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Summary
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This thesis presents a number of methodological developments that were raised by a
real life application to measuring the efficiency of bank branches.

The advent of internet banking and phone banking is changing the role of bank branches
from a predominantly transaction-based one to a sales-oriented role. This fact requires the
development of new forms of assessing and comparing branches of a bank. In addition,
performance assessment models must also take into account the fact that bank branches
are service and for-profit organisations to which providing adequate service qua.hty as well
as being profitable are crucial objectives.

This study analyses bank branches performance in their new roles in three different
areas: their effectiveness in fostering the use of new transaction channels such as the internet
and the telephone (transactional efficiency); their effectiveness in increasing sales and their
customer base (operational efficiency); and their effectiveness in generating profits without
compromising the quality of service (profit efficiency). The chosen methodology for the
overall analysis is Data Envelopment Analysis (DEA).

The application attempted here required some adaptations to existing DEA models
and indeed some new models so that some specialities of our data could be handled. These
concern the development of models that can account for negative data, the development of
models to measure profit efficiency, and the development of models that yield production
units with targets that are nearer to their observed levels than targets yielded by traditional
DEA models.

The application of the developed models to a sample of Portuguese bank branches al-
lowed their classification according to the three performance dimensions (transactional,
operational and profit efficiency). It also provided useful insights to bank managers regard-
ing how bank branches compare between themselves in terms of their performance, and
how, in general, the three performance dimensions are connected between themselves.

Keywords: Data Envelopment Analysis, Bank Branches, Negat;ive Data, Profit Effi-

ciency
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Chapter 1

Introduction

This work is the result of an interesting journey into two fields; one that relates to
a recent methodology (Data Envelopment Analysis - DEA) that aims at analysing the
efficiency of comparable production/decision units, and the other that relates to a deeper
knowledge of these decision units, bank branches in our case.

The initial idea for this work was to compare two networks of bank branches in terms
of their efficiency, and analyse the extent to which some factors could explain efficiency
differences (if any) between the two networks of bank branches. It was, therefore, to be
mainly an empirical work. As it is usual in PhD thesis the outcome is quite different from
that initially planned and so it happened in this case. Indeed, the richness of the banking
field was so big that soon it became clear that theoretical developments were also in need
for the particular case of assessing the efficiency of bank branches. The first theoretical
development that was in need was the creation of a model to assess the efficiency of bank
branches that could account for their most recent challenges created by the increasing use of
alternative distribution channels that threaten the survival of bank branches. Our research
issue changed, therefore, to an analysis of the efficiency of a sample of bank branches that
could account simultaneously for their changing role from transactional centers to retail
centers, and for the objectives of bank branches as seen by the top management of the
bank.

The literature on assessing bank branches efficiency is not wide (we found only 40
published papers on this matter and some working papers) and mostly the changing role
of bank branches from transactional based to sales based has not been accounted for. At
the same time no focus is given in any study to the development of alternative distribution

channels and to the role that this development may have in improving the operational
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Introduction

efficiency of bank branches. In fact, as more transactions are performed in alternative
distribution channels, personnel at the bank branch is left with more time that can be used
for performing other operational activities mostly sales related. In this sense, to foster the
use of new distribution channels is an important objective of bank branches so that they
can in fact focus on their new role as selling centers.

The model developed for analysing bank branches efficiency in their new context is
presented in Chapter 5. Before that we review the literature on banking assessments in
general (Chapter 3) and on bank branch assessments in particular (Chapter 4). In these
literature reviews we focus particularly on studies that have applied the same methodology
as we do, and therefore we introduce the main concepts about DEA in Chapter 2.

As a result of the aforementioned analysis three main dimensions of efficiency came out
as the most important given the changing role of bank branches and their new objectives:
Transactional Efficiency, Operational Efficiency, and Profit Efficiency. Transactional effi-
ciency intends to capture the extent to which general transactions are being performed on
other means than the bank branch, operational efficiency intends to measure the extent to
which bank branches are increasing sales and the customer base of the bank branch, and
profit efficiency intends to capture the extent to which bank branches are managing their
product mix in a way that maximises profit.

Some problems were encountered and solved when each of these assessments was put
into practice. In the operational efficiency measurement, for example, some of our outputs
could be negative and original DEA formulations cannot handle negative data. For this
reason, we developed a new model in Chapter 6 that could account satisfactorily for this
type of data. The developed model has some advantages over existing models since it results
in an efficiency score that is similar in meaning to radial efficiency scores usually obtained
when data are non-negative. At the same time we also explored issues relating with target
setting under negative data, where in particular we analysed the closeness of the obtained
targets.

On the other hand, our intention of measuring profit efficiency encountered some obsta-
cles since there are not many empirical applications applying the profit efficiency concept in
a DEA context. In particular, to the authors knowledge, there is no study to date analysing
the profit efficiency of bank branches either through parametric or non-parametric method-
ologies. At the same time the DEA literature on profit efficiency is still emergent and some

developments were possible on this field. The developments on profit efficiency are put
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Introduction

forward in Chapter 8, and consist of a new measure to compute profit efficiency and to
decompose it into its technical and allocative components. In this Chapter we also use a
framework developed in Chapter 7 for providing decision units with closest targets. This
is & matter of interest in the DEA field since DEA models do not always result in target
values that require the minimum effort of production units in moving towards the efficient
frontier. In Chapter 9 the approach developed in Chapter 8 is further extended to the com-
putation of total factor productivity change and its decomposition into a technical change,
an efficiency change, and a residual component.

Using the foregoing theoretical developments we were able to measure the efficiency of
a set of bank branches. This was done for the three dimensions of performance identified
and for a time period that goes from March 2001 to September 2002 for the operational
and profit assessments, and from January 2002 to September 2002 for the transactional
assessment. The detailed results from these three assessments are presented in Chapter 10.
Obviously the three aspects of performance are not necessarily independent as there may
exist trade-offs between them. That is, it might be easily accepted that a bank branch
is a good performer in operational terms, but not so good in profit terms. Qur aim is to
- provide information on how well a bank branch is doing on each measure of performance,
and cross-analyse results from all performance dimensions considered. This is done in
Chapter 11, where we also analyse the relationship between efficiency and other variables
such as location, age, competition, and service quality. Being banks and bank branches
service organisations it results that the measurement of efficiency cannot be disentangled
from that of service quality as detailed in Chapter 3. For this reason the analysis of the
relationships between our performance dimensions and service quality assumed particular
emphasis on Chapter 11. In Chapter 12 we conclude this thesis, pointing out its main

methodological contributions, its main empirical results, and directions for further resaerch.
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Chapter 2

Efficiency Measurement Through

Data Envelopment Analysis

The main concept that will be applied throughout this study is the concept of efficiency.
It is therefore important to explain what we mean by efficiency and how this concept is
different and compares with others, such as effectiveness and productivity. In this Chapter
we start by presenting these concepts and then we put forward usual procedures for effi-
ciency measurement, Some concepts that will be referred throughout this thesis relating to

efficiency measurement are also briefly described and explained in this Chapter.

2.1 Efficiency, Productivity, and Effectiveness

The concepts of efficiency and productivity are sometimes, but wrongly, taken as a single
concept. We define Efficiency of a production unit as “the ratio of observed to maximum
potential output obtainable from the given input, or the ratio of the minimum potential
to observed input required to produce the given output, or some combination of the two”
(Lovell, 1993, p. 4). The first ratio mentioned focus on outputs (it is output oriented) and
the second focus on inputs (it is input oriented). The efficiency measure obtained from
such ratios depends on the ‘optimal’ values taken as reference. If the optimal relates to
the production function the resulting efficiency measure is technical, if it relates to any
economic (cost, revenue or profit) function the resulting efficiency measure is economic.

Productivity, on the other hand, can be defined as a measure of the relationship
between the outputs produced and the inputs used by a production unit.

To distinguish between the concepts of efficiency and productivity we use Figure 2.1
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(this figure is identical to that shown in Coelli et al, (1998, p. 5)). In this figure OF

Figure 2.1: Productivity vs Efficiency

Aston University

Hlustration removed for copyright restrictions

represents the production frontier defining the relationship between inputs (z) and outputs
(y) for a particular industry. Any production unit operating on the production frontier
(such as B or C) is technically efficient. If a production unit operates beneath the frontier
(as it is the case of A) it is said to be inefficient. That is, such a unit could have produced
more output given the input employed, or, it could have used less input given the output
produced.

The ratio of the outputs produced to the inputs used (productivity ratio) is, for each
unit, given by the slope of the lines departing from the origin and intercepting each point
(A, B, and C). At point C the slope of the ray from the origin is the highest, meaning
that this point defines the maximum possible productivity for this industry. Moving from
point B to point C represents an exploitation of scale economies, as point C is the point
of optimal scale, but implies no gains in efficiency. We can thus conclude that an efficient
production unit may still be able to improve its productivity by exploiting scale economies
(Coelli et al., 1998).

Concerning the productivity concept it is still important to distinguish between total
factor productivity and partial measures of productivity (Coelli et al., 1998). The former
involves all factors of production, and the latter focus only on some production factors (a
commonly used example is labour productivity). Note that calculating aggregate measures
of productivity (a ratio of aggregate output per aggregate input) implies the definition
of an aggregation formula like a simple or weighted average. Traditional index number
approaches (e.g. Py, 1990) provide such a way, where factor’s prices are the aggregating
factor. The best well known examples of such indexes are the Laspeyres, Paasche and Fisher

Indexes. Without price information the aggregation of amounts expressed in different units
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2.1 Efficiency, Productivity, and Effectiveness

of measurement, is not free of controversy as will become clear in subsequent chapters.

Effectiveness can be defined as the extent to which an organisation meets its objectives
or goals (Klassen et al., 1998; Agrell and Bogetoft, 2001). In this sense effectiveness can be
measured as the ratio between produced outputs and desired outputs. The most common
distinction between efficiency and effectiveness is that the former is ‘to do things right’ while
the latter is ‘to do the right thing’. Or, in the words of Golany et al. (1993), efficiency is
related to performing current activities as well as possible and effectiveness is related to
choosing the proper activities. Effectiveness is therefore linked with strategic choices and
strategic goals whose attainability is desired.

The above definitions intend to establish at the beginning of this study what is under-
stood by the terms efficiency, productivity and effectiveness. Note that the above defini-
tions are consistent with what is currently accepted amongst economists and Management
Science/Operational Research scientists. This does not exclude the existence of other un-
derstandings of the above concepts in different scientific areas, as the works of Achabal

et al. (1984) and Klassen et al. (1998) testify.

2.1.1 Some Thoughts around and about Efficiency

From the three concepts defined in the previous section, efficiency is the core concept of
this study. In the context of measuring efficiency one can accept as given the fact that firms
may be inefficient, or one can raise some doubts about the meaning of measuring efficiency.
In the latter case questions like what does efficiency really mean?; or what makes a firm to
produce less than the mazimum possible quantity of outputs? are inevitable. “While there
has been a proliferation of sophisticated techniques for estimating the frontier production
function, relatively little attention has been devoted to interpretation of measured ineffi-
ciency” (Ray, 1988, p. 167). This last issue is, however, as important as the first. Classic
production economics assume that in the long run there are no inefficiencies. This state-
ment is based on a number of assumptions, among which the assumption that the market
is perfectly competititivel. Under this assumption, a comparison between two firms using
the same input combinations but producing differing amounts of outputs leads to the con-
clusion that necessarily some relevant inputs that are not equal for both firms have been

neglected in this comparison (Ray, 1988). Indeed, if we think of a situation where all the

!Perfect competition assumes a large number of production units, perfect mobility of factors, and perfect
information.

19



2.1 Efficiency, Productivity, and Effectiveness

factors by which firms can differ are accounted for in a comparison of these, then very few
inefficiencies could remain. Under this perspective it is meaningless to measure efficiency
(especially as far as technical efficiency is concerned), because all inefficiency is associated
with model mis-specification reflecting variables that were not included in the efficiency
assessment, or wrong assumptions concerning functional relationships between inputs and
outputs (Bogetoft and Hougaard, 2001).

In our opinion the traditional definition of efficiency as ‘doing things right’ is the one
that justifies the need to measure efficiency. Indeed, production units do not always do
things right and more often than desired they do things wrongly. This is just a consequence
of organisations being constituted by human beings and not by machines. The economic
theory accords in a certain sense to a positivist approach that regards organisations as
machines. In such a setting inefficiency would not take place. Going a little beyond that,
albeit not necessarily abandoning a positivist approach, inefficiency is not only possible
but also a stark reality. If one thinks of two bank branches operating exactly under the
same environmental conditions and having access exactly to the same resources, would
these necessarily operate in the same manner? would both be equally efficient? We believe
the answer is no. For example one of the resources that the branch might have at its
disposal is a computer program to manage its clients base. Depending on the motivation
and dynamics of the people in the branch this program can be exploited in its full potential
or not. Obviously, one can argue that in that sense the human resources of the two branches
are not equal because one has more motivated and dynamic people than the other. While
this is true it is also true that no two people are equal and the assumption of equal resources
as far as humans are concerned is basically impossible to achieve. So in the limit efficiency
is always related with people. It is people that are efficient or inefficient and not machines.
Two equal machines are necessarily equally efficient. If machines do things in a wrong way,
the inefficiency here is not attributed to the machine but to its programmer.

Contributing to the discussion around the concept and measurement of efficiency Bogetoft
and Hougaard (2001) put forward a novel interpretation of efficiency according to which
inefficiency is a rational choice. That is, some decision units choose to be inefficient because
the costs of increasing efficiency would be higher than the costs of remaining inefficient.
This is undoubtedly an interesting interpretation, as most of the times the costs of adjusting
efficiency are not accounted for in efficiency assessments. If these were accounted for, then

in some situations one could indeed conclude that it is cheaper to stay inefficient rather
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2.2 Production Technology

than to try to improve efficiency.

We will take the perspective in this study that it is possible to measure inefficiency
because inefficiency is a waste (Bogetoft and Hougaard, 2001). That is, inefficient firms
employ too many inputs for producing a certain level of outputs, or produce too few outputs
from a given set of inputs. The ‘optimal’ level of inputs or outputs to which every production
unit compares its own input/output levels to assess its efficiency lie on a production frontier
(for technical efficiency measurement). This production frontier can be broadly of two
types: deterministic or stochastic (see Fgrsund et al., 1980, for a complete characterisation
of various approaches). Deterministic frontiers assume that, for a given level of input, there
is an exact value of maximum output that is possible, while stochastic frontiers assume that
the maximum output for a given level of input is random rather than exact. In both cases
the interest is to measure the distance of each observation to the frontier, but in stochastic
frontiers the form of that frontier is an assumption of all the analysis while in deterministic
frontiers the form of the frontier is a result of the analysis. Therefore these two broad classes
of methods begin the analysis in different and opposite directions, albeit being interested
in obtaining the same type of results.

This study uses a particular class of deterministic frontiers best known as data envel-
opment analysis (DEA) after the developments of Charnes et al. (1978). Under this class
of methods there are two decisions to be made before proceeding with the efficiency mea-
surement exercise. The first concerns the choice of the technological set (bounded by a
production frontier) against which efficiency will be measured, and the second concerns the

choice of the efficiency measure to use. These issues will be addressed in the next sections.

2.2 Production Technology

Consider an input vector x = (zi,...,2m) € RT used to produce an output vector
Yy = (y1,...,¥s) € R} in a technology involving n production units. The production
possibilities set, T', describes all patterns of inputs and outputs that are technologically
feasible (Varian, 1992). T is thus the production technology that transforms x in y, and is
defined as:

T = {(x,y) € R?"** | x can produce y} (2.1)

The production technology T', or graph technology, may also be represented from two

other perspectives: input or consumption set and production or output set. An input set
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2.2 Production Technology

L(y) is the subset of all input vectors x € RT yielding at least y, and a production set
P(x) is the subset of all output vectors y € R4 which are obtained from x.

L(y) = {x |(x,y) € T} or L(y) = {x | y € P(x)}
and (2.2)
P(x) ={y | (x,y) € T} or P(x) = {y | x € L(y)}

A production technology can have, therefore, alternative and equivalent representations
highlighting different aspects of that technology. “The input set models input substitution,
and the output set models output substitution. The graph models both input substitution
and output substitution, in addition to modelling input-output transformation” (Fire et al.,
1994a, p. 27).

A production technology defined by L(y), P(x) or T(x,y) has some relevant subsets
that are useful for efficiency measurement. The characteristics of these correspondences as
well as the analysis of these subsets is detailed in Fére et al. (1985). For our purposes we

are mainly interested in two subsets: the isoquant and the efficient subset.

e The input isoquant of L(y), the output isoquant of P(x), and the graph isoquant of
T(x,y) are defined as:
Isog L(y) = {x | x € L(y), A x ¢ L(y), A € [0,1]},
Isog P(x) ={y | y € P(x),0 y ¢ P(x),0 > 1},
Isog T(x,y) = {(x,¥) | (x,¥) € T(x,), (A x,A7'y) ¢ T(x,¥), A €]0,1[} ;

e The efficient subsets of L(y), P(x), and T'(x,y) are defined as:
Eff L(y)={x|x€ L(y),x' <xand X' #x = x' ¢ L(y)},
Eff Px)={y |y e P(x),y' 2yandy' #y =y ¢ P(x)},
EffT(xy) = {(xy) | (x,¥) € T(x,y), (-x,¥') 2 (-x,¥) and (-x,¥') # (-%,y) =
xy) ¢ T(x,y)} .

These definitions imply that Isog L(y) 2 Eff L(y) (see Fére et al. (1985) for general
conditions under which the two subsets coincide). The same relationship is valid for the
output and graph cases.

We illustrate in Figures 2.2 and 2.3 the input and output correspondences, respectively.

The efficient subset in both cases is the set of points on Isog L(y) or Isog P(x) that lie
between the identified rays.
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Figure 2.2: Input Space Representation Figure 2.3: Output Space Representation
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We will characterise technologies through piecewise linear mathematical formulae (e.g.
Charnes et al., 1978; Fire et al., 1985) constructed from observed data. Consider the
variables (Ay,...,A;) denoting the intensity level of each of the j activities. The input
reference set L(y), satisfying strong disposability of inputs and outputs?, is represented by
(2.3)

n n
Liy) = {x | DMyiZy, D NxEx, A 20, §j = 1,---,71} (2.3)
j=1 =1

Equivalently the output reference set, satisfying strong disposability of inputs and out-
puts, is represented by (2.4). Note that strong (or free) disposability of all inputs and

outputs is equivalent to monotonicity of the corresponding production set (e.g. Kuosma-
nen, 2001)).

n n
P(x) = {yl S Nyizy, S ANxi<x A 20, j = 1,...,n.} (2.4)
Jj=1 j=1

Depending on the properties satisfied by L(y) and P(x) its geometric form in Figures 2.2
and 2.3 could be different3.

A production function describes quantitatively the technological relationship between

outputs and inputs of a production process. It expresses the maximum output realisable

2Strong disposability of inputs implies that if a given quantity of inputs can produce a given amount of
outputs, then any higher amount of inputs is also capable of producing the same amount of output. Strong
disposability of outputs implies that if a given quantity of outputs is produced from a given level of inputs,
then less outputs can always be produced from the same amount of inputs. Mathematically both these
properties imply that for z = (—x,y) €T ifz’ < z, thenz’ € T.

3For example if we considered weak disposability of inputs instead of strong disposability, the form of
L(y) would change. Weak disposability of inputs states that if x € L(y), then A x € L(y) for A > 1. This
assumption considers that proportional increases in all inputs can yield the production of the same amount
of output [see Fire et al. (1985) for details]. Weak disposability of outputs is defined in an analogous way.
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from a set of inputs, being thus the frontier of the set T.
The production function, or production frontier can be defined as:
®(x) = Maz{y | (x,y) € T} (2.5)

The theoretical production function (2.5) is by definition unknown. It can, however, be

approximated by a piecewise linear technology as shown in Figure 2.4.

Figure 2.4: Production Function
&)

The production technology T'(x,y) represented in Figure 2.4 is bounded by ABCDE,
which is also the isoquant of the production technology. Its efficient subset is represented
by BCD, since segments BA and DE are not efficient in a Pareto-Koopmans sense. Pareto-
Koopmans efficiency, or simply Pareto efficiency, is attained when an increase in any output
(or a decrease in any input) requires a decrease in at least another output (or an increase
in at least another input) (e.g. Lovell, 1993).

One of the characteristics of any production technology is returns to scale (RTS). One
can define a technology exhibiting globally constant returns to scale (CRS) (Figure 2.5(a)),
globally increasing returns to scale (IRS) (Figure 2.5(b)), or globally decreasing returns to
scale (DRS) (Figure 2.5(c)). The piecewise linear representation of T'(x,y) on Figure 2.4

Figure 2.5: Returns to Scale

Dot

does not satisfy globally any of the above RTS, meaning that it satisfies variable returns to
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2.2 Production Technology

scale (VRS). That is, returns to scale are increasing until point C and decreasing after point
C. Point C has maximum productivity and satisfies locally constant returns to scale. The
piecewise mathematical representation of VRS and CRS technologies based on observed

values is shown in (2.6) and (2.7), respectively.

n

n n
TVERS = {(x,y)l DAYy, DA% Sx, DA=1,%20j= 1’“""} (2:6)
i=1 i=1 i=1

n ™
TR = {(x,Y) I Y Avizy, DoAixsx A 20,5 = 1,...,n} (2.7)
=1 =1

A technological set exhibiting CRS assumes that replication is possible. That is, if inputs
are scaled up or down by some amount 7 it is assumed that the amount 7 times the output
produced before can also be produced (see Varian, 1992, p. 15).

The VRS and CRS technological sets were the first sets against which efficiency was
measured through DEA. Charnes et al. (1978) measured efficiency in relation to CRS tech-
nologies only, and Banker et al. (1984) first measured efficiency in relation to VRS technolo-
gies. Both the CRS and VRS technological sets are convex®. The convexity of T' implies
that both the input and output sets [L(y) and P(x)] are convex, although the inverse is
not true (see Petersen, 1990). Note that convexity was assumed in our previous graphical
representations of L(y), P(x), and T'(x,y).

Convexity is assumed in most economic models of production, but there is some debate
in the literature concerning the need for this assumption. In fact assuming convexity implies
that some returns to scale characteristics of a production set cannot be modelled. For ex-
ample the technological set (b) depicted in Figure 2.5 representing global increasing returns
to scale is not convex and therefore cannot be represented by any of the above piecewise
linear representations of the technology. In fact the convexity of the production set excludes
the possibility of globally increasing returns to scale and other possibilities where alternate
behaviours of increasing and decreasing returns at different volumes take place (Bogetoft
et al.,, 2000). At the same time convexity is also inconsistent with decreasing marginal
rates of transformation for the outputs, and decreasing marginal rates of substitution for

the inputs® (Post, 1999; Banker and Maindiratta, 1986). In situations where commodities

‘Tis aconvex setif Vz=(—x,y) and 2’ = (-x',y') €T, Va €[0,1],az + (1-a)2’ €T.
$Marginal rate of substitution is the slope of the isoquant of L(y). It reflects the rate at which one input
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are not continuously divisible the assumption of convexity does not apply as well (Coelli
et al., 1998). The main reasons for assuming convexity of T are, therefore, on the one hand
the neoclassical assumption of diminishing marginal rates of substitution and, on the other
hand, the fact that convexity is a necessary assumption for establishing the duality between
input and output sets and cost and revenue functions (Petersen, 1990).

In order to model situations where the convexity of the technological set is not an
adequate assumption, some non-convex production possibilities sets have been developed.
The best known non-convex technological set that only satisfies free disposability of inputs
and outputs is the Free Disposal Hull (FDH), which was first introduced by (Deprins et al.,
1984). The production possibility set of this technology is defined in (2.8).

n ™ n
TFPH = {(x.}')l ;Aﬁi Y12y, j;lf\.f xj < X, ;AJ' =1 X €e{01} = 1""’"}

(2.8)

The particularity of a technology defined by TFPH is that it rests only on the assumption
of free disposability of inputs and outputs. The non convex nature of T¥PH is expressed on
the binary constraints associated to the A; values. Graphically a FDH technology looks like
that shown in Figure 2.6. An interesting characteristic of TFPH is the fact that the efficient

Figure 2.6: FDH Production Set

12 4 q

10

subset of the production frontier is constituted by observable units only. This makes FDH
a useful method to be applied for benchmarking purposes. As pointed out by Bogetoft
et al. (2000, p. 2) “fictitious production possibilities, generated as convex combinations of
those actually observed, are usually less convincing as benchmarks, or reference units, than

actually observed production possibilities”.

can be substituted by another while holding everything else constant. The marginal rate of transformation
reflects the same relationship between outputs,
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The three technological sets mentioned hitherto are the ones that will be most referred
throughout this study. Other non-convex specifications of the technology can be found
in Banker and Maindiratta (1986), Petersen (1990), Tulkens (1993), Bogetoft (1996), Ku-
osmanen (1999a), Bogetoft et al. (2000), Post (2001a), Post (2001b), Kuosmanen (2001),
Agrell et al. (2001), and Kuosmanen and Post (2002).

2.3 Efficiency Measurement

After specifying the technology against which efficiency is to be measured one needs
to decide on the type of efficiency measure to use. In this section we will detail on some
known models to measure efficiency. In later chapters additional references to the issue of
measuring efficiency will be made.

A measure of efficiency is intended to capture the distance from each observation to
the technological frontier. Farrell (1957) defined a distance function (Fj) that is still the
most used measure of efficiency in the literature. Such a measure is usually defined either
on the input space or the output space. The Farrell input technical efficiency measure of
observation o € L(y) can be defined as [see Fiire and Lovell (1978) or Fire et al. (1985)]:

FI,=min{0 | 6x € L(y)}. (2.9)
The Farrell output technical efficiency measure of observation o € P(x) can be defined as:
FO, = max{8 | fy € P(x)} (2.10)

The linear programming formulations that allow the computation of the efficiency measures

6 and S are shown in models (2.11) and (2.12), respectively.

min{f?al max{ﬂo I

leyrj—sr=yro 1"=1,...,s EAjyrj_s-r:ﬁoyra ‘l'=1,...,3
j=1 j=1

Zz\j Zij +e€; =0, T i=1,....,m Z/\j Tij+ e = Ti t=1 ..M
i=1 j=1

XE8, 2 ande,-?_O} 211) MES, s ande,-zo} (2.12)
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Depending on S various technological sets can be defined especially as far as returns
to scale characteristics are concerned. Originally Farrell considered only CRS technologies

where S = {); > 0}. However, other possibilities are:
o S={3%.12 =1} = VRS;
e §S={37.12 <1} = NIRS;
e S={Y7;)>1} = NDRS;
e S={)\j€{0,1}} = FDH.

The CRS, VRS, and FDH technological sets were already referred to previously. The
other two sets impose non increasing returns to scale (NIRS) and non decreasing returns
to scale (NDRS).

The @ and f efficiency measures of a given unit o correspond to the ratio of an input
or output vector located on the production frontier to the observed input or output vector.
If the optimum value of theta is 6 < 1, then the unit is not technically efficient as it
is possible to produce the same output vector with the reduced input vector 8x. If the
optimum value of beta is 83 > 1, then the unit is not technically efficient as it is possible
to use the same input vector to produce the augmented output vector 82y. When 6* =1
or B* =1 the observed production unit lies on the frontier of the technological set and is
deemed 100% efficient.

The reference technological set used in Farrell measures of efficiency is the isoquant of
L(y) or the isoquant of P(x) and not its efficient subsets. This means that an optimal value
of 1 for §* or * in models (2.11) and (2.12), respectively, does not necessarily accord with
the Pareto-Koopmans notion of efficiency. Pareto-efficiency is assured only when * =1 or
B* =1, and all optimal slack values (s} and e}) are zero (Charnes et al., 1978). In an optimal
solution to model (2.11) (or (2.12)), the value of 6* (or B*) represents equiproportional or
radial changes in all inputs (or outputs) that project any observation on the technological
frontier. The optimal value of slacks represents additional sources of inefficiency that are
not accounted for by the radial 6* (or 8*) factor.

Figure 2.7 illustrates input efficiency measurement for the case of inefficient unit G.
Units A, B, C, and D, in Figure 2.7, are Farrell input technical efficient. Unit G is inefficient
as it could produce the same amount of output using fewer of both its inputs. The radial

distance of this unit to the input isoquant is given by g = %%. Note that unit D in Figure
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Figure 2.7: Input Efficiency Measurement

Input 1

2.7 lies on the isoquant but is not Pareto-efficient. In fact, unit D is able to reduce the
usage of one input without changing the usage of the other.

The dual of models (2.11) and (2.12) are shown in (2.13) and (2.14), respectively, for
the most general case where § = {3°7_; A; = 1}.

a m
max{ho=zur yro+ua| min{go=Zv,-a:,-o+uo|
r=1 i=1
m s
2 viTio=1 Y uryro=1
i=1 r=1
a m m s
zurvrj—zvizij+u050 Zv,-x;j—z:u,y,,-+u020
r=1 i=1 i=1 r=1

i=l...n, unv; 20, uis &ee} (213) j=1,...,n ur,v 20, upis free} (2.14)

The dual of the Farrell efficiency measures can accommodate both VRS and CRS cases.
To specify a VRS technology let u, assume any value (positive, negative or zero), otherwise
to specify a CRS technology set u, to zero.

In models (2.13) and (2.14) the variables v; and u, represent the weights that the
assessed unit allocates to each of its inputs and outputs so that its efficiency is maximised.
The unit is free to choose these weights and as such the efficiency measure will show it in
the best possible light.

Models of the type in (2.11) and (2.12) will be called envelopment models, while their
duals in (2.13) and (2.14) will be called multiplier DEA models. The solution of an envel-

opment model results in the values of inputs and/or outputs that a unit should attain if
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efficient. Such values are usually called targets and are generally defined in (2.15).

n
9:022'\;9rj=ﬁ;vro+3: r=1,...,8
j=

:,c;o= A; $ij=9; 3?{0'—8: i=1,...,'m (2.15)

In input oriented models such as (2.11) §; is assumed to be 1 in (2.15), and in output
oriented models such as (2.12) 6} is assumed to be 1. Target inputs and outputs are
therefore the result of a linear combination of a set of units located on the efficient frontier
for which A is non-zero in the solution of model (2.11) or (2.12). Such units, used in the
construction of target levels, are called the peer units of the unit o being assessed.

Note that the target levels in (2.15) are not radial targets (resulting from equipropor-
tional contraction of inputs or outputs) because they include optimal slacks. Nevertheless,
targets in (2.15) are not necessarily Pareto-efficient. Note for example that assessing unit
I in Figure 2.7 renders target input levels equal to (z},z3) = (4.4,2) located between units
C and D, the peers of unit I. These target inputs do not lie on the efficient subset of L(y).
In order to guarantee that targets lie on the efficient subset of L(y) one needs to solve a
second stage model where the slacks are maximised and target levels in (2.15) are used on

the right hand side of (2.16) (e.g. Ali and Seiford, 1993b).

r=1

F] m
max{zs,.+ze;|
i=1
n
z,\jy,.j—3,=y:o r=1,...,8
j=1
n

Z.\_,-x;,-+e.-= z3, = U
Jj=1

A ES, s, and e > 0} (2.16)

If the optimal solution of this second stage model is zero (that is all slacks are zero) then
the optimal target levels resulting from the first stage are Pareto-efficient. If the optimal
solution of this model is different from zero then the second stage model solution provides
Pareto-efficient targets and peers. For unit I in Figure 2.7, the second stage model identifies
a value of e] = 0.4 and Az = 1. This means that Pareto-efficient targets for unit I are

(x1,z3) = (4,2), being its only peer unit C.
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2.3 Efficiency Measurement

The procedure for finding Pareto-efficient targets can be done through the second phase
procedure outlined above, or it can be done in a single phase if the objective function of
(2.11) or (2.12) is replaced by (2.17).

Bo—e(z—;s, +Ee,-) or ﬁa+£(§s,+2e.—) (2.17)

i=1 i=1

This specification was first proposed by Charnes et al. (1978), and it basically means that
preemptive priority is given to the minimisation of 6, or to the maximisition of G, and
secondly the maximisation of slacks is sought. Because slacks are multiplied by a very
small value (identified by €), the resulting objective function from (2.17) is in fact equal to
that resulting from the radial model presented before. Although the single stage approach
is theoretically correct, it may result in computational inaccuracies and erroneous results
when the value of ¢ is specified (for details see Ali and Seiford, 1993a, who have extensively
analysed the impacts of the choice of ¢ on DEA results). This means that in practical
applications it is better to use the two-stage model to identify both the optimal radial
factors and slack values, rather than the single stage model (see Chang and Guh, 1991,
that also draw on the problems around the choice of €).

The second stage model in (2.16) corresponds to an important model in the DEA
literature. If on the right hand side of (2.16) observed values are used instead of target
values, the resulting model is the additive model as first introduced by Charnes et al.
(1985b). Though the additive model does not provide a final efficiency measure, it is
important in two respects, (i) it allows the identification of Pareto-efficient units — those
which have a zero sum of slacks in the optimal solution of the model, and (ii) it is one of the
first non-oriented models introduced in the literature. The Farrell input and output models
presented previously are radial and oriented: they sought either input reduction or output
expansion but not both. This imposes very strong assumptions at the beginning of any
efficiency measurement: the assumption that only inputs or only outputs are controllable
by the decision maker and improvement shall be sought only on these controllable factors.
In reality, however, it may happen that at least some inputs and outputs are controllable
requiring, therefore, measures that seek improvements on both sides (i.e. non-oriented
measures). The additive model is such a measure. Other non-oriented measures will be

referred in more detail in subsequent chapters of this study.
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2.3.1 Economic Measures of Efficiency

The efficiency measures defined previously do not depend on prices. Indeed, input
and output vectors are usually specified in physical units in production models. Efficiency
models that use economic variables such as prices, costs, revenues or profits are known as
economic models (Fére and Primont, 1995). Two important functions that can be specified
are the cost and revenue functions. The first assumes a cost minimising behaviour of the
production unit and the second assumes a revenue maximising behaviour of the production
unit.

Lets assume that w € RP is the input price vector, and p € R}, is the output price vec-
tor. The cost function is defined by C(y,w) = wx = min{wx | x € L(y)}, corresponding
to the minimum expenditure required to produce output vector y at input prices w (e.g.
Fire et al., 1994a).

The revenue function is given by R(x,p) = py = max{py | y € P(x)}, representing
the maximum revenue that can be generated from input vector x at output prices p.

With price information it is possible to compute, aside from technical, other measures
of efficiency. In his seminal work Farrell (1957) referred to overall (cost or revenue) and

allocative efficiency measures. Figure 2.8 illustrates the meaning of such measures. A cost

Figure 2.8: Economic Efficiency Measurement

91 CdY, W) = wx,
8 i
7 -
6 - e H
51 . -\\G

- LY
4 ‘R
3 -
21 0“\\_

1Y

L Crd¥s W) =W ™
0 T Ll
9 6 8

measure of efficiency indicates the extent to which a production unit minimises the cost
of producing a given output vector, giving the input prices it faces (Fare et al., 1985). In
Figure 2.8 this measure corresponds, for unit G, to the ratio of minimum cost to observed
cost: %:- =33 (=2n = %%"-) That is, given its factor’s prices unit G should be

producing at point B (or A) and not at its current levels. Point B is overall efficient
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because it lies simultaneously on the technological frontier and on the minimum cost line.

As seen previously, technical efficiency of unit G is given by %’g- Note that this value
is equivalent to the ratio between the cost at the technical efficient point and observed
cost (%’f =L == %%). For example, a technical efficiency value of 50% means at
the same time that when inputs decrease by 50%, so that the technical efficient frontier
is reached, costs also reduce by 50%. Assume that unit G has eliminated its technical
inefficiency by moving to point G'. This point is not cost efficient when compared to point
B that has a lower cost. A movement from point G’ to point B implies an adjustment
in the mix of inputs of unit G that further reduces its costs. Note that by keeping the
same mix unit G’ could not reduce further its costs without getting out of the technological
set. The adjustment from point G’ to the point of minimum cost, B, represents allocative
efficiency. The allocative efficiency is also called price efficiency, as it measures the extent to
which a technically efficient point such as G’ falls short of achieving minimal cost because it
fails to make the substitutions (or reallocations) involved in moving from G’ to B (Cooper
et al., 2000). This measure can also be expressed in terms of a ratio between the minimum
cost at point B and the cost at the technical efficient point G’ (%:: = ). Note that

this cost ratio is equivalent to the quantity ratio %%;-. We can now establish the following

relationship:
Cost efficiency (£5)= technical efficiency (55)x allocative efficiency (957)

It is important to stress that cost efficiency does not have an immediate interpretability
in terms of input reductions, although the inverse is always true, i.e., radial input reductions
always have a cost interpretability (e.g. Kerstens and Vanden-Eeckaut, 1995). In fact, if we
multiply all the inputs of G by the overall cost efficiency measure the resulting input targets
would be located exactly at G”, which is a point outside the efficient boundary and thus
non-attainable. This point is therefore used only as a reference to calculate cost efficiency
and should not be interpreted as the minimum cost target for unit G. The minimum cost

target for unit G corresponds to point B.

The computation of cost efficiency involves solving the minimum cost model (2.18),
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where the decision variables are A; and z;.

i=1

min {C = i WioTs |
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n
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j=1
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The solution of (2.18) results in optimal input levels z] yielding minimum cost Cy,. Cost

efficiency is therefore calculated as Cp,/C,, and allocative efficiency can be calculated by

decomposition: the ratio of cost efficiency by technical efficiency.

The revenue efficiency model is shown in (2.19).
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The solution of (2.19) results in optimal output levels y; yielding maximum revenue Rj},.

Revenue efficiency is therefore calculated as ;‘%;—. Allocative efficiency can be calculated as

the ratio of revenue efficiency and technical efficiency, where the latter can be calculated

through model (2.12).

2.3.2 Scale Efficiency and Returns to Scale in DEA

We mentioned earlier that a technological set can exhibit different characteristics in

terms of returns to scale. CRS and VRS are two of the most used RTS assumptions. A

comparison between efficiency measures obtained under each of these technologies allows

one to draw conclusions about scale efficiency and returns to scale (Banker et al., 1984).

Figure 2.9 illustrates, for a single input/output case, the CRS and VRS boundaries (these
are also called CCR and BCC boundaries, respectively, in respect for their developers,
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Charnes Cooper and Rhodes, and Banker, Charnes and Cooper, respectively). Unit Z is

Figure 2.9: Technical and Scale Efficiency Measures
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inefficient both under CRS and VRS. The input measure of technical efficiency calculated in
relation to the VRS frontier is Eyps = OA’/OA, while the measure of technical efficiency
calculated in relation to the CRS frontier is Ecps = OA”/OA. For the single input/output
case CRS efficient units are those presenting maximum productivity, measured by the
ratio of output to input. Such units are denoted most productive scale size® (mpss) by
Banker (1984). An efficiency measure calculated in relation to a VRS technology compares
production units with efficient units (or a composite of efficient units) presenting a similar
scale. This does not happen in CRS technologies where units are compared with the optimal
scale size. As a result, the distance between the VRS and the CRS frontiers represents scale
efficiency, i.e. the shortfall of the VRS frontier to optimal scale size at a given point. The
scale efficiency of unit Z is, therefore, given by OA”/0OA’, which equals Ecrs/EvRs.

The global measure of efficiency (measured in relation to the CRS frontier) is, therefore,
a composite of pure technical efficiency (measured in relation to the VRS frontier) and scale
efficiency (SE), as %’—}; = % X %%—';- < Ecrs = Evrs x SE.

If output oriented efficiency measures were used in the illustrative example in Figure
2.9 the values of scale efficiency for each unit would be different. CRS efficiency is the same
irrespective of the model orientation, but VRS efficiency is not. This means that scale

efficiency is always dependent on the model orientation.

®According to Banker (1984, pp. 39-40) the CRS technical efficiency of a given DMU is equal to 1 if and
only if that unit is a mpss. In addition, a CRS technical efficiency measure of 1 implies that we are in the
presence of a mpss. Mpss units are therefore scale efficient units lying on a region of constant returns to
scale. In addition, a vector (x,¥y) € T is a mpss if and only if for all production possibilities (8x,ay) € T
we have § < 1.

35



2.3 Efficiency Measurement

Apart from scale efficiency, qualitative information regarding the type of RT'S that apply
at specific parts of the efficient frontier can also be obtained in DEA models. A variety of
methods has been proposed to characterise the type of returns that apply on the efficient
frontier. Some of these are based on solutions from envelopment models and others are
based on solutions from multiplier models. Banker et al. (1984) proposed the use of the
multiplier VRS models in (2.13) and (2.14) to characterise RTS. Based on the optimal
value of u,, represented by uj, Banker et al. (1984) presented a classification of the type
of RTS. This initial characterisation did not account for the possibility of multiple optimal
solutions. This drawback was overcome in Banker and Thrall (1992), who provided the

following characterisation of returns to scale according to the value of u} (see also Cooper

et al., 2000):

e uy < 0 for all optimal solutions = IRS;
e ug =0 in any optimal solution = CRS;
¢ ug > 0 for all optimal solutions =+ DRS.

Banker and Thrall (1992) developed some auxiliary linear programs that enabled them
to deal with multiple optimal solutions through the calculation of intervals for the variable

uo.

It is also possible to estimate returns to scale based on envelopment models defined
in relation to a CRS technology. In this case we need to look at the sum of the optimal
lambda values. Banker and Thrall (1992) proposed the following rules for classifying the

type of returns to scale prevailing at a given boundary point.

® 3 7=12} <1 for all alternate optima => IRS;
® Y i=12; =1 in any alternate optima = CRS;

e 3 7=1A] > 1 for all alternate optima = DRS.

The procedure for testing whether the above conditions are satisfied in all alternate

optima consists in a second step linear programming problem (e.g. Cooper et al., 2000;
Banker et al., 1996a).

Another method that can be applied to characterise RTS is that of Fire et al. (1985),
which consists in obtaining three efficiency estimates in relation to three technological RTS
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specifications: CRS, VRS, and NIRS. From the efficiency measures obtained from each of

these models, conclusions can be reached concerning returns to scale:

e If CRS, VRS and NIRS models yield exactly the same efficiency measure, then the
unit lies, or is projected, on a boundary region exhibiting CRS;

e If CRS and NIRS efficiency measures are equal and lower than the VRS efficiency

measure, then the unit lies, or is projected, on an IRS region of the boundary;

e If VRS and NIRS efficiency measures are equal and higher than the CRS efficiency

measure, then the unit lies, or is projected, on a DRS region of the boundary;

The Fére et al. (1985) method has the advantage of being unaffected by the existence
of multiple optimal solutions. Its main disadvantage seems to be the need to solving three
DEA problems (Seiford and Zhu, 1999).

The methods mentioned hitherto provide well defined RTS classifications only for pro-
duction units lying on the efficient frontier. For inefficient units “productivity changes due
to returns to scale are confounded with productivity changes due to inefficiency elimina-~
tion” (Banker and Thrall, 1992, p. 82). In addition the RTS classifications of inefficient
units depends on their projection on the efficient boundary. This might yield different
results depending on the orientation of the model (towards input contraction or output
expansion). Seing this fact as a limitation, some authors proposed other approaches to
characterise RTS. For example, Golany and Yu (1997) developed a model which may result
in a strict characterisation of the RTS that apply at a given point of the frontier, but it
may also happen that no estimate of RTS for a particular unit can be obtained. This last
situation happens when the RTS results accruing from input and output oriented models
are contradictory (this clearly only happens for inefficient units). The authors also analysed
the situation of extreme efficient units whose returns to scale situation might be ambigu-
ous. A model similar to that in Golany and Yu (1997) is presented in Cooper et al. (1996)
who propose the use of the most productive scale size (mpss) definition to characterise
returns to scale. Another approach is that of Fukuyama (2003) who proposed the use of a
non-radial efficiency measure to estimate RTS. The chosen efficiency measure was in this
case the directional distance model of Chambers et al. (1996a, 1998). The use of such a
measure eliminates to a certain extent the ambiguity of RTS classifications resulting from
input and output oriented models. Nevertheless, RTS classifications are still dependent on

the frontier point where inefficient observations are projected.
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Several other references concerning the estimation of RTS can be found in the literature.
For example Zhu and Shen (1995), introduce a simple approach that eliminates the need
to examining all alternate optima, Fére and Grosskopf (1994b) contrast their method to
the Banker and Thrall’s, and Banker et al. (1996a) summarise some methods and prove
their equivalence to the method of Fire et al. (1985). Appa and Yue (1999) proposed an
interesting procedure to determine unique scale efficient targets based on the concept of
mpss. Zhu (2000) extended this approach calculating scale efficient targets that correspond
to either the largest or the smallest mpss. Two interesting literature reviews on returns to
scale are presented by Seiford and Zhu (1999) and Léthgren and Tambour (1996).

An issue closely related to RTS is that of scale elasticity, that is, the proportionate
increase in outputs resulting from proportionate increase in inputs (see Banker and Thrall,
1992; Fukuyama, 2000). Banker and Thrall (1992) propose the calculation of scale elasticity
€ through the lower and upper bounds of u}, where . L. <8< 1—_-1;1: Fersund and

-u;

Hjalmarsson (1979) and Fgrsund (1996) also provide an analysis of scale elasticity and put
forward its relationship with scale efficiency. For more details on the calculation of scale

elasticity in DEA see also Cooper et al. (1996) and Fgrsund and Hernaes (1994).

2.3.3 Non-Discretionary Factors

Basic DEA models referred to in the previous sections assume that either all inputs
or outputs (depending on the model orientation) are discretionary or controllable factors.
However, in most real situations there are non-discretionary or exogenously fixed factors
that managers cannot control. Such factors are, in most cases, environmental characteristics
of production units that affect their performance but cannot be controlled by them.

Fried et al. (1999) introduced a classification of methods that are used to deal with
environmental or non-discretionary variables: (i) the frontier separation approach, (ii) the
all-in-one approach, and (iii) the two-stage approach. We use the same classification here
to briefly review the various methodologies that have been used in the literature to deal

with non-discretionary factors (see also Coelli et al., 1999).

The Frontier Separation Approach

The frontier separation approach groups production units according to some criteria
(usually categorical) and performs separate efficiency assessments for each of these groups.

An assessment of the pooled groups is then also undertaken in order to ascertain the impact
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of the criteria on efficiency. A first application of this approach can be seen in Charnes
et al. (1981) where schools running under the follow through program were compared to
those which were not run under this program. Another example applied to schools can be
seen in Portela and Thanassoulis (2001) where two levels of aggregation were considered in
assessing pupils efficiency: the school and the school type.

The approach developed by Banker and Morey (1986b) for dealing with categorical
variables can also be included under frontier separation methods. This approach consists
of introducing a set of dummy variables concerning the categorical factor so that units
belonging to a given group can only be compared with units in less favourable groups than
the unit being assessed. In this sense we can visualise a set of frontiers that are building
up (see also Charnes et al., 1994, pp. 51-54). This procedure can, according to Banker and
Morey (1986b), be used both when non-discretionary factors are continuous or categorical
variables, as any continuous variable can be transformed in a categorical variable. Some
improvements in the Banker and Morey (1986b) approach can be found in Kamakura (1988)
and Rousseau and Semple (1993).

There are at least two disadvantages in this procedure that are worth noting. First,
it implies the various categories to be ordered hierarchically, which is not always natural
(Fersund, 2001). Secondly, when there are several criteria the homogeneous groups of units
may be very small, As the discriminant power of DEA depends on the number of units and
on the number of input/output variables considered in the assessment, the smaller the group
the smaller is the discrimination between production units achieved by DEA. Staat (1999)
refers also to the problem associated with differing sample sizes across groups (see also
Zhang and Bartels, 1998, on this subject), and to the problem of comparability between
the resulting efficiency scores. Indeed, when production units are grouped according to

some criteria only efficiency rankings inside the same group can be meaningfully compared.

The All-in-One Approach

The all-in-one approach includes the non-discretionary variables directly into the DEA
efficiency assessment (this obviously excludes the possibility of categorical variables to be
treated under this approach). The usual procedure is to allow these variables to affect the
shape of the production frontier (which necessarily happens when they are considered as
inputs or outputs of the efficiency assessment) but they are kept constant in the calculation

of the efficiency score. The best known procedure inside this general approach is that
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developed by Banker and Morey (1986a). The proposed DEA model, in its envelopment
form, consists in associating the expansion (contraction) factor only to discretionary outputs
(inputs) in a first phase, and by maximising in the second phase only the sum of the slacks
associated to the discretionary factors. Non-discretionary factors are left aside in terms
of finding the optimal radial contraction or expansion factor and in terms of finding the
optimal slack values. Such a treatment of non-discretionary factors naturally results in
non-radial efficiency measures, however this aspect has not been stressed in the literature.
Taking the example provided by Banker and Morey (1986a) in Figure 2.10 we can see that
the radial efficiency measure of unit A (if all inputs were discretionary) would be z4g/T44.

When we consider input z; as non-discretionary the efficiency measure will be z4r/z44,

Figure 2.10: Banker and Morey Example

XA
Im |

Xm|

Input x¢

Input x4

which is a non-radial measure. That is, the projection on the efficient boundary does not
consider the reduction of the non-discretionary input and as such the discretionary input’s
reduction is greater than in radial movements. It is noticeable from Figure 2.10 that there
is a positive slack associated to the non-discretionary input. The value of such a slack is
only informative as the non-discretionary input cannot be reduced by the slack amount
so that the efficient subset of the technological frontier is attained. This means that the
relevant subset for projection should be such as to consider efficient also those frontier parts
where strong disposability of the non-discretionary factor apply.

Golany and Roll (1993) extended the work of Banker and Morey (1986a) by address-
ing the question of simultaneous non-discretionary inputs and outputs and also partially
non-discretionary factors. Cooper et al. (2000) extended the Banker and Morey (1986a)
approach to the additive model.

Some criticisms to the Banker and Morey (1986a) model can be found in Ruggiero
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(1996) and Ruggiero (1998), where the author advocates that the Banker and Morey’s model
does not properly restrict the reference set. According to this author the enforcement of
convexity to the non-discretionary factors “leads to improper restriction of the production
possibility sets and distorted efficiency measurement” (Ruggiero, 1998, p. 463). Another
criticism to the Banker and Morey (1986a) model concerns the fact that targets may be
constructed from any set of units. That is a unit in a “medium” environment may have
as peers units in a “good” environment and units in a “bad” environment. One way of
avoiding this is to consider in the reference set only units with environmental conditions
that are equal or worst to those of the unit being assessed. This is the approach proposed
by Ruggiero (1996) [see also Staat (1999)], which is, however, very close to the approach
of Banker and Morey (1986b) meaning that it actually reduces to a frontier separation
approach.

Muiiiz (2002) also criticises the Banker and Morey (1986a) approach pointing out the
fact that the resulting frontier is exactly the same as it would be if the non-discretionary
factors were considered controllable. As a result, the environmental conditions have no
influence on the efficiency status of production units and only those that are inefficient are
actually penalised by the consideration of some factors as being non-discretionary.

Besides these criticisms, the Banker and Morey (1986a) approach to treat non-discretionary
factors is still the most often used approach given its simplicity and its inclusion of all factors

(discretionary or not) in a single DEA model.

The Two-Stage Approach

A different approach to handle non-discretionary factors was introduced by Ray (1988)
and further developed in Ray (1991). According to this author non-discretionary or envi-
ronmental factors should not be included in a DEA assessment. A DEA assessment should
include only controllable factors, and then in a second phase a regression model should be
used to account for the uncontrollable factors. The difference between the efficiency score
estimated through the regression model and the efficiency score obtained from the DEA
analysis is interpreted by Ray (1991, p. 1627) as the extent of managerial inefficiency not
caused by external factors. That is, inefficiency is calculated as the shortfall of the DEA
efficiency score from the estimated efficiency score and not from 1. As pointed out by
Ruggiero (1998) this approach requires the specification of a functional form to the regres-

sion model meaning that a mis-specification may distort the results (see also McCarty and
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Yaisawarng, 1993).

One problem of the two-stage approach relates with the possible correlation between
the input/output factors used to calculate the DEA efficiency scores and the independent
variables used in the regression model (see Grosskopf, 1996). Another problem was referred
to by Xue and Harker (1999) as the dependency problem. That is, the DEA efficiency scores
are dependent on each other, which “violates a basic assumption required by regression

analysis: the assumption of independence within the sample” (Xue and Harker, 1999, p.
3).

Other Alternatives

Apart from the above mentioned methods to deal with non-discretionary factors there
are other alternatives that have been proposed in the literature. In general these alternatives
involve multi-stage procedures. This is for example the case of the approach proposed
by Ruggiero (1998) that links the approach of Ray (1991) and Ruggiero (1996) trying
to overcome its weaknesses. Indeed, in the Ruggiero (1998) model the non-discretionary
factors are considered in a weighted ‘index’ that assigns different importance to the various
factors according to the results of a regression analysis. This model only uses the regression
to calculate the weights to assign to the environmental factors and not to calculate an
adjusted measure of efficiency. This means, according to the author, that no distributional
assumptions are made regarding efficiency.

Another multi-stage model was introduced by Fried et al. (1999), and it deals with
environmental factors in four stages. According to Fried et al. (1999) this procedure has
the advantage of accounting for all sources of inefficiency as it regresses slacks (through
a Tobit model) on environmental factors instead of radial efficiency scores. In addition,
it also has the advantage of not requiring a pre-specification of environmental factors as

inputs or outputs (which is required, for example, in an all-in-one approach).

2.3.4 Super-Efficiency

DEA defines an efficient frontier constituted by the best performer production units.
Such best performers may in some cases be outliers whose distance from the bulk of units
under analysis is considerable. “DEA is in many ways, an outlier-based method. DMUs
which are outliers in terms of low input relative to output levels map out the efficiency

boundary” (Thanassoulis, 1993, p. 1132). This means that special attention should be
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devoted to outliers since some of them may be defining an efficient frontier that is not
reasonably achievable by most of the units under analysis.

Outliers, also known as influential units, are observations that present a unique com-
bination of variables and might, for that reason, distort the analysis. In such cases, the
exclusion of influential units should, in principle, be undertaken.

A number of methods have been proposed to detect influential observations. Most of
these methods apply the super-efficiency concept first introduced by Andersen and Petersen
(1993). The super-efficiency model establishes an efficient frontier where the unit being
assessed cannot be in. This may result in efficiency scores greater than one for those
units lying originally on the efficient frontier. Such efficiency scores allow discrimination
and ranking of originally 100% efficient units. Mathematically the changes required in
basic DEA models to exclude the unit being assessed from the efficient frontier are quite
straightforward. Consider the set J, that includes all the units under analysis except unit
o being assessed. In an envelopment model the terms Y_7_; Ajyr;j and 37, Ajzi; are such
that j € J, (see models (2.11) and (2.12)). In the dual multiplier model this corresponds to
eliminating the constraint 3 7%, v;Tij — Y ey UrYrj + o < (0r 2) 0 for j = o (see models
(2.13) and (2.14)).

Dusansky and Wilson (1994, 1995) checked for influential observations in the data by
deleting efficient units one at a time and recomputing the efficiency scores. The efficiency
scores resulting after each deletion were averaged and compared with the average efficiency
scores of the full sample (see also Wilson, 1995). “Sums of absolute and squared distances
in efficiencies across the DMUs were also compared” in order to check for outliers. The
main problem with this approach is that more than one observation can be influential and a
set of influential observations may be determining the shape of the frontier. If one of these
is removed only the shape of the frontier will change but not its relative position from the
other units. Recognising this problem, Dusansky and Wilson (1994) (see also Dusansky and
Wilson, 1995) also excluded pairs of observations, after which the same type of calculations
were undertaken. The criteria to consider under which circumstances an observation was
indeed an outlier were rather subjective. Indeed, there are no statistical methods to indicate
when changes in average efficiency are statistically significant, especially when the rankings
are not independent, as it is the case in DEA.

Another approach to exclude influential units was proposed by Thanassoulis (1999b),
applied to the school context where the production units considered were pupils. Super-

43



2.3 Efficiency Measurement

efficient pupils were detected through the use of the super-efficiency model of Andersen
and Petersen (1993). The decision on exclusion of super-efficient pupils was based on an
iterative process where some thresholds were specified so that the resulting efficient frontier
can be said to reflect what pupils can really achieve.

A different methodology was used by Fére et al. (1989), which has been dubbed jack-
knifing. This methodology consists of dropping one unit at a time in the calculation of
efficiency. This results for each unit o in a set of n — 1 efficiency scores calculated when
each unit j # o is eliminated from the assessment. For these n — 1 efficiency scores some
descriptive statistics can be computed. According to Fire et al. (1989, p. 414) “this tech-
nique allows us to employ statistical tests and reduces the effects of outliers in the results”.
Accordingly, small standard deviations are understood as suggesting the absence of outliers
in the sample. The jackknifing technique is criticised by Ondrich and Ruggiero (2002),
where the author argues that jackknifing is not useful in the detection of outliers and it
cannot deal with multiple outliers. In fact for efficient observations the jackniffing tech-
nique results in n — 1 efficiency scores of 1 and therefore the resulting standard deviation
is zero. As outliers are particularly meaningful when they lie on the estimated production
frontier Ondrich and Ruggiero (2002) conclude that this technique cannot correctly identify
outliers.

In summary a combination of the above methods can be applied to detect outliers or
influential observations. No method is perfect and ultimately all of them are subjective.
What is important to keep in mind is that in some circumstances the frontier is ill-defined
because of influential observations and their exclusion from the analysis is important to

guarantee a fair efficiency assessment.

2.3.5 Weights Restrictions

DEA gives full flexibility to production units in choosing the weights assigned to inputs
and outputs. Such flexibility can be regarded as an advantage: “clearly if you are free to
employ your own (optimal) weights and somebody else uses them to beat you at your own
game then a strong statement is being made” (Tofallis, 1996, p. 362). However, it can also
be regarded as a disadvantage especially as long as efficient units are concerned. Indeed,
the weight’s freedom of choice may result in production units completely neglecting certain
inputs and/or outputs and by doing so becoming efficient. This means that the final ratio

of efficiency might be meaningless, especially if a number of factors is neglected.
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Early practical applications of DEA called attention to the fact that efficient units
should be treated with caution because in some cases the weights attributed to input and
output factors were suspicious. For example, Thanassoulis et al. (1987) called attention
to the fact that some efficient local tax offices placed most of the weight on some outputs
while completely neglecting others.

Additional restrictions to the multiplier DEA model can be imposed to avoid the al-
location of zero weights to some factor’s of production. Such weights restrictions (WRs)
incorporate in principle prior views of decision makers (DMs) concerning the worth of each
factor of production. WRs may also be used with other purposes such as improving the

discrimination between efficient units, or to reduce the variability of weights across DMUs
(see Allen et al., 1997, for details).

Absolute Weights Restrictions

The most immediate form of placing restrictions on the weights is to restrict them to be
lower and/or higher than a given value. These restrictions can assume the form expressed in
(2.20), where v; stands for input weight and u, stands for output weight. Such constraints

are called absolute weight restrictions.

bi <vi<a ¢ L u < dr (2.20)

The first use of this type of weights can be seen in Dyson and Thanassoulis (1988) in
an application to local tax offices. Cook et al. (1994) also used direct restrictions on the
weights in an application to highway maintenance patrols, and Roll et al. (1991) explored
in some detail the implications of imposing absolute WRs to DEA models. Absolute WRs
have some problems, one of which is the potential infeasibility of DEA models with these
WRs. Podinovski (2001, p. 575) refers and illustrates this fact, also claiming that restricted
models “may not identify the maximum relative efficiency of the assessed DMU correctly”.
In a sense, this means that, the DEA weights under absolute WRs may not enable a
DMU to appear in the best possible light relative to other DMUs (see also Podinovski
and Athanassopoulos (1998) and Podinovski (1999)). Another problem with absolute WRs
relates with the interdependence between weights, i.e. “an upper bound on one weight
imposes lower bounds on the other weights” (Roll et al., 1991, p. 5). At the same time
the interpretation of the bounds placed on the weights under absolute WRs is not easy,
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since weights are especially meaningful on a relative basis”. Some procedures using virtual
input and output weights® were developed to overcome the latter problem, such as the
approach of Wong and Beasley (1990). Virtual input/output weights have the advantage
of being invariant to units of measurement, which does not happen with the weights of the
multiplier model. This means that care is needed when analysing these weights because a
higher or lower weight does not necessarily mean a higher or lower importance attached to
a specific factor, since all depends on the units of measurement of the factors. Restrictions
on virtual weights have, therefore, the advantage of being units invariant, but they usually
require more complex and computationally expensive procedures, since virtual weights are

DMU specific (e.g. Allen et al., 1997; Thanassoulis, 2001).

Relative Weights Restrictions

The most common relative WRs are the Assurance Regions (ARs), first developed by
Thompson et al. (1986). ARs can assume the form in (2.21) or (2.22), where one of the

input or output weight was chosen as numeraire (say v; and u,).

by € v < aivy i=1lvws 0 (input cone)
cu < ur < dyuy r=1...,8 (output cone) (2.21)
v; > el (linked cone) (2.22)

The set of constraints in (2.21) are called ARI and constitute separable input and output
cones. The constraints in (2.22) form AR-II, which link input and output multipliers. The
specification of bounds in ARs (like the scalars a;, b;, cr, dr, and e;) may be based on
input and output prices when these are known with precision (e.g. Cooper et al., 2000).
However, the main advantage of using price information in ARs arises when prices are
not precisely known, and price intervals are used in the construction of lower and upper
AR bounds. Thompson et al. (1990) argue that the inclusion of price information, even
imprecise goes beyond technical efficiency, representing a step towards cost or revenue
efficiency measurement (see also Thanassoulis et al., 2003).

The imposition of ARs on the multiplier model implies the addition of new variables

"Indeed, ratios os weights are equal to marginal rates of transformation (substitution) between outputs
(inputs).

8Virtual input or output weights are the product of optimal weights, resulting from the multiplier model,
and observed level of inputs or outputs.
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in the envelopment model. Such variables can be seen as new slack variables or new units
added to the data set (e.g. Roll et al., 1991; Thanassoulis and Allen, 1998). Alternatively,
as mentioned in Thanassoulis et al. (2003), ARs may also be interpreted as new facets
that are added to the original PPS, therefore changing the efficient frontier against which
efficiency is measured.

Another type of relative weight restrictions is the Cone Ratio (CR) procedure introduced
by Charnes et al. (1990). The CR approach consists of transforming the input/output
vector from (x,y) to (x',y’) = (Ax, By), such that the standard multiplier or envelopment
models can be used on the transformed data set. The matrixes A and B can be specified in
a number of ways, namely in a way that assures the equivalence between the CRs and ARs
(see for example Charnes et al., 1990). In Charnes et al. (1990) and Brockett et al. (1997a)
the matrixes A and B were specified based on the multipliers of role model or excellent
production units (banks in that case). That is, the weights of excellent banks were first
found through an unrestricted DEA model and then these weights were used to assess the
efficiency of all the other banks under analysis. Note that ARs are a special case of the

more general CR procedure.

Addition of Unobserved Production Units

As mentioned above, changes in the efficient frontier resulting from the imposition of
ARs may be interpreted as if new production units were added to the original data set (Roll
et al., 1991). This interpretation gave raise to another strand of literature that introduces
unobserved units to the original data set. The first study to enlarge the reference set was
that of Golany and Roll (1994), where standards were introduced in the DEA assessments.
The main difficulty with this approach relates with the establishment of standards. The
authors refer to this problem, but no guidelines on how these standards are actually to be
generated were provided.

Allen and Thanassoulis (1996) and Thanassoulis and Allen (1998) developed an ap-
proach that introduces Unobserved Decision Making Units (UDMUs) into the reference
set. Such approach was proved to be equivalent to the addition of weight restrictions to
the multiplier model. The most difficult aspect of the UDMUs approach is the actual cre-
ation of the unobserved production units. This is done in Thanassoulis and Allen (1998)
through the identification of a subset of units, called ‘anchor’, whose inputs/output levels
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are changed so that the resulting boundary better envelops all data points®. The UDMUs
are constructed from anchor DMUs and reflect the DMs value judgments on the trade-offs
between inputs and/or between outputs.

The enlarged data set (with observed and unobserved units) is seen in the UDMUs
approach as the final data set against which efficiency is measured. This can be done
through standard DEA models and standard procedures for identifying targets are also
valid. This means that radial targets may lie outside the original PPS but they are deemed
feasible as long as they represent trade-offs that accord with the DM’s value judgments.

The imposition of weights restrictions of any of the types mentioned above raises some
interpretation issues as to the efficiency scores and target levels obtained from restricted
DEA models. We will not detail on these issues here for the sake of brevity. In Allen et al.
(1997) and Thanassoulis et al. (2003) these issues are dealt with in some detail.

2.3.6 Efficiency Over Time

In the presence of time series data one can analyse the evolution of efficiency over
time. This can be done by plotting efficiency values in each time period and analysing how
efficiency has evolved over time. Such an analysis is, however, incomplete since not only
efficiency can change from period to period, but it is also likely that the efficient frontier,
against which efficiency is measured, changes from period to period. For this reason, it is
important to compare efficiency measures when these are calculated in relation to the same
time frontier. In addition, it is also of interest to analyse the changes in the technological
frontier from period to period.

There are some methods that can be used to perform a temporal analysis in DEA.
The one we will focus here with some detail is the Malmquist productivity index. Another
method that can be pointed out is the DEA window analysis first introduced by Charnes
et al. (1985a). It works by defining a window (set of time periods whose observations are
gathered together), and assessing efficiency for units in each window. Then a new window
is created with the first time period observations deleted and the subsequent observations
added. The process is continued until no more windows can be created. By comparing

efficiency scores of the same unit in different periods of time one may infer about the way

its efficiency is evolving.

?Anchor DMUs are those efficient DMUs “which delineate the DEA-efficient from the DEA-inefficient
parts of the PPS boundary” (Allen and Thanassoulis, 1996, p. 9).
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Another approach to analyse efficiency evolution is by Tulkens and Vanden-Eeckaut
(1995) who define three production reference sets: (i) ‘contemporaneous’, which includes
only units in the same time period, (ii) ‘sequential’, which includes all the units up to
the time period being analysed, and (iii) ‘intertemporal’, which includes units from all time
periods under analysis. The number of production frontiers defined is different in each case:
as many as the number of time periods in the contemporaneous and sequential analysis,
and a single frontier in the intertemporal analysis. Tulkens and Vanden-Eeckaut (1995) also
propose ways of measuring progress and regress for each observation as a way to analyse
the changes in the production frontiers over time. This is in general done through models
that assess a given unit in time ¢ in relation to a production frontier that relates to another
time period. The procedure of Tulkens and Vanden-Eeckaut (1995) is closely related to
Malmquist productivity indexes, that will be detailed next.

Malmquist Indexes

The Malmquist productivity index was introduced by Caves et al. (1982), and first
used in the DEA literature by Berg et al. (1992) and Fire et al. (1994b). A Malmquist
index is in fact a ratio of productivity ratios observed in different periods of time. If we
compute a productivity ratio P, = g—‘: in period t, then the ratio ‘-)'Pfl measuring the change
in productivity from ¢ to ¢ + 1, is a Malmquist productivity index. If this ratio is greater
than 1 productivity increased, and if it is lower than 1 productivity decreased.

When a number of factors are being considered in the analysis the calculation of total
factor productivity indexes is not easy because, in the absence of prices, there is no mean-
ingful way to aggregate different input and/or output values. A means to solve this problem
is to use radial distance functions like those mentioned earlier in this Chapter. Given an
efficiency score 9‘. indicating the radial efficiency of unit j as observed in period ¢ and
assessed in relation to the technology of period t (superscript), & Malmquist productivity
index can be computed as M; t = —’%*—— In this case the technology against which both
observations are being measured is t. Ob\nously the reference technology can also be t +1,
which results in M}t = —j,'-:& The values of these two Malmquist indexes may differ and as
such Fére et al. (1994b) conmder the geometric mean of both as the Malmquist total factor
productivity (TFP) index, that is, M; = (Eiﬁﬂ X %‘:{%‘—)(1” 2 This ratio can be decomposed
into two components measuring efficiency ci;ange J(tor catch up component) and technical

change (or boundary shift component) respectively. Efficiency change (EFCH), is simply
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the ratio of the efficiency of the same unit when evaluated in two different time periods,

Hrl
that is: —J—tiﬂ' Technical change (THCH) is given by ( %, X )(V 2)

el

The use of the geometric average for defining a Malun:c;ulst‘. J:i‘FP index is not necessary
as pointed out by Berg et al. (1992) (see also Fgrsund, 1993). These authors propose
an alternative approach where the Malmquist index is calculated in relation to a base
period. The base period Malmquist index is a ‘chain version’ of the Malmquist index,
which satisfies the circularity property. Circularity means that “the index from 1 to 3 is
equal to the product of the index from 1 to 2 and the index from 2 to 3” (Berg et al., 1992,
pp. S215-5216). Malmquist indexes as defined by Fire et al. (1994b) are not circular.

Fare et al. (1994b, p. 74) refer that “in principle, one may calculate Malmquist pro-
ductivity indexes relative to any type of technology (i.e., satisfying any type of returns to
scale)”. This means that although the Malmquist productivity index defined before uses
generally an efficiency measure, 0, calculated in relation to a CRS technology, one may
assume that the technology exhibits other types of returns to scale. In this situation we
can further decompose the efficiency change (EFCH) into a pure technical efficiency change

H-l ﬂt+l H-l ;ﬁf-+l

9 8
(PTECH) and a scale efficiency change (SECH) components, i.e. ——’,1‘— —ﬁi— X —%F’r‘ii
where 3 are VRS efficiency scores, and the scale change is given by the ratio of efficiency
scores calculated under CRS and VRS.
The Malmquist decomposition proposed by Fére et al. (1994b) will be called FGNZ and

is resumed in (2.23)9.

t4+1 'H-'I. i+1 'H-l
= (e ) - B I (e 5
Bj ij ﬁ.is Jt / 5.?3 93:+1 93':
M; = PTECH x SECH x THCH = EFCH X THCH (2.23)

Although the FGNZ decomposition is widely used, it is not free of controversy. For
example Ray and Desli (1997) argue that when the technology is not characterised by
CRS, then technical change should not be the result of comparing CRS technologies (as
above) but the result of comparing VRS technologies. Following this reasoning Ray and
Desli (1997) come out with a different decomposition (the RD decomposition) which is
arguably more appropriate for VRS technologies. The decomposition of Ray and Desli

10There are other possible decompositions to the FGNZ Malmquist index, namely those put forward by
Fire et al. (1998) where technical change is decomposed into an output biased technical change component,

an input biased technical change component, and a magnitude component. These decompositions will not
be detailed here.
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(1997) is shown in (2.24), where Sf, = -'E'-. 1= s 2 g = Jz'rr', and St = %&r.

gt 6t | (172 ¢+1 St St a2 t 1/2
by = () = S (i i'::;)‘ ™ x (Gt x )™
e.f 3 Je SJ'I SJ: ﬁic-n ﬁ
M; = PTECH x SECH x THCH (2.24)

The first term in (2.24) is the pure technical efficiency change, the second is the scale
change component, and the third is the technical change or boundary shift effect. Note
that differences in relation to the FGNZ approach happen for the technical change effect,
which is defined in terms of the VRS technology, and for the scale effect, which is given by
a geometric mean of two effects rather than by a simple ratio as in the FGNZ approach.

Fire et al. (1997b, p. 1041) criticised the RD approach based on the argument that
the RD technical change component measures the shift in the VRS technology “but that
shift is not the change in maximal average product”, which is only measured when CRS
technologies are assumed. Fare et al. (1997b) also point out the possibility of infeasible DEA
models when VRS efficiency is calculated in relation to a different time period technology.
Infeasible models lead to computational problems in the RD decomposition. Such does not
happen when the FGNZ decomposition is performed because, under CRS, efficiency can
always be computed both in relation to the own time period technology and in relation to
another time period technology.

There is also another decomposition of interest in the literature that is a kind of mixture
between the RD and FGNZ approaches. Such a decomposition was proposed by Wheelock
and Wilson (1999) and is shown in (2.25).

Bty St s B, S, 1/2
Mj =~ H x (=2 “) ( ':++11 A ﬁti-l i Si:ll S‘"‘l)( & (2.25)
‘ Jt+l Jt Je+1

The first term in (2.25) corresponds to pure technical efficiency as in RD and FGNZ, the
second term is the scale change of FGNZ, the third term is the technical change compo-
nent of RD and the last term was introduced by the authors and is scale related. This
decomposition is based on the FGNZ approach where the authors decomposed the techni-
cal change component of FGNZ into a pure change in technology component and a scale
change component. This last scale component was called scale bias in Lovell (2001).

Note that irrespective of the approach used to decompose the Malmquist index its value
is the same (Mj) for each of the approaches mentioned above. The Malmquist index is,
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therefore, in all cases calculated through CRS efficiency scores. This is because in order to
be a total factor productivity index the Malmquist index should be computed in relation
to CRS technologies (e.g. Fire et al. (1997b), Bjurek et al. (1998)). This fact is also
mentioned by Grifell-Tatjé and Lovell (1995) who proves that when distance measures are
calculated in relation to VRS technologies the resulting Malmquist index mis-measures
actual productivity change.

The above decompositions are based on radial (or Farrell type) measures of efficiency,
which may be either input oriented or output oriented. In fact the above decompositions are
equally valid whatever the orientation used. However, one needs to be aware that efficiency
results, and therefore the various components of the Malmquist index, may depend on
the orientation of the model, especially when VRS technologies are assumed (under CRS
efficiency scores do not depend on the orientation).

The technologies considered above are only two: CRS and VRS. There are, however,
other variants in the literature either concerning the technology, and the type of distance
measures employed in the computation of Malmquist indexes. For example, Tulkens and
Malnero (1996) applied Malmquist indexes in Free Disposal Hull (FDH) technologies, and in
Tulkens and Vanden-Eeckaut (1995) the authors go further in using 4 types of technologies
(FDH, CRS, VRS, and NIRS) and three types of distance functions: radial input oriented,
radial output oriented, and the hyperbolic measure of Fire et al. (1985). Concerning the
use of non-radial and non-oriented measures of efficiency to calculate Malmquist indexes

the discussion will be postponed to Chapter 8 where we detail on these issues.

2.4 Summary

In this Chapter we have reviewed some concepts on efficiency measurement though data
envelopment analysis. DEA implies the specification of a production technology against
which efficiency is measured. The technological set can be of various types presenting
different returns to scale assumptions or different convexity assumptions. Having speci-
fied the technological set, a number of distance measures between observed points and the
frontier of the technological set can be specified. Such measures are efficiency measures,
which can be of various types ranging from radial to non-radial. In this Chapter we pre-
sented some technological specifications and some efficiency measures commonly used in
DEA. We also reviewed some other aspects concerning efficiency measurement that will be

used to some extent throughout this thesis. Namely, we distinguish between economic and
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technical measures of efficiency, we point out some models that can be used when there
are non-discretionary factors in the data set, we mention some models used to measure
super-efficiency and detect influential units, we acknowledge the existence of various forms
of restricting the weights in a DEA model, and finally we point out to methods that are
usually used to analyse productivity change over time, namely the Malmquist index ap-
proach. Each of the basic concepts introduced in this Chapter will be used and/or extended

in subsequent chapters of this manuscript.
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Chapter 3

Banking Efficiency

In this Chapter we discuss some of the most recent trends in the banking industry, and
analyse some important issues involved in the measurement of banking efficiency. Further-
more, we explore some implications of banks being service organisations on the measurement

of their efficiency.

3.1 Banking Context

The international financial services industry has been exposed to major changes over
the 80’s and 90’s. Among these, the liberalisation and deregulation of financial markets
can be regarded as the leading force of change. By liberalisation and deregulation of
financial markets we mean the abolishment of controls over capital movement, interest rates,
and credit limits as well as the elimination of most controls and regulations over financial
markets (like restrictions to the balance structure, to market access, and to territorial
expansion of activities). Developments on information technology (IT) have enhanced and
supported most of the changes in the financial markets since the 80 °s. Indeed, the removal
of controls over capital flows allowed free movements of capital, but these would not be
effective without an adequate support of IT (Canals, 1995).

The liberalisation and deregulation of financial markets had two important immediate
consequences, (i) an increased internal and external competition, both from financial and
from non-financial companies, and (ii) the internationalisation and globalisation of financial
activities (e.g. Molineux et al., 1996; Canals, 1995). The increasing competitiﬁn gave rise
to what has been called desintermediation, since banks have lost ground in terms of their

intermediation role. Indeed, on the one hand stock markets have attracted customers that
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previously relied on banks for financing and investing, and on the other hand banks have lost
some business for non-financial companies that started offering customers various financing
schemes for the acquisition of their products.

The worldwide changes in the financial industry have been particularly felt by European
countries due to the European monetary and economic integration. The introduction of the
Euro in 01 January 1999 and its physical appearance in 01 January 2002, and all the steps
that have been followed towards EMU (Economic and Monetary Union), were important
in the process of deregulation and liberalisation of European countries and are still a factor
reinforcing the general trends of the industry.

The demand and supply changes on banking services brought about by competition
have led to a deterioration of bank profitability and increased their exposure to risk (as
the migration of credits from banks to capital markets left banks with higher-risk credits).
The responses of banks to this increased competitive pressure passed through mergers and
acquisitions, through the diversification of activities (for example entering in new financial
business like insurance and stock markets), and through innovation. At the same time
cost reductions have been undertaken by banks and efficiency issues have deserved more
attention than ever, as under competitive pressures banks cannot afford to waste their
resources. It is interesting to note the trend over a rationalisation of resources that banks
have been involved with, which has been mainly based on capacity reductions. For the
European case the European Central Bank (ECB, 1999b) reports a 26% reduction in the
number of credit institutions between 1985 and 1999, and a 7.7% reduction in the number
of branches (per 1000 capita) between 1985 and 1997. This decrease in the number of
credit institutions reflects mainly the phenomenon of mergers and acquisitions (M&A). In
Portugal this phenomenon has also been a reality as can be seen in Figure 3.1. This figure
shows that a big percentage of total assets belongs to a small number of banks, and that
this number has reduced substantially between 1994 and 2000 (The picture today did not
change much from that in 2000).

In spite of the great amount of M&A that took place in Portugal during the 90’s, the
total number of banks did not decrease (as can be seen in Table 3.1). This is explained
on the one hand by the increasing number of foreign banks operating in Portugal, and on
the other hand by the fact that mainly acquisitions have occurred and the banks involv?d
did not merge remaining, as such, separate institutions. In Table 3.1 the total number of

banks include Portuguese banks and also foreign banks. From 1993 to 2002 the number of
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Figure 3.1: Total Assets (billion PTEs) of Larger Banks in Portugal
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HPl - Banco Portuguds de Investimento, BIPSM - Banco Pinto ¢ Sotto Mayor, BFE - Banco Fomento Extenior,
BES - Banco Espinto Santo, BCP - Banco Comercial Portugués, BTA - Banco Totta e Agores,

BPA - Banco Portugués do Atlintico, CGD - Caixa Geral de Depdsitos, BSCH -Banco Santander Central Hispano,
CPP - Crédito Predial Portuguds

Table 3.1: Activity Indicators of the Portuguese Banking Sector (Data kindly provided by
the Bank of Portugal)

Description 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Total N.Banks 41 44 45 51 57 59 61 65 6l b3
Forcign Banks T a 9 12 14 16 17 22 19 19

N. Branches 2872 3115 3489 3725 3979 4159 4467 4668 4781 4823
N. Employees H7H31 H5T347 54975  H4TI8 51128 48637 49490

foreign banks increased from 7 to 19 (about 171%), while the number of Portuguese banks
increased at the much slower rate of 29%. In the same period the number of bank branches
in Portugal increased by about 68% (see Table 3.1). The increasing trend is consistent over
the whole period of analysis, though in recent years the rate of growth has been much lower
than in the 90's. In fact from 2000 to 2002 the total number of banks and the number
of employees decreased, while the number of bank branches increased at a lower rate. In
accordance with what is happening in most EU countries, it is expected that the number
of bank branches operating in Portugal eventually starts declining in the near future. The
declining trend has been felt more markedly in the number of banking employees that
started decreasing after 1996 (see Table 3.1), though in 2002 there was a slight increase in
relation to the previous year. The declining number of employees in the banking sector is
related, on the one hand, to the search for more efficient ways of working that have been
supported by IT developments, and, on the other hand, to the advent of new distribution
channels, whose effective use by customers increased immensely in the 90’s. This aspect is

the subject of the next section.
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3.1.1 The Changing Role of Bank Branches

According to ECB (1999a) IT developments can be regarded as the main driving force of
change in the banking sector. The influence of IT over banking is both internal and external.
The internal changes generated by IT developments consist in the replacement of paper-
based and labour intensive methods by automated processes. This substitution makes banks
more cost-effective, as the “automation of a significant amount of processing, administration
and routine customer service has reduced the branch’s overall manpower requirement for
traditional bank clerks while simultaneously increasing their output capacity” (Howcroft,
1992, p. 48).

The external changes generated by IT developments resulted in the appearance of a
number of new alternative ways by which clients can access banking services. These alter-
native ways of distributing banking services can be called ‘remote banking’ (ECB, 1999a)
and include phone banking, internet banking, and automatic banking (automatic teller
machines - ATMs).

The usage of alternative distribution channels has been growing in the last few years.
From the different remote banking channels the least used presently is internet banking.
Its use depends on the computer and internet literacy of users, which is not yet very high
in Europe. For 1998, ECB (1999a) reports a maximum percentage of internet users of 35%
in Finland and a minimum of 1% in Greece. Nordic countries have the highest percentages
(33% for Sweden and 22% for Denmark) and Mediterranean countries have the lowest
percentages (2% for Portugal, 4% for Italy, 7% for Spain and 6% for France). Concerning
phone banking, ECB (1999a) reports that the highest percentage of retail customer’s base
reached by this distribution channel was 10% (for France and the UK). Concerning ATM
machines Table 3.2 (see ECB, 1999a, Table A.I, p. 36) illustrates their rate of growth in
recent years. In the five years period considered in this Table the number of ATM’s in the
EU has grown around 50%. At the same time the number of transactions per capita (last
column of Table 3.2) also increased but at a lower rate (46%). Portugal was the country
that exhibited one of the largest percentage increase in the number of ATMs (following
Greece and Denmark with the highest rates of change), and this change was accomplished
by an increase in the number of transactions of around 120%. At the end of 1997 Spain,
Portugal, and Austria had the highest number of ATMs per capita (see Table 3.2). Finland
is the only country exhibiting a decreasing trend in the number of ATMs, although the

number of transactions increased.
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Table 3.2: Number of ATM Machines per 1.000.000 Inhabitants
1993 1994 1995 1996 1997 Change Transac capita

Belgium 280 313 360  41a 492 76% 0%
Denmark 108 142 207 239 253 134% n.a.
Germany 308 361 437 459 504 64% n.a.
Grecece 82 155 120 185 209 155% n.a.
Spain 557 600 680 775 863 55% 2™%
France 325 355 393 420 462 42% 51%
Ireland 220 241 257 290 286 30% 54%
Italy 262 321 371 422 444 69% 117%
Luxemburg 294 374 456 537 613 109% 5%
Netherlands 202 325 355 373 410 41% 61%
Austria 320 381 420 479 533 67% 38%
Portugal 283 337 372 541 631 123% 120%
Finland 591 557 474 448 445 -25% 8%
Sweden 255 260 266 269 268 5% 24%
UK 328 343 358 376 393 20% 41%
EU 324 363 408 448 488 51% 46%

The increasing number of ATMs has been taking place together with an increasing usage
of this distribution channel. This, however, has not been the case with other distribution
channels, namely internet and phone banking, whose degree of usage in Portugal is still
below expectations. A study carried out by Marktest in 2000 on the Portuguese banking
sector! reveals that the branch is the distribution channel most preferred by Portuguese
customers for almost all the banking services considered except for payments of bills (water,
electricity, etc) where ATMs are preferred. Table 3.3 reports some results from the Marktest

Table 3.3: Percentage of Transactions in Different Channels
Description General Payment Acquisition Credit Information on General

Operations of Bills  of Products Products held  Information
Branch 477% 41.1% 86.1% 87.8% 435% 64%
ATMs 46.2% 48.9% 2.6% 2.8% 40% 14.2%
Phone 2.4% 3% 3.2% 2.9% 7.8% 10.6%
Internet 1.7% 2.8% 2.1% 1.5% 6.1% 7.6%

study, showing the reduced importance of internet in the Portuguese market. For certain
type of operations like payment of bills, general operations, and general information on
products ATMs play an important role as more than 40% of these operations are done
through this distribution channel. The Marktest study further reports that only 4% of
customers admitted to use the internet as a means of contact with the bank in the last
three months. This same percentage raised to 83.5% for the personal contact at the branch,
to 67.5% for contact by means of ATMs, and to 6.7% for phone contacts.

Irrespective of the degree of usage of each alternative distribution channel, there is no
doubt that their importance is growing, and that they will be in a very near future the

means of choice to perform most banking transactions. This obviously brings in some

!Data from this study was kindly provided by the bank, which is the subject of our empirical study.
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changes to the traditional way of understanding and undertaking banking activities, which
happen both at the bank and at the branch level.

At the bank level new distribution channels bring in a new competitive environment
where barriers to entry are likely to be reduced due to the no longer necessary large branch
network to reach a “critical mass” of customers. This new competitive environment is
also characterised by more informed customers who have easy access to information, which
facilitates their mobility between banks. In face of such a dynamic environment banks need
to redefine strategies. These are in general shifting from relationship-oriented to product-
oriented (Howcroft, 1992, p. 41), which rely less on customer contacts. This obviously is a
potential threat to bank branches since an emphasis on products implies its selling through
other means than the branch. New distribution channels also bring in a new strategic choice
to banks relating with the delivery mix of products. Banks need to choose not only prices
or the product mix but also the delivery mix of financial products (see Howcroft, 1992).

At the bank branch level the emergence of new distribution channels represents a threat
to their predominance as the means of choice of distributing financial services. This threat
might, however, only partly be able to reduce the importance of bank branches, especially
due to the increase in personal-advice intensive banking activities that is being undertaken
(ECB, 1999b). Indeed, bank branches have been shifting from operating services to con-
sulting (ECB, 1999b), i.e., they are placing less importance on the delivery of transactional
services and more importance on exploiting the potential of branch networks as selling
outlets for financial services (e.g. Drake and Howcroft, 1995; Howcroft and Beckett, 1993;
Howcroft, 1992). In this sense, new distribution channels can be regarded as advantageous
to bank branches, since they can place more emphasis on value-added activities (sales
related) leaving basic transactions to be performed on other means of distribution. For
the bank as a whole this represents a cost advantage, since general operations performed
on alternative means of distribution are cheaper than when performed by bank branches’
personnel.

The reorientation in the role of bank branches has been supported by layout changes
aiming at creating atmospheres more conducive to selling rather than to cheque or savings
processing (Howcroft and Beckett, 1993, p. 277). Bank branches are also adopting more
pro-active philosophies towards customers. They have been following customers to the
places where they go, like shopping centers and supermarkets (Radecki et al., 1996). In

these places bank branches have usually extended opening times consistent with the flow of
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people. At the same time 24 hour banking has become a reality, through ATM machines,
call centres, and internet banking that are available 24 hours. Both, layout changes and
pro-active attitudes, have been a reality in Portugal and particularly in the bank, which is
used in our empirical study.

According to Howcroft (1989) the new distribution channels and IT developments should
not be regarded as substitutes of the branch network but as complements. IT can be used to
increase the efficiency of bank branches while enabling them to focus on different strategies.

As a consequence, despite the growing importance of alternative distribution channels,

it’s not time to give up on the traditional bank branch just yet. After all, it’s
that familiar sign at street level, and the staff within the branch, that are often
a customer’s first, and perhaps most comfortable, introduction to the bank,
serving as a point of entry to the growing number and diversity of banking
products, services and delivery channels. (Howland, 2000, p. 29)

Nevertheless, bank branches survival depends on a refocusing of their activities, and in
this process the measurement and monitoring of their efficiency assumes particular rele-

vance.

3.2 Traditional Methodologies in Banking Efficiency Assess-

ments

The methodologies that have been used to assess banking efficiency can be classified into
three main strands. The oldest strand relates to studies using econometric cost functions
to analyse scale and scope economies in banking. These studies assume that production
units are efficient, which is consistent with traditional economic theory. The second strand
is also econometric or stochastic but uses frontier methods and aims at assessing not only
scale and scope economies but also (in)efficiency. The third and most recent strand also
uses frontier methods but these are deterministic or non-parametric. Both parametric and
non-parametric frontier methods were inspired by the work of Farrell (1957), although the
roots of parametric techniques go back to 1928 with the work of Cobb and Douglas who
developed a production function that is known by their names (Greene, 1993, p. 68). Non-
parametric frontier methods have been mostly used after its operationalisation by Charnes

et al. (1978) that gave rise to Data Envelopment Analysis (DEA).
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Parametric techniques can be classified into three categories [according to Berger and
Humphrey (1997)]: (i) the Stochastic Frontier Approach (SFA), (ii) the Thick Frontier
Approach (TFA), and (iii) the Distribution Free Approach (DFA). Each of the stochastic
frontier methods has advantages and disadvantages. In the article where he develops the
DFA, Berger (1993) criticises the two other methods, referring to their strong and unverified
assumptions on the statistical properties of efficiency and random error terms. In SFA the
use of the half normal distribution for the inefficiency term, is, according to Berger (1993)
inflexible relative to other distributions and “it embodies the arbitrary restriction that
most firms are clustered near full efficiency” (Berger, 1993, p. 262). For the case of TFA
the main criticism of Berger (1993) concerns the arbitrariness of where inefficiencies stop
and random error begins. According to Berger (1993) the DFA has the advantage of not
imposing such arbitrary assumptions on the data. Its main disadvantage is, however, the
fact that only one average efficiency value is provided by the method. That is, the use of
panel data not allow the analysis of efficiency changes over time since the final result is a
single average over time efficiency measure for each unit.

In stochastic frontier methods two choices need to be made: one concerning the method
for drawing the efficient boundary (which can be one of the three above), and another
concerning the type of functional form to use. According to Berger and Mester (2000) the
translog is the most popular form in the literature. However, this functional form has some
problems and a more flexible form, the Fourier-flexible functional form, has been recently
preferred by some authors.

In summary there are some choices to be made when efficiency is to be measured
through frontier methods. First one needs to decide whether to use parametric or non-
parametric techniques, and then within each technique a number of other choices are to
be made. Doubts naturally arise concerning whether parametric methods are better than
non-parametric ones, or whether a given specification is better than another inside the same
general method. According to Berger and Humphrey (1997) there seems to exist no agree-
ment concerning parametric vs non-parametric methods, as all methods have advantages
and disadvantages. Among these, Berger and Humphrey (1997) refer to the fact that para-
metric methods have the disadvantage of imposing a functional form to the best-practice
frontier and demanding some assumptions regarding the behaviour of the parameters of

the model. If the functional form specified is not the correct one, then efficiency will be
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confounded with specification errors2. On the other hand non-parametric methods do not
impose any functional form on the frontier®, but have the disadvantage of not allowing for
random errors due to chance, data problems, or measurement errors. If this random error
exists then it will be entangled with actual inefficiency. An advantage of non-parametric
methods is also the fact that they result in individual efficiency measure for each observation
(Forsund et al., 1980).

As the true level of (in)efficiency is unknown it is impossible to state without doubts
whether parametric techniques outperform non-parametric techniques or vice-versa. Em-
pirical evidence suggests, however, that the two sets of methods give similar results in
terms of efficiency scores, although they tend to disagree in terms of variation and ranking.
For example, in their literature review, Berger and Humphrey (1997) compared average
efficiency for banks under the two broader classes of methods and reached similar values
of efficiency. Berger and Humphrey (1997) report a similar average efficiency for the two
methods in US banks with parametric methods providing higher estimates of efficiency,
and lower dispersion on estimated efficiency (standard deviation of 0.17 for non-parametric
techniques against a value of 0.06 for parametric techniques). Ferrier and Lovell (1990) also
compared the two methods (DEA and stochastic frontier methods) in an application to 575
banks in the US, and concluded that “the two approaches are in substantial agreement on
several important issues” (see p. 24).

The reference to differences in ranking is not supported by strong empirical evidence
as only a few banking studies compare ranks across the two techniques. The study by
Ferrier and Lovell (1990) reported a positive correlation between rankings, but this was not
statistically significant. Giokas (1991) compared DEA and the loglinear estimation function
using 17 bank branches in Greece. The models provided similar results concerning the
significance of certain variables, but there were some differences concerning the classification
of units. Under DEA some units had an efficiency score of 100% whereas under the loglinear
model these same units had an efficiency score significantly below unity. Rankings may be
different when comparing parametric and non-parametric methodologies, but there are also
significant ranking differences within the same class of method. For example, Bauer et al.

(1993) compared, in the banking context, SFA with TFA and concluded that whereas the

?As referred to previously these methods, in particular the SFA, may have other problems associated
with the distributional assumptions imposed on the inefficiency and error terms (see Berger, 1993).

3There is, however, some structure embodied in the assumptions that underly the construction of the
efficient boundary.
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two approaches yielded similar results in terms of inefficiencies “they rank individual banks
quite differently” (see p. 410).

Outside the banking literature comparisons between parametric and non parametric
methodologies have also been undertaken. For example Gong and Sickles (1992) compared
DEA with some stochastic frontier methods applied to a simulated data set where the true
production frontier was known. The authors concluded that stochastic frontier methods
outperform DEA when the functional form chosen was close to the underlying technology,
being the reverse true when the functional form was not close to the underlying technology.
In real world applications it is difficult, if not impossible, to know whether the functional
form chosen resembles the underlying technology, which gives an advantage to DEA over
stochastic methods. In a number of studies by Banker and colleagues (Banker et al., 1986,
1988, 1993, 1996b) DEA was compared with parametric methods in a number of respects.
Conclusions point out the superiority of DEA, whose accuracy increases with the size of
the sample of observations. Hjalmarsson et al. (1996) compared two deterministic methods
with stochastic frontier methods in an application to the Colombian cement industry. In
general the authors conclude that “efficiency scores and the time pattern of efficiency vary
as much within each class of models as across models” (see p. 321).

In summary, the above studies suggest that more important than choosing the technique
to be employed in a particular data set is the choice of the model specifications within that
technique. In addition, the advantages/disadvantages of parametric and non-parametric
techniques are complementary which suggests that the use of both methodologies can bring

some light to the understanding of the production process being modelled.

3.3 Different Efficiency Approaches - The choice of Inputs
and Outputs

As banks and bank branches are complex units of analysis it is almost impossible to
analyse their efficiency without focusing on specific aspects of the production process. An
attempt to include all inputs and outputs that banks or branches consume and produce
might prove quite difficult. On the one hand the choice of input and output factors might be
a problematic issue, and on the other hand the expected high number of such factors might
turn the analysis, parametric or not, of limited significance. For this reason authors have

focused on some perspectives of the activity of banks and bank branches to measure their
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efficiency. The main approaches one can distinguish are the production and intermediation
approaches to banking activities (see Colwell and Davis (1992) for a detailed discussion on
both approaches).

The production approach takes the perspective of operations that go on in a bank
or bank branch. These are seen as production units that use a set of resources, such as
staff, computer terminals, space, etc. to produce a set of services such as various types of
accounts, loans, insurance, etc. In this sense banks are seen as service providers, where
the emphasis is on operational activities rather than on market oriented financial activities.
Under this approach inputs relate to personnel and capital, and outputs are usually the
number of transactions performed at the bank or the number of accounts of various types
held by the bank. Interest costs and revenues are excluded from this approach. Inputs and
outputs should, under the production perspective, be measured in physical units (Berger
and Humphrey, 1997). Most of the existing studies in the literature that focus on production
efficiency use the bank branch as the unit of analysis [e.g. Sherman and Gold (1985),
Athanassopoulos (1997), Vassiloglou and Giokas (1990), Giokas (1991), Drake and Howcroft
(1994), Schafnit et al. (1997), and Camanho and Dyson (1999)]. Some studies that focus
on banks and use this approach can be seen in Ferrier and Lovell (1990), Berger et al.
(1987), and Berg et al. (1991).

The intermediation approach looks at banks or bank branches as intermediaries -
collectors of funds that are intermediated into loans and other assets. Under this approach,
and in simple terms, the bank borrows funds at some price and sells them at a different
and higher price. In this sense the bank earns some revenues which are the outputs of
the efficiency assessment. It also incurs some costs, which are considered the inputs of
the assessment. The inputs that are most commonly used in the literature under this
approach are the interest and non-interest costs (service rates, commissions, salaries and
other expenses). The outputs are usually interest income and non-interest income, total
volume of loans, deposit accounts, saving deposit accounts, etc. Most of the existing studies
in the literature that focus on this approach use banks as the unit of analysis. Some
examples can be found in Berger and Mester (2000), Berger et al. (1987), Berger and
Humphrey (1991), Aly et al. (1990), Barr et al. (1993), etc. Bank branch’s studies using
the intermediation approach can be seen in Berger et al. (1997) and Athanassopoulos (1997).

Both the intermediation and the production approaches obviously fail to reflect each

one on its own the global set of activities going on at a bank or its branches. They
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need to be used simultaneously if one wants to get a complete picture of the bank or
branch efficiency (see for example Athanassopoulos (1997) or Berger et al. (1997) who used
both approaches). Berger and Humphrey (1997) and Thanassoulis (1999a) point out that
financial institution have a dual role of providing transaction services, and of acting as
financial intermediaries. In this sense both the intermediation and production approaches
should be used together since they respond to different issues. The production approach
is appropriate to measure cost efficiency as it uses mainly variables relating to operational
costs of banks, and the intermediation approach, which is concerned with overall costs,
is more appropriate to answering questions related to the economical viability of banks
(Ferrier and Lovell, 1990, pp. 230-231). According to Berger et al. (1997) the intermediation
approach is generally preferred for analysis at the bank level because it is more inclusive and
it captures the essence of a bank as a financial intermediary. At the same time substitutions
between operating costs and interest costs (increasing one while decreasing the other) are
only captured by the intermediation approach (Berger et al., 1997). According to the
same author, for an analysis at the branch level the production approach might be more
appropriate. This is because the asset and liability decisions are taken by banks as a whole,
while branches are primarily producers of depositor services.

Within each of the two broad approaches to analyse banks or bank branch’s activities
there is reasonable agreement about the factors that should be considered inputs or outputs
of the efficiency assessment. The main controversial factor is bank’s deposits, which can be
both considered as an input (as banks receive money from deposits, which is then used to
create other banking assets) and as an output (as they are one amongst a set of services
banks provide to their customers) (see e.g. Berg et al. (1991), Colwell and Davis (1992),
Adams et al. (1999) or Berger and Humphrey (1997) for a discussion on this subject). There

are three approaches to help assigning banking factors to the input or output categories.
These approaches are:

(1) the asset approach (only assets are outputs), (2) the user-cost approach
(accounts that provide net revenue above the opportunity costs are outputs),
and (3) the value-added approach (accounts associated with large expenditures
of real resources are outputs). (Adams et al., 1999)

According to each of these approaches deposits may be considered inputs or outputs. In the
asset approach they are inputs, and in the value-added approach they are usually considered

outputs. In the user-cost approach they may be considered either inputs or outputs (Adams
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et al., 1999).

In the study by Adams et al. (1999) the authors tested various model specifications
assuming in all the cases that loans are outputs, but changing the specification of deposits
and savings either as inputs or outputs. The results suggested that the specification of
deposits as inputs statistically dominated the other model specifications. Tortosa-Ausina
(2002) also analysed different output specifications considering deposits in one case both
on the input and output side, and in the other case only on the input side of the DEA
assessment. Results point out for great differences in the shape of the efficiency distribution
depending on the output specification. This suggests that it is not indifferent to consider
deposits on the input or output side of the efficiency assessment. One way to avoid such an
ambiguity is to use a dual approach capturing both the input and output characteristics
of deposits (Berger and Humphrey, 1997). This was done in Berger and Humphrey (1991)
who considered quantity of deposits on the output side of the efficiency assessment, and
interest paid on deposits on the input side of the assessment.

Another discussion in the literature concerns the units of measurement of the factors
used in the analysis. The units of measurement can either be represented in quantity or
value of accounts. Typically the production approach uses number of accounts as outputs,
and the intermediation approach uses value of accounts as outputs. Arguments in favour of
using number of accounts include the fact that providing accounts or credit to clients results
in expenses that are not directly related with the value deposited or loaned. Arguments in
favour of using the value of accounts include the fact that the market evaluates a bank in
terms of value and not in terms of number of accounts (Molineux et al., 1996, Chapter 5).

In the study of Berg et al. (1991) the importance of selecting appropriate units of
measurement in an efficiency analysis was discussed. The authors used DEA to evaluate
technical, and scale efficiency considering two different output measures, one expressed in
monetary terms and the other considering the number of accounts and their average size.
Results suggested that there were not many differences between using one or the other type
of output measure as far as the characteristics of the efficient frontier were concerned. As
for the ranking of individual banks this was affected by the output measure used, meaning
that “before undertaking efficiency studies, one should therefore take great care to clarify
what kind of efficiency one wants to measure, and define output measures accordingly”
(Berg et al., 1991, p. 140).
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3.4 Banks as Service Organisations: Implications

“Services are ‘different’ and as such they challenge us to reformulate or develop new
models to analyze them” (Chase and Heskett, 1995). For this reason it is important to
analyse the implications of banks being a service organisation in measuring their efficiency.

As service organisations banks present a number of characteristics specific to services.
The differentiating characteristics of services are mainly four: intangibility, perishability,
simultaneity of production and consumption, and heterogeneity (e.g. Klassen et al., 1998;
Lewis, 1989). The intangible nature of services makes their quantification difficult. The si-
multaneous consumption and production and perishable nature of services makes it difficult
to determine their production capacity in the absence of immediate demand. In addition,
the simultaneity of services makes it difficult to disaggregate marketing and production
functions, as these are often undertaken by the same person. As a result, the participation
of the customer in the service influences the production process and may have an effect on
the quality perceptions of customers. Services are also, in their intrinsic nature, heteroge-
neous as each customer requires in one way or another a specific way of being served [for
details on the impact of service characteristics see Lewis (1989)].

A direct result of banks being service organisations is that efficiency is usually harder
to measure (and define), and is linked with a set of other important performance measures
such as service quality and effectiveness (Lovelock, 1996, Chap. 11). Let us consider a
simple manufacturing organisation that produces chocolate cakes and define its efficiency
as the extent to which the maximum output is produced given the set of inputs used. If
we use a single measure of output which is the quantity of cakes produced, and if inputs
are the labour hours used to produce the cakes, the ingredients used, and the technology
employed, then a ratio of the outputs produced per inputs used is a pure internal measure
of efficiency. Now suppose that instead of cakes produced we use as a measure of output
the number of cakes sold. In such a measure of efficiency we would be integrating external
factors related to the ability of the product to sell in the market place*. This ability is
strongly dependent, amongst other factors, on the quality of the product. More tasty cakes
will probably sell better and the output of firms producing these cakes (when output is
measured through sales) will be higher. Also the effectiveness of the firm is included in this

4 Achabal et al. (1984) mentioned this aspect as far as productivity measurement is concerned. According
to the author it is essential to distinguish between the actual output and the sales of that product, which
might be especially complicated in service industries (see also Klassen et al., 1998).
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measure of efficiency as, in a certain sense, we are also measuring the extent to which the
firm is meeting its objectives (to sell the cakes produced).

Traditionally efficiency and productivity are concepts geared to manufacturing organi-
sations because they assume that production and consumption are separate processes and
that the customer not participate in the production process (Chase and Heskett, 1995;
Gronroos, 2000). However, in service organisations, like banks, outputs do not correspond
to things that were produced and not yet sold. Qutputs are in most cases things that cus-
tomers already bought and are more or less happy with. Lovelock (1996) refers in relation
to this aspect that the outputs of service organisations are not outputs in the manufactur-
ing sense but outcomes. For this reason, the measurement of efficiency in banking or other
service organisations implicitly incorporates a service quality dimension, especially when
we understand this measurement in the long run. This is the perspective of Lovelock (1996,
p. 468) who mentions that “the need to emphasise effectiveness and outcomes suggest that
issues of productivity cannot be divorced from those of quality and value”.

Efficiency is, therefore, usually considered an internal concept measured according to
the “constant-quality assumption” (changes in production inputs do not have an impact on
the quality produced (Gronroos, 2000, p. 206)). This means that in manufacturing, as long
as outputs are the same, customers are willing to buy this output even if it was produced
using & different input mix. In services this might not be so. The purchase intentions of the
customer, given an altered input mix, will depend on the perceived “process-related and
outcome related quality of the new resources or inputs used” (Grénroos, 2000, p. 209).

Therefore, in services the “constant-quality assumption” not apply and as such mea-
surement of efficiency cannot be disentangled from service quality. Gronroos (2000) distin-
guishes between two concepts of efficiency: internal efficiency and external efficiency. The
concept of internal efficiency is related to the efficiency by which outputs can be produced
through a given amount of inputs, and external efficiency is related to the efficiency by
which perceived service quality is produced through a given amount of inputs. It is of no
use to improve internal efficiency if external efficiency is not taken into account. That is,
in service organisations the introduction of more “cost effective production resources and
processes does not necessarily lead to better economic results” (Grénroos, 2000, p. 206).
This is because internal efficiency is related to cost efficiency (cost savings can be achieved
by improving internal efficiency) but external efficiency is related to revenue efficiency (de-

creasing service quality results in lost revenues). This view is shared by other authors like

68



3.5 Summary

Howecroft (1991) and Thanassoulis et al. (1995, p. 588 ) who mentioned that “a unit running
at high levels of output but of low quality may be efficient in providing output volume for
its resource level. However, by providing low quality outputs it could lose viability through
loss of customers or face outside regulatory intervention”.

While in manufacturing organisations it may be easy to disentangle and measure sep-
arately internal and external efficiency, in service organisations this is not so. For this
reason, both internal and external efficiency need to be accounted for in measuring the
efficiency of service organisations. If the former is related with cost and the latter is related
with revenue then an obvious way of linking both is through profit. The measurement of
profit efficiency appears therefore as a way to incorporate both cost efficient practices and
a quality dimension that is likely to generate revenues. This view is shared by the service
marketing literature, as seen above, and by the banking efficiency literature as testifies the
work of Berger et al. (1993). According to this author, profit efficiency measures can be
used as a means to account for differences in quality between banks. As high quality may
be produced at the expense of higher costs, a higher quality bank or bank branch could be
deemed cost inefficient if the revenues generated by increased quality were not accounted
for in the analysis (see also De Young and Nolle, 1996; Berger and Mester, 2000). Two
different strands of the literature arise, therefore, at a similar conclusion: that a profit
efficiency analysis takes into account both internal (cost related) and external (revenue
related) aspects of banks’ activities being the best way to thoroughly measure efficiency in

the case of service organisations.

3.5 Summary

The aim of this chapter was to put into context the measurement of bank branches’
efficiency, the main subject of this manuscript. For that purpose we first point out the main
changes that the banking industry has been facing over the past few years, and acknowledge
the changing role of bank branches within this context. We also analyse in broad terms
the main issues that arise when banking efficiency assessments are undertaken, namely the
main type of methodologies at the disposal of the researcher, and issues relating with the
way the production process is approached. Finally we note that banks and its branches are

service organisations and mention the implications of this fact on the measurement of their

efficiency.
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Chapter 4

Literature Review on Bank

Branches Efficiency Measurement

The previous Chapter has introduced some general issues in measuring efficiency in
banking. In this Chapter we review the literature on bank branch efficiency studies focusing
particularly on the issues that are relevant for the development of our own models to assess
the efficiency of a sample of bank branches. These issues relate to the extent to which the
new role of bank branches has been acknowledged and dealt with in extant studies, and
the way these studies have linked efficiency with service quality and profitability.

In the banking literature there are studies that analyse banks as a whole, and studies
that analyse bank branches of a single bank. Our focus on the latter strand of the banking

literature is justified by our empirical application to bank branches.

4.1 'Traditional Measurement in Bank Branches

The traditional technique used by banks to compare the performance of its branches
is performance ratio analysis where a set of ratios are computed to capture different di-
mensions of the banking process (Schaffnit et al., 1997). Such ratios can be, for example,
return on assets, return on investment (Sherman and Gold, 1985; Oral and Yolalan, 1990),
profit per average investment (Sherman and Gold, 1985), transactions per teller, and cost
per transaction (Sherman and Ladino, 1995).

Financial ratios for comparing bank branches are more common than non-financial ra-
tios, which means that dimensions such as productivity and quality are neglected in these

comparisons (Schaffnit et al., 1997). In addition, ratios fail to account for the interactions
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and trade-offs between different factors in the process, therefore providing an incomplete
picture of that process (Schaffnit et al., 1997). Ratio analysis often results in a set of con-
tradictory measures that show good performance of branches on some dimensions and bad
performance on other dimensions. Clearly decisions based on such contradictory informa-
tion are difficult to make.

Besides these disadvantages, ratios are largely used due to their simplicity of calculation
and interpretation. However, given their limitations ratio analyses should be complemented
with other operating measures such that a fair comparison between bank branches is under-
taken. Efficiency analysis of bank branches through both parametric and non-parametric
techniques has been one of the major tools used in the most recent literature to reach a
fair comparison of bank branches. These bank branch efficiency studies are reviewed in the

next section.

4.2 Efficiency Studies on Bank Branches

In Table 4.1 we show published studies analysing bank branches’ efficiency. The earliest
study in this Table dates back to 1982 and is due to Murphy and Orgler (1982). The
aim of the study of Murphy and Orgler (1982) is not, however, to compare bank branches
regarding their efficiency, but rather to analyse the determinants of bank branches’ costs
and scale economies. In fact most of the parametric studies included in Table 4.1, such as
Pavlopoulos and Kouzelis (1989), Doukas and Switzer (1991), and Zardkoohi and Kolari
(1994) aim at analysing the degree and type of scale and/or scope economies applying at
bank branches, rather than their efficiency!.

We can, therefore, consider the study of Sherman and Gold (1985) as being the first
published study to analyse the efficiency of bank branches. In an earlier study Sherman
(1984) already referred to the assessment of bank branches through DEA, but did not apply
the methodology.

Since 1985 a relatively small set of articles analysing the efficiency of bank branches
has been published. From published studies there is a clear dominance of non-parametric

methodologies over parametric ones to analysisng bank branches’ efficiency (see Table 4.1).

!Note, however, that these issues are closely related with the concept of efficiency and therefore we
included these earlier studies in Table 4.1.
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Table 4.1: Bank branch studies

ID Study N. Units Country Modecls Orientation
Non-Parametrie Approaches
1 Sherman and Gold (1985) 14 us CCR Input
2  Parkan (1987) 35 Canada CCR Input
3  Oral and Yolalan (1990) 20 Turkey CCR Input
4  Vassiloglou and Giokas (1990) 20 Greece CCR Input
5  Giokas (1991) 17 Greece CCR & BCC  Input
6  Oral et al. (1992) 44 Turkey CCR Input
7  Al-Faraj et al. (1993) 15 Saudi Arabia CCR Input
8  Tulkens (1993) > 700 Belgium FDH & CCR Input
& BCC
9 Drake and Howcroft (1994) 190 UK CCR& BCC Input
10  Sherman and Ladino (1995) 33 us CCR Input
11  Haag and Jaska (1995) 14 uUs Additive Non-oriented
12  Tulkens and Malncro (1996) 663 Belgium FDH Input
13  Nash and Karwat-Sterna (1996) 75 7 Additive Output
14  Soteriou and Stavrinides (1997) 26 Cyprus CCR Inp & Out
15 Athanassopoulos (1997) 68 Greece CCR & non- Inp & non-
radial oriented
16  Schaffnit et al. (1997) 291 Canada CCR & BCC  Input
17  Lovell and Pastor (1997) 545 Spain BCC Output
18  Athanassopoulos (1998) 580 UK CCR & BCC  Inp & Out
19 Camanho and Dyson (1999) 168 Portugal CCR & BCC Inp & Out
20 Zenios et al. (1999) 144 Cyprus CCR Input
21  Soteriou and Zenios (1999) 144 Cyprus BCC Inp & Out
22 Golany and Storbeck (1999) 182 uUs BCC Output
23  Kantor and Maital (1999) 250 ? CCR? Output
24  Avkiran (1999a) 65 ? CCR& BCC Output
25 Soteriou and Stavrinides (2000) 26 Cyprus CCR Inp & Out
26  Athanassopoulos (2000) 60 Greece Non-radial Out & non-
oriented
27  Athanassopoulos et al. (2000) 126, 185,196  Cyprus& CCR & BCC  Inp & Out
GreeceLUK
28  Athanassopoulos and Giokas (2000) 47 Grecce CCR Inp & Out
29 Cook et al. (2000) 20 Canada Specific Input
30 Cook and Hababou (2001) 20 Canada Additive Inp & Out
31 Dekker and Post (2001) 314 Holland quasi-concave =~ —
DEA
32 Hartman et al. (2001) 50 Sweeden BCC Input
Parametric Approaches
33  Murphy and Orgler (1982) 127 7 Cobb Douglas  Cost
34 Pavlopoulos and Kouzelis (1989) 362 Greece Translog flexi- Cost
ble cost func-
tion
35 Doukas and Switzer (1991) 563 Canada Translog cost Cost
function
36  Zardkoohi and Kolari (1994) 615 Finland Translog cost Cost
function
37 Boufounou (1995) 62 Cyprus Regression —
38 Kamakura et al. (1996) 188 Latin America Translog cost Cost
function
39 Berger et al. (1997) 560 us DFA Cost
40  Avkiran (1997) 93-115 Australia Regression _—

Our analysis of the studies in Table 4.1 will first focus on general aspects, like the type
of data used, and the type of models used. Secondly, we will review those studies that have
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4.2 Efficiency Studies on Bank Branches

incorporated quality issues into the efficiency analysis, and studies that have incorporated
the profitability dimension into the analysis. We will not analyse and compare specific
results from the various studies because, as it is clear from Table 4.1, these concern quite
distinct countries, sample sizes, and models. In addition, the set of inputs and outputs
used in each case is so different that any attempt to compare efficiency results is of reduced

interest.

4.2.1 The Data
Cross Sectional Vs Panel Data

Most of the studies in Table 4.1 used cross-sectional data rather than panel data, mean-
ing that the analysis undertaken focused on data from a single period. The exceptions
in Table 4.1 are Golany and Storbeck (1999) who used six quarters of data, Tulkens and
Malnero (1996) who used eleven months of data, Hartman et al. (2001) who used two
years of data, and Berger et al. (1997) who used three years of data. Although multiple
year data sets have been extensively used in banks’ efficiency assessments, bank branches’
assessments have mainly focused on single period analysis. This is a clear limitation of
these studies as efficiency is an evolving concept and decision makers naturally have the
interest to analyse efficiency evolution over time. As Golany and Storbeck (1999, p. 19)
mentioned, “observing the results for a single period rarely leads to decisions in any real
world application”.

The studies of Golany and Storbeck (1999), Berger et al. (1997), and Hartman et al.
(2001) using multiple period data performed the analysis independently for each period.
This means that production frontiers were not compared between periods and no techni-
cal progress/regress was assessed in these cases. That is, the assessments assumed that
technology did not change from period to period, and as such changes in efficiency were
not attributed to any other cause than managerial practices. In the study of Tulkens and
Malnero (1996) the authors accounted for technological change by calculating Malmquist
indexes to evaluate frontier shifts and efficiency change over time. These indexes were

calculated for FDH type frontiers following the procedure detailed in Tulkens and Vanden-
Eeckaut (1995).
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Inputs and Outputs

Most of the studies in Table 4.1 adopt the production approach to analyse bank branches
efficiency (Sherman and Gold, 1985; Parkan, 1987; Vassiloglou and Giokas, 1990; Giokas,
1991; Tulkens, 1993; Drake and Ilowcroft, 1994; Sherman and Ladino, 1995; Athanassopou-
los, 1997; Schaffnit et al., 1997; Camanho and Dyson, 1999; Zenios et al., 1999; Soteriou
and Zenios, 1999; Golany and Storbeck, 1999; Avkiran, 1999a; Athanassopoulos et al., 2000;
Athanassopoulos and Giokas, 2000; Hartman et al., 2001). The studies that use an inter-
mediation approach are those of Oral and Yolalan (1990), Zardkoohi and Kolari (1994),
Berger et al. (1997), Athanassopoulos (1997), and Athanassopoulos (2000). Apart from in-
termediation and production approaches, there are studies that introduce new measures of
efficiency like service efficiency (Oral and Yolalan, 1990; Oral et al., 1992), market efficiency
(Athanassopoulos, 1998), and quality efficiency (Soteriou and Stavrinides, 1997; Soteriou
and Zenios, 1999; Soteriou and Stavrinides, 2000; Athanassopoulos, 2000). In addition,
some studies in Table 4.1 analyse bank branches with respect to other issues like sensitivity
analysis of DEA results (Haag and Jaska, 1995), the methodology of treatment of panel
data (Tulkens and Malnero, 1996), the analysis of branch cross-selling efficiency (Nash and
Karwat-Sterna, 1996), the ability of bank branches to meet management established tar-
gets (Lovell and Pastor, 1997), the integration of DEA and ABC (activity-based costing)
analysis (Kantor and Maital, 1999), the analysis of the determinants of banking costs and
the investigation of scale economies (Murphy and Orgler, 1982; Pavlopoulos and Kouzelis,
1989; Doukas and Switzer, 1991), and the analysis of branch performance determinants
(Boufounou, 1995; Avkiran, 1997).

Irrespective of the approach used to analyse bank branches’ efficiency a set of inputs
and outputs is chosen for this purpose. It is of interest to analyse the main types of inputs
and outputs that have been used to assess bank branches’ efficiency under the two broad
production and intermediation approaches so that our own choice of input and output
factors to be detailed in Chapter 5 is contextualised.

In Table 4.2 we show the main inputs and outputs that have been used in production
and intermediation approaches. In this table we also identify the studies which have used
each input/output through their identification number (ID) shown in Table 4.1.
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4.2 Efficiency Studies on Bank Branches

Table 4.2: Inputs and Outputs used in Bank Branch Studies

Inputs ' Outputs
Production Approach
Staff related Transactlons related

Total N, Staff (1, 2, 3, 6, 7, 8, 11, 15, 19, 24, 32)
N. staff grouped by type (10, 186, 20, 21, 29, 30)

Personnel hours (4, 5, 12, 28)

Staff Grades (9)

Percentage employees with college degree (7)
Avcrage years of expericnce (7)

N. teller hours (22)

N. non-teller hours (22)

Staff cost (7, 27)

Technology related

N. Computers (2, 3, 4, 6, 15, 20, 21, 27, 28, 32)
N. ATMs (8, 9, 15, 19)

N. windows operated (8, 24)

N. interview rooms (9)

N. teller machines (15)

Branch Space (m2) (4, 5, 9, 10, 19, 20, 21, 22, 27, 28,
32)

Rent (1, 2, 11, 39)

Quality variables

Quality of customer service space ranking (2)
Staff conduct (24)

Marketing and Environmental variables
Location index (7)

Marketing activity ranking (2)

N. commercial accounts (3, 6)

N. saving accounts (3, 6, 20, 21)

N. credit applications (3, 6, 20, 21)

N. current accounts (6, 20, 21)

Commissions (21)

Foreign currency and commercial accounts (20, 21)
Mailing expense per customer (22)
Unemployment statistic (22)

Average annual family income (24)

Presence of competitors (24)

Other Variables

Supply/operational Costs (1, 2, 4, 5, 7, 9, 10,11, 19, 28,
39)

Wages price (39)

Index for expenditure on decoration (7)

Total n. transactions (2, 19)

N. transactions grouped by complexity or time required
(1, 4,5, 10, 11 28)

N. transactions grouped by other criteria (8, 9, 12, 15,
16, 28, 29, 30)

N. transactions in external ATMs (8, 19)

Time spent on various types of transactions (3, 6, 21)
N. account openings (2, 39)

N. loan applications (2, 39)

N. accounts closed (39)

N. Accounts

N. accounts (19)

N. term accounts (16)

N. current accounts (7, 27)

N. deposit accounts (15, 39)

N. savings accounts (27)

N. business accounts (27)

N. loan accounts (16, 27)

N. dcbits (39)

N. credits (39)

N. new dcposits accounts (24)
N. new lending accounts (24)
Value/balance of Accounts
Value of savings (19)

Value of loans (19, 22, 32)
Value of deposits (22, 32)
Value of mortgages (7, 32)
Value of current accounts (7)
Value of saving accounts (7)
Value of other accounts (7)
Quality Variables

Customer service survey rating (2)
Number of corrections (2)
Depth of relations (22)
Satisfaction (22)

Other Variables

Average profit per month (7)

Loan index (7)
N. customers (32)
Fee income (24)

Intermediation Approach

Personnel expenses (3, 6)

Administrative expenses (3, 6)

Depreciation (3, 6)

Interest paid on deposits (3, 6)

Total interest costs (15)

Non-interest costs (6, 15, 26)

Total costs (operating + interest expenses) (36, 39)
Capital price (Cost per m? of office space) (36, 39)
Wage price (36, 39)

Deposits price (interest rate paid on deposits)(36)
Branch Size (26)

Convenience (26)

Mean queue length (26)

Interest earned on loans (3, 6)

Non-interest income (3, 6, 15)

Commissions (26)

Value of loans (15, 36)

Value of time deposit accounts (15, 26)

Value of saving deposit accounts (15, 26)

Value of current deposit accounts (15)

Value of demand deposits (26)

Value of retail deposits (36)

Value of consumer transactions accounts (39)
Value of consumer non-transactions accounts (39)
Value of business transactions accounts (39)
Value of business non-transactions accounts (39)
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4.2 Efficiency Studies on Bank Branches

When a production approach is used to measure bank branches’ efficiency the inputs
chosen relate mainly to the work force, space of the branch, and supply or operational costs.
The work force is either considered in number of staff, hours spent by staff, staff costs, or
staff grades (see Table 4.2). In some studies personnel is also broken down by their function
(for example, tellers, platform staff, and managers are used in Sherman and Ladino (1995);
and tellers, ledgers, accounting officers, typing staff, supervision personnel, and credit staff
are used in Schaffnit et al. (1997)). Technological variables (or capital related variables)
relate mainly to the space of the bank branch (usually measured in square meters), number
of computers and number of ATMs. In some studies space costs are proxied by the variable
rent. This variable may also be used to reflect the location of the bank branch, in the sense
that central bank branches in general pay a higher rent than rural bank branches.

Less common inputs that have been used in the literature include quality variables used
by Parkan (1987), marketing and environmental variables used by Golany and Storbeck
(1999), and variables reflecting the micro-environment of the branch used by Oral and
Yolalan (1990), Soteriou and Zenios (1999), and Zenios et al. (1999). Note that the variables
used to reflect the micro-environment of the branch are the number of various types of
accounts, which are usually considered outputs of production efficiency assessments. The
authors argue that these variables “reflect the steady-state market conditions the particular
branch has reached due to its previous efforts” (Zenios et al., 1999, p. 42).

Concerning outputs, a production efficiency assessment typically uses the number of
transactions as the main output of the model. Transactions performed in a bank branch
are numerous and have different complexity levels requiring, therefore, different amounts of
staff time. For that reason, transactions are usually grouped according to their complexity,
the time required to perform the transaction, or other criteria. In most cases transactions
include not only basic activities like deposits or withdrawals, but also sales of deposit
and credit accounts. In this sense new and closed accounts are included in one of the
transactions type (e.g. Sherman and Gold (1985) and Sherman and Ladino (1995)) as well
as loans applications and payments (Sherman and Gold, 1985; Sherman and Ladino, 1995;
Athanassopoulos, 1997). The number of transactions is preferred to the number of accounts
to measure the output of bank branches, given the full and unlimited access of customers
to all branches of a given bank. This means that it is not the number of accounts of a given
bank branch that determines the operational work load of that branch, but the number of

transactions that are performed there each day.
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In some studies transactions are used alongside with other outputs. For example,
Schaffnit et al. (1997) used, apart from transactions, the number of term accounts, the
number of personal loan accounts, and the number of commercial loan accounts. Accord-
ing to the authors, number of accounts was included as a prory for the work spent by
branch personnel on maintenance. Camanho and Dyson (1999) used not only the number
of general service transactions on the output side, but also the number of accounts, the
number of transactions in external ATMs, the value of savings, and the value of loans.
Berger et al. (1997) also used the number of deposit accounts, the number of debits, and
the number of credits, together with transaction related variables (namely the number of
accounts opened, accounts closed, and loans originated).

There are also some studies in the literature that did not use transactions on the output
side of production efficiency assessments. Oral and Yolalan (1990), for example, used
outputs relating to the time spent in four types of services (general service transactions,
credit transactions, deposit transactions, and foreign exchange transactions). This was also
the first study to include time variables in the analysis, which according to Schaffnit et al.
(1997) provides useful information on the production process (see also Soteriou and Zenios,
1999; Zenios et al., 1999). Athanassopoulos et al. (2000) uses only number of accounts on
the output side, namely the number of current accounts, of savings accounts, of company
accounts, and of credit accounts. In the study of Golany and Storbeck (1999) the outputs
considered were the volume of loans and the volume of deposits, and also two outputs
intending to capture a quality dimension of the service. The authors regarded the outputs
on service quality as representing long term objectives, contrary to the first two outputs
that related to short term goals. A detailed discussion on the inclusion of service quality
variables in efficiency assessments will be presented in section 4.3 of this Chapter.

In production efficiency assessments inputs and outputs are preferably measured in
physical units rather than in value. Nevertheless, as can be seen in Table 4.2, there is a
large number of variables that can be used to measure production efficiency, with both
quantity data and value data playing a role in these assessments.

Concerning intermediation efficiency assessments, the variables used relate, in general,
to cost sources on the input side and to revenue sources on the output side. Costs that
have been considered on the input side relate mostly to personnel expenses, administrative
expenses, interest costs, and non-interest costs. In parametric studies, such as Zardkoohi

and Kolari (1994) and Berger et al. (1997), total costs are usually used as the dependent
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variable of the model. In these studies the price of capital and labour are also used as
inputs of the efficiency assessment.

The revenue sources used on the output side of intermediation efficiency assessments
are in general interest income and non-interest income (e.g. Oral and Yolalan, 1990; Oral
et al., 1992). In the study of Athanassopoulos (1997) non-interest income was used, but
instead of interest income the authors used the value of the main accounts from which this
income was generated (namely the value of loans, time deposit accounts, saving deposit
accounts, and the value of current deposit accounts). Berger et al. (1997) also used the
value of different accounts on the output side of their intermediation efficiency assessment.
Note that the studies of Athanassopoulos (1997) and Berger et al. (1997) are the only ones
in the bank branch literature to calculate both production and intermediation efficiency
measures.

The above specification of inputs and outputs shows that intermediation efficiency is
closely related with profit. According to Athanassopoulos (1997, p. 304) “the intermedi-
ation efficiency is an appropriate measure of branch profitability which gives insights on
the overall cost profile of the branch per dollar of loans sold and deposits bought”. Berger
et al. (1994, p. 16) also acknowledge the link between profitability and the intermediation

approach, referring that “the total operating plus interest cost per dollar of deposits used
. in the intermediation approach is an excellent indicator of the profitability per dollar raised

by the branch”. The link between efficiency and profit will be further detailed afterwards.

4.2.2 Models used and their Orientation: Acknowledging the new Role
of Bank Branches

Most of the existing bank branch efficiency studies calculate technical efficiency rather
than cost, revenue, or profit efficiency. This is especially true in non-parametric studies,
since in parametric studies the use of cost functions makes the resulting efficiency measure
(when it is calculated) to be economic (cost efficiency or X-efficiency?).

In the non-parametric DEA literature technical efficiency of bank branches has been
calculated mostly by the CCR model (see Table 4.1). Some studies use the CCR model
together with the BCC model so that scale efficiency measures and returns to scale can also

be assessed. When price information is available other efficiency measures can be computed,

2X-efficiency “describes all technical and allocative efficiencies of individual firms that are not scale/scope
dependent” (FYei et al., 2000).
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namely overall economic efficiency and allocative efficiency. Only two studies in the DEA
literature have used price information to calculate this type of efficiencies, namely Schaffnit
et al. (1997) and Hartman et al. (2001). Both studies analysed cost efficiency, but the
approaches followed were different. Hartman et al. (2001) used actual price information in
their models and so calculations of cost and allocative efficiency were performed as explained
in section 2.3.1 of Chapter 2. Schaffnit et al. (1997), on the other hand, used ARs to arrive
at some notion of cost efficiency as explained in section 2.3.5 of Chapter 2.

Most of the studies on branch efficiency (see Table 4.1) adopt a cost minimisation
perspective®. Under this perspective bank branches are assumed to be in control of inputs,
which should be minimised. A cost minimisation perspective is perfectly understandable
when banks as a whole are being analysed. However, when the unit of analysis is the bank
branch this cost minimisation perspective might not be reasonable especially if most of the
bank branch’s costs are not controllable by branches’ managers. Controllable operational
costs of branches are mostly related to staff, equipment and supplies. However, “more often
than not, decisions regarding human resources, location, technology, etc., are not made at
the branch level, as branch networks are managed centrally” (Athanassopoulos et al., 2000,
p. 360). This means that by using such factors as inputs and choosing an input minimisation
perspective the level of management one is assessing does not relate to the branch but to
a higher level of management. Even when decisions relating to staff are undertaken at
the branch level there is not discretion regarding this input. For example, in the case of
the Portuguese branches, which are the subject of our empirical study, branch managers
can decide whether they need more or less staff, but the ultimate decision concerning the
hiring/firing of staff is made at a higher level of management.

At the same time cost cuts are mainly a concern of higher levels of management rather
than branch management. A bank manager said to us that “the best way to cut branches’
costs was to close them”, and for that reason branches should focus on what they have
been created for - selling, serving and capturing clients. While these arguments support
the choice of output oriented measures, the literature does not match this reasoning. The
argument that is most commonly pointed out for using input oriented measures is the
need to rationalise resources at existing branches (e.g. Camanho and Dyson, 1999). In

the work of Sherman and Ladino (1995) the authors argued that an input orientation

3See also appendix 1 of Camanho and Dyson (1999) where from the 15 studies reported 13 used input
oriented models.

79



4.2 Efficiency Studies on Bank Branches

was preferred as the bank under analysis wanted to expand by increasing the number
of branches, financing part of the cost through savings in the existing branch network.
According to Sherman and Ladino (1995) banks can manage less easily the expansion of
service volume. Schaffnit et al. (1997, p. 278) corroborate this argument as “branches, in
general, have no direct control over the amount of services their customers require”. While
this is true for typical transactions at the branch (withdrawals, deposits, general inquiries,
cheques cashed, money transfers, etc.) it is questionable for new sales and attraction of
new clients where branch personnel might, and should, have and active role. Indeed, the
changing role of bank branches towards selling and marketing oriented activities is not a
passive one, but a proactive role that demands efforts at the branch for increasing the sales
of new products and capturing new clients. Input oriented measures seem, therefore, to
be consistent with the traditional transactional role of bank branches, but its new role as
marketing and retailing centers seems to demand for output oriented measures.

Some studies in the literature have used output oriented measures but few have justified
this orientation based on the new role of bank branches towards selling rather than towards
servicing. In most cases the choice for output oriented measures or non-oriented measures
was justified by atypical measures of efficiency that were being analysed [like quality effi-
ciency in Soteriou and Stavrinides (1997); Soteriou and Zenios (1999) and market efficiency
in Athanassopoulos (1998)], by different objectives of analysis [like measuring the success
in achieving the established targets in Lovell and Pastor (1997)], or by some theoretical
considerations [like in Haag and Jaska (1995)].

Golany and Storbeck (1999) used an output orientation in the assessment of production
efficiency, in line with a view about the role of bank branches towards selling. In fact, the
argument of Golany and Storbeck (1999) for using an output oriented measure was that the
bank was “in the midst of a growth period” and as such focusing on output enhancements
rather than on input savings. Avkiran (1999a, p. 211) used a similar argument for choosing
an output oriented DEA model mentioning that “during an exercise to expand market share
of banking products, the focus could shift to output maximisation”. Kantor and Maital
(1999) also used output oriented models to measure the efficiency of two activities of bank
branches (providing service to customers, and carrying out transactions), but the authors
do not mention the reasons for choosing such an orientation.

Interestingly most recent studies that put forward explicitly their concern of accounting

for the changing role of bank branches, like those of Cook et al. (2000) and Cook and

80



4.2 Efficiency Studies on Bank Branches

Hababou (2001), do not use output oriented measures. In Cook et al. (2000) the authors
distinguish between two types of activities that happen in bank branches: transactions
(or service) and sales, and calculate an overall efficiency measure that is an aggregate of
sales and service efficiency measures. The inputs of the model were staff related (service
staff, sales staff, support staff and other staff) and the outputs were related with service
(counter level deposits, and transfers between accounts) and with sales (retirement savings
plan openings, and mortgage accounts opened). The authors used, however, an input
oriented model, which does not seem appropriate for the purpose of increasing sales - the
fundamental objective of bank branches when one assumes, as the authors did, that they
are evolving from a traditional role to a “more general and proactive function as universal
financial agents with a distinct sales culture” (Cook et al., 2000, p. 209). In a continuation
of the above study, Cook and Hababou (2001) also consider a set of inputs and outputs both
related to sales and service and calculate a service and sales measure of efficiency through
a goal programming model. It is worth noting that the reason for Cook et al. (2000) and
Cook and Hababou (2001) not using output oriented models might be related with their
objectives of analysis. Indeed, these authors were not so much concerned with establishing
targets but more with comparing the performance of bank branches on the two dimensions
considered critical: service and sales.

It is important to note that the use of output oriented measures requires the use of
market information on the input side (Athanassopoulos et al., 2000), as the ability of a
bank branch to increase its sales and customers depends on the market potential of the
location where the branch is in. This is an additional difficulty in using this direction of
improvement as market information is not easily gathered. In the study of Golany and
Storbeck (1999) the authors attempted to include a set of non-discretionary factors related
to market size, economic status of the area, and competitive activity as these “are factors
that influence the activity of the branch but are not under its direct control” (Golany
and Storbeck, 1999, pp. 17-18). However, most of the factors analysed by the authors
were not incorporated in the final data set used for lack of quality or evidence that they
affected the performance of branches (the only environmental factor used was a measure of
unemployment).

There are also studies in the literature that when acknowledging the new role of bank

branches focus the efficiency analysis on completely different dimensions from those tra-
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ditionally studied. These are the cases of Drake and Howecroft (1995)% that analysed the
selling function of bank branches, and Nash and Karwat-Sterna (1996) that analysed the
cross-selling efficiency of bank branches. The analysis of the selling function in Drake
and Howcroft (1995) led to substantial differences from traditional studies. For example,
the outputs of the DEA model were mainly sales related (sales of personal loans, cheque
accounts, mortgage loans, etc.), while the choice of inputs was guided by the need to con-
sider the “existing customer base in each of the most important balance sheet categories
which forms the foundation for cross-selling and repeat business opportunities” (Drake and
Howcroft, 1995, p. 12). It is worth noting the inclusion of the design or layout of the
branch in the efficiency assessment of Drake and Howcroft (1995), and the corresponding
consideration that new layouts are required so that the change in the role of bank branches
from ‘transactional’ to sales oriented becomes effective.

The study of Nash and Karwat-Sterna (1996) also differs substantially from traditional
bank branch efficiency studies. The authors considered the selling of four related products
in their analysis of the cross-selling efficiency of 75 branches. The DEA model used was
the additive model and only outputs were used. These outputs assumed the form of ratios
[number of products sold together with housing loans (main product in analysis) divided

by the number of housing loans approvals).

4.3 Efficiency and Service Quality

In Chapter 3 we mentioned the importance of considering service quality in efficiency
assessments of service organisations. When the objective of the analysis is to measure
efficiency, quality issues cannot remain ignored especially if we agree that providing better
quality is likely to consume extra resources.

Banking efficiency studies that include the quality of the outputs produced have recently
appeared in the literature concerning the assessment of bank branches. Studies on efficiency
assessments of banks usually rely on accounting published data that do not include service
quality variables. This is maybe the reason why the concerns about quality in banking
have first arisen in the bank branch efficiency literature and not on the efficiency literature

concerning banksS.

4This study is not included in Table 4.1 because it is a working paper. In order to be exhaustive we
decided to include in Table 4.1 only published papers.

5The only exceptions are, to the the best of our knowledge, the work of Faulhaber (1995) who included
variables related to customer satisfaction on a bank efficiency assessment, and the work of Mukherjee et al.
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The inclusion of service quality variables in DEA assessments is not well established
yet and no consensus exists concerning how this variable relates with efficiency. One can
find in the literature studies that include service quality in a post-hoc analysis and studies
that include service quality variables in the actual technical efficiency measurement. In the
latter case the doubt concerning whether service quality is an input or an output arises, and
studies can be found where service quality variables are either inputs, outputs or both. The
main assumption behind these different treatments is whether service quality is a function
of efficiency [SQ = f(Eff)] or the reverse [Eff = f(SQ)]. In the first case the type of analysis
that makes sense is a post-hoc analysis, while in the second case the service quality should be
considered an input or output of the efficiency measure. Another line of research is the one
that uses service quality variables to actually measure service quality through DEA (e.g.
Soteriou and Stavrinides, 1997, 2000; Soteriou and Zenios, 1999; Manandhar and Tang,
2001). This is not the kind of studies we are interested in, since service quality will be
considered as given and not a factor to be measured. These studies may, however, provide
interesting insights on the linkage between efficiency and quality.

The existing studies in the literature that include service quality dimensions in the ef-
ficiency assessment are not many. The first was the study by Parkan (1987) where quality
variables were introduced both on the input and output side of a CCR input model aimed
to measure production efficiency. The quality variables introduced on the input side were a
ranking of the quality of customer service area, and a ranking of the marketing activity of
the branch®. On the output side Parkan (1987) used a customer service survey ranking and
the number of corrections per number of transactions which is an indicator of the quality
of the process of providing the service”. Avkiran (1999a) included a service quality vari-
able on the input side of a production efficiency assessment. The variable considered was
‘staff conduct’, which was the dominant factor in a service quality framework developed in
Avkiran (1994, 1999b). This variable is defined as “responsiveness, civilised conduct and
presentation of branch staff that will project a professional image to the customers” (Avki-
ran, 1999a, p. 210). Golany and Storbeck (1999) included two outputs in their production
efficiency assessment that are related with service quality. One of these outputs was depth

of relations (measured by the number of accounts per customer) intending to capture the

(2003) who measured quality efficiency of Indian public sector banks.

SParkan (1987) used the inverse of the marketing activity ranking, as less of this input would mean more
marketing activity.

"This output was also inverted, as less of it is preferable.
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customers’ loyalty to the branch, and the other was a customer satisfaction index based on
“a quarterly survey the bank runs” (Golany and Storbeck, 1999, p. 19). Another study
where quality variables are included as part of the technical efficiency assessment is that
of Athanassopoulos (2000). The author used a two stage DEA model to assess service
quality and technical efficiency, applying the capabilities-service quality-performance (C-
SQ-P) triad of Roth and Jackson III (1995). In a first stage service quality is assessed
through DEA, and in a second stage the quality targets resulting from the first stage (on
corporate, interactive and physical quality) are used as inputs of the technical efficiency
measurement. Athanassopoulos (2000) explicitly puts forward the following relationship
between efficiency and service quality: Performance = f(Service quality, Branch size, Cost,
Outputs, Work load), understanding thus service quality as a cause of performance and
not an effect [i.e. Eff = f(SQ)]. This view is shared by some other authors like Roth and
Jackson III (1995) who hypothesised that performance is directly affected by service qual-
ity. The authors tested this hypothesis on data gathered from a survey on retail banking
and found supportive evidence for this link.

In summary only four DEA studies incorporated service quality variables in the mea-
surement of production efficiency. One uses service quality variables in both sides of the
assessment (Parkan, 1987), two studies consider service quality variables as inputs of the
efficiency assessment (Avkiran, 1999a; Athanassopoulos, 2000), and one study considers
these variables as outputs of the assessment (Golany and Storbeck, 1999).

The studies that include service quality variables in a post-hoc analysis are two. The
first is the study of Schaffnit et al. (1997), which considers that service quality, among
other factors, is neither an input nor an output of the efficiency assessment. In the analysis
undertaken the authors divided the factors to be analysed in effects and causes of per-
formance. Quality was classified in the effects side, that is as a factor that is potentially
affected by performance [SQ = f(Eff)]. The results from Schaffnit et al. (1997) indicate
a positive effect of efficiency scores on the quality variable used (a customer service in-
dex). The second study that uses service quality variables in a post-hoc analysis is that
of Athanassopoulos (1997). In this study target outputs resulting from the intermediation
and productive efficiency assessments were regressed on service variables obtained from a
questionnaire administered to branch customers. In the system of regression equations the
dependent variables used by the author were the various output targets, and the indepen-

dent variables were ten quality factors and two inputs (full-time equivalents and number of
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computer terminals). Clearly this author considers that [Eff = f(SQ)] as in both his studies
(Athanassopoulos, 1997, 2000) this relationship is put forward, although treated differently.
From the analysis undertaken the author could provide insights regarding the effects of each
quality variable on outputs, and regarding the influence of service quality on the efficiency
of each branch. Conclusions point to a positive but not statistically significant impact of
physical components of service quality on output targets. On the other hand, network size
and image of the branch had a significant positive effect on branches’ outputs, and service
time had a negative and significant effect in almost all branches outputs.

As noted earlier, some studies follow a different approach to incorporating quality di-
mensions into the analysis by actually measuring the service quality of bank branches
through DEA. For example, Soteriou and Stavrinides (1997) presented an indicator of ser-
vice quality efficiency defined as how well the branch transforms resources (personnel, space,
computers, etc), given a certain account structure of their clientele, into service quality (the
only output of the assessment). Soteriou and Zenios (1999) presented a DEA model based
on the (C-SQ-P) triad (see Roth and Jackson III, 1995) and on the service profit chain
of Heskett et al. (1994). Based on these two frameworks, and making some adaptations,
Soteriou and Zenios (1999) link operations, service quality, and profitability performing
three efficiency assessments. The set of inputs used in each of these assessments was very
similar but the output changed with the type of efficiency being assessed. In order to mea-
sure operational efficiency they used the total time involved in processing the tasks for all
transactions carried out at the branch. The output of the service quality efficiency model
was a measure of service quality obtained through questionnaires administered to internal
customers®, and the output of the profitability efficiency model was the profit generated at
each branch. Results from these models pointed to a strong and positive relation between
service quality and operational efficiency. However, concerning service quality and prof-
itability results showed no relationship between short-term profitability and service quality.
Manandhar and Tang (2001) developed a framework for assessing bank branches efficiency
that is very similar to the one of Soteriou and Zenios (1999). The authors propose the use of
the model of Lovell and Pastor (1997) to aggregate efficiency measures resulting from each
of the three dimensions analysed (internal service quality efficiency, operating efficiency, and
profitability efficiency). In this model efficiency measures resulting from each of the three

assessments are regarded as outputs of a DEA model that has no inputs. Manandhar and

8The questionnaire was based on the framework proposed by Parasuraman et al. (1988) - SERVQUAL.
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Tang (2001) put forward this framework but do not apply it in any empirical application
(this is the reason why this study is not included in Table 4.1).

Our concerns around the service quality dimension are particularly related with the
importance of considering service quality variables in traditional production (or intermedi-
ation) efficiency assessments rather than with measuring service quality efficiency through
DEA. In fact, we raise some doubts concerning the practical utility of service quality DEA
models, whose single output is a service quality index, namely on their ability to provide
suggestions for quality improvements. The resulting efficiency measures might be of some
use in the sense that they indicate the extent to which the maximum potential on SQ is be-
ing attained given a set of resources used. But even in this case the practical consequences
of such efficiency measurement are in our opinion dubious. The suggestions one could give
to managers in face of such efficiency measure are either that they should increase their
SQ (what they already know because the ideal objective should be to attain the maximum
possible on this index, which would be synonymous with excellence), or that they should
decrease some inputs in some amounts (which is likely to improve technical efficiency but
not necessarily improve service quality because customer’s perceptions on service quality
could change giving an altered input mix (Grénroos, 2000)).

Our understanding of service quality and its relationship with efficiency points to the
consideration that service quality is a component of efficiency when service organisations are
considered (Gronroos, 2000)). This means that even if no quality variables are accounted
for in the analysis, quality is being implicity considered. In fact, a high efficiency measure
necessarily indicates that a service firm is producing good quality of outputs, as under the
reverse hypothesis the firm would lose customers in the long run, and as such efficiency
would deteriorate (recall that in service organisations outputs relate to sales and not to
products that were produced and not yet sold). This does not mean that service quality
variables should not be explicitly included in the efficiency measurement. If available they
may in fact add value to production or intermediation efficiency assessments, as a bank
or bank branch uses its resources to produce a given amount of services that are not only

characterised by their quantity but also by their quality.

4.4 Efficiency and Profitability

As mentioned in Chapter 3, a profit analysis may be a way of incorporating a quality

dimension in efficiency assessments. In addition, banks and bank branches are for-profit or-

86



4.4 Efficiency and Profitability

ganisations and therefore it is important to measure the extent to which the profit objective
is being attained (Athanassopoulos and Thanassoulis, 1995).

Some studies analysing the efficiency of bank branches (referred to in Table 4.1) linked
efficiency and profitability. The way these two concepts were linked followed essentially
two routes. One route consists in analysing the link between efficiency and some prof-
itability measure a posteriori. This was the route followed by Schaffnit et al. (1997) who
regressed a profit measure (net profit per million dollars of total retail business volume) on
the efficiency scores. Conclusions pointed to a statistically significant positive effect of per-
formance on profits. Camanho and Dyson (1999) also analysed the link between efficiency
and profitability through an analysis a posteriori using an “efficiency-profitability matrix”.
The profit measure used was the ratio of net profit before indirect costs and total costs.
The general trend showed that high efficiency was associated with high profitability.

In the above mentioned studies the profit dimension is included through the use of some
accounting measure of profit. An alternative route is to measure profit efficiency concern-
ing what could maximum profit have been controlling for various factors. This has been
done through what has been called by some authors profitability efficiency, where a set
of expenses are considered on the input side and a set of revenues are considered on the
output side. Such an approach is similar to the intermediation approach to bank branch
efficiency measurement. Oral and Yolalan (1990), who were the first to analyse the relation-
ship between efficiency and profits, followed this route. The authors calculated profitability
through a DEA model where inputs were a set of expenses (personnel, administrative,
depreciation and interest) and outputs were interest earned on loans and non-interest in-
come. Results have shown that profitability and efficiency were closely related (see also
Oral et al. (1992), which is an extension of Oral and Yolalan (1990)). Another study using
this approach was that of Athanassopoulos (1997).

The main issue arising when the intermediation approach is used for profit efficiency
measurement is the type of model orientation that should be used. In order to maximise
profits bank branches seek at the same time to minimise costs and to increase revenues.
In this sense a non-oriented efficiency model seems to be the ideal means of accounting for
this two-way intention. Such an approach was the one used by Athanassopoulos (1997),
but Oral and Yolalan (1990) and Oral et al. (1992) used input oriented measures, meaning
that their model was mostly a cost model rather than a profit model.

Profitability efficiency has also been calculated in the literature following other means.
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Namely Soteriou and Zenios (1999) used a DEA model to assess profitability efficiency,
where the only output considered was profit. The authors also calculated operational effi-
ciency and represented results on a “efficiency-profitability matrix” but did not conclude
about the relationship between profits and efficiency. An analysis of this matrix in Soteriou
and Zenios (1999, p. 1234) shows that most branches are in the “Dogs”? quadrant. Never-
theless, this matrix does not seem conclusive as very few branches seem to be represented
in there (and not the full sample of 143 bank branches).

Although the two routes mentioned above seem valid for linking efficiency and profit
they do not account for a real profit efficiency measure as referred to by Fire and Primont
(1995) where factor’s prices are included in the analysis, and where profit is sought to be
maximised. In Chapter 8 we review the literature on existing profit efficiency measures
and propose a new way to measure profit efficiency through non-parametric methodologies.
Note that in the parametric banks’ efficiency literature the measurement of profit efficiency
is now quite usual after the work of Berger et al. (1993) fostering the use of profit functions
as a way to account for quality differences between banks (see also Berger and Humphrey,
1997; De Young and Nolle, 1996; Berger and Mester, 2000). According to Berger et al.
(1993) the use of profit functions brings in other advantages apart from those relating
to the inclusion of a quality dimension. For example, a profit function allows a better
understanding of the sources of inefficiency, namely whether these are more related to
inputs (costs) or to outputs (revenues). Interestingly, there is not in the literature any

study measuring the efficiency of bank branches through profit functions.

4.5 Summary

In this Chapter we reviewed the literature on bank branches efficiency assessment. In
this review we focused particularly on the aspects that are crucial to the development of
our own model to assess bank branches efficiency, which is presented in the next Chapter.
In this sense we start by enumerating the various bank branches’ efficiency studies in the
literature but analyse them only in two respects: (i) the type of data and the type of inputs
and outputs used, (i) and the extent to which existing studies acknowledge the new role of
bank branches. An analysis of the type of inputs and outputs that have been most used in

the literature is important as a means to justify our own input/output choice. In addition,

9Branches experiencing high operating efficiency and low profits.
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as it is our intention to acknowledge the new role of bank branches in our empirical analysis,
it is important to analyse the extent to which previous studies have done so, and how they
have done so.

In this Chapter we also analyse the way service quality and profitability have been
incorporated into efficiency analysis. The review of the literature concerning this aspect
will be important in the development of our own model to assess bank branches efficiency
since we intend to account for service quality and profitability in our efficiency assessments.
Being bank branches service and for-profit organisations these two aspects are of utmost

importance in analysing their overall performance.
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Chapter 5

Measuring the Performance of

Portuguese Bank Branches

From what has been said in previous Chapters it seems clear that new forms of mea-
suring the efficiency of bank branches are needed. Such efficiency measures should account
for the new role of bank branches, taking into account the fact that these are service or-
ganisations, and also for-profit organisations. In this Chapter we present the model that

is to be used in subsequent chapters for analysing the efficiency of a sample of Portuguese
bank branches.

5.1 Model for Bank Branch Efficiency Assessment

The previous chapters reviewed the triad between service quality, efficiency, and profits.
This triad represents a starting point in our development of a model to analyse bank
branches efficiency. In developing this model we attended not only to this triad but also to
the changing role of bank branches from transactional based to sales based. At the same
time the opinions and concerns of the managers of the bank under analysis were also of
utmost importance in establishing our own model.

According to some opinions of Portuguese managers of the bank under analysis the
growing use of new distribution channels does not constitute a threat to the survival of
bank branches, at least in the short run. This fact is, instead, understood as an opportunity
since bank branches can move a number of costly activities from branches to these new
channels. Traditional transactional activities (like withdrawals, deposits, general enquiries

on banks products, money transfers, etc.) consume human resource’s time that is more
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expensive than ATM'’s time or internet and phone facilities’ time. If this type of activities
moves from branches to other channels then there is scope for increasing efficiency and
profitability of bank branches as long as customers do not see these changes as a reduction
in the quality of the service provided. Seeing new means of distribution as an opportunity
for increasing profits, banks, and particularly the bank under analysis, have attributed to
its branches the responsibility for motivating customers to use other distribution channels.
This means that the bank under analysis recognises that the role of bank branches is
changing from transactional based to sales based. In fact transactions are to be moved
as much as possible to alternative and cheaper distribution means, while personnel at
the branch shall be concerned mostly with selling, cross-selling, and managing the mix of
accounts of their clients such that the rentability of each customer for the bank as a whole
is maximised.

In order to measure efficiency of bank branches it is important not only to be aware
of the new role of bank branches, but also to be aware of the main objectives of bank
branches. In general, and based on the empirical work performed, we can say that bank

branches have the following objectives:

& To allow their customers to access banking services in any place in the country (or
abroad), which is done by providing several different distribution channels of their

services (including internet, phone lines, and ATM machines);

& To foster the use of new distribution channels so that branch personnel can use their

time on value-added activities;

& To increase sales and the customer base of the branch, while serving the clients that

visit the branch with a high level of service quality;

& To manage the product mix in a way that generates high profitability, without reduc-

ing service quality associated with any product;

& To have the maximum possible profitability given bank branches resources and envi-

ronment.

The first two objectives are related to the accessibility of banking services, the third with
sales volume and operational capabilities, and the last two objectives are related to product

mix management and profitability. The efficiency of a bank branch can, therefore, be
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defined as the extent to which these objectives are attained given the external environment
the branch is in.

The objectives of bank branches stated above are naturally inter-related. The inter-
relations between these can be seen in Figure 5.1, which served as a basis for the develop-

ment of some efficiency measures meaningful in the new context of bank branches.

Figure 5.1: Model of Bank Branches Objectives

Various distribution
channels

Training customers to
use these channels

Accessibility of Service

More free time of
employecs for value
Employee added activities Less queue
Satisfaction times

Customer Satisfaction |«—3—»> Sales Volume

Profitability

The model in Figure 5.1 links different bank branch objectives. To provide a good
accessibility of service is one of the main objectives of banks. This is attained by providing
customers with a large number of available service distribution options. However, this might
not be enough if customers do not know how to use the various distribution channels. For
that reason, an effective accessibility of banking services is a result not only of the existence
of a variety of distribution means, but also of training and motivating customers on using
these means!. This is a responsibility of branches which are the main interface between
the bank and the customer. The accessibility of service is considered by some authors
as a dimension of service quality (e.g. Parasuraman et al., 1985). Although the type of
accessibility that is dealt with in the literature is not directly related with the existence of

alternative distribution channels?, we believe this is a factor that contributes to increase

1The motivation for increasing the use of other distribution channels passes also through pricing policies.
2For example, Parasuraman et al. (1985) mention that access refers to approachability and ease of contact
(Parasuraman et al., 1985, p. 47).
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service quality as perceived by the customer.

When a good accessibility of service is attained, branch’s personnel will devote less
time to transaction activities and will have more time for performing other activities, such
as selling new products, attracting new customers, managing the mix of products, etc.
This will have a direct impact on employee satisfaction (they will be concerned with more
interesting activities), and on queue times (as less customers go to the branch for transaction
activities). The lower pressure on employees generated by less queues and their higher
motivation will have an impact on their willingness to respond to customer queries and
to inform customers. These factors, more satisfied employees, smaller queues, and higher
service quality due to higher accessibility of banking services, are likely to improve customer
satisfaction3. Iigher customer satisfaction will have impacts on customer retention (see
Zeithaml] et al., 1996, for details on the relationship between service quality and customer
behavioural intentions of remaining with or defecting from the company), which increases
sales volume and market share (Rust et al., 1995). Favourable word of mouth, spread by
satisfied customers, has effects both on retaining existing customers and attracting new
ones (Kordupleski et al., 1993). These factors, will positively affect market share and sales
volume. Sales volume is also likely to be influenced by the fact that employees will devote
their time to sell new products to existing customers or use more pro-active strategies to
attract new ones. At the same time new technologies allow banks to centralise information
on customers’ preferences and behaviour. This enables banks to create specific products
to satisfy customers’ needs, which in theory increases customer loyalty and as a result
increases sales volume.

If profit is to be maximised then product mix management should be emphasised. In
the opinion of some bank managers interviewed, it is important that branches move clients
from less profitable products, such as time deposits, to more profitable ones such as funds,
or similar products. For doing this, branch staff need more free time, which increases as
the usage of the alternative distribution channels increases. The product mix management
and the increased sales volume will both contribute to increase profits. Higher profits might
also be a result of superior service quality levels, since high levels of service quality result

usually in reduced price elasticities. That is, satisfied and loyal customers are willing to pay

3The positive relationship between employee satisfaction and customer satisfaction is very well docu-
mented in Schneider (1991). The relationship of these variables with profit is also explored by the author.
Heskett et al. (1994) also provides a theoretical framework according to which employees satisfaction plays
a role in determining customers satisfaction.
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for the benefits they receive and are eventually more tolerant to price increases (Anderson
et al., 1994). In addition, the reputation of the firm in the market, resulting from its high
levels of service quality, is also likely to allow the company to charge a price premium and
thus increasing profits (Zeithaml, 2000).

Note that relationships between service quality and profitability have been extensively
analysed in the Marketing literature namely in Zeithaml (2000) who present an extensive
literature review on this subject, and Rust et al. (1995), who provide a conceptual frame-
work linking service quality improvement efforts to profitability. In this literature the study
of Loveman (1998) is of particular relevance since the author analysed 450 bank branches.
Results from this study suggest that there is a relationship between internal service quality
(rewards, quality of bank management, etc) and employee satisfaction. There was also sup-
porting evidence suggesting that employee satisfaction is related to loyalty of employees,
and that customer satisfaction is related to customer loyalty.

On purpose we have excluded from the model in Figure 5.1 certain variables. These
are costs, which impact directly on profit, and customer loyalty. Concerning costs the
Marketing literature in general believes that higher service quality leads to reduced costs
(see e.g. Rust et al. (1995)). The effect of service quality on costs is mainly due to the
retention of customers, since obtaining a new customer costs 5 times more than keeping an
existing customer (Zeithaml, 2000). Indeed, a new customer implies a set of activities (like
adding the customer to the database, giving detailed information on what will be expected
from the service, etc.) which are expensive, whereas long term customers know what to
expect and ask fewer questions (Reichheld and Sasser, 1990). Nevertheless, the impact on
banking costs does not come from a single source, and in the present banking context there
are no certainties that increased accessibility of service may lead to cost reductions. There
are strong expectations of transactional cost reductions due to the introduction of remote
banking (see ECB, 1999a). Nevertheless, concerning overall costs there are uncertainties on
the effects of IT investments. According to the ECB (1999a) some of the reasons why overall
costs are not likely to decrease, at least in the short run, relate with high initial investments
and maintenance costs, and with the fact that some time is needed for customers to change
their habits. This forces banks to maintain duplicate capacities for different customer
segments. ECB (1999a) reports that bank costs are only expected to decrease in the long
run, and this reduction is not expected to be dramatic. Staff costs, which account for a

high percentage of overall costs, are not expected to decrease strongly due to the need of
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more qualified personnel in other activities like marketing and IT.

The loyalty issue preoccupies bank managers of the bank under analysis, as they ex-
pressed their concerns with the effects of remote banking on the loyalty of customers.
Indeed, with IT developments banks can be more informed about customers, but the re-
verse is also true, i.e. customers can have easy access to banks information and comparisons
are easy to make. At the same time customers do not visit the branch so often, and as
such the personal relationship between branch employees and customers will slowly vanish.
According to ECB (1999a) one cannot yet observe a significant decrease in customer loyalty.
“The importance of personal contact is expected to decline only gradually. However, there
are increasing signs that customers have become more mobile in their search for the best

offer in the market” (see ECB, 1999a, p. 21).

5.2 Efficiency Measures

Given the three main objectives of bank branches (accessibility, sales volume, and prof-
itability) discussed in the previous section, and the model that has been constructed linking
these objectives, we developed three efficiency measures reflecting the extent to which these
objectives are being accomplished by bank branches. The first efficiency measure is called
Transactional Efficiency and is intended to measure the extent to which, given accessi-
bility of services, customers use new distribution channels for transactional activities. The
second efficiency measure is called Operational Efficiency and is intended to measure the
extent to which a branch, given its resources and environment, increases its sales and its
customer base, while serving its existing customers with adequate service quality. The third
measure of efficiency is called Profit Efficiency and is intended to measure the extend to
which a branch is maximising profit.

Each of these efficiency measures is detailed in the next sections, where we present the
set of inputs and outputs that should ideally be used, and the set of inputs and outputs

that will in fact be used given data availability.

5.2.1 Transactional Efficiency

This measure of efficiency relates to the objective of bank branches to move from trans-
actional activities to value-added activities. It is important to stress at this point that we
understand transactions as being all the types of activity performed by branch personnel

that take place at the bank branch but could have been done through other means of dis-
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tribution. In this sense, deposits, withdrawals, balance enquiries, request of cheque books
and so on are understood as transactions.

Ideal inputs and outputs of the transactional efficiency assessment can be seen in Figure

o]
b

Figure 5.2: Ideal Inputs and Outputs in the Transactional Efficiency Assessment
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Inputs to be used relate to the relevant resources at the branch for its transactional
activities and to environmental aspects that impact on the ability of customers to use
alternative distribution means. The resources at the branch are the number of ETM’s
(electronic teller machines), which include ATM’s and also other equipment such as cheque
dispenser machines (CATs). One of the environmental factors is the location of the bank
branch and the socio-economic background of its clients that may impact on their willing-
ness to use alternative distribution channels. For example, in rural areas a high effort of
the branch personnel to motivate clients to use the internet might be in vain because clients
may not have the necessary knowledge, equipment, and openness to use this distribution
channel. The age of clients may also influence their propensity to use new distribution
means. Younger clients have higher openness to try new things and are likely to access the
internet more easily and to use ETMs more often than older and more traditional clients.
This variable might be, however, difficult to collect.

The input ‘total number of transactions’ includes transactions performed at the bank
branch by branch’s staff and also transactions performed in alternative distribution chan-
nels. This input is considered because we want to evaluate the extent to which the branch
moves transactions to new distribution channels. If no other inputs were considered, one
would have an efficiency measure given by the ratio between the number of transactions in

each alternative distribution channel (the outputs) and the total number of transactions.
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A ratio of 100% would mean that all the transactions were done in alternative distribution
channels and not by the branch’s personnel at the bank branch. This would mean that our
objective was completely accomplished.

The transactional measure of efficiency is naturally oriented towards the maximisation
of outputs. The ideal outputs pointed out for this assessment are self explanatory. The only
aspect worth noting is the fact that in principle ontputs should account for transactions
done in the various means by branch clients only (since this data are potentially easier
to collect). Obviously, the branch may put some effort in motivating clients that are not
their own in using alternative distribution channels, but considering these customers would
result in unnecessary complications to the analysis. This clearly represents a limitation
of the assessment, as some branches located in high passing trade zones may have more
transactions performed by non-branch clients than by their own clients. This fact may
under-estimate the efforts of a branch in motivating customers (irrespective of the branch
in which they are clients) to use alternative distribution channels.

The foregoing inputs and outputs would be ideal for measuring transactional efficiency.
Unfortunately most of the data in Figure 5.2 are very difficult to collect, and this was
the case in our study. The data on transactions that we have available allow for the

measurement of transactional efficiency through the set of inputs and outputs shown in

Figure 5.3.

Figure 5.3: Actual Inputs and Outputs in the Transactional Efficiency Assessment
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The type of inputs that we consider are similar to the ideal inputs except that we use
some surrogates for variables on which we have no data. The socio-economic background of
the area where the branch is located could not be provided by the bank, and we used ‘Rent’

as a surrogate for this variable. Rent is a variable used regularly by the bank for proxying
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both the location and the size of the bank branch., Concerning the ideal input ‘total number
the transactions’ we could not use this input because the data on transactions that the bank
collects includes only those performed at the branch by the branch’s personnel and those
performed in ETMs located in the bank branch, where both branch’s clients and non-clients
are considered. On the input side we also use the number of clients not yet registered for
multi-channel use, which links with the output number of registrations for a multi-channel
code (the use of this input will be further explained afterwards).

On the output side we could not consider any of the ideal outputs. Indeed, the infor-
mation that the bank has available concerns the total number of transactions performed in
ATMs and CATs located in the bank branch, and these may include clients and non-clients
of the bank branch. For the case of transactions in ATMs these may, in fact, relate to a
customer from any bank in the country or abroad and therefore the number of transac-
tions performed in ATMs should not be used in our assessments. There is, however, one
type of transaction that is mostly undertaken by customer’s of the branch: deposits. A
deposit in an ATM or CAT of a given branch was necessarily performed by a client of
the bank as a whole, and it is likely that the deposit was done by a client of the branch
where the equipment is located. In Portugal ATMs are provided to all banks by an entity
called SIBS. CATs are, however, equipment that belongs to the bank, and is to be used
oﬁly by clients of the bank (note that some ATMs may also be property of the bank but
usually they are not). This means that transactions performed in CATs are also likely to
have been done by clients of the bank branch where the CAT is located and therefore we
can use this variable in our transactional efficiency assessments. We have, therefore, two
output variables indicating the degree of usage of ETMs in the bank branch (number of
transactions in CATs and number of deposits in ETMs), and also a variable indicating how
many branch’s customers have registered to access internet in each month (all our data are
monthly). This variable is used instead of number of transactions in internet since the bank
could not supply the actual number of transactions performed in the internet by branch’s
clients. The number of clients that registered in each month links with the input N. of
clients not yet registered at the beginning of each month for using this channel. It was
important to consider this input rather than number of clients, since we are interested in
assessing how effective a branch is in motivating those customers that do not yet access the

internet to use this new distribution channel.
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5.2.2 Operational Efficiency

The operational measure of efficiency is related to all types of operations that go on in a
bank branch. It accounts especially for value-added operations (sales related) and therefore
this measure is linked with the previously defined transactional efficiency. That is, the more
effective a bank branch is in moving transactions to alternative distribution channels the
more time branch staff will have to perform value-added activities, and therefore it is
likely that the operational efficiency is higher for those bank branches which show higher
transactional efficiency. This link is analysed in detail, and confirmed, in Chapter 11.

Ideal inputs and outputs of the operational efficiency assessment are presented in Figure

0.4.

Figure 5.4: ldeal Inputs and Outputs in the Operational Efficiency Assessment
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This measure presents similarities with the usual production efficiency measures in the
banking literature but it has some differences. Firstly it has something of a market efficiency
measure as defined in Athanassopoulos and Thanassoulis (1995), and Athanassopoulos
(1998). This is so because one of the objectives of the branches is to increase their sales
and customer base. The ability of the branch to do this, depends on the market conditions
it faces, like the degree of competition in the marketplace, the location of the branch, or
the socio-economic conditions of people in this location (which are potential customers of
the branch). Athanassopoulos (1998, p. 174) defines market efficiency as “the extent to
which individual bank branches, given their capacity and resources available, utilize their
market potential by maximizing sales”. Such measure of efficiency is naturally output
oriented. Our measure of operational efficiency fits the definition above since it considers

on the output side the sales of various accounts, but it also incorporates other operational
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aspects. Indeed, alongside with the objective of bank branches to increase sales volume
and their customers’ base, the branch cannot stop serving customers that do not go there
for buying a product but for performing general transactions that could have been done in
alternative distribution channels. Therefore, on the one hand branch managers would like
to reduce general transactions at the branch, so that sales could be improved, but on the
other hand they need to serve customers whatever they require in their visit to the branch.
Transactions appear, therefore, as an output of the operational efficiency assessment but it
is non-discretionary in the sense that the branch does not want to increase it.

In accordance with the above we consider in Figure 5.4 inputs relating with the en-
vironmental conditions and operational conditions faced by the branch. Environmental
factors relate with the level of competition, the market potential, the socio-economic back-
ground of the branch’s clients and the branch’s age. The socio-economic background and
the market potential are intended to reflect, respectively, the ‘quality’ and the ‘size’ of the
market where potential customers are in. The consideration of the age of a bank branch
is important when the type of outputs used capture growth as in our case. In fact, bank
branches pass usually through a life cycle where in their first years they experience high
growth rates in sales and customers and then they reach a maturity phase where growth
rates are lower. Under this circumstance it is expected that younger bank branches have
higher growth rates than older bank branches.

The input competition may pose some problems in the assessment since it is not al-
ways clear whether more competition or less competition is better. Athanassopoulos and
Thanassoulis (1995) considered competition as a negative input, and as such the inverse of
number of competing establishments in the surrounding area was taken as an input. On the
other hand, Athanassopoulos (1998) considered competition an attribute, that is, a factor
that does not have a “predetermined positive or negative impact on the output produced”
(Athanassopoulos, 1998, p. 178). Drake and Howcroft (1995) and Avkiran (1999a) also
used competition on the input side of their efficiency assessments, but apparently did not
consider this input as negative.

The operational input considered in Figure 5.4 is the number of staff, which is the most
important input in the operational activities of bank branches. Other type of inputs such
as technology related variables could also have been considered. We did not consider these
in our case because the set of bank branches to be analysed are quite homogeneous and

they use the same type of technology. Variables concerning number of computers, although
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available, do not seem to add much to the above assessment because operational efficiency
is not so much related to the number of electronic devices each staff member has, but to
how the potential of these devices is actually exploited.

The outputs of the operational efficiency assessment reflect the number of new clients in
a given period, and the number of sales of various products during the same period. Along-
side with selling, staff also serve clients that go to the branch for transactional purposes.
This activity is imbedded in the variable ‘number of transactions’ at the bank branch. Note
that, as mentioned before, this output will be considered non-discretionary.

In the set of outputs above we also consider a service quality index. The consideration of
this factor goes in line with the notion that branch staff should sell as much as possible but
not at the expense of reducing service quality levels. We have however some doubts in using
this output (and in fact we did not use it in our actual set of inputs and outputs) because its
consideration implies that, for example, increasing staff is likely to increase service quality
(positive relationship between inputs and outputs inherent in any efficiency assessment),
and that increasing service quality may be done at the expense of reducing some of the
others outputs (substitutability between outputs inherent in any efficiency assessment).
Obviously we accept that more resources are consumed to produce higher service quality.
The question is whether in this assertion we are referring to inputs of the type we can see
in Figure 5.4. Is it the number of staff that potentially increases the quality of the service
provided or is it their quality? What about the other variables, mostly environmental?
Would they have any impact on service quality? On the other hand, on the output side can
we say that the bank branch is willing to reduce some sales of accounts to provide better
service quality? In theory we could, but in practice things might not work exactly in that
way. For this reason, in our empirical application considerations about service quality and
its relationships with operational efficiency will be performed a posteriori.

Given data availability, the set of inputs and outputs that we use in the operational
efficiency assessment is shown in Figure 5.5. The actual set of inputs used in this assessment
includes just the number of staff and rent, where the latter is a surrogate for the environment
of the branch. The variable relating to the market potential of the branches was not
available and therefore it could not be used in the assessment. As far as the other ideal
inputs are concerned, namely competition and age, these are available but we decided not
to use them. The variable relating to the level of competition that we have is the number

of competing branches within one kilometer of each branch. We did not use this variable
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Figure 5.5: Actual Inputs and Outputs in the Operational Efficiency Assessment

N. Transactions at branch
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A Credit Bank

A Credit Associates

because the way it was constructed did not seem the most appropriate for inclusion in
our study. Indeed, a competition level of 5 branches within one kilometer might mean
completely different things depending on the branch being located on an urban area or a
rural area (small competition in the first case and high competition in the second case). At
the same time doubts arose as wether to consider competition an isotonic or non-isotonic
input as from our data it was not possible to infer the type of effect competition had on
bank branches' outputs.

Concerning the variable age, its non-inclusion in the assessment relates primarily to the
fact that only 4 branches in our sample are younger than four years old. This means that
any impact of the newness of the branch had worn off because most of the branches were
sufficiently old for that. In addition, if age was to be considered it would be a non-isotonic
input (the higher the age the lower the expected amount of outputs), which would create
additional difficulties to our analysis.

It is therefore, recognised that age and competition might have an impact on the network
of bank branches under analysis, but this effect will only be analysed a posteriori.

With reference to outputs we did not have data concerning sales of the various products
of the bank branch. However, as we have monthly data we can use the variation in each
account from month to month as a prozy for sales. Following this approach, we consid-
ered on the output side the change in current accounts, in other resources (that include
term deposit accounts, emigrant accounts, investment funds, savings insurance, ctc.), in
titles deposited, in credit by the bank and in credit by associates. We consider here two
broad classes of credit (as classified by the bank): credit by the bank includes consumer’s

credit, card’s credit, housing credit, commercial discounts, loans, overdrafts, share’s credit,
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amongst others; and credit by associates includes factoring and leasing. The latter type of
credit is called credit by associates because it is not the bank that directly provides it but
other companies (associates) inside the same financial group.

The output number of transactions in Figure 5.5 is a sum of various transactions for
which we have detailed information. In this sum the bank does not weight differently the
various transactions considering therefore that these consume the same amount of resources
of bank branches. Note that the transactions considered here relate to all transactions
taking place at the bank branch irrespective of the client being from that branch or from
another branch of the group. This does not happen with the other outputs that relate
only to branch clients. Ideally, the variables capturing the variation in the various accounts
should relate to both branch’s clients and non-clients, because the operational work load
of the bank branch relates to the sales it does irrespective of it being for a branch client
or not. The consideration of only branch clients in the computation of change of accounts
represents, therefore, a limitation of our empirical analysis that may underestimate the
efficiency of some bank branches performing a large number of sales to non-branch clients.

In the ideal inputs and outputs specified in Figure 5.4 output variables are specified
in number. However, in the actual operational efficiency measurement we could not use
quantity variables because these were not available. We use therefore value information
that concerns the amount of money that is kept in each of the various accounts. This fact
constitutes an important limitation of our empirical analysis.

The use of changes in activity levels as outputs results necessarily in some outputs being
negative for some of the branches. At least two other bank branch studies in the literature
have dealt with the same issue. Pastor (1994) considered two outputs in their study of the
operational efficiency of a set of 23 Spanish bank branches: Change in demand deposits,
and change in time deposits. As both these outputs are unrestricted in sign the authors
used a BCC input oriented model that is translation invariant on outputs. Sevcovic et al.
(2002) analysed the efficiency of 37 branches and 591 sub-branches offices in Slovakia. One
of the outputs considered could be negative and as such the authors adopted the additive
translation invariant model of Lovell and Pastor (1995), where slacks are normalised by the
standard deviation. The existing approaches for dealing with negative data have some flaws
and therefore we developed our own models to handle negative outputs. The developed

measures are detailed in Chapter 6.
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5.2.3 Profit Efficiency

The profit efficiency measure is intended to capture the extent to which a bank branch
is profit maximising. Note that our interest here is not simply to calenlate what the
profit (understood as an accounting concept) was, but to compare the potential for profit
maximisation of bank branches.

In the measurement of profit efficiency there are two types of variables that are to be
used: values and prices. By values we understand the amount of money that is kept in the
various accounts, and by prices we mean interest rates.

The set of ideal inputs and outputs to be used on the profit efficiency assessment can be

seen in Figure 5.6. These inputs and outputs are related with the intermediation efliciency

Figure 5.6: Ideal Inputs and Outputs in the Profit Efficiency Assessment

Costs Revenues

Deposit accounts x price

N

Staff x salaries

: : Credit accounts x price
Equipment x capital cost

Other revenues
Other operational costs (commissions)

(Supply costs)

approach in the sense that on the input side costs are considered and on the output side
revenues are considered. Note that costs and revenues are disaggregated in value and
price information. In this sense, our approach differs from those used in the literature to
measure profit (intermediation) efficiency, where prices are not taken explicitly into account.
Ignoring prices is equivalent to assuming that these are the same for all production units
and that no product is more important than any other in determining revenues. This is
clearly a limiting assumption and therefore, whenever possible, price information should
be included in a profit analysis. The framework developed to compute profit efficiency is
detailed in Chapter 8. The disaggregated information on prices and values will be used in
this framework, where the use of value variables alone allows the measurement of technical
profit efficiency, and the use of value information together with price information allows
the calculation of maximum profit and profit efficiency.

Our specification of outputs in Figure 5.6 considers a set of accounts from which revenue
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is generated. This means that the sum of our outputs (except commissions) multiplied by
their respective prices gives the total interest revenues. In Figure 5.6 we do not consider
interest costs on the input side because we are assuming that the prices provided for each
output are net interest rates, and therefore the revenue thus obtained is also a net interest
revenue (interest revenue - interest costs). This obviously simplifies the model because
the products which are a source of interest revenue are also a source of interest cost for
the bank (for example, deposits give an interest revenue to the bank from its application
on monetary markets but the bank also incurs in an interest cost that is what the client
earns).

Note that the specification of inputs and outputs in Figure 5.6 does not require the
existence of price information for all inputs and outputs (supply costs and commissions are
two cases for which price information might not exist). In Chapter 8 we mention this fact
and provide a way to deal with this problem.

The actual set of inputs and outputs that will be used in our empirical application is

shown in Figure 5.7, This set of variables does not differ much from the ideal set of inputs

Figure 5.7: Actual Inputs and Outputs in the Profit Efficiency Assessment

Current accounts x price
Staff x salaries Other Resources x price

Bank Branch Credit Bank x price

Supply Costs . . .
Credit Associates x price

and outputs seen in Figure 5.6. The main differences relate to the impossibility of using
capital costs on the input side of our efficiency assessment, and to the impossibility of using
the value of non-interest revenues (commissions) on the output side. None of this data was
available for the bank branches being analysed.

We have price information for all outputs and also for staff. For the input supply costs
price information is not disaggregated and therefore supply costs shall be included as such
in the analysis (in a way that is explained in Chapter 8). Concerning output prices the
bank could not supply interest rates per branch, but only average interest rates across all

branches. This means that net interest rates of outputs are equal for all bank branches.
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Although this is not strictly true it is an approximation to reality. In fact the bank sets
prices centrally, leaving bank branches a limited freedom in setting different prices for
different customers. Prices can, therefore, vary by client but one may assume that on
average they do not differ much between branches. Nevertheless, the ideal situation for
measuring profit efficiency would be one where individual price information per branch was
available, since the use of the same prices means that the analysis considering output prices
is equivalent to one where revenues were considered instead. It was decided, even with the
above limitation, to use price and value information disaggregated so that all the models

developed are fit to be used in the ideal case where prices are specific of each branch.

5.3 Summary

In this Chapter we put forward a model to assess the efficiency of a set of Portuguese
bank branches. Three measures of efficiency are defined in this Chapter, but its application
to a sample of bank branches is postponed to Chapter 10. This is because before applying
our models, some methodological developments were required so that the above efficiency
measures could be in fact used. The methodological developments relate to new efficiency
measures that can deal with negative outputs (presented in Chapter 6), a novel approach for
providing closest targets to production units (developed in Chapter 7), and a new measure
of profit efficiency (developed in Chapter 8).

Finally note that the above proposed measures bring in new insights to the traditional
efficiency measurement of bank branches. On the one hand the concept of transactional
efficiency is introduced here for the first time, and, on the other hand, the concept of
production or operational efficiency is adapted to account for the changing role of bank
branches (namely it focus on selling and moves the servicing of clients on general transac-
tions to a second place). In addition, we also consider the main objective of bank branches
as for-profit organisations and propose ways to measure their profit efficiency in a way that
accounts for both values and prices.

The three objectives of bank branches, and the corresponding efficiency measures, are
obviously linked as will be shown in Chapter 11, where we compare results obtained from

the three separate efficiency assessments.

106



Chapter 6

DEA Models to Measure
Operational Efficiency in the

Presence of Negative Data

In this Chapter we present a novel approach to deal with negative data. Such approach
was inspired by the directional distance function and has a number of advantages over

existing approaches to deal with this type of data.

6.1 Introduction

Data Envelopment Analysis (DEA) is an efficiency assessment tool that implicitly as-
sumes positivity of all inputs and outputs. However, in many real life contexts not all
inputs and outputs are positive for all operating units. As noted in the previous Chapter,
in our case too the measurement of operational efficiency, where outputs refer to changes
in the levels of clients, deposits, etc., resulted in some outputs taking negative values.

Traditionally negative data are handled in efficiency applications through some data
transformation (e.g. adding an arbitrary large number to all values of a given variable) so
that all negative data are turned into positive data (see e.g. Pastor, 1994; Lovell, 1995). Such
transformation of the data may have implications for the solution, classification, or ordering
of the DEA results (Seiford and Zhu, 2002). There are, however, some models whose
solution is invariant to data transformations, which are usually referred to as translation
invariant. In the presence of negative data the most often used model is the variable returns

to scale (VRS) additive model of Charnes et al. (1985b), which is translation invariant as
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demonstrated by Ali and Seiford (1990). The additive model is not however, in its original
form, units invariant (independent of scale of measurement of the variables). Due to this
limitation Lovell and Pastor (1995) put forward a units invariant version of the additive
model that uses a weighted sum of slacks where the weights are the inverse of the standard
deviations of the corresponding input and output variables (see also Pastor, 1996; Thrall,
1996). The main advantage of the additive model is that it can be applied to negative data
directly without any need to subjectively transform them. However, the additive model has
some drawbacks, namely the fact that it yields in respect of an inefficient unit the ‘furthest’
targets on the production frontier, while at the same time it does not yield an efficiency
measure that can be readily interpreted. Thus the model does not yield very practical
guidance as to how a unit might improve its performance nor does it make it possible to
readily rank units on performance. The VRS model of Banker et al. (1984) (also known
as BCC model) is able to provide an efficiency score in the presence of negative data,
but this cannot be achieved without transforming the data. In addition, the BCC model
has restricted translation invariance (it is translation invariant on inputs if it is output
oriented, and translation invariant on outputs if it is input oriented (see e.g. Lovell and
Pastor, 1995; Pastor, 1996).) meaning that the efficiency scores may depend on the way
data are translated.

Thus there is no DEA model to date that can be used with negative data directly
without any need to transform them while at the same time it yields an efficiency score
that can be readily used to compare units. In this Chapter we propose DEA models which
provide efficiency scores, similar in meaning to radial efficiencies traditionally used in DEA,
while at the same time negative data can be used without the need to subjectively transform
them. This is an important advantage over existing approaches to deal with negative data.

Our approach is inspired by the well known directional distance model of Chambers
et al. (1996a, 1998), and it provides efficiency scores that can be directly used to rank and
compare production units when some inputs and/or outputs are negative. Targets resulting
from our procedure, and from a variant of this procedure, are also analysed in this Chapter
and it is shown that our models in general provide closer targets than existing models in
the literature. Closer targets represent a useful practical feature because they would prove
easier for the unit to attain and have been explored for the case when all data are positive
in a number of papers (e.g. Coelli, 1998; Frei and Harker, 1999; Cherchye and Puyenbroeck,
2001a; Portela et al., 2003, amongst others).
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We assume throughout that negative data is not necessarily a bad in itself, i.e. efficiency
does not require all inputs and outputs to be positive. Rather we assume that it is possible
to have certain efficient units presenting some negative values of inputs and/or outputs.
Consider for example the case of our bank branches where negative outputs arise from
the fact that we are measuring growth on the output side. If we have, for example, one
output measuring sales growth and another measuring clients growth, it is likely that a
bank branch consciously chooses to increase more one of the outputs at the expense of
reducing the other. That is in managing its operations a branch may prefer to increase
sales by selling more to existing customers rather than to increase the customer base so
that the basis for potential sales increases. These two strategies are equally valid although
they may mean in the short run neglecting one of the factors in favour of the other. The

neglecting factor may thus suffer a decrease, and growth will be negative.

6.2 Negative Data: Implications in DEA

Negative data may arise due to the consideration of variation in variables like changes in
clients or accounts from one period to the other (Pastor, 1994), or due to the use of variables
like profit that may take both positive and negative values (Krivonozhko et al., 2001).
Negative inputs or outputs may also arise artificially as a way to deal with undesirable
inputs or outputs (Seiford and Zhu, 2002).

The translation invariance of the additive model is subject to it being specified under
VRS. Constant returns to scale (CRS) models are not translation invariant. In fact the
notion of CRS is undefined in the presence of negative data. We can readily demonstrate
that an assumption of CRS, as traditionally defined, is not possible in technologies where
negative data can exist. A CRS technology assumes that any activity can be “radially
expanded or contracted to form other feasible activities” (Fare et al., 1994a, pg. 50). Take
a set of only two units, A and B, represented by activity vectors (z,y1,¥2), where z is
input and y; and y outputs. Assuming that output 1 is negative, consider that A and
B equal (1, -1, 1) and (1, -2, 3), respectively. Unit A has higher productivity in y; and
B has higher productivity in y2, and therefore both units are CRS efficient (see Chen and
Ali, 2002). However, the additive CRS model shows only unit B efficient. In fact, it is
possible to radially contract unit B (say by 50%) and find a feasible point (under the CRS
assumption) dominating unit A [e.g. 0.5B =(0.5, -1, 1.5) dominates A]. The productivity

ratios, however, remain unchanged and as such this result is clearly wrong. The assumption
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behind CRS DEA models that any proportion of an efficient unit is also efficient, is therefore
only valid for non-negative data.

In the presence of negative data VRS technologies need to be assumed. However, the use
of radial measures of efficiency traditionally used in VRS DEA models is problematic. To
illustrate the point consider the example in Figure 6.1, where two outputs are represented
(output 2 is positive and output 1 may be negative) and all units have the same input.

Assessing the efficiency of unit U3 using, for example, the radial output oriented BCC

Figure 6.1: Example with one negative output
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model (Banker et al., 1984) without transforming the data, implies an expansion of both
outputs by a multiple greater than 1. This, however, implies a movement of the inefficient
unit U3 to the frontier in the direction shown by the arrow in Figure 6.1. This movement
is not desired since the negative output is being expanded making it even worse. Clearly
positive radial expansion factors applied to negative data lead in the opposite direction to
the one we would wish to follow to improve performance. The addition of a constant to the
negative output (output 1 in Figure 6.1) would move the frontier to the positive quadrant
and the right direction would be followed by U3 towards the frontier. The output efficiency
score would, however, depend on the value of the constant added to the negative output
vector, and the resulting radial efficiency score would be hard to interpret in the light of
the negative data it in fact represents.

Note that the treatment of negative data is in a way similar to the treatment of unde-
sirable inputs and/or outputs, since both negative data and undesirable outputs need to be
constrained to move in a direction that is contrary to the direction used in traditional DEA
models. Several approaches exist to deal with undesirable outputs as can be seen in the

recent review of Allen (1999) and Dyckhoff and Allen (2001). One of these approaches is

110



6.3 A Directional Approach to Deal with Negative Data

based on the directional distance function, and was first proposed by Chung et al. (1997).
In this Chapter we use a related approach, also based on the directional distance model, to

deal with negative data.

6.3 A Directional Approach to Deal with Negative Data

Consider a set of units j = 1,...,n, with input levels z;;, i = 1,...,m and output levels
Yrjy T=1,...,s, and unit o € j which is to be assessed. The generic directional distance
model as proposed by Chambers et al. (1996a, 1998) is in (6.1) for the case of VRS and

with input and output vectors in R™*3,

n n
max{ﬁol ZAJ yerym+ﬁogy,r=1,---,8, ZAJ zijszio“ﬁogz‘ i=1,...,m,
i=1 i=1
n

S =1, Ay o Gar 9 20} (6.1)
i=1
Model (6.1) is defined in the most general non-oriented case as it looks simultaneously
for input contraction and output expansion. Oriented models can be derived from (6.1)
by setting respectively g, or g, equal to zero. When data are strictly positive a usual
choice for the directional vectors (g, gy,) are the observed input and output levels. When
some data are negative, the use of observed input and output levels would violate the last
constraint of model (6.1), which is intended to ensure that inputs and outputs do not worsen
from their observed levels in the solution the model yields.
We modify the model in (6.1) to ensure it yields improving solutions even when some of
the data are negative. Specifically, and for a given data set, consider an ideal point defined
as I = (max;jy;, r=1,...,8, minjxj, i =1,...,m). We can now define the vectors Ry,

and R;, in (6.2), to which we refer as the range of possible improvement of unit o.
R = m;ax{y,-j} =ay = Loiiay 8 608 Riy =xgo—rrljin{xij}, i=1....,m (6.2)

Although there is no evidence that any unit can actually exist at the ideal point I the range
of possible improvement in (6.2) can be seen as a surrogate for the maximum improvement
that unit o could in principle achieve on each input and output. Such an improvement
can never be negative, and therefore the range vectors in (6.2) satisfy the non-negativity

restrictions on the direction vectors used in (6.1). Under VRS units that have the maximum

111



6.3 A Directional Approach to Deal with Negative Data

value on some output or the minimum value on some input are always 100% efficient (Chen
and Ali, 2002). Thus the range of possible improvement we use is determined by the efficient
units’ input/output levels, which is already a characteristic inherent in the classical DEA
model (e.g. Thanassoulis, 2001, Chapter 3).

Note that this contrasts with other notions of ‘range’ used in the literature such as by
Cooper et al. (1999), where range of a variable is defined as its maximum observed minus its
minimum observed value. In such a range worst performance as given by maximum inputs
and minimum outputs affects the results of the model. This is because worst performance
is included in the definition of the range and efficiency results depend on the range defined.
Another notion of ‘range’ related with that defined in (6.2) has been introduced by Bogetoft
and Hougaard (1998) and also used by Asmild et al. (2003). Bogetoft and Hougaard (1998)
introduce a ‘potential improvements approach’ using the input oriented directional distance
function, where the directional input vector is the difference between the observed input
and an ideal reference input. This ideal input vector, however, is specific to each production
unit reflecting the “largest possible reduction in each input with all other inputs kept fixed”
(Bogetoft and Hougaard, 1998, p. 235). To the authors’ knowledge the use of the range

direction as specified in (6.2) has never been used before in the literature.

6.3.1 Range Directional Model (RDM)

Based on the notion of the range of possible improvement in (6.2), we define the Range
Directional Model (RDM) as shown in (6.3).

n n
ma-x{ﬁol jZlAj Yrji 2 YrotBo Rro 7=1,...,3, -ZIAJ- zij < Tio—Po Rip i =1,...,m
= Jj=

i A\=1,220} (63)
j=1

Models that can deal with negative data should be translation invariant and units

invariant. The RDM in (6.3) satisfies both these properties as proved next.

Translation Invariance Proof: Let an amount K, be added to each output and V; to
each input. The constraints in (6.3), therefore, become: 377 ) Aj (yrj + Kr) 2 (yro+ Ky) +
Bo Rro and E?=1 Aj (zij + Vi) < (zio + Vi) — Bo Rio. Note that the range of improvement
does not change with the addition of a constant to each input and output. The left hand side
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of the output inequality (3°7_; Aj (yrj + Kr)) is equivalent to 3°7_4 Aj yrj + Kr Y74 Aj
As the E;-'=1 A;j = 1, then the constraints changed with K, reduce to the constraints in
model (6.3). The same happens with the input constraints changed by V;.

Units Invariance Proof: Consider that all levels of input ¢ are multiplied by «;, and of
output r by 7,. This results in the following modified constraints of (6.3): Z}',:l Aj(vryri) 2
YrUro+Bo(vr Rro) and 3°7_1 Aj(@iZis) < @iZio—Po(aiRis). These constraints reduce to those

in (6.3), whose solution, therefore, does not change when the unit of measurement changes.

The translation invariance of the RDM model means that it can be equivalently applied
on the original data, where some inputs and/or some outputs may be negative, or on
transformed data. Obviously the use of original data is preferred, as data transformations
result in the addition of un-necessary complexity to our models. Note that the RDM model
is only translation invariant when VRS are assumed, as all the existing translation invariant
models in the literature.

The range of improvement R,, or R;, as defined in (6.2) may be zero for some outputs
and some inputs. This is in line with intuition, because a range of zero improvement
means that the unit has achieved on that variable a good enough value so that we have
no observed evidence how that value might improve even further. Note that a constraint

in (6.3) associated with a zero range is necessarily binding (target values equal observed
values).

Closer Look at the Efficiency Measure Yielded by the RDM Model

At the optimal solution to model RDM at least one constraint is binding, meaning
that g equals E:}'E? or z“’-T-:‘.- for at least an output r or an input i. The star stands for
the target value obtained at the optimal solution to model (6.3). This means S is equal
to the ratio of an optimal slack (that projects unit o on the frontier) to the maximum
possible slack (given by the range) unit o had on that variable. Seen in this way g is
clearly an inefficiency measure. The RDM efficiency measure, 1 — 3, is therefore
defined as %}I{H if a binding constraint corresponds to output r, or Hﬁ% if
a binding constraint corresponds to input i. As target outputs (target inputs) cannot be
lower (higher) than observed outputs (observed inputs), the numerator of 1 — § is never
larger than the denominator, meaning that the upper bound of 1 — 8 is 1. Efficiency of
1 will only be achieved when the observed are also the target values, i.e. when the unit
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o, being assessed, lies on the efficient frontier. This is as in the case of traditional DEA
models (Charnes et al., 1978).

The RDM efficiency measure can be illustrated with the aid of Figure 6.2 (depicting
the same units as Figure 6.1), where we are assuming an output oriented RDM model.

The efficiency measure 1 — 3 of U3 equals the ratio CB/CA, which in turn equals the

Figure 6.2: RDM in a 2 output example
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ratio FE/FD. Note that CB/CA measures the distance between the level of output 1
at the observed point U3 and its target point U3*. FE/FD is interpreted in a similar

manner in respect to the level of output 2. Thus we have for U3 a value of 1 — 3 equal to

5;1'(03{3 = S=1255 = 43.36%, reflecting the relative distance between U3 and its target

U3,

Note that there is close similarity between the RDM efficiency measure and radial
measures of efficiency traditionally used in DEA. The difference is in the reference point
used to measure efficiency. In the RDM case the reference point is not the origin used in
traditional DEA models but rather the ideal point we defined using (6.2). In fact if we
rotate Figure 6.2 suitably we can arrive at Figure 6.3 in which the ideal point occupies the
position of the origin in traditional DEA models. Using Figure 6.3 it is easy to see that
the efficiency measure yielded by model RDM, 1 — 8, is a distance measure between the
observed and its target point with reference to the ideal point. The lower this distance the
higher the value of 1 — 8 and the more efficient a unit will be, To see this note that the
direction of improvement followed by inefficient unit-é; U3 and U5 in Figure 6.3 is defined
with reference to the ideal point, a role played by the origin in traditional DEA models.

Our efficiency measure has the same geometric interpretation as radial measures in

DEA provided the ideal point is treated as the origin. Consider for example U3 and define
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Figure 6.3: Figure 6.2 after rotation
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two vectors A = I 1T that goes from ideal (I) to target (T) point, and B=T-0
that goes from ideal to observed (O) point. Then the efficiency measure (1 — §) of U3
is given by the ratio between the length of these two vectors, that is by ||4||/||B|| =
|| = T||/|II - O]|, exactly as would be under traditional DEA, had the point I been the
origin. (For example, assuming an input oriented DEA model, where data are assumed to
be non-negative, consider the ratio ||T}|/||O|| where (T) is an input target vector and (O)
is an input observed vector. Given T is the radial input target vector it equals 6O, where

0 is the input efficiency score, meaning that the above ratio of norms reduces to 6.)

Pareto-Efficiency

Efficient units will necessarily have in the RDM model an optimal 1 — 8 equal to 1, but
this is not a sufficient condition for Pareto-efficiency. The Pareto-optimality conditions for
model RDM are two: (i) 8, = 0, and (ii) all constraints of (6.3) are satisfied in equality
(i.e. all slacks are zero). Note that though the RDM model does not assure projection
on Pareto-efficient targets it may in some cases correctly identify weak efficiency. This is
the case for units X and Y in Figure 6.2 (or in Figure 6.3), whose assessment through the
RDM model yields a value of 1 — 3 different from 1. This is an interesting characteristic
of the RDM model that, though behaving as a radial model, can in some cases identify
weak efficient units. Units located on an inefficient part of the frontier have at least one
of the ranges equal to zero, which has no influence over the value of 8. As f is maximised
in model RDM (see (6.3)) any inefficiencies in the factors that have non-zero range may

be found because these will push g to be greater than zero. Nevertheless, with several
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6.3 A Directional Approach to Deal with Negative Data

inputs/outputs 8 = 0 is not a sufficient condition to assure Pareto-efficiency!

Note that to find Pareto-efficient targets one can solve (6.3) in a first stage and the
additive model in a second stage as described in Ali and Seiford (1993b). Alternatively
Pareto-efficient solutions can be found by solving the additive model in a first stage to
identify those units that are Pareto-efficient and then restrict the reference set in the RDM
model to those Pareto-efficient units. In our empirical implementation detailed in Chapter
10 we have chosen the latter approach.

The aforementioned implies that the efficiency score 1 — 3 is not able to incorporate all
the sources of inefficiency, since slack values are not reflected in the value of 8. Ranking
units based on an efficiency measure that does not include all the sources of inefficiency
may result in a biased ranking especially if slacks are high. We can, however, use the
ratio of the norms (||A||/||B|| = ||I = T||/||I = O||, as defined previously) to account
for all inefficiencies including those from slacks as long as target levels considered in the
computation of A and B are Pareto-efficient (see e.g. Cherchye and Van Puyenbroeck,
1999a,b). Note however, that when Pareto-efficient targets are used in A and B these
two vectors are not necessarily collinear, meaning that the resulting efficiency measure is
dependent on units of measurement. In order to avoid this problem the ratio of norms

(11All/11B]|) should be used on normalised data only.

6.3.2 Target Setting under Negative Data in DEA

In the RDM model the direction towards the production frontier is in a sense ‘biased’
towards the factors with the largest potential for improvement. That is, the model seeks
targets such that the factors on which the unit has the largest difference from the 'best’
values observed elsewhere are those where improvement is given priority. Thus in a sense
the model seeks targets so that the unit will improve in those factors where it does *worse’
relative to other units, and therefore the targets may prove hard for the unit to achieve in
the short-run.

This section puts forth an alternative direction of improvement of inputs and outputs so
that the unit will identify targets where the factors on which it does best are given priority

to improve. Such targets will normally prove easier for the unit to attain in the short term.

!Consider, for example, two points W and Z with input /output vectors (y,z1,z2) equal to (12, 5, 13),
and (12, 5, 17), respectively. Unit W dominates unit Z, which is not Pareto-efficient. However, Z has an
optimal 8z equal to 0 as resulting from model (6.3), where the range for improvement vector is (19, 0, 11).
This model has therefore multiple optimal solutions where 8z is zero both when Az =1 and Aw = 1.
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6.3 A Directional Approach to Deal with Negative Data

This direction uses the inverse of the ranges in (6.2) in the context of model (6.3). The
resulting model, referred to as Inverse RDM (IRDM), is in (6.4).

1

n
1
R r=1,...,s, Zr\j Zij £ Tio—Po

=1 '

i=1,...,m
7]

n
max {5, | 224 ¥ 2 vt

i&:LMz@(M)
i=1

For ranges in (6.4) which are zero, division by zero is avoided and we use zero as the
coefficient of the corresponding 1/R;, or 1/Ry,. This treatment of zero ranges ensures that
the corresponding input or output has within the targets derived the same value as that
observed at the unit concerned. This matches the treatment of zero ranges in the RDM
model.

Model (6.4) is translation invariant (the proof for translation invariance of (6.4) is ex-
actly the same as for model (6.3), because the range for improvement does not change
when the same constant is added to inputs and/or outputs). However, model (6.4) is not
units invariant. Assuming for example that all levels of output r are multiplied by ~,,
we have E};l Aj YWYri 2= Tr¥ro + Bo 71—}:;, which is not equivalent to the constraint for
output r in (6.4). In order to circumvent this problem we can use normalised data in
model (6.4), so that its solution is not dependent on unit of measurement. Using nor-
malised data, and ranges calculated on this normalised data, makes model (6.4) units
invariant (As 3°7_, -\j% > K2y ﬁ%__’-; (where Y; is the maximum output r), is equal to
TraAipt > W2 4 B2, Note that the same is valid for input constraints.) The
IRDM model is, therefore, translation and units invariant on normalised data.
In our empirical application, detailed in Chapter 10 model IRDM is applied to data that
have been previously normalised by a non-negative value.

Model (6.4) must be used in our empirical application for target setting purposes only.
This is because the “efficiency measure” it yields does not have a straightforward interpre-
tation as will be seen next.

The IRDM efficiency score 1~ 3 in (6.4) measures the distance from an observed point
to a target point with reference to some ideal point. However, the IRDM model works as if
a different ideal point was defined for each unit, which represents a problem in interpreting

and comparing efficiency scores yielded by this model?.

To illustrate this consider the optimum S, as resulting from (6.4), after normalising outputs by Y; and
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6.3 A Directional Approach to Deal with Negative Data

Since the IRDM model works as if different ideal points were defined for each production
unit under assessment, the IRDM efficiency measures are not comparable within themselves
nor with RDM efficiency scores. This means that the IRDM model should not be used to

rank and compare units but just for target setting purposes.

6.3.3 Closest Targets and the RDM Models

The IRDM model gives priority to improve the factors on which production units per-
form best. As a result one expects targets derived from this model to be less demanding
(closer) than those resulting from the RDM model. The IRDM model may be, therefore,
a good alternative to more complicated procedures of finding closest targets to inefficient
units. For example, the procedure developed by Charnes et al. (1992) for calculating the
radius of stability (minimum change needed to change the classification of a unit) can be
used for calculating targets with the minimum L; distance. This procedure is not, however,
units invariant and implies solving several linear programming models (m + s), each being
an additive model that maximises slack variables in turn (see also Briec (1998) who put
forward the same model for finding the minimum L; projection). In Chapter 7 we show a
procedure for finding closest targets to inefficient units. This procedure is, however, based
on a measure that cannot be directly applied in the presence of negative data as it is based
on ratios of target to observed input or output levels (which would be meaningless in case
observed data are negative).

The IRDM model does not assure closeness on any criteria (such as any L, metric) but
by focusing improvements on the factors at which the unit is already good at it provides in
principle targets that are near the closest.

We illustrate this point through the example that has been used previously (see e.g.
Figure 6.2), namely showing distances from unit U3 to alternative targets. We consider
6 different targets to unit U3 in Table 6.1: target Ul (-3, 6) is the closest target to this
unit according to the procedure of Charnes et al. (1992); target U2 (4, 3) results from

inputs by Xi, which is —f—‘;ﬁ;gﬂ'ﬂ or {zie= ’RV Xi when respectively the constraint relating to output r or
input § is bmdmg at the opt.nmaf solution to the IRDM model. Consider now a new range of improvement as
glven by Ryo = —f— for outputs, and R}, = ——i- for inputs, and normalised target and observed levels equal
toyr =yr/Yr, yrq yro/ Y., -'ci s | 1/ X, a.nd z}y = Zio/Xi. The optimal value of 8 in the IRDM model
reduces therefore to —"—;—“- or —"'—r—"— when respectively the constraint relating to output r or input i is
binding at the optimal solution to the IRDM model. The above IRDM efficiency relates directly with the
RDM efficiency measure, where the range of possible improvement is defined in relation to an ideal point

I' = (yro + Rroyzio — Riy). Point I' is no longer fixed as it was in the case of the RDM model, but varies
for each production unit.
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Table 6.1: Distance of U3 from Some Targets

Target Ly Ly Lo ||All/11B]|
Unit Ul 5 vi7 4 83.35%
Unit U2 9 V65 8 28.05%
BCC1 547 /1663 3.65 74.84%
BCC2 7.75 3754 581 31.73%
RDM Tgt 7.33 +/3082 507 43.64%
IRDM Tgt 512 V1675 3.9  81.20%

solving the translation invariant additive model of Lovell and Pastor (1995); target BCC1
(-2.1765, 5.65) results from solving the BCC model, where output 1 is transformed into a
positive output by adding 5; target BCC2 (1.8125, 3.9375)® results from solving the BCC
model, where output 1 is transformed into a positive output by adding 10; target RDM
(1.073, 4.255) results from the RDM model; and target IRDM (-2.793, 5.911) results from
the IRDM model.

Ul is the target yielding the smallest Ly norm, but this is not true for the other L,
metrics, where the IRDM target performs better than the procedure of Charnes et al.
(1992). Note that the BCC1 target performs very well in most L, norms except in the L.
Note also that the translation of the data has a big impact on the target levels obtained
and also on their distance from observed levels.

Results in terms of L, metrics should, however, be interpreted carefully because these
metrics are units dependent. This means that they are only valid when variables are
measured on the same scale or else they can induce completely wrong interpretations. The
units independent ratio of norms (||4]|/||B|| = [[I = T||/|/I — O||) can be used to calculate
the distance between any observed vector and a target vector with reference to the ideal
point?. For the alternative targets shown in Table 6.1 we calculated the ratio of norms

based on values normalised by the maximum and used a common ideal point as defined by

3Note that the target levels for output 1 obtained directly from the BCC model are always non-negative
due to the transformation imposed, but we then re-transformed output 1 targets by subtracting a value of
5 and 10, respectively for BCC1 and BCC2,

“The ratio of norms is not units invariant unless the two vectors A and B are collinear. The vectors A
and B are collinear in the RDM case when the targets are given by yro+8* Rro Or Tio — 8* Ris. We call these
radial targets as they only expand outputs or contract inputs by the optimal value of 3* as resulting from
the RDM model. In the IRDM case collinearity between A and B happens when ‘radial’ normalised targets
are considered. Collinearity between two vectors A = (a1,a3,0s,...) and B = (b1, b2, b3, ...) implies that
#* = §2 = 33 =.... To prove the units invariance of collinear vectors assume that the units of measurement
ofa given variable have changed by a. The resulting ratio of norms (in a three dimension case) is equal to

va? + a2 + (aas)?

Vb7 + b3 + (abs)?
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maximum outputs [I = (5, 6)]. This means that all the ratios of norms in Table 6.1 are
comparable amongst themselves. The highest value for this ratio happens for projection
of U3 on Ul, with the second best being attributed to the IRDM target. Note that the
additive target (U2) shows the highest distances from targets in all the criteria, and the
RDM target lies somewhere between the IRDM and the additive model’s targets.

The above results are only illustrative, but they support our argument that the IRDM
model has the advantage of looking for closer projections on the efficient frontier when
compared to the RDM or to the additive model. The empirical application presented in
Chapter 10 will further deal with the issue of closest targets.

6.4 Non-Discretionary Factors in the RDM Model

The RDM model developed so far considered the most general case of non-oriented
efficiency measures. In cases where some factors are not under the control of the units being
assessed one may need to use oriented models. As mentioned earlier, in order to consider
oriented RDM models the only change required to models (6.3) and (6.4) is to set the input
directional vector to zero for output oriented models, or set the output directional vector
to zero for input oriented models. The changes required for dealing with non-discretionary
factors are similar if we adopt the approach of Banker and Morey (1986a). That is, for
outputs r € NDO, where NDO is the set of non-discretionary outputs, we set in models
(6.3) and (6.4) R,, and -Rl—ro to zero. For inputs ¢ € NDI, where NDI is the set of non
discretionary inputs, we set in models (6.3) and (6.4) Ri, and 5~ to zero.

Other treatments of non-discretionary factors (as detailed in section 2.3.3 of Chapter 2)
can also be adapted to be used in the RDM models (e.g Banker and Morey, 1986b; Ruggiero,
1998; Ray, 1991; Fried et al., 1999). We will adopt the Banker and Morey (1986a) procedure
in our empirical application to bank branches, and therefore we will not provide details on

other approaches to treat non-discretionary factors under the RDM models.

Being A and B collinear we can replace a; by ﬂgfi-. and a3 by 2253, which results in

YO+ G+ R 4 0w [l

Vb3 + b2 + (abs)? Tbs b2 b |IBIl

When A and B are not collinear (which happens in the IRDM procedure when we take a fixed ideal point,
and in the RDM and IRDM procedures when we take Pareto-efficient targets rather than ‘radial’ targets),
then the ratio of norms calculated on normalised variables shall be used so that the resulting value is not
dependent on units of measurement. The ratio of norms can therefore be used to compare alternative target
points on the frontier, as long as they are based on normalised values.
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6.5 Dual RDM Model

In our application of the RDM model to bank branches (sce Chapter 10) we had negative
outputs resulting from differences between values observed in two successive time periods.
Constructing the dual of the RDM model it can be shown that the use of such negative
data is equivalent to a weight restricted model that uses only positive and ratio scale data.
In order to illustrate this consider the RDM model as shown in (6.3), whose dual is shown
in (6.5).

mm{hoﬂzvn 3:0—2‘“1- yro+uo| th Tij — Zur Yrj +u, 2 0,

f=1 r=1 :-1 r=1

PET M X Zu,. R,.,-i-Zv.- Rip 21, r=Ll...,8; t,is free} (6.5)
r=1 i=1

The output values y,; in model (6.5) are free in sign, and are equal to y,j, — Yrj,_,, Where

t refers to time (in our case months) (see Chapter 5, section 5.2.2 where we present the

actual inputs and outputs that are to be used in the operational efficiency assessment).

Therefore replacing yrj = ¥rj, = Yrje_, in model (6.5) we arrive at model (6.6), where all

outputs are positive.

min{h, = (E Vi Tio + Zu,. Yrog—1) — Zu, Yroe + Uo |

r—l

(Zv. :J:,,+Zu,- Yrie_y) — Zu,. Urj, + 120, j=1,...,n

i=1

Zu,.R,.o+Zv.Rw>l, r=1...,8, U is free} (6.6)

i=1

As can be seen in model (6.6) the variables y;,_, behave exactly as inputs. We can
therefore consider this variable on the input set as long as we add a further constraint
imposing that the weights on these inputs equal the weights on the corresponding output.
If we consider on the input side, say, clients in February and on the output side clients
in March, then we must impose an additional constraint stating that the weight of clients
February should be equal to the weight of clients in March. This means that model (6.6)
reduces to model (6.7), where the set of inputs m was enlarged to M by adding s inputs
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Yrjea®

M 8
min{h, = Zv.- Tio — Z‘ur Yroe + Uo |

i=1 r=1
M ] s m
Ev.- :r.-j—Zu,.y,.J—‘+u°20, ji=1,..4,n, Eu, Rm-l»Zv; Rp2l,r=l...y8
i=1 r=1 r=1 i=1

ur =v;, for r=1,...,sandi=m+1,...,M, u, is free} (6.7)

Model (6.7) is very similar to other DEA models and assumes positivity of all variables.
It imposes, however, some weight restrictions namely those relating with the equality of
some input and output weights, and the constraint imposing the weighted sum of ranges
of possible improvement to be greater than 1. Note that in this last constraint the ranges
considered are still the same as in the original model, where improvement is calculated
based on the original y,; and not on each of its components yj, , and yr;,. This happens
because, although we can express y,; as the difference between values observed in two
successive time periods, we cannot express the range of possible improvement R, as the
difference between ranges of possible improvement in two successive periods.

These results show that the use of variation or interval data (unrestricted in sign) is in
fact equivalent to using the original positive values at the beginning and end of a month.
This reasoning goes in line with the discussion raised recently in Halme et al. (2002).
These authors argue that “in most cases the negative observations in the data result from
the fact that the input and output is measured on an interval scale. Since radial DEA
models require ratio scale data, the problem is not the negative observations per se, but
the scale of measurement” (Halme et al., 2002, p. 23). By showing the equivalence between
considering ratio data or interval data, we demonstrate that in our particular case the use
of negative data did not represent a problem. In fact it represented an advantage since
we could deal with models having less inputs (if we used ratio data values in period ¢ — 1
would be on the input side rather on the output side aggregated on variables representing
change from one month to the other). Targets, on the other hand, would be less easy to
interpret if we have used ratio data because they would imply trade-offs in outputs, but
also in inputs due to our weights restrictions. The use of a variations model is, therefore,

preferable because it requires less factors to be used in the analysis and it facilitates the

interpretation of targets.
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6.6 Malmquist Indexes in the Presence of Negative Data

In the presence of panel data we can assess not only the extent to which efficiency
changes, but also the extent to which technology changes over time. Malmquist indexes
can be used for this purpose but they have been used so far in the presence of non-negative
data only. Since our RDM model provides efficiency scores that are similar in meaning to
radial efficiency scores when negative data are present, a natural extension of our approach
is to use Malmquist indexes in the presence of negative data.

Using the radial factor ¥ = 1 — g resulting from the RDM model we can define a
Malmaquist index based on this factor as: MRDM = (Essteun) 35 sroual)d yhere
the superscript in the efficiency measure refers to the frontier against which efficiency is
measured. The above MRDM can be decomposed in the usual way into an efficiency change
(EFCH) (L5{#ett21)) factor and into & technological change (THCH) (Sretiattils x
ﬂ%)% factor. Note that MRDM and its components are defined under VRS since the
RDM model in the presence of negative data cannot be used when technologies are CRS.
The above THCH is therefore related to the Ray and Desli (1997) decomposition, with the
difference that no scale effects will be computed in this case as we cannot calculate MRDM
in relation to CRS technologies.

The use of the above Malmquist index implies solving for each period model (6.3) when
the frontier is defined by observations from the same period and also when the frontier
is defined by observations from a different time period. In the latter case there are some
issues that must be accounted for. Take the example shown in Figure 6.4, where we use

two outputs to illustrate some problems that might happen. There are units from two time

Figure 6.4: Two Output Example
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periods in this figure: units observed in period ¢ (represented with dots) and units observed
in t + 1 (represented with crosses). We will assume that efficiency of both these sets of
units is to be assessed in relation to the frontier of period ¢ (the frontier that is drawn in
Figure 6.4). Units observed in period ¢ necessarily lie below the t frontier and the value of
£ lies between zero and one, when the range used is defined in relation to the ideal point of
period ¢ represented by I} in Figure 6.4. As for units observed in period £+ 1, these may lie
above or below the t frontier. If we use the t+1 ideal point to assess units observed in t 41
in relation to the t frontier there is no longer the guarantee that 8 will be lower than one.
As seen previously 8 = ”:R_—o”-“-, for some output for which the corresponding constraint is
binding. The difference between the target and observed point is lower than the range when
all values correspond to the same period. When this is not so, then we have no guarantee
that y* — ¥, < R, because the target is no longer on the frontier based on which the range
is calculated.

For this reason, the RDM model needs to be modified so that a common ideal point,
based on which ranges are calculated, is used in every two periods. This common ideal
point is defined as: Iy, = max;{max;{y};}} for outputs and Iz; = min;{min;{z};}}. That
is, the ideal point is the maximum output (or minimum input) observed in a set of periods
that are being considered in the time analysis. For the periods represented in Figure 6.4 the
common ideal point is the maximum of output 1 observed in period t and the maximum of
output 2 observed in period ¢+ 1. The range to be used in the RDM model for observations
in ¢ and ¢+ 1 must, therefore, be calculated in relation to this common ideal point. The use
of a common ideal point makes all efficiency measures computed in every two time periods
comparable and therefore allows the computation of Malmquist indexes. In addition, it
makes the vector that departs from the observed point to the ideal point collinear with the
vector that departs from the radial target (on the ¢ and ¢ + 1 frontier) to the ideal point.
This collinearity allows the meaningful computation of ratios between the various RDM
efficiency measures.

An alternative to the use of a common ideal point in every two periods would be to
use a single ideal point corresponding to the maximum output and minimum input levels
observed over the entire period of analysis. Although such an alternative would make all
efficiency measures comparable, it has the disadvantage of requiring the period of analysis
to be fixed a priori. In fact, the addition of a new time period to the analysis could
imply solving all models backwards again, if the ideal point is changed by this addition.
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Furthermore, if the time horizon is very wide the ideal point may be in some months quite
distant from observations. As our models are sensitive to the choice of the ideal point it
seems preferable to follow a conservative approach where a relative rather than an absolute
maximum is considered.

As mentioned above, units observed in a time period that differs from the time period
based on which the efficient frontier is drawn may be above or below that frontier, This
poses some problems in terms of the feasibility of the RDM model. A unit such as B
in Figure 6.4 lies below the ¢ and the t + 1 frontier and therefore it has always a feasible
solution to the RDM model with a positive 8. Units that are above the ¢ frontier like
At41, and Cpy1, might present a feasible solution of the RDM, in which case 8 will be
negative (and 4 = 1 — B will be greater than 1), or might have an infeasible solution.
For example, unit’s Ci41 range of improvement leads it to seek to improve only output
1. Following this direction there is no value of 8, even negative, that projects unit Cy4
on the t frontier. Unit Cy41 will therefore have an infeasible solution for the RDM model.
Contrary, unit A;41, which is also above the ¢ frontier has a directional vector that follows
approximately the direction shown in Figure 6.4. If we follow this direction in reverse we
reach the ¢ frontier, meaning that unit A;;; will have a feasible solution for the RDM
model but a negative optimal §. Infeasibility of the RDM model, is always associated with
super-efficiency. This means that although we cannot compute the extent to which some
units lie above the frontier we know that they lie above it and therefore care is needed

in counting the number of units in this situation in order to understand the final average

technological change measures.

6.7 Summary

In this Chapter we developed a model that can be used in the presence of negative data.
This model is based on the directional distance function approach, where the direction is
the range of possible improvement (defined as maximum output minus observed output,
or minimum input minus observed input). We call this model Range Directional Model
(RDM). The RDM model is units and translation invariant, which makes it suitable to
be used in the presence of negative data. In addition, the RDM model results in an
efficiency measure that is very similar to those used in radial models except that the point
with reference to which efficiency is measured is no longer the origin but an ideal point

(having maximum outputs and minimum inputs). Such a measure represents an interesting
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development in the literature as there was to date no radial or non-radial efficiency measure,
to the authors’ knowledge, that could be applied directly to negative data.

We extended our approach by considering a variant of the RDM model, where the di-
rectional vector is the inverse of the range of possible improvement. The resulting model
(IRDM) has the advantage of prioritising improvement of the factors on which the unit per-
forms best, and therefore it tends to yield closer targets to the assessed unit than the RDM
model or the well known additive model. The advantage of using both specifications is that
production units can choose from different types of targets (one prioritising improvements
on the factors on which the unit performs worst, and the other prioritising improvement of
the factors on which the unit performs best) both leading to the production frontier.

We also show in this Chapter how the RDM model can be used to compute Malmquist
based indexes in the presence of negative data. This is an interesting development intro-
duced here, which was possible due to the radial nature of the RDM efficiency measure.
This is, to the authors knowledge, the first attempt in the literature to compute Malmquist

indexes when some data are negative.
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Chapter 7

Finding Closest Targets!

This Chapter presents a novel methodology that requires as low an effort of inefficient
production units as possible in their movements towards the production frontier. This is
in contrast with some existing methodologies that yield targets for production units that
are far away rather than close to their current position. This fact is especially relevant

in the context of non-radial and non-oriented efficiency measures as will become clearer

throughout the Chapter.

7.1 Introduction

Efficiency measurement in Data Envelopment Analysis (DEA) requires both the iden-
tification of a reference point on the boundary of the production possibility set (PPS) and
the use of some measure of distance from that point to another being analysed. The two
issues (identification of the boundary point and the distance measure used) are traditionally
performed simultaneously. The basic DEA model as introduced by Farrell (1957) and later
developed by Charnes et al. (1978), uses an oriented radial measure of efficiency, which
identifies a point on the boundary with the same mix of inputs (input orientation) or out-
puts (output orientation) of that of the observed unit. The conservation of the mix in
movements towards the boundary of the PPS is the characteristic that makes the resulting

distance measure radial.

In many practical situations, however, it is desirable to use measures of efficiency that

!Note that part of this Chapter has been published as: Portela, Maria C.A.S., and Borges,
Pedro C. and Thanassoulis, Emmanuel (2003), “Finding Closest targets in non-oriented DEA
models: the case of convex and non-convex technologies”, Journal of Productivity Analysis,
19/2&3.

127



7.1 Introduction

are non-oriented and non-radial in character. Any measure of efficiency that does not
assume equiproportional reductions of inputs or outputs is non-radial. The first non-radial
measure of technical efficiency dates back to 1978 and is due to Fare and Lovell (1978).
The interest of researchers in non-radial measures arises mainly from the fact that radial
(or Farrell) efficiency measures do not necessarily correspond to the Pareto-Koopmans
definition of technical efficiency (as already seen in Chapter 2), This issue is known in
the DEA literature as the indication or slacks problem, as the main characteristic of radial
efficiency measures is that they ignore the possible existence of slacks associated with the
projected points on the production frontier. This issue motivated a discussion (e.g. Russell,
1985; Lovell and Schmidt, 1988; Kerstens and Vanden-Eeckaut, 1995) and although many
authors still favour the use of radial measures (mainly because of its many useful properties),
non-radial efficiency measures have increasing popularity. A weakness of radial measures, is
the perceived arbitrariness in imposing targets preserving the mix within inputs or within
outputs, when the firm’s very reason to change its input/output levels might often be the
desire to change that mix (Chambers and Mitchell, 2001, p. 32).

The non-radial Fire-Lovell efficiency measure is oriented. That is, it aims at changing
inputs or outputs but not both. To the authors’ knowledge, the first (non-radial) non-
oriented measures of efficiency were introduced in 1985. One of these, the hyperbolic
measure of technical efficiency, is due to Fare et al. (1985) and the other, the additive
model, is due to Charnes et al. (1985b). Non-oriented measures are relevant in many
practical situations. Take for example the banking context were the use of an intermediation
approach (see Colwell and Davis, 1992, for details) specifies inputs in the form of costs and
outputs in the form of revenues. Some of the costs and revenues are controllable, and so the
obvious approach to follow is non-oriented, i.e, permitting at the same time reduction of
inputs and increase of outputs (which in this case would translate in an increase in profits?).

The distinction between oriented and non-oriented measures of efficiency is mainly of
theoretical interest only, because in practice the analyst needs to identify the variables
which can be modified, and then efficiency is measured with reference to those variables.
Non-radial oriented measures assume a priori that the variables to be modified are only
on the input or on the output side, while in practice they are often on both sides. Non-

oriented measures are, therefore, more general and more flexible in the sense that they

?Profit analysis has been recently advocated in the context of measuring efficiency in banking (see Berger
et al., 1993), a field where cost oriented efficiency analysis has been the dominating approach.
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7.2 Non-Radial-Non-Oriented Measures of Efficiency

allow for changes in all the factors.

One of the key practical outcomes in an efficiency assessment is the identification of
targets. However, one of the drawbacks of the traditional non-oriented DEA models is that
they either impose strong restrictions on the movements towards the efficient frontier, or
they aim at maximising slacks. Both these facts contribute to finding targets and peers that
are not the closest to the units being assessed. We will define measures of closeness later;
suffice is to say at this point that the closer the targets to a unit, the less the change in its
operations needed to reach its targets. If Pareto-efficiency can be achieved by requiring less
effort from inefficient units than that demanded by traditional efficiency measures, then it
is at least of practical value to find the closest targets for each inefficient unit we can. Close
targets in this sense are in line with the original spirit of DEA of showing each production
unit in the best possible light.

The idea of finding closest targets and peers has appeared in the literature both as-
sociated with oriented models [e.g. Coelli (1998), or Cherchye and Puyenbroeck (2001a)]
and non-oriented models [e.g. Frei and Harker (1999), Golany et al. (1993)]. It is our
intention to explore this issue for the most general case of non-oriented efficiency measures.
In addition, we will restrict our analysis to technical efficiency. In this sense, we shall allow
production units to move in all directions to improve their technical efficiency, as long as

inputs are not increased and outputs are not decreased.

7.2 Non-Radial-Non-Oriented Measures of Efficiency

Consider a technology represented by T' = {(x,y) € R7** | x can produce y}, where,
for each unit j (1,...,n), X; = (z1,...,Zmj) € RT is an input vector producing an output
vector yj = (y15,...,¥sj) € R}. We address here the two production correspondences
T(x,y)FPH and T(x,y)V®5, which can both be specified by equation (7.1). When S
equals {0,1}, then T corresponds to an FDH technology (T'(x,y)FPH) (Deprins et al.,
1984), while when S equals [0, + oof, T corresponds to a VRS (or BCC) technology
(T(x,y)VRS) (Banker et al., 1984).

n n
Tey) = {y) €RF* | N y2y, Y Ax<x,
= =1

> Ai=1N€S j=1,...,n} (71)

j=1
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T(x,y)FPH assumes only free disposability of inputs and outputs being, therefore, a
non-convex technology. T'(x,y)V 55, on the other hand, is convex and assumes variable re-
turns to scale. If the constraint normalizing the sum of lambdas was dropped in T'(x,y)V?5
one would have a constant returns to scale (CRS) technology.

Each one of the two production possibility sets above is bounded by a frontier, where
target points are located. A number of measures exist to calculate the distance between
observed points and target points. The ones in DEA are known as efficiency measures.
Radial measures may find targets that, although lying on the frontier, are not on its Pareto-
efficient subset. On the other hand, non-radial measures have the purpose of assuring that
the identified targets lie on the Pareto-efficient subset of the frontier. Most of the studies
that apply non-radial measures of efficiency use their oriented version [like the Fire-Lovell
(see Fire and Lovell, 1978; Fire et al., 1985) or the Zieschang (1984) efficiency measures].
Such studies can be found for example in Dervaux et al. (1998), Ruggiero and Bretschneider
(1998), Kerstens and Vanden-Eeckaut (1995), De Borger and Kerstens (1996) or Cherchye
and Puyenbroeck (2001b), both in the FDH context and in the context of convex frontiers.

The non-oriented DEA models in the literature share the common feature of maximising
slacks. As a consequence, the targets these models identify are the furthest rather than the
closest from each production unit being assessed. For some models, like the additive model
of Charnes et al. (1985b) or its variant the RAM (Range Adjusted Measure) as proposed
by Cooper et al. (1999), this objective of slack maximisation is explicit in the objective
function of the DEA models. See for example the objective function of the RAM model
that is shown in (7.2), where slacks (normalised by the ranges) are being maximised. The
traditional additive model simply maximises the sum of slacks, or alternatively, in one of its
units invariant versions, it maximises slacks normalised by the observed input and output

levels (see Charnes et al., 1985b; Green et al., 1997).

" 1 2 Sro = €io
RAM, = m.m{l -— (; (E) +§ (—R—'_)) },where
R, = mjlx{yrj} - n}in{y,,,-}, Ry = m}x{%} = mjiﬂ{Iij} (7.2)
The model of Fire et al. (1985) defined in (7.3) in reference to T (which can be both*

T(x; y)FPH or T(x,y)VES) also maximises slacks, though this is not explicit in the objective
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function.

m s
4 ; 1/g,
FGLD = mjn{z:'=l hto;5r=1 /9 2 l (hiozio: groyro) € TI Gro 2 11 0 S hio S. 1} (7'3)

This model is a generalisation of the hyperbolic measure of efficiency3, where inputs and
outputs are allowed to change by different proportions. Using the relationship shown in
(7.4) (see Cooper et al., 1999, for details)

: 8
hi Tio =Tio—€i & hi=1_£:‘ and Jr Yro =Yro+8r & 9r=1+_r' (7*4)
Zio Yro

it is possible to show that the objective function of (7.3) is equivalent to:

1 = € 2 Yro 1 - €4 = Sy
m-Y 4yt ) ngo (24> =) (s
m-l—s( Ez;o mlyro'*‘s,- m+ 8 ;:r;o rz=:lyro 1)

meaning that model (7.3) also maximises slacks.

The well known directional distance function introduced by Chambers et al. (1996a,
1998) is also a non-oriented measure of efficiency that aims at maximising slacks. Indeed,
it is defined as Dir, = max {ﬂa | (Zio—Bo 9zi» Yro+Bo 9y.) € T}, where g = (—gx,gy) is a
directional vector chosen a priori. Dividing all inputs and outputs by the directional vector,
reduces this measure to the maximisation of & normalised slack value. The directional model
is, however, more restrictive than the measures referred to previously in the sense that it
strongly limits the direction to be followed towards the production frontier. This means
that an optimal solution to Dir, will potentially result in targets that do not lie on the
Pareto-efficient subset of the production frontier, as 8 cannot account for all the sources of
inefficiency. Some references on the use of the above mentioned measures both in FDH and
in convex technology settings can be found in De Borger and Kerstens (1996), Bardhan
et al. (1996), or Cherchye et al. (2001).

The above mentioned measures will not be used in this Chapter for finding closest
targets. Our objective is on the one hand to find an appropriate measure of efficiency and,
on the other hand, to operationalise this measure so that closer targets can be found. For
reasons that will be explained below, the above measures have some drawbacks in measuring

efficiency in a non-oriented context.

3Assuming that each hi, is constant and equal to 6, and that each g, is also constant and equal to %
reduces (7.3) to the hyperbolic efficiency measure.

131



7.2 Non-Radial-Non-Oriented Measures of Efficiency

An appropriate measure of efficiency in a non-oriented context should be capable of
incorporating all the sources of inefficiency, while at the same time retaining the meaning
of radial efficiency measures. The directional and hyperbolic measures do not satisfy the
first requirement, while the RAM, additive model, and FGL model do not satisfy the second
requirement. Before showing why this is so, we will present a measure that satisfies both
requirements. This is the measure developed by Brockett et al. (1997b), which will be
referred to as BRWZ throughout. This measure was originally developed to be used a
posteriori, that is, after targets have been found, but it can also be used directly in any

DEA model, The BRWZ efficiency measure is shown in (7.6).

BR‘VZD=$(ZT"°—G ) (Z Yro )#BR‘VZ Ei- h«oxz,-— 1/9!'0

i=1 =i Yot ipat

(7.6)

The expression on the left of (7.6) assumes that all inefficiencies are captured by ad-
ditive slack values (e} and s}, where the star means an optimal value of the input and
output slacks as resulting from the solution of some DEA model which projects units on
the Pareto-efficient boundary). The equivalent expression on the right of (7.6) (see re-
lationships in (7.4)) makes it possible to show its similarity to oriented measures under
certain circumstances®. This version of the BRWZ measure is similar to the FGL model
in (7.3), but instead of adding the factors on the numerator and denominator it multiplies
them. The multiplication of these factors makes the BRWZ measure closer to oriented
efficiency measures. To illustrate this fact we present in Figure 7.1 two units in a single
input/output space. Unit A is inefficient and it can be projected on the CRS efficient
boundary in three different ways. The input oriented efficiency measure (IO) of unit A is
45% which obviously equals its output oriented efficiency measure (0O). Let us assume
that the non-oriented (NO) movement of unit A leads to point B. This means that the
inputs of unit A should be contracted by 0.6 and outputs expanded by 1.33. With these
values the BRWZ efficiency measure equals 0.6 x ﬁg = 45%°. The FGL efficiency measure

4The BRWZ measure is very similar to the slack ba.sed measure (SBM) of Tone (see Tone (1993) and

Tone (2001)). The SBM equals ( oo (!mtﬂ;)) ( ol (5‘—;":’-:-)) , which is equivalent to
(247'“1-* X Eﬁ)' when the slacks are replaced by multiplying factors. We prefer the BRWZ to the SBM
because the former uses an arithmetic mean of the input efficiency h; and an arithmetic mean of the output
efficiency 1/g,. The SBM uses an harmonic mean of the output efficiency whose rationale is not easy to
understand.

®1t is easy to demonstrate that under CRS the BRWZ measure provides the same efficiency measure (45%)
for all non-oriented efficient targets in the line segment between A’ and A” in Figure 7.1. Replacing a point

132
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Figure 7.1: Single Input/Output Example
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equals E—I_,J--’-i = 67.5%, and the RAM measure equals 1 — ll.f}(% ot ]T] = 0% if we assume

that our sample consists only of A and B, or 1 - (}.5(7_',{‘% t ~‘—},—f) = H0% if we assume that our
sample consists of A, B, A" and A”. If the NO target was point A”, then one would expect
non-oriented measures to coincide with the output oriented measure as the projection is
the same. This coincidence only happens for the BRWZ efficiency measure which would
still be 45%. The FGL efficiency measure would equal '—“;—‘"‘ = 72.5%, and the RAM would
equal 1 —0.5(0/2.75+ 3.67/3.67) = 50% or it would be negative if our sample consists only
of units A and B.

This simple example shows that the BRWZ measure is indeed closer to the meaning
of radial measures as it encompasses as special cases the Farrell radial input and output
oriented measures. For example, assuming that all inputs change equiproportionaly (and
so each h; = #) and that outputs are not allowed to change (and so each g, = 1), the
BRWZ measure reduces to #, which coincides with the Farrell measure of input efficiency.
In addition the BRWZ measure is units invariant which is a considerable advantage. The
RAM, as Cooper et al. (2001) note, was defined in a VRS technology and should not
be applied when CRS prevail. This constitutes an important limitation of this measure.
Apart from this, the RAM measure has also the disadvantage of being very sensitive to the
composition of the sample as we show above. The inclusion of one unit with an unusually
small or large amount of one input (or output) could greatly change the results for many

units (see also Steinmann and Zweifel, 2001).

in this line segment by (x, y), and knowing that the line passing trough point A’ and A" is y = Eﬁx = -ﬁ‘:f;r.

then we have BRWZ = = x 1 = = x gl = 4 E‘:—' — ff— because the input at point A and A"
U 7 rr

& L

is equal.
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One possible disadvantage of the BRWZ efficiency measure is that it weights equally
all ratios of target to observed input or output level. Yet not all ratios reflecting short
falls from target input-output levels may represent equal 'worth’. This is especially true
in contexts where input and output prices are known and shares of inputs and outputs
are substantially different between units. While we acknowledge this shortcoming of our
measure of distance we do note that it is cast here in the framework of reflecting distance
from a technically efficient boundary rather than from some value (cost or revenue) frontier.

Distances from value frontiers and associated concepts of allocative efficiency are important

but not being addressed here.

7.3 Closer Targets and Efficiency

The objective of finding closest targets implies the definition of closeness. In general,
one says that unit B is closer to A than to C, if in order to move from A to B, the changes
required in inputs and outputs are smaller than the changes required in order to move from
A to C. Such changes can be expressed, for example, in terms of ratios of input and output
levels at the two different points concerned. Thus the larger the ratios z*/z and y/y*,
where the star denotes a target point, the closer the target (z*,3*) will be to the unit at
(z,y). Obviously in a non-oriented space with multiple inputs and outputs one needs to
choose a form of aggregating the above ratios. In our case, the BRWZ efficiency measure
was chosen for this aggregation. Thus, the closer the target point to an observed point the
higher the BRWZ efficiency as a measure of the distance between the two points.

The closeness between two points can also be measured using an L, metric. Such
metrics are not expressed in ratio form but in difference form. Therefore they have the
disadvantage of not being units invariant. The L, distance between two points (A and B)
is given by [ Y i, |Ai — Bil?] P, 1f A is an observed point and B is a target point on the
Pareto-efficient frontier, then L; is simply the sum of slacks, as yielded by the additive
DEA model. Most of the traditional efficiency measures can be related to L, metrics as
shown by Briec (1998).

We can illustrate concepts of closeness between points using a single input/output ex-
ample as shown in Figure 7.2. Unit F is FDH and BCC inefficient. In the FDH case unit
F is dominated by units B and C. Unit C is closer to F than is unit B. This can be seen in
Table 7.1 where the BRWZ measure and some metric distances between points F and C,

and F and B are presented. Clearly point B is the point that maximises the sum of slacks
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Figure 7.2: FDH Frontier for a Single Input/Output Example
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Table 7.1: Distance of F from Points C, B, and (5, 5.33)
Point BRWZ L La Leo

B 45% 3 V5 2
C 60% 2 V25 15

(5,5.33) 56.25% 233 544 233

(see L; metric), meaning that the non-oriented models mentioned previously - additive,
RAM, and FGL - identify point B as the target of unit F rather than point C. This hap-
pens both for the case of FDH and convex technology. In the convex context the closest
point in terms of the BRWZ measure is point (5, 5.33) - a convex combination between
points B and D. Table 7.1 shows that this point is closer to F than the target point B in
terms of the BRWZ measure and in terms of the L; norm. As far as the other norms are
concerned point B seems closer to point F than point (5, 5.33).

We favour the BRWZ measure because it is units invariant, - a characteristic that
is important when units of measurement are subjective. The example also shows that
traditional DEA models do not necessarily provide targets that are as close as might be
possible to the inefficient unit being assessed. As noted earlier, DEA models need to assure
that units are projected on the Pareto-efficient frontier and for that purpose maximize
slacks. This means that a single stage procedure using the BRWZ incorporated into a DEA

structure (see model (7.7)) would not necessarily identify, in the same way as other DEA
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models, the closest targets.

m : L]
BRW Z, = min { Lz hio X Yore 1 ro | (hioZio) grore) € T} (7.7)

mxXs

Model (7.7) aims at minimising the BRWZ, because this is the only way to assure
simultaneously that efficiency is measured and targets lying in the Pareto-efficient frontier
are identified. However, these targets are not the closest, as the BRWZ efficiency resulting
from (7.7) is not the maximum but the minimum (in the above example the solution of (7.7)
identifies unit B as the target of unit F, making the BRWZ measure 45%). To find closest
targets one needs to use multi-stage procedures so that we can maximise the objective
function in (7.7), while at the same time assuring projection on the efficient frontier. The

next two sections will provide means to achieve this, both in FDII technologies and in

convex technologies.

7.4 Calculating Closer Targets in FDH Technologies

The interest in finding closer targets in relation to an FDH technology is twofold. First,
the targets resulting from efficiency measurement in such a technology correspond to ob-
servable units, which might be desirable in some circumstances (for example when inputs
and outputs are integer, or when it is likely that the production unit will be more com-
fortable comparing itself with a real unit rather then with a virtual one - farmers could
be such a case). This characteristic makes FDH suitable for benchmarking purposes. Sec-
ondly, the non-convex nature of the FDH efficient frontier usually results in higher slack
values than those obtained in convex technologies when the direction towards the frontier
is restricted in some sense. As noted by De Borger and Kerstens (1996, p. 46) “empirical
studies confirm that the amount of unmeasured technical efficiency or slacks is pervasive
in FDH”. This is a sign that the use of efficiency measures that capture all the sources of
inefficiency is potentially more important in FDH than in convex technologies.

The approach developed here takes advantage of the fact that in FDH targets correspond
to a single observed unit (peer), which simplifies their identification and the calculation of
efficiency. Calculating efficiency requires first the knowledge of the set of dominating units
for each dominated unit, and then the selection of the one (the closest) that should be used

as the peer.

Our approach follows three steps (note that these steps are usually followed in practical
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applications of the FDH approach, although not necessarily using the same techniques nor

the same criteria for finding peers.):

Step I Determine the set of non-dominated units (100% FDH efficient);
Step II Determine a peer unit for each dominated unit ;

Step III Calculate the efficiency score,

Step I classifies all the units into one of two sets: ND or D. ND is the set of non-
dominated (or dominating) units (units in relation to which no other unit exists presenting
lower or equal inputs and higher or equal outputs) and D is the set of the remaining units,
called dominated. Although this operation can be performed for each unit by comparing it
with all the other units or with the current non-dominated set, such implementations be-
come inefficient as the number of units grows. Techniques to handle dominant free sets are
also relevant for multiple objective combinatorial optimization, where the state of the art
implementations use structures like quad trees for drastically reducing the computational
effort spent in such operations (Borges, 2000; Habenicht, 1982). In a quad tree represen-
tation of a dominant free set, each node represents a non-dominated unit and can have up
to (2°*™ — 2) branches, which are themselves also quad trees. Each one of those branches
corresponds to a particular combination of inputs and outputs in order to guarantee that
all units in a branch are dominated by the parent node only in exactly the same outputs
and inputs. The discriminatory power of these structures, together with additional bound-
ing techniques, makes them very efficient for handling domination relations and calculating
Lo metrics. Our implementation uses an algorithm presented in Borges (2000), together
with other well known quad tree algorithms to discriminate non-dominated units. These
will also be used in step II, to find the units in N D that dominate the unit being assessed.
Since these aspects are beyond the focus of the present analysis, whose experiments could
just as well have been performed using enumeration, we will not elaborate on them here,
for the sake of conciseness.

Step II finds a peer unit for each inefficient or dominated unit. In order to find this
unit, we consider a subset of ND, named K, consisting of the units that dominate the unit
being assessed. For each inefficient unit, its closest peer is determined through the BRWZ
efficiency criterion, that is, calculating (7.8) for every unit k € K.

m 8

Peer of unit 0 = max (E"ﬂ Zik/Tio  Yor=1 Yrol 3””‘) (7.8)
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Step III generates the efficiency of the unit being assessed in reference to the peer unit
identified in the previous step. The measure of efficiency is given directly from the value

obtained in (7.8). Therefore, steps II and III take place simultaneously.

7.5 The Case of Convex Frontiers

Extending the above procedure to convex boundaries is not straightforward because in
this case target points may not correspond to observed units but to convex combinations
of efficient units. This means that an enumeration oriented procedure which calculates the
BRWZ measure for a set of potential target points can no longer be applied. The analogous
approach to follow in the case of convex frontiers is to use model (7.7) but with a modified
objective function so that the BRWZ is maximised instead of minimised.

Golany et al. (1993) and Frei and Harker (1999) also used DEA models for the case of
convex frontiers where the objective function was the minimisation of slacks rather than
their maximisation. In the first case, the authors minimised L; and Lo norms in the non-
oriented space, and in the second case the authors used Ls norms for finding the closest
targets for each unit, also in the non-oriented space. A concern we share with these authors,
is that when distances as the above are being minimised (instead of maximised as is usual in
DEA models) it is important to assure that the projected point lies on the Pareto-efficient
boundary. For this purpose it is necessary to identify the efficient facets, or at least to have
some knowledge about which units belong to which facet. Both, Golany et al. (1993) and
Frei and Harker (1999) used the multiplier form of the additive model for the purpose of
identifying these facets in the spirit of Ali and Seiford (1993b, p. 130) [see also Huang et al.
(1997) and Yu et al. (1996) who used similar procedures for determining efficient facets].
The problem with the use of the additive model is that it does not assure the complete
characterisation of the efficient facets. Take the example in Ali and Seiford (1993b, p. 122),
where solving the multiplicative additive model for units 1, 4 and 7 (belonging to the same
facet) results in 2 hyperplanes: one spanning through units 1 and 4, and the other through
units 4 and 7. The full dimension efficient facet (1, 4, 7) is not identified (see also Olesen
and Petersen, 1996, who discuss full dimension and non-full dimension efficient facets).
This is a direct result of the existence of multiple optimal solutions, which poses a problem
in the identification of all efficient facets. Our approach departs from that of Golany et al.
(1993) and Frei and Harker (1999) in the procedure used for identifying efficient facets, and

also in the distance measure used. The latter is the units invariant BRWZ measure.
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There are a number of ways through which efficient facets can be found. In Olesen and
Petersen (2002) the authors propose some ways to do so, and in Réty (2002) the author
proposes a model that identifies efficient facets (however it is applicable to relatively small
problems only) (see also Green et al., 1996, who propose a similar model to that shown in
Olesen and Petersen (1996) and Olesen and Petersen (2002)).

For the purpose of identifying efficient facets we use the procedure proposed by Olesen
and Petersen (2002), which is based on QHull (see Barber et al., 1996). QHull is a freely
available software® that can be adapted to the DEA context to identify all full dimension
efficient facets (FDEF). Each facet is identified in terms of the convex hull of the Pareto-
efficient DMUs whose input-output levels span the facet. The procedure also identifies a
supporting hyperplane equation for each facet (for details on the principles behind QHull
see Olesen and Petersen, 2002, pp. 32-36). The procedure can also be modified to identify
non-full dimensional efficient facets. This involves the use of an augmented data set using
artificial DMUs in addition to those observed.

Our procedure for finding the closest targets in convex technologies is divided into three
steps:

Step I Determine the set of Pareto-efficient units (E) by solving the additive model;
Step II Determine all Pareto-efficient facets (Fj) using QHull;

Step III For each Fi, k = 1,...,K solve model (7.9) to find the closest targets for ineffi-

cient unit o.

m . 8
ma.x{ BRWZ, = izttio X Yo7y 1910

mis | E Aj Yrj = Gro¥ro »

JEF}
Zz\j Zij = hioZio , Z/\j=1, Aj 20, gro 2 1, OShgoﬁl} (7.9)
i€F j€F%
In order to assure projection of the efficient frontier only points on Fi are considered as
potential projections of unit o in (7.9). The final BRWZ efficiency measure of unit o is the
maximum value found for the measure after model (7.9) is solved for all K facets. Step I1I
is repeated for each inefficient unit for which we wish to identify the closest targets. We

can also formulate (7.9) as a single mixed integer linear program that should be solved only
once for DMU o in respect of all facets K.

Shttp://www.geom.umn.edu/software/qhull
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7.6 Illustrative Application

The foregoing procedure has been developed in a VRS context. It is, however, equally
applicable to a CRS context. Model (7.9) will change in that the convexity constraint will
be dropped. Further, the Pareto-efficient units and the efficient facets will change as we
move from a VRS to a CRS technology.

Model (7.9) is non-linear and is not easily linearised. Nevertheless, there are several
solvers that can handle non-linear models, whose constraints are linear. We used GAMS and
its non-linear programming solver (CONOPT). Nevertheless, for computational convenience
a model minimising the sum of normalised slacks, such as that in (7.10), could be used
instead.

s m
min { Z'Tro ot Z Bio | Z f\J' Yri = Yro + Yrolro» z /\j Tij = Tio — BioTioy

r=1 i=1 JEF) JEF

i Aj=1, % 20, } (7.10)

JEF)
Such a model, although not equivalent to model (7.9), would likely result in similar targets
as a normalised L; norm is being minimised. Note that this model is a generalisation of
the directional distance function, that assumes a directional vector equal to the observed
input and output vectors, and different expansion and contraction factors associated with
each input and output. There is one important difference between (7.10) and directional
distance function or additive DEA models. The contraction of inputs and expansion of
outputs is minimised rather than maximised in (7.10) and this is only made possible by the
constraints that ensure the projection point to lie on an efficient facet. The model in (7.10)
is also similar to the preference model introduced by Thanassoulis and Dyson (1992). If
there are any preferences for moving towards the frontier these can be incorporated in the

model in (7.10) as detailed in Thanassoulis and Dyson (1992).

7.6 Illustrative Application

This section applies the above procedures to a sample of 24 Portuguese bank branches
which are located in mid sized cities (as classified by the bank) in the northern region
of Portugal. This application is simply illustrative of the CT method and should not
be confounded with our empirical analysis which is extensively presented in Chapter 10.
We use an intermediation approach of banking activities as this requires in principle non-

oriented models. In this sense on the input side cost related variables are used (staff costs
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7.6 Illustrative Application

Table 7.2: Results from Additive-FDH, RAM-FDI, FGL-FDII and CT Procedure*

Unit Peer BRWZ BRWZ CT
Unit Efficiency Efficiency
Unit B3 B10  67.02% 67.02%
Unit B5 B10 77.26% 77.26%
Unit B9 B16 64.70% 64.70%
Unit B13 B10 74.85% 74.85%
Unit B15 BI10 53.57% 53.57%
Unit B19 BI10 68.15% 81.30% (B20)
Unit B21 B10 71.87% 71.87%
Unit B22 B10 52.76% 78.00% (B52)
Unit B59 B10  74.00% 74.00%

* Results from the Additive-FDH, RAM-FDIi, and FGL-FDH are coincident

and other operating costs), and on the output side revenue related variables are used (value
of deposit accounts, value of credit, and interest revenues?). We assume that all inputs and
outputs are discretionary. The data correspond to the month of July 2001 and values are
expressed in thousands of Euros. Our input-output set here is only illustrative. Table A.1
in Appendix A contains the data used, as well as some descriptive statistics. The units
that were identified as efficient both under FDH and under a convex VRS technology are
also identified in this Appendix (see Table A.1). Here we will only detail on the results of
some inefficient units.

For the FDH case, the application of the additive units invariant model, the RAM
model, and the FGL model result in the same peers for inefficient units in all the cases.
This is illustrated in Table 7.2 which shows the BRWZ measure calculated a posteriori
in relation to the targets identified by these models. It also shows the BRWZ efficiency
measure obtained under our closer target (CT) FDH procedure. The BRWZ measure has
the same value under all the procedures for identifying targets, except in two cases. The
reason for this is simple: unit B10 dominates most of the units in the sample and most
of them are solely dominated by this unit. As the set of potential referents consists of a
single unit there is not much for the alternative procedures to choose. Only in two cases is
there a genuine choice of targets to be made: the case of inefficient units B19 and B22. The
first unit is dominated by B10 and also by B20, and the second unit is dominated by B10,
B26, B50 and B52. The application of our CT procedure clearly identifies closer targets to
units B19 and B22 (respectively B20 and B52) as testifies a higher value of the CT BRWZ

"The interest revenues are net of interest costs and this is the reason why these are not considered on
the input side. The bank could not provide interest costs and revenues disaggregated.
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7.6 Illustrative Application

Table 7.3: Comparison between Models Based on L, Metrics
— Additlve, RAM, and FGL CT FDH procedure
Unit Peer Ly La Lieo Peer Ly La Liss
Unit B19 | Unit BI0 4044.94 2920.62 2468.72 || Unit B20 800.05 602.98 554.51
Unit B22 | Unit B10 6514.76 5367.91 5213.83 || Unit B52 1355.58 1004.59 900.77

efficiency score in Table 7.2. These higher efficiency scores also correspond to lower metric
distances as can be seen in Table 7.3.

The above example shows that easier-to-achieve targets can be provided to some bank
branches, showing them in a better light. If we relied on the traditional models to establish
targets we would advise branch B22 to reduce (in thousands of Euros) its staff costs by
6.06 and its other operating costs by 2.96, while at the same time increasing the value
of deposit accounts by 1276.8, the value of credit by 5213.83, and its interest revenues
by 15.12. Such targets are more demanding than the alternative, which also renders B22
efficient, and corresponds to decreasing staff costs only by 2.02 and operating costs by 3.77,
while increasing the value of deposit accounts by 444.73, the value of credit by 900.77, and
interest revenues by only 4.29. Only for the case of other operating costs is the target more
demanding in this second case, a fact that is more than compensated for by the much less
demanding targets in the remaining variables.

In the convex VRS technology case, the application of the CT procedure to the bank
branches example results (in its first step) in a set of efficient units that is shown in the last
column of Table A.1 in Appendix A. After obtaining the set of efficient units QHull was
used to identify the set of efficient facets. These are: Fy = {B10, B16, B20, B29, B50}; F>
= {B20, B27, B29, B50, B57}; F3 = {B10, B20, B27, B29, B50}; F;y = {B10, B27, B56,
B57}; Fs = {B10, Bl11, B16, B29}; Fs = {B10, B11, B26, B29}; Fy = {B10, B26, B27,
B29}, where the first three facets are full dimensional and the last four are not. In the third
step, model (7.9) was applied to each inefficient unit in relation to each efficient facet. The
facet chosen for projection in each case was the one maximising the objective function of
model (7.9). Note that in some cases projection on some facets might be infeasible, but at
least one facet shall result in a feasible solution.

The detailed results of applying the additive units invariant model, the RAM model and

our CT convex procedure are shown in Appendix A%. The results in terms of the various

8 All results reported concern the use of model (7.9). Model (7.10) was also used and results are equal
except for 4 units (B5, B9, B22, B53). In all the cases except B22 the facet of projection was the same both
using model (7.9) and model (7.10). Obviously the BRWZ is maximum when model (7.9) is used.
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7.6 Illustrative Application

Table 7.4: Distance to Targets for Inefficient Units for the VRS Case

B15 | B59
Obscrved ~ Targets Targets Observed Targets Targcts
Additive CT convex Additive  CT convex
£ 11.717 1L.717 11.487 13.338 13.338 12.606
T3 29.314 24.726 16.122 24.820 24.820 19.030

b7 4070.630  5682.936 4070.630 4354.301 6073.258 4475.281
© Yl 6418.995  14409.226  6418.995 10889.840 14368.013  10889.840

v 40.328 69.268 45.086 57.033 74.865 57.033
Ly 9636.066 18.181 5214.962 127.502
La 8151.330 14.027 3879.796 121.121
Loo 7990.231 13.193 3478.173 120.980
BRWZ 53.58% 73.83% 74.56% 84.82%

BRWZ efficiency measures show that BRWZ CT procedure > BRWZ Additive > BRWZ
RAM. We will sidestep the discussion of the relationship between the additive and RAM
measures since is not our aim to analyse it here. Concerning the results from our model,
they confirm that it shows each inefficient unit in a much better light than the other two
models not only in terms of the BRWZ measure but also in terms of L, metric measures.
Take for example units B15 and B59 shown in Table 7.4. Results for these units show
closer targets identified by the CT convex procedure than those identified by the additive
model (the same being true for the RAM model). This fact is expressed in higher BRWZ
efficiency scores and smaller L, metrics, as illustrated for the two cases above (this fact
can however be generalised to the entire sample of units). Interestingly the additive model
tends to identify most of the inefficiencies associated with outputs, while the CT procedure
for convex technologies identifies most of the inefficiencies associated with inputs. For the
additive model the average BRWZ-input efficiency is 98.27% and the average BRWZ-output
efficiency is 73.36%, while the corresponding values for the CT procedure are 90.72% and
92.03%, respectively (the RAM model also identifies most of the inefficiencies associated
with outputs but to a lesser extent than the additive model: BRWZ-input efficiency is
93.67% and BRWZ-output efficiency is 75.89%). This clearly indicates that our procedure
and the additive model identify different directions for improvement of inefficient units.
The choice of the model to use should not, thus, be taken lightly.

As a final note on this example one can observe that BRWZ efficiency scores are higher
for the convex than for the FDH case, for units that are inefficient under both technologies.
The typical result in pure radial models is precisely the reverse because, as it is well known,

FDH closely envelops the data and thus provides higher efficiency measures. In our example
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7.7 Summary

the closer envelopment resulted in more efficient units for the FDH case but not in higher
BRWZ efficiency scores for inefficient units. Note that the range of targets in FDH is limited
to observed units, while in the convex case this range is greatly expanded through convex
combinations of Pareto-efficient units. This means that we can find closer targets in the
convex case than in the FDH case, when we are not restricted to move in any direction and
when the measure of efficiency used captures all the sources of inefficiency (that is, when

it restricts targets to lie on the Pareto-efficient subset of the frontier).

7.7 Summary

The analysis of non-oriented measures of efficiency and their use to identify the closest
targets for inefficient units was performed in this Chapter both considering FDH technolo-
gies and convex technologies. The criterion of closeness used is based on the maximisation
of the BRWZ measure, which has the advantage over other efficiency measures of capturing
all the sources of inefficiency and retaining a meaning that is close to that associated with
oriented efficiency measures. In order to use this measure multi-stage procedures are re-
quired both in the FDH and in the convex case to find the closest targets. As our analysis
restricts targets to lie on the Pareto-efficient subset of the production frontier, the multi-
stage FDH procedure starts by choosing potential target units and then it takes the one
maximising the BRWZ efficiency measure as the adopted target and peer. In the convex
case the aim is also the maximisation of the BRWZ efficiency measure, which results in a
non linear programming model, that requires knowledge on the efficient facets of the PPS.
The application of our procedure to a real bank branch example shows that it provides

closer and easier-to-achieve targets in both, the FDH and convex, cases.
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Chapter 8

DEA Models to Measure Profit
Efficiency

In this Chapter we introduce a novel approach for measuring profit efficiency in the
context of non-parametric methodologies. This is done both considering the long run where

all factors of production are variable, and also the short run where some of these factors

may be considered fixed.

8.1 Introduction

The Data Envelopment Analysis (DEA) (Charnes et al., 1978) literature has tended to
focus on technical efficiency, which can be computed without reference to input or output
prices. However, in for-profit organisations technical efficiency alone is of limited interest, as
firms will normally be reluctant to change input and output quantities if these do not lead to
monetary gains. Obviously the translation of input and output changes into profit requires
price information. The often unavailable or inaccurate price information has led, on the
one hand, to the widespread measurement of technical efficiency in for-profit organisations
pushing to a second place the measurement of economic efficiency, and on the other hand, to
the appearance of methodologies that incorporate incomplete price information in efficiency
measurement models through the form of weights restrictions (like the cone ratio model of
Charnes et al. (1990) and the assurance region model of Thompson et al. (1986)), or through
the calculation of inner and outer bounds on efficiency (e.g. Banker and Maindiratta, 1988;
Fére and Li, 1998; Kuosmanen and Post, 2001).

Empirical applications measuring profit efficiency have mainly used parametric ap-
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8.1 Introduction

proaches. Parametric applications to the banking context can be found for example in
Humphrey and Pulley (1997), Lozano Vivas (1997), and Berger and Mester (2000). Other
applications of parametric profit functions can be found in Lau and Yotopoulos (1971) on
agriculture, in Knox et al. (1999) on nursing facilities, and in Kumbhakar (1996) on electric
utilities.

Empirical analysis of profit efficiency through the non-parametric DEA approach where
input and/or output prices have featured within the assessment model have been rare.
Fire et al. (1990) used a profit function to define maximum profit of rice farms, but price
data were not considered explicitly and therefore price or allocative inefficiency could not
be assessed. Coelli et al. (2002) also used a profit model to determine maximum profit of
airline companies, and decomposed a measure of overall profit gap into various components
(unused capacity, technical, and allocative inefficiency). However, the authors represented
the underlying technology through output distance functions rather than through graph
(non-oriented) distance functions as would be consistent with a profit maximising setting,
Cherchye and Van Puyenbroeck (2003) also applied output distance functions to German
farms, namely the DEA model proposed by Banker et al. (1984), arguing that in the case
reliable information on prices is lacking this model provides an estimate of profit efficiency.
(The argument used to support this claim is that this model provides ‘endogenous benefit-
of-the-doubt’ prices when price information is lacking).

Another related strand of the DEA literature is the AR (Assurance Region) profit
ratios introduced by Thompson and Thrall (1994) and Thompson et al. (1995). As can
be seen in Thanassoulis (2001, Chp. 8) DEA weights convey information on marginal
rates of substitution/transformation. This interpretation of DEA weights has been used
by Thompson et al. (1995) so that the DEA models are redefined to restrict the DEA
weights to vary within pre-specified bounds (usually relating to lower and upper bounds
on observed prices (e.g. Thompson et al., 1996)). These redefined models are called profit
ratios, though they do not in fact measure profit efficiency (e.g. Thanassoulis et al., 2003)
as we do in this Chapter. In addition, they differ from the approach presented here, since
AR profit ratios do not deal with cases where prices are explicitly used in computing profit.

Profit maximisation implies that at least some inputs and some outputs are endogenous
(choice) variables (e.g. Kumbhakar, 2001). If all inputs are exogenously fixed then the
maximum profit model reduces to one which seeks maximum revenue. Similarly if all

outputs are exogenous then maximum profit would result by minimising cost. If, however,
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8.2 Measuring Profit Efficiency

some inputs and some outputs are endogenous then maximum profit can be attained by
suitably setting the relative input and output levels to exploit the available input and
output prices. The model needed for determining input and output levels that maximise
profit would be a ‘non-oriented’ one in contrast to the traditional oriented models where
either inputs are minimised holding outputs relatively stable or the other way round.

As can be gathered from the foregoing in order to measure profit efficiency and lead
operating units to improved profitability firstly, a non-oriented approach is needed which
will allow for the fact that typically in for profit situations a mix of inputs and outputs
is endogenous and not all inputs or all outputs are exogenous. Secondly, while a mea-
sure of overall profitability improvement potential is the ultimate aim it is also useful to
know whether this can be attained by adjusting the input-output mix to take advantage
of prevailing input-output prices or whether profit potential can be exploited by becom-
ing technically more efficient. An overall measure of profit efficiency should, therefore, be
decomposed into technical efficiency (entailing information concerning how much a produc-
tion unit could increase outputs, while at the same time decreasing inputs) and allocative
efficiency (entailing information concerning movements along the production frontier from
a non-profit maximising point to a profit maximising point, reflecting, as such, failure to
maximise profits under prevailing prices). Existing approaches on the literature that tackle
these twin issues of non-orientation and efficiency decomposition (e.g. the hyperbolic model
of Fére et al. (1985) or the directional model of Chambers et al. (1998)) have some flaws
that we try to overcome in this Chapter. These flaws relate to the fact that these models
do not in general account for all sources of inefficiency, and also to the fact that they may

calculate profit efficiency on the basis of points located outside the production possibilities

set.

8.2 Measuring Profit Efficiency

Consider a technology represented by T' = {(x,y) € RT**| x can produce y}, where
x is an input vector (i = 1,...,m), and y is an output vector (r =1,...,8). We will assume

throughout that T is represented by the following production possibility set:

n n n
T={@xy) € Bf"| > hnzy, Y yxs<x YoA=1,

i=1 i=1 j=1

Aj >0, j=1,...,n} (8.1)
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8.2 Measuring Profit Efficiency

That is, T is a monotonic (or strongly free disposable) convex set satisfying variable returns
to scale (VRS) (for details see e.g. Fire et al., 1994a).

Within the DEA framework, whatever the approach used to calculate profit efficiency,
the starting point of a profit analysis is the calculation of maximum attainable profit. This

can be done using the model shown in (8.2) (e.g. Fire et al., 1994a, p. 213).

s m n
M i {meyr —Z‘wio zi | Z)\j Yri=Yyr 2 0r=1,...,8,
Jrlry T r=1 i=1 j=1

n n
S Nzi-z <0 i=1,...,m, Y A=1,A20 ,j= 1,...,n} (8.2)
i=1 i=1
Model (8.2) assures profit maximisation in the long run as no factors are considered fixed.
Furthermore, it considers no other constraints apart from technological (though see Fire
et al., 1990, where expenditure constraints were added to (8.2)). Model (8.2) assumes
VRS since for a technology exhibiting globally constant returns to scale (CRS) either the
maximum profit level is zero or the solution of the maximum profit model is undefined (e.g.
Varian, 1992; Fare et al., 1994a).

The implications of assuming VRS in (8.2) are: (i) We do not assume perfectly com-
petitive markets since under this assumption all firms have zero profits in the long run. In
(8.2) maximum profit may be positive. It should be noted that the concept of profit that
economic theory deals with is economic profit - i.e., the profit that includes all factors
of production evaluated at their opportunity cost (e.g. Varian, 1992, p. 23). We do not
maintain the assumption of perfectly competitive markets as we cannot assess economic
profit at opportunity cost. (ii) Scale efficiency cannot be calculated as a component of
overall profit efficiency. In order to make this possible the maximum profit model (8.2)
should be applied under CRS (e.g. Fire et al., 1994a). (iii) Maximum profit units do not
need to be most productive scale size (mpss) units in the sense of Banker (1984). That is,
maximum profit units do not need to be scale efficient (see also Kuosmanen, 1999b). The
implications resulting from a VRS assumption will be further addressed throughout this
Chapter.

8.2.1 Brief Review of Existing Approaches

In this section we briefly review existing approaches to measure and decompose profit

efficiency by means of the technically and profit inefficient unit A in Figure 8.1. Unit A
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8.2 Measuring Profit Efficiency

Figure 8.1: Profit Efficiency Measurement
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achieves maximum profit when it is projected on the profit frontier (say at A*), where
maximum profit equals that of unit B, a maximum profit unit. If overall profit efficiency
is measured by means of a ratio between profit at two points, then overall profit efficiency
of unit A is given the ratio -IT]L (see e.g. Banker and Maindiratta, 1988; Cooper et al.,
2000, who used this ratio-based approach within the DEA framework). The technical profit
efficiency of this unit can also be calculated by a ratio of profits, namely as -g—;-, where II'
is the profit at the technically efficient projection A’ of A. The allocative profit efficiency
of A (-l"]'—:) can now be calculated by decomposition from -H: = -}I-lr X —H;

The aforementioned ratio-based approach is analogous to what is usually done in cost or
revenue settings where ratios of cost or revenue represent efficiency (see Chapter 2 section
2.3.1). In such settings, however, there is no possibility of negative costs or revenues. This
is not the case with profits that can be negative. The problem of negative profits was not
recognised as such by some authors. E.g. Berger and Mester (2000, p. 98) state that
“profit efficiency can be negative, since firms can throw away more than 100% of their
potential profits”. Others like Banker and Maindiratta (1988) assume that all production
units exhibit positive profit. Finally some authors have acknowledged this problem and
solved it either by using revenue/cost ratios, which can never be negative! (see e.g Cooper

et al., 2000; Kuosmanen, 1999b) or by using differences between profits to avoid negative

1Under this approach the profit efficiency of unit A (see Figure 8.1) would be defined as a ratio of revenue-
to-cost so that: —}:}f;‘;’ﬁﬁ.—, where the double star is the optimal solution of: max {Eﬁii(x. y) € T} (see
for details Cooper et al., 2000).
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8.2 Measuring Profit Efficiency

efficiency measures (e.g. Berger et al., 1993; Coelli et al., 2002).

Rather than using the above ratio-based approach some authors defined overall profit
efficiency as being a measure reflecting the required adjustments on the input/output levels
of unit A that moves it to point A* on the profit frontier. For example, the hyperbolic
model of Fire et al. (1985) (see also Fire et al., 1994a) defines the technical profit efficiency
of unit A as being 4 defined in min {64 | (xa04 , ya/64) € T}. In accordance
with this hyperbolic path the overall profit efficiency (¢%) of unit 4, is derived by solving
II* = pa(ya/9h) — waxagly where [[I*] is the maximum profit of A calculated through
model (8.2). That is, overall profit efficiency (¢?1) represents the amount by which inputs
and outputs should be hyperbolicly adjusted, so that they are projected on the profit
boundary?. The overall profit efficiency can then be decomposed as: qSi" =04 X ’yﬁ, where
4% is the allocative profit efficiency.

The directional model of Chambers et al. (1996a, 1998) follows a procedure that is
similar to that of the hyperbolic model, except that the overall profit efficiency (qbi), would
decompose as: qbi = fa+ 'd, where 4 represents technical profit inefficiency and 'yﬁ
represents allocative profit inefficiency (for details see Chambers et al., 1998).

When the additive model of Charnes et al. (1985b) is used, then a technically efficient
target (A® in Figure 8.1, whose profit is IT?), and a maximum profit target (B in Figure 8.1,
whose profit is IT*) are identified. Using these targets Cooper et al. (1999, 2000) decomposed
the profit lost due to overall profit inefficiency into the profit lost due to technical and
allocative inefficiency (i.e. (II* —II) = (I1* — IT) + (II* — I1%)). This relationship is not,
however, expressed in efficiency terms but in absolute profit values (see Berger et al., 1993;
Coelli et al., 2002, who also used profit differences, though not using the additive model).

The foregoing approaches have certain disadvantages in a practical context which the
profit efficiency measure we put forward in this Chapter overcomes. The key drawbacks of
the foregoing measures are as follows.

Negative efficiency measures. It is possible for the ratio-based profit efficiency
approaches to result in a negative measure of efficiency when profit is negative (a loss).
Such measures generally cannot be interpreted in a practical way to reflect distance from
maximum profit and are therefore problematic. Efficiency measures which take only positive

values are to be preferred. The measure of efficiency we put forward here can only take

2When the technology satisfies constant returns to scale maximum profit is assumed to be zero and the

above expression simplifies to ¢ = 1/% (see Fére et al., 1985, 1994a, for details).
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positive values.

Reference to Infeasible Points. The hyperbolic and directional models may calculate
overall profit efficiency with reference to infeasible points such as A* in Figure 8.1, This can
also happen in ‘oriented’ cost or revenue settings, but in these cases projections on infeasible
points can be interpreted in terms of ratios of inputs (outputs) between the observed and the
infeasible point because such ratios match the ratio of minimum cost (maximum revenue)
to that at the observed point. This is r;o longer so in the non-oriented profit setting. For
example, if we assume a hyperbolic path is followed from A to A* in Figure 8.1, then the

required adjustments in inputs and outputs are given by ¢4, as £4+/24 = ya/ya+ = Pa.

The profit ratio, on the other hand equals -g— = W = p“": ):’En_—‘fu:?: 57+ Which
differs from ¢4. (Note that this statement is valid for all paths).

Accounting for slacks. The calculation of technical profit efficiency through the hy-
perbolic and directional models assumes the same factor (6 or 3) associated simultaneously
with inputs and outputs. The resulting efficiency measures do not account, therefore, for all
the sources of inefficiency, namely those associated with slacks. This is an important prob-
lem in a context where overall efficiency is being measured because what is not captured by
technical efficiency will be incorporated into allocative efficiency, which may therefore be
incorrectly estimated. The measure of efficiency we put forward in this Chapter accounts
for all sources of inefficiency.

Best alternative targets for technical efficiency. The additive model does not
have the above problems, but it does not yield an efficiency score. In addition, it provides
technical efficient targets to inefficient units that may be remote targets rather than being
as close as possible to the observed unit (e.g. Portela et al., 2003). Note that Chavas
and Cox (1999) also showed the concern for closest technical efficient targets in a model
where the authors measure and decompose profit efficiency (we do not detail their model
in this Chapter for sake of brevity). In our approach we share this concern, and calculate

technically efficient targets that are the easiest for the firm to attain.

8.3 A Geometric Distance Function

We develop here a new measure of profit efficiency. It is based on a geometric mean
measure of distance between the point whose efficiency is being measured and the maximum
profit point. We give the definition and the properties of the measure before discussing its

advantages over existing measures of profit efficiency.
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8.3 A Geometric Distance Function

Radial measures of efficiency can be expressed as ratios between productivity measures.
Consider in a two-dimensional space an observed point (z,y) and a target point (z*,7*) on
the frontier of T, where T is defined in (8.1). The radial output efficiency measure equals
-é'.-, and the radial input efficiency measure equals -’5'- Both measures are in fact equal
to a ratio between the productivity at the observed and at the target point (;!ﬁf:—.). The
output efficiency measure is derived if we set in the foregoing ratio (z* = z) and the input
efficiency if we set (y* = y). Note now that (;Eﬁ—.) can also be expressed as a ratio of target
to observed input and output levels: :—:ﬁ We generalise this latter ratio to a multi-input
multi-output context as follows.

Consider in the multiple input/output space an observed vector (x,y) and a target

vector (x*,y*) on the frontier of T'. The traditional radial approach for measuring technical

efficiency takes the maximum of "T:- = max(%,%,...,%) (which equals max(l;;%) =

ﬁ:—:ﬁ} when y = y*) as the input radial efficiency measure. Similarly, the maximum
of % or the minimum of ‘;—:- (which equals max(;—,‘;%) when x = x*) is the output radial
efficiency measure. This means that the analogous situation in the non-oriented case would
be to take the maximum of ;‘,—Z% as the efficiency measure, where no inputs or outputs are
considered fixed. If we now assume that between (x,y) and (x*,y*) all inputs change by
the same proportion (say x* = 0x), and all outputs change by the same proportion (say
y* = By), then 3,’%% = %% = 0/ corresponds to the non-oriented efficiency measure,
defined as a ratio of target to observed input level divided by the ratio of target to observed
output level. If finally we consider the more general case where inputs and outputs are
allowed to change by different proportions (so that 2§ = 6;z; and y; = S;¥,) then the

measure in (8.3) parallels the foregoing ratio of target to observed input-output levels.

(I1,6,)"/m
(11, 3;)

It is this measure that we propose to use to measure profit efficiency.

Geometric Distance Function (GDF) = (8.3)

The measure in (8.3) has been named geometric distance function (GDF), because it is
the ratio of the geometric mean distance between observed and target input levels and the
corresponding distance between observed and target output levels. The geometric distance
function can be used to measure the distance between any two points. When these points
relate to maximum profit and current point, respectively, the resulting efficiency is overall
profit efficiency. If they relate to a technically efficient point and the current point, the
resulting GDF is a general measure of technical efficiency.
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8.3 A Geometric Distance Function

The geometric distance function incorporates as special cases the usual input and output
oriented measures of efficiency in DEA. Consider a GDF technical efficiency measure of

(%0,¥o) as the solution of model (8.4).

[ ([Mfi)V™ & 3
GDF(xo,Yo) = min {%ﬁ-# | ZAJ' Yrj = BroYro, Z‘\J' Zij = ioTio
r~ro j=1 j=1
n
Z,\_f =1,2;20,0Z051, Bro2 1} (8.4)
=

Model (8.4) is highly non-linear, but it becomes linear for its special cases of traditional
oriented models. For example, in input oriented measures one assumes that 8, =f=1Vr,
and also that 6, = 0 V 4, and thus the final efficiency score in (8.4) reduces to 6, which
corresponds to the Farrell input efficiency measure. For output oriented efficiency measures
similar reasoning applies. If 8., = BV r is assumed to equal the inverse of 6;, = 6 V i, then
(8.4) reduces to the hyperbolic model of Fére et al. (1985), with the only difference being
that the resulting measure of efficiency is 62 and not 6.

The advantage of allowing for different contraction factors associated with inputs (6;)
and different expansion factors associated with outputs (/3;) is that all sources of inefficiency
can be captured by the resulting efficiency measure. This is not a new concern. For example,
Fire et al. (1985) introduced a ‘Russell graph measure of technical efficiency’ that allows

for different changes within inputs and outputs. However, the authors define the arithmetic
average of the various factors associated with inputs and outputs, (2-"%-1—-2-:&3—1&) , as
the final efficiency measure (see also Pastor et al., 1999, who propose an ‘enhanced Russell
graph efficiency’ measure). We argue that in order to retain the meaning of traditional
efficiency measurement the geometric average between these factors should be used instead.
In addition, the use of the geometric mean has the advantage of allowing decomposition
of an overall measure of efficiency into its technical and allocative components, which is
a characteristic that the Russell Graph measure does not possess (this is also the case
for other measures in the literature that try to include all the sources of inefficiency such
as the SBM (slacks-based measure) of Tone (2001) or the RAM model of Cooper et al.

(1999)). However, when we use the GDF measure, if we consider an observed point (x,y),

a maximum profit point (x*,y*), and a technically efficient point (x',y’), then a profit
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8.3 A Geometric Distance Function

measure can be decomposed as shown in (8.5).

ZI\1/m z Zi\1/m
(H‘.;(;)U B (Hi;f)l,’m y (H,;‘}) /

Overall Profit Efficiency = X = : L
WAYe  (mdeyve - (@)Y

(8.5)

That is, Overall Profit Eff. = Technical Profit Eff. x Allocative Profit Eff,

We shall return to this point in section 8.3.2 when we calculate each of these components.

8.3.1 Properties of GDF-based measures of profit efficiency

We use model (8.4) to highlight some general properties of the GDF measure.

Intuitive Homogeneity - The GDF technical efficiency measure in (8.4) is sub-
homogeneous of degree -2 (i.e., when inputs are halved and outputs are doubled the measure
of efficiency increases by a factor of at least 4 times)(see appendix B for proof). To the au-
thors’ knowledge there is no non-oriented efficiency measure in the literature that satisfies
homogeneity of degree -2. When we look just at one side (inputs or outputs) it seems intu-
itive to say that if all outputs double the measure of efficiency should double (homogeneity
of degree -1). When both inputs and outputs are being changed, homogeneity of degree -1
is not intuitive as a simultaneous change in both inputs and outputs should bring about
a larger change in efficiency than when only inputs or outputs are changed. Nevertheless,
most of the existing non-oriented measures in the literature satisfy degree of homogene-

ity -1, like for example the hyperbolic measure or the Russell graph measure of technical
efficiency (Fére et al., 1985).

Monotonicity - The GDF technical efficiency measure in (8.4) is weakly monotonous
on inputs and on outputs. That is, when inputs increase and/or outputs decrease the
measure cannot improve (see appendix B for proof).

Reflecting all inefficiencies - When the GDF is used to measure technical profit
efficiency, then it is a measure incorporating all the sources of inefficiency. Indeed, note
that we assumed equalities in the constraints of model (8.4), which results, by definition,
in zero slacks. This means that the GDF-based measure of technical profit efficiency is 1
(100%) if and only if the unit being assessed is Pareto-efficient.

Lower and Upper bounds - The GDF technical profit efficiency in (8.4) varies
between 0 and 1 (see appendix B for proof). In contrast the allocative profit efficiency
and the overall profit efficiency measure can take any positive value. The measure takes

the value 1 when the two points (e.g. maximum profit point and observed point) used are
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coincident. However, the converse is not true and the GDF overall profit efficiency can be 1
even when the two points used in the measure are not coincident. For example if one input
is halved and another is doubled the result in the numerator of the GDF is 1, which does
not mean that inputs did not change but that on average they stayed the same. Because of
the averaging process within the computation of the overall profit efficiency it is necessary
to further decompose it, so that one can understand and interpret its value. In the next
section we will show how each component of (8.5) is calculated and interpreted.
Economic interpretation - It is interesting to note that the GDF measure of profit
efficiency can also be expressed in terms of the ratio of the geometric mean of cost and
revenue changes as we move from a curEent (i.e. observed) to a maximum proﬁt point. In
(I 2h)r/m il y1/m

(M . mgk)V/m
(I, )7 ¥ (l’l.-ﬁi'-’;f—)ll which equals —l.—m g Thus

Prir
we can see the numerator (and denommator) of the GDF either as the geometric average of

particular note that we can replace

changes in input quantities (and output quantities) or as the geometric average of changes
in costs (and revenues) resulting from moving from actual to maximum profit.

As noted earlier, in radial input efficiency measures we assume fixed output levels and
all inputs are contracted by the same factor. In such a case the GDF measure reduces to
the ratio of minimum attainable cost to observed cost, precisely the traditional measure of
overall cost efficiency. A radial cost efficiency expresses, therefore, both the required radial
reduction in inputs and the percentage cost savings achieved by this reduction. Unfortu-
nately, when we are in non-oriented space an analogous interpretation of the GDF efficiency
in terms of profit is not possible. Even so, the GDF shows a link between quantities and
profit in the sense that to increase profit the average change in revenues should, in principle,

be more than proportional to the average change in costs.

8.3.2 The GDF for Measuring and Decomposing Profit Efficiency

Having defined the profit efficiency measure in the previous section we discuss here the
practical steps involved in its calculation and decomposition.

For calculating overall profit efficiency we shall first use model (8.2) and then apply the
geometric distance function in (8.3) to measure the ‘distance’ between observed points and
maximum profit points. The resulting GDF measure is the overall profit efficiency.

As noted earlier the GDF overall profit efficiency can take any positive value. A value
of 1 is a necessary but not sufficient condition for the point to be maximum profit. A GDF
overall profit efficiency equal to 1 indicates that the geometric average change in inputs
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equals the geometric average change in outputs, which might happen when the two points
being compared are the same or not. Therefore, the necessary and sufficient condition for
overall profit efficiency is that the maximum profit point is coincident with the observed
point in which case the overall profit efficiency measured by GDF will be 1. Any other
value of the GDF overall profit efficiency will indicate a profit-inefficient point. A value
above 1 indicates that the geometric average change in inputs is higher than the geometric
average change in outputs, and a value below 1 indicates that the geometric average change
in inputs is lower than the geometric average change in outputs. So the overall profit
efficiency measure conveys information on how much we have to change the physical value
of inputs and outputs in order to improve profit.

The decomposition of overall profit efficiency that we propose here is carried out in two
phases. In phase 1 we decompose overall profit efficiency and in phase 2 we decompose

allocative profit efficiency into a scale and a pure mix effects.

Phase 1 - Decomposing the GDF overall profit efficiency

Recall that overall profit efficiency can be decomposed as: Technical profit efficiency x
Allocative profit efficiency. The calculation of (technical profit efficiency) could be done
using the geometric distance function in (8.4). However, this model is highly non-linear and

therefore we propose to measure technical profit efficiency a posteriori after a technically
efficient target has been identified.

Procedures for finding such targets may be any one of the existing (non-oriented) in
the literature. We shall, however, depart from these for two reasons. For example we
do not wish to strongly restrict movements of production units towards the production
frontier. We do not see any reason why the mix within inputs and within outputs should
be preserved as imposed by the hyperbolic or directional models. The motive behind these
assumptions seems to have to do more with mathematical convenience, while in reality “the
firm’s very reason to change its output vector may be to change the mix” (Chambers and
Mitchell, 2001, p. 32). The only restriction that we impose is that inputs cannot increase
and outputs cannot decrease in moving towards the production frontier. However, note
that this restriction only applies in technical efficiency measurement and it is consistent
with the notion of looking for input-output improvements which may be feasible before any
trade-offs consequent on input and/or output prices are taken into account. Secondly, we

want to find the closest targets on the production frontier (and not the farthest (using the
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Ly norm criterion) as the additive model does3. The reason for selecting closest targets
relate to the fact that they are easier in practice to achieve, and more in line with the way
management exercise judgment in general.

Here we follow a similar approach to that introduced in Chapter 7 to calculate the
closest technically efficient targets based on the minimisation of normalised slacks. The

procedure to be used here consists of the following four steps:
o Apply the additive model under VRS to find the set of Pareto-efficient units (E);
¢ Find all the Pareto-efficient facets (F,k = 1,...,K) of the production frontier;
¢ Find closest targets to the unit at hand on the Pareto-efficient frontier;
e Calculate for the unit at hand a technical efficiency measure using the GDF in (8.3).

The first step is straightforward and does not require further comment. The second
step is potentially the hardest to perform but there is software that can easily handle the
problem. Olesen and Petersen (2002) have used QHull (a freely available software?) for
finding all ‘Full Dimensional Efficient Facets’ (FDEF) in a DEA model (see also Olesen and
Petersen, 1996). The required input for this software is the input/output levels of efficient
units identified in the previous step, based on which Qhull identifies all the units that lie on
each FDEF, and provides a supporting hyperplane for each facet. QHull can also be used
to identify non-full dimension efficient facets (NFDEF), but in this case its application is
not straightforward. In this Chapter we only use FDEFSs, though the use of NFDEFs was
illustrated in Portela et al. (2003).

After finding all the efficient facets Fy, k = 1,..., K through Qhull, we are able to apply
model (8.6), that identifies the closest targets in terms of minimum sum of normalised slacks,

for each inefficient unit relative to the FDEF (Fk).

s m
EFF, = min { Z']"ro + Zﬁio | z Aj Yri = Yro + Yro¥ro
r=1

i=1 JEF

Z Aj Tij = Tio — BioTio » Z Ai=1, Ajs Yros Bio 2 0} (8.6)

JjEF: JEF:

3The geometric distance calculated through model (8.4) does not accomplish the closest targets objective
either. Note that the GDF in (8.4) can be expressed as a function of slacks by replacing each 6; by 1—~(e;/z:o)
and each 8- by 14 (8- /yr0) (see Cooper et al., 1999, where these relationships are put forward). The GDF
is thus equivalent to a slacks’ based measure, where slacks are being maximised rather than minimised.
4www.geom.umn.edu/software/qhull
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Model (8.6) is in fact equivalent to an additive units invariant model where normalised
slacks are being minimised instead of maximised®. Model (8.6) must be solved for each
inefficient unit in relation to each efficient facet identified in the previous step. Obviously
this model may, in some situations, be infeasible (if the efficient facet being considered is
not attainable by the inefficient unit being assessed) but there will be at least one facet for
which the above problem has a solution. The facet to be chosen for projection is the one
corresponding to the lowest optimal objective function in (8.6). The targets resulting from
this projection can then be used to calculate the technical efficiency measure (4** step).

Given the above, we define technical profit efficiency as a distance between the observed
point and the technical efficient point that is its closest target. In moving from the observed
to the technical efficient point a unit may change the mix of inputs and/or outputs but
these changes in mix are not sought to in any way reflect factor prices.

In terms of interpretation, as the technical profit efficiency component ranges from 0 to
1 (see the appendix B), a value of 1 means the observed point is Pareto-efficient, while a
value below 1 means the observed point is not Pareto-efficient.

Note that the way technical efficiency is measured has obvious implications on the
amount of overall inefficiency that is explained by technical and by allocative sources.
By choosing closest targets we are ‘minimising’ the component attributable to technical
inefficiency and ‘maximising’ the component that is attributable to allocative inefficiency.

Having calculated the overall profit efficiency and the technical profit efficiency, the
allocative profit efficiency can be calculated as the ratio of overall profit efficiency
and technical profit efficiency (see decomposition in (8.5)). The allocative profit efficiency
reflects movements from a technically efficient point (x',y’) to a maximum profit point
(x*,¥*). Such movements imply changes in the mix of inputs and/or outputs that are
dictated by factors prices. However, movements from a technical efficient point to a max-
imum profit point may not only imply changes in mix but also changes in scale size. As
noted by Lovell and Sickles (1983, p. 54) for a profit setting, “in the single output single
input case all allocative inefficiency is scale inefficiency”. Depending on the combination of
these effects allocative profit efficiency, can be higher or lower than 1. The interpretation
of allocative efficiency values will be undertaken in the next section where we show how

allocative efficiency can be decomposed into mix and scale effects and interpret each of

®Note that model (8.6) is also similar to the preference model introduced by Thanassoulis and Dyson
(1992) where we assume that there are no preferences. If there are any preferences for moving towards the
frontier these can be incorporated in the model above as detailed in Thanassoulis and Dyson (1992).
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these components.

Phase 2 - Decomposing Allocative Profit Efficiency

The allocative profit efficiency measure may reflect changes in the mix of inputs and
outputs and changes in the scale of operations when moving from the technically efficient
point (x/, ¥') to the maximum profit point (x*,y*). Analysing first changes in scale, consider
a situation where increasing inputs (say by the scaling factor a) generates a less than
proportional increase in outputs (say scaling them by 4, 4 < @). This would imply we have

decreasing returns to scale. This means that if only scale effects were present in mc-wing

{“‘ E‘_)llm
from (x',y’) to (x*,y*), then the allocative profit efficiency component would be —‘n—(n e
Tvr
() /m .
= Tague Which equals § > 1. The scale change effect can therefore be measured

Vr

through £. In order to isolate this effect we propose the use of model (8.7), where the scale

change effect is minimised.

min{a/y |y —sr= W, r=1,...,s, z} +ei= az} i=1,...,m, s;,&i 20} (8.7)

In constructing model (8.7) we assumed that scale effects resulting of movements from
the technically efficient point to the maximum profit point (which is also technically ef-
ficient) exist when we can increase (decrease) all inputs proportionally and all outputs
proportionally so that the maximum profit point has higher outputs and lower inputs than
the scale adjusted point: y} > 4y} and z} < az. This means that the scale adjusted point
will lie on the free disposable hull of the maximum profit point, since at least one input and
one output will be equal to that of the maximum profit point with the remaining inputs
being no lower and the remaining outputs being no higher.

The concept of scale implicit in (8.7) relates to the possibility of exploiting scale
economies in movements between two technically efficient points on the production fron-
tier. The concept of scale economies is closely related to the concept of returns to scale,
but none of these concepts is free of controversy in the literature as testifies the works of
Gold (1981) and Tone and Sahoo (2003). In this Chaptrer we adopt the typical returns to
scale concept of economic theory that defines such returns with reference to scale changes
which maintain the mix of inputs and of outputs (Gold, 1981).

Model (8.7) provides ‘radial’ (measured through a and ) and 'non-radial’ adjustments
(measured through s, and e;) required to move from the technical efficient point to the
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maximum profit point. The radial adjustments reflect scale change effects (given directly
by a/7), while the non-radial adjustments reflect changes in the mix of inputs and outputs.
(Model (8.7) is analogous to that presented in Cooper et al. (1996) or Golany and Yu (1997)
with the only difference being that we restrict the left hand side to be the maximum profit
point®.) Note that in order for scale effects to exist one needs to have both @ and v > 1
or both a and 4 £ 1. In fact having simultaneously a value of 4 > 1 and a < 1 implies a
movement from the technically efficient point to a point outside the production possibilities
set, which is not a viable movement since the scale adjusted point would not lie on the free
disposal hull of the maximum profit point. Having simultaneously a value of v < 1 and
a > 1 results in a movement towards technical inefficiency, that reduces profit rather than
increasing it, which is not consistent with the profit maximisation objective. Therefore, if
it is not possible to find in (8.7) values of a and + that point to movements in the same
direction, then one would conclude for the non-existence of scale effects in moving from a
technical efficient point to a maximum profit point and therefore all allocative efficiency
would be due to mix changes.

Turning now to the interpretation of the values of the two components we begin by
assuming that scale effects as given by a/y do exist. In this circumstance if a/7 is higher
than 1 then it means that in moving from the technical efficient point to the maximum
profit point the assessed unit would experience an average increase in inputs that is more
than proportional to the average increase in outputs. Thus decreasing returns to scale are
implicit in this movement. If the value /7 is lower than 1, then increasing returns to scale
are implicit in this movement.

The adjustment of the technically efficient levels of inputs and outputs by the scale
factors @ and +, respectively leads the technically efficient unit to a scale adjusted point
where y; > vy, and z} < az]. As the maximum profit point has higher outputs and
lower inputs than the scale adjusted point then the mix effect (reflecting the GDF distance
between these two points) cannot be higher than 1. The mix effect will therefore vary
between 0 and 1, representing the average change in inputs and outputs that is required to
move from a scale adjusted point to the maximum profit point. Therefore, for the situation

where scale effects do exist an allocative profit efficiency, which is the product of scale

SNote that model (8.7) here is not being used for identifying returns to scale (RTS) or defining scale
efficiency [because the maximum profit point may not be an mpss (see for details Cooper et al., 2000, pp.
127-131)] but simply to identify scale changes in movements from one point to the other, Indeed, RTS are a
local characteristic requiring small 4 and a factors. In our case one or more of these factors might be large
depending on the two points being considered.
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and mix effects, when greater than 1 would be the result of a scale effect greater than 1.
Such a scale effect is not favourable for the production unit from the pure technological
perspective, but may be so from a profit perspective. This issue will be further addressed
in the empirical illustration shown in the next section.

When scale effects cannot be identified from the solution of model (8.7), all allocative

efficiency is due in this case to chfxnges in the mix of inputs and outputs. Therefore, an
allocative efficiency measure (%’;‘;;—;;) greater than 1 means that the geometric average
change in inputs is higher than the 'geometric average change in outputs in moving from the
technical efficient point to the maximum profit point. This means that this movement in
fact implies a decrease in the physical productivity of the unit being assessed as will become
clear in the next section. Such movements may not be advisable from a pure technological
perspective, though they are so from a profit perspective. Values of the allocative efficiency
lower than 1 mean that the geometric average change in inputs is lower than the geometric

average change in outputs and therefore such movements are advisable both from a profit

and from a technological perspective.

8.4 Illustration of the GDF Measure and its Decomposition

For illustrating the calculation of overall profit efficiency and its decomposition, we will
use the data shown in Table 8.1. This is the data used in Ali and Seiford (1993b), except
for the hypothetical input/output prices, which we have added.

Table 8.1: Illustrative Data for units producing one output using two inputs
Ut 1 2 3 4 5 6 7 8 9 10 11
OQutput v 12 14 25 26 8 9 27 30 31 265 12
Input 1 1 5 16 16 17 18 23 25 27 37 42 5
Input 2 T3 13 12 26 15 14 6 10 22 14 25 17
Priceofy | p 20 22 24 25 23 19 18 21 23 22 25

Price of ; wy 6 T 5 4 55 65 75 8 4 55 6
Priceof z3 | wa 9 8 75 &6 8 5 9 10 105 95 85

We used model (8.2) and the GDF profit efficiency measure defined in (8.3) on the data
in Table 8.1. The results are presented in Table 8.2. In this table we also show results
for the numerator and denominator of the GDF measure, called input change and output
change, respectively.

There are two units that are overall profit efficient (unit 7 and 9). All the other units
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Table 8.2: Overall Profit Efficiency Measurement
Unit Actual Maximum Peer Input  Output GDF Profit
Profit Profit Unit Change Change  Efficiency

1 93 300 T 1.96 2.25 87.16%
2 100 339 T 1.14 1.93 69.17%
3 325 454 9 112 1.24 89.99%
4 492 543 9 1.43 1.19 119.54%
5 =27 403.5 7 0.99 3.38 29.51%
6 -8.5 308.5 4 1.36 2.89 47.05%
T 208.5 208.5 7 1.00 1.00 100%
8 194 267 7 0.65 0.90 72.08%
2 418 418 9 1.00 1.00 100%
10 114.5 361.5 7 0.49 1.02 47.89%
11 125.5 440 7 1.72 2.25 76.22%

are overall profit inefficient since they fail to maximise profits given their input and output
prices.

Most units in Table 8.2 achieve profit efficiency by increasing simultaneously inputs and
outputs, the latter increment being on average more than proportional to the former. (Unit
8 is an exception, as it shows no increase but decrease in both inputs and outputs). Note
that unit 4 is the only one that should on average increase outputs less than proportionally
to inputs. Such a result is related with the type of returns to scale that apply at this point

as will become clear later.

Decomposition of Overall Profit Efficiency

The application of the 4-step procedure detailed in the previous section to identify
technically efficient targets resulted, in its first step, in a set E consisting of units {1, 3, 4,
6, 7, 8, and 9}. Qhull was then applied to find the efficient facets. These are Fy = {1,6,7},
F, ={1,3,4}, F3 = {1,4,7}, Fy = {4,8,9}, F5 = {4,7,9}. All the facets in this case are
FDEF, and there are no NFDEF. In Figure 8.2 we represent graphically the above facets.
Note that the facets {3, 8, 4} and {6, 7, 9} are not efficient, but they are identified in
the graphs of Ali and Seiford (1993b) as being Pareto-efficient. Therefore, there is no full
correspondence between our Figure 8.2 and the graphs in Ali and Seiford (1993b).

The results from applying model (8.6) to our illustrative example are shown in Table
8.3, where only inefficient units are considered. For example, for unit 5 only projections
on Fy, F,, and F3 were feasible (note that in technical efficiency measurement we do not

allow units to decrease outputs nor to increase inputs, meaning that some facets might not
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Figure 8.2: llustrative Example

Table 8.3: Technical Efficiency Measurement Results

Unit 2 5 10 11

Eff. Facet I3 P Fy F, Fa, F3
Observed (y, z1, 2) (14, 16, 12) (8, 18, 14) (26.5, 42, 25) (12, 5, 17)
Model (8.6) targets (14, 16, 9.72) (9.83, 18, 7.04) (30, 27, 22) (12, 5, 13)
GDF 90% 61.3% 66.4% B7.5%
Peer Units A =041, =038, A =021 A\ =028, =0.72 As =1 A =1
Additive targets (17, 11.67, 12) (19, 11, 14) (26.5, 21, 12.5) (12, 5, 13)
GDF 70.3% 32.9% 50% 87.5%

be attainable from the actnal position of some units). F; was chosen because in this case
the objective function of (8.6) was 0.6617 as opposed to a value of 1.294 when Fy or Fj
were chosen. Note that we also show in Table 8.3 the results from the additive model when
it is used for finding technically efficient targets, and present the GDF measure for both
sitnations. Clearly our model provides targets that are closer to the inefficient units being
assessed as can be confirmed by the higher GDF technical efficiency measures presented in
Table 8.3 or by calculating distance measures such as L, norms (see Portela et al., 2003).

Allocative profit efficiency results for our illustrative example are shown in Table 8.4,
where we also present the type of RTS that apply at each technically efficient point (RTS
were identified through the procedure of Fire et al. (1985)). Knowing the RTS characteris-
tics of each unit we can now easily understand why unit 4 has an allocative profit efficiency

greater than 100%. Unit 4 lies on a region of CRS and must move, in order to be profit
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Table 8.4: Allocative Profit Efficiency Measurement Results

Unit 1 2 3 4 5 6 7 8 9 10 11

ALEf. 87.16% 65.74% 89.99% 119.54% 48.15% 47.05% 100% 72.08% 100% 70.93% 87.16%

RTS CRS IRS DRS CRS IRS IRS CRS DRS DRS DRS CRS

Table 8.5: General Efficiency Measurement Results for Some Units

Unit  Overall Profit GDF  Technical GDF  Allocative GDF Scale effect Mix effect
2 59.17% 90.00% 65.74% 1.56/1.93 = 0.8102 0.8114
3 89.99% 100% 89.99% 2.31/1.24 =1.865 0.4825
4 119.54% 100% 119.54% 2.18/1.19=1.825 0.655
5 29.51% 61.3% 48.15% 1.39/2.75=0.506 0.952
6 47.05% 100% 47.05% 2.5/2.89 = 0.865 0.544

efficient, to unit 9, a DRS unit. As it is well known CRS points are most productive scale
size (mpss) in the sense of Banker (1984). This means that by comparing a mpss unit such
as 4 with a non-mpss unit such as 9 the productivity will decrease. For the specific case of
unit 4 we have partial productivity ratios at its original position of: -fl- = %% and -z"'; = %,

and at the maximum profit point (unit 9) partial productivity ratios are: X = 31 and
L= 31, The geometric mean of these productivity ratios is 1.628183 (1/26/17 x 26/15)
at the original position of unit 4, and 1.362062 (/31/37 x 31/14) at its maximum profit
position. The ratio between these two values (1.628183/1.362062) gives 119.54%, indicating
that the mean productivity of unit 4 is higher than that at its maximum profit target point.
Note that an allocative profit efficiency measure greater than 1 will always indicate a pro-
ductivity change that is not beneficial in strict technical terms for the unit being assessed,
although it is so in profit terms, because of the relative input/output prices.

Allocative profit efficiency was decomposed into its components through model (8.7). In
Table 8.5 we show the results, for some units, on the various efficiency measures including
the scale and the mix components estimated as explained earlier. Only three units, 2, 5
and 6, present scale effects below 1. This is due to the IRS characteristics of the technically
efficient projections of these units. As the maximum profit targets for these units are
all located in CRS, they can exploit the IRS potential by increasing outputs more than
proportionally with inputs (i.e. y2 a= a/y<1).

To illustrate the calculation of mix effects take for example unit 5, whose technically
efficient target is (y, z1,22)=(9.83, 18, 7.94). If inputs are multiplied by 1.39, outputs will
increase by 2.75, and thus the scale adjusted point is (27, 25, 11.034). As the maximum
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profit point is (27, 25, 10) the GDF between this point and the scale adjusted point is the
mix effect, which equals 0.952.

8.5 Profit Efficiency when some Prices are Unknown

In the previous exposition of the GDF approach we assumed that prices were known
for each factor included in the computation of maximum profit (model (8.2)). In practice,
however, some prices may be unknown. In this situation, a commonly used assumption is
that prices are equal for all production units (e.g. Fire et al., 1990). Being this so, the
calculation of maximum profit can be equivalently undertaken through the use of price
and quantity information (when prices are known), or cost and revenue information (when
prices are unknown).

Under the assumption of equal prices for all units the maximum profit model [see (8.2)]
turns out to be equivalent to model (8.8), where R, = p,y,, C; = wiz;, Rrj = pr¥rj, and

Cij = w;zij.

AJ,R.-C."{ZR" Zci | Z)‘i Rrj 2 Rey T=1,.

i=1

ZAJ- Ciy <Ciyi=1,...,m, zn:A,- =1} (88
J=1 j=1
In a study of farm’s profit efficiency where price information was not available, Fare et al.
(1990) used a profit linear programming model as shown in (8.8) (see also Fére et al., 1994a,
Chap. 10), where cost (represented by C) and revenue (represented by R) were used instead
of quantities and prices. The authors proved that this model was equivalent to model (8.2)
under the assumption of equal prices for all the units. As stated in (8.8) the model needs
to be solved only once, and maximum profit is equal for all production units.

Model (8.8) corresponds to the extreme case where no prices are known for any factor.
It may however happen that prices are known for some factors and unknown for others.

In this situation we can think of a mixed profit maximisation model of the type shown in
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8.5 Profit Efficiency when some Prices are Unknown

(8.9), where unknown prices are assumed to be equal for all production units.

A,wﬂarci{zproyr ZWwI('i‘ Z Ry — Z O,' ZAJ Yrj = Yry r=1,...,k

i=1 r=k+1 i=l+1 j=1
Z'\Jmu < =z, i=1,... zAijj 2 Ry r=k+1,.
j=1 i=1
i n
S X Cy £ Gy i=l+lym, Y A=1} (89)
J=1 ji=1

The equivalence between this model and the maximum profit model (8.2) is proved by
considering for the factors on which price is unknown the variables R, = p,y, and C; = w;z;,
where p, and w; are equal across all units. These equalities make the objective function
of (8.9) equal to the objesctive function of (8.2), and the constraints are also equal as
i1 A Rei 2 Re & 3001 A Pr Uri 2 Per © L5 Aj Urj 2 yrand 304 A5 Cij S Ci &
D=1 A Wi Tij Swii ¢ 300 Aj Tij S .

Maximum profit targets are useful for calculating the profit efficiency measure, which
is usually disentangled into its technical and allocative components. The use of a ‘mixed’
maximum profit model does not pose a problem here as the variables to be used in the
technical and allocative efficiency models are the quantities of inputs and outputs for which
price is known and the costs and revenues associated with those inputs and outputs for
which price is unknown. Our technical efficiency measure in (8.6) is therefore modified to
(8.10).

Aj 'Tro.ﬁ- {Z‘?m * Zﬁw l z Aj¥ri = Yro + Trolros T=1,..0,k,

i=1 JEF;,
Z ’\jzij = ZTip = PioTioyi = 1,...,1, Z AJR!'J = Rro+ Yrollroy T=k+1,...,8,
JEF: JEF:
Y AiCij = Cio—BicCioy i =1+1,0cc,m, Y X =1, A, Yror Bio 2 o} (8.10)
JEFk JEF:

Assuming equal prices of those factors for which cost or revenue is considered, we
have that Ejt—:F. AiRrj = Reo + Yoo & FEF% Aj(Pryri) = (Pryro) + Yro(Pryro) &
Pr 2jeR, Aj¥ri = Pr(Yro + YroYro) & L je R, Ai¥rj = Yro + TroYro, Which proves the equiva-
lence between constraints using revenues and constraints using quantities of outputs. For

the input case the proof is analogous.
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8.6 Constrained Profit Analysis

8.6 Constrained Profit Analysis

The maximum profit model presented previously [model (8.2)] assumes that all pro-
duction factors are variable. This is a usual assumption in long run profit maximisation.
In the short run it may be impossible to change some of the factors of production, and
these should therefore be considered fixed (e.g. Fire et al., 1990). In the short run one may
also consider other type of factors that, although changeable cannot be changed by large
amounts. Take for example staff. In the short run it may be possible to add or to exclude
a few staff members from a production unit but a large number of these cannot be hired or
dismissed in the short run (time consuming negotiations need to take place in firing people
and arrangements for a new space might take place if a large number of people is to be
hired). For this type of factors it is usual to restrict some costs and/or revenues to grow
no more than a certain amount in the short run.

The idea of constraining maximum profit is explored in Fire and Grosskopf (1994a)
where the authors put forward cost, revenue and profit models with additional constraints.
These models are called ‘indirect’ cost and revenue models. The cost indirect revenue
function is according to Fire and Grosskopf (1994a) defined in the same way as the ordinary
revenue function, but it is subject to a budget constraint that prevents input costs to grow
by more than a certain amount. On the other hand, the revenue indirect cost function is
defined as the ordinary cost model to which a revenue constraint is added. In a previous
application to rice farms Fare et al. (1990) have used a nonparametric profit function with
expenditure constraints. The use of constrained maximum profit was also put forward
by Cooper et al. (2000). These authors used the additive model to calculate technical
efficiency and put forward a different, but equivalent, form of model (8.2) where slacks
are considered in the objective function. When these slacks (representing for each factor
the difference between revenues and costs at the maximum profit point and the observed
point) are allowed to vary freely the model provides unconstrained maximum profit. The
authors, however, imposed bounds on these slacks “so that the resulting projections do
not go far from the observed values and remain in managerially and technically allowable
ranges” (Cooper et al., 2000, p. 225).

Note that the imposition of bounds on costs and revenues translates in imposing bounds
on the corresponding quantities of inputs and outputs. In fact a budget constraint for two
inputs could be wyz1+waz2 < a(wiT1,+waz,). That is, the optimal cost to be determined

shall not exceed a given percentage of actual cost. This cost constraint can consider all
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costs aggregated (the most usual case), but it could also disaggregate costs by imposing
wyT) < awiT1, and weT2 < awseTy,. Obviously in this disaggregation input prices can be
ignored and only quantities are left in the constraints.

Assume that constraints of the type shown in (8.11) are to be used in the maximum
profit model (8.2). If « is specified in 20% it means that we wish target inputs to be no
more than 20% higher than observed inputs, and no more than 20% lower than observed

inputs. The same type of interpretation is valid for the factor 7 associated to outputs.
(I=a)Tio < zi S (14+a)Zio 5 (1 =7yro S ¥r < (1 +7)¥r0 (8.11)

Constraints such as those specified in (8.11) can be directly added to the set of constraints
in model (8.2).

As far as the measurement of profit technical efficiency is concerned, the imposition of
constraints in (8.11) may imply projections on the interior of the original production frontier
which are not Pareto-optimal. This means that the closest target model (8.6) cannot be
used together with constraints on observed input and output levels, as this model forces
projections on Pareto-efficient facets. As an alternative to measure technical efficiency in

the presence of input and output constraints we use model (8.12).

n n
EFF, = min{ 0/81 D2 Uri 2 Buroy I Aj Tij < 0o,
j=1 j=1

n n n
DoA=1) Ayi S (14 Mvrer I A5 2 (1 - 0)zio,
j=1 j=1 j=1

Ajy 2 0,0<0<1, ﬁzl} (8.12)

The constrained model (8.12) uses an equiproportional factor associated to contracting
inputs and a different equiproportional factor associated with expanding outputs. The
objective function of (8.12) is therefore a special case of the GDF measure where all inputs
are assumed to change by the same proportion and all outputs are assumed to change
by the same proportion. The above model can result in some positive slacks, which can
be accounted for by calculating the GDF a posteriori using the targets resulting from
(8.12). Note that, as we are measuring technical efficiency, we retain in (8.12) the original
assumption that inputs cannot be expanded and outputs cannot be contracted towards

technical efficiency. This means that only upper bounds are required on output changes and
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only lower bounds are required on input changes. Note that the last constraints restricting
input and output changes result in 3 values that are no larger than (1 4 4) and 8 values

that are no lower than (1 — a).

8.7 Summary

In this Chapter we review some of the main approaches used in profit efficiency mea-
surement and propose a novel way of calculating profit efficiency. A geometric distance
function, based on geometric means of productivity ratios, is introduced as a means to cal-
culate overall profit efficiency and its technical and allocative components. For that purpose
all that is needed is the profit maximising point and a Pareto-efficient point corresponding
to each unit. The former allows the calculation of overall profit efficiency and the latter
allows the calculation of technical profit efficiency. Allocative profit efficiency can then be
found by decomposition. The above procedure is valid whatever the means used to find the
profit maximising and the Pareto-efficient points. For finding the Pareto-efficient targets
we propose, however, a procedure [based on Portela et al. (2003)] that aims at finding the
nearest to the unit being assessed rather than the furthest point on the Pareto-efficient
frontier.

We examine some properties of the profit efficiency measure defined and also show that
allocative profit efficiency can be decomposed into scale and mix effects. We propose a
way of disentangling these effects, which throws light on the understanding of allocative
efficiency in a profit context. We recognise, however, that more needs to be done on this
issue.

The GDF approach is based on a concept of absolute maximum profit that may pro-
vide difficult-to-achieve targets in the short run. A natural extension of our procedure is
therefore to calculate relative maximum profit [as proposed in Cooper et al. (2000, p. 225)]
and measure overall profit efficiency in relation to this. Such an extension is also analysed

in this Chapter.
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Chapter 9

Productivity Change and
Malmquist Indexes based on the

GDF Efficiency Measure

In this Chapter we analyse in some detail the use of the GDF efficiency measure de-
veloped in the previous Chapter to the calculation of productivity change and Malmquist
indexes. For this purpose we focus on this Chapter on the use of the GDF for techni-
cal efficiency measurement rather than for economic (profit) efficiency measurement. We
start this Chapter by providing some insights regarding the computation of Malmquist in-
dexes and then we show some drawbacks of existing approaches to calculate productivity
change through Malmquist indexes. The approach we propose based on the GDF tries to

circumvent the identified problems.

9.1 Introduction

Productivity change has been a topic of interest since the earlier developments on this
matter by Caves et al. (1982) on Malmquist productivity indexes. Earlier in 1978 the work of
Charnes, Cooper and Rhodes on DEA provided a straightforward way to measure efficiency
through linear programming models, and since then this framework has been applied to
the measurement of productivity change through Malmquist indexes. Malmquist indexes,
using DEA efficiency measures calculated in relation to a constant returns to scale (CRS)
technology, are argued to be equivalent to a total factor productivity (TFP) index (see
e.g. Fire et al., 1994b, 1998). This is easily proved for single input/output technologies,
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9.1 Introduction

but for multiple input/output technologies the calculated TFP Malmquist index has some
problems. In this Chapter we refer in particular to problems arising from the fact that a
reference technology is used relative to which technical efficiency is assessed. Indeed, the
TFP Malmquist index computes productivity change between two observed points, say a
and b, by finding one or more reference point relative to which the technical efficiency of a
and b is assessed. Productivity change is then inferred from changes in technical efficiency.
We argue in this Chapter that TFP should be measured by comparing directly the points
a and b rather than using references that might not be the same for each point.

This Chapter proposes, therefore, a novel way to compute TFP using observed values
only, which does not require any specifications about the technology on which points such
as a and b operate. The proposed TFP measure is then decomposed into efficiency change,
technological change, and a residual effect which reflects scale and allocative shifts. This de-
composition obviously requires assumptions about the technology under which production
units operate. In our TFP decomposition we try to account for some problems on existing
methodologies such as the FGNZ approach of Fére et al. (1994b) and the RD approach of
Ray and Desli (1997) (see Chapter 2 section 2.3.6). Both approaches calculate the TFP
Malmquist productivity index in the same way (through radial efficiency scores calculated
in relation to a CRS technology), but they decompose it differently. In the FGNZ approach
the technological change component is calculated with reference to a CRS frontier, while
in the RD approach it is calculated with reference to a VRS (variable returns to scale)
frontier. Therefore, the FGNZ approach has the advantage of measuring changes in “max-
imal average product” (Fare et al., 1997b), but it has the disadvantage of not accounting
for changes in the VRS technology. This might be a serious drawback if there are strong
reasons to believe that the true technology is indeed VRS (see e.g. Balk, 2001). The RD
approach tries to solve the problem of the FGNZ approach by specifying a technological
change component that is defined in relation to a VRS technology. This, however, may re-
sult in some computational problems because some DEA models might be infeasible when
assessments involve cross-period data (Bjurek, 1996).

Both the FGNZ and the RD approaches are based on radial efficiency measures that
are oriented either towards input contraction or output expansion. This provides different
results concerning some components of productivity change depending on the model ori-
entation. The orientation of DEA models is in some cases a given since some inputs and

outputs are not under the control of production units. However, in many cases (for example
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9.2 Problems with Traditional ways of Calculating TFP

in the assessment of bank branches as we undertake in our empirical application in Chapter
10) at least some inputs and some outputs are under the control of production units and
in such cases non-oriented models might be used instead. The use of non-oriented effi-
ciency measures solves the problem of sensitivity of the solution to the model’s orientation,
while at the same time solving the computational problems inherent to the RD approach.
Examples of non-oriented efficiency measures that have been used in this context are the
directional distance function used by Chambers et al. (1996b) and Chung et al. (1997), and
the hyperbolic efficiency measure used by Zofio and Lovell (2001).

Another problem of the FGNZ and RD approaches to calculate Malmquist indexes is
that they rely on radial measures that do not account for slacks. If slacks are impor-
tant sources of inefficiency, then the resulting Malmquist indexes may be based on biased
measures of efficiency that do not fully reflect the distance between observed values and
targets. Some authors have addressed this problem and propose to solve it through the
use of non-radial efficiency measures (note that non-radial efficiency measures are not nec-
essarily non-oriented, though the reverse is true). For example, Grifell-Tatjé et al. (1998)
developed what they called a quasi-Malmquist productivity index that tries to overcome
this problem (see also Fgrsund, 1998, who criticise this paper), and Thrall (2000) devel-
oped an efficiency measure (based on a weighted additive model) that can be used in the
computation of Malmquist type indexes.

The measure of efficiency that we use in this Chapter to decompose TFP is the GDF
measure detailed in the previous Chapter. This is a non-oriented efficiency measure and is

able to account for all the sources of inefficiency, therefore avoiding the above mentioned

problems.

9.2 Problems with Traditional ways of Calculating TFP

The FGNZ and RD approaches use radial efficiency measures calculated in relation
to CRS frontiers to calculate Malmquist TFP indexes. Careful reflection shows, however,
that this is just a means to an end since productivity change, reflected in TFP measures,
concerns observed values only and does not require the use of efficiency measures.

Consider the single input/output case where a measure of productivity change from
period t to t + 1 is given by the ratio %—;fl, where P, = %ﬁ- in each time period t. This
productivity change measure is put forward by most authors that analyse productivity
change and is free of controversy. Graphically }—)Hi corresponds to the distance between
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9.2 Problems with Traditional ways of Calculating TFP

the rays that pass through a given observation in period ¢ and ¢ 4 1 (see Figure 9.1). The
highest of these rays in each time period is the CRS frontier of that period (associated
with highest productivity). Obviously the distance between the rays that pass through, for

Figure 9.1: Single Input/Output Example
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example, points Dy4q and D; in Figure 9.1 can be alternatively calculated with reference
to another ray. Taking this reference as being the CRS frontier of period ¢ defined by unit
A, we have that the distance between the rays that pass through D41 and A; divided
by the distance between the rays that pass through D; and A; is equal to the distance
between the rays that pass through D;4; and D; (in the graph this is the same as to say
gf{‘;;- = %). Based on this fact, existing approaches propose the use of distance
functions defined in relation to CRS technologies to calculate productivity change indexes
for the general case of multiple inputs/multiple outputs. Such distance functions are of the
type introduced by Farrell (1957), which are usually operationalised through DEA (note
that in Figure 9.1 the ratios OA’/OA; and OA”/OA; are the Farrell output efficiency
measures of units A’ and A”, respectively).

Consider a measure '7}. indicating the radial efficiency of unit j as observed in period ¢
and assessed in relation to the technology of period ¢ (superscript). A Malmquist productiv-
ity index, MJ@, is usually computed as %’}tl, when the reference is the ¢ frontier. Obviously

t41
e41

the reference technology could also have been ¢ + 1, which would result in M ;“ = 1.{5—

Ve
The values of these two Malmquist indexes may differ and, as such, Fére et al. (1994b)
consider the geometric mean of both as the Malmquist total factor productivity index as

shown in (9.1).

t t+1
4 i 1/2

.ﬁfj = 7‘1‘:1 X T‘i‘::)( ; ) (91)
Vje Ve
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Table 9.1: Illustrative Example
Period ¢t Perlod t +1 Growth

Unit | ¥y =21 za |y z1 za | Aly/x1) Aly/xa)
Unitl1 |12 5 13|22 8 14 1.146 1.7024
Unit2 |14 16 12 {12 12 11| 1143 0.9351

Unit3 | 26 186 26 |26 8 25 2 1.0816
Unit4d [ 26 17 15 (20 15 14 0.872 0.8242
Unith [ 8 12 14| 8 6 10 2 14

Note that productivity change, as shown in Figure 9.1, is not dependent on efficiency
or functional form of the efficient frontier as defined in DEA. The use of distance functions
is just a means to operationalise the concept for the multiple input/output case. This
approach relies, however, on efficiency being calculated in relation to a unique referent line
or plane, This necessarily happens in the single input/output case as the ray presenting
maximum productivity in each time period is unique. If the referenl; hyperplane is not the
same for observations in t and ¢+ 1, then the Malmquist index as defined in (9.1) is just an
approximation for true productivity change and not a real measure of productivity change.
In the multiple input /output case, CRS technologies are defined by a cone that has multiple
facets, and projections on this cone may happen on any of its facets. This means that the
referent hyperplane, or facet, is not necessarily the same for every two observations in ¢
and t + 1 between which productivity change is to be measured.

To illustrate this consider the example in Table 9.1, where 5 units producing one output
(y) from 2 inputs (z; and z3) are considered. In Table 9.1 we also show the growth in partial
productivity between periods ¢ and ¢+ 1. That is, calculating the partial productivity of the
output in relation to input 1, y/z1, and the partial productivity of the output in relation to
input 2, y/z3, for each time period, the ratio A;"—i = %:::A shows partial productivity
growth of output in relation to each input i. Inspecting these ratios in Table 9.1, it is clear
that units 1, 3 and 5 increased their productivity from ¢ to ¢ + 1, while the productivity of
unit 4 decreased in the same period. Note also, that unit 5 shows the highest productivity
increase from ¢ to ¢ 41 since the partial productivity growth ratios are together the highest
that can be found. If we now apply (9.1) to calculate productivity change the values are as
shown in Table 9.2, where Mj is the geometric mean of ﬁf; and M;“. These results show
some contradiction to what was expected from the partial productivity ratios, especially
because unit 5 does not have the highest Malmquist index as one would expect. At the same

time, while it is clear that unit 4 exhibited a productivity decrease (and the Malmquist index
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Table 9.2: Malmquist Results for Illustrative Example
Unit i 7;::: e ! Tt Mj M;H M;
Unit1 | 1 1 07846 13965 1397 1275 1.3342
Unit 2 | 0.6731 0.6942 07424 06465 0961 0.9351 0.9477
Unit3 | 0.8527 1 06364 1.3542 1.5882 15714 1.5798
Unit4 | 1 09091 1103 08573 0.857 0.8242 0.8406

Unit 5 | 0.3984 0.5091 0.3636 0.692 1.74 14 1.5594

correctly identifies this decrease), it is not clear that unit 2 also had a productivity decline.
In fact a guess on the productivity change of this unit would more likely be a productivity
increase, because the growth on A(y/xy) is higher than the decline in A(y/xz2).

The reasons for the above behaviour of the Malmquist TFP index can be better ex-
plained through Figure 9.2, where observations in ¢ + 1 are represented by dots and obser-

vations in t are represented by crosses. It is clear in Figure 9.2 that the hyperplane against

Figure 9.2: Illustrative 2 Inputs 1 Output Example
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which efficiency is measured is not necessarily the same for an observation in ¢ and ¢ + 1.
For example, when unit 3 is evaluated in relation to the period ¢ frontier it happens that
unit 3 as observed in ¢ is projected on the hyperplane defined by units 1 and 4, but unit
3 observed in ¢ + 1 is projected on the hyperplane of the ¢ frontier defined only by unit
1 (facet where free disposability applies, or weakly efficient facet). The same reasoning is
valid for other units in Figure 9.2.

Note also that the Malmquist index of units 2, 4, and 5 as evaluated in relation to
the ¢t + 1 frontier (M;“) in Table 9.2 is exactly equal to the partial productivity change
of input 2 (A(y/x2)) in Table 9.1. This means that when productivity change for these
units is evaluated in relation to the £ + 1 frontier one of the inputs (in this case input 1) is

completely neglected in the analysis. Such a result is due to projections on the ‘flat’ part
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of the frontier of ¢t + 1 in Figure 9.2, that satisfy free disposability of input 1. This fact
strengthens what was previously said about the importance of using efficiency measures
that account for all sources of inefficiency. The radial measures shown in Table 9.2 do not
account for the slacks on input 1 that exist for units 2, 4, and 5 when these are projected
on the t+ 1 frontier and, therefore, the Malmquist indexes based on these measures cannot
account for productivity changes in input 1 but only in input 2.

In summary, the non-existence of a single referent hyperplane against which efficiency
is measured for the same unit in different time periods, causes biased results on Malmquist
TFP indexes that are based on such measures. In the next section we propose a GDF based

approach that attempts to solve some of the problems seen hitherto.

9.3 Malmquist Type Indexes Based on the GDF

The GDF measure defined in Chapter 8 has a double role in this Chapter. On the one
hand it is used to calculate efficiency measures that are non-oriented and account for all
sources of inefficiency, and on the other hand it is used to calculate a TFP index based
on observed values only. This TFP is then decomposed into three components, namely

efficiency change (EFCH), technological change (THCH), and a residual effect (RES) in
the way shown in (9.2).

TFP = EFCH x THCH x RES (9.2)

The way each of the above terms is computed through the GDF is presented next.

9.3.1 Calculating TFP

Since productivity change depends only on observed values, we do not need efficiency
measures to calculate it as long as there is a meaningful way of aggregating input and
output changes. The GDF provides such a meaningful way.

Although the GDF has been originally proposed in the previous Chapter as a way
to measure efficiency, it can be adapted to the present context to calculate productivity
change. This is shown in (9.3), where the input/output levels considered are not observed

versus targets as in (8.3) in Chapter 8 but observed in ¢ versus observed in t + 1.

(1 Yregr )1/;
Sl Uy b (9.3)
(n‘ﬂ!ﬂ)l[m g

zl'

TFP — GDF(z¢, Yt, Te41, Yt41) =
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For the‘single input/output case is is easy to see that (9.3) corresponds to a TFP index.
In the multiple input/output case the GDF is a ratio between a geometric mean of output
growth and a geometric mean of input growth, which is in fact a TFP index!.

If we apply (9.3) to the illustrative example shown in section 9.2, the total factor

productivity values are those shown in Table 9.3. Productivity growth is identified for

Table 9.3: TFP Results for Illustrative Example based on the GDF
Unitl Unit2 Unit3 Unitd Unith
TFP-GDF | 1.3967 1034 14999 0.84765 1.6733

all units except unit 4 as expected. Note also that unit 5 is now the unit that offers the
highest productivity growth, exactly as one would expect from the knowledge of the partial
productivity ratios calculated previously. The GDF seems therefore a good alternative to
calculate total factor productivity change, having the advantage of relying only on observed
values and making, therefore, no assumptions about the technology.

9.3.2 Efficiency Change and Technological Change Components

The GDF in (9.3) used to calculate TFP is not an efficiency measure as it does not
account for distances between observed and target levels but between two points observed
in different time periods. In this sense the calculation of TFP does not require any assump-
tions regarding the technological specification of the frontier. However, when the GDF is
used to calculate the efficiency change and technological change components of TFP such
assumptions about the technology are required.

Consider GDF(z¢,y) = %%3)17{';' where 6; = z}/z; and B = y;/yr (see also (8.3)
in Chapter 8). A measure GDF*(z;,y;) represents the efficiency measure of the input
output vector (x,y) as observed in period t and projected against technology of period ¢

(superscript). A Malmquist type index based on the GDF is given by (9.4).

MCDF = (GDFt(yHl, Tep1) | GDF*(ys41, Ic+1))% (0.4)

GDF‘(yt,:rg) GDF""l(yt, 3;)

Similarly to other approaches, this index can be decomposed in efficiency change (EFCH)

1See e.g. Diewert and Nakamura (2003, p. 148) who defined total factor productivity as the ratio
between a measure of output growth and input growth in the multiple input/output case, however defining
differently each aggregate measure of growth.
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and technological change (THCH) as shown in (9.5).

GDF**! (ye41,Te41) GDF*(Ye41,Te41) GDF*(y,z) 142
AUGRE = GDF*(y:, ) % [GDF‘H(yHI, Ti41) X GDF*(y;, x4) (2:5)
That is,
MGDF = EFCH xTHCH (9.6)

As the GDF is a general measure, the above decomposition is also general and encom-
passes as special cases other decomposition approaches in the literature. For example when
input or output oriented CRS models are used to calculate target points implicit in the
GDF, the above reduces to the FGNZ approach. Note, however, that MGDF is not nec-
essarily equal to TFP as it is usually assumed in the literature. We consider that MGDF
is simply the product of efficiency change and technological change. TFP as calculated
in section 9.3.1 includes these components but may also include other components as will
become clearer later.

Assume now a single input/output case, where technical efficient projections of each
observation are identified by the superscript *t if the projection lies on the frontier of
period t and by #t+1 if the projection lies on the frontier of period t+ 1. In this case, each

of the MGDF components assumes the form shown in (9.7).

=1 e Wi wt )

. z* E’:::rr 2
EFCH = -’%‘,’% THCH = (T“- X "y—.-) (9.7)
vefue Eﬁ 5‘:'

The EFCH component in (9.5) and (9.7) is interpreted in the usual way, i.e. when it is higher
than one the efficiency of observation in t 4 1 evaluated in relation to the ¢ 4+ 1 frontier
(measured for the single input output case as %ﬁ,—%) is higher than the efficiency of
observation in ¢ evaluated in relation to the ¢ frontier, and therefore there was an efficiency
increase from ¢ to ¢t + 1 (when EFCH is lower than one there was an efficiency decrease
in moving from period t to period ¢ + 1). In the same way a THCH component higher
than one means technological progress and a THCH component lower than one means
technological regress from ¢ to ¢4+ 1. Note that the technological change component may be
re-organised so that we have a product of input change (ICH) and output change (OCH).
That is THCH = (zi:&‘r X z—f{-;r)% X (%E— X g;y;_‘_)% An input change factor greater than
1 means that the frontier at ¢ has higher inputs than the frontier at ¢ 4+ 1. That is, there
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9.3 Malmquist Type Indexes Based on the GDF

was an improvement (decrease) in inputs in moving from ¢ to ¢ + 1. If the output change
is higher than 1, it means that outputs in ¢ 4 1 are on average higher than outputs in ¢,
which also means an improvement in outputs in moving from ¢ to ¢t + 1. So progress is
assured when both input and output changes are greater than 1. Obviously one may have
movements in different directions and in this case the resulting technological progress or
regress will depend on which factor dominates the other. Note that the input and output
change components of technological change are closely related to the input and output scale
bias defined in Fére et al. (1997a) (see also Fére et al., 1998, 2001). In Appendix C we
relate the input and output bias components of Fére et al. (1997a) with those identified by
our approach.

In the multiple input/output case the above technological and efficiency change com-
ponents are calculated as shown in (9.8), where again technological change is the product
of input change and output change.

(moit? i

i7s ot s+l st41

. t41
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1,6t T Yrisr yﬂ

() (9.8)

The EFCH and THCH components in (9.8) include those existing in the literature,

EFCH =

though being more general because they can handle situations where non-oriented models
are used to calculate target levels. If both inputs and outputs change towards the techni-
cal efficient frontier, then the ratios considered in (9.8) account simultaneously for these
changes. These ratios can be calculated both when targets lie on a CRS frontier or on a
VRS frontier. We will use, however, only the latter technological specification for reasons

that will become clearer in the next section.

9.3.3 Residual Effect

The MGDF in (9.4) can alternatively be decomposed as shown in (9.9), where it equals
the product of a TFP index as calculated through the GDF (see section 9.3.1) and a residual
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9.3 Malmquist Type Indexes Based on the GDF

component that is scale related.

1/s
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(9.9)
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Note that it is TFP that one wants to decompose, and therefore the above is better

expressed as (9.10).
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e41 ) (9.10)

TFP = MGDF x ( v Ts % = 7
(%) ()

To see that the square root in (9.10) is scale related, consider for example the single in-

put/output case, where the above (9.10) reduces to (9.11).

st+l
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The second term of this decomposition compares changes between output and input
targets along the ¢ and the ¢ -+ 1 frontier. As it is arbitrary to measure these changes on
the ¢ or on the ¢ + 1 frontier the geometric mean between both is taken in (9.11). As
all the points considered in the square root in (9.11) are efficient points, the movements
between these points (on each frontier) can only reflect the exploitation of scale economies
or changes in the mix of operations.

The TFP as calculated through the GDF approach decomposes, therefore, in MGDF
(which includes a technological change and efficiency change components) and in a residual
component (RES) that is scale related. Note that if all input and output targets are
calculated in relation to a CRS technology, then in (9.11) we have TFP = MGDF as
the residual component would equal 12. On the other hand, if target points are calculated
in relation to a VRS technology, then the above decomposition in (9.11) is equivalent
to the RD approach, where the residual component in (9.11) is equal to the RD scale

2 Assume for example an input oriented CRS model, where target outputs corr&;pond to observed outputs
whatever the frontier where the observed unit is projected. This means that yi* = y"'*‘ = 4, and

y.“ = y,ﬂ = Yr+1. At the same time target inputs are given by the function of the ray that passes through
the origin and point (z¢,3:). Let this function be given by y; = a;z; for period ¢ and yi+1 = at41Ze41 for

yi/ay vi/etsy
period ¢ + 1. Replacing this in the second term of (9.11) we have (% X —‘&E&*—’-) i, which equals 1.

Vi+l Vipl
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9.3 Malmquist Type Indexes Based on the GDF

effect. In Appendix C this equivalence is proved for the single input/output case. For the
multiple input/output case, the RD and the GDF approaches yield different TFP and RES
components, but can yield the same efficiency change and technological change components
when the same efficiency models are used under both approaches (to calculate efficiency
scores in the RD model and target levels in the GDF model).

Interpreting the RD scale change factor is not easy as testifies Lovell (2001) and Ray
(2001), since it is not a straightforward ratio of scale efficiency in two different periods (as
happens in the FGNZ approach). However, it is not clear that the scale related component
of productivity change should reflect changes in scale efficiency. For example, Lovell (2001)
points out that the scale component of productivity change should reflect the influence
of scale economies on productivity change rather than changes in scale efficiency. The
author further points out that this contribution of scale economies to productivity change
is provided by the scale component of the RD approach, whereas the contribution of the
scale efficiency change of the FGNZ approach to explain scale economies is unclear. Being
our residual component related with the RD approach its interpretation in terms of scale
is not easy, especially in technologies using multiple inputs/outputs.

The residual effect reflects all the changes in the TFP, as calculated based on observed
values only, that cannot be accounted for by efficiency change and technological change.
Such residual effects are necessarily scale related. Note that in the single input/output

si4l
ity Ve
-

i
case the square root in (9.11) can be alternatively written as: (ﬂﬁ-'- x =tH ) . Con-

sidering the production frontier at period ¢ and assuming that ::;il > zit, we have that
if [yf41/x%,)/[ve?/x2t) is greater than 1 then the production function exhibits increasing
returns to scale, if this ratio is equal to 1 we have constant returns to scale, and if it is lower
than 1 we have decreasing returns (see Diewert and Nakamura, 2003, who also put forward
this interpretation). Each term of the above geometric mean can therefore be interpreted
as containing information on the returns to scale properties of the production frontier.
Though attractive, the above interpretation may have some problems. Note, for exam-
ple, that if 233, < z}*, then a ratio of two output-input coefficients lower than 1 would
indicate increasing returns while a value higher than 1 would indicate decreasing returns.
Therefore the interpretation of values higher or lower than 1 is conditional to the relation-
ship between input levels at the two points being compared. Another difficulty relates with

the fact that the RES component is an aggregate measure of returns to scale on both the
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t and ¢t + 1 frontiers. While a component on each frontier can be interpreted in the way
suggested by Diewert and Nakamura (2003) a geometric mean of RTS on the ¢ and ¢ + 1
frontier seems to be lacking an easy interpretation. For the multiple/input output case
difficulties are even higher because movements along each production frontier may reflect,
apart from scale effects, also mix effects. This means that in this case the interpretation
of this factor becomes even more complicated. It is not our aim in this Chapter to deepen
the analysis on the scale change component of the GDF measure. We interpret this factor
simply as a residual effect that accounts for differences between TFP and a Malmquist
index calculated in relation to a VRS technology. The issue of interpreting scale effects
in Malmquist indexes deserves, however, further analysis especially when other than the

FGNZ approach is used to calculate such effects.

9.4 Base Period Approach

The above decompositions of TFP into its technical change, efficiency change, and scale
change components assumed changes from period t to period ¢t + 1. One may, however,
calculate all these components in relation to a base period in accordance with Berg et al.
(1992). Consider a base period frontier . Adapting the procedure of Berg et al. (1992) to
the GDF case, the Malmquist base period index is defined as shown in (9.12).

b
MGDFB(t,t +1) = sz)g‘é“’ ;3‘) = (9.12)

- GDF**(ys41, Te41) » ( GDFY(ys41,Te41) ” GDF!(y,, -Tt))

GDF*(y;,xt) GDF‘"’l(thIH.]_) GDFb(yg,lft)

Where the first term corresponds to efficiency change and the second term (within
brackets) corresponds to technological change. The above Malmquist index satisfies the
circularity property meaning that MGDFB®(1,3) = MGDFB*(1,2) x MGDFB?Y(2,3).
This can be easily proved applying (9.12). Given this property we can simplify the cal-
culation of Malmquist indexes by calculating for each time period efficiency change and
technological change in relation to the base period. That is, the above Malmquist index
can be simplified to (9.13) where the first term represents efficiency change and the second
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term represents technological change.

GDFb(yg, :Cg) _ GDF‘(y;, I;) GDFb(y;, Ig)
GDFys,zs) GDF®(yp,xp) = GDF(ys,z4)

MGDFB(b,t) = (9.13)

Applying the circularity property to the indexes in (9.13) we can obtain efficiency change
and technological change from any period to any period.
In our decomposition of TFP when the base period approach is used to calculate its

various components these assume the following from:
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Replacing in (9.14) the factors 6 and 8 by the respective ratios of target by observed
values, and multiplying all the EFCH, THCH, and RES components the value of TFP is
obtained. Using the above formulae we can calculate for each month ¢ the TFP change in
relation to the base period b. To obtain TFP change between any ¢ and ¢ + 1 time periods
all is needed is to apply the circularity property.

9.5 Calculating Technical Efficiency

The computation of the above components of TFP (for the base period and for the
‘moving’ period approaches) requires the calculation of efficiency measures for production
units that are assessed in respect to their own period frontier but also in relation to frontiers
of other periods. In this sense the DEA models to be used for measuring efficiency and
technological change over time should be appropriate for providing super-efficiency scores
for units lying above a different time period frontier. The procedure put forward in Chapter
8 for calculating the closest technical efficient targets is not practical when the purpose is
to measure technical efficiency in a number of periods in respect to a number of frontiers. A

simpler procedure, (used in our empirical application) is to use a simplified GDF measure
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that is incorporated on the objective function of a programming model as shown in (9.15).

EFF, = mm{% | Zr\j Yrj = Byro (a), Z/\j ziyj < 0z (b), ZAJ =1 (e),
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We use in (9.15) an equiproportional factor associated with expanding outputs, and a
different equiproportional factor associated with contracting inputs. Though the objective
function of (9.15) provides an efficiency score, we do not use it as the final efficiency measure.
Instead Pareto-efficient targets resulting from model (9.15) are used for calculating the GDF
technical efficiency measure for each unit. We assure that Pareto-efficient targets result from
the linear combination of the As in (9.15) by restricting the reference set to Pareto-efficient
units (units in the set E).

The last set of constraints (e and f) in (9.15) assures the right direction (expansion or
contraction) to be followed by inputs and outputs. When units are assessed in relation to a
frontier containing observations of the same time period, only constraints (e) are activated.
When the frontier relates to a different time period then two things may happen for an
observation: either it lies below the frontier (and then constraints (e) are activated) or it
lies above the frontier (and constraints (f) are activated). This is easily done using GAMS.
Note that when a unit is above the frontier and the first set of constraints is active then
the model will be unfeasible. So in GAMS the above model was simply programmed by
analysing infeasibility and relax the first set of constraints in case it happened.

9.6 Summary

This Chapter draws attention to some limitations of current approaches to calculate
Malmquist indexes, and attempts to solve them through the use of a geometric distance
function (GDF) approach. The GDF is used here with two purposes. (i) To calculate a total
factor productivity measure based on observed values only, and (ii) to calculate measures
of technical efficiency that are non-oriented and account for all the sources of inefficiency.
The latter use of the GDF solves the problem of infeasibility of some DEA models when
VRS technologies are used, and resolves the ambiguity resulting from the use of oriented
models that yield conflicting information depending on efficiency measures being input or

output oriented. The former use of the GDF to calculate TFP is consistent with the single
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input/output case, where it is widely accepted that a ratio of productivity at two different
points in time reflects productivity change. Such ratios are based on observed values only,
and do not require any assumptions regarding the form of the production frontier.

TFP is decomposed in our approach into three components: efficiency change, tech-
nological change, and a residual component. This decomposition throws some light on
traditional ways to decompose Malmquist indexes, and shows that more needs to be done

regarding the interpretation of scale change components existing in the literature.

185



Chapter 10
Empirical Analysis

This Chapter applies some of the theoretical concepts outlined in previous Chapters to
a sample of bank branches of a Portuguese financial group. We have identified the major
dimensions of efficiency to be analysed according to the managers’ views regarding the
objectives of bank branches. Inside each of these dimensions managers are interested in
ranking bank branches, in setting achievable targets for them, and in defining benchmark
branches whose good practice can be emulated by other branches. In addition, a comparison
of the performance of bank branches in each of the three dimensions identified is also
of interest as managers expect that some branches perform well on one dimension (say
operational efficiency), while having a poorer performance on other dimensions (say profit
efficiency). This Chapter shows detailed results on each performance dimension, while the

next Chapter draws together the efficiency results from the three different dimensions.

10.1 Introduction

The bank under analysis requires complete anonymity, and therefore we shall refrain
from presenting any historical or background figures concerning the bank. At the same
time the names of all branches analysed are hidden behind numerical codes. The sample of
bank branches analysed here consisted initially of 60 branches all operating in the northern
region of Portugal. Data were provided on a monthly basis starting in February 2001,
though some variables (mainly relating with the transactional efficiency assessment) are
available only from January 2002 onwards. Some of the initial branches in the sample were
meanwhile closed and the sample progressively reduced. This means that in each month

the number of branches in the sample is not exactly the same due to some closures.
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10.2 Transactional Efficiency Assessment

Each bank branch was assessed in each month for the three efficiency dimensions that
we put forth in Chapter 5, namely transactional efficiency, operational efficiency, and profit
efficiency. An analysis of efficiency change and technological change over time was also
performed for each performance dimension. For this purpose we used base period Malmquist
indexes with different specificities depending on the efficiency measure being analysed. The
reasons for using a base period approach relate to the use of monthly data, and to the fact
that technological change implies, in principle, longer periods than a month to take place.
This means that we will not refer to technological change from month to month but to
technological change happening in relation to a fixed period. Note that the use of monthly
data may imply that frontier changes, measured by the technological change component of
the Malmquist index, are due not only to technological reasons but also to seasonality. We
will briefly discuss the issue of seasonality for each of the efficiency assessments undertaken,
but note that this is not a major aim of our analysis over time.

The software used to produce all efficiency results shown in this Chapter was GAMS.
As most of our models are not standard we needed to use a more flexible software that

could handle every specificity of our models. GAMS proved very efficient and effective in
this task.
10.2 Transactional Efficiency Assessment

The transactional efficiency assessment considers data from January 2002 to September

2002. The input-output variables used in this assessment are shown in Table 10.1.

Table 10.1: Inputs and Outputs used to assess transactional efficiency in month t

Inputs QOutputs
1. Number ETMs (ATMs + CATs) (t) | 1. N. New rcgistrations for multi-channel use (t)
2. Rent (t) 2. N. Transactions in CATs (t)
3. N. Clients not registered (t-1) 3.N. Deposits in ETMs (t)

The chosen inputs are intended to account for the resources that allow a bank branch to
foster the use of alternative distribution channels, and the outputs are intended to capture
the degree of usage of these channels. For details on the reasons behind our input-output
choice, and also on the limitations of this choice please see Chapter 5.

Some statistics on the chosen inputs and outputs from January 2002 to September 2002
can be seen in Table D.1 in Appendix D. The values on this table show a stable behaviour
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of most variables over the period of analysis. It also shows that some outputs are zero for
some branches. Since we use output VRS models this fact does not constitute a problem.

Transactional efficiency was assessed through the well known BCC model (Banker et al.
(1984), defined in a VRS technology. The orientation we followed was towards output
augmentation, since the objective is to increase transactions in alternative distribution
channels given resources available at the branch. The BCC efficiency score is radial meaning
that it does not account for all sources of inefficiency (see Chapter 2 for details). In order
to consider all the sources of inefficiency we used an output oriented GDF measure. Recall
that the GDF measure (introduced in Chapter 8) is defined as in (10.1), where 0; = z}/z;
and Br = y;/yr.

(I1;6;) /™

Geometric Distance Function (GDF) = (I1,B;) /e
rPr

(10.1)

In our transactional efficiency assessment inputs are considered exogenously fixed and there-
fore each 6; can be set equal to 1. As a result the output oriented GDF measure reduces to
1/(I1,8,)"/#, where output targets (yr) are obtained directly from the BCC output oriented
model.

In the transactional efficiency assessment we explored the existence of any influential
or super-efficient observations in each month. When these observations were detected they
were eliminated from the analysis so that final results were not distorted by the presence
of influential bank branches. Existing procedures that can be used to detect influential or
super-efficient observations have been detailed in Chapter 2. In the transactional efficiency
assessment we detected influential observations by analysing super-efficiency scores and
the number of times a unit appeared in the peer set of other units. Only one branch
was considered to be super-efficient (B36) in January and February. This branch was
eliminated from the technological set in these two months, since its presence was influencing
the efficiency scores of the great majority of bank branches under analysis.

The presentation of results from the transactional efficiency assessment is divided into
two parts. In the first part we present some detailed results for a given month, and in the
second part we present some general results for all the months, and analyse the evolution

of efficiency over time through Malmquist Indexes.

188



10.2 Transactional Efficiency Assessment

10.2.1 Detailed Results

The detailed results that are of interest for bank and branch managers involve the
knowledge of bank branches’ transactional efficiency scores, the knowledge of targets to be
attained by bank branches, and the knowledge of peer or benchmark branches. Each of
these results will be analysed next. Detailed results were produced for each bank branch in
each month. Here, however, we discuss the results for only a few branches to illustrate the
type of outcomes one can have for all branches. We have chosen results from the month of

January 2002 for this illustrative purpose.

Efficiency Scores

The efficiency scores of all branches assessed in January 2002 are shown in Table D.2 in
Appendix D. The VRS efficiency scores obtained are interpreted as usual radial efficiency
scores. For example branch B15 has an efficiency score of 58.46%. Thus with its current
levels of inputs, branch B15 is producing only 58.46% of the maximum possible outputs.
In this sense the outputs of branch B15 should increase by about 171.07% (1/0.5846) so
that this branch may reach the efficient frontier. The above efficiency score is radial in
the sense that it is based on all outputs increasing by the same proportion towards the
efficient frontier. If slacks exist, these are not accounted for in the 58.46% efficiency score
for branch B15. In this case there are some slacks associated with the outputs ‘registration’
and ‘transactions in CATs’. We can account for these slacks through the GDF output
efficiency measure detailed earlier. The GDF output efficiency scores are also shown in
Table D.2 in Appendix D. For branch B15 this score is 49%, which indicates that when
slacks are accounted for the efficiency of branch B15 reduces by about 10 percentage points.
This indicates that slacks represent a considerable source of inefficiency for this bank branch.

Consider another branch, B19, whose radial efficiency score is 42.97% and the GDF
output efficiency score is 42.31%. In this case the percentage of inefficiency in the form of
slacks is in fact negligible. On average, in the month of January output radial efficiency
is 68.59% and the GDF output efficiency score is 64.16%. This means that there is a
considerable degree of transactional inefficiency in the month of January, and most of this
inefficiency is explained by radial inefficiency rather than by slacks. These account on

average for about 4 percentage points inefficiency only.
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Target Setting

Apart from efficiency scores, targets to be attained by inefficient bank branches are also
of interest for bank and bank branch managers. Consider the two cases mentioned above of
branches B15 and B19. The observed and target levels of these branches are shown in Table
10.2. We distinguish between radial targets (Rtargets) and non-radial targets (NRtargets).
The differences between radial and non-radial targets reflect the value of slacks identified by

Table 10.2: Observed and Target Levels for Branches B15 and B19

B15 B19

Observed RTargets NRTargets | Observed RTargets NRTargets

Rent 4.591 4.591 4.591 4.779 4.779 4.539

Inputs | N, ETMs 3 3 3 2 2 2

N. Clicnts 3810 3810 3810 4038 4038 3410.65

Registr 10 17.107 22377 13 30.2562 30.2562

Outputs| Deposits 1223 2092.186 2092.186 430 1000.782 1000.782
TraCats 2005 4969.584 6449.044 1052 2448.425 2564.205

the model. Targets in Table 10.2 contain information on how much each observed output
should improve so that branches B15 and B19 can reach the efficient frontier. For the case
of branch B15, the targets identified show that, given the number of clients, the number
of ETMs, and the environmental conditions of this branch (reflected through the surrogate
rent), it should in fact have a higher number of registrations on the multi-channel code, a
higher number of deposits in ETMs, and a higher number of transactions in CATs. Branch
B15 is not therefore exploiting at the maximum its inputs to generate the desired outputs.
Non-radial targets for branch B15 show the existence of slacks on the outputs registrations
and transactions in CATs. For branch B19 the interpretation of targets is similar, but in
this case there are also input slacks. These input slacks should be seen as informational
only, i.e. even if rent and clients had been smaller, B19 should still have been able to
achieve the target outputs.

Peers or Benchmarks

The targets shown above were based on efficient branches to which each inefficient
branch was compared. These efficient branches are the peers or benchmarks of the inefficient
branch. Consider, for example, branch B19 whose peers are shown in Table 10.3. The peers
of branch B19 are branches with, in general, lower inputs but higher outputs than B19.

For example branch B42 has less of most inputs than branch B19 and produces much more
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Table 10.3: Peers of Branch B19

0.53 047
B19 B32 B42
Rent 4.779 | 5.574 3.353
Inputs | N. ETMs 2 2 2
N. Clients | 4038 | 3957 2785
Registr 13 20 42
QOutputs| Deposits 430 1590 326
TraCats 1052 | 2594 2530

registrations in code multi-channel and more transactions in CATs. Branch B32 produces
more of all outputs than branch B19 but one of its inputs (rent) is higher. Each of B32
and B42 can be seen by branch B19 as a role model branch whose transactional practices
could be emulated.

10.2.2 Transactional Efficiency Results Over Time

More important than analysing efficiency in each month is to analyse its evolution over
time. Indeed, for such a short period as a month we cannot state that a branch is efficient
just because it was so in one month. Efficiency implies a consistent behaviour over a given
period of analysis.

GDF output efficiency results computed independently for each month are shown in
Table D.3 in Appendix D (branches that were deemed super-efficient are underlined). These
results show that some branches were considered transactional efficient over the entire
period of analysis. Such is for example the case of branches B4, B7, B36, B46, B48, and
B54. Other bank branches presented a good overall behaviour in the same period, being
efficient in most of the months under analysis but inefficient in some other months.

The analysis of efficiency scores observed in each period reveals little about the techno-
logical evolution of the variables used in the transactional efficiency assessment. In order to
analyse this evolution we calculated Total Factor Productivity (TFP) change through the
GDF approach as detailed in Chapter 9 and decomposed this TFP change into efficiency
change (EFCH), technological change (THCH), and a residual component (RES) that is
scale related. For reasons outlined earlier we used a base period approach to do that, where
the month taken as a basis was January 2002.

To calculate the various components of TFP one needs to assess bank branches not only

in relation to the frontier of the period to which data corresponds, but also in relation to
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Table 10.4: Total Factor Productivity Change and its Components

Period | GDFy, GDF, MGDF EFCH THCH RES TFP
Jan-Feb | 06272 07135 07764 11473  0.6565 1.0242 0.7510
Jan-Mar | 06272 0.6124 0900  1.0091 09159 1.0178 0.8699
Jan-Apr | 0.6272 06500 0.9547  1.0849 00066 1.0223 0.9271
Jan-May | 0.6272 0.6463 1.5636  1.0715 14572 0.9259 1.3182
Jan-Jun | 0.6272 05985 20731 09894 2.1084 0.8017 1.4984
Jan-Jul | 0.6272 0.7059  2.4573 12201 21458 0.7961 1.7331
Jan-Aug | 0.6272 06357 1.6254 1.0813 15818 0.8738 1.2793
Jan-Scp | 0.6272 0.6962 1.8964  1.1938  1.6296 0.8290 1.4408

the base period frontier. As we used BCC models in our assessments the models assessing
units in relation to a different time period frontier may not have a solution. The number
of branches for which a Malmquist index could not be calculated was not, however, very
significant in each month (the highest number of branches in this situation was two per
month), and therefore the non-inclusion of these branches in our computations did not
seriously distort the average results that we present in Table 10.4. In this Table we show
TFP average values and its components, and also the average efficiency scores obtained in
each month (GDF;, corresponding to the average efficiency score of the base period, and
GDF; corresponding to the average GDF efficiency score of month t).

These values show that July was the best month in terms of productivity growth and
February was the worst month when compared to January 2002. The two main components
of TFP are the Malmquist GDF index (MGDF) and the Residual (RES) component (see
Chapter 9, expression (9.10)). The evolution of the former component is very much alike
the evolution of TFP as can be seen in Figure 10.1. The difference between TFP and
MGDEF is the residual effect, and therefore in Figure 10.1 we can see that this effect is
almost negligible in the first three months but then it begins to assume some importance
in the remaining months. Note that TFP is increasing in relation to January for almost all
the months under analysis except August (in this month TFP change decreases in relation
to the July TFP change, but it is still above one indicating a TFP increase from January
to August 2002).

The two components of the MGDF are technological change (THCH) and efficiency
change (EFCH). In February, March and April there was technological regress in relation
to January, but afterwards there is a remarkable technological progress. This means that
output levels on the frontier increased considerably after April when compared with output

levels in January. Note that the component that most explains the MGDF component of
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Figure 10.1: Total Factor Productivity and Malmquist GDF Index
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TFP is technological change rather than efficiency change. This is clear in Figure 10.2,

where we show each component of the MGDF.,

Figure 10.2: Efficiency Change and Technological Change
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Efficiency change values are very close to 1 and therefore they do not seem to affect par-
ticularly the MGDF component and therefore the TFP change. The productivity improve-
ment of 1.4408 from January to September 2002 in the transactional efficiency assessment
is therefore mostly dictated by changes in the frontier rather than by changes in efficiency.
This means that bank branches delineating the efficient frontier of September showed on
average higher outputs (registrations, transactions in CATs and deposits in ETMs) and/or
lower inputs (rent, N. ETMs, and N. clients) than those delineating the January frontier.

Seasonal effects are not evident in the decomposition of TFP change for the transactional
efficiency assessment. Note however, that the peak of technological change around Summer
months may be a result of seasonal effects that moved the frontier upwards. As we do not
have data for more than one set of Summer months we cax.mot ascertain anything regarding

possible seasonal effects on the transactional efficiency assessment.
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10.3 Operational Efficiency Assessment

The operational efficiency assessment considers data from March 2001 to September
2002. The input-output set used in this assessment is shown in Table 10.5, where (t)
denotes time period and the Greek A denotes change in values between the start and the

end of period ¢. The inputs we have used reflect the main operational resource of bank

Table 10.5: Inputs and Outputs used to assess operational efficiency in month t

Inputs QOutputs
1. Number Staff (t) 1. A Number of Clients (t)
2. Rent (t) 2. A Value Current Accounts (t)

3. A Value Other Resources (t)
4. A Value Titles Deposited (t)
5. A Value Credit Over Bank (t)
6. A Value Credit Associates (t)
7. Number Transactions (t)

branches (staff) and its environmental conditions (rent). The outputs we have chosen
are intended to reflect the main operational objectives of bank branches (to increase the
customer base, to increase sales of the various products the branch has to offer, and to serve
clients). For further details on the reasons behind our input-output choice and limitations
concerning this choice the reader is referred to Chapter 5.

As specified in Table 10.5 some outputs may be negative and therefore operational ef-
ficiency is measured through the RDM models described in Chapter 6, which can handle
negative data. The RDM models are used here with orientation towards output enhance-
ments, though one of the outputs considered is non-discretionary. The non-discretionary of
transactions is treated according to the procedure of Banker and Morey (1986a) as detailed
in Chapter 6.

Before applying the RDM models we checked our data for ‘super-efficiency’ or influential
units. Although there are no super-efficiency models (Andersen and Petersen, 1993) that
can be applied directly to the case of negative data one can use the additive model to
perform a diagnosis of super-efficiency. This can be done by analysing units that eventually
dominate the reference set and re-running the models without such units. Common sense
plays, necessarily, an important role in determining which units are influential, while at the
same time complementary information from the bank should also be sought in this process.
In our case, for example, in some months some bank branches closed and their business

was transferred to other branches in the sample. This means that the latter branches
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suffered an abnormal increase in their business in a particular month, which was not a
result of an improvement in their efficiency but a result of uncontrollable factors. Branches
in this situation were eliminated from the reference set in the month where this situation
happened.

The results on the operational efficiency assessment will be presented first in terms of
general outputs from the RDM efficiency assessments and then we will analyse the evolution

of efficiency over time.

10.3.1 Detailed Results on Operational Efficiency

Detailed results were produced for each month under analysis. Here, however, we
discuss the results for only a few branches to illustrate the type of results one can have
for all branches. We have chosen results from April 2001 for our illustrative purpose.
Descriptive statistics on the operational efficiency inputs and outputs are shown in Table
E.1 in Appendix E from March 2001 to September 2002.

The detailed operational efficiency results that are of interest to managers involve the
knowledge of efficiency scores through which bank branches can be ranked and classified
into efficient or inefficient, the identification of targets to be attained by inefficient bank
branches, and also the identification of peer or benchmark branches whose operational

practices should be emulated by inefficient branches.

Efficiency Scores

The application of the RDM model resulted in a set of efficiency measures that allowed
us to assess how far each bank branch is from its Pareto-efficient targets, and how branches
compare between each other in terms of this distance. The detailed RDM efficiency scores
for each branch in the month of April 2001 are shown in Table E.2 in Appendix E. We
produced two different kinds of efficiency scores based on the RDM model. One is based
directly on the results from the RDM model and consists on the values of 1 — 8. Recall
that 8 is an inefficiency measure and therefore 1 — 3 is an efficiency measure. In the RDM
model the 1 — 3 values are interpreted as the radial distance from each bank branch to
its targets. For example, branch B11 has a 1 — 3 value equal to 72.74% and branch B12
has 1 — /3 equal to 90.61%. This means that targets of branch B12 are radially closer from
its observed levels than the targets of branch B11. This radial distance does not reflect,

however, the potential for non-radial improvement in some outputs (note that improvement
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in inputs is not sought in our case since we use output oriented measures). For this reason,
we use a ratio of norms (||I — T'||/||I — O||, where I stands for ideal point, T" for target
levels and O for observed levels) as detailed in Chapter 6 to account for all the sources
of inefficiency associated to outputs (the ratio of norms is computed based on normalised
data and on discretionary outputs only). According to the ratio of norms unit B11 has an
efficiency score of 65.39 % and unit B12 has an efficiency score of 88.15%. When all the
sources of inefficiency are accounted for, branch B12 still ranks better than unit B11, but
in both cases the measure of efficiency decreased meaning that there were some slacks not
accounted for by the radial efficiency measures.

For the month of April 2001 the RDM average 1 — (3 is equal to 89.1%, and the average
ratio of norms is 85.4%. The closeness between these values means that slacks were not on
average an important source of inefficiency in this month.

In terms of rankings the correlation between the rank based on the RDM efficiency score
and on the ratio of norms is very high (0.9393) meaning that these efficiency scores result
in very similar ranks. Nevertheless there is a large difference in rank for some branches.
For example, the highest difference happens for branch B43, which is ranked 19 under the

RDM efficiency score and 39 when slacks are taken into account in the ratio of norms.

Target Setting

For the bank it is not only important to know how each unit compares in terms of
their distance to targets, but also to know what those targets are. A bank branch can seek
targets that stress attaining more on those factors where performance is poorest at present,
or on those where performance is best at observed levels. As we saw in Chapter 6 these
two aims are served respectively by the RDM and the IRDM models (recall that the IRDM
model is similar to the RDM model except on the directional vector, which is the inverse
of the range of possible improvement rather than the range itself). We produce here both
sets of targets to illustrate the difference. Table 10.6 shows the observed and target levels
of units B8, B15 and B19 in April 2001.

The advantage of using both the RDM and IRDM models is that we can provide alter-
native targets that represent different routes that the bank branch can choose in order to
become efficient. The RDM and IRDM procedures clearly give different priorities on im-
proving different variables, with RDM targets being more demanding in certain variables,

while the IRDM targets being more demanding in others. Take for example branch B19,
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Table 10.6: Target Levels for Some Units in April
B8 B15 B19
Obs RDM IRDM Obs RDM IRDM Obs RDM IRDM
Rent 2.36 215 217 44 3.34 3.51 4.58 213 228
Inputs
Staff 4 4 4 7 5.52 5.73 5 5 5
ACH -4 3471 3791 -32 3846  24.12 -32 4368  36.87
ACurac | -102.428 -25.53 -40.76 | -00.282 36.89 0.59 -44.029 83.18 75.73
AOthre | 127.443 268.20 281.35 | 259.335  550.13  623.24 | 174.594 433.03 457.17
Outputs| ATdep | -49.506 -30.71 -39.17 | -102.917 -61.19  -OL57 | -71.707 -33.22 -55.49
A Credb | 128416 298.44 311.55 | 188,037 403.85  466.97 | -18.071 257.98 271.95
ACredas 5.183 5290  50.84 66.634 10143 128.12 10679  62.40 73.29
Trans 2083 2083 2083 3441  4958.28 4983.33 | 3834 3834 3834
Table 10.7: Output Improvements for Branch B19
ACli  ACurac AOthre ATdep ACredb ACredas
Range 1.09 1.076 0.837 1.608 1.014 0.96
RDM 75675 127.211 258.439  38.49 276.048 51.723
IRDM 68.873 119.755 282.577 16.218  290.017 62.606

whose output range of improvement (normalised by the maximum output so that differ-
ent units of measurement do not distort our interpretations) is (1.09, 1.076, 0.837, 1.608,
1.014, 0.96) (see Table 10.7). The highest value of this range occurs for the fourth output
(ATdep), which means that the RDM model will give priority to improving this output,
while the IRDM will give priority to improving the third output (AOthre) and eventually
the last output (ACredas). Note that the output improvements (difference between target
and observed values) corresponding to the RDM and IRDM targets of unit B19, shown in
Table 10.7, clearly confirm that factors with a higher range improve more under the RDM,
and factors with a lower range improve more under the IRDM model.

The improvements in Table 10.7 are not units invariant and therefore it is not easy,
by simply inspecting this table, to ascertain whereas the RDM or the IRDM targets are
closer to observed values. The efficiency scores as measured by the ratio of norms, however,
show that IRDM targets are closer than RDM targets for branch B19 (IRDM distance is
82.63% and RDM distance is 78.78%), meaning that IRDM targets require a smaller effort
from branch B19 to reach 100% efficiency. Obviously if unit B19 has particular difficulty
in selling ‘other resources’ items and foresees that it cannot improve it as much as given by
the IRDM targets it has the alternative of using targets given by the RDM model.

The ratio of norms efficiency score was calculated for all branches considering both their

RDM and IRDM targets. On average the ratio of norms for the RDM model is 85.44% while
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the average ratio of norms for the IRDM model is 88.67%. This means that on average
IRDM targets are in fact closer from observed levels than RDM targets.

The targets in Table 10.6 may reveal additional inefficiencies apart from those associated
with discretionary outputs. These should be used as informational only. For example we
can say that branch B15 could have achieved the output targets even if it had less staff,
which suggests that this bank branch is over-staffed. At the same time branch B15 could
have achieved the same targets even if it had performed more transactions which seems to
indicate that staff have some free time that could be used on other activities.

An alternative representation of the targets in Table 10.6 is through a graph as that
shown in Figure 10.3. In this Figure targets and observed values are all normalised by the
maximum value, and the objective is simply to provide an easy tool from which managers

can immediately pick up what is going on.

Figure 10.3: Graphical Representation of Targets

Unit B15 RDM and IRDM Targets | mobsened OTgt ROM GTgt. IRDMI

1.5

1

> & o 2
pe® g G“@@ d“@‘ x ! 0@6" @p" _@{@

| ]
E’
NNNNN

-0.5

[a]

-1

Peers or Benchmarks

As usual in DEA analyses apart from targets, we can also provide inefficient units with
peer or reference units to which they can compare themselves. For the case of branch B15,
Table 10.8 presents the reference units as given by the RDM and IRDM models. Although
here the RDM and IRDM models yielded the same peers, this is not the case in general.

The present peers are benchmarks that can be used by branch B15 as references of per-
formance in the month of April. These benchmarks explain why branch B15 is inefficient
and how targets for this branch have been constructed. All of the benchmarks perform

better than B15 in most respects, while having less favourable conditions in terms of the
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Table 10.8: Peers of Branch B15

RDM 0.1642 0.0158 0.2049 0.0799 0.5353
IRDM 0.1046 0.1764 0.0939 0.0853 0.5397

B15 B58 B4l B38 B16 B9
Rent 4.40 3.352 4.778 3.093 4.025 2.82
Inputs
Staff 7 5 7 5 7 7
ACH -32 -21 -8 -29 18 341

ACurac | -90.282 -124.5 -48.503 582.99 149.43 -87.798
AOthre | 259.335 | 598.782 807.783 -108.349 732,984  1070.42
Outputs| ATdep | -102.917 | 118.011 -494.942 -80.002 -372.048 -381.042
ACredb | 188,037 | 338.803 1330.548 211.575  626.585 383.77
ACredas | 66.634 130.86 -18.725 97.964 250.85 53.91
Trans 3441 3846 5508 5322 6403 7724

inputs (rent and staff) and in terms of the non-discretionary output: transactions. Note
that branch B9 dominates the peer set both for the RDM and IRDM models. B9 has
the same staff as B15, it is located in a less favourable region (rent is lower), and it per-
forms many more transactions than branch B15. Even so, branch B9 performs better than
branch B15 in most outputs. Branch B9 can therefore be looked at by branch B15 as a
benchmark unit whose operational practices could be emulated. Depending on the chosen
targets (RDM or IRDM) benchmarks may be different. For example for IRDM targets the
main benchmarks for branch B15 are B9, B41, and B58, while for RDM targets the main
benchmarks are B9, B38, and B58. Clearly these benchmarks represent different output

mixes from which B15 can choose as it prefers.

10.3.2 Operational Efficiency Results Over Time

In Table E.3 in Appendix E we show detailed results on operational efficiency for each
month under analysis, where branches are sorted by their average over time efficiency.
Branches that were excluded from the analysis in each month, because they were deemed
super-efficient, are underlined in this table. In order to consider a bank branch efficient, it
should show a consistent efficient behaviour over the period of analysis. Such are branches
B4 and B9, and also branches B2, and B28. The two latter bank branches closed, however,
in October 2001'. Other bank branches, showed 100% efficiency in most of the months
under analysis and therefore can be said to have good operational efficiency (e.g. B33, B34,

1The reasons for the bank closing some bank branches was not directly related to the performance of
these branches. In most cases the decision had to do with more than one bank branch operating very close
to each other, and the bank decided to close on of these branches (for example the smaller one since the
bank branch that remained open must absorb the customers of the closed branch).

199



10.3 Operational Efficiency Assessment

B27, B46, etc.).

The values shown in Table E.3 relate to the assessment of efficiency in each month sepa-
rately. We also used RDM based Malmquist indexes to analyse efficiency and technological
change over time (see details in Chapter 6). For the reasons outlined in the introduction
to this Chapter, we used a base period approach where March 2001 was used as the base
technology. For this purpose it was necessary to define an ideal point to be used in the
assessment of units against two technologies (the base period technology and the current
period technology). Such an ideal point was renewed every month since we considered it
to be the maximum output levels in each of the two periods under analysis (base period
and current period). Note that our application of the RDM model is oriented towards
output enhancements and therefore the ideal point to be considered only needs to account
for outputs. For details please refer to section 6.6 of Chapter 6.

A summary of the results obtained from each month is presented in Table 10.9. The

Table 10.9: Base Period Results

Period Y (ysszs) Y(ye,ze) N.Inf. EFCH THCH Malm.
Mar01-Apr01 | 0.9803 0.943 5 0.9624 1.1894 1.1478
Mar01-May0l | 0.983 0.9505 11 09673 21727 2.1336
Mar01-Jun01 | 0.9819 0.9757 7 0.9942 11425 1.1343
Mar01-Jul01 0.983 0.9712 15 0.989 2434  2.4036
MarOl-Aug01 | 0.9781 0.9386 9 0.9608 2.2348 2.1474
Mar01-Scp01 | 0.9598 0.9727 6 10193 1.4987 1.545
Mar01-Oct01 | 0.9759 0.8945 14 09177 14894 1.3056
Mar01-Nov01 | 0.9595 0.9727 10 10185 14159 1.4349
Mar01-DecO1 | 0.9783 0.9723 26 09953 15787 1.5592
Mar01-Jan02 | 0.9714 0.9387 4 0.9689 1.8798 1.8182
Mar01-Feb02 | 0.9585 0.9664 8 1.0136 1.8769 1.9083
Mar01-Mar02 | 0.958 0.9843 5 1.033 15769 16172
Mar01-Apr02 | 0.9638 0.9761 12 1.0165 15023 1.5151

Mar01-May02 0.9893 0.9782
Mar01-Jun02 0.956 0.9729
Mar01-Jul02 0.9612 0.9521 0.9951 23694 2.3873
Mar01-Aug02 0.973 0.9666 0.9957 1.6722 1.6549
Mar01-Sep02 0.955 0.9609 32 1.0113 17356 1.7371

0.9891 1.4936 1.4877
1.0241 1.5475 1.5853

8888

column named ‘N. Inf.’ in this Table indicate the number of infeasible models that were
found in assessing data of branches in t in relation to the frontier of the base period (for
details see section 6.6 of Chapter 6). Bank branches with infeasible RDM models are
located above the base period frontier, indicating that the technological change component
(THCH) in Table 10.9 in under-estimated. The RDM 1 — 3 efficiency of each period is
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given by (v, z¢) for the period t assessment in relation to the ¢ frontier, and v®(ys, 3)
for the base period assessment in relation to the base period frontier. Note that v*(ys, zs)
is different for each line of Table 10.9 because the ideal point against which efficiency is
measured varies from month to month.

The values in Table 10.9 show that there was always technological progress in relation
to March 2001, though in some months this progress was more intense than in others.
The months with higher progress in relation to March 2001 are May, July, and August
2001 and July 2002. In Figure 10.4 we plot the Mamquist index and its technological
change and efficiency change components. Technological change seems to be the main
factor explaining changes in the Malmquist index, since efficiency change is mostly around
one. Note, however, that technological change seems to be confounded in this case with
seasonal effects that push the frontier upwards in Summer months (July 2001 and July 2002
are the months that exhibit highest progress). Therefore, what we are calling technological
change in Table 10.9 means in fact a frontier movement that may be attributable both to

changes in the technology and to seasonality.

Figure 10.4: Technological Change and Efficiency Change Components
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In order to analyse the extent to which there are seasonal effects one can compute
technological change values for data one year apart. For that purpose we can use simple
algebra and calculate from Table 10.9 the technological change values shown in Table 10.10,
where, for example, the value from July 2001 to July 2002 was obtained from the ratio
between THCH(Mar01, Jul02) and THCH(Mar01, Jul01). Values in Table 10.10 show
that technological change in July 2002 when measured in relation to July 2001 is very
close to one, denoting no technological progress between these two months. Note that
technological change values in Table 10.10 were calculated algebraically (through the ratios
of technological change in relation to the base month of March 2001) and not by direct
application of the RDM to data one year apart. This latter way of calculating technological

201



10.4 Profit Efficiency Assessment

Table 10.10: Technological Change without Seasonality
Period THCH
Mar01-Mar02 | 1.5769
Apr01-Apr02 | 1.2631
May01-May02 | 0.6874
Jun01-Jun02 1.3545
Jul01-Jul02 0.9735
Aug01-Aug02 | 0.7483
Sep01-Sep02 1.1581

change does not necessarily lead to the same results since the Malmquist index based on
the RDM does not satisfy the circularity property. Our purpose here is not, however, to
detail too much on seasonal effects but only to acknowledge their possible existence and
influence on frontier movements.

Ignoring monthly fluctuations of efficiency change and technological change we can
say that in this period of about one year and a half, there was an important amount of
technological progress measured by an index of about 1.7 (see Table 10.9). This means
that the frontier moved upwards, but on average bank branches kept the pace with these
frontier movements, since the average efficiency of bank branches remained more or less

unchangeable during the whole period of analysis.

10.4 Profit Efficiency Assessment?

The profit efficiency assessment also considers data from March 2001 to September
2002. The input-output variables used in this assessment are shown in Table 10.11 (see
Table F.1 in Appendix F for descriptive statistics on the chosen inputs and outputs over

the period of analysis). These variables are consistent with the intermediation approach of

Table 10.11: Inputs and Outputs used to assess profit efficiency
Inputs QOutputs
Number of Staff [Staff] Value Current Accounts [Curracc]
Supply costs [Supplycost] Value Other Resources [Othress]
Value Credit by Bank [Credb]
Value Credit by Associates [Credass]

bank branches’ activities as discussed in Chapter 3. For a more detailed discussion on the

2Part of the results presented in this section will appear in Portela and Thanassoulis,
Profitability of a sample of Portuguese bank branches and its decomposition into technical and
allocative components, European Journal of Operational Research.
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reasons and limitations behind our choice of variables please see Chapter 5.

Apart from the ‘quantity’ variables specified in Table 10.11, price data were also avail-
able for staff (average salaries) and for all outputs. We used the variables in Table 10.11
to compute two types of efficiency: technical and overall profit efficiency. For the technical
profit efficiency measurement we used the variables as specified in Table 10.11. For cal-
culating overall profit efficiency we used the ‘quantity’ data specified in Table 10.11 plus
price information for all the variables in this table, except for supply costs (see section 8.5
of Chapter 8). Recall that output prices are average net interest rates and not individual
interest rates per bank branch (see Chapter 5).

Overall profit efficiency was calculated and decomposed into its technical and allocative
components using the Geometric Distance Function (GDF') procedure detailed in Chapter
8. These computations were performed assuming a long run and a short run settings. The

detailed results, presented in the next sections, consider both these situations.

10.4.1 Long Run Detailed Results

Detailed results were produced for every month under analysis, but for illustrative
purposes we discuss here only results obtained for April 2001.

Recall that the GDF measure requires the computation of technical efficient and max-
imum profit targets. These targets reflect alternative ways a bank branch can follow to
increase its profits. Technical efficient targets, for example, always imply increasing outputs
and reducing inputs in movements of inefficient units towards the frontier, which obviously
increase their profit. Profit targets on the other hand focus on further enhancements that
could be achieved through an adequate management of the bank branch’s product mix given
the factor prices they face. Technical and profit targets are calculated here first without
any constraints (long run approach), and then with certain constraints to targets such that
these are in fact possible to achieve in the short run. As the identification of targets is done
prior to the measurement of efficiency we illustrate first the computation and interpretation

of targets, and then illustrate the calculation of various efficiency measures.

Long Run Targets

Long run technical efficient targets are found through the closest target (CT) procedure
detailed in Chapter 7. Maximum profit targets are calculated based on the maximum profit

model (8.2) shown in Chapter 8. The calculation of these targets allows the computation

203



10.4 Profit Efficiency Assessment

of overall profit efficiency and technical profit efficiency. The allocative profit efficiency is
obtained by decomposition, and it can be further decomposed into scale and mix effects.
Scale adjusted targets can also be computed by applying model (8.7) detailed in Chapter
8.

Take for example unit B8 whose various types of targets obtained in the long run analysis

are shown in Table 10.12. We consider in this table two types of technical efficient targets

Table 10.12: Long Run Targets for Unit B8

Inputs Outputs
Staff  Supplycost | Curracc. Othress. Credb Credass. GDF
B8 - Obs. 4 13.2181 2000.8513  4751.0899  4986.2581 248.7056

Additive Tgt 3.2603 13.2181 2463.4065  T7856.6609 7870.4677  2100.876  39.60%

Close Tgt 3.3481 10.7413 2009.8513  4902.2491 4986.2581 248.7056  81.83%

Max Profit Tgt T 26.8104 7361.818  20266.4129 21512.1108 2306.9752 37.68%
Scale adj. 8.357 26.8104 7361.818  17956.2865 18264 910.976

to show that the CT procedure is one out of a number of ways through which technical
efficient targets can be computed. The alternative we used here is the additive model.
Note that the main difference between CT targets and targets from the additive model is
that the former are easier to achieve and imply smaller adjustments on the current level
of inputs and outputs of branch B8. Smaller adjustments are reflected in a higher GDF
efficiency score for the CT target (81.83%) than for the target resulting from the additive
model (39.6%)3.

The maximum profit target of unit B8 corresponds to the observed input/output levels
of unit B16. In fact, the long run profit maximising model rendered unit B16 as the
single maximum profit target for all bank branches under analysis. This is in principle
a result of very similar prices across all bank branches, which does not allow for much
discrimination in terms of profit maximising units. In order to check the sensitivity of the
maximum profit unit to changes in factor prices, we simulated price changes by adding
to the original output prices a random number varying between 0 and 0.02. Note that
our prices are interest rates and vary between 0.0059 for credit by the bank and 0.0419

for current accounts®. The results from our simulated price data are very similar to those

3For the overall set of 57 bank branches the average GDF found for the unit's invariant additive model is
67.98% (with a minimum of 10.25%), while this average is 82.99% (with a minimum of 37.91%) for the CT
procedure. This indicates that the CT in fact provides closer targets which are reflected in higher efficiency
scores.

4The price of credit is lower than the price of current accounts, because the interest rate of credit includes
a risk factor that does not exist for current accounts.
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with constant prices. With simulated prices unit B17 and B16 appear most of the times as
the profit maximising branches. In some attempts only branch B17 appeared and in other
attempts only branch B16 appeared as profit maximising. This fact seems to suggest that
our results are not very sensitive to the fact that equal prices across branches were used for
outputs.

The scale adjusted targets in Table 10.12 reflect the change in scale that is needed to
move from the technical efficient target to the maximum profit target. In the case of branch
B8 scale changes in inputs are equal to 2.496 and scale changes in outputs are equal to 3.663.
This means that the adjustments required in branch B8 to go from the technical efficient
target to the maximum profit target imply changing outputs more than proportionally
compared to changing inputs. This suggests increasing returns to scale movements towards
maximum profit. The distance between maximum profit targets and scale adjusted targets

reflects mix changes that are a component of allocative efficiency.

Long Run Efficiency Scores

The GDF is applied a posteriori to express the distance between an observation and its
target. In this sense applying the GDF between the observed input/output levels of branch
B8 and its CT technical efficient targets renders a GDF score of 81.83%. Applying the
GDF to measure the distance between the observed point and the maximum profit point
(unit B16) renders a GDF overall profit efficiency score of 37.68%. The allocative GDF
efficiency measure can be computed by applying the GDF to measure the distance between
CT technical efficient targets and maximum profit targets. Alternatively the value of the
GDF allocative efficiency can be found by decomposition since overall profit efficiency equals
the product of technical efficiency and allocative efficiency. Applying such a decomposition
to branch B8, renders an allocative efficiency score of %@ = 46.042%. This allocative
measure of efficiency can be further decomposed into a mix and scale effect. The scale effect
equals the ratio of the proportional adjustments in inputs and the proportional adjustments
in outputs, i.e. %% = 0.6814. Applying the GDF to measure the distance between the
scale adjusted target and the maximum profit target results in a mix effect of 0.6757. Note
that a scale effect lower than 1 indicates increasing returns to scale movements, while a
scale effect larger than 1 indicates decreasing returns to scale movements (see Chapter 8 for

details). The product of all efficiency scores identified before is the overall profit efficiency
measure of unit B8, that is, 0.8183 x 0.6814 x 0.6757 = 0.3768 <> technical efficiency x scale
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effect x mix effect = technical efficiency X allocative efficiency = overall profit efficiency.

As shown in Chapter 8 allocative and overall profit efficiency can be higher than 1.
Values of profit or allocative efficiency greater than 1 indicate movements that are not
advisable from a purely technological perspective but are so from a profit perspective. As
can be seen in Table F.2 in Appendix F, which summarises results for all the branches
under analysis for April 2001, profit and allocative efficiencies are higher than 1 for unit
B28. If we calculate for branch B28 an aggregate measure of productivity through the GDF
(T 57 x T, oY) =), this is 814.076 at the observed point (which coincides with
the technical efficient point), and 677.1288 at the maximum profit point. This means that a
movement from the technical efficient point to the maximum profit point implies a decrease
in aggregate productivity, and as such this movement is not advisable under a technical
perspective. In fact the aggregate productivity at the observed point is 3%17‘-‘_‘-1%— = 1.202
times higher than the productivity at the maximum profit point. Values greater than
1 should therefore be interpreted carefully because the trade-offs implicit in these values
might be of such an order that are not in fact advisable or possible.

Results in Table F.2 in Appendix F show that average profit inefficiency of April 2001
is 39.43% (measured as the absolute deviation of profit GDF from 1). This value is mostly
explained by allocative inefficiencies (average allocative inefficiency is 27.39%) and less by
technical inefficiencies (average technical inefficiency is 17.01%). This means that though
branches are relatively close to the technical efficient frontier, this frontier is far away
from the maximum profit plane (that passes through unit B16) resulting in high allocative
inefficiencies. The allocative (in)efficiency is composed of mix and scale effects. The average
scale effect is 1.0243 which indicates that on average branches increased more inputs than
outputs in moving from its technical efficient projection to the maximum profit point. This
fact indicates average decreasing returns to scale in such movements, but these are not very
marked as the scale effect value is very close to 1. The mix effect on the other hand seems

to be the main reason that the allocative efficiency averages 71.5%.

Long Run Efficient Peers

For each inefficient branch our analysis identifies efficient bank branchés whose perfor-
mance they could emulate to improve their long run profitability. The maximum profit
model identified a single branch as the efficient peer of all branches. As far as technical

profit efficient targets are concerned different peers were identified for different inefficient
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Table 10.13: Peers of Branch B8
0.4224 0.303 0.0225 0.2521
B8 B2 B33 B37 B354
stafl 4 3 4 5 3
Inputs
supplycost | 132181 | 02776 145749 148342  8.2202
curracc | 2009.8513 | 11617352 4127.1835 40127493  706.8814
Outonts| OIS | 47510800 | 24645053 99648148  7458.1858  2673.2225
1
- credb | 4986.2581 | 5776.2602 5607.5038 14226.0001  1981.2552
credass | 2487056 | 173.3622  422.5467 14149699  61.7412
Profit | 151.634 | 97.3051 | 300.5077 340.8308  57.7969

branches. We use branch B8 to illustrate the results here (see Table 10.13).

The efficient peers of branch B8 have in general lower inputs and higher outputs than
B8. This fact explains the inefficiency of branch B8. Consider for example branch B33
that has the same number of staff of branch B8 and higher supply costs. B33 is able to
achieve much more on all outputs than branch B8, achieving thus a higher profit. Branch
B8 would, therefore, benefit by emulating branch B33.

Profit Gains

The above analysis considers only changes in inputs and outputs from one point to
another measured through the GDF. Complementing the GDF results with profit ratios or
differences provides interesting insights. Consider for example branch B17. Its actual profit
(which is also technical efficient profit) is about 663.9 thousand Euros, and its maximum
profit is very close to it: about 677 thousand Euros (see Table F.2 in Appendix F). This
seems to suggest that the profit efficiency of this branch is very high as it is very close
to maximum profit. However, analysing the GDF we see that its value is small (67.76%).
This basically means that in order to move from its actual position to the maximum profit
point branch B17 needs to undertake considerable changes in the mix of its inputs and/or
outputs. The main trade-off asked here to branch B17 is a large reduction (in about 32%)
on the value of other resources (on which this branch performs better than B16) and a high
increase (in about 350%) on the value of credit over associates. Such a trade-off might be
questioned by branches whose profit is already close to maximum profit.

The overall gains in profit obtained by moving from the observed point to the maximum
profit point is a sum of the profit gained by moving from observed points to technical
efficient points (technical profit gain) and the profit gained by moving from technically

efficient points to maximum profit points (allocative profit gain). In our case branches gain
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on average 41.5 thousand Euros by eliminating technical inefficiency and gain on average
294.867 thousand Euros by eliminating allocative inefficiency. Overall profit gains (on
average 336.34 thousand Euros) are therefore mainly attributed to allocative movements
rather than technical movements. This means that while the increase in profits obtained
from the elimination of technical inefficiency might be possible to achieve in the short run,
those accruing from the elimination of allocative inefficiency might be unrealistic in the
short run as they imply a large change in inputs and outputs of bank branches. Changing
the staff from 3 to 7, for example, might be difficult given the dimension of the bank branch
and the benefits accruing from this change might not correspond to the expected due to
environmental or market constraints. This is the reason why we analyse here not only long
run models but also short run models where more realistic targets are proposed to bank
branches.

10.4.2 Short Run Detailed Results

As seen previously, long run targets may be unrealistic and not achievable in the short
run. As the bank was interested in knowing targets to achieve in the short run we added
some constraints to the profit model as explained in section 8.6 of Chapter 8. Specifically
we restricted inputs not to change by more than 30% from their observed levels. Bounds
on outputs were also imposed in order to prevent big changes in the output levels and their
mix. We constrained outputs to change by no more than 30% from their observed level.
The type of results that can be obtained from a constrained profit model are shown in the

next sections, where the month of April 2001 is once again used for illustrative purposes.

Short Run Targets and Efficiency Scores

The main results obtained from the short run profit efficiency assessment are a set of
efficiency scores and short run targets to be attained by inefficient branches, For illustrating
these results consider branch B8, whose targets obtained from the constrained models are
shown in Table 10.14. In this Table we also show the long run targets for comparative
purposes.

Long run technical efficient targets were found following the closest target procedure
and therefore we should not expect big differences between short run constrained technical
efficient targets and long run technical efficient targets. The biggest differences between

short and long run targets happen for maximum profit targets, and this is clear for branch
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Table 10.14: Long Run and Short Run Targets for Branch B8 in April 2001

Inputs QOutputs
Staff  Supplycost | Curracc. Othress. Credb Credass. GDF
Long Run Targets
B8 - Obs. 4 13.2181 2009.8513  4751.0899  4986.2581  248.7056
Close Tgt 3.3481 10.7413 2009.8513  4902.2491 4986.2581 248.7056 81.83%
Max Profit Tgt 7 26.8104 7361.818  20266.4129 21512.1108 2306.9752 37.68%
Scale adj. 8.357 26.8104 7361.818  17956.2865 18264 910.976
Short Run Targets
B8 - Obas. 4 13.2181 2009.8513  4751.0899 4986.2581 248.7056
Technical Tgt 3.5989 12.1302 2612.8067 6176.4169 6482.1355 323.3173  69.897%
Max Profit Tgt | 3.3663 12.2623 2612.8067 6176.4169 6482.1355 323.3173 67.97%
Scale adj. 3.6381 12.2623 2612.8067 6176.4169  6482.1355  323.3173

B8 in Table 10.14. For example, after reaching the technological constrained frontier B8
only needs to change its inputs to become a profit maximising unit. Note how these changes
contrast with the long run case where differences between technical efficient targets and
maximum profit targets are much higher. As a result, short run allocative efficiency is
higher than the long run allocative efficiency for B8. Allocative efficiency now equals
97.24% (=0.6797/0.69897), as opposed to a value of 46.04% for the unconstrained long run
profit model. Note that trade-offs within outputs are much lower in the short run than in
the long run because of the constraints imposed.

As far as the constrained maximum profit model is concerned all the branches have at
least one of the ratios between maximum profit target outputs and observed outputs equal
to the upper bound of 1.3. This means that if branches are to go beyond the constrained
profit they need to change at least one output by more than 30%. The bounds on inputs, in
contrast, do not have a big impact on both the maximum profit and the technical efficiency
models, as most of these bounds are not binding.

The detailed short run results for the month of April 2001 are presented in Table F.3
in Appendix F. These results show an average profit inefficiency that is lower than before.
It is now 20.35% while in the unconstrained long run model it was 39.43%. The main
differences between this model and the long run model concern the factors that most explain
the profit inefficiency. In the short run constrained model most of the profit inefficiency is
explained by technical inefficiency, which is on average 15.48%. Allocative effects are very
small as confirmed by an average allocative inefficiency of 8.31%. In terms of profit gains
these amount to 91.283 thousand Euros, from which 39.49 thousand Euros are obtained
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Table 10.15: Maximum Profit Short Run Peers of Branch B8
0.45 0.37 0.18
B8 B2 B33 B28
staff 4 3 4 3
Inputs
supplycost | 13.2181 0.2776 14.5749 15.0787
curracc | 2000.8513 | 1161.7352 4127.1885  3188.5107
I othress | 4751.0800 | 2464.5053 0064.8148 10189.6928
utpu
P credb 4086.2581 | 5776.2602 5697.5038  0857.3787
credass | 248.7056 | 173.3622 4225467  2806.207
Profit 151.634 | 97.3051  309.5077  344.8654

by technical constrained movements and the remaining (51.79) by allocative movements.
Profit gains are still higher from allocative movements than from technical movements.
This is an expected result because technical movements do not take into consideration
factor prices. The above allocative profit gains and allocative efficiency values, therefore,
reveal that very small input and output quantity movements are required to considerably
increase profit.

Scale effects included in the allocative efficiency are on average higher in the short run
assessment than in the long run assessment. Nevertheless, mix effects (averaging 89.92%)
are on average the most important component of the short run allocative efficiency value.
The scale effect is on average higher than 1 (1.1085) meaning that movements from technical

projections to the maximum profit point implied on average decreasing returns to scale

movements of bank branches.

Short Run Peers

We can identify two sets of benchmark units in the short run assessment: those that
the inefficient bank branch should emulate to become profit maximising given restrictions
imposed on input and output changes, and those that the inefficient unit should emulate to
become technical efficient given restrictions imposed on input and output changes. Taking
branch B8 for illustrative purposes, the peer branches identified by the maximum profit
constrained model are shown in Table 10.15.

Branch B8 has 3 benchmark branches (B2, B33 and B28) in the maximum profit con-
strained model. Note that contrary to the long run case, in the short run maximum profit
model the benchmark units do not need to be overall profit efficient. In fact none of the
peer branches above is overall profit efficient. This happens because inputs and outputs

are not permitted to change by more than a certain amount and so there is no guarantee
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Table 10.16: Technical Short Run Peers of Branch B8

0.52 0.42 0.04 0.01 0.01

B8 B2 B33 B60 B10 B17

stafl 4 3 4 6 5 7

Inputs

supplycost | 132181 | 92776 145749  18.2361 212787  26.3764
curracc | 2000.8513 | 11617352 4127.1885 4104.8623  5806.227  5677.5172
Outouts|  HFCES | A75L0SDO | 20645063 90648148 80434003 14083404 20720.2398
Ul credb | 4986.2581 | 5776.2602 5697.5038 10496.8526 12500.4321  17399.0082
credass | 2487056 | 173.3622  422.5467  1073.4231  576.7151  514.3504
Profit 151.634 | 97.3051  309.5077  360.932  466.3009  663.9061

that the maximum profit plane can be attained.

The peer branches identified by the technical constrained model are shown in Table
10.16.

The short run peers of branch B8 for the constrained technical efficiency assessment are
very similar to the constrained maximum profit peers seen before. Branches B2 and B33
play again a major role in defining the peer set of branch B8 meaning that the practices of
these bank branches should be seen by branch B8 as role model practices to be emulated
both when the constrained technical frontier is to be attained and also when profit is to be
maximised.

Note that the peers of branch B8 are all technically efficient branches. This does not
need to be so since the technical efficient frontier might not be achievable when input and
output targets are restricted from changing by more than a certain amount. This means
that non-technically efficient peers might be identified by the constrained technical efficient
model. Theoretically this might also happen in the maximum profit constrained model,
however as this model is less restrictive (inputs can also increase and outputs decrease) the

peer units identified tend to be located on the technological frontier.

10.5 Technical Profit Efficiency Results Over Time

The assessments on profit efficiency involved the computation of overall profit efficiency
and its decomposition into technical and allocative efficiency. In order to analyse profit
efficiency results over time we decided to focus on technical profit efficiency rather than on
overall profit efficiency. This means that no price information is used, and just quantity
variables, as shown in Table 10.11, are used to assess technical profit efficiency. No con-

straints were imposed at this stage on input and output changes, and therefore a long run
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model was assumed in the analysis of technical profit efficiency over time,

GDF based Malmquist indexes detailed in Chapter 9 are here applied to our sample of
bank branches from March 2001 to September 2002. Technical profit efficiency estimates
need to be calculated for each branch both in relation to their own time frontier and in
relation to another time period frontier. The model used to obtain all efficiency estimates
is model (9.15) shown in section 9.5 of Chapter 9.

The technical profit efficiency results obtained independently for each month are shown
in Table F.4 in Appendix F where branches are sorted by their average over time efficiency.
The results in Table F.4 reveal those units that were consistently efficient over the period
of analysis, which was the case of branches B16, B17, B53 and B60.

The GDF Malmquist index analysis uses a base period approach where March 2001 was
set as the base period. The reasons for using a base period analysis were already pointed
out earlier in this Chapter. Table 10.17 shows the average values for each of the total factor
productivity (TFP) change components calculated as detailed in Chapter 9.

Table 10.17: Base Period Malmquist GDF Index Results

Period GDF, GDF, MGDFy EFCH THCH ICH OCH RES TFP
Mar01-AprO1 | 0.695 0.738  1.0741 11415 00882 09822 1.0152 09915 1.0193
Mar01-Msy01 | 0.695 07063 0.9916  1.0398 0.9682 09705 1.0078 1.0703 1.013
Mar01-Jun01 | 0.695 0.7852  0.9598  1.2209 0.8403 0.9489 0.8947 1.0867 1.005
Mar01-Jul0l | 07037 0.7894  0.9891  1.1963 0.8797 0.9646 0.9174 1.0669 1.0176
Mar01-Aug0l | 0.7037 0.7823 11369  1.1696 10132 0.9833 1.0384 0.9944 1.1024
Mar01-Sep01 | 0.7037 0.7338  0.9865  1.0641 0.9343 09531 0929 10723 1.0176
Mar01-Oct01 | 0.7929 0.8223  0.9897  1.068 0.9391 0.9566 0.9954 1.0637 1.0322
Mar01-NovOl | 0.7929 0.7599  0.6481  0.9854 0.6653 0.6397 1.0502 1.0493 0.6642
Mar01-Dec01 | 0.7929 0.7443 0.7777 0.9592 0.8193 0.7228 1.1514 1.0418 0.7891
Mar01-Jan02 | 0.7929 0.7644  0.8219  0.9847 0.8493 0.7447 1.1567 10526 0.8449
Mar01-Feb02 | 0.7929 0.7877 0.7701 1.0144 0.7705 0.6806 1.1449 1.0457 0.7852
Mar01-Mar02 | 0.7929 0.7938 0.817 1.0257 0.8142 0.7198 1.1485 1.0594 0.8413
Mar01-Apr02 | 0.7929 0.7716 0.7863 1.0017 0.801 0.6845 1.1872 1.0417 0.7958
Mar01-May02 | 0.7929 0.781  0.7823 10117 07835 0.6793 1.1722 1.0564 0.8023
Mar01-Jun02 | 0.7929 0.7877 0.8145 1.0269 0.8076 0.7197 1.1343 1.0701 0.8497
Mar01-Jul02 | 0.7929 0.8062 0.7509  1.0506 0.723 0.6686 1.0972 1.0887 0.7791
Mar01-Aug02 | 0.7929 0.793  0.7694  1.0379 0.7449 0.6816 1.103 1.083 0.7956
Mar01-Sep02 | 0.7929 07933  0.7814  1.0347 0.761 07113 1.0891 1.0961 0.8194

We show in Table 10.17 the average efficiency scores obtained for each month (GDF})
and also for the base period (GDF;). The average efficiency score for the base period is
not the same in all rows of Table 10.17 because some branches closed during the period of

analysis and the sample size progressively reduced.
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10.5 Technical Profit Efficiency Results Over Time

TFP change is mostly around 1 before November 2001 when there was a big decrease in
TFP when compared with March 2001. After November 2001 TFP change levels are well
below unity implying that input and output levels of March 2001 were better than those
of all months of 2002. In Figure 10.5, we show the evolution on TFP during the period of
analysis and also the evolution of the two major components of TFP (the Malmquist GDF
based index (MGDF) and the residual component (RES)).

Figure 10.5: Total Factor Productivity Measures
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In Figure 10.5 it is clear the big decline in TFP that happened in November 2001
when compared to the TFP levels of March 2001. The main reason behind this decline
seems to be supply costs that on average doubled after November 2001, as can be seen in
the descriptive statistics presented in Table F.1 of Appendix F. The branch manager was
consulted again on the data and told us that values were correct. She did not, however,
enter into details concerning the reasons why this happened.

In Figure 10.5 it is also clear that the residual component contributes little to explaining
the TFP change. In fact RES values are mostly around 1, and it is the MGDF component
that to a greater extent explains the variation in TFP. The MGDF component in turn con-
sists of two components: technological change (THCH) and the efficiency change (EFCH).
Efficiency change suffers big fluctuations before November 2001, but after that efficiency
change fluctuates little and is very close to 1. In Figure 10.6 this behaviour of the efficiency
change component is clear. On the graph at the left we can see that it is technological
change that most explains changes in the MGDF, especially after November 2001. Tech-
nological change values are almost always below one, meaning that mainly technological
regress happened from March 2001 to September 2002, being the exception the month of
August 2001. On the graph at the right in Figure 10.6 we can see that technological regress
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Figure 10.6: Technological and Efficiency Change
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is mostly explained by input deterioration (increase) rather than by output regress. In fact
output change only falls well below 1 in June and July 2001, showing a marked increasing
trend between October 2001 and May 2002.

Ignoring monthly fluctuations we can say that in the period between March 2001 and
September 2002 there was a marked technological regress measured by a value of 0.761 in
Table 10.17. TFP change also decreased from March 2001 to September 2002 (see value
of 0.8194 in Table 10.17) but at a lower rate than technological change. This is partly
explained by positive values of efficiency change in the same period.

Note that in the profit efficiency assessment issues of seasonality were not raised because

we found no evidence of the existence of seasonal effects in explaining frontier movements.

10.6 Summary

In this Chapter we present some results regarding the three dimensions of performance
introduced in earlier Chapters. Transactional efficiency, operational efficiency, and profit
efficiency results were produced for every branch for a number of months (January to
September 2002 for the transactional efficiency assessment, and March 2001 to September
2002 for the operational and profit efficiency assessments). Detailed results (efficiency
scores, target levels, and efficient peers) from a single month are shown for illustrative
purposes, but similar results could be obtained for all other months. In addition, we
also analyse efficiency evolution over time since the bank is not particularly interested in
knowing whether a bank branch was efficient in a particular month, but rather whether
a particular bank branch experienced a consistent behaviour (efficient or inefficient) over
the whole period of analysis. As changes in efficiency from one month to another may
be explained not only by changes in the relative position of a branch against the efficient
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frontier, but also by movements of this frontier, it was important to ascertain the degree of
technological movements throughout the period of analysis. This was done using Malmquist
based indexes that were adapted to the specificities of each assessment.

Conclusions from our time analysis point out for an increase in total factor productivity
from January 2002 to September 2002 in the transactional efficiency assessment. Efficiency
change is not marked in this assessment and mainly technological change explains the
growth in TFP. The best month in terms of technological progress was July 2002. In the
operational efficiency assessment there was also a marked technological progress from March
2001 to September 2002, and the months of July 2001 and July 2002 were also the months
where biggest progress happened. Technological progress in this case seems, however, to
be mostly due to seasonal effects that pushed the frontier upwards. Note that during the
Summer there is a big flow of emigrants entering Portugal, and that they only have one
or two months during the whole year to to business with their bank in Portugal. This .
potentially moves the operational efficient frontier upwards during these months and this
movement may be confounded with technological change.

The operational and transactional efficiency assessments, though having a different time
length, show both technological progress and deem the month of July as being potentially
better than the others in transactional and operational terms. Contrary, the profit effi-
ciency assessment showed a high decrease in total factor productivity from March 2001 to
September 2002. This seems to be mainly related with an abnormal change in inputs in
the month of November 2001. In fact the output change component of technological change
shows progress after November 2001. Before November 2001 the best month in terms of

TFP growth was August 2001, but after November the best months are January and June
2002.
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Chapter 11

Empirical Analysis - Cross

analysing Efficiency Results

In the previous Chapter we presented the main results from the transactional, opera-
tional, and profit efficiency assessments. In this Chapter we do an integrated analysis of
bank branches in all three dimensions. Furthermore, we try to understand and justify some

efficiency behaviours of bank branches in light of data that is available but was not directly

used in any of the efficiency assessments.

11.1 An Integrated Assessment of Branches Efficiency

Transactional efficiency was computed for the months of January to September 2002.
On the other hand operational and profit efficiency were measured for a longer period
(from March 2001 to September 2002). This fact implies the loss of some results in terms
of the operational and profit assessments when these are to be compared with transactional
efficiency results. For this reason, in this cross-efficiency analysis we first focus on the op-
erational and profit efficiency dimensions of bank branches. Later we refer to transactional
efficiency in comparison to operational and profit efficiency results. Note that operational
and profit efficiency are the most important dimensions of the overall efficiency of bank
branches. Indeed, the importance of calculating transactional efficiency is ephemeral be-
cause as soon as new distribution channels become effective means of distributing financial
services, measuring the efficiency of bank branches in moving transactions to these alter-
native channels is no longer an issue. Nevertheless, in the short run this dimension of

performance is important and is likely to affect other performance dimensions, especially
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relating to operational practices.

11.1.1 Operational Vs profit Efficiency

Operational and profit efficiency are intended to capture different dimensions of bank
branches’ activities. In this sense it is possible that some bank branches are good in terms
of generating profit but not so good in terms of attracting and maintaining a client base, or
vice versa. In order to investigate how bank branches perform in each of these dimensions,
results from operational efficiency and profit efficiency assessments are compared. In this
comparison we consider average operational and profit efficiency over the period that runs
from March 2001 to September 2002 for those bank branches which remained opened during
this period (branches that closed at some stage of the analysis are not considered). In Figure
11.1 we show a matrix with both these dimensions. We choose in Figure 11.1 a threshold

Figure 11.1: Profit Efficiency and Operational Efficiency
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of about 90% for good efficiency and consider that below this value branches have scope
to improve performance. This threshold is arbitrary since the managerial implications of

drawing such a graph do not really depend on the chosen threshold, but on the number of
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units close to the ideal performance (1, 1). Bank Branches with good performance both in
profit and operational terms can be classified as ‘stars’ and they represent benchmarks to be
emulated by inefficient branches. Problematic branches are those that have low operational
and profit technical efficiency. Special attention should be given to these branches and
action is needed to diagnose their problems and to improve their performance.

Bank branches with good profit efficiency and low operational efficiency do not exist in
our data set. The absence of bank branches in this quadrant is in line with common sense,
since branches with low operating efficiency (i.e. showing a poor performance in selling and
attracting new customers) are not likely to be efficient in generating profits. Our results
therefore are not surprising.

There are several branches with low profit efficiency but high operational efficiency. If
high operating efficiency is maintained by these branches sooner or later these shall show
also higher profit efficiency. In fact operational efficiency is measuring the extent to which,
given staff and location, branches increase their customer base and their sales while serving
their clients. If a branch is good in this task it is likely to have a high value of the various
banking products at the bank. That is, outputs on the profit efficiency assessment are likely
to reach a reasonable volume, which is good in terms of revenues and profit. Note, however,
that in order to be good in terms of profit efficiency inputs (staff and supply costs), which
are a source of costs also play an important role.

The correlation coefficient between average profit and average operational efficiency is
0.3. This is not a very high correlation coefficient but it is statistically significant at the 5%
level. This means that, in a limited way, higher operational efficiency tends to be related
with higher profit efficiency as is noticeable in Figure 11.1.

We present in Table 11.1 the average performance levels of branches found in the star
quadrant and those within the ‘high operational-low profit efficiency’ (HOLP) quadrant
both in terms of profit and operational variables. (The detailed values of units in these
quadrants can be found in Tables G.1, G.2, G.3, and G.4 in Appendix G). The values in Ta~
ble 11.1 are averages for the period going from March 2001 to September 2002. Comparing
the values of variables for the star units with the same values for the units in the HOLP
quadrant we can note that the main differences are on the variables used in the profit
efficiency assessment, where star branches using slightly higher levels of inputs produce
much more outputs than HOLP branches. In terms of the variables used in the operational

efficiency assessment, star branches are better on some variables while HOLP branches are
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Table 11.1: Average Characteristics of bank Branches in Two Quadrants
Profit Efficiency
Inputs QOutputs

staffil  supplycost | dcpace othress credb credass
Star 5.86 35.33 5819.53 17954.14 12808.86 1661.65

HOLP | 5.303 34.87 4463.81 11163.33 9622.41 948.31

Operational Efficlency

Inputs Outputs
Rent Staff ACli  Adepacc AOthre ATdep ACredb ACredas  Trans
Star | 2.674 5.862 -37.25 51.38 84.92 -84.34 73.72 39.81 5493.51
IHOLP | 3.083 5.29 -21.85 20.72 67.05 -66.85 69.96 15.90 4750.10

better on others. Therefore, in terms of growth, branches in each of the star and HOLP
quadrants are comparable, but star branches have on average a higher amount of the vari-
ous types of products. Look for example at branch B19 and compare it with the star bank
branch B50 (see details in Table 11.2). In terms of the profit efficiency assessment, B19

Table 11.2: Average Characteristics of Two Bank Branches

Profit Efficiency
Inputs OQutputs
staff  supplycost depace othress credb credass
B50 5 30.298 5171.234 16231.155 9686.86 955.648
B19 5 35.87 3516.093 12338.948 10434.321 B871.681
Operational Efficlency
Inputs Outputs
Rent Staff ACl Adepace AOthre ATdep ACredb ACredas Trans
B50 | 2.432 5 -20.789 38.764 67.832 -138.924 32,085 3.5 4349.868
B19 | 4.681 5 -40.722 6.464 -47.838 -86.054 39.865 8 4649.342

has the same number of staff and higher supply costs than branch B50 but produces less of
most outputs. In terms of average monthly growth that is measured through operational
efficiency both these bank branches are comparable, but in fact branch B19 would need
to show higher growth levels if it was to attain the same profit efficiency as branch B50.
The profit and operational efficiency assessments are, therefore, complementary since one
analyses the growth that bank branches experience from one month to the other, while
the other analyses how this growth translates in volume of products that generate revenue
to the bank branch. That is, the operational efficiency assessment takes a more dynamic
perspective of the activities of the bank branches, while the profit assessment is more static

because it looks at stocks rather than at flows.
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11.1 An Integrated Assessment of Branches Efficiency

11.1.2 Transactional Vs Operational Vs Profit Efficiency

The comparison between transactional, operational, and profit efficiency is done for the
period from January to September 2002. The relationship that most interests us is that
between operational efficiency and transactional efficiency, since profit efficiency is not as
related with the ability of bank branches to improve the use of other means of distribution
as it is operational efficiency. Using the average efficiency values for this period we present

in Figure 11.2 a matrix where operational efficiency is cross compared with transactional

efficiency.
Figure 11.2: Transactional Efficiency and Operational Efficiency
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In the same way as before we can see some bank branches in the star quadrant show-
ing high operational and transactional efficiency. There are two bank branches, B4 and
B54, that present 100% average efficiency for both dimensions being therefore benchmark
branches as far as these two dimensions are considered. There are virtually no branches

in the low operational-high transactional quadrant in Figure 11.2, meaning that branches
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11.1 An Integrated Assessment of Branches Efficiency

that are good performers in moving transactions to other means of distribution are, in
general, also good performers in operational activities that are not transactions related.
Indeed the correlation coefficient between these two performance dimensions is 0.46 and
this value is statistically significant at the 1% level even if relatively low. This fact confirms
our initial hypothesis that moving transactions to alternative means of distributions gives
branch staff more time to dedicate to value added activities that lead to increasing sales
and the customer base of the bank branch. Since operational efficiency measures the extent
to which the branch is able to perform well these value-added activities, the fact that no
bank branches can be found in the low operational-high transactional quadrant means that
there is a positive relationship between the ability of bank branches to move transactions
away from the bank branch and its ability to increase value-added activities.

As far as the relationship between transactional efficiency and profit efficiency is con-

cerned results are as shown in Figure 11.3.

Figure 11.3: Transactional Efficiency and Profit Efficiency
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The comparison between profit efficiency and transactional efficiency does not show any
significant relationship between the two measures of performance. The correlation coeffi-
cient is -0.1848 and this value is not statistically significant. Note that the negative sign is
particularly due to two bank branches (B36 and B45) that present very low profit efficiency.
This is due to their age (as will be seen in the next section) since they are very young bank
branches. Excluding these two bank branches the correlation coefficient is -0.077 and still
non-statistically significant. Although there is no correlation between profit and transac-
tional efficiency, we can still identify branches in each of the four quadrants but we can find

very different behaviours in terms of each efficiency dimension. For example, for a given
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level of transactional efficiency we can see branches exhibiting very high or very low profit
efficiency levels. On the other hand, there are only 4 branches in the ‘star’ quadrant, much
less than the number found in the previous cross-comparison matrixes. Branch B54 is the
only branch showing 100% average efficiency in all dimensions (transactional, operational
and profit) for the period between January and September 2002. Apart from this branch,
branches B4, B7, and B33 are the only ones presenting high performance levels in all di-
mensions under analysis, being the star branches when all three dimensions of efficiency
are cross-compared.

In summary we can state that branches B4, B7, B54, and B33 can be regarded as
benchmark branches from the perspective of all three dimensions of performance, while
branches B39, B31, B30, B3, B19, B11, B42, B22, B55, and B40 can be regarded as poor

performers in the three performance dimensions.

11.2 Efficiency Vs Age and Competition

It was noted earlier that some environmental variables were not included in the efficiency
assessments, though it is possible they affect branch performance. We now investigate how
these variables relate to the various efficiency scores calculated. In Figure 11.4 we plotted

the profit and operational efficiency dimensions against the age of bank branches.

Figure 11.4: Profit and Operational Efficiency Vs Age
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If the hypothesis that younger bank branches experience higher growth was true, then
one would expect younger bank branches to be more operationally efficient than older bank
branches. In fact, as the operational efficiency assessment does not include age, results
would be biased towards younger bank branches if age was in fact important. In the right
side graph in Figure 11.4 we cannot see any bias of younger bank branches being more
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operationally efficient and therefore it seems that the exclusion of the factor age did not
distort our results (note also that there are not many young bank branches in our sample).
The correlation coefficient between age and operational efficiency is -0.2045 but this value
is not statistically significant. As far as profit efficiency is concerned, this measures the
volume or stock of the various accounts rather than its growth. This means that younger
bank branches would in principle have lower profit efficiency because they did not reach
a given output volume yet. Three bank branches seem to have been affected by their age
in the profit assessment: B36, B45 and B54 (see left side graph in Figure 11.4). These
branches are very young (less than 4 years at the beginning of March 2001) and therefore
they could not have as much volume in the various accounts as more mature bank branches.
Note that these bank branches were included in the set of ‘high operational low profit’ units
discussed in the previous section. The volume of the profit efficiency inputs and outputs
of these bank branches (see Table G.3 in Appendix G) is in fact low when compared to
other bank branches. This fact is justified by the age of these bank branches and therefore
their low profit efficiency shall not ne interpreted as problematic since it is just the result of
the evolutionary stage these branches are in. Note that the correlation coefficient between
profit efficiency and age is now positive (0.317) and it is statistically significant at the 5%
level.

Concerning the relationship between age and transactional efficiency we do not expect
this to be marked since age does not seem to be a factor affecting the ability of bank
branches to move transactions to alternative means of distribution. This is confirmed in
Figure 11.5 where bank branches present high (or low) transactional efficiency irrespective

of their age. The correlation coefficient between transactional efficiency and age is negative

Figure 11.5: Transactional Efficiency Vs Age
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(~0.145) but it is not statistically significant.
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11.2 Efficiency Vs Age and Competition

In summary age seems to be affecting mainly profit efficiency measures. The relation-
ship between age and profit efficiency is positive, while for the other performance dimen-
sions (operational and transactions) this relationship is negative (although non significant).
Recall, however, that our sample has very few young bank branches (only four branches
younger than 4 years old), meaning that most branches were old enough for any transitory
effects due to the newness to have a significant impact on their efficiency.

As far as the relationship between operational and profit efficiency and competition is
concerned we can see in Figure 11.6 that no clear pattern emerges in terms of the effects
of competition on the two efficiency measures being considered. We cannot clearly state
neither that more competition seems to lead to higher efficiency, nor that low competition

enhances efficiency. Note, however, that for one bank branch in particular, B11, the high

Figure 11.6: Profit and Operational Efficiency Vs Competition
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level of competition it faces might be one of the reasons for this bank branch exhibiting
low levels of profit and operational efficiency.

Correlation coefficients are negative in both cases and for the case of operational effi-
ciency this is statistically significant (the correlation coefficient is -0.43157). This seems
to suggest that the capacity of a branch to attract and maintain clients and increase sales
depends in a certain extent on the level of competition it faces.

As far as the relationship between transactional efficiency and competition is concerned
we do not expect a high relationship between these two variables. This fact is confirmed in
Figure 11.7, where no clear pattern emerges. The correlation coefficient is also negative in
this case (-0.22617) although it is not statistically significant.

Note that the above analysis examines the effects of age and competition on the various
efficiency dimensions independently. Obviously this type of analysis can fail to identify

joint effects of age and competition on the various efficiency dimensions. An analysis of
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Figure 11.7: Transactional Efficiency Vs Competition
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joint effects is postponed to the end of this Chapter.

11.3 Efficiency Vs Location

Apart from the contextual variables examined in the previous session we also analysed
the relationship between efficiency and the location of the bank branch. Location is divided
into the following 5 possibilities: 1 - Porto city; 2 - Porto region; 3 - Mid size cities, 4 -
Other; 5 - Shopping center. In Figure 11.8 the box plot of profit efficiency grouped by

location is shown'!. In this box plot we also show the mean values for each group and it

Figure 11.8: Profit Efficiency Vs Location
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can also be seen, on the horizontal axis, the sample size of each group (N). There seems to

'In a box plot the size of the box indicates the distance between the 25% percentile and the 75% percentile
of the distribution, with the bar in the middle of the box indicates the median. The lines extending from
the box (usually called whiskers) indicate the range of the observations (maximum and minimum values)
(Hair JR et al., 1995).
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exist differences between locations in terms of profit efficiency, especially as far as location
5 (shopping centers) is concerned. Note however, that there are only 4 observations in this
location (the same number of observations happens for location 1), which prevents us from
reaching any serions conclusions. Note also that two out of the four branches in location
5, namely those with the lowest profit efficiency, are also two young bank branches (B36
and B45) whose age did not allow yet for a full exploitation of profit potential. This means
that we cannot conclude that the profit performance of bank branches in location 5 is poor
because half of the units in this location are very young bank branches.

Even though some statistical assumptions are not satisfied by our variable (profit ef-
ficiency) we attempted to do some ANOVA tests using SPSS (see Hair JR et al., 1995).
Testing for the differences in the 5 locations leads to the conclusion that these are not
statistically significant because the F statistic is very small (smaller than F critical). In
fact the within groups variance is higher than the variance between groups, meaning that
it is unlikely that differences in profit efficiency are due to the location where the branch
is in.

In Figure 11.9 we show the box plot when operational efficiency is the variable under

analysis. In this case the statistical tests also point to no significant differences in group

Figure 11.9: Operational Efficiency Vs Location
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means, which is confirmed by an inspection of the box plot. Branches in location 1 (Porto
city) show the lowest operational efficiency, though we cannot generalise that performance
of branches located in this group is worst than that of branches in other locations because
there are only 4 observations in group 1. Branches in locations 2 (Porto region) and

4 (other locations) show the highest mean and median operational efficiency, though we
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cannot conclude for the better performance of branches in these locations given that no
statistically significant difference in group means was found in our statistical tests.
In Figure 11,10 we show the box plot when transactional efficiency is the variable under

analysis. The location that shows the lowest mean and median transactional efficiency

Figure 11.10: Transactional Efficiency Vs Location
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is location 3 (mid dimension cities) and the location that shows the highest mean and
median transactional efficiency is location 5 (shopping centers). Though the statistical
tests undertaken point to no significant differences in group means, we could easily take as
a fact that branches located in a mid dimension city are not in principle as successful as
branches located in a big city or its surroundings in moving transactions from the branch to
other distribution channels. At the same time branches located in shopping centers might
be able to move transactions more easily to other channels, since the profile of clients that

use shopping center branches is in principle different from that of typical branch’s clients.

11.4 Efficiency Vs Service Quality

In Chapter 5 we explored the link between efficiency, profit and service quality. We
argued that an indirect way of incorporating quality into an efficiency analysis was through
the calculation of profit efficiency. Here we compare a service quality index with profit,
operational, and transactional efficiency measures calculated previously.

It is recalled that the bank measures service quality periodically by means of question-
naires sent to the branch’s customers. Given the information collected the bank constructs

a monthly service quality index that is then used in a twelve month moving average that
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shows the pattern on service quality for each bank branch. The service quality indexes we
use here are based on the moving average provided by the bank. In Figure 11.11 we show
the scatter plot of operational efficiency and service quality. The data on service quality
relates to September 2002, meaning that it is an average of SQ indexes from September
2001 to September 2002. The average values calculated for operational and profit efficiency

measures also consider this year period.

Figure 11.11: Operational Efficiency Vs Service Quality
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Figure 11.11 shows a link between operational efficiency and service quality which indi-
cates a positive relationship between the two variables. The correlation coefficient is 0.43
and this is significant at the 1% level. More important than analysing this relationship is,
however, the analysis of the bank branches that lie on each of the quadrants identified in
Figure 11.11. It is interesting to note that there are almost no branches on the quadrant
with low operational efficiency and high service quality, which obviously is in accordance
with the common sense feeling that bank branches providing high service quality are more
effective in increasing their customer base and in selling banking products. There is a set of
bank branches that can be seen as benchmarks in operational terms, which are those that
show at the same time high operational efficiency and high service quality. Such branches
attain growth rates that are better than those of other branches, while at the same time

they tend to serve clients with a better service quality than other bank branches.
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Comparing the same service quality index with profit efficiency the picture is as shown

in Figure 11.12.  Here the relationship between service quality and profit efficiency is not

Figure 11.12: Profit Efficiency Vs Service Quality
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as clear as before. We can find now some branches in the quadrant with low profit efficiency
and high service quality. Nevertheless, there appears to be a positive relationship between
profit efficiency and service quality, meaning that higher service bank branches tend to be
good performers both in terms of generating profits as in terms of operational growth. In
fact the correlation coefficient between service quality and profit efficiency is lower than
before (0.371) but this value is still significant at the 1% level. The weaker relationship
between profit efficiency and service quality may be due to a lag effect between the costs
of quality and the revenues accruing from superior quality. According to Kordupleski et al.
(1993) the effects of quality improvements on market share depend on the length of the
purchase cycle. In banking it might take a long time to translate quality improvements (or
deterioration) into market share and profit improvements (deterioration), since the quality
image the customer builds may require several contacts with the bank to be clearly formed
in the client’s mind. The effects of service quality improvements might, therefore, be more
immediate in terms of improving operational efficiency, while profit efficiency improvements
are likely to take longer to happen. A detailed analysis of eventual lag effects of service

quality improvement on the two performance dimensions is not, however, within the scope
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of this study.
The relationship between service quality and transactional efficiency is completely dif-
ferent from that shown before, as there appears to be no relationship between these two

performance dimensions. This can be seen in Figure 11.13.

Figure 11.13: Transactional Efficiency Vs Service Quality
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The correlation coefficient between transactional efficiency and service quality is -0.0914
and this value is not statistically significant. This fact seems to suggest that the efficiency
by which bank branches move transactions away from the bank branch does not affect
service quality. This is an important finding since it means that customers do not associate
the increasing use of alternative distribution channels (and the decreasing use of the branch

for transactional purposes) with losses in terms of service quality (nor gains).

11.5 Joint Effects of Contextual Factors on Efficiency

In the previous sections we analysed the relationship between efficiency and a number
of contextual factors such as age of the branch, level of competition, location, and service
quality. Each of these factors was analysed independently, which may be seen as a caveat
of our analysis. For this reason, we decided to analyse the joint effects of contextual factors
on the three measures of efficiency. For this purpose we used a Tobit model or censored
regression model, which handles cases where the dependent variable lies within a certain
range (0 to 1 in this case). Tobit models have been used by a number of authors in
the DEA literature in various contexts. For example, Kerstens (1996) explained efficiency
distributions of French urban transit companies through a Tobit model, Kirjavainen and
Loikkanen (1998) explained the inefficiency of Finnish secondary schools through a Tobit
model, and Chilingerian (1995) explained DEA efficiency scores of physicians through a
Tobit model.
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Tobit models are preferred to ordinary regression analysis to explain DEA efficiency
scores, because the dependent variable is censored. Nevertheless, the use of DEA efficiency
scores as the dependent variable of Tobit models does not exactly fit the underlying theory
of these models (see e.g. Chilingerian, 1995). One of the reasons for this is the fact that DEA
efficiency scores are not independent between each other. Simar and Wilson (2003) mention
this problem in Tobit analysis of DEA scores, and propose a bootstrapping approach to
solve it. As our aim in using the Tobit model is just to get a general feeling about the
joint effects of a set of variables on the DEA efficiency scores, we believe a more elaborate
analysis as that proposed by Simar and Wilson (2003) is not justified given our general
objective.

We used LIMDEP to estimate three Tobit models for each efficiency dimension (trans-
actional, operational and profit). Efficiency scores are usually converted into inefficiency
scores because the Tobit model is censored at zero. We did not perform this conversion
because LIMDEP allows for the possibility of censoring both tails. We choose this alter-
native, using a lower limit of zero and an upper limit of one. The independent variables
used in the Tobit model were, age, competition, and service quality?. In order to check for
non-linear relationships between these variables and efficiency we also considered squared
terms of the above explanatory variables. Only in some cases these terms were included in

the Tobit model as can be seen in Table 11.3, where Tobit results are shown?®.

Table 11.3: Results from Tobit models
Profit Efficlency Operational Efficlency | Transactional Efficiency
Cocfficient p-value | Coefficient p-value Cocfficient p-value
Constant 8.95 0.1595 0.725 0.0000 2.075 0.0312
SQ -24.25 0.1363 0.289 0.0217 -1.398 0.2132
Age 0.139 0.0056 | 0.1914E-04 0.9287 -0.0331 0.0841
Comp -0.631E-04 0.6704 | 0.1682E-04 0.5962 0.362E-04 0.8941
SQ? 16.62 0.1073
Age? -0.0076 0.0366
Comp? -0.476E-04  0.0056
Log-Lik 15.903 99.5091 -14.544
p-value 0.0711 0.1308 0.628

According to the Tobit model on the profit efficiency scores, the factor appearing to

?Location was not considered because the inclusion of this variable (in the form of four dummy variables)
decreased the overall quality of the three Tobit models. In addition the p-values of the dummies were jointly
non-statistical significant for the three models.

3The non-linear terms included in the Tobit models in Table 11.3 are only those that showed some level
of significance in explaining the dependent variable.
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explain better profit efficiency is the age of the bank branch (Age and Age?). All the
remaining variables are not statistically significant at the 5% level, although the service
quality, as far as its non-linear component is concerned, is statistically significant at the
10% level.

The Tobit model identifies both a negative (Age?) and a positive (Age) impact of age
on profit efficiency. This means that a non-linear relationship is identified between these
two variables. The theoretical relationship modelled by the Tobit model between the age

of the branch and profit efficiency is as shown in Figure 11.14. That is, as age increases

Figure 11.14: Theoretical relationship between age and profit efficiency
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profit efficiency is likely to increase until a certain point, but after a certain age (about 9 to
10 years old) the profit efficiency is likely to start slowly decreasing. This is an interesting
relationship identified by the Tobit model, as it models the life cycle of a bank branch with
a growth period, a maturity period and a declining period after a certain age.

As far as service quality is concerned, one would expect a positive impact of this variable
on profit efficiency. This happens for the SQ?2, but not for SQ, whose impact on profit
efficiency is negative. This also suggests a non-linear relationship between SQ and profit
efficiency although in this case the reliability of such a relationship is not supported by
statistically significant coefficients.

Concerning the Tobit model that explains operational efficiency the most important
factor is service quality, which is statistically significant at the 5% level. The relationship is
positive as expected. We did not consider in this case the non-linear factor on service quality
as it was not statistically significant. Competition seems to affect operational efficiency as
far as its squared component is concerned. This effect is negative as one would expect.
That is, the higher level of competition seems to be related with lower levels of operational
efficiency.

As far as the Tobit model that explains transactional efficiency is concerned, none of
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the variables seem to have a significant impact on explaining differences in transactional
efficiency. This finding is consistent with the previous analysis we have done, when each
contextual factor was analysed independently.

Concerning the overall quality of our Tobit models, we calculated the difference between
the Log-likelihood factor in Table 11.3 and a Log-likelihood factor obtained when all co-
efficients of the independent variables are assumed to be zero. This difference follows the
\* distribution, and the p-values obtained from this distribution are shown in Table 11.3.
The p-values show that overall the quality of our models is not very high, with the profit
efficiency model being significant at the 10% level, and the operational efficiency model
being significant at the 13% level. For the transactional efficiency model the overall quality
is even worse as the p-value is about 0.628.

In order to check for the adherence of some of the assumptions behind the Tobit model
to our data set we did some graphical tests. One of these tests was to check for the
normality of the residuals. We did some normal probability plots to do this and the results

are as shown in Figure 11.15. For the three dependent variables considered (profit efficiency,

Figure 11.15: Normal Probability Plots
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operational efficiency and transactional efficiency) there are some deviations from normality
and a number of outliers are identified. However, in none of the cases we can classify these
deviations from normality as being much severe. We also did some plots of the residuals
against each independent variable to check for unequal variances (heteroscedasticity), but

there was no evidence that this existed.
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11.6 Results from our Study Vs Pre-Conceptions of the Bank

Having produced the above results we discussed them with the manager of the network
of branches assessed in order to find out whether our results accord with perceived wisdom
of the bank. What we were interested in was mainly to know the extent to which the bank
branches identified as most efficient on this study were in fact so from the perspective of
management. For example in calculating transactional efficiency most of the variables that
should ideally be used could not be provided and therefore we used other type of variables.
This was an important limitation in measuring transactional efficiency and therefore it
was important to ascertain whether the branches that we identified as most efficient in
transactions were in fact considered so by the bank too. We showed the network manager
the results on transactional efficiency (average values from January 2002 to September
2002) and the manager agreed with our classifications for almost all branches. For example
it was agreed that branches B17, B18, B55, B20 and B53 were very poor in their role of
transferring transactions for other distribution channels, whereas branches B4, B54, B32,
B46, and B7 were very good in performing this role. Some of these branches are located in
rural areas and the manager told us that despite of this fact some of these bank branches
showed a very good performance in their transactional role.

Operational and profit efficiency performances were also showed to the network man-
ager. In this case a certain confusion arose between profit efficiency and profit in absolute
terms. When we said that a bank branch had high profit efficiency there was the ten-
dency to associate this with very high actual profits. It was important to clarify concepts
here because high profit efficiency need not correspond to high profit. It simply means
that given the staff and the supply costs of the bank branch (the two inputs considered in
the profit assessment) it is achieving a volume of the various products that is higher than
those of branches in similar conditions. Having clarified concepts it was agreed that most
of the bank branches that we identified as good performers in terms of profit efficiency,
operational efficiency, and service quality were in fact considered best performers by the
bank. The data we used for showing best and worst performers was an average of efficiency
scores from September 2001 to September 2002. Figure 11.16 considers average operational
and profit efficiency values for this period, and identifies for the best performance group
those that had high service quality levels with a circle. Our focus of discussion with the
network manager was therefore based on the three performance dimensions shown in this

figure. It was decided not to include here the transactional dimension because as we saw
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Figure 11.16: Operational Efficiency Vs Profit Efficiency
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before it is not correlated with profit efficiency and service quality. Therefore considering
best performers on the 4 dimensions (profit, operational, transactional and service quality)
would result in very few bank branches appearing as good performers overall.

It is worth noting that in analysing performance on the three dimensions mentioned
above it was found that the manager agreed more strongly on the worst rather than on
the best performers. For example the network manager showed no doubts in considering
branches B40, B42, B22, and B55 as bad performers. Some reasons were pointed out
for this, since problems at these bank branches were well known to management. For
example, one of these bank branches is located in the center of Porto and it was recognised
that technology at this branch was obsolete, and that there was a high difficulty in moving
clients to use other distribution channels. This means that branch staff are mostly occupied
with serving clients on general transactions and there is no much time left for selling. At the
same time it was recognised that personnel at this bank branch was not pro-active in trying
to sell and capturing new clients. Thus at this bank branch transactions are still the main
activity carried out by staff. For another bank branch (B22) in the worst performer group
it was said that this branch got several clients from another branch that closed and clients
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were not satisfied by this change, which was clearly influencing the overall performance of
that branch.,

As far as best performers are concerned agreement between our results and managerial
perceptions was weaker. In some cases branches identified as the best performers were
located in small rural cities and management did not expect to see these bank branches
appearing as best performers. This mainly arose due to the fact that the business volume
at these branches was not very high and therefore this type of bank branch was not seen as
contributing much to the profit of the bank as a whole. For example branch B54 shows the
highest service quality levels from September 2001 to September 2002 and also very high
operational and profit efficiencies for the same period. This bank branch is however small
(only 3 staff members) and is located in a small city, meaning that it was not expected
to be considered in the best performers group by the network manager. It was however
recognised that this bank branch was in fact a good performer given its size and the external
conditions it faces. Note that this bank branch was also very good in transactional terms
being in fact a best performer in all four dimensions considered.

One of the most important disagreements related to branch B11 which was seen by
the network manager as a role model branch. In our case this branch was classified in
the group of the worst performers since it exhibited low operational and profit efficiency
and also low service quality (note however that the values in these performance dimensions
were not the lowest (nor close to the lowest) observed). In terms of transactional efficiency
too this bank branch is not amongst the best. The reasons for this disagreement were not
completely sorted out, but one of the issues that came out related to the transactional load
at this bank branch that was in the opinion of the network manager higher than our values
showed. For example, we have values for transactions that show that on average branch
B11 performs less transactions than branch B10 and B16. This fact was considered strange
by the network manager, and therefore some error might exist in the data we have used.
Our variable concerning number of transactions at the bank branch is a sum of the following
transactions: cheque deposits, cash deposits, cash withdrawals, payment of bank cheques,
and internal transfers. It might happen that other transactions not considered here are used
by the bank to assess the transactional volume of the bank branch and therefore we are
not considering all the transactional load of bank branches. Under this circumstance bank
branches that show a high number of those transactions not considered in our assessments

might indeed appear as inefficient when they are not. This might have been the case of
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branch B11.

In a study like the one that was undertaken here it might happen that in some cases the
information concealed from the analysis is more important than the information actually
included there. It is impossible to consider all possible variables that explain differences in
performance between bank branches. It is therefore important to keep in mind that our
results only reflect differences between bank branches on the variables that were considered
on the efficiency assessments. This means that many reasons might exist for explaining
why some bank branches were considered less efficient than others. Such reasons should be
looked at in terms of the variables that were not considered in the assessment, which for
some cases might be more important than those considered. Apart from these limitations,
which are inherent to any quantitative study, we believe that this study indeed captured im-
portant performance differences between bank branches and mostly classified them rightly.
In addition, the relationships identified between the various performance dimensions con-
firmed our initial expectations regarding the link between our efficiency measures.

Finally note that the fact that managers agreed more with the identification of worst
performers can be linked with the fact that DEA by nature makes a stronger identification
of weak performers. It tries to show the branch in the best light and if it even then finds it
inefficient this means the branch is, more often than not, truly inefficient. This does not hold
for efficient branches as they may appear so through an odd combination of input-output

levels and lack of similar comparators.

11.7 Summary

In this Chapter we linked the three dimensions of performance that have been analysed
independently in the previous Chapter. From this linkage we were able to show those
bank branches performing particularly well on the operational and profit dimensions, on
the operational and transactional dimensions, and also on the profit and transactional
dimensions. Comparing pairwise the three efficiency dimensions we could conclude for a
positive relationship between operational and profit efficiency and between transactional
and operational efficiency. In contrast transactional and profit efficiency do not seem to be
related.

In this Chapter we also showed the relationship between the three performance dimen-
sions and some contextual factors not included in the analysis. It was shown that the age

of the bank branch affects particularly its profit efficiency in a positive way, the level of
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competition affects particularly its operational efficiency in a negative way, and the loca-
tion of a bank branch does not seem to affect its performance at any of the three levels.
As far as the relationship between service quality and the three performance dimensions
is concerned it was shown that there is a positive relationship between service quality and
profit efficiency and between service quality and operational efficiency. There seems to be
no relationship between service quality and transactional efficiency, which suggests that the
customers do not value negatively, nor positively, the efforts of bank branches in moving
transactions away from the branch to other distribution means.

Joint effects on efficiency of contextual factors were also analysed through Tobit models.
Results from these models are in close agreement with the analysis performed individually
for each contextual factor, with age being the factor that most explains profit efficiency, and
service quality and competition being the factors that most influence operational efficiency.
As far as transactional efficiency is concerned, none of the contextual factors considered

seem to contribute much to explaining differences in transactional efficiency across branches.
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Chapter 12

Conclusion and Further

Developments

This Chapter concludes this thesis. It is divided into two main sections. In the first
section we present the main theoretical contributions of this thesis to the literature, men-
tioning also the main findings regarding our empirical application to bank branches. In the

second section we present directions for future research regarding the measurement of bank

branches efficiency.

12.1 Contributions to the Literature

In this thesis we have made both methodological contributions and applied them to a
real life example. The methodological contributions concern the development of models
to measure efficiency when some inputs and/or outputs are negative, the development of
models to measure profit efficiency, and the development of models that provide targets
that are nearer to the production unit being assessed than targets yielded by traditional
models.

All methodological contributions in this thesis were guided by our empirical application
to bank branches, whose changing role from transactions based to sales based led to inno-
vative ways of assessing their efficiency. At the same time, it was also important to reflect
in our efficiency assessments the objectives of bank branches in the perspective of the bank
managers, and also to account for the fact that bank branches are service and for-profit
organisations. As a result we developed models to measure the efficiency of bank branches

in three efficiency areas of interest: transactions, operations, and profit. Transactional ef-
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ficiency is intended to capture the ability of a bank branch to move transactions from the
bank branch to alternative distribution channels. This objective was understood by bank
and branch managers of utmost importance given the advantages for the bank as a whole of
increasing the usage of alternative distribution channels. Operational efficiency is intended
to capture the extent to which a bank branch accomplishes its operational objectives of
attracting and maintaining customers, increasing sales, and serving clients. Finally, profit
efficiency is intended to capture the extent to which a bank branch is good at generating
revenues given the costs it faces. Each of the above efficiency measures contributes to ex-
plaining a part of the overall activity of bank branches, therefore complementing each other
to provide a wider picture of the performance of bank branches. To the authors knowl-
edge, this is the first study that considers explicitly a transactional efficiency measure, and
complements it with the operational and profit dimensions of bank branches.

In order to measure the above efficiency measures some theoretical developments were
needed. Theoretical developments needed for measuring operational efficiency relate with
DEA models to deal with negative data. We propose in Chapter 6 a new model (Range
Directional Model - RDM) for dealing with this type of data that has some advantages
over existing approaches. Firstly, the proposed approach results in an efficiency score that
is radial with respect to an ideal point (and not with respect to the origin as customary),
and secondly the proposed approach allows for two different routes to be followed towards
the efficient frontier depending on the objectives of the unit concerned. One route gives
priority to changing factors on which the production unit performs best, and the other
gives priority to changing factors on which the production unit performs worst. Given
that the RDM model results in radial efficiency scores this opened up the possibility for
calculating Malmquist indexes when data are negative. To the authors knowledge this is
the first attempt to use Malmquist indexes in situations where negative data exist.

Theoretical developments for measuring profit efficiency were also required since the
literature using DEA to assess this type of efficiency is still limited. We propose in Chap-
ter 8 a new efficiency measure: Geometric Distance Function (GDF), that can be used
to calculate overall profit efficiency and to decompose it into its technical and allocative
components. The GDF approach is developed in that Chapter both under the long run
and short run assumptions. The advantage of the GDF over existing approaches is the fact
that it is a measure capable of incorporating all the sources of inefficiency and it is also a

decomposable measure. In addition, it measures profit efficiency based on the adjustments
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required on the inputs and outputs to move from an actual point to a maximum profit
point, therefore avoiding the use of ratios between profit levels that could render negative
efficiency measures in case profit was negative.

In Chapter 9 we further extend the use of the GDF to calculate total factor productivity
(TFP) change and to decompose it into its efficiency change, technological change, and a
residual component that is scale related. The main differentiating factor regarding our
approach is that the GDF is adapted to calculate (TFP) based just on observed data. This
means that no distance functions are used as a means to calculate TFP in the multiple
input/multiple output case.

Another development put forward in this thesis (Chapter 7) is that of calculating closest
targets when non-oriented measures are used in efficiency assessments. This development
allows one to keep the original spirit of DEA of showing each production unit in the best
possible light in a non-oriented framework. Indeed, most of the models used to measure
efficiency in a non-oriented space look for targets that the the furthest to the assessed unit
rather than the closest. This is not in line with intuition nor with the way management
exercises judgment in general. The framework developed in Chapter 7 is applied in Chapter
8 to calculate technical profit efficiency.

The application to a sample of bank branches of the three efficiency measures pro-
posed in this thesis reveals some interesting insights into the functioning of bank branches,
especially when these dimensions are cross compared. For example, our results suggest a
positive link between operational and profit efficiency, and show a number of bank branches
that can be considered excellent in terms of their operational and profit objectives. At the
same time we found that transactional efficiency is positively related with operational ef-
ficiency, but no significant relationship arises between transactional efficiency and profit
efficiency. This is a result consistent with expectations since moving general transactions
from the branch to other channels (measured by transactional efficiency) is likely to affect
especially the growth of various accounts and clients at the bank branch (measured by
operational efficiency) since branch’s staff have more time to dedicate to these activities
when transactions are performed through other means. We also analysed all performance
dimensions in relation to service quality, and found positive links between service quality,
operational efficiency, and profit efficiency. On the contrary, service quality seems to be
unrelated with transactional efficiency, meaning that customers do not value negatively the

efforts of the bank branch in moving basic transactions away from the branch.
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Our empirical results were presented to the manager of the network of branches under
analysis and in general our assessments resulted in classifications that accorded prior views
on the performance of bank branches. This happened irrespective of the several data
limitations that were pointed out throughout this study, which reveals the adequacy of the

models used to assess bank branches’ performance.

12.2 Further Developments

Further developments to this thesis are possible in a number of respects. Concerning
the theoretical developments introduced in this thesis further work can be done on the
RDM model to deal with negative data, on the GDF model to measure profit efficiency,
and on the closest targets (CT) procedure.

Under the RDM model we can obtain different targets depending on the directional
vector chosen. One of the directions that we specify tends to generate targets that are close
to the closest targets that could be found. This, shows that depending on the directional
vector chosen we can in a way manipulate the closeness of the resulting targets. Therefore,
further developments on this issue would be the manipulation of the directional vector such
that RDM models could in fact provide the closest targets (according to a certain criterion)
to production units. At the same time the introduction of preference information in the
RDM model could also be a means of achieving this objective.

The RDM model is also used in this thesis to calculate Malmquist type indexes in the
presence of negative data. The resulting approach still suffers from some problems, like
the definition of an ideal point based on which the range of possible improvement is to be
calculated, and the possibility of infeasible models. Developments on this issue should pass
through solving the above problems.

Further work is also possible on the closest targets procedure, especially as far as at-
tempts to simplify the efficiency measures and the procedures for finding all efficient facets
of the production frontier are concerned. We used a given criterion of closeness in the CT
procedure, but other criteria can also be explored.

The GDF approach developed in this thesis to calculate and decompose a measure of
overall profit efficiency can also be further investigated. This should include some further
analysis on the economic interpretation of the resulting efficiency measures, since these
measures express adjustments in terms of input/output quantities but do not contain in-

formation concerning relationships between profits. At the same time the decomposition
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of allocative efficiency into scale and mix effects can also be the subject of further work.
The approach we propose starts by isolating scale effects, and mix effects are then found
residually. A reverse order for this decomposition would imply different results that could
be worth investigating.

The GDF approach is extended in this thesis to calculate total factor productivity
(TFP) change and to decompose it into a number of components. One of these components
is called residual component and we show that it is scale related. The interpretation of this
component is, however, complicated and we do not fully investigate it in this thesis. Further
work is, therefore, in need regarding this subject.

Concerning the empirical application to bank branches some more work could also be
done at this level. This would pass through a deeper involvement of the bank and branch
managers in order to try to generate some guidelines for branches to follow in order to
improve their efficiency. On the one hand a detailed analysis of each assessment should be
performed with the bank and branch managers in order to identify data limitations and try
to correct for these limitations so that assessments better reflected management views. On
the other hand, causes for good and poor performance should be analysed in more detail
with bank and branch managers, so that some remedies could be pointed out to those
branches that in fact showed some problems. The results obtained from our empirical work
provide useful information concerning the performance of bank branches but do not really
point out for directions to be followed by bank branches. From a closer involvement of the
bank in this empirical analysis such directions could be provided to bank branches.

243



References

Achabal, D. D., Heineke, J. M., and Mclntyre, S. H. (1984). Issues and perspectives on
retail productivity. Journal of Retailing, 60(3):107-127.

Adams, R. M., Berger, A. N., and Sickles, R. C. (1999). Semiparametric approaches to
stochastic panel frontiers with applications in the banking industry. Journal of Business
and Economic Statistics, 17(3):349-358.

Agrell, P. and Bogetoft, P. (2001). DEA-based regulation of health care systems. Pa-
per presented at the Tth European Workshop on Efficiency and Productivity Analysis,
Oviedo, Spain, 25-29 September 2001.

Agrell, P. J., Bogetoft, P., Brock, M., and Tind, J. (2001). Efficiency evaluation with con-
vex pairs. Paper presented at the 7th European Workshop on Efficiency and Productivity
Analysis, Oviedo, Spain, 25-29 September.

Al-Faraj, T. N., Alidi, A. S., and Bu-Bshait, K. A. (1993). Evaluation of bank branches by
means of data envelopment analysis. International Journal of Operations and Production
Management, 13(9):45-52.

Ali, A. I. and Seiford, L. M. (1990). Translation invariance in data envelopment analysis.
Operations Research Letters, 9:403-405.

Ali, A. L. and Seiford, L. M. (1993a). Computational accuracy and infinitesimals in data
envelopment analysis. INFOR, 31(4):290-297.

Ali, A. L. and Seiford, L. M. (1993b). The mathematical programming approach to ef-
ficiency analysis. In Fried, H. O., Lovell, C. A. K., and Schmidt, S. S., editors, The
measurement of productive efficiency: Techniques and Applications, pages 120-159. Ox-
ford University Press, New York, Oxford.

Allen, K. (1999). Dea in the ecological context - an overview. In Westermann, G.,

editor, Data Envelopment Analysis in the Service Sector, pages 203-235. Gabler Edition
Wissenschaft.

Allen, R., Athanassopoulos, A., Dyson, R. G., and Thanassoulis, E. (1997). Weights
restrictions and value judgements in data envelopment analysis: Evolution, development
and future directions. Annals of Operations Research, 73:13-34.

Allen, R. and Thanassoulis, E. (1996). Increasing envelopment in data envelopment
analysis. Warwick Business School Research paper N. 216.

Aly, H. Y., Grabowski, R., Pasurka, C., and Rangan, N. (1990). Technical, scale, and
allocative efficiencies in U.S. banking: an empirical investigation. The review of economics
and statistics, 72:211-218.

244



REFERENCES

Andersen, P. and Petersen, N. (1993). A procedure for ranking efficient units in data
envelopment analysis,. Management Science, 39(10):1261-1264.

Anderson, E, W., Fornell, C., and Lehmann, D. R. (1994). Customer satisfaction, market
share, and profitability: Findings from Sweden. Journal of Marketing, 58:53-65.

Appa, G. and Yue, M. (1999). On setting scale efficient targets in DEA. Journal of the
Operational Research Society, 50(1):60-69.

Asmild, M., Hougaard, J. L., Kronborg, D., and Kvist, II. K. (2003). Measuring ineffi-
ciency via potential improvements. Journal of Productivity Analysis, 19(1):59-76.

Athanassopoulos, A. D. (1997). Service quality and operating efficiency synergies for
management control in the provision of financial services: Evidence from Greek bank
branches. European Journal of Operational Research, 98:300-313.

Athanassopoulos, A. D. (1998). Nonparametric frontier models for assessing the market
and cost efficiency of large-scale bank branch networks. Journal of Money, Credit and
Banking, 30(2):172-192.

Athanassopoulos, A. D. (2000). An optimisation framework of the triad; service ca-
pabilities, customer satisfaction and performance. In Harker, P. T. and Zenios, S. A.,
editors, Performance of Financial Institutions; Efficiency, Innovation and Regulation,
pages 312-335. Cambridge University Press, Cambridge, UK.

Athanassopoulos, A. D. and Giokas, D. (2000). The use of data envelopment analysis
in banking instaitutions: evidence from the commercial bank of Greece. Interfaces,
30(March-April):81-95.

Athanassopoulos, A. D., Soteriou, A. C., and Zenios, S. A. (2000). Disentangling within-
and between-country efficiency differences of bank branches. In Harker, P. T. and Zenios,
S. A., editors, Performance of Financial Institutions; Efficiency, Innovation and Regu-
lation, pages 336-363. Cambridge University Press, Cambridge, UK.

Athanassopoulos, A. D. and Thanassoulis, E. (1995). Separating market efficiency from
profitability and its implications for planning. Journal of the Operational Research So-
ciety, 46(1):30-45.

Avkiran, N. K. (1994). Developing an instrument to measure customer service quality
in branch banking. International Journal of Bank Marketing, 12(6):10-18.

Avkiran, N. K. (1997). Models of retail performance for bank branches: predicting the
level of key business drivers. International Journal of Bank Marketing, 15(6):224-237.

Avkiran, N. K. (1999a). An application reference for data envelopment analysis in
branch banking: helping the novice researcher. International Journal of Bank Marketing,
17(5):206-220.

Avkiran, N. K. (1999b). Quality customer service demands human contact. International
Journal of Bank Marketing, 17(2):61-71.

Balk, B. M. (2001). Scale efficiency and productivity change. Journal of Productivity
Analysis, 15(3):159-183.

Banker, R. D. (1984). Estimating most productive scale size using data envelopment
analysis. European Journal of Operational Research, 17:35-44.

245



REFERENCES

Banker, R. D., Chang, l., and Cooper, W. W. (1996a). Equivalence and implementation
of alternative methods for determining returns to scale in data envelopment analysis.
European Journal of Operational Research, 89:473-481.

Banker, R. D., Chang, H., and Cooper, W. W. (1996b). Simulation studies of efficiency,
returns to scale and misspecification with nonlinear functions in DEA, Annals of Oper-
ations Research, 66:233-253.

Banker, R. D., Charnes, A., and Cooper, W. W. (1984). Some models for estimating
technical and scale inefficiencies in data envelopment analysis. Management Science,
30:1078-1092.

Banker, R. D., Charnes, A., Cooper, W. W., and Maindiratta, A. (1988). A comparison
of DEA and translog estimates of production frontiers using simulated observations from
a known technology. In Dogramaci, A. and Fare, R., editors, Applications of Modern
production theory: efficiency and productivity, pages 33-55. Kluwer Academic Publishers.

Banker, R. D., Conrad, R. F., and Strauss, R. P. (1986). A comparative application
of data envelopment analysis and translog methods: An illustrative study of hospital
production. Management Science, 32(1):30-43.

Banker, R. D., Gadh, V., and Gorr, W. (1993). A monte carlo comparison of two produc-
tion frontier estimation methods: corrected ordinar least squares and data envelopment
analysis. European Journal of Operational Research, 67:332-343.

Banker, R. D. and Maindiratta, A. (1986). Piecewise log-linear estimation of efficient
production surfaces. Management Science, 32(1):126-135.

Banker, R. D. and Maindiratta, A. (1988). Nonparametric analysis of technical and
allocative efficiencies in poduction. Econometrica, 56(6):1315-1332.

Banker, R. D. and Morey, R. C. (1986a). Efficiency analysis for exogenously fixed inputs
and outputs,. Operations Research, 34(4):513-520.

Banker, R. D. and Morey, R. C. (1986b). The use of categorical variables in data envel-
opment analysis. Management Science, 32(12):1613-1627.

Banker, R. D. and Thrall, R. M. (1992). Estimation of returns to scale using data
envelopment analysis. European Journal of Operational Research, 62:74-84.

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull algorithm for
convex hulls. ACM Transcations on Mathematical Software, 22(4):469-483. see also,
http://www.geom.umn.edu/software/qhull (last visited in December 2001).

Bardhan, 1., Bowlin, W. F., Cooper, W. W., and Sueyoshi, T. (1996). Models and
measures for effcieicncy dominance in DEA. part i: Additive models and MED measures.
Journal of the Operations Research Society of Japan, 39(3):322-332.

Barr, R. D., Seiford, L. M., and Siems, T. F. (1993). An envelopment-analysis approach
to measuring the managerial efficiency of banks. Annals of Operations Research, 45:1-19.

Bauer, P. W., Berger, A. N., and Humphrey, D. B. (1993). Efficiency and productivity
growth in U.S. banking. In Fried, H. O., Lovell, C. A. K., and Schmidt, S. S., editors,
The measurement of productive efficiency: Technigues and Applications, pages 386-413.
Oxford University Press, New York, Oxford.

246



REFERENCES

Berg, A. S., Forsund, F. R., and Jansen, E. S. (1991). Technical efficiency of Norwegian
banks: The non-parametric approach to efficiency measurement. Journal of Productivity
Analysis, 2(2):127-142.

Berg, S. A., Fgrsund, F. R., and Jansen, E. S. (1992). Malmquist indices of productivity
growth during the deregulation of Norwegian banking, 1980-89. Scandinavian Journal of
Economics, 94:5S211-S228.

Berger, A. N. (1993). ‘Distribution-free’ estimates of efficiency in the U.S. banking
industry and testes of the standard distributional approaches. Journal of Productivity
Analysis, 4:261-292.

Berger, A. N., Hancock, D., and Humphrey, D. B. (1993). Bank efficiency derived from
the profit function. Journal of Banking and Finance, 17:314-347.

Berger, A. N., Hanweck, G. A., and Humphrey, D. B. (1987). Competitive viability in
banking: Scale, acope and product mix economies. Journal of Monetary Economics,
20:501-520.

Berger, A. N. and Humphrey, D. B. (1991). The dominance of inefficiencies over scale
and product mix economies and banking. Journal of Monetary Economics, 28:117-148.

Berger, A. N. and Humphrey, D. B. (1997). Efficiency of financial institutions: In-
ternational survey and directions for future research. European Journal of Operational
Research, 98:175-212,

Berger, A. N., Leusner, J. H., and Mingo, J. J. (1994). The efficiency of bank branches.
The Wharton Financial Institutions Center, Working Paper 94-27.

Berger, A. N., Leusner, J. H., and Mingo, J. J. (1997). The efficiency of bank branches.
Journal of Monetary Economics, 40(1):141 - 162.

Berger, A. N. and Mester, L. J. (2000). Inside the black box; what explains differences
in the efficiencies of financial institutions? In Harker, P. T. and Zenios, S. A., editors,
Performance of Financial Institutions; Efficiency, Innovation and Regulation, pages 93—
150. Cambridge University Press, Cambridge, UK.

Bjurek, H. (1996). The Malmquist total factor productivity index. Scandinavian Journal
of Economics, 98(2):303-314.

Bjurek, H., Fgrsund, F. R., and Hjalmarsson, L. (1998). Malmquist productivity in-
dexes: An empirical comparison. In Fare, R., Grosskopf, S., and Russell, R. R., editors,

Indez Numbers: Essays in Honour of Sten Malmgquist, pages 217-239. Kluwer Academic
Publishers.

Bogetoft, P. (1996). DEA on relaxed convexity assumptions. Management Science,
42(3):457-465.

Bogetoft, P. and Hougaard, J. L. (1998). Efficiency evaluations based on potential (non-
proportional) improvements. Journal of Productivity Analysis, 12:233-247.

Bogetoft, P. and Hougaard, J. L. (2001). Rational inefficiencies. Paper presented at the
Exclusive DEA Workshop, Odense, Copenhagen, 21-22 September 2001.

Bogetoft, P., Tama, J. M., and Tind, J. (2000). Convex input and output projections of
nonconvex production possibility sets. Management Science, 46:858-869.

247



REFERENCES

Borges, P. C. (2000). CHESS:Changing Ilorizon Efficient Set Search. A simple principle
for multiobjective optimisation. Journal of Heuristics, 6:405-418.

Boufounou, P. V. (1995). Evaluating bank branch location and performance: A case
study. European Journal of Operational Research, 87:389-402,

Briec, W. (1998). Hé&lder distance function and measurement of technicall efficiency.
Journal of Productivity Analysis, 11(2):111-131.

Brockett, P. L., Charnes, A., Cooper, W. W., Huang, Z. M., and Sun, D. B. (1997a).
Data transformations in DEA cone ratio envelopment approaches for monitoring bank
performances. European Journal of Operational Research, 98:250-268.

Brockett, P. L., Rousseau, J. J., Wang, Y., and Zhow, L. (1997b). Implementation of
DEA models using GAMS. Research Report 765, University of Texas, Austin.

Camanho, A. S. and Dyson, R. G. (1999). Efficiency, size, benchmarks and targets for
bank branches: An application of data envelopment analysis. Journal of the Operational
Research Society, 50(9):903-915.

Canals, J. (1995). Universal Banking. Clarendon Press, Oxford.

Caves, D., Chistensen, L. R., and Diewert, W. (1982). The economic theory aof in-

dex numbers and the measurement of input, output, and productivity. Econometrica,
50(6):1393-1414.

Chambers, R. G., Chung, Y., and Fire, R. (1996a). Benefit and distance functions.
Journal of Economic Theory, 70:407-419.

Chambers, R. G., Chung, Y., and Fére, R. (1998). Profit, directional distance functions,

and Nerlovian efficiency. Journal of Optimization Theory and Applications, 98(2):351~
364.

Chambers, R. G., Fire, R., and Grosskopf, S. (1996b). Productivity growth in APEC
countries. Pacific Economic Review, 1(3):181-190.

Chambers, R. G. and Mitchell, T. (2001). Homotheticity and non-radial changes. Journal
of Productivity Analysis, 15:31-19.

Chang, K.-P. and Guh, Y.-Y. (1991). Linear production functions and the data envelop-
ment analysis. European Journal of Operational Research, 52:215-223.

Charnes, A., Clark, C., Cooper, W., and Golany, B. (1985a). A developmental study of
data envelopment analysis in measuring the efficiency of maintainance units in the US
air forces. Annals of Operations Research, 2:95-112.

Charnes, A., Cooper, W. W., Golany, B., Seiford, L., and Stutz, J. (1985b). Founda-
tions of data envelopment analysis for Pareto-Koopmans efficient empirical production
functions. Journal of Econometrics, 30:91-107.

Charnes, A., Cooper, W. W., Huang, Z. M., and Sun, D. B, (1990). Polyhedral cone-
ratio DEA models with an illustrative application to large industrial banks. Journal of
Econometrics, 46:73-91.

Charnes, A., Cooper, W. W., Lewin, A. Y., and Seiford, L. W. (1994). Data Envelopment
Analysis: Theory, Methodology and Applications. Kluwer Academic Publishers, Boston.

248



REFERENCES

Charnes, A., Cooper, W. W., and Rhodes, E. (1978). Measuring efficiency of decision
making units. European Journal of Operational Research, 2:429-444.

Charnes, A., Cooper, W. W., and Rhodes, E. (1981). Evaluating program and manage-
rial efficiency: An application of data envelopment analysis to program follow through.
Management Science, 27(6):668-697.

Charnes, A., Haag, S., Jaska, P., and Semple, J. (1992). Sensitivity of efficiency classi-
fications in the additive model of data envelopment analysis. International Journal of
Systems Science, 23:789-798.

Chase, R. B. and Heskett, J. L. (1995). Introduction to the focused issue on service
management. Management Science, 41(11):1717-1719.

Chavas, J.-P. and Cox, T. L. (1999). A generalized distance function and the analysis of
production efficiency. Southern Economic Journal, 66(2):294-348.

Chen, Y. and Alj, A. I. (2002). Output-input ratio analysis and DEA frontier. European
Journal of Operational Research, 142:476-479.

Cherchye, L., Kuosmanen, T., and Post, T. (2001). FDH directional distance functions

with an aplication to European commercial banks. Journal of Productivity Analysis,
15(3):201-215.

Cherchye, L. and Puyenbroeck, T. V. (2001a). A comment on multi-stage DEA method-
ology. Operations Research Letters, 28:93-98.

Cherchye, L. and Puyenbroeck, T. V. (2001b). Product mixes as objects of choice
in non-parametric efficiency measurement. European Journal of Operational Research,
132(2):287-295.

Cherchye, L. and Van Puyenbroeck, T. (1999a). Learning from input-output mixes
in DEA: a proportional measure for slack-based efficient projections. Managerial and
Decision Economics, 20:151-161.

Cherchye, L. and Van Puyenbroeck, T. (1999b). Non-radial efficiency and semi-radial
efficiency. In Westermann, G., editor, Data Envelopment Analysis in the Service Sector,
pages 51-64. Gabler Edition Wissenschaft.

Cherchye, L. and Van Puyenbroeck, T. (2003). profit efficiency analysis under limited
information with an application to German farm types. NEP - New Economics Papers,
Issue: nep-eff-2003-03-25.

Chilingerian, J. A. (1995). Evaluating physician efficiency in hospitals: a multivariate
analysis of best practices. European Journal of Operational Research, 80:548-574.

Chung, Y., Fare, R., and Grosskopf, S. (1997). Productivity and undesirable out-
puts: a directional distance function approach. Journal of Environmental Management,
51(3):229-240.

Coelli, T. (1998). A multi-stage methodology for the solution of orientated DEA models.
Operations Research Letters, 23:143~-149.

Coelli, T., Grifell-Tatjé, and Perelman, S. (2002). Capacity utilisation and profitabil-
ity: A decomposition of short run profit efficiency. International Journal of Production
Economics, 79:261-278.

249



REFERENCES

Coelli, T., Perelman, S., and Romano, E. (1999). Accounting for environmental influ-

ences in stochastic frontier models: with application to international airlines. Journal of
Productivity Analysis, 11(2):251-273.

Coelli, T., Rao, D. S. P., and Battese, G. E. (1998). An Introduction to Efficiency and
Productivity Analyisis. Kluwer Academic Publishers, Boston/Dordrecht/London.

Colwell, R. J. and Davis, E. P. (1992). Output and productivity in banking. Scandinavian
Journal of Economics, 94(Supplement):S111-5129.

Cook, W. D. and Hababou, M. (2001). Sales performance measurement in bank branches.
Omega, The International Journal of Management Science, 29:299-307.

Cook, W. D., llababou, M., and Tuenter, H. J. H. (2000). Multicomponent efficiency
measurement and shared inputs in data envelopment analysis: an application to sales
and service performance in bank branches. Journal of Productivity Analysis, 14:209-224.

Cook, W. D., Kazakov, A., and Roll, Y. (1994). On the measurement and monitoring
of relative efficiency of highway maintenance patrols. In Charnes, A., Cooper, W. W.,
Lewin, A. Y., and Seiford, L. W., editors, Data Envelopment Analysis, Theory, Method-
ology and Applications, pages 195-210. Kluwer Academic Publishers.

Cooper, W., Park, K. S., and Pastor, J. T. (2001). The range adjusted measure (RAM)
in DEA: A response to the comment by Steinmann and Zweifel. Journal of Productivity
Analysis, 15(2):145-152.

Cooper, W. W., Park, K. S., and Pastor, J. T. (1999). RAM: A range measure of
inefficiency for use with additive models, and relations to other models and measures in
DEA. Journal of Productivity Analysis, 11:5-42.

Cooper, W. W., Seiford, L. M., and Tone, K. (2000). Data Envelopment Analysis:
A comprehensive text with models, applications, references and DEA-Solver software.
Kluwer Academic Publishers, Boston.

Cooper, W. W., Thompson, R. G., and Thrall, R. M. (1996). Introduction: Extensions
and new developments in DEA. Annals of Operations Research, 66:3-45.

De Borger, B. and Kerstens, K. (1996). Radial and nonradial measures of technical effi-
ciency: An empirical illustration for Belgium local governments using an FDH reference
technology. Journal of Productivity Analysis, 7:41-62.

De Young, R. and Nolle, D. (1996). Foreign-owned banks in the US: Earning market
share or buying it? Journal of Money, Credit, and Banking, 28:622-636.

Dekker, D. and Post, T. (2001). A quasi-concave DEA model with an application for bank

branch performance evaluation. European Journal of Operational Research, 132(2):296-
311.

Deprins, D., Simar, L., and Tulkens, H. (1984). Measuring labour efficiency in post-
offices. In Marchand, M., Pestieau, P., and Tulkens, H., editors, The performance of
Public Enterprises: Concepts and Measurement, pages 243-267. Elsevier Science Pub-
lishers B.V., Amsterdan, North Holland.

Dervaux, B., Kerstens, K., and Vanden-Eeckaut, P. (1998). Radial and nonradial static
efficiency decompositions: A focus on congestion. Transportation Research, 32B(5):299-
312.

250



REFERENCES

Diewert, E. R. and Nakamura, A. O. (2003). Index number concepts, measures and

decompositions of productivity growth. Journal of Productivity Analysis, 19(2/3):127-
159.

Doukas, J. and Switzer, L. N. (1991). Economies of scale and scope in Canadian branch
banking. Journal of International Financial Markets Institutions and Money, 1:61-84.

Drake, L. and Howcroft, B. (1994). Relative efficiency in the branch network of a UK

bank: An empirical study. Omega: The International Journal of Management Science,
22(1):83-90.

Drake, L. and Howcroft, B. (1995). Measuring the relative efficiency of the selling func-
tion: An application of data envelopment analysis to UK bank branches. Loughborough
University Banking Centre, Working Paper N. 89/95.

Dusansky, R. and Wilson, P. W. (1994). Technical efficiency in the decentralized care of
the developmentally disabled,. Review of Economics and Statistics, 76:340-345.

Dusansky, R. and Wilson, P. W. (1995). On the relative efficiency of alternative models
of producing a public sector output: The case of the developmentally disabled. European
Journal of Operational Research, 80:608-618.

Dyckhoff, H. and Allen, K. (2001). Measuring ecological efficiency with data envelopment
analysis. European Journal of Operational Research, 132(2):312-325.

Dyson, R. G. and Thanassoulis, E. (1988). Reducing weight flexibility in data envelop-
ment analysis. Journal of the Operational Research Society, 39(6):563-576.

ECB (1999a). The effects of technology on the EU banking systems. European Central
Bank, July.

ECB (1999b). Possible effects of EMU on the EU banking systems in the medium and
long term. European Central Bank, February.

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal
Statistical Society, Series A, general 120(Part 3):253-281.

Faulhaber, G. R. (1995). Banking markets; productivity, risk, and customer satisfaction.
Working paper no. 95-14, The Warthon Financial Institutions Center.

Ferrier, G. D. and Lovell, C. A. K. (1990). Measuring cost efficiency in banking: Econo-
metric and linear programming evidence. Journal of Econometrics, 46:229-245.

Fare, R., Grifell-Tatjé, E., Grosskopf, S., and Lovell, C. A. K. (1997a). Biased tech-
nical change and malmquist productivity index. Scandinavian Journal of Economics,
99(1):119-128,

Fire, R. and Grosskopf, S. (1994a). Cost and Revenue Constrained Production. Springer-
Verlag, New York.

Fire, R. and Grosskopf, S. (1994b). Estimation of returns to scale using data envelopment
analysis :a comment. European Journal of Operational Research, 79:379-382.

Fére, R., Grosskopf, S., and Lee, H. (1990). A nonparametric approach to expen-
diture constrained profit maximization. American Journal of Agricultural Economics,
12(3):574-581.

251



REFERENCES

Fire, R., Grosskopf, S., and Lee, W.-F. (2001). Productivity and technical change: the
case of Taiwan. Applied Economics, 33(15):1911-1925.

Fire, R., Grosskopf, S., and Lovell, A. K. (1994a). Production Frontiers. Cambridge
University Press, UK.

Fire, R., Grosskopf, S., and Lovell, C. A. K. (1985). The Measurement of Efficiency of
Production. Kluwer-Nijhoff Publishing, Boston.

Fire, R., Grosskopf, S., and Norris, M. (1997b). Productivity growth, technical progress
and efficiency changes in industrialized countries: Reply. The American Economic Re-
view, 87(5):1040-1043.

Fiire, R., Grosskopf, S., Norris, M., and Zhang, Z. (1994b). Productivity growth, tech-
nical progress and efficiency changes in industrialised countries. American Economic
Review, 84:66-83.

Fére, R., Grosskopf, S., and Roos, P. (1998). Malmquist productivity indexes: A sur-
vey of theory and practice. In Fire, R., Grosskopf, S., and Russell, R. R., editors,

Index Numbers: Essays in Honour of Sten Malmquist, pages 127-190. Kluwer Academic
Publishers.

Fire, R., Grosskopf, S., and Weber, W. L. (1989). Measuring school district performance.
Public Finance Quarterly, 17(4):409-428.

Fére, R. and Li, S. K. (1998). Inner and outer approximations of technology: a data
envelopment analysis approach. European Journal of Operational Research, 105:622-625.

Fire, R. and Lovell, C. A. K. (1978). Measuring the technical efficiency of production.
Journal of Economic Theory, 19(1):150-162.

Fére, R. and Primont, D. (1995). Multi-output production and duality: Theory end
applications. Kluwer academic publishers, Boston, London, Dordrecht.

Frei, F. X. and Harker, P. T. (1999). Projections onto efficient frontiers: theoretical and
computational extensions to DEA. Journal of Productivity Analysis, 11(3):275-300.

Frei, F. X., Harker, P. T., and Hunter, L. W. (2000). Inside the black box: What
makes a bank efficient? In Harker, P. T. and Zenios, S. A., editors, Performance of
Financial Institutions; Efficiency, Innovation and Regulation, pages 259-311. Cambridge
University Press, Cambridge, UK.

Fried, H. O., Schmidt, S. S., and Yaisawarng, S. (1999). Incorporating the operational
environment into a nonparametric measure of technical efficiency. Journal of Productivity
Analysis, 12:249-267.

Forsund, F. R. (1993). Productivity growth in Norwegian ferries. In Fried, H. O., Lovell,
C. A. K., and Schmidt, S. S., editors, The measurement of productive efficiency: Tech-
niques and Applications, pages 10000-159. Oxford University Press, New York, Oxford.

Fersund, F. R. (1996). On the calculation of the scale elasticity in DEA models. Journal
of Productivity Analysis, 7:283-302.

Fgrsund, F. R. (1998). The rise and fall of slacks: Comments on quasi-malmquist pro-
ductivity indices. Journal of Productivity Analysis, 10:21-34.

252



REFERENCES

Fgrsund, F. R. (2001). Categorical variables in DEA. ICER Working Paper.

Fgrsund, F. R. and Ilernaes, E. (1994). A comparative analysis of ferry transport in
Norway. In Charnes, A., Cooper, W. W., Lewin, A. Y., and Seiford, L. W., editors, Data
Envelopment Analysis, Theory, Methodology and Applications, pages 285-311. Kluwer
Academic Publishers.

Fgrsund, F. R. and Hjalmarsson, L. (1979). Generalised Farrell measures of efficiency:
an application to milk processing in Swedish dairy plants. The Economic Journal,
89(June):294-315.

Fgrsund, F. R., Lovell, C. A. K., and Schmidt, P. (1980). A survey of frontier production
functions and of their relationship to efficiency measurement. Journal of Econometrics,
13:5-25.

Fukuyama, H. (2000). Returns to scale and scale elsticity in data envelopment analysis.
European Journal of Operational Research, 125(1):93-112.

Fukuyama, H. (2003). Scale characterizations in a DEA directional technology distance
function framework. European Journal of Operational Research, 144(1):108-127.

Giokas, D. (1991). Bank branch operating efficiency: A comparative application of DEA

and the loglinear model. Omega: The International Journal of Management Science,
19(6):549-557.

Golany, B., Phillips, F., and Rousseau, J. (1993). Models for improved effectiveness
based on DEA efficiency results. IIE Transactions, 25(6):2-10.

Golany, B. and Roll, Y. (1993). Some extensions of techniques to handle non-discretionary
factors in data envelopment analysis. Journal of Productivity Analysis, 4:419-432.

Golany, B. and Roll, Y. (1994). Incorporating standards via DEA. In Charnes, A.,
Cooper, W. W., Lewin, A. Y., and Seiford, L. W., editors, Data Envelopment Analysis,
Theory, Methodology and Applications, pages 313-328. Kluwer Academic Publishers.

Golany, B. and Storbeck, J. E. (1999). A data envelopment analysis of the operational
efficiency of bank branches. Interfaces, 29(3):14-26.

Golany, B. and Yu, G. (1997). Estimating returns to scale in DEA. European Journal of
Operational Research, 103:28-37.

Gold, B. (1981). Changing perspectives on size, scale, and returns: An interpretative
survey. Journal of Economic Literature, XIX:5-33.

Gong, B.-H. and Sickles, R. (1992). Finite sample evidence on the performance of stochas-

tic frontiers and data envelopment analysis using panel data. Journal of Econometrics,
51:259-284.

Green, R. H., Cook, W., and Doyle, J. (1997). A note on the additive data envelopment
analysis model,. Journal of the Operational Research Society, 48:446-448.

Green, R. H., Doyle, J. R., and Cook, W. D. (1996). Efficiency bounds in data envelop-
ment analysis. European Journal of Operational Research, 89:482-490.

253



REFERENCES

Greene, W. H. (1993). The econometric approach to efficiency analysis. In Fried, H. O.,
Lovell, C. A. K., and Schmidt, S. S., editors, The measurement of productive efficiency:
Techniques and Applications, pages 68-119. Oxford University Press, New York, Oxford.

Grifell-Tatjé, E. and Lovell, C. A. K. (1995). A note on the Malmquist productivity
index. Economics Letters, 47(2):169-175.

Grifell-Tatjé, E., Lovell, C. A. K., and Pastor, J. T. (1998). A quasi-malmquist produc-
tivity index. Journal of Productivity Analysis, 10:7-20.

Gronroos, C. (2000). Service Management and Marketing, a customer relationship man-
agement approach. John Wiley and Sons, LTD, second edition.

Grosskopf, S. (1996). Statistical inference and nonparametric efficiency: A selective
survey. Journal of Productivity Analysis, 7:161-176.

Haag, S. E. and Jaska, P. V. (1995). Interpreting inefficiency ratings: an application of
bank branch operating efficiencies. Managerial and Decision Economics, 16:7-14.

Habenicht, W. (1982). Quad Trees, a datastructure for discrete vector optimization
problems. Lecture Notes in Economics and Systems, 209:136-145.

Hair JR, J. F., Anderson, R. E., Tatham, R. L., and Black, W. C. (1995). Multivariate
Data Analysis with Readings. Prentice Hall International Editions, fourth edition.

Halme, M., Joro, T., and Koivu, M. (2002). Dealing with interval data in data envelop-
ment analysis. European Journal of Operational Research, 137:22-27.

Hartman, T. E., Storbeck, J. E., and Byrnes, P. (2001). Allocative efficiency in branch
banking. European Journal of Operational Research, 134:232-242,

Heskett, J. L., Jones, T. O., Loveman, G. W., Sasser, W. E., and Schlesinger, L. A.
(1994). Putting the service-profit chain to work. Harvard Business Review, March-
April:164-174.

Hjalmarsson, L., Kumbhakar, S. C., and Heshmati, A. (1996). DEA, DFA and SFA: A
comparison. Journal of Productivity Analysis, 7:303-327.

Howecroft, J. B. (1989). Retail branch banking issues in the United Kingdom. Journal of
Retail Banking, XI(1):11-17.

Howcroft, J. B. (1991). Customer satisfaction in retail banking. Service Industries
Journal, 11(1):11-17,

Howcroft, J. B. (1992). Contemporary issues in UK bank delivery systems. International
Journal of Service Industry Management, 3(1):39-56.

Howecroft, J. B. and Beckett, A. (1993). Change in the UK bank branch networks: A
customer perspective. The Service Industries Journal, 13(4):267-288.

Howland, A. (2000). The evolution of the bank branch. Canadian Banker, 1st quarter:25-
29.

Huang, Z., Li, S., and Rousseau, J. (1997). Determining rates of change in data envel-
opment analysis. Journal of the Operational Research Society, 48:591-599.

254



REFERENCES

Humphrey, D. B. and Pulley, L. B. (1997). Bank’s responses to deregulation; profits,
technology, and efficiency. Journal of Money, Credit, and Banking, 29(1):73-93.

Kamakura, W. A. (1988). A note on the use of categorical variables in data envelopment
analysis. Management Science, 34(10):1273-1276.

Kamakura, W. A., Lenartowicz, T., and Ratchfrord, B. T. (1996). Productivity assess-
ment of multiple retail outlets. Journal of Retailing, 72(4):333-356.

Kantor, J. and Maital, S. (1999). Measuring efficiency by product group:integrating DEA
with activity-based accounting in a large mideast bank. Interfaces, 29(3):27-36.

Kerstens, K. (1996). Technical efficiency measurement and explanation of French urban
transit companies. Transportation Research A, 30(6):431-452.

Kerstens, K. and Vanden-Eeckaut, P. (1995). Technical efficiency measures on DEA and
FDH: A reconsideration of the axiomatic literature. CORE discussion paper 9513, Center
for Operations Research and Econometrics, Universite Catholique de Louvain, Belgium.

Kirjavainen, T. and Loikkanen, H. A. (1998). Efficiency differences of Finnish senior

secondary schools: An application of DEA and Tobit analysis. Economics of Education
Review, 17(4):377-394.

Klassen, K. J., Russel, R. M., and Chrisman, J. J. (1998). Efficiency and productivity
measures for high contact serviges. The Service Industries Journal, 18(4):1-18.

Knox, K. J., Blankmeyer, E., and Stutzman, J. R. (1999). Relative economic efficiency in

Texas nursing facilities: A profit function analysis. Journal of Economics and Finance,
23(3):199-213.

Kordupleski, R. E., Rust, R. T., and Zahorik, A. J. (1993). Why improving quality
doesn’t improve quality (or whatever happened to marketing?). California Management
Review, 35(Spring):82-95.

Krivonozhko, V. E., Utkin, O. B., Volodin, A. V., and Sablin, I. A. (2001). Application
of DEA approach to production units with some negative outputs. Paper presented at
ORA43, University of Bath, UK, 4-6 September.

Kumbhakar, S. C. (1996). A parametric approach to efficiency measurement using a
flexible profit funtion. Southern Economic Journal, 63(2):473-487.

Kumbhakar, S. C. (2001). Estimation of profit functions when profit is not maximum.
American Journal of Agricultural Economics, 83(1):1-19.

Kuosmanen, T. (1999a). Data envelopment analysis of non-convex technology:with em-
pirical evidence from the batting technology of Finnish super-league pesis players. Work-
ing paper 224, Helsinki School of economics and business administration.

Kuosmanen, T. (1999b). Some remarks on scale efficiency and returns to scale in DEA.
Helsinki School of economics and business administration.

Kuosmanen, T. (2001). DEA with efficiency classification preserving conditional convex-
ity. European Jounal of Operational Research, 132(2):326-342.

255



REFERENCES

Kuosmanen, T. and Post, T. (2001). Measuring economic efficiency with incomplete
price information with an application to European commercial banks. European Journal
of Operational Research, forthcoming.

Kuosmanen, T. and Post, T. (2002). Quadratic data envelopment analysis. Journal of
the Operational Research Society, 53(11):1204-1214.

Lau, L. J. and Yotopoulos, P. A. (1971). A test for relative efficiency and application to
indian agriculture. The American Economic Review, 61:94-109.

Lewis, B. R. (1989). Quality in the service sector: A review. International Journal of
Bank Marketing, 7(5):4-12.

Lovell, C. A. K. (1993). Production frontiers and productive efficiency. In Fried, II. O.,
Lovell, C. A. K., and Schmidt, S. S., editors, The measurement of productive efficiency:
Techniques and Applications, pages 3-67. Oxford University Press, New York, Oxford.

Lovell, C. A. K. (1995). Measuring the macroeconomic performance of the Taiwanese
economy. International Journal of Production Economics, 39:165-178.

Lovell, C. A. K. (2001). The decomposition of Malmquist productivity indexes. Pa-
per presented at the 7th European Workshop on Efficiency and Productivity Analysis,
Oviedo, Spain, 25-29 September.

Lovell, C. A. K. and Pastor, J. T. (1995). Units invariant and translation invariant DEA
models. Operations Research Letters, 18:147-151.

Lovell, C. A. K. and Pastor, J. T. (1997). Target setting: An application to a bank
branch network. European Journal of Operational Research, 98:290-299,

Lovell, C, A. K. and Schmidt, P. (1988). A comparison of alternative approaches to
the measurement of productive efficiency. In Dogramaci, A. and Fére, R., editors, Ap-
plications of Modern production theory: efficiency and productivity, pages 3-32. Kluwer
Academic Publishers, Boston, Dordrecht, Lancaster.

Lovell, C. A. K. and Sickles, R. C. (1983). Testing efficiency hypothesis in joint produc-
tion: a parametric approach. Review of Economics and Statistics, 65(1):51-58.

Lovelock, C. (1996). Services Marketing. Prentice Hall International Editions, 3rd edi-
tion.

Loveman, G. W. (1998). Employee satisfaction, customer loyalty, and financial perfor-
mance: An empirical examination of the service profit chain in retail banking. Journal
of Service Research, 1(1):18-31.

Lozano Vivas, A. (1997). Profit efficiency for Spanish savings banks. European Journal
of Operational Research, 98:381-394.

Lothgren, M. and Tambour, M. (1996). Alternative approaches to estimate returns to
scale in DEA-models. Working paper series in economics and finance 90, Stockholm
School of Economics.

Manandhar, R. and Tang, J. C. S. (2001). The evaluation of bank branch performance

using data envelopment analysis. Journal of High Technology Management Research,
0:1-17.

256



REFERENCES

McCarty, T. A. and Yaisawarng, S. (1993). Technical efficiency in New Jersey school
districts. In Fried, II. O., Lovell, C. A. K., and Schmidt, S. S., editors, The measurement
of productive efficiency: Techniques and Applications, pages 271-287. Oxford University
Press, New York, Oxford.

Molineux, P., Altunbas, Y., and Gardener, E. (1996). Efficiency in European Banking.
John Wiley and Sons, LTD.

Muiiiz, M. A. (2002). Separating managerial inefficiency and external conditions in data
envelopment analysis. European Journal of Operational Research, 143:625-643.

Mukherjee, A., Nath, P, and Pal, M. (2003). Resource, service quality and performance
triad: a framework for measuring the efficiency of banking services. Journal of the
Operational Research Society, 54(7):723-735.

Murphy, N. B. and Orgler, Y. E. (1982). Cost analysis for branching systems: method-

ology, test results and implications for management. Journal of Financial Research,
5:181-188.

Nash, D. and Karwat-Sterna, A. (1996). An application of DEA to measure branch cross
selling efficiency. Computers and Operations Research, 23(4):385-392.

Olesen, O. B. and Petersen, N. C. (1996). Indicators of ill-conditioned data sets and
model misspecification in Data Envelopment Analysis: An extended facet approach.
Management Science, 42(2):205-219.

Olesen, O. B. and Petersen, N. C. (2002). Identification and use of efficient faces and
facets in DEA. Forthcoming in Journal of Productivity Analysis.

Ondrich, J. and Ruggiero, J. (2002). Outlier detection in data envelopment analysis: an
analysis of jackknifing. Journal of the Operational Research Society, 53(3):342-346.

Oral, M., Kettani, O., and Yolalan, R. (1992). An empirical study on analysing the
produtivity of bank branches. IIE Transactions, 24(5):166-176.

Oral, M. and Yolalan, R. (1990). An empirical study on measuring operating efficiency
and profitability of bank branches. European Journal of Operational Research, 46(3):282-
204,

Orea, L. (2002). Parametric decomposition of a generalizes Malmquist productivity
index. Journal of Productivity Analysis, 18(1):5-22.

Parasuraman, A., Zeithaml, V. A., and Berry, L. L. (1985). A conceptual model of service
quality and its implications for future research. Journal of Marketing, 49(Fall):41-50.

Parasuraman, A., Zeithaml, V. A., and Berry, L. L. (1988). Servqual: A multiple-

item scale for measuring consumer perceptions of service quality. Journal of Retailing,
64(1):12-40.

Parkan, C. (1987). Measuring the efficiency of service operations: An application to bank
branches. Engeneering Costs and Production Economics, 12:237-242.

Pastor, J. T. (1994). How to discount environmental effects in DEA: an application

to bank branches. Working paper N. 011/94, Depto. De Estadistica e Investigacion
Operativa, Universidad de Alicante, Spain.

257



REFERENCES

Pastor, J. T. (1996). Translation invariance in data envelopment analysis: A generalisa~
tion. Annals of Operations Research, 66:93-102.

Pastor, J. T., Ruiz, J. L., and Sirvent, I. (1999). An enhanced DEA Russell graph
efficiency measure. European Journal of Operational Research, 115:596-607.

Pavlopoulos, P. G. and Kouzelis, A. K. (1989). Cost behaviour in the banking industry:
evidence from a Greek commercial bank. Applied Economics, 21:285-293.

Petersen, N. C. (1990). Data envelopment analysis on a relaxed set of assumptions.
Management Science, 36(3):305-314.

Podinovski, V. V. (1999). Side effects of absolute weight bounds in DEA models. Euro-
pean Journal of Operational Research, 115:583-595.

Podinovski, V. V. (2001). DEA models for the explicit maximisation of relative efficiency.
European Journal of Operational Research, 131:572-586.

Podinovski, V. V. and Athanassopoulos, A. (1998). Assessing the relative efficiency
of decision making units using DEA models with weights restrictions. Journal of the
Operational Research Society, 49(5):500-508.

Portela, M. C. A. S., Borges, P., and Thanassoulis, E. (2003). Finding closest targets in
non-oriented DEA models: The case of convex and non-convex technologies. Journal of
Productivity Analysis, 19(2/3):251-269.

Portela, M. C. A. S. and Thanassoulis, E. (2001). Decomposing school and school type
efficiency. European Journal of Operational Research, 132(2):114-130.

Post, T. (1999). Estimating non-convex production sets. imposing convex input sets
and output sets in Data Envelopment Analysis. Paper presented at the Sixth European
Workshop on Efficiency and Productivity Analysis, Copenhaguen.

Post, T. (2001a). Estimating non-convex production sets - imposing convex input sets
and output sets in data envelopment analysis. European Journal of Operational Research,
131(1):132-142.

Post, T. (2001b). Transconcave data envelopment analysis. European Jounal of Opera-
tional Research, 132(2):374-389.

Py, B. (1990). Statistique Descriptive. Economica, Paris, 3¢ Edition edition.

Radecki, L. J., Wenninger, J., and Orlow, D. K. (1996). Bank branches in supermarkets.
Current Issues in Economics and Finance, 2(13):1-6.

Ray, S. C. (1988). Data envelopment analysis, nondiscretionary inputs and efficiency: an
alternative interpretation. Socio-Economic Planning Sciences, 22(4):167-176.

Ray, S. C. (1991). Resource-use efficiency in public schools: A study of Connecticut data.
Management Science, 37(12):1620-1628.

Ray, S. C. (2001). On an extended decomposition of the Malmquist productivity index.
Paper presented at the 7th European Workshop on Efficiency and Productivity Analysis,
Oviedo, Spain, September 25-29.

258



REFERENCES

Ray, S. C. and Desli, E. (1997). Productivity growth, technical progress and effi-
ciency changes in industrialized countries: Comment. The American Economic Review,
87(5):1033-1039.

Reichheld, F. F. and Sasser, W. E. J. (1990). Zero defections: Quality comes to services.
Harvard Business Review, Sept/Oct:103-109.

Roll, Y., Cook, W. D., and Golany, B. (1991). Controlling factor weights in data envel-
opment analysis. IIE Transactions, 23(1):2-9.

Roth, A. V. and Jackson III, W. E. (1995). Strategic determinants of service quality and
performance: Evidence from the banking industry. Management Science, 41(11):1720-
1733.

Rousseau, J. J. and Semple, J. H. (1993). Notes: Categorical outputs in data envelopment
analysis. Management Science, 39(3):384-386.

Rity, T. (2002). Efficient facet based efficiency index: A variable returns to scale speci-
fication. Journal of Productivity Analysis, 17(1/2):65-82.

Ruggiero, J. (1996). On the measurement of technical efficiency in the public sector.
European Journal of Operational Research, 90:553-565.

Ruggiero, J. (1998). Non-discretionary inputs in data envelopment analysis. European
Journal of Operational Research, 111(3):461-469.

Ruggiero, J. and Bretschneider, S. (1998). The weighted Russel measure of technical
efficiency. European Journal of Operational Research, 108:438-451.

Russell, R. R. (1985). Measures of technical efficiency. Journal of Economic Theory,
35(1):109-126.

Rust, R. T., Zahorik, A. J., and Keiningham, T. L. (1995). Return on quality (ROQ):
Making service quality finacially accountable. Journal of Marketing, 59(April):58-70.

Schaffnit, C., Rosen, D., and Paradi, J. C. (1997). Best practice analysis of bank branches:
An application of DEA in a large canadian bank. European Journal of Operational
Research, 98:269-289.

Schneider, B. (1991). Service quality and profits: Can you have your cake and eat it,
too? Human Resource Planning, 14(2):151-157.

Seiford, L. M. and Zhu, J. (1999). An investigation of returns to scale in data envelopment
analysis. Omega, The International Journal of Management Science, 27:1-11.

Seiford, M. L. and Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation.
European Journal of Operational Research, 142(1):16~20.

Sevcovic, D., Halicka, M., and Brunovsky, P. (2002). DEA analysis for a large structured
bank branch network. Forthcoming in Central European Journal of Operations Research.

Sherman, H. D. (1984). Improving the productivity of service business. Sloan Manage-
ment Review, Spring:11-23.

Sherman, H. D. and Gold, F. (1985). Bank branch operating efficiency: Evaluation with
DEA. Journal of Banking and Finance, 9(2):297-315.

259



REFERENCES

Sherman, . D. and Ladino, G. (1995). Managing bank productivity using data envel-
opment analysis (dea). Interfaces, 25(March-April):60-73.

Simar, L. and Wilson, P. W. (2003). Estimation and inference in two-stage, semi-

parametric models of production processes. Tecnhical Report 0310, IAP Statistics Net-
work.

Soteriou, A. and Stavrinides, Y. (2000). An internal customer service quality data en-
velopment analysis model for bank branches. International Journal of Bank Marketing,
18(5):246-252.

Soteriou, A. and Zenios, S. A. (1999). Operations, quality and profitability in the provi-
sion of banking services. Management Science, 45(9):1221-1238.

Soteriou, A. C. and Stavrinides, Y. (1997). An internal customer service quality data
envelopment analysis model for bank branches. International Journal of Operations and
Production Management, 17(8):780-789.

Staat, M. (1999). Treating non-discretionary variables one way or the other: implica-
tions for efficiency scores and their interpretation. In Westermann, G., editor, Data
Envelopment Analysis in the Service Sector, pages 23-49. Gabler Edition Wissenschaft.

Steinmann, L. and Zweifel, P. (2001). The range adjusted measure (RAM) in DEA:
Comment. Journal of Productivity Analysis, 15(2):139-144.

Thanassoulis, E. (1993). A comparison of regression analysis and data envelopment
analysis as alternative methods for performance assessments. Journal of Operational
Research Society, 44(11):1129-1144.

Thanassoulis, E. (1999a). Data envelopment analysis and its use in banking. Interfaces,
29(3):1-13.

Thanassoulis, E. (1999b). Setting achievement targets for school children. Education
Economics, 7(2):101-119,

Thanassoulis, E. (2001). Introduction to the theory and application of Data Envelopment
analysis: A foundation text with intefrated software. Kluwer Academic Publishers.

Thanassoulis, E. and Allen, R. (1998). Simulating weights restrictions in data envelop-
ment analysis by means of unibserved DMUs. Management Science, 44(4):586-594.

Thanassoulis, E., Boussofiane, A., and Dyson, R. G. (1995). Exploring output quality
targets in the provision of perinatal care in England using data envelopment analysis.
European Journal of Operational Research, 80:588-607.

Thanassoulis, E. and Dyson, R. (1992). Estimating preferred input-output levels using

data envelopment analysis. European Journal of the Operational Research Society, 56:80-
97.

Thanassoulis, E., Dyson, R. G., , and Foster, M. J. (1987). Relative efficiency assessments
using data envelopment analysis: An application to data on rates departments. Journal
of Operational Research Society, 38(5):397-411.

Thanassoulis, E., Portela, M. C. A. S., and Allen, R. (2003). Incorporating value judg-
ments in DEA. In Cooper, W. W., Seiford, L. W., and Zhu, J., editors, DEA Handbook.
Kluwer Academic Publishers.

260



REFERENCES

Thompson, R., Langemeier, L., Lee, C., Lee, E., and Thrall, R. M. (1990). The role of
multiplier boundas in efficiency analysis with application to kansas farming. Journal of
Econometrics, 46:93-108.

Thompson, R. and Thrall, R. (1994). Polyhedral assurance regions with linked con-
straints. In Cooper, W. and Whinston, A., editors, New directions tn computational
economics, pages 121-133. Kluwer Academic Publishers.

Thompson, R. G., Dharmapala, P. S., Rothenberg, L. J., and Thrall, R. M. (1996).
DEA/AR efficiency and profitability of 14 major oil companies in US exploration and
production. Computers and Operations Research, 23(4):357-373.

Thompson, R. G., Dharmapala, P. S., and Thrall, R. M. (1995). Linked-cone DEA
profit ratios and technical efficiency with application to illinois coal mines. International
Journal of Production Economics, 39:99-115.

Thompson, R. G., Singleton, J. F. D., Thrall, R. M,, and Smith, B. A. (1986). Com-
parative site evaluations for locating a high-energy physics lab in Texas. Interfaces,
16:35-49.

Thrall, R. M. (1996). The lack of invariance of optimal dual solutions under translation.
Annals of Qperations Research, 66:103-108.

Thrall, R. M. (2000). Measures in DEA with an application to the Malmquist index.
Journal of Productivity Analysis, 13(2):125-137.

Tofallis, C. (1996). Improving discernment in DEA using profiling. Omega, The Inter-
national Journal of Management Science, 24(3):361-364.

Tone, K. (1993). An e-free dea and a new measure of efficiency. Journal of the Operations
Research Society of Japan, 36(3):167-174.

Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analsysis.
European Journal of Operational Research, 130:498-509.

Tone, K. and Sahoo, B. K. (2003). Scale, indivisibilities and production function in data
envelopment analysis. International Journal Production Economics, 84:165-192.

Tortosa-Ausina, E. (2002). Bank cost efficiency and output specification. Journal of
Productivity Analysis, 18(3):199-222.

Tulkens, H. (1993). On FDH efficiency analysis: Some methodological issues and ap-
plications to retail banking, courts and urban transit. Journal of Productivity Analysis,
4:183-210.

Tulkens, H. and Malnero, A. (1996). Nonparametric approaches to the assessment of
the relative efficiency of bank branches. In Mayes, D. G., editor, Sources of productivity
growth, pages 223-244. Cambridge University Press, Cambridge.

Tulkens, H. and Vanden-Eeckaut, P. (1995). Non-parametric efficiency, progress and
regress measures for panel data: methodological aspects. European Journal of Opera-
tional Research, 80(3):474-499.

Varian, H. R. (1992). Microeconomic analysis. W.W. Norton and Company, 3rd edition.

261



REFERENCES

Vassiloglou, M. and Giokas, D. (1990). A study of the relative efficiency of bank branches:

An application of data envelopment analysis. Journal of Operational Research Society,
41(7):591-597.

Wheelock, D. C. and Wilson, P. W. (1999). Technical progress, inefficiency, and pro-

ductivity change in U.S. banking, 1984-1993. Journal of Money, Credit, and Banking,
31(2):212-234.

Wilson, P. W. (1995). Detecting influential observations in data envelopment analysis.
Journal of Productivity Analysis, 6:27-45.

Wong, Y. H. B. and Beasley, J. E. (1990). Restricting weight flexibility in data envelop-
ment analysis. Journal of Operational Research Society, 41(9):829-835.

Xue, M. and Harker, P. T. (1999). Overcoming the inherent dependency of DEA efficiency
scores: A bootstrap approach. Working paper 99-17 Wharton Financial Institutions
Center.

Yu, G., Wei, Q., Brockett, P., and Zhou, L. (1996). Construction of all DEA efficient
surfaces of the production possibility set under the generalized data envelopment analysis
model. European Journal of Operational Research, 95:491-510.

Zardkoohi, A. and Kolari, J. (1994). Branch office economies of scale and scope: Evidence
from savings banks in Finland. Journal of Banking and Finance, 18:421-432.

Zeithaml, V. A. (2000). Service quality, profitability, and the economic worth of cus-
tomers: what we know and what we need to learn. Journal of the Academy of Marketing
Science, 28(1):67-85.

Zeithaml, V. A., Berry, L. L., and Parasuraman, A. (1996). The behavioral consequences
of service quality. Journal of Marketing, 60:31-46.

Zenios, C. V., Zenios, S. A., Agathocleous, K., and Soteriou, A. C. (1999). Benchmarks
of the efficiency of bank branches. Interfaces, 29(3):37-51.

Zhang, Y. and Bartels, R. (1998). The effect of sample size on the mean efficiency in
DEA with an application to electric distribution in Australia, Sweden and New Zeland.
Journal of Productivity Analysis, 9:187-204.

Zhu, J. (2000). Setting scale efficient targets in DEA via returns to scale estimation
method, Journal of the Operational Research Society, 51(3):376-378.

Zhu, J. and Shen, Z. (1995). A discussion of testing DMUs returns to scale. European
Journal of Operational Research, 81:590-596.

Zieschang, K. (1984). An extended Farrell technical efficiency measure. Journal of
Economic Theory, 33:387-396.

Zofio, J. L. and Lovell, C. A. K. (2001). Graph efficiency and productivity measures: An
application to U.S agriculture. Applied Economics, 33(11):1433-1442.

262



Appendix A

Detailed Results for CT procedure

Table A.1: Illustrative Bank Branches Data
Unit Staff  Other Operating  Deposit Credit Interest FDH VRS
Costs Costs Accounts Revenue  Eff. Eff.
B3 16.819 24471 4892.629 10238.760  52.234
B5 11.243 23.558 4777.107  B8756.227 52.449
B9 18.441 35.090 6450.385 12479.115 64.644
B10 10.106 23.104 5223.611 12572.231 61.332 100% 100%
B11 15.129 32.781 7666.449 10221.426  67.682 100% 100%
B13 12.979 23.658 4991.984 10194.377 48.583
B15 11.717 29.314 4070.630 6418.995 40.328
B16 18.306 31.359 7561.477 21922.138 101.725 100% 100%
B17 16.505 31.574 6322.393  17323.595 81.404 100%
B19 12.211 24.411 3663.067 10103.516  49.062
B20 11.981 17.857 3899.831 10658.024  51.052 100% 100%
B21 12.689 25.489 4797.797 10281.063 48.822
B22 16.166 26.062 3946.813 7358.401 46.214
B26 12.041 19.688 5524.905 7393.716 48.912 100% 100%
B27 10.021 16.780 3394.509  8269.236 39,565 100% 100%
B29 12.739 18.505 5635.758 6667.397 63.048 100% 100%
B50 12.505 17.508 4745.698  9603.156 48.199 100% 100%
B51 15.178 21.418 5758.861 6007.936 64.210 100%
B52 14.146 22.291 4391.541 8259.170 50.503 100%
B53 12.959 20.117 5372.053  7323.490 64,076 100%
B56 9.073 19.259 2888.434 8694.691 39.974 100% 100%
B57 9.747 13.004 2107.062  5012.420 24.202 100% 100%
B58 10.639 22.566 3344.774 10203.887  43.311 100%
B59 13.338 24.820 4354.301 10889.840 57.033
Average 13.195 23.529 4824.253  9872.617 54.523
Max 18.441 35.090 7666.449 21922.138 101.725
Min 9.073 13.004 2107.062  5012.420 24.202
Stdev 2.646 5.494 1356.082  3640.361 15.456
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Detailed Results for CT procedure

Table A.2: Results from Additive Units Invariant Model (values are rounded)

Unit Peers Slacks BRWZ
(e1,€2,81,22,83) Efficiency
B3 B16(0.503), B50(0.497) (1.39, 0, 1268.6, 5557.1, 22.87) 68.30%
B5  B10(0.80), B16(0.113), B50(0.086) (0, 0, 670.53, 4620.72, 12.33) 78.04%
B9 B18 (0.135, 3.73, 1111.09, 9443.02, 37.08) 64.70%
B13 B10(0.431), B16(0.247), B29(0.323) (0, 0, 941.5, 2780.4, 23.3) 76.17%
B15 B10(0.804), B16{0.196) (0, 4.8, 1612.31, 7990.23, 28.94) 53.58%
B17 B10(0.22), B16(0.78) (0, 2.03, 725.72, 2545.43, 11.45) 85.36%
B19  B10(0.67), B16(0.22), B29(0.1) (0, 0, 2122.7, 3870.92, 21.38) 68.42%
B21  B10(0.66), B16(0.31), B29(0.03) (0, 0, 1152.3, 4970.8, 24.9) 71.42%
B22 B16(0.62), B50(0.38) (0.078, 0, 2537.8, 9852.6, 35.04) 53.37%
B51 B16(0.26), B29(0.32), B50(0.42) (1.09, 0, 0, 5859.3, 2.6) 79.29%
B52  B10(0.077), B16(0.314), B50(0.61) (0, 0, 1276.16, 5444.8, 15.5) 71.41%
B53  B10(0.078), B16(0.11), B20(0.25), (0, 0, 0, 2521.204, 0) 91.46%
B29(0.55), B50(0.006)
B58  B10(0.83), B16(0.02), B29(0.15) (0, 0, 1980.7, 1564.91, 18.98) 73.05%
B59 B10(0.462), B16(0.326), B29(0.212) (0, 0, 1718.96, 3478.2, 17.84) 74.56%

Table A.3: Results from RAM Model (values are rounded)

Unit Peers Slacks BRWZ
(e1,e2,81,32,33) Efficiency
B3 B10(0.83), B16 (0.17) (5.36, 0, 718.04, 3881.43, 15.79)  66.28%
BS B10(0.945), B16 (0.055) (0.69, 0, 575.05, 4330.11, 11.11)  77.14%
B9 B16 (0.13, 3.73, 1111.1, 9443.02, 37.08) 64.70%
B13 B10(0.933), B16(0.067) (2.32, 0, 388.43, 3004.95, 15.5) 74.62%
B15 B10(0.804), B16(0.196) (0, 4.6, 1612.31, 7990.23, 28.94)  53.58%
B17 B10(0.22), B16(0.78) (0, 2.03, 725.72, 2545.43, 11.45)  85.36%
B19 B10(0.842), B16(0.158) (0.81, 0, 1930.65, 3948.88, 18.66)  67.63%
B21 B10(0.71), B16(0.29) (0.22, 0, 1101.04, 4991.63, 24.18) 71.23%
B22 B10(0.642)B16(0.358) (3.12, 0, 2114.5, 8563.9, 29.6) 51.89%
B51 B10(0.285), B16(0.125), B29(0.59) (2.5, 0,0, 4243.7, 3.18) 77.68%
B52 B10(0.823), B29(0.177) (3.6, 0, 904.9, 3269.15 11.13) 68.87%
B53 B10(0.25), B16(0.04), B29(0.72) (0.66, 0, 234.62, 1365.72, 0) 91.00%
B58 B10(0.883), B29(0.117) (0.225, 0, 1927.1, 1586.7, 18.22) 72.71%
B59 B10(0.79), B16(0.21) (1.53, 0, 1355.25, 3625.82, 12.7)  73.24%
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Detailed Results for CT procedure

Table A.4: Results from CT Procedure (values are rounded)

Unit Facet/Peers BRWZ
(h1,ha,91,92,93) Efficiency
B3 Fs/B10(0.41), B11(0.26), B26(0.33) (0.72, 1, 1.22, 1, 1.13) 71.50%
B5  Fy/B10(0.25), B26(0.36), B27(0.21), B29(0.17) (1, 0.84, 1.05, 1, 1) 90.42%
B9 Fs/B11(0.81), B16(0.19) (0.85, 0.93, 1.185, 1, 1.15)  80.52%
B13 F1/B16(0.06), B29(0.07), B50(0.86) (0.994,0.78,1, 1, 1.085)  86.42%
B15 F3/B29(0.45), B50(0.14), B57(0.41) (0.98, 0.55, 1, 1, 1.118) 73.83%
B17 Fs/B10(0.1), B11(0.32) B16(0.59) (1, 0.98, 1.165, 1, 1.07) 92.27%
B19 F,/B20(0.9), B29(0.02), B57(0.08) (0.967, 0.715, 1.0337, 1, 1) 83.22%
B21 Fs/B10(0.37), B11(0.35), B26(0.28) (0.98, 1, 1.28, 1, 1.23) 85.45%
B22 Fes/B11(0.49), B26(0.51) (084, 1,1.664, 1.2, 1.26)  68.49%
B51 Fs/B11(0.19), B16(0.01), B29(0.8) (0.87, 1, 1.05, 1.24, 1) 86.03%
B52 Fs/B10(0.07), B11(0.18), B26(0.75) (0.88, 1, 1.34, 1, 1.053) 84.52%
B53  Fy/B10(0.03), B11(0.09), B16(0.02), B29(0.86) (1, 1, 1.086, 1.015, 1) 96.87%
B58 F4/B10(0.41), B56(0.59) (0.89, 0.924, 1.15, 1, 1.126)  83.45%
B59 F1/B16(0.08), B20(0.76), B29(0.16) (0.945, 0.767, 1.0278, 1,1)  84.82%
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Appendix B

Properties of the GDF defined in
model (8.4)

Gl-0<G(xy)<;

G2- G(ax,a™ly) < -tng(x, y),a > 1and G(ax,aty) > ;‘;G(x, yha<l;
G3- G(ax,y) £ 1G(xy) CG(xy),a21;

G4- G(x,ay) £ oG(x,y) £G(x,¥),0<a <1

G1 Proof: The GDF cannot be greater than 1. In order for this to happen the numera-
tor in (8.4) should be greater than the denominator. However, as every 6; in the numerator
is €1, and every [, in the denominator is > 1, GDF > 1 results in an impossibility. This
means that the maximum value of G(x,y) is 1, happening when the numerator equals the
denominator. As every 6; in the numerator is < 1, and every 3, in the denominator is > 1,
the equality between the numerator and denominator can only happen when all 8; and all
B are 1.

The GDF may be zero when some inputs (but not all, as we assume that it is not
possible to produce outputs with zero inputs) are zero. For zero outputs the model cannot
find a feasible solution as it would be possible to find an infinitely large 3, associated with

the zero output.

G2 Proof: This property states that G(x,y), satisfies sub-homogeneity (see for exam-
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Properties of the GDF defined in model (8.4)

ple Russell, 1985) of degree minus two. Indeed,
a(IT;0;)/™
oo~ (11, B )"

. \\1/m
‘“i“{aeﬁgl((f—?ﬁ»ur | (@ie)zio, (Bra")yro) € T, 0<6: <1, fr 2 1} =

Glax,a~ly) < éG(x,y) for a > 1, and G(ax,a"ly) > aliG(x, y)fora<1

Glax,a™ly) = min{ | (6iezio), Br(a™ yro)) € T, 0<6: L1, Br 2 1} @

G3 and G4 Proof: These properties relate with the weak monotonicity properties of

the geometric distance function. The input monotonicity implies that
aé(H.-G,-)U -
(T Br) 7"

(ab; 1/m
min { LEECINTE | (@) pre) € T, 020151, B2 1) =

G(ax,y) = min{ | Bi(azio), Bryre) € T, 056; L1, Br 2 1} <

G(ax,y) < %G(x, y) for a 2 1= G(ax,y) < G(x,y)

The output monotonicity implies that

.A.\1/m
G(x,ay) = min {;% | (Bi%io, Br(ayro)) € T,056; <1, Br 2 1} &
. (TTs(6:)) /™
min {HW | (BiTios Br(ayro)) € T, 056; <1, Br 2 1} =

G(x,ay) < aG(x,y) for a < 1= G(x,ay) < G(x,y)
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Appendix C

Malquist Index based on the GDF

Input and Output Change Components

According to Fére et al. (1998, 2001) technical change is the product of input biased
technical change (IBTECH), output biased technical change (OBTECH) and magnitude of
technical change (MATECH), all defined in (C.1).

D"*Yzy,31)  D(zerr,ue) \3
IBTECH = ( D(z¢, ye) 8 DHI(IHI'yt))

DYze41,9e41) _ D(zesr, 1)\ 3
OBTECH =
(D‘“(rm,mﬂ) DY(z441,Yt) )

Dt(mhyf.)
TE = el vl 1. L C.1
MA CH = E“l( = t) ( )

Consider that the distance functions in (C.1) are CRS input oriented and can be ex-
pressed as DY(zq,3) = %::-;% for the single input/output case (note that Fare et al. (2001)
defined the components in (C.1) for output oriented measures. As under CRS input and
output efficiency measures are equal it does not matter the model orientation in calculating

these components). We can, therefore, write the above (C.1) equivalently as (C.2).

*t41 »t
IBTECH = (Z:- “_‘;‘,)%
t Tyt

st4+1

OBTECH = (”‘*‘1 -:+1)%
Yey

t/ Y
MATECH = Tt gt C.2
x;t+1/y:t+1 ( )

Note that the IBTECH and the OBTECH are very similar to our input and output
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change components except that in each case one of the ratios is inverted. This inversion
results from the existence of the magnitude of technical change component. In fact when
multiplying all the 3 components in (C.2) we get (C.3), which is equivalent to our product
of input change and output change components of technological change.

t+1 ¢ at+1 i
(-": * ” Ty ) % (Ut+1 % y{‘ ) % ( -"-':c/y:‘ )2 o
t t+1 t t+1 t+1 t
IR 1 vt oyt i et
t *t41 t+1 *
(mzu . 2t ) x (L x Yt ) 3
) Gt o7

Equivalence with RD Approach

For the single input/output case the GDF and RD approaches are equivalent as long
as efficiency models are the same in both procedures. If, for example, VRS radial input
oriented targets are used to compute the GDF efficiency, then the equivalence between the
technological change and the efficiency change components of the RD and GDF approaches
can be readily seen in (9.5), since the GDF measure would equal the radial VRS input
oriented measure. The equivalence between the residual component in (9.11) and the RD
scale component is proved next for the single input/output case. When input oriented
efficiency measures are calculated both in relation to a CRS (c) technology and in relation
to a VRS (v) technology, then the scale component of the RD approach is defined by (C.4),
where '7:(') = m:t(r)/zh being m:t(r) the target input in frontier r that can be either c or v.

- (8 ) (S )
%% _e " AT E M c)/zttﬂ(v)

(C4)
Consider the CRS technology defined by y = bz, then we can replace projections on ¢ by:
-’L‘::.(f) = Ye+1/bt, E:t(c) = u/by, E:itl(c) = Yt+1/be+1,and -'f:H-l(c) = yt/be+1, which results

in (C.4) being equivalent to (C.5).

*t(v) Lt 1(v)

*t(v «t+1(v)\ 1/2 —"—(—Tz_ 7 _;(_)-'1 > 3 .
Scalerp = ((mﬂlbt)/z”(l) Sl )) = (z’il : )5 (C.5)

(we/be) /23 (ye/bega) /i) e ne

The latter expression in (C.5) is exactly equivalent to the scale component in (9.11) since
in input oriented measures target outputs are equal to observed outputs. The GDF resid-

ual component is, therefore, equal to the scale component of the RD approach, having
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the advantage of not requiring the computation of efficiency scores in relation to a CRS
technology. Note that recently Orea (2002) developed a Malmquist index approach, in
the parametric context, that also does not require the computation of efficiency scores in
relation to CRS technologies. The GDF approach uses, instead of projections on the CRS

frontier, output relationships on the VRS frontier to account for scale effects.
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Appendix D

Transactional Efficiency Results

Table D.1: Descriptive Statistics of Transactional Data from January 2002 to September
2002

Rent N.ETMs N.Clients N.Registr N.TrasCATs N.Dep.ETMs
Avg 3.136 2.538 3412.481 11.385 2920.38 892.846
Jan Max | 5.574 6 5812 42 23508 3607
2002 Min 0.816 1 971 1 0 136
StDev | 1.049 0.979 1097.692 7.814 3519.742 695.779
Avg 3.136 2.558 3428.692 5.462 2397.68 764.231
Feb Max 5.574 6 5833 13 21822 3577
2002 Min 0.816 1 995 0 0 83
StDev | 1.049 0.958 1098.76 3.427 3139.92 593.207
Avg 3.136 2.558 3420.75 7.731 2624.4 863.885
Mar Max 5.574 6 5823 26 22831 3592
2002 Min 0.816 1 1001 0 231 65
StDev | 1.049 0.958 1096.749 4.919 3337.967 664.822
Avg 3.136 2.558 3429.885 9.635 2645.627 933.75
Apr Max 5.574 6 5923 41 22390 3610
2002 Min 0.816 2 1022 1 0 101
StDev | 1.049 0.916 1102.347 8.698 3274.547 770.013
Avg 3.136 2.558 3429.192 24 2702.25 998.577
May Max 5.574 6 5928 B4 24926 3874
2002 Min 0.816 2 1036 2 239 85
StDev | 1.049 0.916 1008.236 19.52 3550.697 788.563
Avg 3.136 2.558 3165.731 41.308 2417.712 840.404
June Max 5.574 6 6132 126 22991 2869
2002 Min 0.816 2 1002 3 199 60
StDev | 1.049 0.916 1100.724 30.657 3295.806 601.306
Avg 3.136 2.558 3146.308 44.808 2869.288 969.519
July Max 5.574 6 6049 207 25613 3496
2002 Min 0.816 2 1022 7 246 90
StDev | 1.049 0.916 1090.531 38.783 3686.977 T18.145
Avg 3.136 2.558 3140.019 23.615 2400.981 818.096
Aug Max 5.574 6 5685 126 23263 3241
2002 Min 0.816 2 1051 0 284 54
StDev | 1.049 0.916 1065.9 21.498 3214.066 570.765
Avg 3.136 2.558 3138.846 29 2451.385 832,962
Sep Max 5.574 6 5661 66 23610 2817
2002 Min 0.816 2 1062 4 219 131
StDev | 1.049 0.916 1063.186 15.113 3289.966 572.978
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Table D.2: Transactional Efficiency Scores for January 2002
Unit VRSEff,. GDF | Unit VRSEff., GDF

B1 1 1 B32 1 1
B3 0.8943  0.5371 | B33 1 1
B4 1 1 B34 0.7821 0.7764
BS 0.6345 0.6345 | B35 0.4849 0.4357
B7 1 1 B36 1 1
B8 1 1 B37 0.5255 0.3566
B9 1 1 B38 0.5812 0.4969

B10 0.5860 0.5860 | B39 0.8503 0.7290
B11 0.6439 0.6439 | B40 0.9644 0.9318
B12 0.4975 0.4781 | B4l 1 1

B13 0.8551 0.8551 | B42
B14 0.5421 0.4563 | B44
B15 0.5846 0.4900 | B43
B16 0.5169 0.5046 | B46
B17 0.2447 0.2447 | B48 1 1

B18 0.3015 0.2309 | B49 0.5816 0.5056
B19 0.4297 0.4231 | B50 0.5297 0.2729
B20 0.2211 0.2196 | B51 0.5214 0.3903
B21 0.6439 0.6302 | B52 0.4212 0.4053
B22 0.6234 0.5287 | B53 0.2975 0.2462
B25 0.5115 0.4797 | B54 1 1

B26 0.4127 0.3116 | B55 0.2967 0.2209
B27 0.6655 0.4968 | BS56 0.4561 0.4367
B29 0.7404 0.7244 | B58 0.4700 0.4144
B30 0.4228 0.3802 | BS9 0.4367 0.4367
B3l 0.4931 0.4505 | B60 1 1

- e . e
—_ = e e
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Table D.3: Transactional Efficiency from January 2002 to September 2002

Unit Jan Feb Mar Apr May Jun Jul Aug Scp Avg
B4 1 1 1 1 1 1 1 1 1 1
B7 1 1 1 1 1 1 1 1 1 1

B36 1 b 1 1 1 1 1 1 1 1

B46 1 1 1 1 1 1 1 1 1 1

B48 1 1 1 1 1 1 1 1 1 1

B54 1 1 1 1 1 1 1 1 1 1

B32 1 0.8671 1 1 1 1 1 1 1 0.9852

B44 1 1 0.6265 1 1 1 1 1 1 0.9585
B33 1 0.9295 1 1 1 1 1 0.8564 0.8231 | 0.9566
B8 1 1 0.5659 1 1 1 1 1 1 0.9518
B9 1 1 1 1 1 1 1 0.7756  0.5693 | 0.9272

B4l 1 1 1 1 1 1 1 0.633 0.639 0.9191
Bl 1 1 1 0.108 0.5107 1 1 1 1 0.84652
B3 | 0.5371 0.6968 1 1 0.7812 0.5051 0.8149 1 1 0.8150
BS 0.6345 0.828 0.6491 0.8517 0.7393 0.5521 1 0.9013 1 0.7951
B13 | 0.8552 0.8136 0.8655 0.7546 0.8777 0.7607 0.787 0.6921 0.7276 | 0.7927
B49 | 0.5056 1 0.7187 0.8767 1 0.6931 1 0.6166 0.5574 | 0.7742
B42 1 1 1 1 0.6735 0.4762 0.6927 0.4683 0.6046 | 0.7684
B21 | 0.6302 0.8505 0.5007 0.6793 0.7967 0.557 1 0.8022 0.8051 | 0.7357
B25 | 0.4797 0.8836 0.5786 0.4979 1 0.5953 1 0.8667 0.4712 | 0.7081
B22 | 0.5287 0.5385 0.7516 0.7963 0.6604 0.417 1 0.806 0.8534 | 0.7058
B45 1 1 0.5084 0.5524 0.4272 0.3892 04715 1 1 0.7054
B27 | 0.4968 1 0.3974 0.6242 0.6574 0.6853 0.8816 0.7509 0.7571 0.6945
B12 | 0.4781 0.5218 0.4284 0.561 0.8672 1 0.7804 0.8622 0.7426 | 0.6935
B1l | 0.6439 1 0.6495 0.5175 0.6345 0.4854 0.6038 0.6808 0.8344 | 0.6722
B38 | 0.4969 0.385 0.5603 0.8125 0.5357 0.5189 0.7016 0.8814 0.9736 | 0.6518
B34 | 0.7764 0.8601 0.6307 0.5875 0.7337 0.5616 0.4886 0.3954 0.7774 | 0.6457
B40 | 0.9318 0.807 0.6229 05957 0.6214 0.4358 0.3806 0.3144 1 0.6344
B16 | 0.5046 0.671 0.5846 05902 0.5033 0.6357 0.626 0.7086 0.7444 | 0.6187
B29 | 0.7244 06155 0.5325 0.7333 0.6061 0.4148 0.78 0.6508 0.4968 | 0.6171
B31 | 04505 0.6444 0.5635 1 0.8621 0.3941 0.4912 0.3686 0.5337 | 0.5898
B14 | 0.4563 0.6948 0.482 0.7435 0.5951 0.3663 1 0.4642 0.4286 | 0.5812
B52 | 0.4053 0.381 0.2959 0.2484 0.2277 1 1 0.4624 1 0.5579
B50 | 0.2729 0.4923 0.361 0.3684 0.4201 0.4863 1 1 0.5664 | 0.5519
B10 0.586 0.7196 0.549 0.4487 0.4081 0.445 04332 0.5209 0.6913 | 0.5335
B15 049 0.5648 0.4556 0.6606 0.656 0.3149 0.3808 0.5627 0.4503 | 0.5040
B39 | 0.729 0.5382 0.4112 0.6358 0.5463 0.5256 0.3228 0.2417 0.4449 | 0.4884
B56 | 0.4367 0.3556 0.5027 0.4697 0.4944 0.4235 0.6848 0.4103 0.6128 | 0.4878
B51 | 0.3903 0.386 0.5872 0.3859 0.3745 0.425 0.5451 0.5496 0.5031 | 0.4607
B59 | 0.4367 0.4765 0.2608 0.2901 0.2574 0.7261 0.606 0.4223 0.564 | 0.4489
B37 | 0.3566 0.459 0.2546 0.5881 0.404 04755 0.5424 0.5308 0.3632 | 0.4416
B26 | 0.3116 0.0103 0.5877 0.3265 0.3584 0.3416 0.6121 0.3418 1 0.4322
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Unit Jan Feb Mar Apr May Jun Jul Aug Scp Avg

B30 | 0.3802 06075 0547 03109 0.3346 0.1808 0.4146 0.2903 0.5825 | 0.4067
B60 1 0.0047 0.0021 0.0027 0.3452 0.4243 1 0.4836 0.345 | 0.4008
B35 | 0.4357 0.4925 0.3448 0.3222 0.2407 0.4787 0.2541 0.445 0.5744 | 0.3987
B19 | 0.4231 0.4373 0.7355 0.4505 0.1859 0.223 0.3865 0.2882 0.3032 | 0.3815
B58 | 0.4144 0.5678 0.2068 0.2972 0.2378 0.2206 0.4426 0.2815 0.5555 | 0.3683
B53 | 0.2462 0.1453 0.3693 0.3012 0.3055 0.2714 0.3089 0.2511 0.2638 | 0.2736
B20 | 0.2196 0.2712 0.3067 0.2809 0.2067 0.2718 0.2642 0.2341 0.3796 | 0.2705
B55 | 0.2209 0.2315 0.1418 0.4147 0.3717 0.2012 0.2125 0.1991 0.1675 | 0.2401
B17 | 0.2447 0.0076 0.2101 0.1721 0.521 0.2027 0.1838 0.2139 0.229 | 0.2205
B18 | 02309 0.229 0.1848 0.2028 0.1891 0.2564 0,1991 0.1932 0.2198 | 0.2117
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Appendix E

Operational Efficiency Results

Table E.1: Descriptive Statistics of Operational Data from March 2001 to September 2002

Rent Staff ACli  ACuracc  AOthre ATdcp ACredb  ACredas  Trans
Avg. | 2.896 5.093 -25.056 -143.867 78.179 -06.342 220,777 42.363 4062.41
Mar01 Max | 5.347 7 33 120.949 1049.536 296.63 3708.493  349.398 7902
Min | 0.783 3 -192 -610.464 -2876.268 -303.344 -508.958 -241.982 8
Avg. | 2911 5.161 -28.232 -17.941 196.103 -161.614 106.853 24.991 3999.44
Apr01 Max | 5.347 7 341 582.99 1070.42 118.011 1330.548 250.85 7724
Min | 0.783 3 -1327 -534.497 -1091.13 -695.793 -263.924 -240.431 7
Avg. | 2.881 5.164 8.273 43.554 208.434 193.797 41.08 67.553 4399.37
May01 Max | 5.347 7 234 514.969 2379.705 1993.78 583.499 2265.021 B421.28
Min | 0.783 3 -37 -454.609 -423.824 -2.13 -256.068 -280.06 1252.5
Avg. | 2911 5.143 -5.929 4.104 -126.483 -285.695 82.917 17.998 4075.84
Jun01 Max | 5.347 8 257 873.495 611.496 2590.851 592.417 255.973 7517.56
Min | 0.783 3 -1051 -910.875 -2623.039 -1102.762 -228.185 -103.805 1086.28
Avg 2.922 5.278 3.815 239.841 321.309 136.879 30.131 40.266 4743.61
Julo1 Max | 5.347 8 36 1303.304 4996.618 981.48 299.438 264.722  9041.34
Min | 0.783 3 -78 -472.012 -704.103 -113.107 -735.912 -87.978 1383.14
Avg. | 2945 5.201 4.527 257.941 10.572 -209.314 81.497 13.675 4644.11
Augll Max | 5.347 8 252 999.337 584,152 19,478 1279.591 249.184  8087.39
Min | 0.783 3 -755 -891.033  -1227.247 -5196.202 -1175.986 -174.594 1545.96
Avg. | 2.885 5.37 3.796 -172.382 24.103 -161.971 13.791 8.5 3025.13
Sep01 Max | 4.843 8 40 318.059 1558.06 81.658 681.583 248.591  7602.73
Min | 0.783 3 -112 -641.818  -640.222 -427.47 -370.841  -197.105 13
Avg. | 2.995 5.5 3.4 -72.250 231.255 86.282 70.562 40.236 4882.19
Oct01 Max | 5.347 8 65 898.101 2255.23 752.357 609.94 636.082  8432.02
Min | 0.783 3 -104 -473.544 -381.106 -136.312 -300.685 ~90.577 10
Avg, | 3.01 5.54 -196.5 0.193 79.749 -17.743 26.527 28.654 4597.39
Nov01 Max | 5.347 9 2 814.547 465.977 684.006 761.839 339.447 7814.89
Min | 0.783 3 -628 -533.355  -201.732 -788.774 -897.113  -159.007 8.14
Avg. | 3.017 5.51 -5.98 316.848 233.677 -139.087 61.398 31.428 5621.37
Dec01 Max | 5.347 9 168 1903.233  1196.881 -0.289 416.167 515.722  10009.5
Min | 0.783 3 -482 -208.775  -120.353  -2472.606 -303.464 -96.024  1879.62
Avg. | 3.147 5471 40275 141.586 75.227 -22.831 147.22 53.498 4419.08
Jan02 Max | 5.574 8 155 845.9 636.9 200.2 758.6 321.7 7957
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Rent  Staff ACli  ACuracc AOthre ATdep ACredb ACredas  Trans
Min | 0.816 3 -74 -408.5 -1215.3 -217 -533.4 =251 1849
Avg. | 3.147 5.392 18.608 -116.098 -92 -127.725  23.176 -14.784  4615.39
Feb02 Max | 5.574 7 66 509 438 167 591 336 7956
Min | 0.816 3 -65 -823 -2735 -327 -401 -1122 1762
Avg. | 3.147 5392 -8.137 =50.706 135.451  127.333 63.451 22.392 3751.96
Mar02 Max | 5.574 7 33 734 948 335 446 476 6747
Min | 0.816 3 -137 -918 -226 11 -263 -155 1227
Avg. | 3.147 5412 8.941 -30.51 92.176 -58.157 48.627 5.078 4806.94
Apr02 Max | 5.574 7 100 581 599 99 363 179 B687
Min | 0.816 3 -70 -409 -242 -172 -265 -205 1581
Avg. | 3.147 5392 -1.039 156.451 -53.078  -83.333 51.882 8.941 5897.14
May02 Max | 5.574 7 45 7441 364 1 401 172 10399
Min | 0.816 3 -127 -1643 =505 -288 =272 -153 1862
Avg. | 3.077 5408 -331.49 -173.673 -84.061 -100.347 7.592 22.286 5232.35
Jun02 Max | 5.574 7 -34 660 463 22 385 154 11422
Min | 0.816 3 -987 -7995 -393 -325 -310 -167 13
Avg. | 3.147 5.51 -19.51 246.745 -160.824 -140.02 10.373 13.686 6412.31
Jul02 Max | 5.574 8 27 953 266 231 505 506 14133
Min | 0.816 3 -111 -1394 -2819 -460 -873 -247 11
Avg. | 3.147 5.627 -6.843 194.176 -20.098  -105.137  85.255 -44.216  5823.61
Aug02 Max | 5.574 8 188 760 477 96 526 188 9701
Min | 0.816 3 -364 -560 -1573 -252 -304 -2056 2499
Avg. | 3.147 5.667 -0.98 -240.02 38.392 -156.588  80.784 -14.863  6342.63
Sep02 Max | 5.574 8 29 362 418 -29 835 828 11185
Min | 0.816 3 -47 -760 -311 -431 -579 -509 2434
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Table E.2: RDM Operational Efficiency values for April 2001 ‘
Unit | 1-8 Norm | Unit | 1-38 Norm

B1 1 1 B32 | 0.9602 0.925 ‘
B2 1 1 B33 1 1

B3 1 1 B34 1 1

B4 1 1 B35 | 0.8899 0.8002 ‘
B5 | 0.8388 0.7969 | B36 | 0.9275 0.8601

B7 1 1 B37 | 0.8437 0.7859 ‘
BS | 0.8878 0.8694 | B38 1 1

B9 1 1 B39 | 0.726  0.704 ‘
B10 1 1 B40 | 0.8718 0.8405

B1l | 0.7274 0.6539 | B4l 1 1

B12 | 0.9061 0.8815 | B42 | 0.7451 0.6456 ‘
B13 | 0.7984 0.7984 | B43 | 0.8456 0.421

B14 1 1 B44 | 0.8673 0.8544 ‘
B15 | 08111 08 | B45 | 0.0204 0.8748

B16 1 1 B46 0.889 0.8541 ‘
B17 | 0.7398 0.7319 | B48 | 0.7041 0.7028
B18 | 0.7218 0.6989 | B49 | 0.9282 0.8952
B19 | 0.7971 0.7878 | B50 | 0.7941 0.7665
B20 | 0.8359 0.7608 | B51 0.799 0.7778
B21 | 0.7785 0.7765 | B52 | 0.7956 0.76
B22 | 0.8836 0.8526 | BS3 1 1
B23 1 1 B54 1 1
B25 | 0.9998 0.9165 | B55 | 0.7632 0.7542
B26 | 0.9225 0.8537 | B36 | 0.771  0.7388
B27 | 0.902 0.8276 | B57 1 1
B2 1 1 B58 1 1
B29 | 0.9218 0.8485 | B59 | 0.7841 0.5655
B30 | 0.8671 0.7622 | B60 | 0.7211 0.7155
B31 | 0.9082 0.8404 | Avg | 0.891 0.854
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Table E.3: Opcrational Efficiency Values from March 2001 to September 2002

B2 B4 B9 B23 B23 B33 B54 BT B27 B46 B1 B26
Mar 1 1 1 1 1 1 ] 0.986 1 1 1 0.968
Apr 1 1| 1 1 1 1 1 1 0.962 0.958 1 0.929
May 5 | 1 1 1 0.995 1 0.985 1 1 0.982 0.931 1
Jun 1 1 1 1 1 1 1 0.975 1 1 1 1
Jul 1 1 1 1 1 1 1 098 0.914 1 1 1
Aug 1 1 1 1 1 1 1 1 1 1 1 0.993
Sep 1 1 1 1 1 1 1 1 1 0.908 1 1
Oct 1 1 1 1 1 1 0.99 1 1
Nov 1 1 1 1 1 1 1 1 1
Dee 1 1 1 1 1 1 1 1 1
Jan 1 1 1 1 1 1 1 1 1
Feb 1 1 0.99 1 1 1 1 1 0.936
Mar 1 1 1 1 1 1 1 1 1
Apr 1 1 1 1 0.97 1 0.979 1 |
May 1 1 1 1 0.985 1 1 1 1
Jun 1 1 1 1 1 0.99 1 1 1
Jul 1 1 1 1 0.946 0.979 1 0924 093
Aug 1 1 1 1 1 1 1 0.895 1
Sep 1 1 1 1 1 0.982 0.952 1 1
Avg 1 1 1 1 0.999 0.999 0999 0.992 0991 0.988 0.987 0.987

B32 B49 B38 B29 B37 B51 B25 B12 B8 B34 B43 BS
Mar 1 1 1 1 1 0.907 1 0.983 0.939 1 1 0.965
Apr 0.974 0.968 1 0.971 093 0.914 1 0.962 0.943 1 0.914 0.936
May | 0.729 0.945 1 0.944 0916 0.986 1 0.869 0.856 1 0934 0.84
Jun 1 0.965 1 0.989 0.997 0.972 1 0.998 1 1 1 0.977
Jul 1 0.906 1 1 0.991 0.957 1 0.986 0.925 1 0.945
Aug 1 0.996 1 1 1 1 1 1 0.957 1 1
Sep 1 1 0.906 1 0.873 1 0.962 1 0.968 1 1
Oct 1 0.995 0.984 0.983 0.992 1 1 1 0.998 1 1
Nov 1 1 1 0.943 1 1 0.932 1 0.922 1 1
Dec 1 1 1 1 1 1 0.951 0.969 1 1 0.987
Jan 1 1 0.862 1 1 1 0.808 1 1 0.708 1
Feb 1 1 1 1 0.939 1 1 1 0.988 0.952 0.864
Mar 1 1 1 0.963 1 1 1 1 0.988 0.899 1
Apr 1 1 0.99 0.969 1 1 0.964 0.955 1 1 1
May 1 1 1 0.966 0.957 0.881 0.905 1 1 1 0.902
Jun 1 1 1 0.955 1 1 0.958 0.902 0.917 1 0.893
Jul 0.986 0.881 0.9 1 0.908 0.88 1 0.881 0.963 1 0.98
Aug | 0977 1 1 1 1 1 1 1 1 0.82 0.976
Sep 1 1 1 0.929 1 1 1 0.93 1 1 1
Avg | 0982 0982 0981 0979 0974 0974 0973 0970 0.967 0.967 0.962 0.961

B16 B36 B44 B57 Bl4 B3 B39 B4l B17 B45 B10 B13
Mar 1 1 0.996 0.972 0.989 1 1 1 1 0972 0995 0.954
Apr 1 0.942 0915 1 1 1 0.857 1 0.862 0.933 1 0.899
May | 0.845 0.874 0.812 0.889 0.841 0.944 1 0.757 079 0777 0.711 0.732
Jun 1 1 0.993 1 1 1 1 11 0.911 0.995 0.903 1
Jul 1 0.812 0.85 0.889 0.933 0.842 1 0.811 0796 0.728 0.781 0.865
Aug 1 0.982 0.947 1 0935 0979 0911 0.858 1 0.956 0.938 1

continues on next page
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continued from previous page

Sep 1 095 0942 0.927 0.849 1 0.872 1 1 0926 0.891 0.945

Oct 1 0.937 0.986 0.973 1 0.911 0.936 0.977 0.928 1 0.982

Nov 1 1 0.988 1 1 1 1 0.876 1 1 0.917

Dec 1 0.992 0.941 0.976 1 1 089 0.886 0.989 0.979 1

Jan 1 0.758 1 0929 0968 0.734 0.996 1 0.759 1 1

Feb 1 1 1 0.958 0.882 0.737 1 0.908 1 0.946 1

Mar 1 0.95 1 1 0.942 1 1 1 0.997 0.967 1

Apr 1 1 1 1 0.998 0.984 1 1 1 1 1

May | 0.619 1 0.904 0.89 0.763 1 0916 0.944 1 0.939 0.73

Jun 1 1 1 09 0.871 1 0.826 0.967 0.954 0.853 1

Jul 0.967 1 0.903 0.857 0.827 1 0.915 1 1 0.859 0.944

Aug 1 0.961 1 1 0.958 0.841 0904 0949 0.934 1 0.925

Sep | 0.746 1 0.981 0.863 0.872 0.958 1 0.924 0.945 1 0.872

Avg | 0957 0.956 0.956 0.954 0942 0939 0937 0937 0936 0936 0.935 0.935
B58 B20 B59 B50 B60 B56 B35 B48 B31 B52 B53 B15

Mar | 0.986 1 0.955 0.958 1 0907 0923 0983 0.999 0.937 1 0.851

Apr 1 0.896 0.892 0901 0.865 0.875 096 0.84 0954 0.864 1 0.903

May | 0.727 0.827 0.685 0.843 0.826 0.889 0.663 1 0.838 0.758 0.821 0.581

Jun | 0.969 1 1 1 0.975 0.959 0.969 1 0.952 0.949 0.993 0.957

Jul 0.795 0958 0778 0802 0716 089 064 0732 0798 0743 0.679 0.642

Aug | 094 0963 0977 0978 099 0929 0962 0981 0944 098 0.949 1

Scp 1 1 1 1 1 0.995 1 099 0965 0.97 0.905 1

Oct 1 0.966 0.942 0.969 | 0.937 0962 0.997 0952 0.949 0.951 1

Nov 1 1 1 0.918 1 0.885 0.951 0.991 0.909 1 0.85 0.891

Dec 1 0.759 1 0.966 0.896 0.939 1 0.973 0.963 0.914 0.921 1

Jan 0.61 0.868 1 0.833 0.721 1 0.745 0.595 0.653 0.689 1 1

Feb | 0.934 1 094 094 0.87 0.961 1 1 0912 0.942 0.852 0.754

Mar 1 1 0.883 1 0.932 0.867 1 0.957 1 0.987 1 1

Apr 1 0964 0993 0944 096 0.969 1 1 0.926 1 1 0.946

May 1 0.935 1 0.783 0.979 0.912 1 0.868 0.764 0.828 0.895 1

Jun | 0.942 1 0.89 0.942 0.961 0.891 1 0.972 1 0.983 0.887 1

Jul 0.808 0.715 0.78 0.889 0.963 0.866 0.86 1 1 0.998 0.816 1

Aug | 0949 0.878 1 0.984 1 0.933 0921 0.684 0.942 1 1 0.952

Sept | 0.991 0.981 0.954 1 0.992 0.971 1 1 0.935 0.898 0.861 0.896

Avg | 0934 0932 0929 0929 0929 0925 0.924 0924 0916 0915 0.915 0914
B18 B19 B42 B21 B30 B22 B40 B55 B11

Mar 1 0.935 1 0.969 1 0.931 1 1 0.919

Apr | 0.856 0.888 0879 0885 0.895 0951 0.95 0871 0.858

May | 0.784 1 0.786 0.714 0.659 0.773 0.712 0.702 0.603

Jun | 0955 0939 0988 0991 0964 0971 1 0.951 0.96

Jul 0.769 0.72 0.683 0.633 0.678 0.615 1 0.654 0.689

Aug | 0935 0.886 0977 0.897 1 0.909 0.724 0917 0.945

Sept | 0.923 1 1 1 1 1 0.888 0.903 0.861

Oct | 0919 0.958 0955 099 0933 096 0917 0941 0.906

Nov | 0.862 0.903 1 0.909 0.941 0.923 1 0.868 0.856

Decc 1 0.92 0946 0.717 0.957 1 0.952 0.907 0.899

Jan 1 0.81 1 0698 0.686 0.805 0.757 0.611 0.517

Feb | 0.916 1 0.837 1 0.886 0.949 1 0.833 1

Mar 1 0.887 0.798 0954 099 0.939 0.917 0.806 0.996

Apr | 093 0947 0.948 0.908 1 0948 0968 0.93 0.928

continues on next page
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continued from previous page

May | 0.778 1 0.82 0.967 0921 0701 0684 0.928 0.756
Jun | 0.884 0.812 1 7 0.849 1 0.922 0.897 1
Jul 0.822 0.77 0.785 1 0.962 0687 0.826 098 0994
Aug 1 0.881 0.873 09 0.862 1 0.866 0.928 1
Sep | 0.944 0.958 0.902 1 0.957 0.874 0.809 0.901 0.773
Avg | 0909 0.906 0904 0.902 0902 0.891 0.889 0.869 0.866
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Appendix F

Profit Efficiency Results

Table F.1: Descriptive Statistics of Profit Data from March 2001 to September 2002

Month staff supplycost curracc othress credb credass
Hiari Avg. | 5.175 18.678 4021.641 10992.344 9208.759  823.665
Stdev | 1.212 5.02 1699.14  5818.065 3953.25 578.268
Apr01 Avg. | 5175 18.567 4001.255 11190.634 9313.16 848.054
Stdev | 1.167 4.798 1711.72 589.55 4022.515  588.862
May01 Avg. 5.175 20.075 4059.819 11433.269 9370.595 923.353
Stdev | 1.167 5.192 1706.895 5837.918  4006.987  721.739
Juii01 Avg. 5.158 20.67 4062.163 11310.599  9451.313 943.256
Stdev | 1.177 5.271 1683.258 5804.599  4042.199  743.193
Julod Avg. | 5.304 21.404 4376.328 11835.790 9634.139 1002.412
Stdev | 1.264 5.746 1723.450 5916.581 3962.608 772.968
Aug0l Avg. | 5.304 18.998 4634.860 11852.928 9718.892 1016.392
Stdev | 1.264 4.972 1805.170  5860.543 3996.889 805.414
Sepol Avg. 5.393 22.014 4498.158 11936.475 9836.372  1032.304
Stdev | 1.275 5.89 1757.222  5839.758 4118.799 818.153
Octol Avg. 5.50 23.529 4641.283 12722,801 10234.985 1087.140
Stdev | 1.094 7.126 1678.760  5804.368  4137.364  835.661
Avg. | 5.519 57.269 4651.288 12823.965 10273.746 1117.136
Hovir Stdev | 1.163 14.113 1703.675  5932.287  4100.099  875.577
Decbi Avg. | 5.519 42.939 4063.146 13055.727 10338.148 1148.915
Stdev | 1.094 11.374 1861.745  5988.665  4110.672  924.294
T Avg. | 5.48 40.12 5106.85 13128.62 10487.02 1201.65
Stdev | 1.06 = 9.82 1926.82 6082.02 4126.58 932.97
Febo2 Avg. | 5.404 45.69 4990 13041.13 10510.04 1187.35
Stdev | 1.05 9.5 1915.72 6065.79 4099.78 930.22
Mar02 Avg. | 5.404 40.3 4935 13175 10573.79 1210.13
Stdev 1.05 8.35 1911.28 6121.59 4062.76 958.15
e Avg. | 5.423 45.689 4905.442 13262.615 10624.327 1213.038
—Apro2
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Month staffl  supplycost curracc othress credb credass
Stdev | 0.997 10.362 1933.798 6156.369  4054.567 973.78
May02 Avg. 5.404 45.716 5060.538 13212.558 10671.885 1222.423
Stdev | 0.995 9.843 223269  6162.727  4036.728  970.845
St Avg. | 5481 42.037 4988.538 13355.769 10055.327 1257.865
Stdev | 1.057 9.85 1867.059  6211.758  4246.039  975.537
Juibiz Avg. | 5.519 50.92 5237.038 13198.788 10973.019 1271.808
Stdev | 1.075 12.63 1899.967 6176.087  4208.483  990.269
Aug02 Avg, 5.635 49.085 5439.365 13179.75 11061.5 1228.615
Stdev | 1.048 11.538 1944.554 6124.707  4235.697  850.433
Avg. | 5673 44.632 5200.462 13218.115 11149.365 1217.598
o2 Stdev | 1.061 9.571 1837.424  6122.08 4206.47 841.139

282
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Table F.2: Long Run Profit Efficiency Results for April 2001

Unit  Tech. Facet Actual  Tech. Max. Profit Alloc. Scale Mix a bl
GDF Profit Profit Profit GDF GDF Effect Effect
Bl 0.533 F14 106,32 138,13 678.45 0.3095 0.5806 0.7494 0.7748 2.632 3.512
B2 1 F3,F5.. 9731 97.31 675 0.3643 0.3643 0.7759 0.4694 2.89 3.724

B3 0.794 F1 378.22 451.78 673.94 0.6119 07711 10971 0.7029 1.451 1.323
B4 0.878 F3 273.06 286.66 679.64 0.6434 0.7325 0.9394 0.7797 1.952 2.078
B3 0.865 F2 361.25 365.99 677.17 0.6485 0.7501 1.0441 0.7184 1.624 1.556
B7 0.839 F12 239.25 259.08 67434 0.6273 0.7476 0.8886 0.8413 2.102 2.366
B8 0.818 F3 151.63 157.71 67745 0.3768 0.4604 0.6814 0.6757 2.496 3.663

B9 0.755 F8 4394 61662 677.42 0.5575 0.7381 No 0.7381 1.07 0.793
B10 1 F1 466.3 466.3 680.99 0.7068 0.7068 1.1042 0.6401 14 1.268
B11 1 F6 52728 52728 676.51 0.5062 0.5962 1.1368 0.5245 1.167 1.026

B12 0.799 F13 53419 557.8 680.57 0.7422 0.9286 No 0.9286 1.333 0.998
B13  0.857 F2 368.78 39145 675.15 0.6354 0.7414 1.0899 0.6803 1.503 1.379

B14 1 F13 518.18 518.18 676.51 0.8784 0.8784 1.0876 0.8077 1.211 1.114
B15  0.580 Fé 27165 511.47 680.47 04561 0.7858 1.1543 0.6807 1.282 1.110
B16 1 F1,F4.. 67633 676.33 676.33 1 1 1 1 1 1

B17 1 F8 663.91 66391 677.01 0.6776 0.6776 No 0.6776 1.017 0.682

B18  0.832 F3 353.62 359.15 67454 0.6597 0.7925 1.267 0.6255 1.845 1.456
B19 0.610 F1 27499 47563 677.86 0.4555 0.7462 1.0931 0.6826 14 1.281
B20 0.817 F12 355.96 377.56 680.27 0.7046 0.8628 1.1377 0.7583 1.777 1.562
B21 0.785 F1 357.19 456.85 67847 0.5903 0.752 1.1005 0.6833 1.437 1.305
B22 0.676 F3 255.98 268.47 67522 0.4236 0.6265 0.9291 0.6743 2.016 2.17
B23 0.604 F3 118.04 144.26 677.95 0.3613 0.5986 0.7865 0.7611 2.588 3.291
B25 0.803 F5 158.06 170.27 678.20 0.5643 0.7025 1.1601 0.6055 2.456 2.117
B26  0.694 F2 346.91 41299 67622 0.5278 0.761 1.2295 0.619 1.642 1.335
B27  0.799 F12 309.18 319.86 6759 0.6679 0.8362 1.1634 0.7187 1.946 1.673
B28 1 F1,F2... 34487 34487 680.09 1.2023 1.2023 No 1.2023 2333 0.822
B29 1 F1,F2.. 520.27 520.27 676.03 0.8571 0.8571 No 0.8571 1.614 0.891
B30 0.760 F10 213.12 252.84 67745 04769 0.6273 11778 0.5326 1.865 1.583
B31 0.785 F1 43151 4918 67611 0.606 0.7719 1.0854 0.7111 1.328 1.223
B32 0.801 F1 361.24 467.32 676.77 0.6282 0.7846 1.0976 0.7148 1.434 1.306
B33 1 F2,F3 309.51 309.51 677.48 0.6101 0.6101 1.0313 0.5916 1.84 1.784
B34 1 F1,F2.. 47938 479.38 674.09 0.9407 0.9407 No 0.9407 14 0.825
B35 0.795 F8 360.88  415.1 678.27 0.681 0.8569 1.1667 0.7344 1.424 1.220
B36 0.3791 F3 40.13 90.25 675.13 0.1199 0.3163 0.5281 0.5080 2964 5.613
B37 1 F2,F3.. 340.83 340.83 678.52 0.8496 0.8496 1.1952 0.7108 1.807 1.512
B33 1 F2,F4  430.21 430.21 678.76 0.769 0.769 1.1473 0.6702 14 1.22
B39 0.736 F1 354.06 460.73 673.19 0.5202 0.7068 1.1042 0.6401 14 1.268
B40 0.835 F4 389.24 42542 67853 0.7185 0.8603 1.0401 0.8271 1.456 1.400
B41 0.786 F4 486.33 53521 676.41 0.7272 0.9248 1.0115 0.9143 1187 1.174
B42 0.644 F1 33441 45836 677.05 0.4749 0.7378 1.1017 0.6696 1.424 1.293
B43 1 F14 28.71 28.71 678.97 0.1497 0.1497 03495 0.4282 3.381 0.671
B44 0.874 F3 239.61 24297 678.01 0.5337 0.6109 0.9604 0.6362 2.206 2.297
B45 0.546 F14 11019 145.99 677.69 0.2819 0.5161 0.7867 0.6561 2.540 3.229
B46  0.922 F1 487.72 49027 676.61 0.7618 0.826 1.0862 0.7605 1.372 1.263
B48  0.735 F6 381.02 522.26 679.31 0.5921 0.8056 1.1508 0.7 125 1.086
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Unit  Tech. Facet  Actual Tech. Max. Profit Alloc. Scale Mix a ¥
GDF Profit  Profit Profit GDF GDF Effect Effect
B49 0.894 F7 494.99 518.26 675.80 0.8108 0.9066 1.0802 0.8324 131 1.202
B50 0.943 F2 42228 43465 677.25 0.8303 0.8802 1.308 0.6729 1.685 1.288
B51 0.713 Fé6 484.41 52440 67933 0.551 0.7733 No 0.7733 1.333 0.956
B52 0.834 F2 391.15 44923 677,11 0.6717 0.805 1.2585 0.6396 1.65 1.232
B53 1 F1,F5... 550.37 ©550.37 677.99 0.836 0.836 No 0.836 1.499 0.758
B54 1 F3,F5... 57.8 57.8 675.99 0.2062 0.2062 0.4302 0.4793 3.262 7.581
B55 0.835 F12 269.49 31124 677.95 0.6777 0.8117 1.008 0.8052 1.925 1.91
B56 0.606 F1 285.02 48491 679.49 04671 07713 1.1776 0.655 14 1.189
B57 0.903 F3 177.65 179.84 676.83 0.5325 0.58904 0.7985 0.7381 2.481 3.107
B58 0.751 F2 290.28 337.29 678.79 0.5868 0.7815 1.0173 0.7682 1.809 1.779
B59 0.887 F1 395.82 457.87 676.18 0.7505 0.8459 1.1348 0.7454 1.489 1.312
B60 1 F7,F8.. 369.93 369.93 677.76 0.7239 0.72390 13325 0.5433 147 1.103
Avg 0.8299 340.97 38244 677.31 0.6128 0.7332 1.0243 0.71497
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Table F.3: Short Run Profit Efficiency Results for April 2001

Unit

Tech.

Actual

Tech.

Max.

Profit

Alloc.

Scale

Mix

a |
GDF  Profit Profit Profit GDF GDF Effect Effect

Bl 09275 1063184 108.4202 143.0929 0.7989 0.8613 1.0436 0.8253 1.0436 1
B2 1 97.3051  97.3051 129.7447 0.8648 0.8648 0.8651 0.9997 11246 1.3
B3 07154 378.2209 4424014 504.6245 0.7481 1.0458 1.2419 0842 12419 1
B4 0.8386 273.0558 310.0788 361.0262 0.8045 0.0594 1.1351 0.8452 1.2086 1.0647
B5 07992 361.2471 454.3743 4781158 0.8052 1.0076 1.0515 0.9582 1.0515 1
B7 0.8676 239.2481 270.0231 318.8085 0.7728 0.8006 1.0969 0.812  1.0969 1
B8 0699 151.634 206.528 207.0281 0.6797 0.9724 1.0109 0.9619 1.0109 1
B9 07049 430.3986 4545746 5863657 0.7392 1.0487 1.3077 0.8019 1.3077 1
B10 1 466.3009 466.3009 5925124 10111 10111 10452 09674 13 12438
B11 1 527.2822 527.2822 609.4086 0.8253 0.8253 11734 07034 11667 0.9943
Bl2 0.8015 5341887 557.5434 624.7948 0.9995 12471 No 12471 13003 0.7687
B13 08115 368.7802 452.0504 486.7443 0.839 10339 1.1067 09342 1.1067 1
Bl4 1 518.1845 518.1845 622.2477 0.9719 09719 10876 0.8936 1.2111 1.1135
B15 05481 271.6529 377.2726 377.911 0.5385 0.9824 1 0.9824 1 1
B16 1 676.3324 676.3324 676.3324 1 1 1 1 1 1
B17 1 6639061 663.9061 6650342 09331 09331 No 009331 1.0014 0.9726
B18 07514 353.6200 470.381 470.5757 0.7449 09914 10283 0.9641 1.0283 1
B19 07075 274994 370.4218 373.803 06189 0.8747 No  0.8747 0.9458 1
B20 0.8565 355.9633 406.9885 468.6585 0.8195 0.9568 1.1863 0.8066 1.1863 1
B21 0.7752 357.1945 441.9217 4744561 0.7933 1.0233 1.0904 0.9386 1.0004 1
B22 0617 2559806 351.5182 352.5352 0.5928 0.9608 No  0.9608 0.9941 1
B23 09226 1180366 120.7283 158.0336 0.8132 0.8814 1.0056 0.8045 1.0056 1
B25 0.87 158058 177.7347 212.3759 0.7516 0.8638 1.0151 0.851 1.0151 1
B26 0.7925 346.9126 4153316 463.1748 0.7122 0.8986 No  0.8986 0.9758 1
B27 09201 309.1799 319.8178 408.2276 0.8152 0.886 1.1177 07927 11177 1
B28 1 3448654 344.8655 4229926 1.0534 10534 No 10534 13 09197
B29 1 520.266  520.266 582671 1.1787 11787 No 11787 13  0.7607
B30 0.6777 213.118 2004398 291.7372 0.6465 0954 No 0954  0.961 1
B3l 0.7855 4315106 477.4531 569.5499 0.8441 10746 1.257 0.8549 1.257 1
B32 0.8332 3612376 4285133 4786704 0.7938 0.9527 1.0478 0.0093 1.0478 1
B33 1 3005077 309.5077 404.8235 09202 09202 09529 09657 1.2387 1.3
B34 1 479.3802 479.3802 547.4322 1.0965 1.0965 No  1.0965 1.3  0.8689
B35 0.7268 360.8813 443.0220 481.8726 0.7093 0.976 1.0563 0.9239 1.1322 1.0718
B36 08174 401334 534502 71.2375 0.5385 0.6588 No  0.6588 0.7053 1
B37 1 340.8308 340.8308 434.4143 0977 0977 10825 09026 13  1.201
B38 1 4302069 430.2069 532.6527 1.0213 1.0213 10881 0938 13 11047
B39 0.6935 354.0585 401.8385 474.5472 0.7338 1.0582 1.2665 0.8355 1.2665 1
B40 0.7809 380.2439 463.279 515.0694 0.7797 09871 12079 0.8172 1.2079 1
B4l 08482 486.3283 534627 6023233 0.861 1.0152 1.1795 0.8607 1.1795 1
B42 0.6363 3344092 382.0119 453.031 0.6566 1.0319 1265 0.8157 1.265 1
B43 1 28.7062  28.7062  44.5861 0.6914 0.6914 0.8286 0.8344 10771 1.3
B44 0.7863 239.611 300.3946 319.979 0.7248 09218 1.0409 0.8856 1.0409 1
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Unit

Tech.

Actual

Tech.

Max.

Profit

Alloc.

Scale

Mix a v

GDF Profit Profit Profit GDF GDF  Effect Effect
B43 0.7516 110.1883 125.4642 163.6107 0.5385 0.7164 No 0.7164 0.8722 1
B46 0.8747 487.7246 502.341 620.0793 0.9446 1.0799 13545 0.7973 1.3545 1
B48 0.6529 381.022 460.8869 512.3651 0.6883 1.0542 1.2047 0.875 1.2047 1
B49 09166 494.9954 ©501.6312 647.3476 0.9186 1.0022 12775 0.7845 1.2775 1
B50 0.9193 422.2828 445.0494 552.0547 0.9132 0.9934 1.206 0.8237 1.2712 1.0541
B51 0.7927 484.4114 500.085 597.7329 0904 1.1403 1.3865 0.8224 1.3865 1
B52 0.7983 3911534 492.4345 517.6991 0.7794 09764 1.0214 0.9559 1.0214 1
B53 1 550.3749 550.3749 596.9433 1.2371 1.2371 No 1.2371 13 0.7248
B54 1 57.7969 57.7069 79.5834 0.7992 0.7992 0.8214 0.9729 1.0678 1.3
B55 0.8264 269.4907 320.3126 357.584 0.7954 0.9624 1.1567 0.832 1.1567 1
B56 0.7342 285.0171 381.6092 384.3587 0.6546 0.8916 No 0.8916 0.9612 1
B57 0.7964 177.6528 221.7154 238.8651 O0.7175 0901 1.0595 0.8504 1.1324 1.0688
B58 0.7659 290.2821 386.4964 388.4463 0.6999 09139 1.0176 0.8981 1.0176 1
B59 0.8289 395.8153 474.0849 522.5592 0.8176 0.9864 1.0778 0.9152 1.0778 1
B60 1 369.932  369.932 457.0951 0.9695 0.9695 1.2196 0.7949 1.3 1.066
Avg 08452 3409725 380.4621 432.2552 0.8175 0.9682 1.1085 0.8992
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Table F.4: Profit Efficiency Values from March 2001 to Scptember 2002

B2 B16 BT B28 B53 B60 B37 Bl2 B2 B49 B50 B33
Mar 1 1 1 1 1 1 1 1 1 0804 0867 1
Apr 1 1 1 1 1 1 1 0799 1 0855 0919 1
May 1 1 1 1 1 1 1 1 1 0849 1 1
Jun 1 1 1 1 1 1 1 1 1 1 1 1
Jul 1 1 1 1 1 1 1 1 1 1 0883 1
Aug 1 1 1 1 1 1 1 1 1 1 1 0.839
Scp 1 1 1 1 1 1 083 1 1 1 1 1
Oct 1 1 1 1 1 1 0854 1 0962 0.72
Nov 1 1 1 1 1 1 0845 1 0718 075
Dec 1 1 1 1 1 1 1  0.865 0913 0.686
Jan 1 1 1 1 1 1 1 1 0.89 0.759
Feb 1 1 1 1 1 1 088 1  0.882 0885
Mar 1 1 1 1 1 1 0876 1 0993 1
Apr 1 1 1 1 1 0.865 1 1 0.813 1
May 1 1 1 1 1 0.8 1 1 0865 1
Jun 1 1 1 1 1 1 1 1 0.865 1
Jul 1 1 1 1 1 1 1 1 1 0.857
Aug 1 1 1 1 1 1 1 0.81 0.966 0.909
Sep 1 1 1 1 1 1 1 0876 0.941 1
Avg 1 1 1 1 1 1 0993 0972 0972 095 0923 00916

B34 B4 B2 BT B20 B4 B3s B2r B4 B4 B0 BIS

Mar 1 1 0552 0569 0.667 0823 0.834 0611 0.306 0.701 1 0704
Apr 1 1 0547 0638 0.771 0.826 1 0.652 1 0839 1 0745
May 1 1 0621 0592 0745 0.79 1 0607 0373 0775 1 0.707
Jun 1 1 0.677 0.619 1 083 1 079 0424 0664 0.769 0.652
Jul 1 1 067 0637 1 0853 1 0636 1 0.682 082 0.679
Aug 1 1 0751 0717 1 0872 1 0624 0402 0716 1  0.727
Sep 1 1 0801 0.805 0844 1 0824 0668 0418 0.733 0.715 0.668
Oct 1 0745 1 1 0.867 0.923 0.824 1 1 0692 1 0601
Nov 1 0874 1 1 078 0936 0.783 0.906 0.634 0.686 0.682 1

Dec | 0669 0793 1 1 0862 0797 0677 1 1 0.72 0.686 0.828
Jan 1 0829 1 1 0771 0.762 0.678 1 1 1 0616 1

Feb 1 0865 1 1 0765 0776 0652 1 1 0.8 0.674 1

Mar 1 0811 1 1 0768 0884 0738 1 1 0.863 0.638 1

Apr | 067 0657 1 1 1 0858 0687 1 1 1 0645 0.757
May | 0.647 0791 1 1 0916 0767 1 1 1 1 0668 0.768
Jun 1 0819 1 1 0877 0775 091 0.845 1 1 062 0835
Jul | 0688 0822 1 1 085 1 0779 0.774 1 1 0.765 0.729
Aug 1 0852 1 1 0972 0757 1 0797 1 0753 1 0755
Sep | 0689 0.895 1 1 0931 0962 0788 0.783 1 0872 0.747 0.802
Avg | 0914 0882 0875 0.872 0.861 0855 0851 0.826 0.819 0.816 0.792 0.787

B35 Bll Bl B32 B4 B23 B25 B4 B13 B39 B4l B3

Mar | 0.803 1 034 0562 0718 0463 0477 0845 08 0567 0.741 0.627
Apr | 0.729 1 044 0618 0658 0552 0582 0.782 0775 059 0.767 0.679

continues on next page
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May | 0.707 0.575 0.253 0.575 1 1 0719 08 0.632 0624 0723 0.609
Jun | 0.737 1 0.543 0.789 1 1 1 0831 0.78 0679 0817 065
Jul 0.706 1 1 0.741 1 1 1 0.812 0.791 0.682 0.805 0.556
Aug | 0.745 0.587 1 0.901 1 0.757 1 0.804 0823 072 0.812 0.599
Sep | 0.809 1 0.355 1 1 0.589 0.507 077 0597 073 0.814 0.719
Oct | 0.795 1 1 0.793 1 0.841 0.767 0.752 0.64 1 0.775
Nov | 0.741 0.711 1 0.756 1 0731 0752 065 074 0724 078
Dec | 0.697 0.606 1 0.668 0.474 0.81 0.657 0.715 0.733 0.695 0.841
Jan | 0.684 0.579 1 0.674 0.817 0.668 0.734 0.752 0.756 0621 0.763
Feb | 0.892 0.603 1 0.748 0.672 1 0.719 0.807 0.808 0.671 0.828
Mar | 0.831 0.572 1 0.652 0.612 1 0.799 0873 0974 0.628 0.876
Apr | 0.772 0.665 1 0.731 0.601 0.7 0626 0754 0866 0.68 0.819
May | 0.751 0.676 1 1 0.589 0.685 0.67 0.709 0.873 0.806 0.859
Jun | 0.817 0.537 1 1 0.757 0.7 0.706 0.844 0.727 0.774 0.843
Jul 0.878 1 1 1 0.59 0.714 0812 0875 0806 0.66 0.781
Aug | 0.829 1 0.478 0.696 0.579 0.604 0815 0676 0.926 0.736 0.661
Scp 1 0.791 0492 0.75 0.561 0.667 0.778 0.825 0.866 0.728 0.762
Avg | 0.785 0.784 0.784 0.771 077 0.766 0.763 0.762 0.759 0.753 0.748 0.738
B51 B52 B59 B31 BS B53 B57 B19 B55 B30 B44 B9
Mar | 0.643 0.568 0.634 0.661 0.879 0.554 0606 0365 063 0.547 0.534 0.588
Apr | 0611 0691 0.759 0661 0775 061 0796 0455 0.765 0.546 0.599 0.595
May | 0.631 0.605 0.639 0.685 0.752 0503 0.647 0.518 0.606 0522 0.429 0.585
Jun | 0.651 0.728 0.869 0.801 0.767 0.71 0.679 0.739 0684 0.592 0.61 0.69
Jul 0.634 0.762 0.841 0.757 0.755 0679 0.731 0.725 0.743 0.564 0.649 0.617
Aug | 0673 0.781 0853 0.77t 0.751 0653 0.742 0.727 0.7 0613 0644 0.663
Sep | 0715 0.7 0645 0.756 0.636 0518 0.568 0551 0.65 0487 0.412 0.645
Oct | 0.722 0699 0829 0.727 0.851 1 0.79 072 0618 0.826 0.693
Nov | 0.685 0.732 0.614 0.713 0571 0.769 0.631 0.637 0464 0.621 0.686
Dec | 0.709 0.728 0.705 0.737 0.591 0.642 0.702 0709 0.648 0.766 0.593
Jan 08 0.675 0.747 0.684 057 0.651 0.734 0.599 0.603 0.748 0.587
Feb | 0.837 0.822 0697 075 065 0.659 0.707 0.673 1 0.784 0.746
Mar | 0.823 0.708 0.585 0.687 0.692 0.648 0.771  0.675 1 0.751 0.729
Apr | 0.82 0699 0731 0.661 0543 0.835 0.816 0.683 1 0.691 0.527
May | 0.853 0683 0734 0681 06 0.765 0.687 0.689 0.705 0.729 0.589
Jun | 0922 0.727 0.709 0.651 0.633 0.727 0.694 0636 0653 0.656 0.539
Jul 0.801 0.714 0.683 0672 0.69 0.726 0.745 0.778 0.617 0.679 1
Aug | 0.702 1 0.753 0.694 0675 0.669 0.775 062 0604 088 0.571
Sep | 0.748 0.78 0.763 0.742 0.65 0.659 0.788 0.702 1 0.745 1
Avg | 0.736 0.726 0726 0.71 0686 0.683 0681 068 0679 0673 0671 0.665
B43 B8 B15 B21 B56 B22 B42 B45 B36
Mar | 0.207 0.579 0.426 0.776 0.455 0.511 0.587 0319 0.169
Apr 1 0.538 0475 056 0.489 0.407 0526 0309 0.138
May | 0.345 0.467 0493 0613 0488 0.487 0.518 0.309 0.147
Jun 1 044 0573 0716 0632 0.538 0532 033 017
Jul 0.411 0538 0.643 063 0553 0.532 0.342 0.148
Aug 041 0538 0678 0658 0535 0525 0331 0.166
Sep 0499 059 056 0452 0456 0.55 0.332 0.141

continues on next page
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Oct 0.645 1 0.741 0586 0.705 0.589 0.296 0.173
Nov 0.422 1 0.562 0486 0.601 0.594 0.318 0.164
Dec 0.638 0.603 0.507 0.427 0599 0546 0299 0.164
Jan 0.87 0.545 0.495 06 0615 0464 0263 0.148
Feb 0.691 0.504 0518 0.592 045 0475 032 0.155
Mar 0.672 0507 0501 0.749 0455 0471 0305 0.162
Apr 0.792 0.528 0.537 0.591 0.5 0.478 0.384 0.141
May 0.781 0.523 0.537 0.632 0515 0548 0368 0.151
Jun 0.667 0521 044 0701 0613 0558 0439 0.218
Jul 1 059 0541 0513 0616 0581 0444 0.18
Aug 0.753 0.624 051 0.709 0.627 0.62 0.577 0.213
Scp 0.694 0577 0613 0.523 0641 0.597 0.339 0.189
Avg | 0638 0.63 0587 0.581 0574 0549 0542 0349 0165
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Appendix G

Characteristics of Some Units

Table G.1: Characteristics of Star Branches in Profit Efficiency Assessment
Unit | staff supplycost curacc othress credb credass Eff.
B16 | 7.263  49.612  8066.043 21357.171 22055.931 4081.433 1
B17 | 7.158 4514  6765.095 30635.916 17271.131 512821 1
B53 | 5316 32608  5265.835 27683.379 7838.712 939305 1
B60 | 5895 3502  4639.721 1011047 20020.396 1517.45 1
B37 | 5 2764 4412004 7350558 143375 16442  0.993
B12 | 5947 33209  7001.419 20713.546 8198.233  1628.081 0.972
B29 | 5684 3003  5501.041 24750.743 7590.218  918.958  0.972
B | 6 35501  6120.963 16031.855 17352.602 1291.793 0.951
B0 | 5 30298  5171.234 16231.155  9686.86  955.648  0.923
B33 | 4632 26627  4542.486 11146462 6507.857 954.578 0.916
B34 | 6579  42.833  6518.171 11484.254 10038,058 3833.909 0.914
Avg. | 5861 35328  5819.528 17954.137 12808.863 1661.652
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Characteristics of Some Units

Table G.2: Characteristics of Star Branches in Operational Efficiency Assessment

Unit | Rent Staff ACl  ACuracc AOthre ATdep ACredb ACredas Trans Eff.

B16 | 4.116 7.263 -38.316 65.885 125.153 -136.353  66.656 163.842 7367.462 0.957
B17 | 3.282 7.16T -76.667 97.267 99.453 -100.19 11.573 5.928 5613.392 0.936
B53 285 5316 -49.053 41.067 152.474  -97.264 121.268 25.687 4252911 0.915
B60 | 2.564 5.889 -46.944 59.882 188.747 -120.74 111.465 48.236 4566.898 0.929
B37 | 1.968 5 -23.421 36.935 -7.655 -66.886 32.215 11.252 5174434 0.974
Bl12 | 2.886 5.947 -38 84.501 78.399 -79.435 -32.712 43.323 5534.339 0.97
B29 | 1.995 5.684 -58.895 31.971 205.762  -10.355 107.934 1.51 5313.347 0.98
B49 | 2.168 6 -17.526 47.56 -99.455 -92.761 140.9 17.19 6347.687 0.982
B50 | 2.432 5 -20.789 38.764 67.832 -138.924 32.085 3.5 4349.868 0.929
B33 | 1411 4.632 -10.895 26.411 117.756  -44.145 141.275 52.042 4956.13  0.999
B34 | 3.742 6.579 -29.211 34918 5.611 -40.639 78,225 65.364 6952.102 0.967
Avg. | 2674 5.862 -37.247 51.378 84.916 -84.336 73.717 39.807 5493.506 0.958
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Characteristics of Some Units

Table G.3: Characteristics of ‘high operational low profit’ Branches in Profit Efficiency
Assessment
Unit | staff  supplycost  curace othress credb credass Eff.

Bl | 3.158 22.452 1233.367  4246.511 6125.156 14163 0.784
B3 | 5.842 36.662 5146.415 14349.904 10415.017 960.337 0.738
B4 | 4947 25.625 3497.183  6895.901 9884.464  987.336 0.818
B5 | 5.789 37.06 5087.909 11589.564 9245.241 1160.073 0.686
B7 | 4.053 23.914 2828.456  BO45.375  9565.342 543.145 0.872
B8 | 4.053 23.938 2545.001 5327.535  5832.126  338.082 0.630
B9 | 6.842 46.918 6963.326  14689.54 13199.921 849.329 0.665
B10 | 5.579 44342 6799.294 1447595 13312284 933.233 0.792
B13 | 5.105 40.456 5132.718 11479.138 11554.592 1005.516 0.759
Bl4 | 5.947 39.35 6927.643 15155.203 11999.245 1678.782 0.882
B15 | 5.789 44.379 4484.678  9156.73 7528.860 1988.944 0.587
B18 | 4.895 26.88 3643.793 14097.046  5469.409  889.799 0.787
B19 5 35.87 3516.093 12338.948 10434.321 871.681 0.680
B20 | 4.842 29.721 4074.331 14067.01 10577.617 84231  0.861
B21 | 5.895 43.76 5282.476 9514.855 10988.465  912.16  0.581
B25 | 3.579 27.206 2406.556  6200.732  5517.369  886.174 0.763
B26 | 5.053 30.955 7310.997 17118.322  7803.521 470.384 0.875
B27 | 4.211 28.044 3607.45 12337.987 B560.907  604.757 0.826
B30 | 4.789 34.904 3041.87 577276  11043.731 756.171 0.673
B31 | 6.632 39.132 5861.794 11938.399 14054.838 1011.08 0.710
B32 | 5.579 45.014 5944.356  12913.75 15074.366 1102.286 0.771
B35 | 5.421 32.707 4801.012 10999.704  8664.396 1652.478 0.785
B36 | 5.421 31.653 1343.262 1598.525  2115.445  260.551 0.165
B38 | 5.474 39.428 5865.756 10129.897 13621.833 1514.047 0.851
B39 | 5.789 34.011 5713.158 13896.801  9378.405 796.205  0.753

B41 7 45.534 6875.555 13880.874 18243.991 1457.897 0.748
B42 | 6.526 41.125 5261.374  B622.247 10075.7 853.19  0.542
B44 4 29.32 3258.651 8355.808  6245.581  521.851 0.671
B45 | 5.842 34.322 2173.584 273172 6373.257  770.588 0.349
B46 6 36.936 6600.129 17090.376 13536.133 1060.318 0.855

B48 | 7.368 48.405 5767.661 10098.512 10807.286 3829.272 0.770
B51 | 6.158 35.726 5635.401 22245.933  6740.77 672.407 0.736
B52 | 5.368 33.615 4427.868  17213.87 8893.71 745.648 0.726
B54 3 19.1 087.269  3708.058  2588.288 117.863 0.819
B56 | 4.842 30.985 2863.764 11396.459 8843.323  363.629 0.574
B58 | 4.947 32411 3663.692 10910.757 10557.64  683.094 0.683
B59 | 5.474 38.402 4586.996 17352.417 11156.681 855192 0.726
Avg. | 5.303 34.872 4463.806 11163.328 9622.412  948.309 0.716
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Table G.4: Characteristics of ‘high operational low profit’ Branches in Operational Effi-
ciency Assessment

Unit | Rent  Staff AClH ACuracc AOthre ATdep ACredb ACredas Trans Ef.
Bl | 3.364 3.158 -6.316 16.14 33.148  -31.074 37.295 6.031 2208.064 0.987
B3 | 2281 5.842 -47.263  20.942 174.814  -47.768 3.797 30.228  5419.024 0.939
B4 | 0.799 4.947 -33.526 31.76 44445  -34.571 58.316 11,722 5140.391 1
B5 | 2952 5.789 -27.789 20.08 96.643  -56.379 75.916 40.661  6100.028 0.961
B7 1.7 4.053 -18.105 27.512 19.723 -70.358 65.396 -6.2 3389.231 0.992
B8 2.406 4.053 -T.105 27.418 74.976 -29.167 113.797 10.501 3711.011  0.967
B9 | 2.875 6.842 -25.263  99.056 160.749  -84.239  106.579 21.512  8731.141 1
B10 | 4.188 5.611 -77.333 20.231 -25.317  -115.45 40.389 20.372 6002.553 0.935
B13 | 3.133 5.105 -16.895 23.779 87.37 -98.457 208.732 31.122 5616.958 0.935
Bl4 | 2,794 5.947 -38.947 3.199 41174  -73.155  -18.437  -62.676 6832.741 0.942
B15 | 4.501 5.789 -16 56.005 180.283  -39.137  134.564 19.768  3817.275 0.914
B18 | 2.615 4.895 -31.053 -1.904 -46.505  -69.759  -67.995 5.784 3354.116  0.909
B19 | 4.681 5 -40.722 6.464 -47.838  -86.054 39.865 8 4649.342 0.906
B20 | 2941 4.842 -37.474 40.344 89.271 -38.469 191.397 11.881 4172.708 0.932
B21 | 4.529 5.833 -14.556 -5.092 29.9 -186.654 54.323 17.363 5217.659 0.902
B25 | 3.136 3.579 9.263 80.401 69.385 -16.709 94.039 19.748 2929.668 0.973
B26 1.71 5.053 -19 207.284 203.697 -106.091 64.405 334 3728.942 0.987
B27 | 1.516 4.211 -28.158 15.942 12,843  -74.137 44,795 5.774 3206.415 0.991
B30 | 4801 4.789 -8.474 28.813 30.382 -45.631 83.355 6.04 3895.175 0.902
B31 | 3.208 6.632 -42.684 29.407 -28.693 =77.047 24.338 45.996 6305.545 0.916
B32 | 5461 5.556 -39.389 5.527 -90.445 -65.596 0.444 38.043 7244.984 0.982
B35 | 3.786 5.421 -22.842 10.685 15.948 -42.599 21.473 6.979 6018.097 0.924
B36 | 2.031 5.421 -14.368 24.603 53.739 -9.93 79.034 15.401 2277.241 0.956
B38 | 3.155 5474 -18.684  11.536 15649  -44444 183,138 51.123 6412353 0.981
B39 | 3.521 5.722 -17.389 -0.521 304.764 -127.265 27.434 23.708 4788.392  0.937
B41 | 4.876 T -21.789 34.367 212.683  -93.849 206.572 14.445 6013.574 0.937
B42 | 3279 6.526 -20.316 -28.473 -9.574 -103.187 -15.471 23.147 5931.557 0.904
B44 | 3.232 4 -3.105 41,138 -38.458  -34.786 45.86 16.147  3536.108 0.956
B45 | 2.673 5.842 0.211 14.766 58.254  -20.051  110.067 3.307 3035.953  0.936
B46 | 1.902 6 -23.947 39.005 159.709  -64.747 100.603 -5.339 5879.374 0.988
B48s | 3.852 7.368 -16.895 23.683 104.317  -81.094 -1.431 94381  6005.281 0.924
B51 | 1.868 6.158 -29.579 25.665 -18.306 -72.438 103,795 143 5981.46 0.974
B52 | 3043 5368 -26211 58916 92237  -89.991 116502 9359  4521.186 0.915
Bs4 | 2002 3 19 31452 124557  -2.87 84437 6119 1316045 0.999
B56 | 2.194 4.842 -42.368 5.102 -45.453  -T75.587 8.032 1.835 3278.388  0.925
B58 | 3.421 4.947 -10.789  27.015 158.409  -73.302 135.89 20.02 4643.46  0.934
B59 | 3.802 5474 5.211 27.709 179.95  -95.841 29.368 8.612 4596.842 0.93
Avg. | 3.083 5203 -21.852 20.719 67.053  -66,847 69.96 15.898

4750.097 0.948
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