
A flexible, extensible object oriented real-time
near photorealistic visualisation system: the
system framework design

Anthony Jones and Dan Cornford

Knowledge Engineering Group, School of Engineering and Applied Science, Aston
University, Birmingham, B4 7ET, UK d.cornford@aston.ac.uk

Summary. In this paper we describe a novel, extensible visualisation system cur-
rently under development at Aston University. We introduce modern programming
methods, such as the use of data driven programming, design patterns and the care-
ful definition of interfaces to allow easy extension using plug-ins, to 3D landscape
visualisation software. We combine this with modern developments in computer
graphics, such as vertex and fragment shaders, to create an extremely flexible, ex-
tensible real-time near photorealistic visualisation system. In this paper we show the
design of the system and the main sub-components. We stress the role of modern
programming practices and illustrate the benefits these bring to 3D visualisation.

1 Background

The visual output of most current GIS visualisation software often exhibits
either a low level of visual realism with high levels of user interaction1, or has
a high degree of visual realism with low levels of user interaction2.

Commercial applications producing computer-based renderings based on
geographical information, for example, WorldPerfect3 and LandXplorer4 are
relatively easy to use, but very difficult to customise to specific require-
ments, or to add desired features and behaviours. Recently alternatives[1, 2]
have been proposed based on modern computer game engines that place a
heavy emphasis on geospatial representation such as Microsoft Flight Sim-

1 For example, the viewpoint may be altered in position and focus in an interactive
way, images are often animated (albeit with low quality textures), there is a low
number of polygons in the scene, and a small number of objects are depicted in
total

2 For example, the viewpoint position, focus and path are predetermined; the scene
contains high fidelity textures, accurate lighting and shadows, and detailed objects

3 http://www.metavr.com/products/worldperfect/worldperfect.html
4 http://www.landex.de/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78883544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Anthony Jones and Dan Cornford

ulator20045). Game engines appear attractive because of the high levels of
immersion they are required to produce, and the increasingly realistic quality
of the graphics this entails. The development of game engines occurs within
a problem domain whose focus greatly influences the constraints and capabil-
ities of the software. For example, a game engine can be written to optimise
enclosed environments with a relatively small number of dynamic objects, fo-
cussing on the use of immersive lighting and special effects in order to increase
user emersion. While it has been demonstrated that existing game engines can
be applied to visualisation in a wide range of applications[3], the applicability
of game engines will ultimately be restricted by the context of their original
problem domains.

The application framework we describe in this paper is based upon a novel
design that extends and improves upon an existing model intended for com-
puter games developers[4]. In contrast to the fixed information processing
pipeline common to current GIS visualisation software[5], the geospatial ren-
dering system incorporates an information processing pipeline that is highly
flexible and extensible. This will be achieved through the combination of plug-
ins and data-driven content and behaviour which will allow the application
framework to support a diverse range of applications. Introducing data-driven
design to the field of GIS visualisation provides an exciting opportunity to
create a uniquely flexible visualisation system. We go on to describe the ap-
plication framework’s use of modern methodologies in order to produce near
photo-realistic renderings at interactive frame rates. While a small number
of GIS visualisation software developers are currently using modern rendering
technology to produce non-realtime images6, the application of emerging tech-
niques to produce highly detailed, interactive near photo-realistic renderings
of spatiotemporal scenes has yet to be realised in the field of GIS visualisation.

A Running Application Example

In order to provide a more concrete illustration of the application framework’s
capabilities, we present an example problem domain that will be used and
extended throughout the paper. The example focusses on the development of
a traffic simulation system with the following functional requirements:

• The system will import both Integrated Transport Network (ITN)7 and
topography data in order to inform the modelling of a traffic simulation.

• The system will maintain a real-time traffic simulation occupying the given
ITN. The simulation will include dynamic traffic elements (such as traffic
lights), a range of vehicle types, and pedestrians. While passive items such
as roads and buildings can simply be represented, active items such as

5 http://www.microsoft.com/games/flightsimulator/
6 For example, see http://www.3dnature.com/index.html
7 Further information: http://www.ordnancesurvey.co.uk/oswebsite/

products/osmastermap/itn/

A flexible, extensible visualisation system 3

traffic lights, vehicles and pedestrians must exhibit appropriate runtime
behaviour.

• The system is also required to produce a real-time visual output that will
provide the user with an illustrative summary of the simulation’s changing
state over time.

Additional Applications

It is important to stress here that these example applications are supposed
to illustrate the potential of the system, and have not been implemented at
this early stage. Our focus is visualisation, but our longer term goal is an
integrated modelling environment that is fast, efficient, extensible and flex-
ible. The framework supports user interaction, and so users will be able to
orient themselves in a depicted scene by manipulating the camera’s position
and orientation; similarly, queries and modifications of the modelled environ-
ment could be made via an extensible range of input devices. The types of
applications we envisage include:

• Visual assessments The framework has been designed to support the sim-
ulation and visualisation of a wide variety of dynamic spatiotemporal en-
vironments, and this fundamental functionality could easily form the basis
of a visual assessment application. Due to the use of data-driven program-
ming (as described in Section 2.3), designated study areas can be described
incrementally through an XML based (and likely tool-oriented) definition
of object properties, types and instances. Visualisations can contain ani-
mation, such as wind farm blades that turn, trees that appear to sway in
the wind, and crops that grow over time. Visualisations can also include
Artificial Intelligence (AI) so that cyclists make use of a proposed bicycle
route and pedestrians explore a new shopping center.
Due to the text-based nature of the framework’s scene descriptions, users
will be able to quickly influence the detail, realism and overall visual ap-
pearance of the study area. Changes can be made to emphasise specific
details and modifications (such as a user’s home), or to highlight objects
with similar properties (all proposed elements, for example).

• Soil erosion The framework is designed to be flexible, and thus can also
incorporate non-trivial spatiotemporal models, for example it would be
possible to produce a simplified erosion model to act on a ground model
or Triangulated Irregular Network to model (in a naive manner it must be
admitted) erosion and render the output realistically, in accelerated time.
The application maintains both a real time clock and a model time clock,
so this is very easy to undertake.

• Process-based models, polling input via the task, input, and binding system
If a more detailed model were required the framework could be readily
coupled to a more complex process based model, via the task, input, and

4 Anthony Jones and Dan Cornford

binding systems (see Section 2.2). A good example of this might be the cou-
pling of the simulation world with a numerical weather prediction model to
provide realistic weather conditions with the correct timing and location
with respect to the model forecast.

2 The Application Framework

We are developing an application framework that will form the basis of a
modelling and visualisation environment, where the client is able to tailor the
application according to their own requirements through the use of customi-
sations of, and extensions to the framework’s runtime behaviour. Figure 1
illustrates the core components that make up the application framework. The
framework’s overall design is loosely based on the design of an object composi-
tion framework presented in [4]. The framework separates overall application
functionality into a number of coherent, loosely coupled responsibilities, each
of which is represented in the framework by an abstract interface illustrated
via the inner octagon in Figure 1. The concrete implementation, and thus the
run-time behaviour, of each subsystem may be provided by the user in the
form of a dynamically linked library or through the use of our pre-supplied
default concrete implementations as shown by the outer octagon in Figure 1.
During application execution, the central framework hub performs dynamic
allocation and binding of sub-system implementations to their respective in-
terfaces; the hub also acts as an intermediating interface between the various
subsystems.

A number of concepts are used throughout the application framework in
order to increase its extensibility and flexibility, and these form a basis upon
which further functionality can be built.

• Plug-ins A plug-in is a portion of code that is compiled into a dynami-
cally linked library file, commonly extending a predefined interface that is
exposed by the application code. At runtime, each plug-in is bound to the
application, and is then able to exhibit its contained runtime behaviour
via the predefined interface.

• Data driven programming (DDP) In traditional object oriented program-
ming, objects are described using classes, which define the state and be-
haviour of the modelled real-world object. Inheritance hierarchies are used
to organise objects with shared state or behaviour. In DDP, state and be-
haviour are described separately from their owning objects as components,
reflecting a favouring of aggregation over inheritance [6]. By using data to
describe component parameters and combinations, a class hierarchy can
be defined using one or more data files.

As illustrated in Figure 1, each subsystem in the application framework is
accessed via its framework interface. Providing they adhere to the contract de-
scribed by the subsystem interface, users can replace the default behaviour of

A flexible, extensible visualisation system 5

most application subsystems with their own tailored implementation. Through
a combination of subsystem specialisations, users can take advantage of the
framework’s flexibility and modularity in order to build a series of very dif-
ferent applications. For example, a user could reduce the complexity of an
applications’s visualisation, and instead provide additional functionality for
data input and analysis.

Application
Entry
Point

Framework
Hub

Asset
System

Resource
System

Task
System

Binding
System

Render
System

Scene
System

Input
System

The application is configured via
command-line arguments and an
optional settings file.

The Render System is configured by the
application’s configuration file.
A number of rendering techniques can be
used and modified via a programmable
rendering pipeline. Clients add support
for new rendering methods by providing a
technique plugin.

The Scene System is configured by
the application’s configuration file.
Clients add support for new types of
scene object by providing a scene
object plugin. Scene descriptions can
be fully tailored via a data-driven
scene specification and management
system.

The Input System is configured by
the application’s configuration file.
Clients add support for input
devices by providing a device
polling plugin.

The Task System is configured
by the main application settings
file.
Clients may also provide
additional task plugins to
perform specific run-time
behaviours.

The Resource System
is configured via the
application command-
line and settings file.

The Asset System is configured
via the application command-line
and settings file.
The Asset System’s functionality
may be extended by modifying its
pre-processing tool.

The Binding System
is configured by the
application’s
configuration file.

Fig. 1. An overview of the application framework showing the core systems.

2.1 The Data Pipeline

Figure 2 shows the data processing pipeline represented by the framework’s
data preprocessing tool, asset system and resource system. The framework’s
data pipeline makes use of a fixed enumeration of asset types, each of which
corresponds to an intended mode of data usage, as shown by Table 1.

6 Anthony Jones and Dan Cornford

Data
File

Data
Source

Preprocessing
Tool

Format
Plugin

Format
Plugin

Format
Plugin

Asset
File

Asset System Resource
System

Resource
Object

Preprocessing Application Framework Runtime

Fig. 2. An illustration of the data processing pipeline. Note that the preprocessing
tool maintains a collection of format plug-ins, from which it selects an appropriate
plug-in to process any given data file.

Asset Type Description

Text Asset Text assets represent a contiguous block of immutable textual char-
acters; as such, they are the most fundamental of application asset
types. Anticipated uses of the text asset include documentation and
fixed-length string storage, for example the user may wish to store
interpreted-language AI scripts or user instructions as text assets.

Tree Asset Tree assets correspond to a tree of named nodes, each of which may
contain zero or more named attribute values of a supported type.
Example uses of the configuration asset type include the definition
of tree-like run-time structures such as scene graphs, and the storage
of hierarchical data such as object and property inheritance trees.

Array Asset Array assets are intended to store multi-dimensional arrays of val-
ues of a range of data types. Example uses of the array asset
data format include the storage of n-dimensional tables, and n-
dimensional textures.

Mesh Asset Mesh assets correspond to a collection of 3D vertices alongside a
system of specifying interconnection based on sequences of vertex
indices. The mesh asset format will support a variety of 3D con-
cepts, including animated 3D models with texture coordinates and
volumes, such as bounding volumes.

Table 1. Asset Types

A flexible, extensible visualisation system 7

Preprocessing Tool

The preprocessing tool embodies a conversion process, where one or more
source files may be compressed and encrypted, and are ultimately written as
one or more binary files whose format correspond to the framework’s asset
types. The behaviour of the preprocessing tool is driven by a combination
of command-line arguments plus an optional configuration file, and can be
extended through the use of format plug-ins. Each format plug-in represents
the conversion process from source data to asset data for a single source data
format. The use of format plug-ins results in a preprocessing tool that supports
a diverse, extensible range of input formats, providing their data corresponds
to one or more framework asset types.

To continue the running example presented in Section 1, the preprocessing
tool will be responsible for converting the traffic simulation’s ITN, topography
and other data into their corresponding framework asset file types. We will
assume that the ITN data is described using Geography Markup Language
(GML); the user must either obtain or develop a format plug-in that can val-
idate and convert the ITN data to the application framework’s array asset
format. In this case, we choose to represent the ITN as a two-dimensional
table that maintains the original’s topology information. During the prepro-
cessing tool’s execution, the specified ITN files will be read and their data
processed by the assigned plug-in(s), which will in turn output one or more
array asset files to be read by the framework’s asset system. The traffic sim-
ulation system’s other data files will be similarly processed according to the
user’s configuration.

Asset System

The asset system represents a repository of asset files, and is responsible for
maintaining this collection and providing efficient access to its data. The asset
system is therefore synonymous to a file system, albeit one with a fixed range
of file types. For example, a given implementation may represent a locally
stored directory tree of asset files, a networked or ftp-based cache of asset
files, or a web (service) based catalogue of compressed and encrypted asset
archives.

In the context of our running example, the traffic simulation’s data may be
distributed as a number of compressed archive files. The ITN array asset pro-
duced above, plus a number of other representations of the same road network
(for example, the roads’ geometry in the form of mesh assets), are supplied
as a single archive file. Further archive files contain data-driven descriptions
for the various vehicles that will populate the simulation. A final archive file
contains the scene descriptions and application configuration files in the form
of one or more tree assets. The asset system implementation will be responsi-
ble for locating a given asset file within these archives, and providing access
to asset data when required.

8 Anthony Jones and Dan Cornford

Resource System

The framework’s resource system is responsible for maintaining a collection of
run-time objects, each of which represents the data held by a single asset file.
While the asset system provides low-level access to asset data, the resource
system’s framework interface requires that any given implementation is capa-
ble of mapping an asset identification string (such as a file path or URI) to a
run-time object that provides the corresponding asset type’s modus operandi.
For example, resources can be constructed from asset data in a background
thread in order to hide load-time delays from the user or resources can be
incrementally or partially constructed according to the application’s data re-
quirements, e.g. in level of detail implementations.

The traffic simulation’s resource system implementation will build runtime
objects that allow the data to be used in a meaningful way: tree assets will be
represented as hierarchical data structures, array assets will be represented
as N-dimensional arrays of data items of a described type, and so on. The
default implementation constructs such resources in a background thread.

Summary of the Data Pipeline

The data pipeline described here represents an optimised route for static file-
based data. A data pipeline for more dynamic data, such as streaming input,
and data that is not file-based, such as web (service) content, is realised by a
combination of the input and binding systems (see Section 2.2).

The definition of a fixed range of asset types results in a predetermined
format for data manipulation, which in turn allows data processing (that is,
parsing and validation) to be reassigned to an offline stage. A fixed range of
asset types also aids the design of a concrete asset system interface, which
allows the details of asset collection and access to be decoupled from the
application framework’s other responsibilities. The resulting data pipeline,
shown in Figure 2, can be optimised for efficient throughput of a known range
of data formats.

The traffic simulation example demonstrates how the data processing
pipeline can be tailored in order to support a given use of data. The pre-
processing tool has been extended to support a variety of input files, and
the asset system has been specialised to support a chosen asset distribution
scheme.

2.2 Application Kernel

The application kernel represents the processing heart of the application
framework. The task system encapsulates application behaviour and function-
ality, while the binding system allows subsystem implementations to commu-
nicate effectively and store arbitrary data in a type-safe, centrally controlled
manner. Together, these two core subsystems provide a backbone of function-
ality that forms the basis of further application behaviour.

A flexible, extensible visualisation system 9

Task System

At a high level of abstraction, the task system’s overall behaviour takes the
form of iteration over a number of distinct time slices, each consisting of a
number of subsystem operations or events occurring in a given order; this is
illustrated by Figure 3. The task system thus represents what is traditionally
termed an application loop. Tasks submitted to the task system are ordered
and subsequently triggered according to their priority value, which is provided
by the submitter. When triggered, a task is supplied with a summary of the
task system’s status, along with access to the framework hub and hence the
state of the application framework as a whole. The task objects themselves are
both defined and supplied by subsystem implementations or as task plug-ins.

Each task plug-in provides a single task object to be submitted to, and
thus processed by, the task system. Task plug-ins represent one way in which
users can extend existing framework functionality, by providing additional
behaviour to be exhibited at run-time. For example, a user could write and
submit a task plug-in that regularly monitors congestion levels along a number
of inner city roads. Similarly, another task plug-in could randomly dispatch
emergency response vehicles in order to test alternate routes through the
traffic network.

Tailored implementations of the task system can take advantage of dual
core processors or distribute available tasks over a number of clustered ma-
chines, and can thus represent a customised task scheduling and distribution
policy. A user in need of greater flexibility could extend the task plug-in
concept in order to expose application framework functionality to scripting
languages such as Python8 and LUA9.

Binding System

The framework’s binding system is a repository for run-time data of any type.
Data is associated with an identifier, and is stored as part of a hierarchical
collection of namespaces. Subsequent to storage, data can be accessed through
the use of a type-safe binding object. While subsystem interfaces present a
fixed channel for inter-system communication, the binding system can be used
for more implementation dependent storage and interaction.

To illustrate binding system use, a summary of the traffic system’s current
state can be stored as a dedicated compound type bound to an appropriate
location in the binding system. Specialisations of one or more application sub-
systems, or alternatively application plug-ins, could then bind to and use this
information in order to affect task scheduling, select resource construction
policies, or inform the user as part of a graphical user interface (GUI). The

8 http://www.python.org/
9 http://www.lua.org/

10 Anthony Jones and Dan Cornford

Task Object

Task Object

Task Object

Task Object

New Task Object

Runtime
Behaviour

Task Object

Task Execution

Task System Runtime

The task
system’s

scheduling
policy uses
task object
priorities to
determine

their order of
execution

Fig. 3. An overview of the task system’s functionality.

traffic system’s summary information could also be fed back into the simu-
lation itself, so that emergency vehicles avoid congested areas and vehicles
choose alternate routes to avoid icy roads.

Input System

The input system is a logical extension of the binding system; it represents a
collection of objects which periodically update data bindings. Input plug-ins,
each representing a single data source, are registered with the input system,
which polls each data source during the main application loop. Typically,
data sources will be input devices such as the mouse or keyboard, but these
could also include other sources such as database or internet connections,
value generators, procedural models, and so on. This is in contrast to the
data processing pipeline presented above, which is intended to provide access
to static data sources, and does not support dynamic streaming content by
default.

An input plug-in can easily represent a device such as a mouse or keyboard.
An input plug-in, along with its associated data bindings, could also represent
a more complicated model, such as a numerical weather prediction system. In
this case, the input plug-in may be connected to an online database provid-
ing current or forecast weather data. In the context of the traffic simulation

A flexible, extensible visualisation system 11

example, the weather data stored by the binding system could be accessed
by other parts of the application framework and adjust vehicle spacing due
to altered stopping distances and visibility or increase the probability of an
accident occurring in icy conditions.

Summary of the Application Kernel

The application kernel forms a collection of low-level functionality upon which
further developments can be made. The task system provides an abstraction of
the application loop, represents a systematic processing of runtime behaviour,
and allows users to inject additional behaviour where required. At runtime,
certain tasks may be polling a diverse range of input devices and data sources,
and writing values to bound variables. Other tasks may be querying the value
of variables that have been identified by name via the binding system’s inter-
face.

2.3 Simulation and Visualisation Components

The subsystems described here build upon the functionality provided by the
lower level framework subsystems in order to support the simulation and vi-
sualisation of many different spatiotemporal environments. While the scene
system maintains the topological and spatial representations of a given envi-
ronment, the render system makes use of modern developments in rendering
technologies in order to present a powerful yet flexible visualisation pipeline.

Scene System

The scene system is responsible for maintaining the runtime state and content
of a given spatiotemporal simulation. The scene system maintains two repre-
sentations of the simulation environment and its constituent objects: a spatial
partitioning system to maintain the spatial relationships between objects, and
a scene graph to embody the high level topological aspect of the environment,
which are shown in Figure 4. While the former representation will allow for
efficient spatial queries such as proximity and collision detection, the latter
representation makes heavy use of data driven programming (DDP), which
introduces a further aspect of extensibility and flexibility to the framework’s
overall design. The application framework’s scene system will use data driven
objects to populate its simulated environments, which means that users will
not only be able to stipulate scene composition using data, but will also be
able to describe new types, and extend the definition of existing ones, via data
manipulation.

The scene system describes objects as a composition of object components,
or facets, as described in Table 2. Additional facet types may be supplied as
facet plug-ins, which define subtypes of those presented in Table 2, allowing

12 Anthony Jones and Dan Cornford

users to identify new ways in which to describe scene objects without having to
develop or modify the scene system implementation. For example, a behaviour
facet plug-in could allow Python scripts to stipulate the runtime behaviour of
vehicles in the traffic simulation.

In practice, scene object types will be defined by the user using XML. The
object type definition will include an element for each facet that contributes
towards the object’s functionality, and facet plug-in developers will typically
provide XML schema that can be used to validate descriptions for their facet
types.

Object types can also form part of a data-driven object hierarchy, through
the use of object type inheritance. When defining a new object type, users can
also specify that the new object type is a subtype of an existing parent object
type. Conforming to traditional object oriented software concepts, child object
types inherit or override properties of their parent types. The inheritance
scheme described here is applied at the facet level, so a child type description
is free to override some behavioural parameters while inheriting others.

The benefits of DDP are increased extensibility and flexibility; the defini-
tion of new object types and behaviours when linked to a scripting language, as
well as the modification and instantiation of existing ones, can all be achieved
via data manipulation without access to application code. In the context of
visualising GIS information, the use of DPP enables the user to assemble in-
formation rich virtual environments through the combination and extension
of existing scene object type descriptions.

Render System

The render system is responsible for the visualisation of the spatiotempo-
ral simulation. While geometry and texture properties are supported by the
framework’s various asset and resource types, appearance properties are de-
scribed using nVidia’s Cg language and the CgFx effect framework.

Recent developments in graphics hardware are now able to bring the ren-
dering capabilities of even basic machines close to that of dedicated systems.
While past incarnations of both hardware and software APIs have utilised a
fixed functionality pipeline for transform and rasterisation, today’s hardware
and software interfaces support a flexible programmable pipeline that exposes
key functionality to the client. Programs written in a dedicated language,
known as shaders, stipulate the appearance of objects in a given virtual scene
by specifying light, material, and surface characteristics alongside scene-wide
effects such as shadows.

The rendering subsystem is based around the use of nVidia’s CgFx ef-
fect framework [7], that aims to maximise flexibility without sacrificing run-
time efficiency or ease of use. Improving image quality in the context of 3D
visualisation traditionally requires additional detail and accuracy, which in
turn translates to increased geometrical and computational overheads, thus
reducing application response and user interactivity [8]. A better method of

A flexible, extensible visualisation system 13

Facet Type Description

Data Facet A data facet represents a collection of named variables
whose initial values may be specified as part of a scene
object description. For example, a car object may have an
engine size, fuel level and registration associated with it.

Behaviour Facet A behaviour facet’s functionality is similar to that of a task
plug-in, although a behaviour facet also has access to the
instance to which it belongs, along with that instance’s
constituent facets.

Bounding Volume Facet A bounding volume facet simply specifies the spatial
boundary of its owning scene object. For example, the
bounding volume of a vehicle may be defined as an axis-
aligned bounding box.

Scene Graph Facet A scene graph facet represents its owning object’s node in
the scene system’s hierarchical representation of the simu-
lated environment.

Geometry Facet A geometry facet stores the geometry associated with a
given scene object, although this will typically take the
form of a reference to a mesh asset file.

Appearance Facet An appearance facet is used to determine visual appearance
of its owning scene object. A scene object’s appearance is
described using nVidia’s CgFx format (see later). For ex-
ample, the appearance facet of a car object type may pro-
vide a CgFx fragment alongside default colour parameters
that together give all cars a glossy gray appearance.

Table 2. Scene Object Facet Types

improving the level of visual realism would be to focus on image-based tech-
niques like bump mapping and shadow mapping [9, 10]; such techniques have
demonstrated that additional detail can be produced via attribute maps and
vertex and fragment manipulation [11].

Summary of the Simulation and Visualisation Components

The scene and render systems together form a modelling and visualisation en-
vironment that is capable of supporting a wide range of applications. The data
driven implementation means the user is thus able to influence the modelling
of a given simulation, and its visual output, via text-based modifications. In
the traffic simulation example, users can describe a basic car type though a
combination of facet parameterisations using XML. Within the render system
users can provide a catalogue of vehicle geometry files and material properties,
which are used in various combinations to illustrate an assortment of different
vehicle types and colour schemes.

14 Anthony Jones and Dan Cornford

Scene
Description

Spatial

C

AB

Topological

A

B

C

A B C

Scene Object
Instances

Scene System Runtime

Fig. 4. An overview of the scene system’s organisation.

Geometry Data

Texture Data

Visual
Object

Appearance
Properties

CgFx

Display

Fig. 5. An overview of the render system’s functionality.

2.4 Summary of the Running Example Application

Examples throughout this paper have demonstrated how elements of a real-
time traffic simulation system could be implemented using specialisations of,
and extensions to, the application framework.

Section 2.1 explains how the application framework’s data pipeline can be
modified in order to support a given input format and distribution method.
The modifications allow the traffic simulation to use a variety of data formats,
including a GML based data. A specialisation of the asset system allows the

A flexible, extensible visualisation system 15

application framework to locate and access the resulting asset data, which
provide application content and are used to drive runtime behaviour.

Section 2.2 describes a number of alterations that allow users to define
application behaviour. Further examples show how the binding and input
systems can be used to obtain and store data from real-time sources, such as
a numerical weather prediction database, and use this data to influence the
traffic simulation.

Section 2.3 gives examples of how a data-driven object and scene descrip-
tion system can be used to provide users with a flexible, extensible tool for
defining the state, behaviour and appearance of runtime objects.

3 Conclusion

In this paper we have shown the framework for a novel visualisation system
we are developing. Central to the design of the framework is careful attention
to the ease with which the application can be extended or modified to suit
particular visualisation tasks. Through the design shown above we have been
able to ensure that almost all parts of the system can be modified or extended,
some using plug-ins, others through a data driven approach, including the use
of fast scripting languages. Our aim is to create an open source base platform
that can be extended by us, other members of the visualisation programming
community, or users of the system to address a range of requirements. More
fundamentally we expect that a range of plug-ins for import of a range of
data formats will be created, and possibly a range of plug-ins for driving
specialist visualisation hardware. The careful design of the system means that
this can be achieved easily without any need to recompile or, for the data
driven aspects, even code.

In future work we are looking at extending the application framework
to add GIS functionality to create an integrated modelling and visualisation
package. We are also exploring the links that we can usefully make between
GML3.1 and the data driven components in the scene system.

16 Anthony Jones and Dan Cornford

References

1. A. Herwig and P. Paar, Game Engines: Tools for Landscape Visualization and
Planning?, pp. 162–171. Wichmann, 2002.

2. D. Fritsch and M. Kada, “Visualisation using game engines,” in Geo-
Informations-Systeme, vol. 2004, pp. 32–36, June 2004.

3. B. Kot, B. Wuensche, J. Grundy, and J. Hosking, “Information visualisation
utilising 3d computer game engines case study: a source code comprehension
tool,” in CHINZ ’05: Proceedings of the 6th ACM SIGCHI New Zealand chap-
ter’s international conference on Computer-human interaction, (New York, NY,
USA), pp. 53–60, ACM Press, 2005.

4. S. Patterson, “An object–composition game framework,” in Game Programming
Gems 3 (D. Treglia, ed.), ch. 1.2, pp. 15–25, Charles River Media, July 2002.

5. K. Appleton, A. Lovett, G. Snnenberg, and T. Dockerty, “Rural landscape visu-
alisation from gis databases: a comparison of approaches, options and problems,”
Computers, Environment and Urban Systems, vol. 26, pp. 141–162, 2002.

6. A. Shalloway and J. R. Trott, Design Patterns Explained: A New Perspective
on Object-Oriented Design, Second Edition, p. 429. Addison-Wesley, London,
2005.

7. R. Fernando and M. J. Kilgard, The Cg Tutorial: The Definitive Guide to Pro-
grammable Real-Time Graphics. Addison-Wesley, 2003.

8. M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar, “Interactive multi-pass pro-
grammable shading,” in SIGGRAPH ’00: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, (New York, NY, USA),
pp. 425–432, ACM Press/Addison-Wesley Publishing Co., 2000.

9. J. Wang and J. Sun, “Real-time bump mapped texture shading based-on hard-
ware acceleration,” in VRCAI ’04: Proceedings of the 2004 ACM SIGGRAPH
international conference on Virtual Reality continuum and its applications in
industry, (New York, NY, USA), pp. 206–209, ACM Press, 2004.

10. M. Stamminger and G. Drettakis, “Perspective shadow maps,” in SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer graphics and inter-
active techniques, (New York, NY, USA), pp. 557–562, ACM Press, 2002.

11. A. J. Claude and M. Stevens, “Leveraging high-quality software rendering effects
in real-time applications,” in GPU Gems (R. Fernando, ed.), ch. 35, pp. 581–599,
Boston, MA: Addison Wesley, 1 ed., 2004.

