server specifications can be found at

http://www.opengeospatial.org/.

References

1. Patterson, S.: An object–composition game framework. In Treglia, D., ed.: Game
Programming Gems 3. Charles River Media (2002) 15–25

2. Bilas, S.: A data-driven game object system. In: Game Developers Conference
Proceedings. (2002)

3. Duran, A.: Building object systems - features, tradeoffs, and pitfalls. In: Game
Developers Conference Proceedings. (2003)

4. Rene, B.: Component based object management. In Pallister, K., ed.: Game
Programming Gems 5. Charles River Media (2005) 25–37

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

6. Luque, R.G., Comba, J.L.D., Freitas, C.M.D.S.: Broad-phase collision detection
using semi-adjusting bsp-trees. In: SI3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games, New York, NY, USA, ACM Press (2005)
179–186

7. Wang, J., Sun, J.: Real-time bump mapped texture shading based-on hardware
acceleration. In: VRCAI ’04: Proceedings of the 2004 ACM SIGGRAPH interna-
tional conference on Virtual Reality continuum and its applications in industry,
New York, NY, USA, ACM Press (2004) 206–209

8. Stamminger, M., Drettakis, G.: Perspective shadow maps. In: SIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, New York, NY, USA, ACM Press (2002) 557–562

9. Mania, K., Robinson, A.: The effect of quality of rendering on user lighting im-
pressions and presence in virtual environments. In: VRCAI ’04: Proceedings of
the 2004 ACM SIGGRAPH international conference on Virtual Reality continuum
and its applications in industry, New York, NY, USA, ACM Press (2004) 200–205

10. Appleton, K., Lovett, A., Snnenberg, G., Dockerty, T.: Rural landscape visual-
isation from gis databases: a comparison of approaches, options and problems.
Computers, Environment and Urban Systems 26 (2002) 141–162

