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Summary. Traditionally, geostatistical algorithms are contained within specialist
GIS and spatial statistics software. Such packages are often expensive, with rela-
tively complex user interfaces and steep learning curves, and cannot be easily inte-
grated into more complex process chains. In contrast, Service Oriented Architectures
(SOAs) promote interoperability and loose coupling within distributed systems, typ-
ically using XML (eXtensible Markup Language) and Web services. Web services
provide a mechanism for a user to discover and consume a particular process, often
as part of a larger process chain, with minimal knowledge of how it works. Wrapping
current geostatistical algorithms with a Web service layer would thus increase their
accessibility, but raises several complex issues.

This paper discusses a solution to providing interoperable, automatic geosta-
tistical processing through the use of Web services, developed in the INTAMAP
project (INTeroperability and Automated MAPping). The project builds upon Open
Geospatial Consortium standards for describing observations, typically used within
sensor webs, and employs Geography Markup Language (GML) to describe the
spatial aspect of the problem domain. Thus the interpolation service is extremely
flexible, being able to support a range of observation types, and can cope with issues
such as change of support and differing error characteristics of sensors (by utilising
descriptions of the observation process provided by SensorML).

XML is accepted as the de facto standard for describing Web services, due to its
expressive capabilities which allow automatic discovery and consumption by ‘näıve’
users. Any XML schema employed must therefore be capable of describing every
aspect of a service and its processes. However, no schema currently exists that can
define the complex uncertainties and modelling choices that are often present within
geostatistical analysis. We show a solution to this problem, developing a family of
XML schemata to enable the description of a full range of uncertainty types. These
types will range from simple statistics, such as the kriging mean and variances,
through to a range of probability distributions and non-parametric models, such
as realisations from a conditional simulation. By employing these schemata within
a Web Processing Service (WPS) we show a prototype moving towards a truly
interoperable geostatistical software architecture.
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1 Introduction

Uncertainty in geographic information is ubiquitous, be it from measurement
error, observation operator error or modelling error. It is how we process and
propagate this uncertainty that is of importance, especially when high-risk
decisions are to be made based on such information [2, 5, 10]. In the field
of geostatistics, uncertainty from multiple sources is routinely encountered.
Consider, for example, a user in the field collecting soil samples. Inputting
the data onto a small footprint machine (e.g. PDA) the user is able to store
the data for lab processing, or alternatively, to submit the data for processing
to a Web service. A typical process in this scenario might use the available
data to predict where the user should optimally next sample, or to provide
an estimate of the soil properties at an unsampled location. Errors in the
original measurements, stemming from systematic sensor effects and random
fluctuations, will combine with errors in the models used to process and in-
terpolate the data, to produce significant levels of uncertainty (which must
be explicitly estimated and quantified) in the final predictions. Traditionally,
the soil data in this example would be processed from start to finish within
a single software package to produce, for example, an interpolated map of
heavy metal concentration, with estimation uncertainty represented as vari-
ance at each predicted location. The uncertainty in prediction might also be
crystallised as exceedance probabilities, showing the likelihood that a critical
threshold is exceeded at any location, or as sets of realised samples from the
predicted distribution. While traditional geostatistical applications recognise
and model the uncertainty at the end of the analysis, a conceptual model for
describing and communicating uncertainties is of less importance, since the
data is not usually shared with other applications. Uncertainty at the interme-
diate stages of analysis is therefore rarely explicitly characterised. However,
if different processing steps (e.g. outlier detection, data harmonisation, pa-
rameter estimation, interpolation) are delegated to separate Web services, it
becomes necessary for each service to receive an understandable summary of
the uncertainty inherent in the sample data, and introduced by the inter-
vening processing steps. Currently, there is a trend in software engineering
to move away from tightly coupled legacy systems and towards loosely cou-
pled, interoperable, services [8] based on XML. A conceptual design which
allows the communication of uncertain results is of foremost importance in
the development of such an interoperable geostatistical application. This pa-
per introduces a conceptual model of uncertainty and examples of how one
might encode uncertainty in XML, motivated by examples arising within the
INTAMAP project.

2 XML, Web Services and SOAs

Interoperability is defined as “the ability of two or more systems or com-
ponents to exchange information and to use the information that has been
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exchanged” [1]. This section provides an overview of several technologies and
concepts that provide the foundations of an ‘interoperable’ application.

XML [15] is a structured language that allows metadata to be integrated
with content, thus adding a layer of intelligence to information [7]. XML is
implemented by defining a set of elements and attributes that are unique to a
particular context, or domain. A collection of such elements and attributes is
often referred to as a vocabulary. Vocabularies can be defined formally using a
schema definition language, typically ‘XML Schema’ language [9], but is not
a requirement of XML. The descriptive nature and extensibility of XML are
two key ingredients that contribute towards it being a suitable language for
interoperability.

The concept of a ‘service’ in software engineering is not a new term and
typically refers to an independent building block within a larger application
environment, or distributed system [7]. A Web service is an implementation
of a service that uses XML to describe the operations available including the
data inputs and outputs. There are other types of Web service (RESTful)
which do not rely so heavily on XML, however, we do not discuss these in this
paper and from hereon the term Web service refers specifically to an XML
Web service.

Communication of data to and from a Web service is encoded as XML
and transported via an Internet protocol (this is usually HTTP). Adhering
to these requirements provides an interoperable framework that allows soft-
ware applications, written in different languages and on different platforms,
to communicate seamlessly. A collection of these services, ‘loosely coupled’,
forms the basis of a design philosophy called Service Oriented Architecture.

The term Service Oriented Architecture has many definitions, perhaps one
or the more concise is defined in [12] as:

“SOA is an architectural paradigm for dealing with business processes
distributed over a large landscape of existing and new heterogeneous
systems that are under the control of different owners.”

A SOA is usually realised as a collection of Web services, that may be
governed by different owners, communicating with one another to form a
processing chain. In context this could be a risk management or decision
support chain.

3 The INTAMAP Project

Introducing interoperability into the field of geostatistics, INTAMAP seeks to
provide a fully automated interpolation service implementing a Web Process-
ing Service interface [14]. A WPS is a restriction on a normal Web service,
governed by the Open Geospatial Consortium, that is suited to processing
of geospatial data. Simply, a Web Processing Service can be thought of as
a function that can be called over the Web. Within INTAMAP we are also
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Fig. 1. Example workflow for an interpolation request in the INTAMAP project.
All geostatistical processes are carried out using R and C++ on a separate server
to the WPS. A client may obtain observations from multiple sensor systems before
submitting them to INTAMAP for processing. Clients may also be services; chaining
of services in this way underpins the foundation of Service Oriented Architectures

developing a range of novel automatic mapping algorithms including Bayesian
trans-Gaussian kriging, fast anisotropy detection, data harmonisation for het-
erogeneous networks and fast approximate techniques that can deal with mul-
tiple sensor and error characteristics [11]. Key to all the methods we employ
is a description of the uncertainties on the inputs and outputs of the inter-
polation process. Currently no such XML vocabulary, or schema, exists to
allow the description of uncertainty, hence our development of UncertML.
The inputs to the INTAMAP Web service are XML files describing the ob-
servations, with UncertML being used to characterise the observation errors
(see Section 5). The results produced by INTAMAP contain inherent, and
additional, uncertainty introduced by the interpolation process which must
be communicated for the results to be of any subsequent utility. The rest of
this paper discusses a solution to the problem, UncertML, and investigates
the integration into INTAMAP, providing ‘interoperable geostatistics’.

4 Describing Uncertainty in XML

In this section we discuss the design of an XML language for describing uncer-
tainty, UncertML, depicted using the Unified Modeling Language (UML). The
UML diagrams used within this paper are static structure diagrams, whose
notation is clearly defined in Sect. 5.4 of [13]. Examples in XML are given,
where necessary, to illustrate how it may be used.
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4.1 Conceptual Model and examples

Fig. 2. Conceptual overview of UncertML. Three main types extend the abstract
uncertainty type; ‘Statistic’, ‘Distribution’ and ‘Realisation’. Other types are also
available and discussed in more detail later

The core design of UncertML is split into three distinct sections; summary
statistics, distributions and realisations (Fig. 2). Aggregate types for statis-
tics, distributions and realisations also exist where deemed necessary. It is
important to note that UncertML does not provide a framework for describ-
ing phenomena or their units of measure, nor does it provide any geospatial
attributes. Removing this level of detail allows UncertML to be integrated
into a diverse range of domains.

Fig. 3. UncertML model for summary statistics.

Throughout UncertML we follow a weak-typed design pattern that offers
improved extensibility at the cost of strict validation. Weak-typing works by
providing generic types with generic properties, in contrast to a strongly-typed
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design with concrete types and well-defined properties. Figure 3 introduces
the hierarchy for summary statistics; the base type is a generic ‘Statistic’
that can be used for most summary statistics such as mean, median, variance
or standard deviation. The value of a statistic is given through the ‘value’
property that holds a single real number. All types within UncertML extend
the ‘AbstractUncertainty’ type and therefore inherit the ‘definition’ property.
Accepting any Uniform Resource Identifier (URI) as a value, the ‘definition’
property provides a level of semantics to the weak-typed elements. Typically
the URIs resolve to a dictionary entry describing the uncertainty type of
interest, however, other methods of description may be used such as ontologies.

<Statistic definition="Mean"> <Mean>

<value>34.5</value> <value>34.5</value>

</Statistic> </Mean>

Fig. 4. Comparison of a weak-typed (left) and strong-typed (right) representation
of a mean value. Weak-typing is more generic and provides greater extensibility,
however, strong-typing provides easier validation

Certain summary statistics require additional information than the generic
‘Statistic’ type provides. A ‘Quantile’ is used for describing quantiles where
a ‘level’ property, accepting a value between 0.0 and 1.0, defines the quantile
of interest. Probabilities offered through either the ‘DiscreteProbability’ or
‘Probability’ types. The former provides a ‘category’ property which may
contain any information, and the latter offers a range of properties including
‘equal to’, ‘greater than’ and ‘less than’; a combination of which may be used.
It should be noted that probabilities differ from other summary statistics
in that their ‘value’ property contains a probability (0.0–1.0) rather than an
actual value (with units of measure etc).

<Statistic definition="Mean">

<value>26.5</value>

</Statistic>

<Probability definition="Probability" gt="23.4" lt="33.4">

<value>0.34</value>

</Probability>

Fig. 5. Two XML instances, the first represents a mean value while the latter shows
the probability that a value falls between 23.4 and 33.4

It is often the case that one would wish to describe a collection of individual
statistics to provide a summary of a particular variable. A ‘StatisticsRecord’
is used for this exact purpose and groups different statistics into a unified
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structure. When dealing with multiple instances of the same statistic it is
more appropriate to use the ‘StatisticArray’ type. The flexibility of UncertML
allows any combination of records and arrays to be created including arrays of
records and records of arrays. All aggregate types within UncertML utilise the
Sensor Web Enablement (SWE) common encoding schema [3] to provide an
extensive list of options for encoding the data, including most MIME types.

<StatisticRecord>

<field>

<Statistic definition="Mean">

<value>34.5</value>

</Statistic>

</field>

<field>

<Statistic definition="Standard_Deviation>

<value>12.4</value>

</Statistic>

</field>

</StatisticRecord>

Fig. 6. A collection of individual statistics can be grouped into a ‘StatisticRecord’
to provide a summary of a variable. This example shows a mean and standard
deviation

Fig. 7. UncertML model for distributions and other related types. The base ‘Dis-
tribution’ type is similar to the ‘StatisticsRecord’ discussed earlier, however, the
addition of ‘functions’ provides a mechanism for describing a cumulative distribu-
tion function
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A ‘Distribution’ type in UncertML follows a similar pattern to a ‘Statistic-
sRecord’ (Fig. 7)due to it containing a collection of parameters. An example
encoding of a distribution is shown in Fig. 8 and consists of a reference to a
dictionary through the ‘definition’ property as well the distribution param-
eters and their values. When a link to such a definition is not available a
‘Distribution’ can be extended to include a set of functions inline, encoded in
MathML [4], such as a cumulative distribution function, probability density
function or other arbitrary functions that may be performed on a distribution.
Such flexibility allows users to work with distributions about which they have
no prior knowledge.

<Distribution definition="Gaussian_Distribution">

<parameters>

<Parameter definition="Mean">

<value>23.4</value>

</Parameter>

<Parameter definition="Variance">

<value>56.7</value>

</Parameter>

</parameters>

</Distribution>

Fig. 8. A typical distribution encoded in UncertML. Reference to a dictionary entry
is made through the ‘definition’ property which provides a complete description of
a distribution, including its cumulative distribution function

There are many instances where a single distribution is not sufficient or
where you wish to work with multivariate distributions, interpolation being
one such example. The ’DistributionArray’ type takes the form of an ‘array
of records’ mentioned earlier and allows multiple instances of a particular
distribution to be encoded efficiently using the SWE encoding schema. The
‘MultivariateDistribution’ type shown in Fig. 7 is an extension of the base
‘Distribution’ type, differentiated by the inclusion of a number of ‘Parame-
terArray’ properties. This is due to the nature of multivariate distributions
having more than a single value for each parameter. UncertML provides two
mixture model types that may be used for encoding a collection of distribu-
tions, each of which describe a variable by different amounts. Conceptually
the ‘UnivariateMixtureModel’ is similar to the standard ‘DistributionArry’,
however, an additional property yields an array of values between 0.0–1.0
to indicate the relative fraction, or weight, of each distribution, the total of
which must sum to 1. A ‘MultivariateMixtureModel’ is a restriction on the
univariate model that only allows a collection of multivariate distributions.

The final strand of UncertML is concerned with realisations, or samples,
seen in Fig. 9. A single realisation is encoded using the ‘Realisation’ type which
is identical to a ‘Statistic’, however, we feel it necessary to make a conceptual
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distinction between the two. Typically one would not wish to work with single
realisations, instead preferring to encode large arrays; UncertML provides the
‘RealisationArray’ type as a solution. A ‘RealisationArray’ utilises the SWE
encoding block to provide an efficient means of encoding vast quantities of
data, a small example can be seen in Fig. 10.

Fig. 9. A single realisation may be encoded using the ‘Realisation’ type, however,
a typical user would wish to encode multiple realisations for which scenario a ‘Re-
alisationArray’ is provided

<RealisationArray realisedFrom="Gaussian_Distribution">

<realisationCount>5</realisationCount>

<swe:encoding>

<swe:TextBlock tokenSeparator="," tupleSeparator=" "

decimalSeparator="." />

</swe:encoding>

<values>

53.2,58.4,51.3,42.9,60.02

</values>

</RealisationArray>

Fig. 10. Realisations (or samples) can be encoded using the ‘RealisationArray’ type.
If the distribution from which these samples were realised is known then the ‘re-
alisedFrom’ property may be used. A ‘tokenSeparator’ is used to identify individual
values within a tuple and a ‘tupleSeparator’ is used to separate tuples

5 Integrating UncertML into the INTAMAP Project

The Observations & Measurements schema [6] provides an extensive model
for describing the act of observing. Accompanying the ‘result’ property, this
model may include properties for documenting the observation time (‘sam-
plingTime’), the feature or location (‘featureOfInterest’), the property being
measured (‘observedProperty’) and the procedure or instrument used to gen-
erate the result (‘procedure’). Typically the ‘procedure’ property will contain
a sensor model encoded in SensorML [3] which can describe the error charac-
teristics of a sensor (e.g. bias).
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Within INTAMAP a request for interpolation is made by sending a col-
lection of observations, encoded in the O&M schema, to the Web Process-
ing Service interface. UncertML is used within the ‘result’ of an observation
(Fig. 11) to describe the uncertainty inherent in observed values. Utilising
both the error characteristics of a sensor and the observation uncertainty al-
lows us to employ the arbitrary likelihood estimation techniques mentioned
biefly in Sect. 3.

Due to UncertML types not encoding phenomena or geospatial attributes
it is envisaged that a three layered architecture, seen in Fig. 12, will be em-
ployed, where each layer adds an extra level of detail. It should be stressed
that this chain is not a part of UncertML, nor is it mandatory that UncertML
be implemented in this way, it is simply an abstract notion of how one may
wish to use UncertML when dealing with geographic data.

Fig. 11. An observation model within the O&M schema. The result can be of any
type, in this instance it is a ‘RandomVariable’ which uses any uncertainty type from
the UncertML schema to encode the value

Fig. 12. Three layered implementation of UncertML. At it’s simplest, UncertML
only encodes the values of an uncertainty type. A ‘RandomVariable’ type adds a
link to a phenomena and its units of measure and a ‘GeospatialRandomVariable’
adds further detial with an attached geometry. These random variable types are not
included in UncertML and only represent one possible implementation

Depending on user preferences made in the request, the result of an in-
terpolation can take several forms. The bulk of the data will be encoded in
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any one of the uncertainty types within UncertML and additional information
may be added by separate schemata. A typical result may consist of a regular
grid, possibly defined in GML [13], of some variable defined by a series of
Gaussian distributions encoded in UncertML. Figure 1 in Sect. 3 displays the
lineage of an interpolation request in INTAMAP.

6 Conclusion

Embracing the ongoing evolution in software engineering to adopt a loosely
coupled, interoperable, framework will make geostatistical methods available
to a larger array of users. With the development of UncertML, as part of the
INTAMAP project, a large step has been taken towards achieving this goal.
The European Radiological Data Exchange Platform (EURDEP) provides a
case study for the INTAMAP project and demonstrates a clear need for real-
time interpolation across a Service Oriented Architecture.

However, for truly interoperable geostatistics, several areas require greater
attention. A conceptual model for supporting the use of UncertML within
geostatistical models will see the inclusion of variograms, covariance functions
and other random functions. Other extensions to the UncertML model will
include the addition of fuzzy memberships.

Currently, we are undergoing discussions with the Open Geospatial Con-
sortium with the view of making the UncertML specification an official, gov-
erned, standard. This may be included as part of the OWS-6 request for
quotation. A working interpolation service will be available for testing on-
line shortly. More information and latest developments can be found at the
INTAMAP website (http://www.intamap.org)
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