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Abstract

The scaling problems which afflict atiempts o optimise neural networks
(NNs) with genetic algorithms (GAs) are discussed. A novel GA-NN
hybrid is introduced, based on the bumptree, a little-used connectionist
model. As well as being computationally efficient, the bumpiree is shown
to be more amenable to genetic coding than other NN maodels. A
hierarchical genetic coding scheme is developed for the bumptree and
shown to have low redundancy, as well as being complete and closed
with respect to the search space. When applied (o optimising bumptree
architectures for classification problems the GA discovers bumplrees
which significantly out-perform those constructed using a standard
algorithm.

The fields of artificial life, control and robotics are identified as likely
application areas for the evolutionary optimisation of NNs. An artificial
life case-study is presented and discussed. Experiments are reported
which show that the GA-bumptree is able to learn simulated pole balancing
and car parking tasks using only limited environmental feedback. A
simple modification of the fitness function allows the GA-bumptree to
learn mappings which are multi-modal, such as robot arm inverse
kinematics.

The dynamics of the ‘geographic speciation’ selection model used by
the GA-bumptree are investigated empirically and the convergence profile
is introduced as an analytical tool. The relationships between the rate of
genetic convergence and the phenomena of speciation, genetic drift and
punctuated equilibrium are discussed.

The importance of genetic linkage to GA design is discussed and two
new recombination operators are introduced. The first, linkage mapped
crossover (LMX) is shown to be a generalisation of existing crossover
operators. LMX provides a new framework for incorporating prior
knowledge into GAs. [ts adaptive form, ALMX, is shown to he ahle o
infer linkage relationships automatically during genetic search.
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Chapter 1

Introduction



1.1 Introduction

This thesis is concerned with an area of research which has spawned a plethora of
publications in recent years: the application ol genetic algorithms, optimisation
methods based on simulated evolution, to the field of neural network design.

As research in this area has progressed it has become apparent that the most
popular neural network models happen to be particularly unsuited to optimisation with
genetic algorithms (the reasons for which are discussed in the following chapter).
This unfortunate fact is reflected in the literature — there are now literally hundreds of
papers describing the evolution of neural networks for toy problems, but very few
which report success on larger ‘real world™ applications. This observation provided
the motivation for the central theme of this thesis, the identification of a little-uised
neural network model which is shown to be considerably more amenable (0
evolutionary optimisation than more established networks, while offering comparable
performance. The model in question is the recently-introduced bumptree netwaork,
and a large part of the thesis is devoted to the development and evaluation of GA-

bumptree hybrids.

assumptions about the function being optimised (although some of the assumptions
they do make turn out to be rather subtle, as will be seen in chapter 7). Unlike
stronger gradient-based methods, genetic algorithms have the advantage that they do
not require the objective function to be smooth, continuous or differentiable. This
generality has a price, however — genetic scarch is extremely explorative, and hence
computationally intensive, which makes the method often impractical except in
domains where stronger (more exploitative) methods cannot readily be applied. If the
function to be optimised is smooth and differentiable, for example, a genetic
algorithm is a clumsy and inefficient approach in comparison with a gradient-based
method such as hill climbing. This observation was one of the main conclusions of a
recent study of evolutionary neural networks (Hancock 1992), and provides the
motivation for the second main theme of the present work: the need to concentrate on
application areas in the field of neural networks where the computational overhead of
genetic search is likely to be worthwhile, as opposed to those (such as training neural
networks for well-specified classification tasks) where established, stronger, methods
(such as backpropagation) are adequale.

Finally, a principle which underlies much of the work described in these pages,
and to which chapter 7 of the thesis is entirely devoted, is the notion that the
performance of any GA depends critically on how well the genetic coding scheme ane

recombination operators reflect any dependencies which exist hetween the paramelers
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to be optimised. The bumptree coding scheme and crossover operator, described in
chapter 3, were designed with this in mind, and chapter 4 introduces a method for

quantifying the dependencies between parameters in a GA.

1.2 Structure of the thesis

The following chapter reviews the field of evolutionary computation in detail,
focusing in particular on the theoretical foundations of genetic algorithms (GAs) and
identifying a number of principles for GA design which are applied throughout the
remainder of the thesis. After a necessarily brief introduction to neural networks
(NNs), previous efforts to apply genetic algorithms in the neural network field are
reviewed, and certain scaling problems inherent to the approach are identified and
discussed. As an illustration of the principles described, some experiments are
presented in which a genetic algorithm is applied to optimising topology for a simple
neural network. These experiments investigale a criticism made by Belew,
Mclnerney, ef al. (1991) of carlier work by Miller, Tadd, et al. (1988), and the
results support the claims of the original authors.

Chapter 3 introduces a novel GA-NN hybrid based an the bumptree, a litile-
used connectionist model. The GA-bumptree is shown to have considerably better
scaling properties than previous GA-NN hybrids. The hierarchical genetic coding
scheme developed for the bumptree is shown to have the desirable properties of
completeness, closure, continuity, isomorphism and low redundancy.

Two sets of experiments are described in which the GA-bumptree is tested on
classification problems. In the first set of experiments the GA optimises the topology
of the bumptree only, and is able to discover bumptrees which significantly
outperform those found by an alternative constructive algorithm. In the second set of
experiments the GA is extended to optimise both the architecture and weights of the
bumptree.

The GA used in the bumplree experiments uses a ‘geographic speciation’
model for selection and replacement. Chapter 4 presents a detailed examination of the
dynamics of this GA, based on an cxtensive sei of experimenis. Methods for
measuring the degree of genetic diversity in the population are discussed, and the
convergence profile is introduced as an analytical 1ool. The results of this siudy
illustrate the relationships which exist beiween the rate of genetic convergence in 4
GA and the phenomena of speciation, genetic drifi and punciuated equilibrium.

In chapter S attention turns to the issue of identilying problem domains in
which an evolutionary approach to neural network design is likely to he worthwhile

because stronger methods cannot readily be applied. The emerging field of artificial



life (A-life) is introduced, and a case study is described in which a GA-NN hybrid is
applied to an A-life problem.

Chapter 6 continues to examine applications for the GA-bumplree, focusing on
tasks, drawn from the domains of control and robotics, which are difficult or
impossible to learn using standard NN training algorithms. Experiments are
described in which the GA-bumptree is able (o learn simulated pole balancing and car
parking tasks which involve the problem of remporal credit assignment. A further
set of experiments shows how the GA-bumptree can be applied to learning mappings
which are multi-valued, such as the inverse kinematics mapping for a simple robot
arm.

Some of the experimental results reported in chapter 6 reveal the limits of the
present GA-bumptree approach. These resulis motivated the final study undertaken
during this project, a re-examination of the role of recombination in GAs. In chapter
7 it is shown that different crossover operators make different implicit assumptions
about genetic linkage which can profoundly affect the performance of the GA. Two
new generalised recombination operators, linkage mapped crossover and adaptive
linkage mapped crossover, are introduced. The new operalors are lested on fwo
variants of a ‘Royal Road” function (Mitchell, Forrest, er al. 1991) and iheir
performance is compared against standard 1-point and unilorm crossover operalors.

Finally, chapter 8 summarises the main conclusions drawn from the project as

a whole.



Chapter 2

Evolutionary connectionism



2.1 Introduction

This chapter reviews the literature in the field of evolutionary connectionism, the
intersection between the growing fields of evolutionary computation (EC) and neural
networks.

The genetic algorithm is undoubtedly the most popular model of evolutionary
computation, and all the experimental work reported in this thesis has involved GAs
of one form or another. Section 2.2 reviews the development of genetic algorithm
theory and practice up to the time of writing. The conclusions drawn from this
review have shaped the design of the GAs described in the remainder of the thesis.
Section 2.2.5 briefly describes the most popular of the alternative evolutionary
computation algorithms, and shows how each relates to the GA.

A thorough treatment of the connectionist field would require several theses the
size of this one, so no attempt is made (o exhaustively review the neural network
literature here. Instead, section 2.3 outlines the field in broad strokes, with attention
focused on the multi-layer perception, since (his is the model which has been fhe
subject of the overwhelming majority of evolutionary connectionist experiments.

With the necessary foundations in place, the remainder of the chapier is
devoted to reviewing the literature of evolutionary neural networks. In addition to the
review, some experiments are described in section 2.4.2 in which a genetic algorithm

is used to optimise topology for a simple neural network.
2.2 Genetic Algorithms

The field of evolutionary computation has its roots in the mid 1950s and early 1960s
when several researchers, working independently, began to experiment with
modelling evolutionary processes as an approach to computational problem solving.
While no two authors are ever in agreement as to who was EC’s founding father,
researchers such as Fraser, Friedberg, Box and Bremmermann seem the most popular
candidates (Goldberg 1989; Fogel 1993; De Jong 1994; Schwefel 1994).

By the 1970s, three main schools ol evolutionary compufation had emerged
and begun to develop in isolation from one another. These were the fields of genefic
algorithms, evolutionary programming (EP) and the German evolutionsirategie
(ES), and they remained independent until 1990, when the first “Parallel Problem
Solving from Nature” workshop (Schwelel and Minner 1991) brought them together.

This thesis is concerned with just one of these fields, the field of genetic
algorithms. While ES and EP have matured sieadily since the “70s in the hands of a
relatively small core of practitioners, the GA has recently enjoyed an enviable
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explosion of research interest. Figure 2.1, taken from Alander’s (1994) recent
bibliography of evolutionary computation, illustrates this growth. Out of more than
2500 references in Alander’s bibliography, fewer than 200 are in the fields of ES and
EP.

the total number of yearly GA papers

number of papers (log scale)

- 1040

JINS SO 1

e N A B

L0 147 jusi (R year

Figure 2.1: The number of yearly publications in the field aof evolutionary
computation (after Alander 1994).

All the experiments reported in this thesis have been based on GAs of one form
or another. Although EP and ES are described only briefly, however, it is noted that
the distinctions between the various EC algorithms are somewhat blurred, and seem
to be becoming more so with each new publication. The GA described in the
following chapter, for example, has many features generally associated with EP or
ES.

2.2.1 Genetic algorithm fundamentals

While evolutionary computation iisell may be of uncertain pareniage, there is no
doubt in the GA community as to who was the father of genetic algorithms. Tn 1978
John Holland published Adapiation in Natural and Ariificial Systems, an atiempt
to identify the essential properties of adaptive systems and cast them in a formal
framework (Holland 1975). Holland’s seminal example of adaptation in the natural
world was evolution, and the computational model he introduced to illusirate the
validity of the formalism was the genetic algorithm.  Since Hollund's formal
beginnings, authors such as Goldberg (1989) and Davis (1991) have iniroduced the
GA to a wider audience, and attention has shifted (o the GA as 4 computational too

for optimisation, more than as 4 general model ol adapiive processes.
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When seen as algorithms for parameter optimisation, there are three features of
GAs which distinguish them from other methods such as hill climbing. Firstly, GAs
operate on a coding of the parameter space rather than directly on the space itself.
Secondly, GAs sample new points according to probabilistic, rather than
deterministic, transition rules. Finally, GAs maintain a population of points,
effectively searching from many places at once. This is not simply a case of applying
a local heuristic many times in parallel — the essential principle of the GA is that it is
the population as a whole which searches, guided by global information distributed
among all the points within it.

As an illustration of the basic genetic algorithm, consider an optimisation
problem in which the task is to tune a number of parameters in order to maximise
some reward. In the traditional GA, the first step is to code each parameler as a
binary word of as many bits as are necessary to represent the range of values over
which the parameter is allowed fo vary. The coded paramefers are then concalenated
to form a binary string. A population of many such strings is generated, in such 4
way that each string has a random pattern of Is and Os. Thereafter, ‘evolution’

proceeds as follows:

= A measure of fitness is calculated for each member of the population, by
decoding its string and evaluating the resulting set of parameters according to the

reward function.

* A number of parents are selected from the population with replacement,
with a string’s probability of selection being proportional (o its fitness relative to the

rest of the population.

* A new population of strings is generated from these fit parents by the

application of the genetic operators, which are described below.

* Some or all of the original population is replaced by the new generation of

offspring, and the process is repeated.

In the basic GA there are three genetic operators: reproduction, crossover and
mutation. Reproduction is self explanatory: it refers simply to the copying of &
parent string into the next generation, verbatim. With each successive generation, the
processes of selection and reproduction together are enough fo ensure that the average
fitness of the population will increase, as the fit are reproduced al the expense of the
poor. In the absence of other operators the population will converge on the (ifiest of

the original strings, i.e. the best of the original random solutions.
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New strings are generated by crossover, which combines information from
two parents to produce a novel string. In simple one-point crossover, a single locus
is selected at random to be the crossover point, and a new string is created by
beginning at the first locus and copying the bit pattern from one parent as far as the

crossover point, and from the other thereafter. This is illustrated in figure 2.2.

Parent |

10010100

@ 101111010111001

S Offsoring
1101001[10111001 ffspring

Parent 2

Figure 2.2: Simple one-point crossover.

Crossover is the GA’s search engine, continuously recombining the
information stored in the population in new ways (o produce new strings for
evaluation. The third genetic operator, mitation, infroduces occasional ‘errors’ inta
the reproductive process by randomly flipping bits in the offspring.  Mutation
iraditionally operates at low probability, and its purpose is not (o generate novel
strings for evaluation, but to safeguard against potentially useful information being
lost from the population. As selection crowds out poor strings the value of a
particular locus may converge, becoming uniform throughout the population.
Mutation serves to re-introduce such lost information, to be tried in new contexts by
crossover. The relationship between recombination and mutation in the GA is
inspired by an analogous relationship in nature. The following quote, taken from a

textbook on evolution (Savage 1977), illustrates the point:

“The significance of recombination to evolution cannot be
overestimated. A single mutational change may be lost or passed on
without great impact on a population, but if its effect is modified and
enhanced by recombination, an unending contribution to variation is
begun. Variation is the raw malerial for evolutionary change,
recombination is its principal source. Muiation alone has relatively
little effect on variation without the pervasive impact of
recombination.”

The genetic operators are applied probabilistically. For each parent siring there is 4
fixed probability, p., that crossover will be applied, in which case a second siring
with which to cross is drawn at random from the pool of parents. Otherwise, (he
string is simply reproduced ‘asexually’, so the probability of reproduction is ({-p,).
Every new child string is subject to mutation, which oceurs ai the muiaiion rete py,

where py, is the probability that any locus will mutate. An early empirical study by
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De Jong (1975) suggested typical values for the operator probabilities as p,.=0.6 and
P»=0.001, and these values are still widely used.

2.2.2 Biological analogies

At this point it is useful to introduce some of the biological terminology which has
been borrowed (but not always well looked after) by the GA community.

In biology (Whitehouse 1973; Savage 1977; Lawrence 1989), a chiromosome
is a long chain molecule of DNA consisting of many genes in sequence. DNA can
usefully be visualised as a ladder, twisted into the familiar double-helix, where each
rung is a nucleotide base puair, of which there are four types. According to the
modern definition, a gene is a long sequence of hase pairs which specifies (he
manufacture of a single protein!. If there are several viable variants of a particular
gene, these are referred (o as the alleles of that gene. All the genes which determine
the genetic makeup of an organism are collectively referred 1o as that organism’s
genotype, while the organism itself, i.e. the expression of those genes in 4 parficular
environment, is the phenotype.

In GA terms, it is reasonable to refer to the strings which are manipulated by
the GA as chromosomes, and this is common practice. Since a single string codes the
complete set of parameters to be optimised, a particular string is also often referred to
as a genotype, with the actual parameters it codes being the phenotype.

The digits which make up a string are, unfortunately, referred to as genes by
GA practitioners, with the alphabet of possible values (the set {1,0} for binary
strings) referred to as alleles. This is not a particularly good analogy. In a binary
string, the individual bits are more akin to the base pairs in DNA; a whole sequence of
bits which codes a particular parameter might more reasonably be referred to as a
gene, and the possible range of parameter values as its alleles. GAs which use
higher-order representations, in which each locus specifies & whaole parameter, fit in
better with the accepted use of the terms ‘gene’ and ‘allele’.

Crossover is generally considered unalogous to sexual recombination, since the
child inherits a mixture of ‘genetic material’ from ils two parents. Again, the
terminology is unfortunate because the term crossing over in biology refers o a
specific process which is rather unlike crossover in GAs. In biology, crossing aver
is the exchange of genetic material between homologous chromosames which occurs

during mejosis in the sex cells of a diploid organism?. The problem with the term

IThis is a slight simplification, since some genes actually specily certain RNAs.
2Most sexually reproducing organisms are diploid, meaning that their chromosomes aceur in
homologous pairs. When gameies are produced, the pairs separaie so thit each gumete is haplaid,
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‘crossover’ in GAs is that biological crossing over is very much a physical
consequence of diploidy, whereas the individuals in the GA are haploid.

The fact that crossing over in biology occurs within each individual parent’s
sex cells prior to sexual fusion, whereas crossover in GAs mixes alleles between
parents during fusion, has been levelled as a criticism of the GA as an evolutionary
model (Fogel 1993). The simple observation, however, that crossing over during
gametogenesis serves to mix grandparental alleles, reveals this particular criticism as
a straw man. It is the facr of recombination which is important, and which is
captured in the GA’s crossover operator: whether parents’ genes are mixed in their
children, or in their children’s children, is something of a moot point.

While the GA’s crossover operator may be something of a misnomer, there is
no doubting the power of the principle it embodies. A common example, based on an
evolving population, illustrates the power ol recombination: suppose that ihere are
two alleles, either of which would confer a selective advaniage, but neither of which
is present in any member of the population. Each ol these alleles can only he
introduced by a mutation of the appropriate gene, a very rare evenl. As the
populations evolves, mutant individuals possessing onc or other of the alleles will
eventually occur and begin to pass them on o their offspring. 1 the individuals in the
population reproduce asexually, producing an individual with both alleles requires
another rare mutation in an individual which already has one of the alleles. In a
sexually reproducing population, producing an individual with both alleles requires
only that two individuals, each with one of the alleles, exist in the same population

and interbreed.
2.2.3 The theory of GAs

Schemata

Holland (1975) laid the theoretical foundations for GAs on the principle that if is not
the processing of individuals which is important, but the processing of schemata. A
schema is defined as a similarity template, a particular pattern of bits shared by some
individuals in the population. For example, the schema #11#01, where # is a ‘don’t
care’ symbol matching either O or I, matches the strings (011001, OT1101, 111001,
111101}, Formally, for a population of binary sirings of lengih k, the schema
he{0,1,#) = (h,hy, ) matches the subsel of strings given by

H ={x e {011 = (x, x| Viih, #i, X = /I/]r’ J=1.2, k.

containing one chromosome from each pair. This ensures that when two parental gimeles fise e
diploid condition is restared.
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For convenience, the subser defined by the schema (hy,ho,-,hy) is labelled
hihy--hy, whereas a single element in the population, (xy,x2,---,xy), is labelled
X1x9--xg; hence it is natural to write that 111001e#11#01 but 101001e #11#01, and
so on. Eachj: h;j# #is called a defining position in H.

Since any k-bit binary string is a member (or an instance) of 2k distinct
schemata, a given population of n strings will contain instances of somewhere
between 2% and n2% schemata3. The fitness of a schema H with respect to a particular

population at time 7 is defined as the average fitness of all its member strings:

o i . ]
f(H)=———— f(x), 2.
1, (H) m(,”’f)%/(\) (2.1)

where f(x) is the fitness of string x, and m(H,t) denotes the number of individiials
in the population at time 7 which are instances of H. Since sivings, and therefore also
the schemata they represent, are selecied for reproduction in proportion to iheir
fitness, it is possible (o estimate the change in the number of instances ol any schema
after one generation of selection and reproduction.  Holland’s (1975) sehiema
theorem, also known as the fundamental theoren of genetic algorithns, siates that
the expected number of instances of A in generation r+1, m(H,1+1), is bounded by

(m(H, 1 +1)) > m(H, 1) 127 [1=p,(H)J, (2.2)

J

where f, is the average fitness of the population and p,(H) represents the probability
that H will be disrupted by the genetic operators, that is, the probability that a parent
string which is an instance of H will produce a child which is not an instance of H.
In the simple GA, the probability of H being disrupted by either crossover ar

mutation is bounded by

p,(H) < p, i( H‘) +p

o(H), (2.3)

where p, is the probability of applying the crossover operator (o a selected parent

string (as oppased to simply reproducing the string), 6(/H) is the defining lengith of

IFor large n, such that #n25>35, the number of schemata represented in the papulation is haunded by
3, since this is the number ol unique schemata of length k.
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H, the number of loci between the first and last defining positions in H, p,, is the
mutation rate and o(H) is the order of H, the number of defining positions4.

It is clear that schemata with high defining lengths stand a greater chance of
being disrupted by crossover. For example, a crossover applied to the string 11100]
is much more likely to disrupt the schema 1####1 than the schema ##10##, since
there is only one possible crossover point which could result in the second schema
being disrupted (i.e. between the third and fourth positions), whereas any crossover
point could disrupt the first. It is similarly clear why high order schemata are mare
likely to be disrupted by mutation, since every defined bit has a given probability of
being mutated. These observations lead naturally to the expectation that short, low
order schemata whose average fitness is higher than the population average will
become increasingly represented in the population in each successive generation,
increasing in frequency at a super-linear rate.

Holland’s schema theorem (equation 2.2) is a lower bound rather than an exact
equality because it does not account for two factors which affect the expected
transmission of schemata. The first is that schemata are nol only destroyed hy
crossover and mutation, they are also created — a child may contain schemata which
neither of its parents contained. The second, and the reason for the inequality in
equation 2.3, is that a crossover which falls between the two exueme defining
positions of a schema does not always disrupt that schema — specifically, crossover
will have no disruptive effect on a schema of which both parents are instances.
Bridges and Goldberg (1987) have incorporated these factors into the schema theorem
and extended equation 2.2 to an exact expression (i.e. an equality) for the expected
change in proportion of a given schema from one generation to the next in a basic
binary GA.

Intrinsic parallelism

The power of the genetic algorithm, according to Holland, lies in the fact that the
evaluation of a single k-bit string yields information about the 2 schemaia of which it
is an instance. The GA’s task can be viewed as choosing how besi (o allacale (rials
between competing schemata, a problem which Holland argues is analogous to that of
allocating trials to the arms of a k-armed bandit. In the k-armed bandit problem,
payoff associated with each arm is determined by an independent, unknawn,
probability distribution, and the goal is to allocate a finite number of trials between (he
arms in order to maximise total payoff. There is a trade-off hetween (he need to

YThe term p,0(H) is an approximation.  Since each position in a schema has equal independent
probability of being muiated, the probability of a schemu surviving mutation is (1-p, 00 which
can be approximated by (1-o(Hp,) lor p,,<<| (Halland 1975).
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sample each arm as often as possible in order to obtain g good estimate of their
relative payoffs, and the desire to allocate the majority of trials to the arm for which
the current estimated payoff is the greatest. Holland argues that each evaluation in a
GA effectively samples many competing schemata (analogous to sampling many arms
of the k-armed bandit) in parallel, and that the GA’s exponential allocation of trials to
the observed best schemata approaches the optimal strategy for this class of problem.
This principle of intrinsic parallelism’ underpins the original choice of g
binary representation for strings in the GA. The argument is simple: if each
evaluation yields information on 2% schemata, then maximising the degree of intrinsic
parallelism is the same as maximising &, the number of loci in (he string. To code a
given amount of information, maximising & is, in turn, the same as minimising the
information stored at each locus. Goldberg (1989) refers 1o (his as the principle of
minimal alphabets. Clearly, a binary representation stores the minimum in formation
at each locus, maximising & and therelore maximising the degree of intrinsic

parallelism.

Generalising schemata

The above argument in favour of the use of binary representations remains widely
accepted in the GA community. However, the theory’s failure to account for the
empirical successes reported by a number of workers using alphabets of much higher
cardinality, such as strings of integers or real values, has prompted some researchers
to question the assumptions behind it.

Grefenstette and Baker (1989) examine the k-armed bandit analogy, and
conclude that the analogy is not valid for schema sampling in a GA because the GA
does not sample competing schemata independently. To illustraie this, they consider
three schemata in a population, whose actual fitness averages (i.e. averaged over
every possible string) are: fO###--#)=1, [(1###-#)=1/2 and JUTT#-4=2. In the
first generation, a GA correctly allocates twice as many trials (o the schema O
as l###--#.  However, these trials are not allocated independently; fitness-
proportionate selection ensures that the trials allocated to 1#### are binsed towards
the subspace represented by the high-fitness schema 111#-4#. This leads to an
overly high estimate of the average litness of [#### which, in turn, leads fo arn
increasing allocation of trials to 1###--# in [avour of O#ft---#, even though the latter
schema has the higher actual average fitness.

Goldberg (1991) seeks to explain the empirical success of high-cardinality
codings in terms of his theory of virmal alphabers. This is (he theary that o real-
coded GA rapidly selects a virtual alphabet [or cach locus, o subsel of relatively low

Mater called implicit parallelism by Goldherg, [or reasons unknown.
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cardinality drawn from the space of real values, and searches strings defined over
these alphabets thereafter. While there is no doubt that a real-valued GA with a finite
population will tend to converge to a reduced set of alleles at each locus, the argument
that this convergence somehow increases the intrinsic parallelism does not hold water.
By definition, the number of schemata processed when a string is evaluated depends
on the number of loci in the string — for & loci it is simply 2%, since each locus can
take its actual value or the # ‘don’t care’ symbol — not the cardinality of the alphabet
at each locus. The reason that low cardinality alphabets are associated with the
greatest intrinsic parallelism is that lower cardinality representations require longer
strings fo code a given search space, and longer strings mean more schemata. The
convergence of loci to reduced virtual alphabets during a GA run has no effect on the
string length and, therefore, no effect on the number of schemaia processed by each
string; this convergence simply focuses the GA on a particular subspace of the
original search space. In fact, since the total number of possible schemaia is the
product of the number of alleles (plus the #) at each locus, reducing the cardinality of
each locus by selecting a reduced virtual alphabel uctually reduces the maximun
possible number of schemata in the population.

Rather than trying (o reconcile the success of high cardinality cadings with the
existing schema theory, Antonisse (1989) takes the crucial step of re-examining the
original argument for binary codings. Antonisse reasons as follows: what is
important is that the GA processes subsets of strings which are similar in some sense,
and discovers which patterns of similarity are correlated with high fitness. Counting
the number of schemata processed under different representations is misleading,
because Holland’s schemata are only appropriate as similarity templates when a
binary representation is used. For higher cardinality alphabets, the single ‘don’t care’
symbol, #, is not sufficient to express all possible patterns of similarity at each
locus®. As an example, Antonisse proposes that schemata for stri ngs defined over the
alphabet {0,1,2} should be defined over the augmented alphabet
{0,1,2,#00.%01,#02.#12.%012 ), where #5, means ‘this locus may be either 0 or 17,
and so on. This simple change in viewpoint admits a far greater number of schemata
to higher cardinality representations, and effectively reverses the counting argument in
favour of binary codings.

Since Antonisse, Vose (1991) and Radeliffe (Radcliffe 1991a: Radcliffe 1991h:
Radcliffe 1991c¢; Radcliffe 1992: Radclilfe and George 1993; Radcliffe 1994) have

taken the final conceptual step and adopied a completely general view in which any

bTndeed, as Radcliffe (1992) points oul, even for binary representations, schemata do nol necessipily
capture all similarities which might be expected o influence fimess. Coding an integer as 4 bits, (o
example, the representatives of 7and 8, 0111 and 1000 respectively, share membership of no schemg
hut #HR,



arbitrary subset of strings constitutes a ‘generalised schema’. Although these
generalised schemata, termed predicates by Vose, and formae by Radcliffe, still
satisfy the principle of Holland’s schema theorem, they repudiate the counting
arguments which favour one representation scheme over another. In the general
view, so long as the coding space is isomorphic to the search space, the coding
scheme is irrelevant to the degree of intrinsic parallelism: it is possible to define the
same number of subsels over a given search space however it is coded. Masaon

(1993) sums up the development of schema theory since Holland thus:

“Both Holland and more recently Goldberg...have argued that
binary coded chromosomes allow (he greatest number of schemata
to be represented and thus processed. Most GA research has
consequently focused on binary codings. The consideration of
generalised schemata results in all codings admitting the same
number of schemata. There is now no justification for a conlinuance
of this bias towards binary codings.”

Building blocks

The success of a GA in solving any optimisation problem depends critically on the
existence of building blocks. 1n terms of Hollund’s original schema thearem,
building blocks are short, low order schemata of high fitness which can be combined
by crossover to form higher order schemata of greater fitness. In terms of generalised
schemata, building blocks are arbitrary subsets of strings of above average fitness
which satisfy two conditions: first, the average fitness of strings which fall in the
intersection of two such subsets should be greater (han the average fitness of either
one, and second, recombining two strings drawn from separate subsets should yield a
string which is a member of their intersection.

The problem with applying GAs to practical optimisation tasks is that it is
generally non-trivial to ensure that useful building blocks exists. The traditional
approach is to use a binary representation and standard genelic operators and hope
that the mapping between the search spuce and the binary representation space is such
that schemata do capture meaningful partial solutions. The more moderm approach,
championed by Davis (1991) and Radcliffe (1992), is fo design both the
representation and the genetic operators according o the particular oplimisation
problem at hand, so that known regularitics in the seuarch space are preserved and
exploited as much as possible.

Problems arise when fit, low order schemuta (or formae) comhine to form less
fit higher order schemata. This effect has been termed deception hy Galdberg
(1987), and is caused by epistatic inleractions hetween loei: o problem may be
deceptive if the contribution to fitness attributable (o a particular allele af i particular
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locus (or a particular set of alleles at different loci) depends on the values of alleles at
other loci.

Several GA theorists have attempted to build analytical tools to quantify the
degree of deception exhibited by a particular combination of objective function,
representation and operators.  Goldberg (1987) introduces the 2-bi minimal
deceptive problem in order to investigate the schema frequency dynamics of a simple
binary GA attempting to optimise a deceptive function. Goldberg later outlines an
algorithm for the analysis of the degree of deception in a given GA application
(Goldberg 1989a; Goldberg 1989b), hased on a method of calculating schema
average fitness values using Walsh functions pioneered by Bethke (1981).
Unfortunately, the algorithm involves firsi transforming the objective function with a
Walsh transform, which has computational complexity of higher order than
enumerating over the entire search space. This ruther limits its practical usefulness,

Mason (1993) introduces the crossover non-linearity ratio as a measure of the
degree of deception in a GA, based on the change in average fitness when twa sirings
are crossed over (o produce two children — put simply, a large change in Average
fitness indicates that the fitness contribution attributable 1o the sel of genes exchanged
by crossover depends strongly on the rest of the string, and so (hese genes do pot
constitute a good building block.

Finally, Mitchell, Forrest and Holland (Mitchell, Forrest, er al. 1991: Forrest
and Mitchell 1993; Mitchell, Holland, ¢r «l, 1994), instead of studying deceptive
problems, take the complementary approach and investigate GA performance on a
class of objective functions which are designed (o be maximally ‘GA-[riendly’.
These Royal Road functions are constructed from a hierarchy of explicitly defined
building blocks with no epistatic interactions between them. Both Mason’s crossover
non-linearity ratio and Mitchell’s Royal Road functions are considered in detail in
chapter 7, where they are applied to analyse (he performance of a new crossover

operator.
2.2.4 Selection and replacement strategies

During the time that the relatively small core of GA theorisis have been advancing the
theoretical understanding of GAs, u lLurge number of practitioners huave heen
developing and refining all aspects of GA implementation and studying the effects of
various representations, operators, and selection and replacement sirategies

empirically. This and the following section briefly review this work.



Preserving good solutions

An unfortunate feature of the canonical GA is that it is possible that the best solution
found will be lost during a run. This is clearly undesirable, and the problem has been
addressed in various ways.

One source of such losses lies in the stochastic nature of selection. The
selection process is often likened to spinning a gambler’s ‘wheel of fortune’?, where
strings are laid out around the circumference of the wheel such that each string has a
slot whose size is proportional to its fitness. In the limit, repeatedly spinning the
wheel will select strings in proportion (o each string’s fitness relative (o (he average.
Unfortunately, selecting a finite number of parents introduces stochastic sampling
errors (as an extreme example, there is a small but non-zero probability that the worst
string will be selected every time) and rounding errors (since il is impossible (o select
a fraction of a string), which become more significant as the population size becomes
smaller. Baker (1987) addresses this problem by introducing Stochastic Universal
Sampling (SUS), which is a simple variant of normal selection which minimises
sampling error. SUS is analogous (o a gambler’s wheel with a number ol pointers
equally spaced around the wheel’s circumlerence, one pointer for each parenl 10 he
selected, which is spun only once.

A more direct approach (o ensuring that the best solution is never lost is simply
to copy the best string into the next generation verbatim before selecting parents for
the remaining offspring in the normal way. This process, introduced by De Jong
(1975) and known as elitism, has enjoyed a good deal of empirical success and is
widely used.

Taking the principle of elitism further, De Jong experimented with GAS in
which generations overlapped by varying degrees, so that the majority of the existing
strings were preserved and only a few (a proportion which he referred to as the
generation gap) were replaced each generation (De Jong 1975). This method finds
its extreme in GAs such as Whitley’s GENITOR, in which only a single string is
replaced each ‘generation” (Whitley 1988). Whitley referred to this as one-af-a-time
reproduction, while Syswerda (1989) later described GENITOR us o steady siate
GA. The latter phrase has proved more popular in the GA community, perhaps
understandably.

Finally, Whitley has experimented with deliberately introducing hias into the
selection process, in favour of those sirings which are not only fit themselves, hut
which have shown a tendency toward producing (it offspring. This scheme, known
as reproductive evaluation, proved useful in problems where linkage elfects and

redundancy in the genetic code meant that the performance af schemati was highly

"This is ofien referred 1o as “roulete wheel” selection.
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context dependent, that is, dependent on the makeup of the population as a whole. If
there is more than one evolutionary road (o a solution, reproductive evaluation helps
the population to traverse a single path, rather than attempting to set off in many

different directions at once, generating partial solutions which conflict.

Maintaining diversity

In ensuring the survival of the best solutions, elitist strategies unfortunately tend (o
increase the number of duplicate strings in the population, accelerating the loss of
genetic diversity. This is ironic because the only possible benefit of having duplicate
strings in the population is in a non-clitist GA, where duplication may be regarded as
a useful ‘insurance policy” against losing a good solution — in elitist GAs, duplicate
strings are just dead weight. Tt is not surprising that various strategies for minimising
duplication have evolved in parallel with the emergence of elitism.

Goldberg (1989) cites Cavicchio’s preseleciion scheme (Cavicehio 1970), in
which offspring may only replace their parents, as one of the earliest efforis o
preserve diversity by preventing duplication. Maintaining diversity was u serious
issue for Cavicchio, since he was working with strings of over 3000 bits, buf was
obliged by available computing resources (o use a population size of less (han 20,
More recently, a similar replacement scheme has been referred 1o by Mason (1993) as
PC-elitism (Parent/Child-elitism).

Crowding is a replacement scheme introduced by De Jong (1975), whereby a
number of strings (a proportion of the population called the crowding factor) are
chosen at random, and the one most similar, genetically, to the new child is replaced
by the child. De Jong was working with binary strings, and used Hamming distance
as the measure of similarity. Whitley’s GENITOR algorithm prevents duplicates by
the simple expedient of discarding any offspring which is identical to an existing
member of the population. Stadnyk (1987) describes an improved crowding
algorithm which uses inverse-fitness proportionate selection to choose the crowd of
candidates for replacement, thus biasing in favour of replacing strings of low fitness.
Mahfoud (1992) compares the performance of several variations of crowding on
simple multi-modal problems, and favours a simple variant of preselection which he
calls deterministic crowding, which offers high performance while being
computationally inexpensive. Mahfoud’s results also favour phenotypic rather than
genotypic comparisons, based on the difference between decaded paramelers rather
than the Hamming distance between strings.  In Mahfond’s multi-modal test
functions, only the 7 most significant bits out of 30 yield uselul information as o
which peak a point is on; as far as crowding is concerned, the other 23 hils are jisi
noise (Mahfoud 1992).



Like crowding, sharing (Goldberg 1987; Deb and Goldberg 1989) is a
mechanism which adjusts a string’s chance of survival according to its similarity to
the other members of the population. Unlike crowding, sharing operates at the
selection phase rather than during replacement. The principle is that each peak on a
multi-modal fitness landscape is a resource which must be shared by those strings
which ascend it. Thus a string’s fitness is reduced by a function of the number and
closeness of other strings which are sufficiently similar to it to fall within a pre-
determined neighbourhood. As with Mahfoud’s algorithms, the neighbourhood
function is a distance metric typically defined over the actual parameter space
(phenotypic sharing) rather than over the coded strings (genotypic sharing). QOn
simple one-dimensional multi-modal test problems a GA with sharing maintains
search on several peaks throughout the run, while an ordinary GA quickly converges
to a single peak. It is worth noting, however, that the effectiveness of sharing
depends on a choice of neighbourhood size which separates different peaks into
different neighbourhoods. This choice is simple for one-dimensional test functions,
but not necessarily so for real problems where the topology of the fitness Lindscape is
unknown. Sharing is also O(N?) computationally complex, since every siring’s
distance from every ofher siring musi be recalculated eiach generation.

As well as modified selection and replacement strategies, various modifications
made to the genetic operators also prevent undue duplication in the population.
Booker’s reduced surrogate crossover (Booker 1987) and Eshelman’s HUX operator
(Eshelman and Schaffer 1991), both described in the following section, are examples
of operators which prevent crossover from exchanging identical portions of similar
parent strings and thus creating duplicates. Eshelman also introduces incest
prevention, a simple scheme whereby two parents will not cross over if they are (oo
similar (Eshelman and Schaffer 1991). Similarity, in this case, is determined by a
threshold Hamming distance which is reduced during the course of a run. Finally,
Mauldin (1984) uses a tailored mutation operator to prevent duplication, in which new
children are repeatedly mutated until they are sufficiently unique, that is, until their
Hamming distance from every other string is sufficiently greal. The required
uniqueness is reduced during the course of a run, so the GA samples sirings over an

increasingly fine lattice, in a process similar to cooling in simulated annealing.

Selection pressure

Selection pressure can be considered as the differential between the most and least {if
members of the population. If selection pressure is too high, a finite population will
quickly fill with duplicates of the high performing strings, and the resulting loss of
diversity will stall the search; this is known as prematire convergence. Op the other
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hand, selection pressure must be high enough to overcome the stochastic errors in
selection, otherwise there will be no tendency for better strings (o be selected more
often than poor ones, and the population will wander randomly along a fitness
contour; this is known as genetic drift.

If strings are evaluated according (o a fixed scale there is a tendency for both of
these effects to occur. Initially, a few good strings seize the lion’s share of the
available reproductive trials, and later in the run selection pressure wanes as the
optimum is approached and the difference between the population average and the
fittest string decreases. Like the frog which tries to cross the pond by always leaping
half the remaining distance, the GA often quickly locales a near-optimal solution buf
never quite makes it to the optimum. To try to prevent this, a string’s absolute fitness
(according to the objective function) is often passed through a fitness scaling
function, which compresses or expands the range of fitness values present in the
population so that the difference between fittest and least {it, and thus the selection
pressure, remains constant. The use of fitness scaling functions is widespread in the
GA community, with the earliest example, according to Goldberg (1989¢), heing
Bagley’s (1967) adaptive game-playing prograni.

An alternative method of maintaining constant selection pressire, and one
which departs further from Holland’s original fitness-proportionate selection, is
ranking. Introduced by Baker (1985), ranking simply involves sorting the population
in order of descending fitness, and allocating a number of reproductive trials to each
string according to a fixed scale. For example, the fittest string might always be
selected five times, the second fittest four times, and so on. Ranking maintains
constant selection pressure at the expense ol ignoring the relative magnitudes of string
fitnesses, and therefore also of schema fitnesses. Theoretically, this would seem a
high price to pay; the fact that ranking schemes have proved highly successful
underlines the gap which exists between GA theory (which often rests on
assumptions such as a population size tending to infinity) and GA practice. Whitley’s
popular GENITOR algorithm uses ranking, and the advantages of rank-bhased
selection, and its relationship to Holland’s schema theorem, are discussed in (Whitley
1989). Montana and Davis (1989) report empirical success with a variation of
ranking which allocates the number of trials to each rank according to a geomeiric
scale. Ranking methods are particularly useful when the population is small in
comparison to the size of the scarch space. For large populations, where premutire
convergence tends to be less of a problem, the extra computational overheads
associated with ranking (ranking requires sorting the population, unlike rouletie-
wheel selection) may become significant.

Anather selection method which has enjoyed empirical success despite hicking

firm theoretical foundations is ronrmaiment selection, introduced hy Brindle (19811,
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The algorithm is simple: a number of strings are chosen at random, and the one with
the highest fitness is selected for reproduction. This process is repeated until all
parents have been chosen. Selective pressure depends on the number of strings
which compete each time — the rournament size. Clearly, the larger the tournament
size, the higher the selective pressure. Tournament selection has several desirable
features: it is simple to implement, fairly computationally efficient for large
populations (since only a small number of strings are compared each time), and it
ensures that selection pressure is maintained towards the end of the run — any
advantage in fitness, however small, is rewarded. Tournament selection seems (o he
particularly favoured among the genetic programming® communily, e.g. (Reynolds
1994).

Goldberg and Deb (1991) have undertaken an analytical comparison of the
expected convergence rates of rouletie-wheel selection, ranking, hinary tournament
selection and the GENITOR algorithm (ranking with steady-state reproduction).
Their analysis suggests that GENITOR typically exhibits the most rapid proliferation
of fit strings (which may lead o premature convergence), followed by linear ranking
and binary tournament selection, which display similar characteristics, wilh roulefie-

wheel selection being the slowest.

Subpopulations and speciation

The selection and replacement strategies described so far have been population-wide,
or panmictic. An alternative approach (o balancing exploration and exploitation is (o
divide the population into subpopulations, or demes. In this approach, selection,
mating and replacement almost always occur within a subpopulation, but occasional
matings occur between subpopulations. The subpopulations act like mini-GAs, each
converging on a particular evolutionary path on the fitness landscape. The formation
of subpopulations is also referred to as niche-formation or speciation.

The most obvious way of creating subpopulations is by running several small
GAs independently, and occasionally transferring strings between them. This
approach, which has the advantage that it maps very well onto parallel hardware such
as a transputer array, has been taken by Muhlenbein and Gorges-Schleuter in their
ASPARAGOS GA, and has yielded impressive performance on various hard
problems (Gorges-Schleuter 1989; Miihlenbein 1989; Miihlenbein and Kindermann
1989). Similar subpopulation schemes include the partitioned and distributed GhAg
of Tanese (1989) and Whitley and Starkweather’s GENITOR 1T (Whitley and
Starkweather 1990).

BGenetic programming is a growing branch ol evalutionary computation pioneered hy John Koz
(Koza 1992), in which tailored GAs are used 1o evalve LISP programs 1o salve arhitrary probleis,
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Deb and Goldberg form subpopulations by incorporating a restricted mating
scheme into their sharing mechanism (Deb and Goldberg 1989), whereby crossover
only occurs between strings which are members of the same neighbourhood. This
has the effect of forming different subpopulations on different peaks of their multi-
modal test function. Because mating doesn’t occur between subpopulations, this
greatly reduces the generation of ‘lethal” strings which fall into the regions of low
fitness between peaks.

In Deb and Goldberg’s scheme, the subpopulation to which a siring belongs is
uniquely determined by its associated point on the fitness landscape; neighbouring
points on the fitness landscape are grouped into the same subpopulation. Other
researchers have implemented subpopulations in 4 more general manner, by imposing
a separate metric to determine subpopulation membership. This approach has the
advantage that similar poinis on the fitness landscape need not be members of the
same subpopulation.  Moreover, the same point can be a member of several
subpopulations. This allows the GA (o explore several evolutionary paths from (he
same starting point, and can help escape local optima.  An example of this more
general approach is the work of Spears (1994), in which each string has several fag
bits appended which label it as belonging 1o a particular subpapulation. When fhe
population is initialised, a string’s tag bits are assigned randomly along with the other
bits in the string, so the initial distribution of points on the fitness landscape into
subpopulations is random. Mating is only allowed between strings which share the
same tag bits, so the only possible exchange of genetic material between
subpopulations occurs when a tag bit is mutated, an event which Spears refers (o as
diffusion”®.

Another approach to creating subpopulations is to define an arbitrary spatial
relationship between strings in the population, and only allow mating between nearby
strings. In this model of geographic speciation, used in the work of Manderick and
Spiessens (1989), Davidor (1991) and Collins and Jefferson (1991), the population is
mapped onto a 2-D toroidal lattice so that cach string is assigned a unique cell. Note
that neighbourhood on the lattice is unrelated o neighbourhood on the fitness
landscape; as with Spears” GA, the same point on the fitness landscape might be
duplicated in several different cells. Davidor’s algorithm is a steady-staie GA, and
selection begins by choosing a cell on the lattice al random. Two parenis are then
selected in separate stochastic tournaments among the 9-cell neighbourhood of the
chosen cell, and the new child is replaced into the same neighbourhood. Manderick
and Spiessens use a similar selection procedure, but their GA is generational raiher

than steady-state, replacing every cell in cach generation. Collins’ selection procediie

9Diffusion was actually animplemented in the paper referenced here, sinee mutation af tag hits wiis
not allowed.
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is slightly different, in that a parent is chosen by a tournament among sirings
encountered on a short random walk across the lattice from the cell to be replaced. In
all three algorithms, subpopulations of similar strings form in local regions on the
lattice, with a limited exchange of genetic material occurring at the borders between

them.
2.2.5 Representations and operators

Binary representations and operators

A popular variation of the traditional binary coding of parameters is the use of Gray
codes. Gray codes are binary representations of integers which have the property that
the representations of consecutive integers differ by only one bit. With normal binary
coding, for example, a Hamming cliff exists between the binary representations of
the integers 7 and 8, represented by 0111 and 1000 respectively, since a unil change
in the integer requires a much grealer change in ils representation; every bil must he
mutated simultaneously in order to change between the binary representations of 7
and 8. Hollstein (1971) first used Gray codes to relieve this prablem in GAs.
However, as Hancock (1992) poinis oul, there are arguments against the use of Gray
codes. While a unit change in an integer always produces a single bit change in its
Gray coded representation, the reverse does not necessarily apply. A single mutation
of the Gray coded binary 0000, representing 0, is enough to produce 1000,
representing 15 — a maximal change in the integer. Thus Hamming cliffs exist in
Gray codes as well. Despite the rather mixed results of empirical comparisons
between Gray codes and normal binary coding, e.g. (Caruana and Shaffer [988;
Hancock 1992), Gray codes remain a popular choice among GA practitioners.

Many different crossover operators have been tried in place of Holland’s
original 1-point crossover. These include 2-point and n-point crossovers, where
parents exchange several short sections ol chromosome, and Syswerda’s (1989)
uniform crossover, which exchanges an arbitrary subsel of genes, chosen with
uniform probability along the length of the chromosome. Although there appears (o
be some evidence that 2-point crossover is generally slightly superior 1o 1-paint
crossover regardless of the function being optimised (Schaffer 1989), empirical
comparisons of crossover operators have not favoured any one decisively. For
example, uniform crossover works well in combination with steady-siate selection
and replacement (Syswerda 1989), but can be (oo disruptive for non-elitist GAs
(Schaffer 1991).

Various crossover operators exist in which crossover poinis are chosen nop-

randamly. Booker’s (1987) reduced surrogaie crossover aims 1o increase efficiency
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by always choosing crossover points at loci where the parent strings differ, (o ensure
that a new combination of genes is produced. Eshelman and Schaffer’s (1991) HUX
operator is a combination of reduced surrogate crossover and uniform crossover, in
which parents exchange a subset of the genes which differ between them. Schaffer’s
(1987) punctuated crossover uses a binary mask to determine which loci may be
crossover points. Each string has its own crossover mask appended (o it, so the
masks themselves adapt as the strings evolve.

Levenick, inspired by a feature of biological chromosomes, experimented with
the insertion of introns'® into strings, sequences of bits which are not decoded, but
simply serve as padding between coded parameters (Levenick 1991). Levenick found
that the insertion of introns improved performance by reducing the disruptive effect of
crossover without affecting its ability to assort building blocks. This assumes,
however, that any crossover point which falls within an intron will result in a non-
disruptive crossover, that is, introns must separate known low-order building blocks.
While this condition was fulfilled in Levenick’s test function, the benefit of inserting
introns in GAs for practical applications has yet 1o be demonsirated.

Efforts have been made o improve GA performance by varying operalor
probabilities on-line.  Fogarty (1989) describes twa approaches (o varying (he
mutation rate in a binary GA. The [irst of these is a standard GA in which the
mutation rate is decreased exponentially during the course of a run. In the second
approach, the mutation rate differs for cach bit according to its significance relative to
the integer parameter it codes, so that the more significant the bit, the less frequently it
is mutated. Unfortunately, Fogarty’s results were rather negative. The only
experiments where either adaptive mutation method produced a statistically significant
increase in performance over a standard GA were those in which the population was
initialised so that every string had a zero at every locus. Given that the initial mutation
rates for the adaptive GAs were several orders ol magnitude greater than the constant
mutation rate used for the standard GA, this result is hardly surprising.

Since choosing the best genetic operators for non-trivial problems remains
something of an art, Davis (1989) supports the approach of maintaining a pool of
many different genetic operators which compete for the chance to be applied during
reproduction. Those operators which more frequently produce fit offspring are
rewarded by giving them a higher probability of being chosen. Mantana and Davig
(1989) have successfully used this method for balancing the probabilities of several

specialised operators in a GA [or optimising neural network weighis.

108ee (Gilbert 1978: Dorit, Schoenback, et al. 1990, Doolitde and Stoltafus 194930,
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Higher cardinality alphabets

A great many of the practical applications of GAs have used alphabets of higher
cardinality than binary. Bramlette uses an integer representation (which he calls a
vector representation) for several benchmark function optimisation problems
(Bramlette 1991), and a real-world aircraft design task (Bramlette and Cusic 1989;
Bramlette and Bouchard 1991). Bramlette uses I-point crossover and a mutation
operator which perturbs a gene by a random quantity, rounded to an integer and
biased to make small mutations more probable than large ones. Mansour reports
empirical success using integer codings and tailored operators for multicomputer fask
allocation (Mansour and Fox 1991), and Hancock has found that integer
representations compare favourably (o binary for various neural network optimisation
problems, e.g. (Hancock and Smith 1990; Hancock 1992).

The majority of non-binary GAs use real-valued (floating-point) genes. Real-
valued codes are frequently used in the optimisation ol neural network paramelers,
discussed in detail later in this chapier. As well as neural network optimisation,
example applications of real-valued GAs include [unction opiimisation (Radcliffe
1991b; Wright 1991), optimisation ol reactive control parameters for a simulated
robol controller (Pearce, Arkin, ei al. 1992), and various problems in analyiical
chemistry (Lucasius and Kateman 1989), among many others. Janikow and
Michalewicz (1991) compare floating-point and binary representations on a complex
dynamic control problem, and find that the floating-point GA significantly and
consistently performs better. They attribute the improvement to the fact that the
floating-point representation is more natural for this problem, and allows powerful
problem-specific operators to be used.

While the various crossover operators used in binary GAs are equally
applicable to GAs of higher cardinality, additional crossover operators have been
introduced which are specific (o real-valued codings. Radcliffe (1991c¢) proposes flat
crossover, in which each gene in the offspring takes a value randomly chosen in the
range defined by the equivalent genes in its parents. In order to offsel this operator’s
tendency to continuously narrow the population’s range of values at each locus, a
tailored extremal mutation operator, which inserts extremal values into the gene
pool, is also used. Wright’s linear crossover (Wright 1991) takes a rather different
approach, treating whole parent strings as points in parameter-space and generating
offspring which lie on the line between them.

Davis (1991) describes various mutation operators for use with real valued
codings. Real number mutation is the high-cardinality analogue of bit-flipping, in
that it simply replaces a gene with a randomly chosen real vilue. Creeping mutaion

is more popular, and works by perturbing o gene’s value by ¢ small random quantify,
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chosen uniformly over a particular range. The magnitude of the perturbations will
affect the GA’s performance; small changes are desirable (o facilitate hill-climbing on
smooth problem surfaces, but larger mutations may be necessary to maintain diversity
and prevent premature convergence. Davis recommends using several creeping
mutation operators, applied with different probabilitics, each operating with a
different range (Davis 1991).

Other representations and operators

Certain classes of optimisation problem do not lend themselves to coding as a list of
parameters, and attempts (o apply GAs 1o these problems have spawned a plethora of
highly non-standard representations and operators. Radcliffe (1992) cites the class of
permutation-based problems such as the TSP (Travelling Salesman Problem) as a
prime example.

The most popular coding scheme for the TSP is the simple order-hased
representation introduced by Goldberg and Lingle (1985) in which each chramosome
is an ordered list of cities representing a tour. To recombine these strings without
producing illegal tours, Goldberg introduces partially mapped crossover (PMX).
Grefenstetle examines various more complex representations and aperators for (he
TSP, including an adjacency representation and a crossover operator which assorts
edges (Grefenstette, Gopal, er al. 1985; Grefenstette 1987), and obtains promising
solutions to TSPs of up to 200 cities. Whitley, Starkweather, er al. (1989) introduce
edge recombination, a more general variant of Grefenstetie’s heuristic crossover.
Many other, lesser known, operators have been applied to the TSP (Liepins, Hilliard,
et al. 1987; Oliver, Smith, ¢t a/. 1987; Suh Jung and Van Gucht 1987; Gorges-
Schleuter 1989), and problem-specific order-hased representations and operators,
including PMX and edge recombination, have also been applied to the related problem
of scheduling (Davis 1985; Whitley, Starkweather, er al. 1989; Bagcehi, Uckun, ef al.
1991; Syswerda 1991; Whitley, Starkweather, er al. 1991).

The many other types of problem to which non-standard codings and operators
have been applied are too numerous and too varied (o be considered in detail here.
Examples are the use of diploidy, dominance and latent genes for non-stationary
function optimisation (Goldberg and Smith 1987, Dusgupta and McGregor 1992),
variable length chromosomes (Hintz 1989; Goldberg, Korh, ¢r al. 199(); Goldberg,
Deb, et al. 1991), matrix and muliiple chromosome representations (fuliff 1992,
Cartwright and Harris 1993) and tree-siructured chromosomes (Jones 1992 Koza
1992). A tree-structured representation forms the basis ol the GA-bumpiree, u nave
GA-neural network hybrid introduced in the following chapier.
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2.2.6 Other evolutionary algorithms

The field of genetic algorithms is the largest of three separate computational
paradigms inspired by the natural process of evolution. The others, evolution
strategies (ES) and evolutionary programming (EP) are collectively known as
evolutionary algorithms (EAs), to distinguish them from GAs. Although similar in

many respects, historically, GAs and EAs have two fundamental differences:

“Evolutionary algorithms emphasize phenotypic adaptation, while
genetic algorithms emphasize genotypic transformations. 1In
addition, evolutionary algorithms treat evolving structures
holistically, in contrast with genetic algorithms which assume the
reductionist perspective ol assembling desired structures from the
bottom-up.” (Fogel 1993)

Evolution strategies (Bick, Hollmeister, e al. 1991; Biick and Schwefel 1993;
Rechenberg 1994) manipulate strings of real-valued parameters, and firmly emphasise
mutation as the principal search mechanism. Recombination, so fundamental to the
GA, is rarely used; when it is, it is seen as a uselul hearistic and plays a supporting
role. ESs come in various flavours, distinguished by the notation (p[+,]0), where p
1s the size of the parent population, o is the number ol offspring generated each
generation and ‘+ and °,” denote two alternative approaches (o selection. Selection
is purely deterministic, based on rank, and competition occurs either among the new
offspring (,) or the whole population, parents and offspring (+). In roughly historical

order, the development of ESs can be summarised as follows (Biick 1994):

* (1,1) : Random walk — search from a single point in a succession of small

random steps.

¢ (I+1): Minimal ‘real” ES — generate a new point by mutating the existing
one, and keep the better of the two. This simple stochastic hill-climbing is referred (o
by GA practitioners as RMHC (Random Mutation Hill Climbing) or bit-climbing
(Mitchell, Holland, er al. 1994).

¢ (p+1): Keep a population of p points. Each generation, generale a new

offspring at random by mutating an existing point, and discard the worst out of the
pA1 points. This is analogous to a steady-staie GA with no recombination.
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e (1+X) : ‘sphere model’ — search from a single point. Each generation,
generate A mutant offspring within a fixed-radius sphere (or hypersphere) centred on
the current point, and keep the best. There is no real GA equivalent.

e (U+A) : Similar to an elitist real-valued GA, but with emphasis on mutation

rather than recombination.

* (W,A) @ State of the art ES — as above, but purcly generational rather than

elitist, and with a self-adapting mutation operator.

In an ES, mutation generates a new point in the region of an existing one
according to a multi-dimensional Gaussian probability distribution over the parameter
space, centred on the parental point. The variances and covariances of this
distribution are different for each individual, and are stored as additional parameiers
appended to each siring. The paramelers governing mutation are therefore suhject o
evolution themselves, and are adapted by mutation and recombination.
Recombination typicully operates differently on each part of o string: the ohjective
function parameters are exchanged discrelely, while the mutation parameters are
mixed to form intermediate vulues

Evolutionary programming (Fogel 1994) is virtually the same as a (u+A)-ES,
with p=A. In modern EP, mutation operates in a similar manner to that in ES, with
mutation parameters also appended to individuals® strings. Selection is, however,
stochastic rather than deterministic: in GA terms, EP uses fitness-proportionate
selection as opposed to ranking. Unlike modern ESs, EP uses no recombination at all
(Fogel 1993).

As the field of evolutionary computation has itsell evolved, the use of real-
valued codes and operators in GAs and the incorporation of GA-like rccon“lbinmioﬁ
operators into ESs have blurred the distinctions between GAs and EAs. There is now
a growing tendency in the literature for the entire spectrum of evolutionar aigomhm&

to be grouped under the banner of ‘genctic algorithims’.
2.2.7 Summary

The preceding sections have presented a broad review of the field of genetfic
algorithms. Three general conclusions emerge naturally from this literature survey,
and these have formed the basis of the GAs used in the experimental work described
elsewhere in this thesis.

Firstly, there is no longer any theoretical reason 1o prefer hinary codings. The
generalisation of schemata by Radeliffe and Vose (section 2.2.3) lends SUPPOTE T e
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approach of designing higher cardinality representations and operators tailored to each
particular application. The empirical success of real-valued GAs and the various
practical applications of ESs and EP offer strong evidence to support searching in the
space of real parameters wherever appropriate. In addition, the success of phenotypic
(as opposed to genotypic) comparisons for crowding and sharing algorithms (section
2.2.5) underlines the fact that binary representations don’t generally preserve
continuity in the fitness landscape.

The second conclusion concerns the design of crossover operators.  The
important fact is that different crossover operators make different implicit assumptions
about the degree and nature of genetic linkage (i.e. the nature of the building blocks)
in the population. The performance of 4 particular operator will depend on how
justified these assumptions are for the problem being tackled. The relationship
between genetic linkage and the crossover operator is o critical one, and is examined
in greater detail in chapter 7.

The third conclusion concerns the choice ol selection and replacement
strategies. For finite-population GAs applied (o non-trivial optimisation problems it i8
apparent that simple fitness-proportionate selection and generational replacement are
invariably associated with premature convergence. Of the many methods discussed in
section 2.2.5 for dynamically balancing selection pressure, the most promising seems
to be the local mating model, where selection and replacement are constrained to a
limited neighbourhood on a lattice defined over the population. This ‘geographical
speciation’” approach embodies the principle of crowding, that offspring should
replace similar parents, without the need to calculate a distance metric for every
possible pair of strings. It also incorporates ranking, in that selection pressure is
maintained throughout the search without fitness scaling, but does not require the
population to be sorted. Finally, local mating leads 1o subpopulation formation,
which may help the GA to escape local optima on multi-modal fitness landscapes
(section 2.2.3). Since the local mating model offers many of the advantages of more
complex selection and replacement strategies, while being computationally
inexpensive and simple to implement, it has been the basis of the GA used in the

work reported in chapters 3, 4 and 6 ol this thesis.
2.3 Artificial neural networks

Artificial neural networks (hereafier referred to simply as “neural networks’, ar NNg)
are parallel, distributed machine learning architectures. They were originally inspired
by, and are loosely based on, biological nervous systems. The field is massive and

growing, so only a very hriel and broad overview is given here: the reader unfamiliar



with neural networks will find good introductions in (Lippmann 1987; Dayhoff 1990;
Hush and Horne 1993).

A neural network consists of a number of processing units, or neurons, joined
to each other with weighted connections. In general, the number of inter-neuron
connections is very much greater than the number of neurons. Although each neuron
computes a very simple function of its inputs, the behaviour of the network as a
whole can be extremely complex. The precise unction computed by the network is
determined by the particular combination of values of all its connection weighis.
Because of this, neural networks are also referred 1o as parallel distributed
processing (PDP) or connectionist architectures. In neural networks, “learning’
refers to the process of adapting the individual weights until the network as a whole
computes some desired function.

Neural networks can be divided into two broad categories: supervised and
unsupervised learning architeciures. Unsupervised learning networks sell-organise
according to data presented to them, and are typically applied as aliernatives (o
statistical clustering algorithms. In these systems the weights are usually initinlised
randomly and, thereafter, neurons compete 1o respond to cach input patiern. The
winner (the neuron with the highest activation for that patiern) is reinforced by
modifying its input weights to make it even more likely to win lor future occurrences
of similar patterns. In this way the network self-organises, so that different neurons
respond to input patterns falling into different classes. These classes (or clusters) are
not determined a priori, but emerge as the network captures regularities in the data.
Unsupervised learning networks include simple winner-takes-all competitive systems
(Rumelhart and Zipser 1986) and the Kohonen feature map (Kohonen 1988).

This thesis is concerned with the second kind of neural networks, those which
perform supervised learning. A supervised learning network is trained by example to
implement a particular mapping from its input space o its output space. Training
typically involves repeatedly presenting known input/output pairs (o the network, and
applying a learning rule to modify the connection weights until the network produces
the desired output in response to each input patiern. When training is camplete, the
network will exhibit some degree of generalisation (interpolation) ability, the ability
to produce an appropriate output when presented with an input patiern which was not
part of the training data. Typical applications for supervised learning netwarks are
pattern recognition, classification and [unction approximation.

The earliest real examples of supervised learning neural networks were (he
perceptron (Rosenblatt 1962) and the adeline and madeline (Widraw and Hoff
1960; Widrow and Stearns 1985). These are arrays of simple artificial neurons, each
of which camputes a weighted sum ol its inputs and produces an outpat il this sam

exceeds a certain threshald. These systems are limited hy the faet that they only have
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a single layer of adaptive weights and are, as a consequence, only capable of learning
linearly-separable mappings (Minsky and Papert 1969). In 1986, Rumelhart, Hinton,
et al. introduced the multi-layer perceptron (MLP), a generalised supervised
learning network which has one or more /liidden layers of adaplive neurons between
the input and output layers, and derived an associated training algorithm called back-
error propagation (or ssimply backpropagation). Unlike the earlier models, the MLP
can approximate any function (Funahashi 1989), and it has become the most
commonly used and widely studied neural network model.

An important alternative to the MLP is the radial basis funciion network, or
RBF (Powell 1985; Broomhead and Lowe 1988; Moady and Darken 1988; Moody
and Darken 1989). Unlike the MLP, the neurons in the RBF’s single hidden layer do
not compute a simple weighted sum and threshold. Insicad, cach responds only (o
input which falls within a small localised region of the input space. Hidden unit
activation is typically a Gaussian kernel function, so a particular hidden unit only
generates a significant non-zero response (or input poinis which fall close o iis
function’s centre. Outpul layer units compule a linear compination of the hidden layer
functions. The bumpiree network, described in detail in the following chapler, uses

similar local activation functions 1o the RBF.
2.4 Evolving neural networks

There is now a large body of literature in which GAs have been applied to the
optimisation of NNs, and reviews ol much of this research may be found in (Rudnick
1990; Weiss 1990; Yao 1992; Jones 1993). In the literature, the neural network
model optimised by the GA is almost invariably based on the MLP, with the GA
being used either to optimise the connection weights, the architecture, or other
network parameters. The existing work in this area is summarised in the following

sections.
2.4.1 GAs for optimising network parameters

One possibility is to apply a GA (o search for optimal control parameters for
backpropagation, such as learning rate or momentum terms. This approach has been
taken by Marshall and Harrison (1991) and Belew, Mclnerney, er al. (1991). 1n the
latter study the GA produced unusually large values for hoth learning raie and
momentum. This result is not, however, as contraversial as it {irsi appears, and can
be attributed to the fact that their networks were anly allowed @ small number of
training epochs before evaluation. The aptimisation of learning rate and momenium

terms has also been combined with attempls 1o evalve neiwork architeciire, .4
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(Harp, Samad, er al. 1989; Harp, Samad, er al. 1990; Harp and Samad 1991;
Robbins, Plumbley, er al. 1993).

Another area where GAs have been applied is in feature selection (input
dimensionality reduction) for classification problems, e.g. (Chang and Lippmann
1991; Wong and Tan 1992). On a speech recognition task a GA was able (o reduce
the number of input features for a KNN classifier from 153 10 only 15. This was
better than a conventional feature selection method, which selected a subset of 33
features for the same problem and resulted in higher test-set classification error than
the GA (Chang and Lippmann 1991). In the same puaper, the authors repari
successful applications of GAs (o feature generation (discovering useful polynomial
combinations of input features) and choosing an optimal set of KNN reference
exemplars from a large training set.

Finally, some authors have experimented with using a GA (o discover learning
rules for neural networks. This approach was suggesied by Bengio and Bengio
(1990) and applied by Chalmers (1990). In the latter work o GA “discovers’ (he delta
rule by searching different combinations of paramelers such as pre- and post-synaptic
activity. Dasdan and Offazer (1993) have recently reported analogous work in which

a GA consiructs a weight update rule lor o Kohonen network.
2.4.2 GAs for training neural networks

GA vs. backpropagation

One possibility which has been widely explored is the use of & GA (o optimise the
weights of an MLP in order (o minimise training crror.  When compared to
backpropagation, the GA offers certain advantages. Perhaps the most significant is
that, unlike backpropagation or similar gradient-descent methods, the GA does not
require the error surface to be differentiable with respect to the weights in the
network. This makes it a suitable training mcthod when gradients are difficult or
impossible to calculate, for instance in recurrent networks (Torrecle 1991), deeply
layered networks, or problems in which the error signal is only realised after many
training epochs (temporal credit assignment problems) such as the artificial life
scenario which will be described in chapler 5. GA-based netwark training alsa
allows arbitrary node activation functions, not just those which are continuously
differentiable.

Another attraction of the GA as a training method is that it offers new scope for
tackling the common problem ol overfitting noisy training data. Weight decay
(Hanson and Pratt 1989), weight elimination (Weigend, Rumelhart, e afl, 1960)
and soft weight sharing (Nowlan and Hinton 19924; Nowlan and Hinton 19920 are



examples of regularisation methods, modifications to backpropagation which are
designed to reduce the complexity (that is, the information capacity) of a network
during training by limiting the variance in the weights. This is equivalent (o limiting
the number of degrees of freedom in the network’s model of the training data, and has
the effect of forcing the network (o learn general trends underlying the data instead of
fitting the minutiae. This results in networks with improved generalisation
performance. Because the GA does nol require a differentiable cost function, there
are no constraints on the nature or complexity of training criteria; it is trivial to
incorporate additional criteria such as regularisation parameters into GA-based NN
training, simply by adding extra terms 1o the fitness function. There is no need o
worry about calculating derivatives of the regularisation terms with respeci (o each
weight in the network.

One big disadvantage of GA-bused neural network iraining is training time.
Kitano (1990) has shown that GAs typically take many times longer (o rediice training
error than backpropagation, which is itsell ofien considered slow and rather
inefficient. This is to be expected since, as a siochasiic globul search method, the GA
is inherently less greedy than gradient descent and explores a [ar greater number of
points on the error surface. While this means that GAs are typically less sensitive (o
initial conditions and less susceptible (o becoming caught in local minima than
gradient descent methods, it also makes them slow to fine-tune solutions.

Bos and Weber (1991) report an empirical comparison of the generalisation
abilities of networks trained by GA and backpropagation for two x-ray fluorescence
spectrometry problems, and find that the GA is outperformed by backpropagation on
one problem, and the two algorithms perform similarly on the other. It is not clear if
any general conclusions can be drawn from these rather inconclusive results,
however, because their implementations of both the network model and the GA are

somewhat non-standard.

Genetic representations and operators for NN training

Neural network weights may be coded genetically in various ways. A simple
representation is to code each network weight as a binary word and concalenate these
to form the genome. This approach typifies the early work in combining GAs and
neural networks, and reflects the GA community’s deep-rooted faith in binary
representations and standard operators such as one-point crossaver and poini
mutation (see section 2.3). Examples ol problems for which neural networks have
been trained using this approach include path planning (Smith, Piiney, e/ al. 1987),
artificial life (Ackley and Littman 1991 and medical diagnosis (Marshall and Harrison
1991}, as well as various simiple and well-known NN henchmurk problems such as
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XOR, ADDER, ENCODER and so on (Caudell and Dolan 1989; Whitley 1989,
Whitley and Hanson 1989; Whitley, Starkweather, ef al. 1990; Marshall and
Harrison 1991).

Unfortunately, the use of a low-order representation and traditional bitwise
genetic operators introduces discontinuitics into the effects of the operators on the
phenotype. A single point mutation which happens to occur to the most significant bit
of a particular weight, for example, will have a much greater effect than one which
happens to mutate the least significant bit. In addition, crossover will tend to split
words, disrupting the binary representations of the weight values and producing
offspring with new weight values which did not belong 1o either parent. Partly as a
consequence of these flaws, this approach, while able (o find good weight sets for
simple learning problems and benchmarks such as XOR, has not been shown fo scale
to larger problems.

Another approach is to use a high-order representation, in which each gene
represents a whole real-valued weight. This constrains crossover (o its proper role of
exchanging existing weight values, rather thun generiting new values by mixing up
component bits. Various complex crossover operators have heen employed, some of
which exchange sels of weights corresponding to whole units at a time (Menczer and
Parisi 1990) or whole paths from input to output layer (Paredis 1991). Applications
of networks trained using a high-order representation include control (Hoptroff, Hall,
et al. 1990; Schoenauer, Ronald, ¢/ al. 1993; Ronuald and Schoenauer 1994:
Saravanan and Fogel 1994; Schoenauer and Ronald 1994) classification (Montana
and Davis 1989; Fogel, Fogel, ¢t al. 1990a; Paredis 1994), x-ray spectrometry (Bos
and Weber 1991)!1 and artificial life (Cecconi and Parisi 1990: Parisi, Nolfi, ef al.
1991; Paredis 1994).

2.4.3 GAs for optimising network architecture

Why optimise MLP architecture?

In the MLP, the number of hidden units, the manner in which they are organised into
layers and the presence or absence of connections between them all influence the
network’s final ability to learn and generalise, e.g. (LeCun 1989). A network with
too few weights, for instance, will have (oo few degrees of reedom to madel the
data. Unfortunately, it is also possible to have (oo many weights: if the netwark is
over-specified and the data is noisy, over-fitting can occur (Raum and Haussler

1990). In real problems, where the number of degrees of [reedom in the sysiem

T This work actually uses elements of both binary and real-valued representations: weighis are ended
as real values, bul crossover aperaies al the bif level.



which generated the training data is unknown, choosing the number of weights in the
network tends to be something of a hit-and-miss affair. Hand-crafted networks are
typically over-specified, and additional measures (o attempt to prevent over-fitting,
such as those mentioned in the previous section, are employed.

Various attempts have been made to automate the choice of network
architecture (Wynne-Jones 1991). One method is to begin with a network which is
known (or expected) to be over-specified, and then remove weights and/or whole
nodes after training. This is referred to as network pruning. Mozer and Smolensky
(1989) describe one such process which they call skeletonization, in which they
calculate a measure of the relevance of each of the nodes in a trained network, an
approximation of each node’s contribution to the network’s performance. The least
relevant node is deleted and the network is re-trained, and this process repeats until
the minimum architecture has been found which can siill model the data fo an
acceptable degree of accuracy. LeCun, Denker, e al. (1990) describe a very similar
method for removing individual weights which they reler (o as optimal brain
damage.

The complementary approach (o pruning is 1o begin with a very small network
and apply a constructive algorithm to add weights or units until the network is able o
model the data. One example ol such an algorithi is cascade correlation (Fahiman
and Lebiere 1990), which maintains a pool of candidate nodes from which to build
the network and adds the one which most reduces training error whenever learning
stalls. Other constructive algorithms include Frean’s (1990) upstart algorithm and
Wynne-Jones’ node splitting (Wynne-Jones 1993). Bostock (1994) describes an

algorithm which incorporates elements of both construction and pruning,

Why use a GA?

Many researchers have investigated using the GA as o tool (o search the space of
possible network architectures for a particulur learning problem. The arguments for
and against this approach are similar (0 those alrcady discussed for GA-based
network training. Since a constructive or pruning method describes a single trajectory
through ‘architecture space’, the final architecture reached is dependent on the
particular initial choice of neiwork architecture and weights. As a global search
method, the GA is less sensitive to initial conditions and should, consequently, he

less prone to generating solutions which represent local optima. Another advantage,

complex criteria. As well as generalisation performance, the fitness funciion might
include constraints imposed by hardwure, such as some maximum number of nodes
or layers, or more subtle criteria such as reliahility of convergence during iraining. in
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the experiments described below, for example, networks are optimised for minimum
training time using backpropagation.

The big disadvantage associated with using a GA for network architecture
design is, predictably, the computing time required. While optimising MLP
architecture using a GA may not actually be the most computationally expensive
algorithm ever devised, it must rank highly. Every fitness evaluation involves
training a network from scratch, which may require thousands of passes through the
training set using backpropagation, and a typical GA run may sample tens of
thousands of different networks. These severe compuiational overheads are one
reason why most of the work in the literature (o date has been with small networks

and small training sets.

A simple binary representation for neiwork avehitecture

As with network training, various approaches (o representing topology can be taken.
The simplest approach is to constrain the network to some maximum number of
nodes and define the topology with a binary connection matrix, as shawn in [igure
2.3 1f the network is to be purely feed-forward (a necessary condition (or fraining

with backpropagation), only the shaded area of the matrix need be coded.
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Figure 2.3: Example of connection matrix representation of MLP !mnmﬁ far
networks of up to 6 nodes. A | specifies the presence ol a mnmcmm, a 0 the
absence.
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This representation has the advantage that any possible organisation of the
nodes can be represented by the genome. Since the genome is binary and of fixed
length, a standard GA and tradi.rional binary operators may be used. This
representation scheme has been used recently by Robbins, Plumbley, er al. (1993) o

generate small networks for the XOR and ‘two spirals’ benchmark problems.

Experiments: optimising MLP architecture for fast learning of XOR

Some of the earliest experiments performed by the author, based on the work of
Miller, Todd, et al. (1989), investigated the use of a simple GA using the connection
matrix representation to generate networks which counld learn the XOR mapping
reliably. In the first experiment, a network’s fitness was inversely proportional to the
number of training epochs required to learn the mapping. Although XOR can be
mapped with only a single hidden unit, the object was ta see if the GA could make
use of extra nodes or connections (o generate networks with improved training speed,
and so a maximum of 10 nodes was allowed. A population size of 20 was used,
combined with a steady-state replacement strategy which discarded offspring if they
were less fit than the poorest of the current population, or if they were duplicates of
any members of the population. Up to 6000 training epochs were allowed, after
which (raining was terminated. The results shown in figure 2.4 demonstrate that the

GA is able to generate networks which learn XOR in progressively fewer training

epochs.
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Figure 2.4: Best and average XOR training times for GA generated networks, per
generation. (b) is an enlargement of the boxed area of the graph in (a),



This experiment differs from those of Miller, Todd, et al. (1989) in two
respects: firstly, Miller er al. used a generational, rather than a steady-state, GA and
secondly, they used a problem-specific crossover operator which exchanged whole
nodes, whereas simple 1-point crossover was used in the experiment reported here.

One observation made by Miller e al. was that the networks produced by the
GA tended to have direct connections from the input layer to the output unit, which is
not a feature typically found in hand-crafted networks. This was also true of the
networks generated in the experiment described here, as can be seen in figure 2.5(h).
Miller er al. suggested that these direct connections may improve training speed an
this task. However, Belew, McInerney, er al. (1991) point out that, since there is no
selection pressure to remove connections which do not adversely affect training time,
the presence of input-output connections is not necessarily evidence that they confer
any advantage. The network shown in figure 2.5(b) demonsirates this fact — many of
the networks evolved by the author’s GA contain nodes and connections which are

clearly non-functional.

Inputs Ty
inpiis

Inpuis

Non-funcHoni
unit

Output Outpul

(a) (b) (c)

Output

Figure 2.5: Examples of XOR network architectures produced by the GA. (a) shows
two randomly generated networks from generation 0, before any evolution. (b)
shows a final evolved network from the first experiment, with no connection penalty
term, and (c) shows a final network when excessive connections are penalised.

In a second experiment, a penalty term was added to the fitness function for
each connection present in the network, in order to encourage the evolutionary
pruning of unnecessary connections. This did not adversely affect final learning
speed, but caused non-functional units and connections (o be removed from the
networks. It was noted, however, that direct input-output connections still existed in
the final networks — see figure 2.5(c). This result answers the criticism of Belew e
al. and supports the hypothesis that these connections are nal simply redundant, i
do in fact speed learning, presumably by producing an error surface which can he
more rapidly and reliably descended by backpropagation. In a complementary
experiment, Whitley, Starkweather, er al. (1990) have applied a similar GA 1o prine
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a pre-trained network, and their results lend further support to the assertion that direct
input-output connections do beneficially influence training (in their case, re-training)
speed.

More complex representations

There are several reasons why the simple binary connection matrix coding for
network topology does not scale well to anything other than toy problems. The first
is that the length of the genotype grows quadratically with the number of nodes, so
even a moderately sized network requires a massive binary string fo represent ifs
connection matrix. A second problem is that it is possible to represent, and therefore
for the GA to generate, many networks which are fundamentally flawed, such as the
second network in figure 2.5(a), which lacks any connection o one of the inputs. As
network size increases, the proportion of strings which represent such lethial
networks rises, and the GA may waste a large amount of time generating worthless
solutions. '

Harp et al. describe a coding for neural network architecture which is based on
a Gray-coded binary string, but which doesn’t represent a connection malrix directly
(Harp, Samad, ef al. 1989a; Harp, Samad, er al. 1989b; Harp, Samad, er al. 1990
Harp and Samad 1991). Instead, their coding consists of a variable number of blocks
of parameters, each of which defines a group of nodes in the network. Parameters
determine the number of nodes in the group, their organisation, and the nature of the
connections to nodes in other groups. Since the coding is variable-length, and even
the size of parameter blocks may vary, highly specialised genetic operators are used to
manipulate the strings. Even so, the generation of lethal networks is still a problem.
Since Harp et al. only report results on small problems (XOR, a sine-function and a
simple digit-recognition task), the scaling properties of this complex representation
are unclear.

A similar, but more constrained, representation scheme has been used by
Hancock (Hancock 1990; Hancock and Smith 1990). Since there are fewer degrees
of freedom in the representation, Hancock’s GA is less prone (o generating lethal
structures than that of Harp ef al. (Hancock 1990). Unfortunately, the GA was
unable to improve on hand-crafted networks for a face-recognition problem.
Mandischer (1993) has used a similar representation schemie, and reports some
improvement over hand-crafted networks on test problems.

Kitano (1990) introduces a rather more abstract method of coding neural
network architecture, in which the genetic siring codes a number of graph rewriting
rules which are applied iteratively (o ‘grow’ a connection matrix in a pracess akin (o
cell division. A stochastic variant of this methad has shown promise when applied o
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generating deep networks for problems which are hierarchical and self-similar, such
as high-dimensional parity problems (Voigt, Born, er al. 1993). Along the same
lines, a developmental scheme inspired by the biological process of embryogenesis
was proposed by Vico and Sandoval (Vico and Sandoval 1991; Vico and Sandoval
1992). Gruau has also developed a similar genetic coding, based on a number of
growth rules for Boolean networks, which has recently shown promising resulfs
(Gruau 1992; Gruau 1994).

Optimising architecture and weights simultaneously

A natural extension of the various GA-NN hybrids already described is (o code both
the architecture and the connection weights genetically and atiempt o evolve g
complete “finished” network model for a particular data set. From the GA point of
view, this approach has an immediate practical advantage when compared (o
optimising architecture alone: it removes backpropagation from the evaluation phase
of the GA, and so considerably reduces processing overheads. For problem domains
such as artificial life it is appealing for its ‘biological plausibility’ (Collins and
Iefferson 1991; Collins and Jefferson 1991; Todd and Miller 1991; Woad 1991), and
natural applications for the approach also exist in robotics and control problems where
backpropagation isn’t readily applicable (Cliff, Harvey, et al. 1992; Cliff, Husbands,
et al. 1992; Harvey, Husbands, et al. 1992). From the pure NN viewpoint, this
approach seems (o offer something of a Holy Grail: a general method for
simultaneously optimising both architecture and weights which places no constraints
on network connectivity, node activation functions or optimisation criteria.

Unfortunately, the Holy Grail remains elusive. Despite the many papers in
which GAs have been used to generate neural network architecture and weights
simultaneously, and the large number of different representation schemes and genetic
operators which have been tried, there is little evidence so far of empirical success on
practical classification problems. Instead, studies have concentrated on simple neural
network benchmarks such as XOR, PARITY, ADDER, ENCODER and the like.
Examples which illustrate the diversity of approaches and the millions of CPU cycles
which have been applied to modelling XOR include: networks designed using genefic
programming (Koza and Rice 1991); Dasgupta and McGregor’s structured genetic
algorithm (Dasgupta and McGregor 1992); a massively parallel GA implemented on 4
SIMD computer (Penfold, Kohlmorgen, er al. 1993); a rather strange GA which
operates on a population of individual nodes, and constructs networks a layer al a
time (Anderson and Tsoi 1994); and Bornholdt and Graudenz’ genetic recurren|
networks (Bornholdt and Graudenz 1991).



2.4.4 The permutation problem

The emphasis on toy problems in the literature, in spite of the many different
approaches taken, points to severe and fundamental scaling problems with applying
GAs to find network architecture and/or weights. It is now widely recognised that the
critical issue is finding a genetic representation for neural networks which will allow
crossover to have the desired effect. In the case of the MLP, the problem lies in the
fact that the nodes in a layer form an order-less set, whereas genetic codes are ordered
strings. Since the order in which hidden units are coded makes no difference (o the
network’s functionality, any particular MLP maps to many different genetic strings,
one coding each possible permutation of its nodes. This redundancy in the genetic
code leads to a search-space which is unnecessarily large, into which the space of real
networks is mapped many times, and means that recombination of fit parents from
different regions of the space will duplicate some selective traits and omit others.
Figure 2.6 illustrates this: each hidden unit in network 2.6(a) is equivalent in function
to a unit in 2.6(b) but, since the units are ordered differently on the coded sirings,

recombination by crossover produces an inferior network, 2.6(c).
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Figure 2.6: The permutation problem. The figure beneath each network represents
the network’s genetic code and the figure above represents the hyperplanes associaled
with its hidden units. Each hidden unit in network (a) is functionally equivalent {o a
unit in network (b). Because their coded order differs, however, crossover results in
duplication, and generates an inferior offspring (c).

Itis clear that the permutation problem exists whether the aim is (o aplimise
network topology, weights or both. In fact, Belew, Mclnerney, ef al. (1991) and
Hancock (1992) point out that the situation is worsened hy other redundancies, more
subtle than simply permuting nodes. One example is (hat, hecause of the symmelrical
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nature of the MLP’s node activation funetion, it is possible to change the sign of all
connection weights to any hidden unit without affecting the network’s behaviour.

Many authors have simply avoided the permutation problem by using
evolutionary algorithms which rely heavily or entirely on mutation to effect the search
(Cecconi and Parisi 1990; de Garis 1990; Fogel, Fogel, e al. 1990a; Fogel 1990;
Parisi, Nolfi, er al. 1991; Wood 1991; Saravanan and Fogel 1994). Menczer and
Parisi (1990) describe an artificial life scenario where simple crossover does appear o
offer some advantage over mutation alone, but only when applied at low probability -
mutation is still the dominant operator. This emphasis on mutation éi“fecijveiy reduces
the GA to a population of parallel instances of gradient descent, and not necessarily
very efficient gradient descent at that. By avoiding the representation issue, however,
even those practitioners who claim philosophical objections to the use of
recombination as a search operator — see e.g. (Fogel 1994) — are searching a space
which is unnecessarily large; even parallel stochastic gradient descent would benefit
from non-redundant coding of the search space.

Some efforts have been made towards directly addressing the permutation
problem illustrated in figure 2.6. Montana and Davis (1989) have experimented witl
the use of various specialised crossover operators, applied with different relative
probabilities. One such operator attempts (o identify which hidden units in the parents
are performing equivalent functions by applying a subset of training inputs to each
parent and comparing their units’ response. Although this operator does appear to
improve performance at the start of a run, when population diversity is hi gh, its effect
on final performance is less significant (Montana and Davis 1989). Radcliffe
suggests a labelling algorithm which identifies networks which are identical except for
the permutation of their nodes, but concludes that the algorithm is impractical
(Radcliffe 1990).

Hancock (1992) considers the permutation problem in depth and discusses
various approaches to tackling it. One possibility is (o add asymmetric connections
between hidden units so that they are no longer freely permutable. Another is (o
attempt to constrain the GA {o searching within a single symmetry sub-space, i.e. 4
region of the search space in which all networks share the same node ordering.
Hancock implemented the latter approach by coding hidden uniis in order of
increasing bias weight, but this did not appear to improve performance (Hancack
1992).

More recently, Radcliffe (1993) has launched a vigorous attack an the
permutation problem, focusing on the problem of evalving connectivity for 4
feedforward network with j input units and k outpuis separated by o single hidden
layer. Radcliffe treats the hidden layer as a muliiset, the elements of which are hinary
vectors of j+k bits. Each vector represents a particular set of inpul and ouipui
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connections, and so uniquely defines one of the 2/+% possible kinds of hidden unit.
Radcliffe’s recombination operator constructs a new network by sampling nodes from
the union of the parental multisets, with nodes which are common to both parents
(i.e. those where the parents’ multisets intersect) sampled with higher probability than
those which are not. A binary crossover is also occasionally applied at the vector
level, in order to sample hidden node types which may not be represented in the
current population.

Based on the observation that Radcliffe’s recombination operator differentiates
crudely between those nodes which are common (o both parenis and those which are
not, Hancock (1992) has introduced an operator which maiches nodes according to a
continuous scale of similarity, defined by a bitwise overlap metric. Each node in one
parent is paired with the most similar node in the other, and a child is constructed by
sampling one node from each such pair. Hancock compares this Sort operator with
other variants of Radcliffe’s recombination operator in a series of experiments in
which a GA attempis (o construct networks to maich some hand-crafied target
architecture. Although the results for this artificial task fend ta favour the Sorl
operator, the fact that naive uniform crossover also does remarkably well,
outperforming some of the more complex recombination operators, suggesis (ha
there is still some way to go before the permutation problem is fully understood
(Hancock 1992). Hancock draws one optimistic conclusion from these results, that
the GA has a natural tendency to converge on a particular network permutation and so
avoid the problem. While his results bear out this observation, reliance on this
process would seem to be at odds with the accepted view that maintaining population
diversity is of prime importance, especially with search spaces of large size and
complexity (section 2.2.4). Indeed, as Radcliffe (1993) points out, relying on the
population to converge on a particular permutation cannot be a solution when
diversity-maintaining schemes such as subpopulation formation are employed.

Finally, it is worth noting that, although the preceding discussion of the
permutation problem has focused on the MLP (which reflects a similar emphasis in
the literature), precisely the same problem applies to the genetic coding of other multi-

layer network models such as the RBF network.
2.5 Conclusions

This chapter has presenied an extensive review of the literature of genefic algorithms
and their application to optimising neural networks. Section 2.2 summarised current
thinking on GA design and drew three broad conclusions which have underpinned (he
design of the GAs applied in the following chapiers:



¢ There is no theoretical justification for preferring binary codes as a matter
of principle; wherever possible, the coding scheme should reflect any structure

known to exist in the search space.

¢ Recombination operators make implicit assumptions about relationships
(linkage) between parameters. The degree to which these assumptions are valid will

determine the performance of any particular operator.

¢ When designing a GA for difficult problems, preventing premature
convergence must be a prime concern. To this end, the local subpopulation model

appears to offer a good compromise between power and computational efficiency.

The conclusions of the review of existing GA-NN hybrids motivated much of
the experimental work described in the remainder of this thesis. Experiments such as
those described in section 2.4.3 demonstrate the potential of the GA for discovering
useful novel network architectures, in this case networks with direct input-ouipil
connections, even for problems which have been as well studied as XOR. Newrul
networlc application arcas such as control and robotics pose many learning prohiems
which are not well suited (o backpropagation, where GA-based network (raining
offers considerable promise.

The scaling properties of present GA-MLP hybrids, however, are not
encouraging. It is apparent that the multiset nature of MLP (and similarly RBF)
architecture poses an extremely difficult coding problem. Despite recent efforts, the
problems of finding a non-redundant genetic code and an associated recombination
operator for the MLP remain to be solved.

A more mundane, but equally significant, obstacle in the way of applying GAs
to optimising neural networks for real problems is the computational cost involved.
This is especially true when the GA is applied to optimising network topology, since
every network generated must be trained by backpropagation (or an equivalent
method) before it can be evaluated.

In light of these conclusions, the following chapters introduce and develop a
novel evolutionary neural network model based on the bumpiree. The humpiree
offers learning and generalisation performance comparable to that of the MLP ar

RBF, but is shown to be considerably more amenable to genetic aptimisation.
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Chapter 3

The genetic bumptree
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3.1 Introduction

The main conclusion of the previous chapter was a frustrating one: while there are
many potential applications for a global optimisation method such as the GA in the
field of neural networks, the most widely used neural network models appear to be
particularly unsuited to evolutionary optimisation. The work described in this chapter
was motivated by this conclusion.

The following section introduces the bumptree network, a connectionist mode]
based on the original bumptrees of Omohundro (1991) and examined in detail by
Bostock (1994). The bumptree is attractive from the GA point of view because it
appears not to suffer from the two fundamental problems posed by the MLP:
computational expense and the permutation problem. The bumpiree is very fast in
comparison to the MLP, especially in terms of training time. Furthermare, because it
is a more inherently ordered structure than the MLLP, representing the bumpiree as an
ordered genetic code does not introduce the same degree of redundancy.

Section 3.3 describes experiments in which a GA is applied (o oplimising the
architecture of the bumptree. The GA is described in detail and an appropriate genetic
coding scheme is infroduced and examined. The resulfs indicate that the GA is able (o
discover superior architectures for the classification problems studied.

Section 3.4 builds on this work and extends the GA to optimise both the
architecture and the weights of the bumptree network. This is a necessary step if the
method is to be applied to problems where the bumptree’s normal training rule cannot
be used. Optimising architecture and weights simultaneously requires modifications
to the coding scheme, and turns out to be a considerably harder problem than

optimising architecture alone.
3.2 The bumptree network

In a typical neural network classifier, based on the MLP, cach node i computes an
output activation, y,, as a function of its inputs:

y, = ‘/'[ D oW (3.1)

where the jth node input has activation x; and connection weight w,, and f is a non-
linear thresholding function, typically sigmoidal, as in figure 3.1(a). Each such unit
defines a decision surface in the form of a hyperplane in its input space and, in ihe
trained network, these hyperplanes model actual cluss boundaries in the (raining data,
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Figure 3.1: Sigmoid (a) and Gaussian product (b) activation functions for 2 input
dimensians

The bumptree network is somewhat different. Tn the bumptree network, each
node computes a more complex activation function, such as:

(-0, )°

T | (3.2)
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Here, y, is a product of Gaussians, where p, and G“f are the mean and
variance, respectively, of a Gaussian associated with the jih input. In two input
dimensions the activation function is a ‘bump’, as shown in figure 3.1(b), defining a
circular decision surface. In higher-dimensional spaces, the decision surface is a
hyper-ellipse enclosing a local region of the node’s input space.

The bumptree itself is a binary tree of such nodes with the defining constraint
(Omohundro 1991) that:

“...cach interior node’s function must be everywhere larger than
each of the functions associated with the leaves beneath it.” (3.3)

Figures 3.2(a) and 3.2(b), adapted from (Omohundro, 1991), show the
bumptree structure. Node A in figure 3.2 represents the region of input space in
which the tree is constructed; for classification purposes, the top level of the tree is the
first division of the input space into two regions (nodes B and C in the figure). At
each successive level, each region is further divided into two smaller sub-regions.
The purpose of the bumptree is to divide the input space into successively smaller
regions until, at the leaf layer, the classification task has been reduced to a sef of
linearly-separable sub-tasks.

Associated with each leaf node is a ‘local expert’, a single layer netwark which
forms a linear map between network inputs and outputs, as shown in figure 3.2(c),
Each expert is responsible for the classification of points which fall within its leaf
node’s active region. When a point y is input o the bumpiree, a descent of the (ree,
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choosing the more active branch at each interior node, provides efficient access to the

appropriate leaf node, /. The point is then classified according to the most active of
the outputs o, of the expert associated with node /, where:

0= wy, (3.4)
J

with w,.’}. being the weights connecting classifier input units j to output units /.

TN

Input dimensions ™,

z, @ @

~ Quiput elasses

(@) (b) (c)

Figure 3.2: The bumptree structure (a), an example of partitioning in 4 2-D space (b)
and a local expert (c).

3.2.1 Constructing the bumpiree

To build a data model with the bumptree network, the first step is to construct the
tree. Bostock (1994) has investigated various constructive algorithms in which the
tree is built from the top down, beginning with just two nodes. In a single pass
through the training set, each expert’s weights are optimised (see section 3.2.2
below) to minimise classification error on its particular subset of training points.
After presentation of the training set, any leaf-layer node whose expert has an
unacceptably high error, according to some pre-defined threshold, grows two new
nodes below it, thus further dividing its input space between two new expers. As the
process repeats, new experts are added until every expert has a suitably low error.

As each new node is added to the tree, the choice of its function’s centre and
radii influences the final distribution of local models over the input space; choosing
the best tree to partition the space is obviously critical to the classification performance
of the network. In the orthodox top-down constructive algorithm, local clusiering
(e.g. k-means) is typically used to position each new node funciion according (o the
local distribution of training data. Section 3.3 investigaies the use of g genetic
algorithm to optimise tree topology.
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3.2.2 Training the local models

As well as choosing the best partition of the space, it is obviously necessary to fit
each local model to its particular subset of the training data. Since the local experts
are simple linear models (single layer networks) it is not necessary (o use an iterative
gradient descent method such as backpropagation in order to train them. Following
Renals and Rohwer (1989), the weights associated with each expert network may be
solved for in a single pass through the fraining set, as follows. For a linear networlk

with weights w,, the error, E, on a subset of training vectors, p, can be defined as:

2
E=1Y ( 2wy =Y,

(AN (3.5)

where, for training pattern p, ¥, is the jth component of the input vector and Y, s
the ith rarget output. To find a set of weights for which £ is minimised, take the

partial differential with respect to each individual weight w,,. For each weight:
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At the minimum of E, each JE/dw, =0, giving a sel of simultaneous
equations which may be expressed in matrix form as WM=T giving W=TM-!I.
Here, W is the unknown weight matrix, T is the target matrix and M is the correlation
matrix of the network inputs. The matrices T and M can be constructed in a single
pass through the training set, and the inverse M-! can be calculated using singular
value decomposition (Press, Teukolsky, er al. 1992), which gives a best estimate in
the case where M is singular. The weights are then calculated in a single malrix
multiplication.  This method is equivalent to the standard Moore-Penrose pseudo-

inverse method for solving linear systems (e.g. Golub and Van Loan 1989).
3.2.3 Comparison with other connectionist models

At this point it is worth briefly putling the bumptree in perspective in relation fo ather
neural network classifiers.

The bumptree partitions its input into a number of local regions, each of which
is then modelled individually. To this end, each node in (he (ree has a highly localised
receptive field and responds only (o a small region of the input space. This approach
contrasts with the MLP, in which each hidden unit’s response is defined over the
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whole input space!, and is more in keeping with models such as the RBF network
(section 2.3) and the Gaussian mixtures model (Brindle and Cox 1991).

One example in the literature which bears certain similarities to the bumptree is
the work of Wynne-Jones (1993), in which a hierarchical constructive rule (node
splirting) is used to generate Gaussian mixtures models by repeatedly subdividing a
small initial number of receptive fields. A similar approach was taken by Hanson
(1990) in his meiosis nerworks. Also relevant is the recent work of Gentric and
Withagen (1993) in which a decision tree is constructed on top of a pre-trained RBF
network. This improves classification speed because it allows those nodes which are
unlikely to respond to a particular input point to be quickly pruned away, significantly
reducing the number of response functions which need to he calculated.

The principal difference between the bumpiree classifier and the models
described above is the fact that the bumptree models the data in a piecewise linear
manner, rather than as a continuous approximation. In models such as the RBF or
MLP, a single output layer forms a linear combination of the activations of all the
receptive fields. Tn the bumptree, a collection of focal experis are distributed into the
input space, and each is responsible for modelling its own region of the data. The
tree determines the manner in which the space is partitioned and allows efficient
selection of the appropriate expert for a given input point, but each point is ultimately
classified according to a single linear model of its local neighbourhood — see figure
3.3.

At this point it is worth noting that in the bumptree described here the system
response is discontinuous over neighbourhood boundaries, although this need not
necessarily be the case — smooth interpolation between neighbouring regions could be
achieved by mixing the outputs of their experts, weighting according to the relative
activation strengths of the associated leaf functions.

The interested reader is referred to (Bostock 1994) for a more detailed
examination of the bumptree: for the present work it is sufficient to note that Bostock
has performed extensive empirical comparisons in which the bumpiree appears (o
offer classification performance comparable to that of other neural network models
(Bostock 1994).

IThe global response of hidden units in the MLP can lead 1o prahlems with fine-tuning the madel,
since 4 small adjustment of the weights ol a hidden unit intended 10 improve 1he madel in one region
of the space may disrupi the model in some ather region. This is well illusiraied in (Wynpe-Innes
1993).
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Figure 3.3: How different models separate two overlapping (i.e. linearly inseparable)
classes in a 2-D input space. A single layer percepiron (equivalent to linear
discriminant analysis) fits a single linear decision boundary (a) and some points are
misclassified.  Multi-layer networks such as the MLP or RBF form complex
nonlinear decision boundaries (b) and can completely separate the classes. Each
expert in the bumptree is a simple perceptron, but only ‘sees’ a localised region of the
input space within which the classes are linearly separable (c,d).

From the GA point of view, a significant advantage of the bumptree over other
neural network models is its speed, both in terms of training time and in access of the
trained network. Training a bumptree of given topology only requires a single pass
through the training set, in contrast to iterative gradient descent methods such as
backpropagation which typically require hundreds or even thousands of passes. This
makes genetic optimisation of bumptree topology computationally tractable, even for
large networks or large data sets. Access of the trained network is also very fast. To
classify an input point, a descent of the tree, requiring the evaluation of only two node
functions at each layer, provides efficient access (o the appropriate expert, afier which
a simple summation gives the classification. This is in contrast to networks such as
the MLP or RBF, in which every node function must be evaluated in order (o classify
each point.

These speed advantages alone, which scale up with increasing netwark size
and size of training set, make the bumptree a much more altractive praspect for
hybridisation with a GA than other neural networks such as the MLP. Recause the
network forms the evaluation function for the GA, it operaies in the innermast loop of
the algorithm. Any increase in speed of the evaluation function is muliiplied hy every
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chromosome evaluated in every generation. In GA experiments, the kind of speedup
offered by the bumptree over the MLP can make the difference between hours of
computing time and days.

3.3 Evolving bumptree topology

The potential advantages offered by an evolutionary approach (o optimising neural
network architectures have already been discussed for the case of the MLP (section
2.4.3). The advantages are the same for the bumptree: the GA offers a robust global
search in the space of possible tree topologies which is not sensitive to initial
conditions and which can easily be tailored to any optimisation criteria. An example
is that when the bumptree is constructed from the top down, classification errar
influences whether new nodes should be added but not necessarily where their
functions are placed — this is determined by the input data distribution. In the GA-
optimised bumptree described here, the fitness function is simply the fotul
classification error over all training points, after the expert weights have heen
calculated. This approach has the advantage that the optimisation of tree topology is
driven entirely by the total classification error and, as i consequence, the bimpirees
generated by the GA show improved classilication performance over those generated
using the top-down constructive algorithm. In the following sections the genetic

algorithm implementation is described in detail.
3.3.1 Coding bumptree topology

In chapter 2 it was stated that a GA’s effectiveness depends critically on the choice of
an appropriate coding scheme and suitable genetic operators for the problem at hand.
The literature review also showed that devising an appropriate genetic coding scheme
for a neural network model is not a trivial task. In the case of the MLP, the fact that
the nodes in any layer form an order-less set, whereas GAs typically work with
ordered strings, leads to the crippling ‘permutation problem’. A major attraction of
the bumptree network is that it is possible to devise a coding scheme which does not
introduce anywhere near the same degree of redundancy as typical genetic codes for
the MLP.

In order to apply the GA, bumptree topology is coded as a chromosome of
fixed length, built up of 30 blocks of real-valued genes as shown in figure 3.4. Each
block defines a single node in the tree, with each gene in a block coding a separale
parameter for that node, such as a function radius. The largest bumptree thut (his
coding can represent therefore has 30 nodes, i.e. is a compleie tree with 4 layers.

This limit is rather arbitrary and is intended 1o keep the chromosame (o & managenhle
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length without severely limiting the expressive power of the trees produced. The
figure of 30 nodes was based on an initial examination of the size of trees typically
produced by the constructive algorithm for the test problems. The results given later
confirm that this limit is not overly restrictive: the largest trees produced by the GA
contain around 20 nodes, and none of the GA runs produced a tree with 30 nodes.

The first two blocks on the chromosome define the two root-level nodes,
which are always present in the decoded tree. Each node has a single gene which
determines whether it is a terminal (leal) node, or has two descendants. Each node is
coded at a fixed position on the chromosome, so if the node defined by block # is
non-terminal its two descendants are defined by blocks 2n+1 and 2542 (see figure
3.4).

Complete chromosome
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Figure 3.4: Genetic representation of bumptree parameters. (a) shows how bumptree
nodes are labelled (3 layers only are shown), and (b) shows the chromosome
structure, with the parameters for each node represented by normalised real-valued
genes. This example shows a tree built in two input dimensions, x and y.

The problem with coding structural parameters for the bumptree is that strong
dependencies exist between the parameters. By definition 3.3 (section 3.2), a node
function must always be contained within its parent’s volume. Thus, the limits on a
function’s radii and centre co-ordinates are not known a priori, but depend on the
centre and radii of its parent node. A GA operating with a naive coding scheme,
where each function’s centre and radii are coded in a global co-ordinate system, will
be unlikely to generate legal bumptree structures. Even given an initial population of
legal bumptrees, recombination or mutation of chromosomes would inevitably
produce children which violate definition 3.3. This situation is analogous {o the
production of ‘lethal” networks in MLP experiments such as those described in
section 2.4.3, and is clearly highly undesirable.

The genetic coding has been failored (o address this problem. Ta cade the
bumptree every gene is a single real value constrained (o the interval [-1,1]. The
process of translating a chromosome into a bumptree is represenied diagrammatically

in figure 3.5, and is as follows. Firsi, it is necessary (o define the volume in which
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the bumptree is to be constructed, i.e. some region of the input space, as shown in
figure 3.5(a). This volume may be conveniently defined as a hyper-ellipse, centred
on the mean of the training data and large enough in each dimension to enclose al] the
data points in the training set. This volume defines a co-ordinate system in which the
origin is at the volume’s centre and, in each dimension of the space, a unit offset from
the origin is equal to the volume’s radius in that dimension — see figure 3.5(b). The
genes which code the centre co-ordinates of each of the two top-level functions are
expressed in this co-ordinate system. In each dimension, the value of the gene which
codes a top-level function’s radius is mapped onio the region between the function’s
centre and the perimeter of the volume within which the bumpiree is confained.
Having constructed the two top-level functions, each interior node funciion is
constructed in a similar manner, a function’s co-ordinate system being defined by the

volume enclosed by its parent, as shown in figures 3.5(¢) and 3.5(d).

Figure 3.5: Translation of normalised chromosome into bumptree structure.

It can be shown that this genetic coding scheme has the desirable fundamental
properties defined by Gruau (1992) of completeness and closure. The coding
scheme also has certain properties which support meaningful mutation and
recombination operators, which may be referred (o as continuity and isomorphism
respectively. Finally, the coding has the important quality of low redundancy .
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¢ Completeness. Given the constraint that some maximum number of nodes
1s to be allowed in the tree, this coding scheme is clearly able to represent all possible
bumptrees within a given volume of discrete space, so the representation is effectively

complete.

Closure. An ideal coding should be closed with respect to the space of
possible phenotypes. For the bumptree, this means that every possible genetic string
must map to a legal tree structure. Here, functions’ centres and radii are coded as
proportions of the volume enclosed by their parents, and this ensures that the integrity

of the tree structure is inherent to the coding. It is impossible to represent an illegal,

‘lethal” bumptree structure, so the representation is closed.

« Continuity. In a real-valued coding, ‘creeping’ mutation (Davis 1991)
combined with selective pressure leads to genetic hill-climbing, fine-tuning solutions
and improving the genetic stock. For this hill-climbing to occur there must be
continuity in the fitness landscape, which is equivalent (o saying that a small change
in the genotype should cause a small change in the phenotype. In ihe present coding
there is a generally smooth and continuous mapping beiween the space of
chromosomes and the space of bumptrees. As the coding is hierarchical, a small
change in the dimensions of one function in the tree will be transmitted down through
its descendants, stretching or compressing them slightly and preserving structural
relationships. Another important property is that all genes are real values mapped to
the same interval, [-1,1], so no gene is any more sensitive to perturbation by a given
amount than any other. This is an improvement on most binary codings, in which
some bits are more significant than others, or real-valued codings which are not
normalised. The coded search space has high continuity, and so creeping mutation is

expected to be beneficial.

* [Isomorphism. Crossover must be able (o assort and recombine meaningful
building blocks. It has already been argued (section 2.5) that any structure or
modularity known to exist in the problem should be preserved in the genetic code,
otherwise useful information is discarded and the GA’s efficiency is reduced. For the
bumptree, the minimum functionally relevant component is an individual nade. On g
larger scale, whole subtrees also represent meaningful functional units. As node
parameters map to constant positions on the chromosome, it is simple to restric
crossover points to node boundaries. Tt is also simple to implement higher level
crossover operators such as the subtree crossover described in section 3.3.3 helow.
Finally, recall that crossaver in a real-valued coding only recombines values which
exist in the population. In a binary coding, crossover typically splits hinury words,
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effectively causing random implicit mutation of parameters coded at the crossover
boundaries. This coding has the desirable property of isomorphism, since it
incorporates reasonable assumptions about regularities in the search space (that nodes
and subtrees are relevant functional components) and allows the design of operators

which perform meaningful recombination of bumptree buildin g blocks.

© Low redundancy. Permutation problems arise if two identical bumpirees
can have quite different genotypes, for instance if both have the same genefic
information but coded in a different order on their chromosomes. Recombination
then tends to duplicate some selective traits, and omit others (section 2.4.4). This
affect has crippled efforts to apply GAs to optimising neural networks. The
bumptree, however, is more strongly structured than the MLP or RBF netwarks, in
that its internal nodes cannot be re-ordered arbitrarily without affecting ifs
functionality. For an MLP (or RBF) with n hidden nodes, the number of equivalent
permutations (and hence the number of different chromosames which map (o identical
networks) is n/. For the bumptree the situation is different. Each non-terminal node
has two descendants which may be transposed without affecting (he bumpiree’s
functionality. The total number of ways of ordering the humptree without affecting
its functionality is the product of the number of permutations at each layer. For a
complete tree with n terminal nodes, this product is 2", so there are 2" different
chromosomes for each possible bumptree. Clearly this is not an ideal one-to-one
mapping, but it is a significant improvement on the situation with the MLP. Aside
from the trivial result that 2" <n! for all positive n, the amount of coding
redundancy for the bumptree only scales geometrically with increasing network size,
as opposed to the factorial growth with the MLP. Using an order-based coding, a
bumptree with 8 units in the leaf layer can be represented by 128 different
chromosomes. For an equivalent MLP, with 8 hidden units, the figure is 40320. For
10 units the figures rise to 512 for the bumpiree, compared to more than 3.6 million
for the MLP.

3.3.2 Selection

In accordance with the conclusions drawn in chapier 2, the GA uses a local
subpopulation model for selection, reproduction and replacement, similar 1o those
described by Davidor (1991) and Collins and Jefferson (1991). Assacialed with each
chromosome in the population is a unique co-ordinate on a 2-dimensional toroidal
lattice. The selection process is illustrated in figure 3.6. A random cell on the lnllice
is chosen, represented by the black square in each picture in figure 3.6. The [irsi

parent selected is the fittest chromasome encountered during a short random walk
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across the lattice from this initial cell (five steps in this example). Another parent is
selected similarly during a second random walk of the same length from the original
starting point. These two parents are then recombined (section 3.3.3 below) to
produce a new child. The new child is replaced into the population, overwriting the
least-fit chromosome encountered on a third random walk from the ori ginal cell. This
whole process is repeated with new random starting points until a certain proportion
of the population has been replaced, after which time all new chromosomes are

evaluated, and this completes one generation of the GA.

Select first parent Select second parent Select candiate for
(high fitness) (high fitness) replacement (fow fitness)

Figure 3.6: Local selection and replacement.

Several advantages associated with this selection strategy have already been
outlined (chapter 2). The first is a tendency to preserve genetic variely in the
population; the spread of genetic material is limited by the geography of the lattice,
and this helps 1o prevent the whole population from converging prematurely on a local
optimum, encouraging local speciation instead. In the following chapter a detailed
examination of the convergence and speciation properties of the GA is presented, and
it is shown that the local selection scheme does appear (o slow convergence and
encourage speciation for these problems. Another advantage, common (o ofher
successful alternatives to roulette-wheel selection such as rank-based (Whitley 1989)
and tournament selection (Brindle and Cox 1991), is that there is an implicit rescaling
of the fitness function over fime. As chromosomes are always measured against their
near neighbours, fitness is a relative, rather than an absolute measure, s selection

pressure does not wane as the population converges (o a sei of solutions with similag
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absolute performance. In addition, the local selection procedure is a steady-state or
generation gap model (section 2.2.4) and so incorporates elitism; in each generation,
only a small proportion of the population is replaced so the best performing strings
are guaranteed survival into the next generation. Finally, this selection strategy is less
computationally expensive than most alternatives and more amenable (o
implementation on parallel hardware, as it does not rely on global comparisons or

sorting of the whole population.
3.3.3 Crossover

In the bumptree chromosome, a single floating-point gene does nof represent a
meaningful building block for crossover. A node’s activation function is defined by
the interaction of a number of genes and a single gene coding, or example, a centre
co-ordinate in a particular dimension, does not represen( a useful phenotypic attribute
when taken in isolation. A simple one- or multi-poini crossover operator applied to
the bumptree chromosome will tend to mix up the genes coding particular functions,
swapping pieces of chromosome that do not represent usefyl partial solutions. A
minimum practical crossover operator might e resiricied to only Crossing over al
node boundaries, thus only exchanging whole functions. In this work a higher-levei
subtree crossover is used, which exchanges genetic material corresponding to
complete subtrees between parents. A similar subtree crossover is used extensively in

the emerging genetic programming paradigm spearheaded by Koza (1992).

\@2@

4

I

(a) (h) ()

Figure 3.7: The subtree crossover operator exchanges equivalent subtrees hefween
two parent bumptrees (a) and (b) to produce the child (c).

o
oo



The subtree crossover is shown diagrammatically in figure 3.7, and works as
follows. Initially, the child chromosome is created by duplicating the first parent.
One of the 30 nodes is then chosen at random as the crossover site, and the block of
genes representing that node is copied from the second parent into the child, replacing
the genes that were inherited from the first parent for that node. The blocks of genes
representing the node’s two descendants, their descendants and so on are also copied
from the second parent, until the complete subtree from the crossover site down has
been copied over. Note that the crossover includes non-expressed genes — if node 10
is selected as the crossover site, the blocks coding nodes 21 and 22 (iis descendants)
will also be copied regardless of the value of the gene which specifies whether node

10 is subdivided in the phenotype.

3.3.4 Mutation

As the GA uses a real-valued coding, it is appropriate (o use 4 ‘creeping’ mutution
operator (Davis 1991). The mutation operator is applied (o every new chromosome
produced, and works by slightly perturbing the values of 10% of the genes, sampled
with uniform probability along the length of the chromosome. A mutated gene is
modified by a random quantity uniformly distributed in the interval [-0.2,0.2], with

clipping if necessary to keep its value within the normalised range [-1,1]
3.3.5 Results

Genetically-optimised bumptree networks were tested against orthodox bumptrees,
built using a top-down constructive algorithm, on three problems. The first is the
well-known “Iris” problem. The task is o classify an iris flower into one of three
possible varieties, according to four descriptive parameters such as stamen length and
the like. The data consists of a training set of 75 examples and a generalisation est
set, also of 75 examples. Iris was chosen primarily because it is a useful problem on
which to test code during development: the data set is small, so results can be
obtained relatively quickly; it is a well known neural network benchmark, so plenty of
results exist to indicate what performance might be expected; and it is sufficiently
simple that it is difficult to get wrong — poor performance on Iris suggests either 4 bug
in the code or a fundamental flaw in the algorithm.

The second problem studied, Parity-6, is the six-bit parity mapping, i.e. # six-
dimensional version of the binary XOR function. This problem was chosen because
it appeared to be extremely difficult for the orthodox humpiree, presumahly hecanse
classes are highly inseparable. There is no generalisation set for Parity-6: the prohlem

is simply to learn the mapping as completely as possible.
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The final test problem is the recognition of spoken vowels, and is based on the
data described in (Chang and Lippmann 1991; Ng and Lippmann 1991). For this
task there are 10 classes, each representing a different vowel sound. Data is gathered
from speakers uttering words starting with ‘h’ and ending with ‘d’, with different
vowels in between (“head”, "hid”, ”hod”, “had”, “hawed”, “heard”, “heed”, “hud”,
“who’d” and *hood”). Speech input is pre-processed to extract the first two formant
frequencies of the vowel, determined by spectrographic analysis (Chang and
Lippmann 1991; Ng and Lippmann 1991). Bach utterance is, therefore, represented
by a point in a 2 dimensional input space, and the problem is to separate these poinis
into the 10 appropriate vowel sounds. The data for this problem is shown in fi gure
3.8. This problem was chosen because it is a difficult ‘real world’ learning task: the
data is noisy and many classes overlap significantly. Tn order (o compare restilis, the
division of the data into training and test sets is the same as (hat used by Bostock
(Bostock 1994). The data is split into a training set and a test sel, each containing 320
example patterns, and the two inputs are normalised. In all these experiments the
fitness function for the GA is the inverse of the mean square error (MSE) across (he

bumptree’s output units, across all examples in the training sel.
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Figure 3.8: The vowel recognition data (training set only shown).

The choice of other experimental paramelers was based on preliminary
experiments. A population size of 400 was used, mapped onto a 20x20 {aroidal
lattice.  Candidates for selection and replacement were the fiftest and lensi-fif,
respectively, encountered during random walks of § cells from a randomly selecied



initial point on the lattice. Experiments were run for a maximum of 20000 trials, i.e.

500 generations, and all results are averaged over 10 runs.

Iris
Training % Test % # nodes
BT 95.5 (3.2) 92.1 (3.4) 15.2 (7.9)
GA 99.7 (0.5) 96.3 (0.8) 9.0 (4.9)
Parity-6
Training % # nodes
BT 56.9 (6.0) 94 (6.7)
GA 77.2 (8.4) 9.0 (3.6)
Vowel recognition
Training % Test % f nodes
BT 720 (7.1) 65.6 (6.1) 526 (402)
GA 78.4 (1.5) 75.0 (2.4) 18.4 (2.9)

Table 3.1: Comparison of results for orthodox bumptree (BT) and GA-bumptree
(GA) for IRIS, parity-6 and vowel recognition data sets. Figures in brackets are
standard deviations.

Table 3.1 compares the performance of bumptrees evolved by the GA against
that of bumptrees built using the orthodox top-down constructive algorithm. Figures
show the percentage of patterns correctly classified after training was terminated. For
both the top-down algorithm and the genetic algorithm the same metric was used (o
terminate runs when generalisation ability peaked, 1o prevent over-fitting.

These results indicate that the GA is able to discover tree topologies which give
significantly increased classification performance on these problems when compared
to the trees produced by top-down construction. It is also interesting o note that,
with the exception of the Parity-6 problem, trees produced by the GA are significantly

smaller than those produced by the orthodox bumptree algorithm.
3.3.6 Evaluating the GA

Although the above results are encouraging, two questions immediately present
themselves. The first is a question which shauld be asked routinely of any direcied

search algorithm, and is especially relevant to ane which FECUITEs U8 MAny evalualions
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as the GA: could solutions of similar or higher quality have been attained by sampling
the same number of points in a blind random search? If the answer turns out to be
yes, then the algorithm is either so inefficient as to be worthless, or is being misled by
assumptions about the search space which are not justified. In GA terms, if the
coding and operators have introduced deception (see section 2.2.3) it is quite possible
for the GA 1o become trapped sampling a region of the search space far from the
optimum, and random search would eventually find better solutions.

The second question is more specific: is the local selection and replacement
scheme of any benefit in this problem, or would a more simple GA have performed
just as well?

These questions were answered by further experiments which compured the
performance of the local selection GA against three alternatives: a purely random
search, a simple generational rouletie-wheel GA, and a generation-gap rouletie-wheel
GA in which only the worst 10% of the population was replaced in each generation,
the same proportion as was replaced in each generation of the local selection GA.
These results, averaged over 10 runs on the vowel recognition data, are shown in

figure 3.9,
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Figure 3.9: Learning performance of bumptrees found by GAs with various selection
strategics, compared with that of trees found by random search. Curves shows the
quality of solutions found by each algorithm plotted against the number of frees

evaluated. Error bars show one standard deviation.

The first thing which is clear from the figure is that all three GAs comforiahly

out-perform random search, as would be hoped. This is o vindication of (he



suitability of the hierarchical coding scheme and the subtree crossover and creeping
mutation operators for this problem, and implies that they have not introduced any
unexpected deceptive effects. A second conclusion is that the two generation-gap
GAs significantly out-perform the generational GA on this task: with no fitness
scaling or elitism, the generational roulette-wheel GA appears (o be losing good
solutions which the other two GAs are able to maintain in the population. Finally, the
fact that the local subpopulation GA was consistently better than the others is
encouraging, and suggests that its choice was well motivated. Although the
generation-gap GA with roulette-wheel selection occasionally finds solutions of
comparable quality, the local GA is more consistent, and its improvement over the

generation-gap GA is significant throughout the search.
3.3.7 Summary

The preceding sections have described experiments which establish the feasibility of
applying a GA to optimising the architecture of the humptree. On the three
classification problems investigated, the GA is consistently able to discover
bumptrees which are smaller than, and which give a significant improvement i
classification performance over, trees built using the orthodox top-down consiruction
algorithm. The experimental results also support the decision to use a local selection
and replacement strategy, originally based on the review of the GA literature reported
in chapter 2.

Because of the bumptree’s structure, the genetic coding described in section
3.3.1 introduces significantly less redundancy into the search space than is typical
with GA-NN hybrids, and has better scaling properties. This makes the GA-
bumptree considerably less susceptible to the serious permutation problem discussed
in section 2.4.4. As well as this low redundancy, the coding scheme also has the
desirable properties of closure, completeness, continuity and isomorphism with

respect to the problem space.
3.4 Evolving topology and weights

Although the results thus far have been encouraging, the GA-bumpiree hybrid still
relies on the original training algorithm to optimise the weights of the local experts.
This is fine for the classification problems described in the last section, but it fules oul
applying the bumptree to many oiher classes of problem — control prohlems, for
instance, where there is no well defined training signal for every input veetor. 1t also
clashes with one of the ariginal motivations for taking an evolutionary approach (o

network design: the freedom to define arbitrary optimisation criteria. So far, no
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matter what fitness function is used to tune the tree architecture, the expert weights are
still optimised to minimise training set MSE?2,

If the full potential of an evolutionary approach to network design is to be
realised, it is necessary to include every parameter of the model in the genetic code.
This gives the GA free rein to globally search the space of complete bumptrees for
models which satisfy any criteria or constraints which are appropriate. As a
consequence, it opens the door to applications which are beyond the scope of the
original bumptree training algorithm. The remainder of this chapter is devoted 1o
extending the GA to optimise both the topology of the tree and the experts” weights

simultaneously.
3.4.1 Coding structure and weights: first attempt

There are various ways in which the genetic code described in section 3.3 could he
exiended to incorporate the experts’ weights as well as (he structure of the tree. As
usual with GAs, finding the best coding is not irivial.

One thing which is clear is thai the experts cannot be optimised independently.
The contribution to fitness made by a given expert is not just a function of its weights;
it depends on the region of the input space in which it operates, which is determined
by the structure of the tree above it. Experts ‘belong’ to particular leaf nodes. When
leaves are exchanged by crossover, their experts must be carried with them.

An added complication is the fact that it is not known beforehand which nodes
in the tree are going to be the leaves, or how many leaves (and therefore experts) there
are going to be. Because each node has a gene which determines whether or not it is
split, the GA is free to swilch different subtrees on and off during the search. A
particular node in one tree in the population may be a leaf, with an associated expert,
while its equivalent in another tree may be have a subtree below it, modelling the
same region with several experts.

One possible coding scheme which deals with these consideration is to make a
weight matrix an integral part of every node’s genetic definition. Any node which
turns out to be a leaf then expresses its weight genes o define its associated expert.
In nodes which are not leaves, the weight genes are simply ignored. This scheme
was the basis of a first attempt at evolving structure and weights simultaneously.

In this coding, cach of the blocks of paramelers in the genetic cading (see
figure 3.3) is extended to incorporale a complete weight matrix for a local exper

network. This significantly increases the size of the search space when compared (o

20ne class of problems where MSE is not an appropriate ercar measure is {inding useful models of
systems where the mapping between inpuls and ouipuis is one-to-many. Some examples of (hese
prohlems are examined in detail in chapler 6.
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optimising structure alone. Table 3.2 compares the length of the genetic codes
required by each coding scheme for the three classification problems already
described.

In keeping with the rest of the genetic code, weights are coded as normalised
real values in the range [-1,1]. Translating a particular gene into a weight value is
simply a matter of multiplying it by a scalar which determines the range of the
weights. In these experiments this range was simply [-1,1] so the genes represent

weight values exactly.

Problem Architecture only | Architecture and weights
Iris 270 720
Parity-6 390 600
Vowel recognition 150 1050

Table 3.2: Chromosome length (number of real-valued genes) required (o code
architecture only vs. that for coding architecture and weights.

3.4.2 Results

The classification performance of trees discovered by a GA using this coding is
shown in table 3.3, These results are not encouraging. For the more difficult
problems (Parity-6 and Vowel), the GA appears to quickly converge (o a Very poor

local optimum, and makes little progress thereafter.

Problem Training % Test % # nodes
[rig 99.1 (1.1) 95.7 (1.3) 10.2 (5.3)
Parity-6 473 (8.1) n/a 7.8 4.7)
Vowel 40.3 (9.3) 40.4 (8.4) 7.8 (5.0)

Table 3.3: Classification performance of trees found by the GA when hoth
architecture and weights are optimised genetically. Results are averaged aver 10
runs, and figures in parentheses are standard deviations.

3.4.3 Coding structure and weights: second attempt

The poor results shown in table 3.3 point to serious problems with this first attempi at
coding expert weights.  One fact which stands out is the large increase in
chromosome length which has resulted from adding ihe weights (table 3.2). Even fof
the simple ITris problem, adding the weight matrices has given the GA an exirn 450
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real parameters to optimise. For the vowel recognition problem, adding the weights
has increased the dimensionality of the search space by a factor of 7.

Coding a complete weight matrix for every node is extremely inefficient. For
trees of up to 30 nodes, 30 complete weight matrices are coded on the chromosome
because any node has the potential to be a leaf node. However, the maximum
possible number of leaves in a binary tree of 30 nodes is only 16. Even if every node
is present in the final tree, 14 out of the 30 weight matrices are redundant, genetic
deadwood. The dilemma is that it is not known beforehand which nodes are going to
end up as the leaves, and therefore which ones should have weight matrices coded for
them.

This problem can be alleviated by removing one degree of freedom from the
GA. In this second attempt to optimise archilecture and weights simultaneously,
every node is required to be present in the final tree. The GA now searches (he space
of complete trees of 4 layers, so every model has the maximum 16 local experts.
Preventing the GA from ‘switching of” subtrees removes the uncertainty ahout which
nodes are leaves and which are not. Since the leaf layer now always consists of
nodes 15 1o 30, only these nodes need (o have weight matrices associated with them.
Experiments suggest that resiricting the search (o the spuce of complete trees does nol
adversely affect the quality of the solutions found by the GA. The final trees do not
have to ‘use” all 16 experts because the GA can position the node functions so that
some branches of the tree will never be active on the data. This effect is seen in the
results reported in chapter 6, where the GA finds trees to model simple functions
which use only a small number of experts. In this second coding scheme the 16
weight matrices are appended to the end of the original chromosome. The subtree
crossover is modified to ensure that whenever a leaf node is crossed over, its weight
matrix is crossed with it.

At the time of this work, Bostock (1994) reported the resull that classification
performance is improved if the constraints on the structure of the (ree are relaxed.
Empirical results seem (o favour simplified trees in which node functions are allowed
to span any region of the input space, not just the regions spanned by their immediate
predecessors in the tree. Bostock also reported another simplification which he found
to improve performance on some problems: using a constant radius for all nade
functions (Bostock 1994). Both of these madifications (o the model were
incorporated into the coding scheme at this point.

Table 3.4 shows the effect of the modifications described in this section on the
chromosome length for each of the three classification prablems.

~1
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Architecture and weights
Problem Architecture only | First attempt | Second attempt
Iris 270 720 360
Parity-6 350 600 292
Vowel recognition 150 950 540

Table 3.4: Chromosome lengths for two methods of coding architecture and weighis
compared to those for the original architecture-only code.

3.4.4 Results

The performance of trees produced by the GA using the secand coding scheme for
architecture and weights is shown in table 3.5. Note thai all trees have 30 nodes,
since the coding scheme can no longer represen incompleie irees. Performance on
the Iris and Parity-6 problems is good, buf ihe performance on ihe Vowel daia is siili

fairly poor (compare with the resulls in table 3.1).

Problem Training % Test % # nodes
Iris 100.0 (0.0) 95.9 (1.4) 30
Parity-6 90.3 (3.4) n/a 30
Vowel 55.7 (6.7) 56.2 (5.1) 30

Table 3.5: Classification performance of trees found by the GA using second coding
for architecture and weights. Results are averaged over 10 runs and figures in
parentheses are standard deviations,

3.4.5 Summary

This section has extended the GA-bumptree model to make the GA responsible for
optimising both tree structure and expert weighis. By replacing the original error
minimisation algorithm for the weights with genetic search, the possible range of
applications for the GA-bumplee is broadened to include problems such as (he
artificial life simulation described in chapter S and the control and robatics problems
considered in chapter 6.

With the new coding scheme the results for vowel classification are poor, hoth
when compared (o other authors’ published results on the same data (Chang and
Lippmann 1991) and when compared to the results for the original GA-humpiree

(table 3.1). This illustrates the limitations of using a weak stochastic aptimisation
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method to tune the expert weights: ‘stronger’ optimisation methods such as the error
minimisation algorithm described in section 3.2.2 are obviously a better choice

whenever the error signal is sufficiently informative for them to be applied.
3.5 Conclusions

This chapter has introduced the bumptree, a neural network model which appears o
be much more suitable for genetic optimisation than the MLP. From the GA point of
view, the principal attractions of the bumptree are its speed, and the faci that if is
possible to code the bumptree as an ordered genetic string without introducin g the
same degree of redundancy as is typical with GA-MLP hybrids.

Three variations of the GA-bumptree have been fested on three classification
problems. In the first GA-bumptree, the GA was responsible for optimising tree
topology only. For the test problems, the GA was able to find trees which gave a
significant increase in classification performance over those generated by 4 top-down
constructive algorithm.

When the approach was extended so thai the GA was responsibie for
optimising both topology and weights, classification performance on the difficuli
vowel problem declined considerably. This illustrates the limitations of a weak global
search algorithm such as the GA when compared to an analytical solution, and
suggests that trying to fine-tune the expert weights genetically is unlikely to be
worthwhile for classification problems. Instead, the advantage of oplimising
architecture and weights together with the GA is that it opens the door to domains,
such as control and robotics, where the error signal is not sufficiently informative for
the normal error minimisation algorithm (or other network training algorithms such as
backpropagation) to be used. Chapter 6 investigates whether the GA-bumptree can
offer useful performance on these kinds of problems.

Finally, the experimental results in this chapter appear to vindicate the use of a
geographic selection and replacement model for the GA. This geographic model is
the subject of the following chapter, which takes a closer look at the dynamics of the

GA, and at how the various control parameters affect the nature of the search.



Chapter 4

Evolutionary dynamics of the GA-
bumptree
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4.1 Introduction

This chapter summarises the results of an extensive set of experiments which were
undertaken with the GA-bumptree hybrid. The purpose of these experiments was not
to find better classifiers, but to investigate certain aspects of the GA, particularly the
local selection scheme. Specifically, the experiments were intended to answer the

following five questions:

1. To what extent does the local selection scheme help to maintain genctic

diversity?

2. In particular, how does the choice of neighbourhood size (i.e. the length of
the random walks taken across the lattice during selection and replacement) affect (he

GA’s rate of convergence?
3. Is “speciation” actually happening, and if so, (o what exient?!
4. How does the neighbourhood size affect the degree of speciation?

5. How sensitive is the GA (o small changes in the mutation rate and

generation gap parameters?

The first two questions are addressed in section 4.3. The convergence profile
is introduced as a general tool for analysing convergence rates in real-valued GAs,
and the relationships between neighbourhood size, convergence rate and performance
are examined for the GA-bumplree. Section 4.3 goes on (o investigate speciation in
the GA-bumptree, addressing the third and fourth of the above questions. The final

question is answered in section 4.2 below.
4.2 The experiments

There are many paramelters which might be expected (o affect the dynamics of the GA

described in the previous chapter. Examples inciude the choice of mutation rafe,

i has already been noted, in section 2.2.2, that the GA community has a fondness [or hijacking
biological terminology wherever is convenient. In the discussion in this chapier, the use of {erms
such as ‘species’ and “speciation” is consistent with their use in the GA lierature, which is noi
necessarily the same as their use among biologisis. Here, the terim “species” refers simply {0 sibse
of genetically similar strings in the population, defined hy some arbitrary similarity metrie such s
that introduced in section 4.3.4. The term ‘speciation’ refers o the (ormation of many such suhsels
within the same population.
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crossover rate, generation gap, population size and the local neighbourhoad size, as
well as more general choices such as the representations and operators used.
Unfortunately, the computing overheads involved when working with GAs rule out
any attempt to examine the effects of varying all these parameters. For the GA-
bumptree, a single run of 20000 tree evaluations on the Iris data, distributed on a
network of workstations, takes between two and four hours depending on machine
availability, cpu and network loading, and so on.

Because of the time involved, it was deemed necessary (o focus these
experiments on a subset of just three parameters, each of which was to be varied over
three different values, giving 27 different combinations in total. Even this modest set
of experiments is extremely computationally intensive. If 10 runs are perfarmed for
each of the 27 experiments, something of a bare minimum in order to gel statistically
meaningful results, this gives 270 runs in total. I every run were (o fake the
minimum of 2 hours, and experiments were run back-to-back with no hreaks in
between, this would give 540 hours, or more than 3 weeks, of solid compuiing. In
the real world of high daytime machine loads, network congestion, operaling system
upgrades and hardware failures, these experiments actually ook over two manths (o

complete.
4.2.1 The experimental parameters

Since the main purpose of these experiments was to investigate the local selection

strategy, the three parameters which were examined were:

© Walk length. This parameter determines how many cells on the lattice are
traversed in each random walk during selection and replacement (sce section 3.3.2).
The setting of this parameter is expected (o be fundamental to the rate of convergence
and the degree of speciation. If this parameter is small, selection and replacement
always occurs among a few strings sampled from a small local neighbourhood. This
means that population-wide selection pressure is low: even the best strings in the
population will only get the opportunity to reproduce if the selection routine happens
to visit their cells, and the worst strings in the population may be similarly overloaked
for replacement. The ability of good genetic material to spread through the papulation
is also lessened if this parameter is small, since children only ever replace strings in 4
small local region around their parents,

If the walk length is very large relative to the size of the lattice, the effects are
reversed. Each random walk now visits a large proportion of the cells, so selection
pressure is very high, much maore so than with 4 conventional roulelie-whee| GA:

there is a high probability that one of 4 few good strings in the papulation will he
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found each time. Similarly, poorer strings will be mercilessly found and replaced. It
is expected, therefore, that very large values of this parameter would lead to rapid
premature convergence.

Two extreme values and one intermediate value were chosen for this parameter.
At one extreme, a walk length of 5 was chosen (o minimise the spread of genetic

j

material across the lattice. Because the walks are random, a particular walk ma

RS

traverse the same cell more than once. Random walks of 5 steps visit an average of
only 4 unique cells, limiting selection to a tournament between 4 sirings, or 1% of ihe

population. It was lelt that reducing the walk length, and hence the tournament size,

any further would introduce an unacceptable degree of noise into the selection
procedure. A value of 30 was chosen as the other extreme. A random walk of lengils
30 can reach any point on the latfice from any starting point, allowing genetic material
to spread across the lattice unchecked. Walks of 30 steps visit around 18 unique cells
On average so tournaments occur among about 4.5% of the population, which leads io
increased selection pressure. Figure 4.1 shows ithe relative probability of visiting
each cell on the lattice associated with random walks of lengths 5 and 30 from the
same starting point.  The third value tesied for this parameier was 14, Walks of
length 14 visit around 10 unique cells. This value was inlended 1o slow the migration

cell from any starting point.

(a) (b)

Figure 4.1: Probability of visiting each cell on the lattice during a random walk of (1)
5 cells and (b) 30 cells from the same initial starting point.

°* Generation gap. This is the proportion of the population which is replaced
in each generation. A value of 100% for this parameter indicates a purely generational
GA in which the whole population is replaced al the end of ench generation,

Decreasing the parameter from 100% introduces increasing degrees of elitism
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(automatic preservation of the fitter strings from one generation to the next) until, at
the opposite extreme, only a single string is replaced each generation, giving a pure
steady-state GA.

Like walk length, this parameter was chosen because it seems mtimately related
to the GA’s convergence rate. In a generational GA, there needs o be sufficient
selection pressure to ensure that the current best solutions reproduce before they are
overwritten at the end of each generation. If the population is too diverse,
recombination may disrupt the best strings, in which case the information which ih ey

contained is lost. As the generation gap decreases, the better strings ai ire protecied,

and can only be overwritten by sirings which are betier still. The GA can afford to
maintain a more diverse population and perform a more plmahw search, because

there is no danger of replacing good parents with poorer offspring. Since the whale
point of local selection is (o maintain diversity, a small generation gap should be
preferred. This is borne out by the resulis shawn previmisly in i"ig_u_i'c: 3.9, For these

experiments values of 5%, 10% and 20% were chosen for ihe generation sap.
B

= Muiation raie.

The final parameier chosen was the mutation rate, the
percentage of genes in each new child which were stibject (o multation. Unlike the
previous two parameters, mulation rate is not related (o selection and replacement.
However, it does clearly affect the level of genetic diversity maintained in the
population. A high mutation rate will lead to high diversity in the population, but it
will also be disruptive, tending to reduce the GA (o pure random search. Too little
mutation, on the other hand, is likely to result in the search stagnating. The mutation
rate must be sufficient to re-introduce useful genetic material which has been lost, and
to facilitate some degree of stochastic hill-climbing. For these experiments values of

2%, 5% and 15% were chosen for the mutation rate.

Parameter Values

Walk length 5 14 30
Generation gap 5% 10% 20%
Mutation rate 2% 5% 15%

Table 4.1: Summary of variables for the experiments.

The three variable parameters and their values are summarised in table 4.1, Al
other experimental parameters were fixed for all 27 sets of runs, as follows. A
population size of 400 was used, mapped onto a 20x20 latiice. All runs were

terminated after 20000 evaluations. With a population size of 400, this is equivalent
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to either 1000, 500 or 250 generations for generation gaps of 5%, 10% or 20%
respectively.

In all these experiments the GA optimises both architecture and weights. The
coding scheme used is the first of the two schemes for architecture and weights
described in the previous chapter. The reason for this is simple: this set of
experiments was started some time before the second coding scheme was developed.

Because the focus of these experiments was to investigate the dynamics of the
local selection scheme, the fitness function was considered to be arbitrary, so long as
the same measure was used across all experiments. The Iris data was chosen as the
test problem, for two reasons. First, the initial experiments (chapter 3) had indicated
that GA could converge reliably on this data. This is an important consideration
because the GA’s performance needs (o be sufficiently consistent that meaningful
averages can be obtained in only 10 runs. From the point of view of examining (he
nature and rate of convergence it was considered belter to choose a problem for which
the GA was known to converge reliably (o a good solution for at least some parameter
settings, rather than a problem on which the GA was known (o be unreliable.
Secondly, the Tris data set is small, with just 75 patterns in the training sel. Since ihe
experiments were (o involve 270 separale runs, run fime was a prime consideration.
This excluded the use of the vowel recognilion data, for instance, which has more
than four times the number of data points and typically involves considerably longer

ruans.

4.2.2 Results: final fitness scores

The final fitness scores produced by the GAs in these experiments are summarised in
table 4.2. The first thing which is clear from the table is that the level of fitness
achieved by the GA does not seem to be particularly sensitive (o the changes made to
the chosen parameters. This is not to say thal the parameters do not affect the GA — in
the following sections it is shown that there are significant differences beiween the
rate at which the various GAs converge, and even the manner in which they search.
Instead, it is necessary to conclude that the Iris prablem is too simple to revesl any
variation in the searching power of the various GAs: despite their differences, all 27
GAs have discovered solutions of similar quality.

Although some particular combinations of parameiers stand oui — the
combination of a walk length of 14, 5% mutation and a 5% generalion gap appears 1o
be especially bad, for example — it is not immediately obvious if any general trends
existin these results. To investigate this, it is useful (o examine the contribution of
each parameter in isolation. Each graph in figure 4.2 shows the effeci on

performance of varying one of the three parameters. In each graph, a point is an
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average taken over all the runs for which that particular parameter was set to a
particular value.

Walk | Mutation Generation gap (%)
length | rate (%) 5 10 20
2 97.3 (3.3) 98.4 (2.1) 975 2.5) |
5 5 98.0 (2.1) 98.0 (2.1) 98.7 (1.3)
15 99.6 (0.9) 99.7 (0.5) 98.5 (2.0)
2 98.5 (0.9) 98.4 (1.2) 96.9 (2.8)
14 5 95.2 (9.6) 99.2 (0.9) 98.4 (2.0)
15 99.6 (0.9) 99.6 (0.6) 98.0 (1.8)
2 97.6 (1.6) 97.6 (2.0) 98.4 (1.2)
30 5 98.3 (1.8) 97.2 (2.7) 98.8 (1.3)
15 98.7 (2.1) 98.5 (2.4) 99.6 (0.6)

Table 4.2: Summary of final fitness scores for all 27 combinations of parameler
values. Each resull is the percentage of patierns correcily classified by ithe hest
bumptree found by the GA, averaged over 10 runs. Figures in bracke(s are siandard
deviations.

It is clear from figures 4.2(a) and 4.2(b) that no general conclusion can be
drawn from these results as to what is the best overall setting for either walk len gth or
generation gap, since there are no statistically significant differences between the
average scores associated with particular values for these parameters. This invariance
can be attributed, at least in part, to the simplicity of the Iris problem. One other
possible conclusion is that these parameters are related and cannot be tuped
independently. Given that both parameters are expected (o affect the same properties
of the GA — the rate of convergence and the selection pressure — this seems likely 1o
be the case.

The results shown in figure 4.2(c) are a little more conclusive. There is a small
but statistically significant? increase in the average performance of runs where the
mutation rate was 15% when compared (0 those where it was either 2% or 5%.
Although these results do not suggest an upper bound on the best setting for mutation

rate, it is possible to conclude that rates of 5% or below are (oo low for this problem.

2Two-tailed test, 5% confidence limit.
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4.3 Genetic convergence

The main purpose of these experiments was not to spend two months producing the
best classifier for the simple Iris problem, but to learn more about the dynamics of the
local selection and replacement strategy. A central aim of this study was (o examine
to what extent the convergence rate of the GA could be controlled by tuning the

chosen parameters, in particular the walk length.
4.3.1 Measuring convergence

In a given generation it is possible to measure the amount of variation in 4 particular
gene from the frequency of its different alleles in the population. Tn a binary GA there
are only two alleles, 0 and [, so a useful measure of variation is simply the ratio of Os
to Is. If the frequencies are equal, the gene in question has maximum diversity. 1f all
members of the population have the same allele at thal position, the gene has
completely converged. This kind of measure was used by Tanese (1989) (o
investigale the effect of using iocal subpopulations in a binary GA.

Increasing the cardinality of the representation (i.e. the number of possible
alleles for each gene) complicates the issue, since different genes may converge (o
different subsets of the possible alleles. The extreme case is a real-valued GA, where
a gene can take any value from a continuous range. This makes the number of
different alleles for each gene theoretically infinite. One way to estimate the degree (o
which a particular real-valued gene has converged is to measure the total range of
values which exist for that gene in the population. The problem with this is that a
gene whose values are distributed between two small but distant clusters will appear
more diverse than one which has a much broader spread of contiguous values, as
illustrated in figure 4.3(a).

A better measure of the degree (o which a real-valued gene has converged can
be obtained by dividing its maximum possible range of values into a number of
discrete bins, and counting the number of bins for which representative values exist in

the population. This measure is illustrated in figure 4.3(h).
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Figure 4.3 Population-wide distributions of values for two hypothetical normalised
real genes, X and Y. If the total range of values is used us o measure of diversity (a),
gene X is considered to have greater diversity than gene Y. A better measure (h) is
obtained by dividing the range into bins and counting the number of filled bins, in
which case Y is seen to be more diverse than X. The diversity score is expressed as a
proportion of the maximum possible diversity in both cases.

For the purpose of measuring genetic convergence in these experiments, the
second of the methods described above is used. The range [-1,1] is divided into 100
equal bins, each of width 0.02. A useful property of the normalised genetic coding
used in the GA-bumptree is that every gene has the same possible range of values,
meaning that the same measure can be used (o estimate the convergence of any gene.
To calculate the degree of convergence for cach gene, each of the 400 different values
for that gene in the population (one for each string) is placed in the appropriate bin.
Dividing the number of non-empty bins by 100 (the total number of bins) then gives 4
diversity measure in the range [0,1], as in figure 4.3(b). The closer this value is to 0,

the closer the gene is to complete convergence.
4.3.2 Convergence and function

Tracing the change in diversity of individual genes over the course of a GA run can
reveal a wealth of information about the nature of the search space and also shaut (he
GA itself. One way of visualising this information is 1o plot a convergence profile.
Figure 4.4(a) shows the convergence profile of a GA-bumplree run in which the walk

length, generation gap and mutation rate paramelers were sel (6 30, 0% and 15%
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respectively. The genes are laid out along the vertical axis, while evolutionary time
increases from left to right in steps of 10 generations. The shade of grey in each cell
indicates the diversity for that gene at a particular generation, calculated in the manner
already described, with white indicating maximum diversity and black minimum.
Tanese (Tanese 1989) has used similar figures to compare genetic diversity in binary
GAs. Figure 4.4(b) shows the change in mean genetic diversity, i.e. the average of

each column in 4.4(a), from generation to generation.
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Figure 4.4: Genetic convergence in a GA-bumptree run with high selection pressure.
The convergence profile (a) shows the change in diversity of each individual gene (for
clarity, only the first 200 genes are shown) as (he population evolves. Figure (h)
shows the mean genetic diversity, equivalent to averaging each column in (a).
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The leftmost column in figure 4.4(a) represents the initial state of the
population. Because every string initially has a random value for every gene,
diversity is high and this column is completely saturated white. The 30 step walk
length, however, means that selection pressure is intense, and advantageous genetic
material is able to quickly spread through the population. This causes diversity to
plummet in the first 30 generations as most of the initial alleles are selecied out. In
Goldberg’s (Goldberg 1991a; Goldberg 1991b) terms, this is the period during which
the GA is selecting a ‘virtual alphabet” for each gene, a small subset of the original
alleles.

After around 50 generations the average genetic diversity reaches a minimum
and remains constant for the next 100 or so generations (figure 4.4(h)). Diuiring this
period every gene has converged to only a few alleles. This does noi mean, however,
that the GA has discovered the best alleles for every gene — far from it. Wiih high
selection pressure and little (o impede the spread of genetic material, the early stages
of the search are driven by those genes for which advantageous alleles happen o exisi
in the initial population. Sirings carrying these few beneficial alleles receive ihe lion's
share of the repraduciive trials, and the population is quickly swamped by their
descendants. Of course, it is not just the good alleles which these sIings pass on io
their many offspring, it is their whole genotype.  This resulls in every gene
converging to a small range of values, in a process known as hitch-hiking — the
indifferent genetic material hitch-hikes along with the beneficial alleles (e.g. Forrest
and Mitchell 1993; Harvey 1993).

After around 150 generations, genetic drift begins to occur. Mean diversity
creeps up (see figure 4.4(b)) as mutations accumulate in those genes which are not
making a significant contribution to fitness. Mutations will also affect the beneficial
genes, of course, but these will be quickly selected out. The pattern which emerges
as the population continues 1o evolve is that diversity steadily increases in the
‘indifferent’” genes, while remaining low in the important genes due (o the selection
pressure against changes in these genes. Towards the end of the run ii is possible to
clearly identify those genes for which the GA has found good alleles. These are
represented by the black lines across the convergence profile in figure 4.4(a), which
stand out against the grey backdrop of the original *hitch-hikers’ which have diverged
steadily in the latter stages of the run.

The fact that the amount of variation in a gene is a reflection of its coniribution
to fitness has been exploited by biologists for some time. Hendriks, Leunissen, er al.
1987) used this principle to establish that a gene coding far the prolein aA-crysiallin,
which is normally associated with lens formation in the veriehraie eye, had some
survival value even for the blind mole rat Spalax Ehrenbergi. Hendriks el al.

compared the observed rate of mutation in the aA-crystallin gene with the rale of
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mutation in other genes which were known to be irrelevant introns (non-expressed
portions of DNA, also called pseudogenes), and found that the oA-crystallin gene
accumulated mutations at a much lower rate. Since the basic mutation rate is assumed
to be the same for all genes, they were able (o conclude that many mutations to this
gene were being sclected out.

Perhaps surprisingly, there only seems to have been one application of this idea
in the GA field to date, that of Ackley and Littman. Inspired by Gould’s (1989)
review of the work of Hendriks ef al., Ackley and Littman used a similar method to
study the relative importance of two different groups of genes in their binary ERL GA
(described briefly in the next chapier). The convergence profile offers a general
method for evaluating the relative contribution of genes in a real-valued GA, and
would seem (o be a useful addition to any GA practitioner’s toolbox.

In many parametric optimisation problems, the relative sensitivity of the system
to the parameters being optimised may be static, but unknown. In this case (he
convergence profile can yield useful information abou( the system itself. In the GA-
bumptree there are many epistatic interactions between genes, so the impaortance of
any particular gene is not fixed. A gene’s contribution (o fiiness may change in every
different run of the GA, according (o the particular evolutionary path which is
followed. As an example, a node which is critical to classification in the best trees
found in one run might never be used in another. The genes which code for this node
will be extremely important in the first instance, and irrelevant in the second. In this
case, the convergence profile reveals more about the particular evolutionary path
followed by the GA than about the objective function. Figure 4.5 illustrates the
relationship between convergence at the genotype level and functionality at the
phenotype level for the same GA-bumptree run which generated the convergence
profile in figure 4.4. The histogram in figure 4.5(a) shows the final mean genetic
diversity for each block of genes which corresponds (o a single node in the tree. In
this case there is a striking difference between the diversity of genes coding for the
two top-layer nodes. The node 1 genes have much lower variation than those for
node 2, suggesting that the former node is playing the major role in classification.
This suggestion is reinforced by examining the nodes in the nexi layer: the genes
coding nodes 3 and 4, the descendants of node 1, are significantly more converged
than those for nodes 5 and 6. In fact, the best tree in the final generation actually
consisted of just nodes 1,2, 3 and 4, as shown in figure 4.5(b). The low diversity in
nodes 7 and 8, particularly the latter, indicates that these nodes must also have heen
important towards the end of the run, suggesting the free in figure 4.5(c) as a recent

ancestor to the eventual solution.
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Figure 4.5: (a) Mean genetic diversity for each block of genes in the last generation of
a GA-bumptree run. Each block of genes codes for one node. The dotted line shows
the overall mean diversity. Also shown are the best tree found by the GA (b) and one
of its recent ancestors (c).

4.3.3 Convergence and fitness: phyletic gradualism vs.
punctuated equilibrium

So far only a single GA run has been examined, in order (o introduce the methads
used to measure convergence. Two questions remain: how does the walk length
parameter affect the rate of convergence, and how does the rate of convergence alfect

the way the GA searches?

The effect of walk length on genetic convergence

Figure 4.6 compares results from two experiments which are equivalent excepl for the
walk length parameter, which is set (o 30 in one and S in the other. In the following
discussion, these seltings for walk length are referred 1o as WL3I0 and WILS
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respectively. In these experiments the mutation rate and generation gap are 15% and
10% respectively, as in the run described in the previous section. Unlike before,
these are not results from individual runs, but are averaged over all 10 runs for each
experiment.

For WL30 the mean genetic diversity (figure 4.6(a)) follows the expected
pattern: there is rapid loss of diversity in the first 2000 evaluations3 (50 generations),
followed by a period of low diversity lasting around 4000 evaluations, before
diversity begins to rise again due to genetic drift. In WLS, however, the short walk
length means that selection pressure is reduced and the spread of genetic material
through the population is impeded. Genetic diversity drops much less rapidly in ihe
early generations of WLS5, giving the GA more (ime io explore a diverse range of
alleles.  Diversity levels off after around 4000 evaluations, bui remains high in
comparison to WL30. Unlike in WL30, the diversity in WLS does nol shaw 4
tendency to rise towards the end of the search, since the GA never converges o the
same extent.

Figures 4.7(a) and 4.8(a) show the same results [or two differeni pairs of runs,
and are included to illustrate that these are general trends, nof specilic fo a particular
choice of parameters. In figure 4.7 the generation gap remains the same bul the
mutation rate is lowered to 5%. The only noticeable effect this has on diversity is to
reduce the rate at which diversity increases due to genetic drift in the later stages of the
WL30 runs. In figure 4.8 the mutation rate is 15% and the generation gap is reduced
to 5%. This increases selection pressure and leads (o a reduction in the overall level
of diversity for both WL30 and WLS5. The diversity curves retain their characteristic
shapes, however, with diversity in WL30 dropping quickly and then rising towards

the end of the search while the curve for WLS drops more slowly before levelling off.

3The horizontal axis on these graphs is labelled in evaluations rather than generations in arder iy
compare runs with different generation gaps.
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Walk length and fitness

Figures 4.6(b), 4.7(b) and 4.8(b) show the fitness curves for these experiments.
With the particular combination of 15% mutation rate and 10% generation gap shown
in figure 4.6, WL5 shows a marked improvement in final fitness when compared to
WL30, although this is not generally the case. What is more interesting is the
difference in the shapes of these curves. In each case (and in general, although only
these three examples are included here (o illustrate the point), performance in the WIS
runs appears to improve continuously and gradually throughout, while the W30
runs are characterised by periods of stasis, during which no improvement takes place,
punctuated by sudden bursts of rapid improvement. These curves are reminiscent of
two traditionally opposed views of evolution in the natural world, the schoals of
phyletic gradualism and punctuated equilibrium.
The first school of thought, phyletic gradualism, is the traditional interpretation

of evolution as a process of continuous gradual refinement of 4 lineage through a
sequence of small changes. Proponents of this view cite examples such as the horse
lineage, in which the fossil record appears (o document a continuous progression of
form from an ancestral dog-like, browsing creature with padded feei
(Hyracotherium) through a multitude of intermedinte stages spread over some S8
million years, to the large, hooved, grazing animal known today (Savage 1977). A
criticism of the gradualist perspective is that such continuous sequences of gradually
changing fossil forms turn out to be the exception, rather than the rule. This fact has
traditionally been attributed to the inherently fragmented and incomplete nature of the
fossil record — fossilisation is a rare event, it is argued, even on geological
timescales, and so the fact that a certain intermediate form has not been found need
not be taken as evidence that it didn’t exist. Darwin himself wrote:

“Why then is not every geological formation and every stratum full of

such intermediate links? Geology assuredly does not reveal any such

finely graduated organic chain; and this, perhaps, is the most obvious

and serious objection which can be urged against the theory [of

evolution]. The explanation lies, as | believe, in the exireme
imperfection of the geological record.” (Darwin 1859, chapter X)

In 1972, Eldredge and Gould proposed a slightly different viewpoint of
evolution as a process of punctuated equilibrium. This view emphasises stasis, not
gradual change, as the norm, and suggests that evolutionary change accurs
intermittently in rapid (in geological terms) bursts. The basic principle is that a
species which is adapted to its ecological niche represents an evolutionary local
optimum, such that any genetic change is deleterious. Such a species will remain in
stasis indefinitely. Evolutionary change only accurs when the environment changes

or, more typically, when same members of the species migrale (0 4 new environmeni.
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In this case, selection pressure to adapt to new demands drives rapid evolutionary
change, and the migrant population evolves into a new species — a new local
optimum. If long periods of stasis are the rule and evolutionary change the excepiion,
then the rate of change, when it occurs, must be far greater than the apparent average
rate of change. This makes the gaps in the fossil record seem less of 2 puzzle; instead
of expecting to find intermediate forms neatly laid out in consecutive strafa, the
punctuationist expects them to be compressed into a period of time which may not
even be measurable on the palacontological scale?.

A great deal of controversy has surrounded the theory of punciuated
equilibrium since its proposal. This has been largely due to its being misinterpreted
by many and, according to Dawkins (1986), deliberately misrepresented by its
proponents, as something radically different from traditional Darwinism$5. In reality,
Darwin would not have found punctuated equilibrinm in the least bii controversial,
since he himself suggested the basic principle in chapter X of The Origin of Species:

“Hence, when the same species accurs at the bottom, middle, and top
of a formation, the probability is that it has not lived on the same spo
during the whole period of deposition, but has disappeared and
reappeared, perhaps many times, during the same geological period.
Consequently if it were to undergo a considerable amount of
modification during the deposition of any one geological formation, a
section would not include all the fine intermediate graduations which

must on our theory have existed, but abrupt, though perhaps slight,
changes of form.”

The main contribution of punctuated equilibrium is not, therefore, a new theory
of evolution to rival Darwin’s. Instead, it represents a significant insight into the
circumstances which catalyse evolutionary change, and the rate at which it occurs.
Seen as such, the theory has been gaining evidence steadily since its inception, an
example being the discovery that some members of the horse lineage which were
previously thought to represent a series of transitional forms were actually
contemporary species which remained static over millions of years (Gould and
Eldredge 1993).

Returning (o the GA-bumptree fitness curves in figures 4.6(b), 4.7(h) and
4.8(b), both of these different views ol evolutionary change, phyletic gradualism on

the one hand and punctuated equilibrium on the other, are in evidence. The question

Hn fact, Eldredge and Gould go further than this. They suggest a linal step in which the migrant
population, now a new species, returns 10 its original niche, where il competes with and replaces the
ancesiral species. The palacontologist digging at the ancestral site may (ind fossils of hoth the
original and the new species, but has no chance of finding an intermediate form, because he
evolutionary change accurred elsewhere.

SPunctuated equilibrium has been misinterpreted both as a theory of saltation - evalution as o series
of large jumps (macromutations) such as a hyracoiheriun giving birth (o 5 modern horse (0 ke an
extreme example) rather than an accumulation of small changes - and also us evidence of crealionisim,
with divine intervention providing each new species.

a8



is, why should all the WLS runs appear to support the gradualist view of evolution
while the WL30 runs exhibit punctuated equilibrium? If the punctuationists’ view is
accepted, that stasis is the norm in stable environments and that evolutionary change
only generally occurs in response to environmental change, a possible explanation
presents itself.

It has already been shown that many epistatic interactions exist between the
genes in the GA-bumptree — a gene which is beneficial {0 one string may have a
deleterious effect when recombination substitutes it into a different string. In the GA,
the environment which determines a string’s chance of reproductive success is,
therefore, a combination of two factors. The first is the fitness function itself, which
will determine how often the string has the opportunity to reproduce, and how fong it
is likely to survive before being replaced. The second factor is ifs ‘genelic
environment’, the genetic makeup of the strings with which it is likely o mate (i.e.
those strings which surround it on the lattice).

In the WLS runs, the short walk length resiricts the spread of genetic material
across the lattice. This prevents the whole population from converging on a particular
evolutionary path, instead allowing different species (o form in different local TELIOns,
each evolving along its own genetic trajectory (this is illustrated empirically in the
following section). Evolutionary change within a particular species will be limited,
since members of the species face a fairly static environment: the fitness function does
not change with time, and all the strings within the same species will be very similar
genetically. However, migration between species will occur through recombination
across species borders. A genotype which migrates from one species to another faces
a significant change in its genetic environment, and it is these environmental changes
which drive evolutionary change.  The picture that emerges is one of improvements
occurring in overlapping bursts of evolutionary activity associated with migration and
speciation evenlts on different parts of the lattice. The fitness curves in figures 4.6,
4.7 and 4.8 show a continuous gradual improvement because they chart the progress
of the population as a whole, rather than the rise and fall of individual species.

As the walk length parameter is increased, genetic material flows more freely
across the lattice, and the number of different species which the lattice can support is
reduced. In the WL30 runs, the lattice soon becomes dominated by 4 single species:
the whole population effectively converges (o a single evolutionary path, and follows
this path Lo & single local optimum. Once this local optimum has heen reached, the
environment stabilises and the population enters a period of stasis, Although
recombination and mutation will continue to suggest different evolutionary paths, all
will lead away from the local optimum. Because there is litlle geographical resiriction
on selection, mating and replacement, such sub-optimal sirings will he efficiently

purged from the papulation, and will only rarely gain a foothold. The oceasiongl
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bursts of evolutionary change which punctuate the graphs in figures 4.6(b), 4.7(b)
and 4.8(b) represent those rare occasions when a new species has survived long
enough to explore sufficiently far along a new evolutionary path to escape the current
local optimum and discover solutions of higher fitness. When this occurs, the new
species will quickly spread across the lattice, upsetting the previously stable
environment and catalysing a period of intense evolutionary activity. Within a few
generations the whole lattice is invaded by the new species, the population converges

to a new local optimum, and stasis is restored.
4.3.4 Convergence and species formation

The preceding arguments rest on one assumption which has not yet been justified
empirically: the emergence of distinct species in different local regions on the laitice
during the course of a GA run, the number of which decreases as the walk lengih is
increased. In order to test this assumption, it is first necessary {o decide exactly what
constitutes a species in the context of the GA-bumplree.

One method used by Davidor (1991) is io plot a contour map of fitness values
in the population, on the basis that different species may be identified by regions of
different levels of fitness. In general, however, this approach is not very useful. A
useful definition of species should group together strings which represent similar
solutions, and similar fitness only implies similar solutions if the coding scheme is
completely non-redundant and non-epistatic. In the case of the GA-bumptree (and in
GAs in general), two strings may be quite different genetically, even to the extent of
being unable to produce viable offspring through recombination, yet still have very
similar fitness. This point is illustrated in figure 4.9, which shows the way the
distribution of fitness values across the lattice changes during the course of a typical
GA-bumptree run. After 300 generations it can be seen that there is little variation in
fitness across the lattice, but the figure reveals nothing about the nature of the
solutions which exist in the population. It is not clear whether the whole population
has converged to one type of solution, or if different solutions of similar quality are

being explored in different regions of the lattice.
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Figure 4.9: Population fitness distribution for a GA-bumptree run after (a) 50 and (b)
300 generations.

A more appropriate way of separating strings into species is to compare them at
the level of the genotype, rather than the phenotype. This kind of comparison was
also suggested by Davidor (1991), although it is not clear whether Davidor ever
implemented the ideaS. The principle that species should group together strings of
similar genotype was applied to analysing the GA-bumptree, and the results are
shown in Figures 4.10(a) and 4.10(b). These figures show the distribution of
species across the lattice after 100 generations of euach of two GA runs, one in which

the walk length was 5 cells, and one in which it was 30.

6f;;,u of (Davidor 1991) shows ‘genotypically similar islands’ as differently shaded wunns ol g
square 1eprcsunnng the Tattice, but appears 1o be slightly contrived. The fact that different regions end
abruptly at the edges of the square, despite the fact thal the lattice is loraidal, suggests that this fgare
is intended to lustrate a point rather than (o show actual experimental resulis,
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Figure 4.10: Distributions of genotypically different species on the lattice afier 100
generations for walk lengths of (a) 5 and (b) 30 cells.

To produce each of these figures, the GA is stopped and every cell an the
lattice is examined in turn. The siring in the first cell is allocated species number 1.
Thereafter, each string is compared (o those which have already been examined, and
allocated the same species number as the string which it most resembles, wiih
‘resemblance’ being inversely proportional to Euclidean distance in this case. [ a

string does not bear sufficient resemblance (‘sufficient” heing a pre-defined thyeshold
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distance) to any string previously examined, it is considered to represent a new
species, and allocated a new number. In figure 4.10 each different species number is
represented with a different shade of grey.

Obviously, the particular choice of threshold parameter will directly determine
how many ‘species’ are identified — if the threshold is too large then all strings will be
classed as the same species, if it is too small then each string will be considered &
different species. So long as the same threshold is used in both instances, however, 4
useful comparison may be made between two runs. In the case of the GA-bumptree,
figure 4.10 appears to support the assumptions which were made about the effect of
the walk length on the number of species which the lattice can support. After 100
generations, the population for which the walk length was 30 cells has become fairly
uniform across the lattice, while a considerable amount of variety exists between

different regions of the lattice for the population for which the walk length was S.

4.4 Conclusions

This chapter has summarised the results of an exiensive series of experiments
intended to explore the sensitivity of the GA-bumpiree hybrid (o three husic
parameters: walk length, generation gap and mutation rate. In particular, these
experiments were focused on investigating the evolutionary dynamics of the local
selection and replacement model, and the effect of varying the walk length on the rate
of genetic convergence.

Section 4.2 began by comparing the final fitness scores achieved by the various
runs. The rather negative conclusion was that these results reveal little about the
overall impact of each of the three parameters on the quality of solutions discovered
by the GA, since all the runs discovered solutions of similar quality. The most likely
reason for this uniformity of performance is the simplicity of the classification
problem chosen. Although the iris problem served admirably for the main purpose of
these experiments, as a basis 1o study the local selection scheme, it appears, with
hindsight, that more information could have been gleaned from this study if a slightly
more challenging problem had been chosen. In the event, the only general conclusion
that can be drawn is thal mutation rates below 5% appear (o be (oo low.

Section 4.3 shifted attention (o the real focus of these experiments,
investigating the effectiveness of the local selection scheme at controlling genetic
convergence. A method was proposed for measuring the degree of canvergence of
individual genes in a real-valued GA, and this was exiended 1o the concept of the
convergence profile, a graphical representation of the changes in genetic diversity
during the course of a GA run. A particular run was examined, in which high

selection pressure caused the GA (o converge completely afier a relatively smuil
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number of generations. Under these conditions, three distinct phases of evolution can
be identified: an initial period of rapid convergence, during which a virtual alphabet is
selected and hitch-hiking occurs; a period during which diversity remains at a stable
minimum; and a period of genetic drift towards the end of the run as mutations
accumulate in non-essential genes. Examining the convergence profile during this
latter stage reveals which genes are functionally relevant and which are not. The
usefulness of the convergence profile as an analytical tool is not limited (o these
experiments — it offers a general method for analysing any real-valued GA.

The relationships between (he walk length parameter, the overall rate of
convergence, and the overall performance of the GA were investigated by looking at
two extremes for the walk length, 5 cells and 30 cells. Based on these results, severa]
conclusions may be drawn about the dynamics of the local selection model GA.
Choosing the shorter walk length allows different species to form on different parts of
the lattice. From the point of view of the population as a whole, this means that g
certain level of genetic diversity is maintained throughout the run, and the GA exhibits
a continuous gradual improvement in performance from each generation (o (he nexi.
This gradualist picture of evolution emerges as a result of muliiple overlapping
migration and speciation evenis occurring in different regions of the lattice. When the
wall length is increased to the longer extreme, the overall picture changes. The
whole population now behaves like a single species. After an initial period of
convergence, evolution proceeds in a process of punctuated equilibrium — periods of
stasis punctuated by occasional bursts of evolutionary activity associated with rare
speciation events.

What is initially surprising is the fact that these two quite different modes of
evolution yield such similar overall performance. Premature convergence is generally
considered to be the death of genetic search, since recombination is the GA’s primary
search mechanism, and variety is the grist to recombination’s mill. Since reducing the
walk length increases the level of diversity in the population, it was also expected (o
improve the performance. However, although the shorter walk length runs often
showed a tendency 1o find slightly better solutions (the experiment shown in figure
4.6 produced the most pronounced difference), the difference overall is not
statistically significant. One reason for this might be that the subtree crossover
operator is not sufficiently powerful, and that the search is relying more an mutation
that is expected: if stochastic hill climbing, rather than recombination, is the dominant
search mechanism then genelic diversity becomes less of an issue. There is a danger,
however, of Jooking for reasons where none exist — il has already heen ohserved (hai
the simplicity of the iris problem is likely o be the main cause of the overall

similarities in performance.
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Chapter 5

Learning problems I: artificial life
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5.1 Introduction

In the closing chapter of his Ph.D. thesis, Hancock (1992) drew the following

conclusion concerning the application of GAs in the field of neural networks:
“GAs are most relevant to problems for which there is no gradient
information available, for instance because of discontinuities in the
search space. It thus appears unlikely that they will out-perform
gradient descent techniques for training the weights of nets... A more
fruitful area of interaction between GAs and NNs may be the
emerging field of “artificial life’. Even a simple simulated animal
looking for food cannot readily be (rained by gradient descent
techniques, since the target outpuls are not specified... Such sysiems
will provide a rich testbed for exploring coding strategies within neis,
and GAs remain the obvious way of adapting them.”

The work described in this chapter was motivated by this observation. The
intention was (o investigate whether applications existed within ihe artificial life fieid
for a genetic approach (o optimising both the architeciure and wei phis of 4 neural
network model such as the bumptree.

T

1 which four main themes are identified. The fourth of these, the study of
interactions between the processes of learning and evolution, is described in greater
detail than the others, as it is particularly relevant to evolutionary neural networks.
The remainder of the chapter describes a series of A-life experiments in which a GA is
used to evolve a neural network controller for an artificial ant performing a simple

foraging task.
5.2 GAs, connectionism and A-life

The field of artificial life (Langton 1989) is a melting-pot of ideas drawn from such
diverse disciplines as evolutionary biology, ethology, computer science, psychology
and robotics. The field is catalysed by the ever-increasing availability of computing
power. A characteristic of much A-life research is the use of the computer as a
research tool to gain new insights into the natural world, through complex simulations
which have not previously been computationally tractable. As well as attempting io
answer nature’s questions, the other main thrust of A-life research is towards the
construction of artificial autonomous systems, with nature providing the inspiration.
Such a diverse field, woven as it is from previously barely related disciplines,
is not easy (o categorise. Accepting the fact that some averlap is inevitable, the

following seciions identify four fundamental branches of A-life. Only o
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representative sample of the literature associated with each branch is given, since a

through review of the A-life literature would be beyond the scope of this thesis.
5.2.1 From simple rules to global complexity

A recurrent theme in A-life research is the observation that a collection of simple
agents, each operating independently and obeying a few basic behavioural rules in
response to its local environment, can exhibit very complex and often apparenily co-
ordinated global group behaviour. Powerful computer simulations have made
possible the empirical study of these kinds of complex systems, and this has led (o
models which can account for previously poorly-understood phenomena. Some
aspects of group behaviour in social animals, for instance, can be accounied for
without the need to postulate sophisticated communication mechanisms or global
knowledge on the part of individuals. Camazine (1993) has suceessfully applied this
approach to produce computer simulations modelling pattern-formation on the conbs
of honey bee colonies, collective nectar foraging behaviour of honey bees and broad
sorting in ants. Other authors are applying the same reasoning (o investigations af
group behaviour in a wide range of social animals, rom group vigilance behaviour in
wild boars (Quenette 1993) (o roosiing and dispersal behaviour in flacks of gulis (De
Schutter and Nuyts 1993), among many others.

Studies such as these have also served to inspire a branch of A-life which
might be termed collective robotics, in which the eventual aim is to construct simple
autonomous robots which can solve complex tasks by working collectively. Some
potential advantages of this approach are readily apparent: it is inevitably going to be
cheaper and easier to build many very simple, identical, robots than a few complex
ones, and such robot ‘teams’ would have a degree of fault-lolerance built in,
benefiting from the kind of graceful degradation of performance under failure which
other parallel disiributed processing systems, such as real and artificial neural
networks, exhibit. An early example of this kind of work may be found in the ‘ani-
like robots’ of Deneubourg er al. (1991), simple simulated robots which exhibit
global sorting behaviour.  Other simulations have investigated other aspects of
collective behaviour such as co-operation, flocking, trail following, homing and so an
(Goss, Deneubourg, ef al. 1993; Mataric and Marjanovic 1993; Shibata and Fukada
1993), and the approach is beginning to be exiended from simulation to the
construction of actual teams of real robots (Ali Cherif 1993; Hess 1993; Mataric and
Marjanovic 1993),

Finally, this section would not be complete withaut mention of the fascinating
work pioneered by Tom Ray, in which a virtual ‘primardial soup” environment is
seeded with a simple self-replicating compuier program. Tmperfect replication,
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coupled with competition for finite resources, leads to the evolution of ever more
efficient replicators, and to the emergence of social phenomena such as symbiosis and
parasitism (Ray 1991a; Ray 1991b; Ray 1991c; Maley 1993).

5.2.2 Neuroethology

Neuroethology is the study of the neural mechanisms underlying the generation of a
creature’s behaviour (Cliff, Husbands, er al. 1993). Through computer simuliations
of biological neural networks, A-life offers an empirical approach to festing
hypotheses in this field. An example of this is the work of Brunn ef al. (1993), in
which a simple backpropagation neural network is used (o model the neural
mechanism of leg placement in the stick insect, in order (o test he hypothesis (based
on physiological experiments) that the stick insect uses an approximaie algorithm for
leg placement. Beer and Chiel (1990) take a similar approach, drawing on work on
the neural basis of feeding in the marine mollusc Aplysia to construct an artificiul
neural network which models motivated feeding behaviour in a simulated insect. The
same authors have since extended their artificial neural model 1o ofher simple insec
behaviours such as wandering and edge-following (Beer and Chiel 1991),

Through the use of genetic algorithms, A-life is also able (o offer insights into
the evolution of the neural circuitry underlying behaviour in animals. Tn the crayfish,
for instance, the neural circuitry controlling the “tailflip’ escape reaction contains a
paradoxical ‘useless’ synapse. Lending support to the ‘pre-adaptation” explanation of
this anomaly (Dumont and Robertson 1986), simulated evolution experiments have
reproduced a similar redundant synapse in an artificial neural circujt originally evolved
for swimming and later adapted for flipping (Stork, Jackson, et al. 1991). This kind
of simulation serves to underline the greedy nature of evolutionary change: in
evolution “elegance of design counts for little” (Dumont and Robertson 1986), as was
demonstrated by the simple experiments described in section 2.4.3. This is also well
illustrated in the work of CIiff er al. (1993) in which artificial neural networks,
evolved using a GA for a robot control tusk, are analysed using techniques analogous
to those used in the study of biological neural networks. In this work, two networks
which evolved in identical simulated environments are almosi indistinguishable at the

behavioural level, but are found to be strikingly different at the morphological level,
5.2.3 Madelling behaviour

A-life offers an empirical approach to testing existing analylical models of hehuviour.
For instance, Collins and lefferson (1991) describe 4 microanalylic compuier

simulation built to investigaie the evolution of sexual selection and female choice, and
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in particular the paradoxical prevalence in nature of secondary sexual characteristics
which are exaggerated to the point of being maladaptive (Fisher 1958: Kirkpatrick and
Ryan 1991). By simulating the evolution of a population of simple individuals with
sexual selection, it was possible (o verify Kirkpatrick’s (1982) existing analyfical
model, test the robustness of the model by relaxing certain simplifying assumptions
(necessary to make the analytical model mathematically tractable, but not necessary
for the microanalytic model) and study the dynamics of the evolving system.

Instead of using simulations to validate or extend existing behavioural models,
some A-life researchers have taken the complementary approach, drawing inspiration
from established models and pioneering the field of behaviour based robotics,
exemplified by the work of Darigo er al. (Doriga and Schnepl 1991; Dorigo and
Sirtori 19915 Dorigo and Schnepf 1992). In this work a model of behaviaural
organisation in animals, the Tinbergen model (Tinbergen 1966), provides inspiration
for robot controllers based on classifier systems. In 4 similar vein, Riolo (1991),
ispired by early experiments in ‘latent learning’ in rats (Walker 1987), deseribes g
learning classifier system, used to control an agent in & maze environment, which is

extended to incorporate learning even in the absence of a reward signal.
5.2.4 Interactions between learning and evalution

The Baldwin effect

The idea that acquired learning can influence the course of evolution has been termed
the ‘Baldwin effect’, after one of its first proponents (Baldwin 1896). Tt is an idea
which has sometimes been treated with suspicion by biologists, partly because it
smacks of Lamarckism, and partly because it is a difficult hypothesis to test (Maynard
Smith 1987).

The basic principle can be illustrated as follows. Consider 4 population of
individuals whose behaviour is, in some sense, sub-optimal for their environment.
Individuals which possesses the ability (o learn, that is to improve their behaviour
during their lifetime and so increase their chance of survival, will tend (o leave maore
descendants than those who do not. So long as inherited behaviour is sub-optimal,
learning ability will be advantageous. Moreover, in a stable environment, where the
optimum behaviour remains constant, those individuals who inherit behaviour which
is closer to optimal have more chance of achieving the optimum through learning, and
so will be favoured by selection. In this way, learning can guide evolution so that
traits which were once learned afresh by ecach generation hecome specified
genetically.
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Hinton and Nowlan (1987) have performed an elegant experiment to test the
validity of the Baldwin effect, based on a computer simulation of the processes of
evolution and learning. In their experiment, a GA searches a space of simple Boolean
networks. A network consists of 20 connecting weights, each of which may take the
value O or 1, so that a network may be represented completely by a 20-bit binary
word. Of the 220 possible networks only one, the network 111 ... 1, is taken o be
the correct network, all others being invalid. This is a ‘needle in 1 haystack’ search
problem, since the optimum is a single impulse on an otherwise flat fitness landscape,
and so no algorithm can be expected to perform belier than exhaustive search,

For the GA, a network is coded as a chromosome of 20 genes, each with three
alleles, 0, 1 and ?. Genes with the value ? represent connections which are noi
congenitally hard-wired, but which can be varied by learning. The learning model is
extremely simple: o evaluate a network, a succession of 1000 irials are made in
which random settings are tried for all its variable connections. If this process should
hit upon the correct network (obviously individuals ‘born’ with one or more
connections hard-wired to 0 are doomed from the outsel) the individual is assigned
fitness score which is inversely proportional to the number of (rials taken (o reach the

solution.

Original impulse
function

Fitness

Fitness function
with learning

Search space

Figure 5.1: How learning transforms the search space, adding ‘shoulders’ o an
impulse function.

The incorporation of the learning model transforms the original ‘needle in 4
haystack’ fitness surface. Instead of a single impulse, there is now a smooth region
of increasing fitness leading to the optimum. Hinton and Nowlan represent this in
terms of ‘shoulders” added to the original impulse (figure 5.1), while Maynard Smith
(1987) describes it as “like searching for the needie when somenne tells you when
you are getting close.” Without learning, discovering the correct solution takes
around 1000 generations of the GA (with population size 1000). Moreaver, wily
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sexual reproduction the solution, once discovered, tends to be lost again due to
disruption by crossover (Maynard Smith 1987). With evolution, the population
frequency of correct alleles is high after 20 generations, and learning is rapid (Hintan
and Nowlan 1987).

If the evolutionary model in Hinton and Nowlan’s experiment is impoverished,
then the learning model is positively destitute. However, the strength of the
experiment is in its simplicity, and it elegantly demonstrates the viability of the
principle of the Baldwin effect, without claiming to answer questions about the
complexities of evolution and learning in the biological world. Authors since Hinton
and Nowlan have exiended the analysis of the experiment, focusing in particular on
the slowness of fixation of the final few connections and the effect of genetic drift
(Belew 1989; Harvey 1993).

Other researchers, primarily interested in combining GAs and neural netwarks
to address practical problems, have also examined the Baldwin effect. Keesing and
Stork (1991) use a GA io optimise percepiron networks for pattern recognition,
allowing some supervised learning before the fitness evaluation. Their view of the
Baldwin effect is slightly different from that of Hinton and Nowlan, although the two
viewpoints are isomorphic. Instead of viewing learning as a function which
transforms the fitness landscape, they perceive if as a ‘local hill-climbing” operation

on the original landscape!, as shown in figure 5.2.

Fitness

Figure 5.2: Another representation of the Baldwin effect (afler Keesing and Stork).
Points a and b represent two neural networks which have equal fitness al ‘birth’, and
so would be allocated equal numbers of reproductive irials by a normal GA. The
addition of learning constituies local hill-climbing on the fitness landscape,
represented by the arrows.  After learning, a has higher fitness and so would he
selected in favour of b. Learning therefore biases evalution towards points in the
region of a, and progress towards the optimum is accelerated.

IThe incorporation of local hill-climbing into genetic search has heen examined by various authors
(Ackley 1987; Grelenstette 1987; Mansour and Fax 19913, with hill-climbing typically freated a5 an
additional genelic operaior.
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Keesing and Stork report an empirical study of the effect of varying the number
and distribution of learning trials on the rate of evolution and find that, while a liitle
learning is a dangerous thing, too much slows evolution since it reduces pressure {o

improve the genotype.

Related work

In the experiments described above, the reward signal which drives learning during
the evaluation phase is a function of two things: the environment, i.c. the problem to
be solved, and the individual’s response to that environment, i.e. the current solution.
Some researchers have experimented with a more complicaied scenario in which (he
reward signal is also a function of some additional parameters which are genefically
determined.

Nolfi and Parisi describe the evolution of ‘auto-teaching’ networks (Nolfi and
Parisi 1993), neural networks which control simple agents performing a foraging rask
in a simulated environment2. Each individual consists of two neural networks of
identical topology, specified by two weight matrices coded s 4 sin gle chromasome.
The first, the action network, maps sensory input (o motor oufpul and directly
controls an agent’s behaviour. The second, the teaching network, maps sensory
mput to ‘desired’ motor output. During an agen(’s lifetime, its action network is
trained by continuously backpropagating the difference between its output and that of
the teaching network.

The principal objection to the claim that this rather bizarre scenario might
exhibit the Baldwin effect lies in the fact that what is ‘learned’ is already fixed in the
genotype: learning simply reduces the discrepancy between the action network and
the teaching network, making one of the networks seemingly redundant. If anything,
the adaptation which occurs during an agent’s lifetime might be better described as
‘development’ rather than learning, since it is the gradual expression of information
which is stored genetically, but not immediately exhibited.

A similar approach is taken by Ackley and Littman in their Evolutionary
Reinforcement Learning (ERL) model (Ackley and Littman 1991). As in the above
work, artificial agents consist of two neural networks which evolve in paraliel, an
action network and an evaluation network. The evaluation network maps sensary
input to a scalar reward signal, on the basis of which the uaction network is trained by
a reinforcement learning algorithm. As before, the claim (hat these experiments serve
as a good demonstration of the Raldwin effect is undermined by the fact that eqcly
individual is born effectively ‘knowing’ what it intends (o learn during is life. The

2The environment is practically identical (o that described in the following section,
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learning process does not so much constitute a local exploration of the problem
surface as a progression along a set behavioural trajectory which is fixed in advance
by the genotype.

5.3 Case study: the artificial ant

5.3.1 Introduction

Parisi, Nolfi and Cecconi (1991) report a study of the relationship between learning,
behaviour and evolution in a simple two dimensional world populated by animats. Tn
these experiments an animat is an artificial ant which performs a simple food
gathering task. The animat’s nervous system is a small feedforward neural network of
fixed topology, the weights of which are specified by a genetic blueprint. A GA
generates new animats from the more successful members of the animat population,
and neural networks which are well adapted to the food galhering iask evalve.

The reason for studying these experiments was (o investigate (he practicality of
an evolutionary neural network approach to A-life, and 1o see wheiher (his particular
simulation could be used as a testbed for comparing different algoriithms, for instance
the GA-bumptree and a GA/MLP hybrid. The food gaihering sk is appealing, in
this respect, for two reasons. First, the problem is sufficiently simple and abstract for
it to be unlikely to introduce any bias into a comparison of algorithms. Second, it
involves a problem of temporal credit assignment. This is the kind of problem,
prevalent in real-world applications such as control and robotics, where researchers
interested in training neural networks with GAs might usefully concentrate their
efforts. It is the sort of problem where the overhead of GA-based training may be
worthwhile, since many supervised learning algorithms such as backpropagation are
unsuitable.

A further motivation for this work stemmed from the puzzling observation by

Parisi, Nolfi and Cecconi that:

"Learning can accelerate the evolutionary process both (1) when
learning tasks correlate with the fitness criterion, and (2) when
random learning tasks are used. Furthermore, an ability (o learn a task
can emerge and be transmitied evolutionarily for both carrelated and
uncorrelated tasks.”

Statement (1) in the above does not appear to be particularly controversial: it
simply describes the Baldwin effect, which was discussed in the previous section.
The second stalement, however, is rather more polemic. The assertion that network
performance on a particular task can be improved by (raining on an uncorrelared (nsk

seems counter-intuitive. Indeed, if true, it would have consequences for the design of
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artificial neural networks for practical applications since it would imply that a network
trained on one task should have useful performance even on other uncorrelated iasks.

5.3.2 The experimental scenario

Following Parisi, Nolfi and Cecconi, each animat lives in A separate (wo
dimensional environment containing randomly placed pieces of ‘food’. Initially, both
the food items and the animat are randomly located in cells within a 10x10 grid.
During its lifetime an animat moves around its world, sometimes landing on a food
cell and eating the food. Ultimately, those individuals that are most successful ai
finding food are more likely to reproduce.

An animat consists of a feedforward neural network that recejves sensary inpiut
from the environment, in this case the angle and distance (o the neares| cell that
contains food. According to its input, the network generates an aulput action which
results in the animat either moving forward by one cell, turning lefi or ri ghi through
90 degrees, or staying still. The neural network archiiecture, which does not change
during an experiment, is shown in figure 5.3. Tt has four inpul units and two autpul
units, fully connected to seven hidden units. Two of the four inpui units receive the
angle and distance to the closest food cell, and ihe remaining two receive the values
previously output by the network for the most recent action. The outpul units are
thresholded to produce an action choice coded as two binary digits: 00 = halt; 01 =
turn right; 10 = turn left; 11 = advance.

In any single experiment, all animats have the same network architecture and
neuron functions; they differ only by having different sets of weight values. Each
animat’s weights are coded as a chromosome of floating point numbers. Initially, a
population of 100 animats is created, each with a random set of connection weights.
Each individual is then allowed an existence of 20 lives, a lite consisting of 50 actions
from a random starting point, in 5 different environments (i.e. with different food
distributions).  All animats are then assessed and the 20 individuals which have eaten
the most food are selected as parents for the next generation. Each of these is
reproduced 5 times, and each offspring is subjected to mutation by perturbing 5
weights, selected at random, by a random real value between +1.0. This produces 4
population of 100 new animats. This process of evaluation, selection, reproduction
and mutation represents one generation, and the original experiments were carried onf
for 50 generations. In the experiments described here, runs consisted of 70
generations since it was not clear that a plateau of performance had been reached will

fewer generations.
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Most Recent Action Sensory Inputs

Hidden Uniis

Next Action

Figure 5.3: The animat network. Only some connecling weights are shown: the
network is fully connected between layers.

The animats of the first generation exhibit purely random hehaviour; hecatise
their network weights are random they only consume food by chance. However, by
selecting those individuals that have consumed the most food, and infroducing sli ght
mutations into the reproduction of selected individuals as described above, the
population evolves and individuals in successive generations become more effective at
finding food as useful sets of network weights are discovered. Figure 5.4 shows
typical foraging paths for animats from generations 0 and 49. The difference between
the random behaviour of generation 0 and the apparently ‘purposeful’ behaviour of
generation 49 can be clearly seen.

In a second set of experiments, individuals are also allowed to learn during
their lifetimes, by adapting their weights using standard backpropagation. This
introduces an interesting possibility. The evolutionary adaptation is purely Darwinian
since it is the initial weights at the beginning of an individual's life that are encoded on
the chromosome. No modifications made to these weights during the lifetime of an
individual are passed on (o the next generation directly. However, learning may
increase the chance of an individual being selected if it improves its ability to find
food, and so guide evolution thraugh the Baldwin effect. In this second experiment
what evolves is not necessarily just the ability (o seek foad efficiently; it is also the

ability to learn effectively during life.
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(a) (b)

Figure 5.4: Examples of paths followed by animais from (a) generation 0 and (b)
generation 49 (After Parisi ef al.).

In order to use backpropagation (o train any netwaork, an error siginal on the
output units at each time step is needed. However, for this task there is u temporal
credit assignment problem since the payoff for finding food may oceur many sieps
after any given move. To avoid this problem, Parisi, Nolfi and Cecconi generile an
error signal from what they consider to be a related task: predicting the sensory
consequences of the animat's most recent action. Two new output units are added to
the network (figure 5.5) and these units are used (o predict what the sensory input
will be on the succeeding move. The error signal is the difference between this
prediction and the actual sensory input after the move is made. In this way il is
possible to generate an error signal at each time-step which can be backpropagated
through the network, modifying all weights except those between the hidden units
and the two original (action) output units.

The experiments reported here follow those of Parisi, Nolfi and Ceccani
wherever they gave explicit details. The following choices were made where details

were not given:

* The ‘angle to the closest food cell” inpul is measured clockwise relative (o
the animat’s current facing direction, and normalised so that food directly in front of
the animat always has an angle of 0.0, food directly o the right an angle of 0.25, and
$0 on.

* If the closest food cell is equidistant (o one or more other food cells, then

the one at the greatest angle is defected by the animal,
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Most Recent Action Sensory Inputs

Hidden Uniis

Next Action Sensory Prediction

Figure 5.5: The animat network with predictive outpuis.

* The distance input is normalised such that the diagonal distance across (he

10x 10 grid world is approximately 1.0.

¢ The starting weights for the animats of generation 0 are random floating

point numbers in the range +1.0.

¢ In the experiments involving backpropagation the most basic algorithm was
used, with no momentum term, weight decay, or other convergence improvement

strategy. A learning rate of 0.6 was chosen for all the runs reported here.

* At the start of each experimental run, 5 separate worlds with different,
random food distributions were created. These worlds remained fixed for (he
duration of that experiment. In each generation, the animats were each allowed 20
lives of 50 moves in all 5 worlds. At the beginning of cach life the world was
restored to its initial state (i.e. every food cell was replenished) and the animat was

placed in a randomly selected empty cell.
5.3.3 Experiments: evolution and learning

All experiments were repeated 16 times with different initial random weights and
different worlds in order to obtain statistically meaningful results. All the figures in
this section show average resulis over the 16 runs.

In addition to the evolutionary experiments already described, twa henchimark

runs were performed in which the animats’ foraging straiegy was hard-coded. In the
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first of these (BM1), the animat simply made a random action choice at each time
step. Tested for 20 lives in each of 500 randomly generated worlds, this animat
consumed an average of 0.63 food cells in each one. The second benchmark strategy
(BM2) was designed to represent an effective foraging behaviour, and consisted of
the following rules: if the nearest food lies within a 40° arc in front of the animat, the
chosen action is to advance; if the food lies outside this arc and (o (he animat's left,
the animat turns to the left; similarly, if the food is outside the are and to the animat's
vight, the animat turns to the right; if the food is directly behind the animat, it turns
right by default. An animat employing this strategy, tested for 20 lives in each of 500
worlds, consumed an average of 9.74 food cells in each one. Note that this is lower
than the theoretical maximum of 10 foods consumed per life. One reason for this is
that an animat’s limited sensory information prevents it from planning any kind of
optimal tour around the food cells — the greedy algorithm of going directly towards
each nearest food cell in turn will result in a sub-optimal (our.

Figure 5.6 shows the mean performance over the population, together with the
performance of the most fit individual (peak), as a function of generation, where no
learning takes place during the animats’ lifetimes. The performance measure is (he
average number of food items caten in a lifetime. The peuk performance appears (0 he
close to a platean at around 8.8 food cells consumed. Note that the performaiice of
networks generated afier even a small number of generations is much better than the

random walk benchmark.
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Figure 5.6: Animat performance with no modification of network weights during
lifetime.
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The effect of allowing the animats to learn during their lifetime can be seen in
figure 5.7, which shows the population mean and fittest individual performance as a

function of generation.
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Figure 5.7: Animat performance with predictive learning during lifetime.

Figure 5.8 compares the performance with and without learning for both the
peak individual (a) and the population mean (b). Representative error bars (one
standard deviation) are shown only at some generations in order to avoid cluttering
the picture. In neither case is there a significant benefit resulting from learning during
life; if anything, learning appears to be a handicap rather than a benefit, This is in
stark contrast (o the results obtained by the original authors, who observed a
significant increase in performance when learning was included. This difference
remains unexplained, but in view of the large number of experiments which have
been performed, it seems unlikely that further experiments would reverse these
conclusions.

Is it reasonable to expect (o see an increase in food-gathering performance as a
result of incorporating predictive learning during the animats’ lives? 1t is useful to
consider the fitness landscape around a point in weight space (i.e. a possible anima).
A point may be considered to have a good surrounding landscape if mast of is
adjacent points are higher than it is, that is to say a small mutation is likely to lead (o

an improvement in fitness.
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Figure 5.8: Comparison of (a) peak and (b) mean performance with and withoul
predictive learning

Parisi, Nolfi and Cecconi suggest that, as the prediclive (ask scems carrelated
to the food-gathering task, learning to predict consiitules a local exploration in weighi-
space, biasing selection between points of similar fitness in favour of the one with ihe
better surrounding landscape. This causes learning (o guide the evolutionary process
via the Baldwin effect, as described in section 5.2.4.

It is instructive (o consider the learning task itself. The network attempts to
learn the relationship between ‘action’ and ‘resultant change in sensory input’. Ina
world with only one food cell, this relationship is fairly trivial — the change in angle
and distance to the food is a simple and consistent function of movement. However,
in an environment with many food cells the mapping may become discontinuous due
to the sensory inputs only ever detecting the single closest food cell. A step which
results in a new food cell becoming the closest will result in a totally unpredictable
(from the animat’s point of view) change in sensory input. During the early stages of
evolution, when the animats’ movements are largely randam, such steps will accur
frequently as the animat moves. This effect is reduced as behaviour evolves o allow
cfficient movement towards food cells, but the same situation will always occur every
time a food cell is found and consumed. This discontinuity in the training daia for the
predictive task casts doubt over how much useful predictive learning the animat might
be able to acquire during its life.

Given the simple nature of the original task, the resulis reported here suggest
that this increased complexity may actually add an unnecessary layer of absiraction
between the GA and the actual task being optimised, disrupting the search space and
actually hindering the search, as the GA by itself (figure 5.6) seems powerful enatigh

to find near-optimal weight sets in a relatively small number of generations.
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5.3.4 Reducing the number of parameters in the network

Parisi, Nolfi and Cecconi performed a further experiment in which the animats’
networks were trained on an arbitrary task (the XOR problem) while undergoing
evolution, as before, on the basis of their food gathering ability. They report that
performance, even on this task, becomes related to fitness for animats which are
trained on the task during their lives. They suggest that the learning is biasing
evolution towards regions of weight-space in which the performance surfaces for the
two tasks (XOR and food gathering) are similar, so that an ascent on one surface
would imply an ascent on the other.

For such regions of the space (o exist, if the two tasks really are uncorrelaied,
the number of free paramelters in the network must be large enough for the network o
encapsulaie both learning tasks ai the same time. A network has a finile capacity for
storing information; by definition, if a netwaork consists of a mininuun set of weighis
i

task, can only decrease performance in the original task. Learning the XOR prablem

adapted for one task, then further training of these weighis for another, uncorrelsiec

during the animat's lifetime only guides the evolution of food gaihering ability in as
mich as it forces the GA to find netwaorks which are not only good networks for food
gathering, but are also tolerant of those weight changes caused by training on XOR.
This tolerance is only possible if the network architecture contains excess free
parameters.

This motivated an investigation into whether the animats’ network architecture
did indeed contain more parameters than are required for the food gathering task. A
set of experiments were performed in which the hidden layer was removed altogether
from the animats’ networks. Figure 5.9 compares the performance of animats with
no network hidden layer with those with the original architecture of seven hidden
units. Figure 5.9(a) compares the performance of the most fit individuals, and figure
5.9(b) the performance of the population means, as a function of generation. In this
experiment no learning takes place during the animars’ lifetimes.

It can be seen from figure 5.9 that the removal of the hidden layer makes no
significant difference (o the final ability to perform the food gathering task. In fact,
the animats with the simpler architecture display a much greater ability in the early
stages of the search, and evolve more rapidly, than those with a hidden layer. This
can be attributed to the much smaller weight space that the GA has to search. This
result demonstrates that the original animat architecture, with seven hidden units, has
an excessive number of free parameters for this simple food gathering rask.
Furthermore, as the simple perceptron (single layer) architecture can learn this (ask,

the food gathering task is likely to be linearly separable (Minsky and Papert 1969,
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Figure 5.9: Comparison of (a) peak and (b) mean performance with and without g
network hidden layer

5.3.5 Observed behaviour

The final stage of this work was an examination of ihe phenomena ihat Parisi, Nalfi
and Cecconi observed and originally explained in terms of ‘behavioural self-selection
of stimuli’. In their example, a given high-performing animat (i.e. one from a late
generation) was found to be much more likely, for example, to encounter food at
relatively small angles (i.e. to its right) than at large angles (to its left), as it moved
around its world. They also observed that the same animat was more likely to make
an appropriate action choice, i.e. one which moved or oriented it closer to the food, if
the food was detected at a small angle than if it were detected at a large angle. They
concluded that, as the animat influences its sensory input by its movements, food
gathering ability had evolved in two parts. On the one hand, the animat had learned o
respond effectively to a reduced set of input stimuli, i.e. when the food is on the
right, and on the other, it contrived to move in such a way as to encounter situations
from this *known’ set of stimuli more often than other situations (such as the food
being on the left). As further evidence of this process at work, it was observed that
animats which were replaced at a random position after each move were much mare
likely to make inappropriate action choices, as they were being deprived of the benefit
of self-selecting their input stimuli through their movements. This self-selection
process was considered to be evidence of the influence of behaviour on the course of

evolution.
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Figure 5.10: The A-life simulation, written for X-windows on a Sun workstation,
showing (a) an animat in its environment, and (b) the current state of its newral
network ‘nervous system’. The simulation proved to be a useful ool far studying
animat behaviour.
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To investigate the validity of these claims, a graphical software simulation was
developed which allowed animat behaviour to be studied qualitatively at various
points in evolutionary time and under various environmental conditions. The
simulator is shown in figure 5.10.

It was observed that animats from later generations tend to display a reduced
behavioural repertoire, relying on turns made in one direction only. A given
population might come to contain individuals which only ever turn ri ght, for instance,
behaviour, and it accounts for the difference between the performance of ihe hest
evolved strategies and the hand-coded benchmark strategy BM2 (figure 3.5). An
examination of animat behaviour at various stages in ihe evolutionary process reveals
the explanation for this phenomenon.

In the early stages of evolution, every animat’s behaviour is random: some
animats do nothing, some wander aimlessly, others march relentlessly forward
regardless of sensory input, and so on. The first major leap in fitness aceurs when a

animat evolves with a network which happens (o capture a uselul correlation bei

sensory input and motor output. The simplest form of this, and the one which is

inevitably discovered first, can be expressed as a single rule such as “If the Tood s o
the right, turn right”. Although this rule says nothing aboui whal 1o do in oiher
circumstances (such as when the food is on the left, behind, or even straight ahead), it
captures one important property of the task, which is a big step forward in
evolutionary terms. Because of this, the trait confers such a selective advantage that it
quickly spreads through the population, until, a couple of generations later, every
animat’s behaviour is descended from this simple rule. As the population continues
to evolve, the basic behaviour is refined, and animats become more proficient at
applying the ‘right turn’ rule appropriately.

The more the behaviour is refined, the less likely it becomes for a contrasting
behaviour, such as left-turning, to occur by mutation. By this stage, the movement
through weight-space required (o reach a network with ideal behaviour, that is the
ability to turn either way, is greater than that possible in a single mutaiion of an
existing population member. Unless every intermediate step between a good righi-
turning individual and an ‘ambidextrous’ individual represents an impravement in
fitness (which the experiments suggest is highly unlikely), the transition cannot
occur. This accounts for the convergence of the population on the sub-optimal
behaviour of turning only one way.

A close examination, therefore, reveals the observation that animats fram late
generations only ever turn in one direction as evidence of prematiire convergence, i
common phenomenon with GAs (Baker 1985; Booker 1987; Eshelman and Schaffer
1991). In the experiments described here, the fendency taward premature




convergence is exacerbated by the extremely greedy selection al gorithm (keep the best
20%) used by the GA.

Premature convergence in itself is sufficient to account for those observations
which Parisi, Nolfi and Cecconi explained in terms of self-selection of stimuli. An
individual which only ever turns right will always tend to decrease the angle of a food

This would account for an observed statistical bias towards

cell relative to itsell
encountering small food angles during the course of the animat’s life3. If the food is
on the animai’s left (i.e. the angle is large), the animat’s chosen action, o turn right,
may be highly inappropriate. The same action, however, becomes more appropriaie
with each repeated right turn. This accounts for the observation that correci action
choices are associated with more commonly encountered seis of siimuli (in this
cxample, small angles), and also the observed drop in the frequency wiih which
appropriate actions are chosen if the animat is randomly re-positioned alter each
move. The principle of Ockham's Razor favours the explanation given here, thai
these phenomena are all evidence of premiiure genetic convergence, [or ils simplicity.

5.3.6 Summary

This section has presenied the results of 4 study of the inleraction belween learning
and evolution, based on the experimental scenario described in (Parisi, Nolfi, er al.
1991). There seems to be no evidence that learning has a beneficial effect on
evolution within the context of these experiments.

The food gathering task in these experiments is learned more successfully by
simple perceptrons than by multi-layer networks, which suggests that it is a linearly
separable problem, and that the original network architecture was over-specified.
Finally, a more simple explanation, that of premature convergence due to loss of
population diversity, has been given for the phenomena which Parisi, Nolfi and

Cecconi explain as behavioural self-selection of input stimuli.
5.4 Conclusions

This chapter began with the observation that the emerging ficld of A-life contains
many natural applications for an evolutionary approach to neural network design. A
simple A-life scenario was chosen as the subject of a detailed case-siudy, ihe
investigation being motivated partly by the desire (o identify an abstract problem
domain suitable for testing the GA-bumpiree. Unfortunaiely, 4 detailed siudy of ihese

experiments revealed several flaws in the original experimenial method, These

SNote that the “always turn right” example is used here for the sike of argument. There was no
ohbserved bias towards convergence on right-turning behaviour as opposed 1o lefi-lurning.
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include the inappropriate implementation of ‘learning’ by backpropagating rather
arbitrary error signals, and the fact that the network topology is vastly over-specified
for the task. The fact that most of the conclusions reported here differ from those of
the original authors did nothing to inspire confidence in these experiments as a
foundation for further work.

In view of the conclusions of this study, it was decided (o abandon the notion
of designing a test-bed for the GA-bumptree around these experiments, and (o
concentrate instead on more ‘real-world’ problems, such as roboiics and control.
This is the approach which has been taken in the work reported in the following

chapter.



Chapter 6

Learning problems II: control and
inverse problems
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6.1 Introduction

In this chapter the GA-bumptree is applied to a number of problems which cannot
casily be solved by conventional neural network models such as the MLP or RBF.
The problems examined are drawn from two distinct classes of difficult learning
tasks: remporal credit assignment problems and multi-valued mappings. Examples
of both of these classes of problems are prevalent in real-world applications,
particularly in domains such as control and robotics. Since both classes of problenis
violate the conditions necessary for most conventional neural network fraining
algorithms to be used, the object of this work is to see if the GA provides & viable
alternative.

6.2 Temporal credit assignment problems
For supervised learning algorithms such as backpropagation, each inpul vecior
applied to the network during training is accompanied by 4 targel vecior which
specifies what the network outputs should be for that input. Leurning is a matter of
tuning the network parameters until the desired output is praduced for every inpui
vector in the training set. This process, sometimes referred (o as learning with a
teacher (Widrow, Gupta, et al. 1973) is suitable for some learning tasks, such as
pattern classification, but not for others. The artificial life scenario described in the
previous chapter is an example of a learning task where there is a temporal credit
assignment problem . In this case there is no teacher (o specify the correct output for
the network (i.e. the correct move for the animat) at each time step, so normal
supervised learning is impossible. Instead, the controlling network only receives a
single reward signal — the quantity of food the animat has managed Lo consume — after
choosing a whole series of moves. The problem then becomes one of deciding which
moves were good and which were bad. Because of the nature of the reward signal,
this kind of learning problem is sometimes referred (o as learning with a critic
(Widrow, Gupta, ef al. 1973).

The genetic algorithm offers a method for training standard neural networks
which does not rely on a continuous reward signal. As such, the GA is well suited (o
adapting neural networks for conirol tasks where temporal credit assignment

problems preclude the use of normal supervised learning algorithms.
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6.2.1 Pole balancing

The pole balancing problem! is probably the most well known benchmark in the field
of reactive control, and offers a classic example of a learning task which involves a
temporal credit assignment problem. The object is to learn to balance a rigid pole
which is attached, with a hinged joint at one end, to a wheeled cart, as shown in
figure 6.1. The cart is free to move horizontally along a track of fixed length and the
pole is free to rotate about the hinge in the vertical plane. The controller must balance
the pole by applying a series of impulses (o the cart at discreie time intervals. The
magnitude of every impulse is the same; the only choice made by the controller at each
time step is whether to apply the impulse to the left- or to the right-hand side of (he

cart. This method is referred to as ‘bang-bang’ control, for obvious reasans.

X
I —
]
L] ')'(ﬁ
———-—-~——-—b—'

Figure 6.1: The cart and pole system and the four state variables: X, %,0,0.
The four state variables shown in figure 6.1 are:

x: the position of the cart relative to the centre of the track,
x: the velocity of the cart,
8 the angle of the pole with the vertical, and

f: the angular velocity of the pole.

Ateach time step the controller receives the state vector (x, 4,0, 0) as input and
produces a single binary output specifying in which direction the impulse is 1o be
applied. The controller initially knows nothing of the system dynamics, and daes nof
receive any kind of training signal after each time step. The only evaluative feedback

LAlso referred to as the inverred pendulum problem.
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which the controller receives from the environment is a single failure signal generated
if the cart hits the end of its track or if the pole falls. Under these conditions, the
controller must learn to avoid failure for as long as possible.

The pole balancing problem is a popular benchmark because it represents one
of the simplest examples of an inherently unstable system, and because it is simple
and computationally inexpensive to simulate. Although the conirol problem itself is
not complex — a simple linear control law (see, e.g. Cheok and Loh 19875 is
sufficient to balance the pole indefinitely if the pole angle is initially small — inferring
the control rule from the limited failure signal provided by the environment is a

difficult learning problem.

In 1983, Barto, Sutton, er al. developed a neural network based coniroller which was
able to solve the temporal credit assignment problem and learn the pole balancing
task. Their controller is 4 development of the BOXES system of Michie and
Chambers (1968) and consists of a decoder and iwo specialised adaptive uniis, the
Associative Search Element (ASE) and the Adaptive Critic Element (ACEY., The
decoder partitions the state space inio 162 disjoint ‘boxes’, and the ASE genersies the
control oulput at each time siep according (0 which box the system state falls into.
The ACE’s task is to generate a reward signal to train the ASE after each time step
based on a prediction of the time remaining until failure. The ACE’s predictive
mechanism is adapted whenever an actual failure occurs. The ASE/ACE controller is
an example of a temporal difference (TD) reinforcement learning method, the theory
of which is developed in detail in (Sutton 1987). Barto, Sutton, ef al. (1983) report a
computer simulation in which the ASE/ACE controller was able to balance the pole
for more than 25 minutes of simulated time after around 100 learning trials, where
each (rial started from an initial state of (0,0,0,0).

Jervis and Fallside (1992) have applied an ASE/ACE controller (o learning to
balance a pole on a real rig, in real time. Although this introduces various
complications which are not present in simulation, their best controller was able (o
learn 1o balance the pole for more than 35 minutes afier 255 learning trials. This is an
encouraging result which shows that success on this task in simulation can translate (o
success in the real world. More recently, Moody and Tresp (1994) have described 4
simplified ASE/ACE controller which does away with the decoder and is able to leam
the simulated pole balancing task used by Bario e al. after a median of anly 2
learning trials, a speedup factor of over 7000 in simulated time.
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Evolutionary approaches to pole balancing

Several efforts have been made to apply evolutionary techniques to designing
controllers for the pole balancing problem. Twardowski (1993) compares various
reinforcement algorithms for learning classifier systems (LCSs) applied to the pole
balancing task. LCSs are rule-based production systems in which a GA is used to
generate new rules by recombining or mutating existing rules — see (Goldberg 1989)
for a general description of LCSs. Whitley, Dominic, er al. (1991) have successfully
applied a real-valued GA to optimising MLP weights for the pole balancing problem,
and Saravanan and Fogel (1994) describe an application of evolutionary programming
(EP) to training MLPs for more complicated systems involving balancing iwo poles
on the same cart.

Odetayo and McGregor (1989) have applied a standard binary GA 1o
optimising a simple controller in which the state space is divided into 54 pre-defined
‘boxes’. Associated with each box is a binary value indicaling whether ihe force
should be applied to the left or o the right whenever the system siate enters that hox.
Each chromosome, therefore, has 54 bits and represents 4 complete coniral palicy,
Finally, some researchers have applied evolutionary techniques io solving simplified

versions of the pole balancing problem in which ihe environme
informative than the basic success/failure signal. An example is the work of Karr
(1991) in which a GA is used to design a fuzzy logic controller for pole balancing?.
In this work, the objective is taken to be achieving the state (0,0,0,0) rather than
simply avoiding failure, and the fitness function is a weighted sum of the magnitudes

of x and 6 over 30 seconds of simulated time.

Pole balancing with the GA-bumptree

The similarities between the bumptree and some of the controllers which have already

been discussed should already be clear: the bumptree partitions the state space inio a

number of disjoint boxes (one for each leaf node), and within each box is a linear
controller responsible for balancing the pole whenever the system stale enters that

box. For the GA-bumptree, both the partitioning of the space and the parameiers of

the focal models are under genetic conirol, and adapt to ihe problem at hand.

The following sections describe three experiments in which (he GA-bumpiree

was applied to the pole balancing problem. Following Barlo, Sutton, er al. (1983},
the cart and pole system was simulated using the following non-linear differential

equations:

el

“For a description of fuzzy set theory see
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where
g = 9.8 ms2, the acceleration due (o gravity,

me = 1.0 kg, the mass of the cart,

m = 0.1 kg, the mass of the pole,

[ = 0.5m, half the pole lengih,

He = 0.0005, the coefficient of friction of the cart on the track,
i = 0.000002, the coefficient of friction at the hinge, and

F = £10.0 N, the force applied by the controller io the cari’s cenire of mass,

The sysiem state was updated using Euler’s method with a step size of 0.02s

.

and the controller was triggered at every time siep, giving a controller frequency of
50Hz.

The bumptree controller has four inputs, corresponding to the four state
variables, and two outputs, one corresponding to a conirol force of +10N and the
other to -10N. At each time step, the unit with the highest activation determines the
force applied to the cart. No attempt was made to optimise the parameters for the GA-
bumptree; the parameters adopted in chapter 3 were retained for all the experiments
described in this chapter. To recap, the GA-bumptree’s control parameters were: 30
nodes in the bumptree, a population size of 400 mapped to a4 20x20 grid, a walk

length of 5 units, and mutation rate and generation-gap set to 10%.

Experiment 1

In the first experiment, the controller’s task was to balance the pole from an initial
state of (0,0,0,0), i.e. starting with the pole vertical, the cart centred on the track, and
cart and pole at rest. Failure occurred if the cart position lefi the interval [-2.4m,
2.4m] or if the pole angle left the interval [-12°, 12°]. These conditians follow ihe
experimental approach of Barto, Sutton, ef al. (1983) and are typical of many more
recent pole balancing studies (e.g. Anderson 1989; lervis and Fallside 1992;
Twardowski 1993).



Each fitness evaluation was based on a single trial in which the bumptree
controller attempted to balance the pole for up to 15000 time steps, equivalent to 5
minutes of simulated time. Fitness was simply the number of time steps before
failure occurred or the trial was terminated.

Balancing the pole from an initial state of (0,0,0,0) is a trivial linear contral
problem, and this fact was reflected in the results. The GA inevitably found a
bumptree which could balance the pole for 5 minutes in only a couple of generations,
and solutions frequently existed in the initial (random) population. Figure 6.2 shows
the performance of a typical bumptree controller found by the GA during the first 10
seconds of simulated time. Within the [lirst second (50 time steps) the coniroller
stabilises the system with the cart less than 2 cm from the cenire of the track and the

pole oscillating within 17 (=0.02 radians) of the vertical.
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Figure 6.2: An evolved bumptree controller successfully balances the pole from the
initial state (0,0,0,0). (a) shows the cart position in metres relative to the centre of the
track, and (b) shows the pole angle in radians relative (o the vertical. Only the first 10
seconds (500 time steps) of simulated time are shown, since the system remained
stable thereafter.

Experiment 2

The second experiment was intended to test whether the GA could find controliers
which could recover if the pole was initially set at a small angle from the vertical. In
this experiment each fitness evaluation consisted of two trials in which the initial staie
of the system was (0,0,0.09,0) for one and (0,0,-0.09,0) in the other. These are the
two states which correspond to starting the pole at an angle of approximately 5° (.09
radians) either side of the vertical, with the cart centred and the cart and pole al rest a8
before. Fitness was the average of the number of timestieps before failure for the (wo
trials.

As in experiment 1, this problem proved to be simple for the GA-bumpiree,

with solutions always being discovered in fewer than 5 generaiions. Figure 6.3
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shows the first 10 seconds of simulated time for a typical bumptree controller found
by the GA. The controller takes around 2 seconds (100 time steps) to recover the
pole from an initial angle of 5° by moving the cart quickly to the right, and the system
stabilises with the cart around 25cm from its initial starting point and the pole

oscillating slightly about the vertical.
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Figure 6.3: An evolved bumptree controller which can recover the
|

state (0,0,0.09,0). For comparison wilh figure 6.2, note the ¢
vertical axis in (a).

Experiment 3

In the first two experiments the controllers were able to keep the pole angle small. If
the pole angle is outside the interval [-12°, 127] the control problem becomes non-
linear, and thus more difficult (Whitley, Dominic, ef al. 1991). The third experiment
was intended to investigate whether the GA could find controllers which could
recover if the pole was initially set to an angle outside the interval [-12°, 12°]. Foi
this experiment the failure condition was relaxed so that failure only occurred if the
cart left the track, as before, or if the pole angle exceeded 57° (=1 radian).

In this experiment each fitness evaluation consisted of three trials, in which the
magnitude of the initial pole angles were 0.1 radians (=67), 0.2 radians (=127) ¢
0.3 radians (=17") respectively. The choice of sign, i.e. whether the poie Wwas

initially angled to the left or to the right, was made randomly for each trial. The athe

state variables were initialised to zero in all cases. As in experiment 2, fitness was the
average tlime before failure for the three trials.

The GA took an average (over 10 runs) of 36 generations (o discover 4
bumptree capable of balancing the pole for the maximum 5 minuies of simulated iime
from all three starting positions. Figure 6.4 shows the performance of an evolved
bumptree controller when the pole is initialised at the maximum angle of (0.3 radians.

.....

Unlike in the previous lwo experiments, the controller does not damp the oscillation

of the system so thai the cart and pole setile 1o being almost stationary.
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controller maintains the system in a relatively large-scale, but stable, oscillation. The
cart and pole oscillate with a period of approximately 150 time steps (3 seconds), the
cart moving back and forth in the interval [0.3m, [.5m] and the pole angle varying
over the approximate interval [-12°, 17°], i.e. outside the linear control region. As
well as the first 10 seconds of simulated time, figure 6.4 shows the resulis for the
entire run (5 minutes, or 15000 time steps), to illustrate that the system is stable.
Note that keeping the pole oscillating like this is a perfectly valid solution, no less so
than any other. The only criterion on which the controller is judged is its ability to

avoid the failure condition, so there is no reason to prefer small oscillations to large

ones, for example, so long as the systeni remains within the allowed bounds.
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Figure 6.4: An evolved bumptree coniroller which can ,
angle of 0.3 radians. (a) and (b) show the first 10 seconds of simulated time, wh
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6.2.2 Car parking

Another example of a control task in which a temporal credit assignment problem
makes learning difficult is the car parking problem described by Schoenauer, Ronald,
er al. (1993), a simplified variation of Nguyen and Widrow’s (1990) ‘truck backer-
upper’ problem (Schoenauer and Ronald 1994). In the car parking problem, a
controller must learn to manoeuvre a car from a given starting point in an empty car

park into a specified parking space.

(¢

Following Schoenauer, Ronald, er al. (1993), the car park is defined as the
square [-100, 100] x [-100, 100] such that the origin is at the centre of the car park.
The state of the system is completely defined by the position and orientation of the
car, given by the tuple (x,y, 6), where (x,y) are the co-ordinates of the centre of the
front axle and 6 is the angle of the car measured anti-clockwise relative (o the x axis.

The geometry of the car and the three state variables are shown in figure 6.5.

l

—— P I——
(0,0) 1
l

Figure 6.5: The geometry of the car, and the state variables x, y and 0. The inter-axle
distance L is used in the simulation, described later.

From its initial starting point, the car moves forwards at a constant speed.
each instant, the controller sees the state vector (x,y,6) as input and must steer the car
by deciding the angle ¢ of the front wheels relative to the long axis of the car. The
value of ¢ may be any angle in the interval [-0.7 radians, 0.7 radians] (=407}, The
object is to park the car in as short a time as possible. In this case, parking is a maller
of positioning the car as close as possible o the origin (6,0), in such a way thai the
car is aligned closely with the x axis (8=0) and facing io the right (in the direction of
increasing xj.

Following Schoenauer, Ronald, er al. (1993), the car moves forward in

discreie steps of size =3 units, and the controller prodices a new ouipul angle # ai
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each step. The system dynamics may be approximated by the following simple
difference equations for the three state variables x, y and 6:

xX'=x+ucos(¢p+80), y =y+usin(¢g+0), (6.3)
8 =0+ arcsin[i@f-?} (6.4)

where L is the distance between the front and rear axles (figure 6.5).

Experiments

For the GA-bumptree, each fitness evaluation consisted of a single attempt to park the
car from an initial position? of (20,10,-2). The bumpiree controlier was allowed (o
drive the car for a maximum of 500 steps, and at each step the distance d from the

goal state (0,0,0) was computed:
d* =" +y +min(6°,(8-2m)",(0+2m)") (6.3)

where the expression min(8°,(8-27)°,(0+27)") was included, following
Schoenauer er al., to allow one complete rotation either way. The car was considered
(o have been successfully parked if any step resulted in ¢2 becoming less than 1.0, in
which case the trial was stopped. At the end of each trial, the fitness /' was calculated

ds:

o
e 6.6
J d”n (6.6)

where n is the number of steps during the trial, 500 if the bumpiree failed to park the
car with sufficient accuracy, fewer if it succeeded. This fitness function rewards
controllers both for accuracy and for efficiency in parking the car. Note that this is
still “learning with a critic’, since the only reward signal is a single qualitative
evaluation of an entire trial. The GA knows nothing of the system dynamics or the

quality of individual control outputs.

SThese are the initial conditions used by Schoenauer, Ronald, e al. {1893,
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The GA was run for 100 generations, which represents roughly the same
number of trials as the GA used by Schoenauer ef al. All other parameters for the
GA-bumpiree remained the same as for the pole balancing and classification
experiments described earlier. Figure 6.6 shows the parking strategies used by some

of the final controllers found by the GA. Out of ten runs, there were two in which the

GA failed to find controllers which could park the car to the required degree of
accuracy. The remaining runs discovered solutions of varying quality, the best of

which are comparable to the best solutions reported by Schoenauer ef al. Note that

the coarse step size used (u=3) limits the parking accuracy which it is possible io
achieve.

6.2.3 Summary

The pole balancing and car parking tasks are examples of control problems where

learning is difficuli because of limiied evaluative feedback from ihe environment. The

experimental results given in the previous two sections demonstrate the feasibility of

applying the GA-bumptree to the design of coniroliers for these kinds of probiems.

The fact that these problems could be solved with only simple fitness funciions and

no effort to tune the GA parameters is encouri

11
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6.3 Multi-valued mappings

In addition to problems where there is a delayed reward signal such as pole balancing
or car parking, there are other kinds of learning task which are particularly
problematic for normal supervised learning algorithms. One example is the problem
of learning multi-valued mappings. There are many practical problems in control,
robotics and data analysis where there may be more than one possible correct output
for each input vector. A common example is the problem of learning the inverse
kinematics of a robot arm, that is, the control signals which must be applied to the
joint motors in order to move the end effector o a given point in the arnt’s
workspace. The mapping between the co-ordinates of the end effector and the angles
of the joints may be multi-valued, that is, there may be more than one combination of

A TR

joint angles which results in the same co-ordinates for the end effector. An example

of this situation is shown in figure 6.7.



Elbow down

: & |

Figure 6.7: The inverse kinematics mapping of a simple two-joint robot arm is multi-
valued because there may be two possible ways of reaching the same point. The two
alternative configurations shown are referred to as 'elbow up' and 'elbow down'
solutions, for obvious reasons.

Neural network models are generally deterministic, so that the output of a
trained network is a function of its inputs: a unique output vector is assigned to every
input vector. If the mapping to be learned is multi-valued then the training set will
contain examples of the same input vector associated with different outputs. Clearly
the network cannot learn such conflicting information. By minimising the mean
squared error (MSE) over the whole training set, most supervised learning algorithins
learn to map each input vector to the average of the target outputs associated with it
(Rohwer, Wynne-Jones ef al. 1994). This approach is based on the assumption that
the generator of the training data is inherently uni-modal (i.e. deterministic), and that
any contradictions in the data are the result of noise. 1If this is the case, then the
standard error minimisation method yields a model which may be considered optimal
(Bishop 1994). If the generator of the training data really is multi-modal, however,
learning an average output for each input vector is not necessarily appropriate, since
the average of several possible outputs for a given input may not itself be a possible
output for that input. Figure 6.8 illustrates this point for the simple robot arm
considered above. In this case, averaging the joint angles associated with the two
possible arm configurations results in the arm being positioned straight out, with the

end effector some distance from the target location.
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There are two basic approaches to the problem of learning multi-valued
mappings. The most general is to abandon functional models such as the MLP, and
attempt to model the data generator completely with a multi-modal model. This is the
approach taken by Ghahramani (1993), who describes a mixture density model for
approximating multi-valued mappings. To model the multi-valued vector mapping
m:X — y, Ghahramani uses the EM algorithm to compute the maximum likelihood
model of the density of the training data in joint input/output space, P(x,y). For a
given input X, this estimate of the joint density can then be used to estimate the
complete conditional output density P(y|x). If necessary, the conditional density can
be sampled in one of several ways to give a single output value y, for example the
single most likely output for the given input (Ghahramani 1993).

Bishop (1994) takes a similar approach, introducing the Mixture Density
Network (MDN), a hybrid model for multi-valued mappings. The MDN consists of
an MLP coupled to a Gaussian mixture model. For a given input x the mixture model
represents the conditional probability density of the outputs, P(y[X), Instead of
trying to learn the multi-valued mapping directly, the MLP maps each input vector to 4
set of parameters for the mixture model, i.e. the mixing coefficients and the means
and variances of the Gaussian kernels. Bishop derives a differentiable error function,
based on maximising the likelihood of the mixture model, which can be
backpropagated through the MLP to train the model. For the MDN, training the MLP
fulfils the role played by the EM algorithm in Ghahramani’s model.

The alternative approach to learning multi-valued mappings 1s (0 use a
functional model such as the MLP directly, and to try to learn just a single mode of
the data. One possibility is to learn a function mapping each input vector to the single
most likely output for that input. Although this approach discards a good deal of
information about the statistical properties of the generator, it is often sufficient for
practical applications. For the robot arm, for example, what is required is to position
the end effector at the desired location. The fact that there are many possible solutions
is not necessarily of practical interest, so long as the controller always produces a
single combination of joint angles which does the job?,

Rohwer and van der Rest (1994) take this approach and introduce a new error
measure for feedforward networks, based on description length. Their method is
based on the observation that, if the data is multi-modal, it is better 1o learn a good fit

to some training points than a mediocre fit to all the points. Unlike MSE, the Naive

4This is only strictly true if the only goal is accuraie positioning of the end eifecior. In real
applications it is also generally desirable (o minimise the amount of movement required. In this
case, the best solution for reaching a certain point will not be siatic, bui will depend on the current

osition of the robot arm.
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Description Lengrth (NDL) error measure is minimised by maximising the number of
training data points which the network models to within a pre-determined distance £
of the target value. For multi-modal training data, choosing an appropriate value for &
causes the network to converge on the single most likely mode of the data, effectively
ignoring data points generated by other modes (Rohwer and van der Rest 1994). If
the data is noisy as well as multi-modal, the choice of € is critical. Ideally, the
network should average out small variations due to noise, but ignore larger variations
which are due to multi-modality. If € is too small then variations due to noise will be
treated as different modes, and the network will model the noise (overfitting), and if €
is too large, the network may fail to separate different modes, averaging them instead.

It 18 trivial to incorporate an error measure such as this into training the GA-
bumptree, since there are no consiraints on the form or complexity of the fitness
function. In the following sections, the GA-bumptree is applied to the two mulii-
valued mapping problems described in (Bishop 1994).

6.3.1 A 1-D test problem

The first problem is a simple mapping between a single inpui and a single output.

The mapping is defined by:
y=x+0.38in(27x) + & (6.7)

where 6 is a random variable uniformly distributed in the interval (-0.1,0.1). In the
absence of noise, the forward mapping m,:x = y is single-valued {mono-modal).
The corresponding inverse mapping m,:y — x is, however, multi-valued (multi-
modal) — there are many values of y which map to more than one possible x. The
difference is clear from figure 6.9, which shows training data sets for both the
forward and inverse mappings. Each data set consists of 1000 points generaied by
sampling (6.7) at equal intervals of x in the range (0.0,1.0).

Figure 6.10 shows examples of bumptree models found by the GA for the two
mappings, using the same inverse-MSE fitness measure that was used for the
classification problems described in chapier 3. In both cases, selecting bumpirees
with the lowest MSE has resulted in models which aitempt to {it the conditional mean
of the target data. In the case of the forward mapping, the resulting madel is 4

reasonable piecewise linear approximation of the generator of the data (alihiough far

from perfect, as will be discussed later). For the inverse mapping, however, leaming

the mean of the targets results in a very poor madel of the region in which the daia is

multi-valued. The bumptree model includes many poinis which lie compleiely auiside
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when training an MLP on these data sets using the standard least-squares error
measure (see Bishop 1994).
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Figure 6.9: Two versions of the simple test function. Each figure shows training
data for the mapping from the variable shown on the horizontal axis io thal on the
veriical axis. The forward mapping from x o y is well defined (a) bul the inverse
mapping from y (o x is multi-valued (b).
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Figure 6.10: Examples of GA-bumpiree approximations of the two test functions. In
each figure the bumptree ouiput appears as a number of solid line segments, clearly
showing the piecewise linear nature of the bumptree model. For the forward mapping
(a) the bumptree is using six local experts, and produces a reasonable approximation
of the generator of the data. For the inverse mapping (b), four experis are used, and
the approximation is poor. In the region where the mapping is multi-valued,
minimising MSE forces the neiwork to try to fit the average of the targei values.

With a simple modification of the fitness function, the GA can be made (o
search for bumptrees which model some of the training data very well, rather than
modelling all of it fairly well. The fitness of a given bumpiree X may be simply
defined as the number of training poinis which the bumpiree maps (o within a pre-
determined distance £ of their target values. For the 1-D example:



[1 ]y,-7]<e
= 10 otherwise

,
F(X)=> Ep), E(p)= (6.8)

where yp is the network’s output and 7 is the target for each example p out of a total
training set of P patterns.

Initial experiments with this simple fitness function used a value of £=0.1, a
threshold distance sufticiently large to accommodate the variations due o noise in the
test problem, but small enough to separate the different modes of the data. The
results of these experiments were encouraging, but highlighted an immediale problem:
since all points which are within 0.1 of their target outputs are rewarded equally, there
1s no selection pressure 1o fine-tune the model. The bumpirees found by the GA were
effective at selecting a single mode of the data, but did not average out the noise
within that mode. This problem can easily be overcome by adding addiiional terms io
the fitness function. In a second experiment, fiiness was delined as the sum of the

number of points correctly classified o within 4 series of & decreasing thresholds

(

£]...E, EIVIRE:

P i« - .
e TV, s N . o oy, — 1, <&
JXy=3 Epy+ & (prt+E(p), é,.-(p):JF l"_ ’,‘ (6r.4)
p=i [U otherwise

Figure 6.11 shows a typical bumptree model found by the GA using the fitness
function given in equation (6.9), with k=3, £;=0.1, £,=0.05 and £3=0.02.
Comparing the model with that in figure 6.10(b), the improvement is clear. Instead
of attempting to fit the average of the target data in the region where the mapping is

multi-modal, the bumptree is now modelling a single mode of the data well.

<

Figure 6.11: A typical bumpiree model found using an improved litness funciion.
The model consists of three experts, and represents a good functional approximation
to a single mode of the data.
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6.3.2 Robot arm inverse kinematics

L i !

Figure 6.12: A simple two-joint robol arm. The position of the end effector (x,v) is
uniquely determined by the joint angles @ and 5. The inverse mapping, fiom
(x1,X0) 10 ({91,07), is mulii-valued.

The second test problem is the problem of learning the inverse kinematics mapping
arm shown in figure 6.12, the position of the end effecior is deiermined by the
forward kinemalic equations:

¥y = Licos(9) — Lycos(d, + ) {6,100
x, = Ly sin(¢,) — L, sin(¢, + ¢,) (6.11)

Using the same approach as in the previous section, the GA-bumptree was
applied to modelling the inverse kinematics of the robot arm. The particular robot
configuration studied was that used by Bishop (1994), for which L,=0.8, L,=0.2
and the joint angles ¢, and ¢, are restricted to the ranges (0.3,1.2) and (nt/2,37/2)
radians respectively. Training and test data sets each consisted of 1000 randomly
generated pairs of joint angles and their corresponding end effector co-ordinates. The
task was to model the two-input, two-output inverse mapping m,:(x;, x,) = (¢, ¢,).
Because many points can be reached equally well with the arm either in the ‘elbow
up’ or ‘elbow down’ configurations, this mapping is multi-valued for a large part of

the input space, as shown in figure 6.13.
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Figure 6.13: The total workspace of the robot arm, where the base of th arim is al
(0,0). Points in region A can unly be reached wiih the arm in the ° A hmfn
configuration, while those in region C can only be reached in the ’
conflguration. Points in region B can be reached with the arm in either cail
so the inverse kinematic mapping is double-valued in this region (4
15945,

In separate experiments, GAs using two different fitness functions were
applied to finding bumptree models for the robot arm inverse kinematics mapping. In
the first experiment the simple inverse-MSE fitness function was used, while the
second used the function given in (6.9). Figure 6.14 shows typical positioning errors

produced by final bumptree controllers from the two experiments.
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Figure 6.14: Positioning errors for bumpiree cantrallers evolved using (a) inverse
MSE and (b) sum of thresholds (6.9) fitness measures. Each line m;nmmis ihe
posit mnmg error for one example in the test set, and cannects iwo pum s ihe larget
point input to the controller, and the actual end effector position produced by using
the joint angles output by the controller.
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The results shown in figure 6.14 are poor throughout the workspace, even in
the regions where the inverse kinematics mapping is single-valued. The fact that the
sum of thresholds fitness measure produces a slight improvement in RMS positioning
error over the MSE fitness measure offers little consolation — in practical terms,
neither GA has found a bumptree capable of modelling the desired mapping. Table
6.1 compares the RMS positioning errors for the bumptree controllers found by the
GA with similar results for a 10 hidden unit MLP trained using siandard least
squares, Bishop’s (1994) Mixture Density Network and a 100 hidden unit MLP

irained using Rohwer and van der Rest’s (1994) NDL algorithm.

Model RMS positioning error
MLP, least squares 0.0578
Mixture Density Network 0.0053
MLP, NDL 0.0064
GA-BT, MSE fiiness 0.0531
GA-BT, sum of thresholds 0.0519

Table 6.1: Comparison of RMS positioning errors [or various connectionisi
controllers and the two GA-bumptree (GA-BT) contrallers.

It is not obvious why the GA-bumptree should perform so poorly on this task.
One possibility is that the bumptree itself is unsuited to the problem, perhaps because
the robot arm inverse kinematics mapping is particularly difficult to model in a
piecewise lingar manner. In order to test this hypothesis, a three-layer bumptree was
hand-crafted so that the eight leaf-layer nodes partitioned the input space as shown in
figure 6.15(a). This bumptree partitions the region reachable by the robot (its
workspace, represented by the training data shown in the figure) into eight ‘boxes’ of
roughly equal size. Each of the eight experts in the hand-crafted tree was trained
using the original MSE minimisation algorithm described in section 3.2.2, and the
resultant test-set positioning errors are shown in figure 6.15(b).

Even though the training algorithm is minimising MSE, and so cannot possibly
capture the bi-modality of the mapping, the hand-crafted bumptree performs
significantly better than those found by either GA. In the regions where the mapping
is single-valued, the positional errors are small. Tn the mulii-valued region,
minimising MSE results in the controller attempting 1o average the ‘elbow up’ and
‘elbow down’ solutions, and the arm is always positioned straight out: for every
target point in this region, the end effector moves to a point on the arc which delimits

the perimeter of the workspace.



(a) (b)

Figure 6.15: Results for a hand-crafted three-layer bumptree controller. (a) shows | hL
paitmon of the input space, and (b) the positioning errors for the controller ai
minimising MSE for the eight linear experis.

These results are analogous o those obtained when training a standard MLF on
this data (see Bishop 1994). In fact, the hand-crafted bumpiree has an RMS
positioning error of 0.0393, considerably better than that obtained with the MLP (see
table 6.1). This suggests that there is nothing inherently difficuli about the rabat arm
problem as far as the bumpiree is cancerncd, and ihal the blame for the poor
performance lies with the GA: bumptree solulions exist, the GA simply isn’t linding
them.

The GA must rely on the local stochastic hill-climbing effect of mutation and
selection (o tune the expert weights, since there is no crossover at the weight level.
One possible cause of poor performance is that the fitness surface is not amenable to
such hill-climbing. For a local expert in the GA-bumptree, each output node’s
activation function is a linear ramp in the range (0,1), and is clipped if it exceeds this
range. Any value less than O is clipped to 0, while any value greater than 1 is clipped
to 1. The effect of this clipping is to create flat plains on the fitness landscape, as
illustrated in figure 6.16.

Figures 6.16 show 2-D slices through the fitness landscape associated with
local experts in the hand-crafted bumptree described above. Figure 6.16(a) shows the
fitness surface for one output node (the ¢, output) of a particular focal expert.
‘weight 17 and ‘weight 2° connect (o inpuis x; and xy respectively. The expert in
question is the one responsible for points in the top-leftmost of the eighi regions
shown in figure 6.15(a), a region in which the inverse kinemalics mapping is single-
valued. Figure 6.16(b) shows the equivalent surface for the other output node (the
¢ output) of the same expert. In each case there are large flal plains on the fitness
Iandscape representing weight combinations which cause the node’s activaiion io
saturate, i.e. to be clipped to either | or 0. Stochastic hill-climbing degeneraies (o 4



random walk on such flat plains, since there is no reward for moving towards the

optimum.
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Figure 6.16: Fitness surfaces for the two output nodes of one local expert in the hand-
crafted bumptree. (a) and (c¢) show results for the ¢; node with and without clipping
respectively. The same is true of (b) and (d) for the ¢ node. For a full explanation,
see text.

In order to test whether clipping in the node activation function was the cause
of the GA’s failure to find solutions, a number of experiments were performed in
which clipping was disabled during the GA run. Figure 6.16(c) and (d) show fitness
surfaces for the same expert nodes as in 6.16(a) and (b), but with clipping turned off.
There are no longer any flat plains at all — each surface is a single smooth hill leading
towards the optimum, particularly amenable to hill-climbing.

Unfortunately, disabling clipping during the GA run made no significant

difference to the final performance of the bumpirees found by ithe GA. The only

effect was to increase the overall error in the early stages of evolution, since remaving
clipping allows poorly chosen weights to produce greater errors. i yj(g;@raa ihai
fine-tuning the expert weights was not the problem. This was supported b
experiments in which various hill-climbing algorithms were applied (o ihe expert

weights of the best bumptrees found by the GA. No amaount of wning of the sxpert

145



weights of the GA-generated bumptrees produced any significant improvement in
performance, and no solution was found whose performance approached that of the
hand-crafted bumptree.

An examination of the decision boundaries of bumptrees produced by the GA
reveals that the reason for the poor performance is simply that the GA is always
becoming stuck in poor local optima. Figure 6.17 shows the way the inpul space is
partitioned for one of the better solutions found by the GA. A single region covers

more than 70% of the robot’s workspace, and a second region covers the remaining
area, all except for a tiny slice al the very boitom. Elfectively, the entire inverse
kinematics mapping is being approximated by just two linear models. The remaining
14 local experts in the leal layer are never used.

The problem appears to be a general one, stemming {rom the fact that the
population size of 400 is insignificant compared o the number of poinis in the 156-
dimensional search space. Of the initial random pf}[mlz.ll.l(m, the highesi performers
are always those bumpirees which happen (o use only one or iwo experts (o maodel the

whole data set. Put simply, this is becduse there are many more ways of randomly

generating poor sets of expert weights than there are of generating good ones. In ihe
initial random population, those bumpirees which divide the inpul space belween

several experts are inevitably poor performers, because the chance of their having
good sets of weights for all their experts is infinitesimal. Bumptrees which use only
one or two experts to model the whole data set are favoured because a single ‘lucky’
set of expert weights will give a useful reduction in error (compared (o other

randomly generated bumptrees) over a large part of the training set.

0.4

Figure 6.17: Partitioning of the input space by one of the heiter humpirees found by
the GA. The entire workspace is effectively divided into only itwo ‘hoxes’, which
explains the poor performance,




The robot arm problem reveals the limitations of the GA-bumptree approach.
Evolution is inherently greedy, and blindly follows the path of least resistance. The
situation is similar to that observed in the A-life experiments described in the previous
chapter, where animats always evolved the sub-optimal behaviour of Gnly ever
turning one way. In the early generations the whole population converges to the only
evolutionary path on which the GA can make headway. In the case of the robot arm,
this consists of bumptrees which use only one or two local experts. The remainder of
the search is just a case of fine-tuning bumptrees of the same basic design. There is
no way back: recombination can only operate on what exists in the population, and
mutations which introduice more local experts are inevitably lethal, since the weighis

of the new experts will not have been adapted at all.
6.3.3 Summary

Learning problems which involve multi-valued mappings dare common in many real-
world applications, and present particular difficulties for established neural network

training algorithms.  This is because most training algorithms (such as
backpropagation) are based on minimising MSE and learn the conditional mean of
conflicting target values, which may not 1tself be a valid target. The experiments
described above illustrate that the GA’s fitness function may easily be tailored to
produce networks which map the single most likely mode of multi-modal training
data, making the GA a feasible alternative training method for these kinds of

problems.

6.4 Conclusions

The experiments described in this chapter demonstraie how the GA-bumptree can be
applied to learning problems which have proved problematic for more established
neural network training algorithms. Two classes of learning problems were
investigated: problems of temporal credit assignment, typified by the pole balancing
and car parking tasks, and problems of learning mulii-valued mappings, namely a
simnple multi-modal [-D mapping and the inverse kinematics of a two-joint robotl arm.
The results in this chapter illustrate both the general feasibility of the approach
and the limitations of the present GA-bumptree model. The models found by the GA
for the 1-D mapping are somewhat sub—opi‘imal (i‘iﬁgurﬁ 6.36}, and the GA rﬁi‘iﬁ.bi}"
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This motivated fresh consideration of evolutionary optimisation and GA methodology
in general, and led to the final piece of work undertaken during this project, a re-
examination of the basic role of recombination in genetic search and the introduction
of a new, generalised recombination operator. This work is described in the

following chapter.
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Chapter 7

Linkage mapped crossover
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7.1 Introduction

The work described in this chapter was undertaken in the closing stages of the
research project. This work was originally motivated by concerns about whether the
subtree crossover described in chapter 3 is the most appropriate recombination
operator for the GA-bumptree, or whether a better operator could be designed.
Consideration of this issue raised fundamental questions about the design of
recombination operators for any GA application, and prompted a more general
examination of the role of crossover in GAs.

The following section defines genetic linkage, a central theme in this chapter,
and section 7.3 gives a detailed examination of the relationship between genetic
linkage and recombination in GAs. A new recombination operator, linkage mapped
crossover (LMX), is introduced 1in section 7.4 and shown to be a generalisation of
existing crossover operators. Section 7.5 proposes a method for extending this
operator to produce ALMX — a generalised adaptive recombination operator which is
able to infer genetic linkage relationships automatically during the course of a GA run.
In section 7.6 the ALMX operator is tested on two binary problems based on the
Royal Road functions of Mitchell, Forrest, er al. (1991), and the results are

discussed.

7.2 Genetic linkage

Before going any further it is necessary to clarify precisely what is meant by the term
genetic linkage within the context of this chapter. Genetic linkage exists when the
effect of one gene depends on the values (i.e. the particular alleles) of other genes, a
situation analogous to epistasis in biology. Any degree of linkage between two
genes 1s possible, from very strong linkage, where the slightest change in one gene
makes a profound difference to the effect of the other, to no linkage at all if the effect
of each gene is completely independent of the other. Genes which are strongly linked
form co-adaptive groups. Each group makes a contribution to fitness which 1s largely
independent of any genes outside the group. The fitness of the group is determined
by the interactions of all the genes within it — certain combinations of alleles may be
particular good, others particularly bad, but no single gene within a co-adaptive group
can be evaluated in isolation.

The principal claim on which the work 1n this chapter is based is that the correct
role of crossover is only to exchange complete co-adaptive groups, since these are the
only building blocks which may reasonably be treated independently. Some operator

is certainly needed to search for good combinations of alleles within each group, but
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crossover isn’tit. Swapping some alleles within a co-adaptive group from one string
to another is a meaningless operation, since the effect of those alleles within the

context of the new string is likely to be unrelated to their effect in the original string.

Mutation 1s a more appropriate operator for discovering particular combinations of

alleles which form good building blocks. Once they exist in the population,

crossover can perform its proper role of bringing the best building blocks together to

form a complete solution.

The degree of linkage between genes in a GA is a direct reflection of the
interdependencies which exist between the parameters to be optimised. As an
example, consider applying a GA to the problem of optimising a number of
parameters for a car design. There would be little or no linkage between the genes for
headlamp shape, tyre width and seat shape, for instance, because these parameters
seem to be independent — a comfortable seat is a comfortable seat, regardless of how
wide the tyres are. On the other hand, the gene for tyre width is likely to be strongly
linked to the genes for engine capacity and brake design — larger engines and/or better
brakes both benefit from the greater traction offered by wider tyres.

If every parameter to be optimised is completely independent, then no linkage
exists at all between the genes in the GA (unless more than one gene is used to code
each parameter). In this case there is no benefit in using a GA n the first place — it is
more appropriate to optimise the parameters one at a time. There is also no benefit in
using a GA 1f the opposite extreme 1s true, and every parameter depends strongly on
every other. In this case there are no independent building blocks which crossover
can exchange — in fact this kind of problem is liable to be intractable for any
optimisation algorithm except exhaustive search. The domain of the GA lies
somewhere in between, in the case where some small groups of strongly linked
parameters exist which crossover can assemble into larger, more weakly linked
groups, and ultimately into a complete solution. If strong linkage effects exist on a
larger scale than the size of the building blocks exchanged by crossover then the
problem may appear to be deceptive, with apparently good building blocks combining

to form poor solutions due to dependencies between them.

7.3 Genetic operators and linkage

Any crossover operator which tends to keep some groups of genes together while
splitting other groups up is making certain assumptions about genetic linkage. The
ability of the GA to find good solutions will depend Jargely on how justified these
linkage assumptions are for the particular problem being solved. At this point it is
useful to review a selection of existing genetic operators in order to make explicit the

assumptions that each one makes regarding genetic linkage. Section 7.3.1 begins by
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examining the most popular crossover operators, all of which are based on static
assumptions about the linkage between genes. Section 7.3.2 goes on to describe two
attempts to design adaptive operators, operators which aim to discover appropriate

linkage relationships as the population evolves.
7.3.1 Non-adaptive operators

Uniform crossover

By treating each gene as an independent entity, Syswerda’s (1989) uniform crossover
represents the baseline operator as far as linkage 1s concerned. This operator is based
on the assumption that no linkage at all exists between the different genes or, more
precisely, that no two genes are linked more than any other. Because this 1s not
generally the case (some degree of linkage exists in any problem worth applying a GA
to), uniform crossover is often considered to be overly disruptive. Parameterised
uniform crossover (Spears and De Jong 1991) allows the degree of disruption to be
tuned by limiting the proportion of genes exchanged during each recombination, a
parameter referred to a Py. This approach accepts that some genes are likely to be

linked, but makes no assumptions about which ones.

1-point crossover

Holland’s (1975) original I-point crossover operator introduces a significant
assumption about genetic linkage, the assumption that the closer genes are on the
chromosome, the more tightly linked together they are!. This assumption, generally
stated in terms of the building block hypothesis, is so familiar that it is easy to
overlook some of its more subtle implications.

One problem with this view of genes linked together as a linear sequence is that
there is no room in the picture for more than two genes to be equidistant, i.e. equally
linked. As far as parameter optimisation goes, this is a completely arbitrary restriction
— there is no reason to suppose that, in general, no more than two parameters will be
equally interdependent. Consider designing a GA for a multi-parameter optimisation
problem in which three of the parameters, A, B and C, are known to be highly
interdependent. One-point crossover simply cannot capture this three-way linkage.
The best that can be done is to code the parameters as three consecutive genes, but
this immediately implies that A and B are twice as strongly linked as A and C (since

crossover will tend to separate A and C twice as often as A and B).

I For the example of the car given earlier, this operator assumes that the genes for wheel size, engine
capacity and brake design are coded close to each other on the chromosome.
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Finally, I-point crossover treats genes near the ends of the chromosome
differently to those near the centre. For example, a gene near the centre of the
chromosome is adjacent (and so equally linked) to two other genes, while a gene at

the end is adjacent to only one.

Multi-point crossover

Multi-point crossover operators make the same basic assumptions, and impose the
same kinds of limits, as 1-point crossover. Linkage between two genes is assumed to
be inversely related to their separation on the chromosome, as before. One important
difference, however, is that some multi-point crossovers treat the chromosome as a
ring, with the last gene joined to the first. This removes the discrepancies introduced
by I-point crossover for genes near the end of the chromosome. However, care must
be taken when designing the GA to ensure that the assumption that strong linkage
exists between genes at opposite ends of the chromosome is justified.

As the number of crossover points is increased, the individual sections of
chromosome crossed over become shorter, which corresponds to assuming that
linkage decays more sharply with distance. In the limit, where a crossover point
exists between every pair of genes, this operator effectively crosses over every other

gene — a particularly unlikely linkage assumption.

Inserting introns

Levenick’s (1991) idea of inserting introns, sequences of non-coding genes, into the
chromosome 1s one way of incorporating additional linkage assumptions into the
standard GA. By inserting introns between groups of genes which are thought to be
interdependent, standard one- or multi-point crossover operators can be biased against
separating genes within these groups. This requires, of course, that those genes
which are linked are known in advance, and assumes the usual relationship between

separation and linkage within each group.

Random respectful recombination

Radcliffe (1991) argues that any recombination operator should respect, properly
assort and strictly transmit parental genes to form the child, and introduces the
random respectful recombination operator (R3) based on these principles?. These
principles are best illustrated with simple examples: respect, for instance, can be
stated at the principle that if both parents have webbed feet, their children must always

have webbed feet. Similarly, strict transmission states that if one parent has webbed

2Although R3 does not guarantee strict transmission (Radcliffe 1991).
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feet and the other hooved feet, their children must only ever have feet which are either
webbed or hooved (i.e. every gene in the child must have come from one or other
parent). Proper assortment states that if one parent has webbed feet and gills, and the
other hooved feet and lungs, then it must be possible to produce children with
webbed feet and lungs, or hooves and gills. What is important to note here is that
these are basic ground-rules for recombination, and do not introduce or rely on any
assumptions about genetic linkage. If it is known that some genes are co-adaptive,
appropriate linkage assumptions can be incorporated without violating these basic
principles. In the above example, an operator could state that if a child inherits
webbed feet from one parent, then it should be highly likely to inherit that parent’s
gills as well. R3 makes no such assumptions about linkage at all, and actually

reduces to uniform crossover for binary GAs (Radcliffe 1991).
7.3.2 Adaptive operators

Inversion

Holland (1975) was not unaware of the problems with the linkage assumptions on
which his original 1-point crossover was based. The solution he proposed was the
use of an additional genetic operator, inversion, which randomly changes the order
of genes on a chromosome, and thus the implied linkage between them. Allowing
genes to be re-ordered requires a change in the representation scheme, since it
becomes impossible to identify a gene’s function by its position on the chromosome.
Holland proposed an order-independent representation where each locus on the
chromosome is assigned an index which specifies which parameter it represents.

With this representation, each chromosome in the population may have its own
particular order for the genes. Each chromosome therefore carries its own
assumptions about which genes are linked (those which are close together) and which
are not. When two chromosomes mate, the child’s order is determined by the parent
which happened to be selected first. The other parent’s chromosome is temporarily
re-ordered to match3, and crossover occurs as usual.

The role of inversion Is to generate new guesses about the nature of the genetic
linkage for the GA to try out. The idea is that those orderings which most accurately
capture the linkages between genes will tend to survive, and those which don’t will
die off. In this way the GA is able to discover the linkage relationships between

genes, and adapt to preserve them?.

31t has 10 be, or else some genes will be duplicated and some omitted.

4At first sight this approach may seem paradoxical: if the order of a chromosome has no effect on its
fitness (which it cannot, by definition, or inversion would not work) then selection is blind to order,
in which case why should good orderings be expected to prosper and poor ones to die? The answer is
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Punctuated crossover

Schaffer’s (1987) punctuated crossover is a variation of multi-point crossover which
attempts to discover appropriate patterns of linkage during the course of the GA run.
Although punctuated crossover requires additional information to be coded on each
chromosome, it does not require an order-independent coding. Unlike standard
operators, punctuated crossover does not randomly distribute a fixed number of
crossover points along the chromosome. Instead, each member of the population has
appended to it a binary mask, the same length as the original chromosome,
representing a particular set of crossover points. When two parents mate, the first
action 1s to merge their masks in a logical OR operation to produce a combined set of
crossover points. Thereafter, a child is assembled by starting at one end of the
chromosome and taking genes from one parent until the first crossover point is
reached, then from the other until the next crossover point, and so on. The child also
inherits some crossover sites from each parent to form its own mask.

Because each chromosome carries its own crossover mask, i.e. its own set of
linkage assumptions, selection operates on the masks as well as the original
chromosomes. The masks are initialised randomly at the start of the run, and the idea
is that the GA searches for good sets of crossover points in parallel with its search for
good sets of genes. As with inversion, each time two parents mate, a new set of
linkage assumptions is tried. In punctuated crossover, however, these assumptions
are slightly different from the norm. For each consecutive pair of crossover points,
the implication is that all the genes in between are equally linked. In addition, the
usual assumption that genes which are at opposite ends of the chromosome are not
linked does not hold. As an example, an even number of crossover points implies
that the two genes at extreme ends of the chromosome are tightly linked, since if one
is copied into the child, so must be the other, whereas an odd number of crossover

points implies the opposite.
7.4 Linkage mapped crossover (LMX)

In the previous section it was shown how various commonly-used crossover
operators make different (often strikingly different) assumptions about genetic
linkage. Given that recombination is the GA’s trademark operator, and supposedly

the algorithm’s principal search mechanism, it is perhaps surprising how little

that, while the number of offspring produced by a chromosome will be unaffected by the order of its

genes, the fitness of the offspring will. If the order is poor, then crossover will split up co-adaptive

sets of genes and the offspring will be of low fitness. These offspring will soon die off, taking their
parents’ inappropriate linkage assumptions with them (o the grave.
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attention is paid to the issue of genetic linkage in most GA applications reported in the
literature. Adaptive operators such as inversion and punctuated crossover appear to
have been almost universally ignored by GA practitioners. The typical approach
seems to be to code the parameters to be optimised in an arbitrary order on the
chromosome, try one or more of the standard crossover operators in turn, and hope
for the best.

Linkage mapped crossover (LMX) is a generalised recombination operator in
which the degree of linkage assumed to exist between each gene and every other is
defined explicitly by a linkage map. For chromosomes of length n, the linkage map
1s a stochastic matrix of n rows by n columns. Each row represents the linkage
vector for a single gene, a probability distribution representing the degree to which
that gene is linked to each of the other genes on the chromosome.

When two chromosomes mate using the LMX operator, a fixed number of
genes are exchanged. This number, N, is a parameter of the operator which must be
chosen in advance, analogous to Py for parameterised uniform crossover. In LMX,
the genes to be crossed over, gg...,gn, are chosen according to the following

algorithm:

e A random gene on the chromosome is picked. This is the first crossover

site, go.

» The linkage vector associated with g 1s copied into a temporary vector v.
Each element of v represents the degree of linkage which exists between gg and one

of the other genes on the chromosome.

* The remaining genes, g .....gn, are sampled probabilistically according to
the probability distribution represented by v. Since the same gene cannot be picked
twice, each time a gene 1s chosen the appropriate element of v is set to zero and the

vector 1S re-normalised.

This process is illustrated in figure 7.1. 7.1(a) shows the first gene to be
picked, chosen randomly, and the probability distribution provided by that gene’s
linkage vector. In this example, g¢’s linkage is assumed to decay with distance on
either side of the gene. Although the gene’s linkage to itself should, in theory, be
maximal, this element of the probability distribution must be zero, since the same
gene cannot be picked twice (all leading diagonal elements of the linkage map are zero
for this reason). 7.1(b) and 7.1(c) show the effects of selecting the next two genes,

and 7.1(d) shows the final set of genes which are chosen to be crossed over if N=8.
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Figure 7.1: Selecting crossover sites for LMX. Figures (a) to (d) show progressive
stages in the selection process. Each figure shows the crossover sites which have
been chosen so far, and, above, the probability distribution according to which the
next crossover site 1s sampled.

Because each gene has its own linkage vector, any known or supposed
interdependencies between optimisation parameters can be incorporated into the LMX
operator, simply by crafting the appropriate linkage map. This generality naturally
extends to representing the linkage assumptions made by the standard genetic
operators. Figure 7.2 shows linkage vectors which are equivalent to three standard

crossover O]’)Cl"'d[Ol‘SS .
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Figure 7.2: Three possible linkage vectors for the same gene, representing the effect
of three standard crossover operators: (a) 1-point crossover, (b) 2-point crossover (in
which the chromosome is treated as a ring), and (c¢) uniform crossover.

5Actua}ly, certain implementation details would have to be changed for LMX to exactly emulate,
say, l-point crossover. An example is the fact that the number of genes exchanged in 1-point
crossover is not constant, but depends on the starting point chosen. In principle, however, the
generality of the linkage map approach should be clear.
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There are three main advantages of LMX. Firstly, LMX places no arbitrary
constraints on the kinds of linkage relationships which the GA can work with. This
avoids problems such as the difficulty of coding three equally-linked parameters when
using |- or multi-point crossover, discussed in the previous section. Secondly, LMX
drags the issue of genetic linkage firmly into the spotlight. Instead of thinking of
crossover in terms of cut and splice operations on ordered lists of parameters, a
viewpoint which leads to implicit and often subtle linkage assumptions, LMX
requires the GA designer to consider linkage explicitly from the outset. Since LMX
does not make any assumptions about linkage other than those which are represented
explicitly in the linkage map, the GA designer is completely responsible for building
In any a-priori knowledge about genetic linkage by hand-crafting the linkage map
accordingly. Finally, LMX provides a framework for a new adaptive crossover
operator, ALMX, in which linkage relationships, instead of being hand-coded, can be
inferred automatically as the GA runs. This operator is introduced in the following

section.
7.5 Adaptive linkage mapped crossover (ALMX)

In any non-trivial parametric optimisation problem it is impossible to exactly quantify
the dependencies which exist between parameters, since to do so would require
knowledge of the whole search space, i.e. it would require that the probtem had
already been solved. The best that can be done (and the approach typically adopted in
GA applications) is to make a number of reasonable assumptions about which sets of
parameters are likely to be interdependent and which are not, based on prior
knowledge about the nature of the problem, and construct a recombination operator
accordingly (or, more typically, chose the coding order accordingly and use standard
I-point crossover). This approach is dangerous for complex problems because
making the wrong assumptions is likely to be worse than making no assumptions at
all.

An ideal ‘black box’ optimiser should not rely on the user to hand-code any
such a priori information. Instead, the algorithm should be able to make its own
inferences about linkage based on feedback from the objective function. Holland’s
use of inversion and Schaffer’s punctuated crossover are two attempts to allow the
GA to do just this. ALMX i1s a third, and more general, approach.

ALMX makes no initial assumptions at all about genetic linkage. Each gene’s
linkage vector starts as a uniform probability distribution over every other gene, and
so ALMX initially behaves exactly like uniform crossover. Each time a crossover
occurs, the linkage map is adapted slightly as the algorithm tries to learn the correct

linkage relationships. Because ALMX starts with no assumptions at all, it represents
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a more general approach than either inversion or punctuated crossover, which both
make certain initial assumptions. Whatever the order of the chromosome when using
inversion, for example, there 1s always the assumption that a gene is twice as strongly
linked to the next gene as it is to the next-but-one, and so on. An example with
punctuated crossover is that all genes between two punctuation points are always

assumed to be equally linked.
7.5.1 Adapting the linkage map

How 1s it possible to adapt the linkage map on-line to learn appropriate linkage
relationships? Any learning process requires a reward signal to direct it, and, in the
case of learning genetic linkage, this reward signal must come from the fitness
function. This is because ‘correct linkage’ is a property of the particular optimisation
problem at hand, and the fitness function is the GA’s only interface to the problem.

The approach taken by Holland and Schaffer is a simple one: it is assumed that
crossovers which are based on good linkage assumptions preserve building blocks
and result in children of high fitness, and those which make poor linkage assumptions
disrupt building blocks, producing children of low fitness. Since the assumptions on
which each crossover is based are part of the chromosomes themselves in these
systems, natural selection 1s responsible for weeding out poor sets of assumptions,
allowing the GA to gradually discover appropriate linkage relationships.

One problem with Schaffer’s punctuated crossover is that it introduces
substantial amounts of noise into the reward mechanism. This is because each
crossover 1s based on a combination of the crossover masks (i.e. linkage
assumptions) from the two parents, so neither parent’s crossover mask is ever
evaluated independently. A parent which carries an excellent set of crossover points
can still be completely disrupted if it mates with a chromosome with a poor set.
Worse still, the resulting offspring do not inherit the crossover mask which was used
to generate them — instead of the combined mask used in the crossover, each
offspring inherits a new mask made of some crossover points from each parent. This
means that a parent’s good linkage mask won’t necessarily be passed on, even though
that parent may produce fit offspring because of it. [t also means that relying on
selection to cull poor offspring is not equivalent to removing the poor crossover
masks which generated them from the population.

A more general problem, common to both inversion and punctuated crossover,
1s the whole notion that the production of good offspring is an indication that
crossover has done a good job of exchanging building blocks. This idea that the
fitness of an offspring directly reflects the quality of the linkage assumptions made

during its conception is not necessarily correct. What actually happens when
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crossover swaps a beneficial building block from one chromosome to another is that
the fitness of the recipient increases, while the fitness of the donor decreases
correspondingly. In fact, any case where crossover generates two children which are
both fitter than their parents is an indication that crossover has ‘accidentally’ happened
to assemble some new building blocks in the children which were not present in the
parents. This can only happen if crossover has failed to respect building block
boundaries, and has exchanged some genes within a building block. In this case, fit
offspring have resulted from poor linkage assumptions; crossing the same set of
genes again would always tend to disrupt the same building blocks.

Learning in ALMX 1s based on the following principle: the only case in which
it is evident that one or more complete building blocks have been exchanged by
crossover is when an increase in fitness in one chromosome i1s matched by a
corresponding decrease in fitness in the other. To date, experiments with ALMX
have used a particularly simple rule for adapting the linkage map, and the results of
these experiments are described in the following sections. The complete ALMX

algorithm for binary coded GAs is as follows:

 Initialise the linkage map. This is done once, before the first generation of
the GA. Leading diagonal elements of the linkage map are set to zero, and every
gene’s linkage vector is set to a uniform probability distribution over the remaining
genes. Formally, for chromosomes of length n, initialise each element of the linkage

map:

0 ifi=j

[o=4 1 otherwise (=Ll j=len (7.1)

n-—1

ALMX is, therefore, initially equivalent to uniform crossover and ‘knows’

nothing about linkage.

» Each time a crossover occurs between two parents, P and P, choose the
N crossover sites, go.....gN, as described in section 7.3. The first point is chosen
randomly, and the remaining points are chosen probabilistically according to the first
point’s linkage vector. Swap the chosen genes between the parents to generate two

children, C; and C,. Formally:

C’:JIDZJ if‘je{g(),‘u,gN} j=1l-n (7.2)
'J IP, otherwise '
1j h
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and similarly for Cs.

e Evaluate f(C)) and f(C,), the fitness of the children, and update the
linkage map accordingly. The simple learning rule used in the experiments so far can
be summed up as follows: if one child shows an improvement in fitness compared to
its closest parent, and the other 1s worse, it 1s assumed that the genes which were
exchanged must have constituted a complete building block, and the linkage between
the genes gg.....gn 18 reinforced. In all other cases, the linkage between the crossover
sites 1s weakened. For each pair of crossover sites, the corresponding element of the

linkage map has added to it a small quantity:

Aly=6mply Vi je{gy s 8n) (7.3)
where
(G- ()
s=1" "))’ (7.4)

~1  otherwise

I it P, # Py or P # Py,
p= (7.5)

0 otherwise

71 1s the learning rate, a constant which has been set to 0.4 in all the experiments so
far (a value chosen after some preliminary experiments). & represents the learning
rule, and p 1s a term which ensures that the linkage between two genes is not updated
if both have identical alleles in both parents. This 1s because swapping genes for
which both parents have identical alleles has no effect, and so the crossover reveals

nothing about the linkage between these genes.
* Re-normalise every row of the linkage map which has been changed.

¢ Choose one of the two children to keep and discard the other. In the

experiments so far, this choice has been made randomly.
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7.6 Experiments

The performance of ALMX was compared to that of two other crossover operators on

two variants of a binary test function.
7.6.1 The Royal Road function R1

Royal Road functions are a class of artificial binary test problems, introduced by
Mitchell er al. (Mitchell, Forrest, er al. 1991; Forrest and Mitchell 1993; Mitchell,
Holland, ef al. 1994) as a tool for studying GAs. Royal Road functions are so called
because they are designed to lay out a simple path for a GA to follow towards a single
global optimum. A simple 64-bit Royal Road function, R1, consists of the set of

explicitly defined schemata S={sg,...,s7} shown in figure 7.3.

So=11 L1 LD Dtttk s S HHHHHEEEHHHHERHHRHHEEHRE ;. cp=8
sy=f#trf#HHH# L LLL LI L # 4 # # HHEHHEHHEHHHHHHHRHHHPH R H I HHHHHEHHEH R, =8
So=H# T L LI DL L L R R, =8
Sy=H#EH R DL DD DD D L I RO, ¢
So=HEH R L DD D D L L L
So=H#R G R LD DL L L D L
Sg=H#H R R LD D L L DD D
So=HHHHHEHEHEHBEHEHEHB R R L1111

i

H
w W @ W @

2
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Q

QO 0 0
[
i

~
1

Figure 7.3: The 8 schemata which define R1.

Each schema s; has an associated value ¢;, and the fitness of a string x is

defined as the sum of the values of each of the schemata of which it is an instance:

| if x is an instance ofsj

J(x)= ijoc,-o,m 0;(x) ={ (7.6)

0 otherwise

For R1, the global optimum is the string 111...1, which has fitness 64. R
was deliberately designed to be as simple as possible for a standard GA using 1-point
crossover. It is completely non-deceptive: every building-block is part of the global
optimum, and each makes a completely independent contribution to fitness. These
building blocks (the schemata sq,...,s7) are designed to fit the linkage assumptions
implicit in 1-point crossover — each schema is a short (i.e. low defining-length)
contiguous linear sequence of linked genes, and no linkage exists between schemata.

Because the ‘correct’ linkage map is well defined, R1 is an ideal function on
which to test an adaptive crossover such as ALMX. Figure 7.4 compares the
performance of ALMX, 1-point crossover and parameterised uniform crossover on
R1. In each case, a simple generational (no elitism) roulette-wheel GA was used,

with a population of 400 64-bit binary strings. Because the intention was to study the

166



crossover operator, the crossover rate P. was set to 1.0 and mutation was turned off
(P,,=0.0). For both ALMX and the uniform crossover, the number of crossover sites
was set to 8 (equivalent to Pg=0.125). Each run was terminated after 50000 fitness
evaluations, and the results below are averaged over 20 runs.

These results show that 1-point crossover is superior to both ALMX and
parameterised uniform crossover on R1. This is only to be expected, since R1 is
designed explicitly to suit the linkage assumptions made by I-point crossover.
Neither of the other two operators have the benefit of any such a-priori assumptions.
What is encouraging is the fact that ALMX convincingly outperforms uniform
crossover in the latter stages of the search, even though both operators begin with no
assumptions about linkage at all. This indicates that ALMX has learned something

useful about the patterns of genetic linkage in R1 during the course of the search.

The crossover non-linearity ratio

To compare the disruptive effects of different crossover operators, it is useful to
examine their associated crossover non-linearity ratios. The crossover non-linearity
ratio ¥ 1S a measure which was introduced by Mason (1993) to quantify the
efficiency of crossover at recombining building blocks. Mason gives the following
definition for y:let f, = [‘/"(P,)Jr f(Pz)]/2 and f. = [./"(CI ) + /"(Cz)]/Z be the mean
fitnesses of the parents and children respectively, and let €,.= f,~ f¢,
&= f(P)=fr="1r=f(P,) and ec= f(C)= fe= fe = [(C,). Now:

RN
+5;) )| 2 Jec]

Y= (7.7)

E
-5 e |<ed

To prevent y from ever becoming infinite, y is set to zero whenever £,. =0.
In general, a value of y close to zero indicates that the crossover has exchanged a
building block which makes an independent contribution to fitness, since the increase
in fitness in one chromosome 1s matched by the decrease in fitness in the other. A
large positive or negative value for y shows that the fitness contribution made by the
genes which have been exchanged is not independent, since the change in fitness of
one chromosome is not balanced by that in the other. This implies that the crossover

operator is disrupting, rather than preserving, building blocks.
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Figure 7.5 compares the change in degree of crossover non-linearity aver lime

for each of the three crossover operators on RI1. For each graph, each point
represents the average value of ll//{ OVer every crossover event in one generation. In
each case, crossover non-linearity starts off very low, since most early crossover
events will be between two parents of zero fitness, and produce two offspring of zero
fitness. Crossover non-linearity quickly peaks as selection fills the population with
instances of the various different schemata, and then gracefully decreases towards the
end of the run as the GA converges and the population becomes more uniform. In the
absence of mutation, the GA will tend towards a completely uniform population, in
which case crossover non-linearity will be zero whatever the recombination operator,
since children and parents will always be identical.  As is expected, uniform
crossover and ALMX are much more disruptive for R1 than [-point crossover.
However, as ALMX discovers some linkage relationships towards the end of the
search, it begins to preserve some building blocks, and its level of crossover non-
linearity drops relative to that of uniform crossover.

Examining the linkage map

T P

facl that ALMX outper] forms uniform crossover suggesis that n)iuulmii tseinl is
bemg discovered about the linkage relationships in R1. To establish exactly what has

al siate ol

been learned during the course of a GA run, it is natural to examine ihe fi

the linkage map. [n this case, looking at a single run is more instructive than
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averaging over all 20 runs, so this is the approach taken here. Although the results
below were generated by only one of the 20 runs of ALMX on R1, they are typical of
all 20 runs.

Before looking at the linkage map it is worth examining figure 7.6, which
shows how the relative frequencies of each of R1’s 8 schemata changed during the
course of this particular run. Although all 8 schemata were present in the initial
population, schemata | and 2 failed to gain a foothold and eventually disappeared
completely. The best string found during this run therefore had a fitness of 48. In
the figure, the schemata are histed in the order in which they became fixed in the
population as the GA converged. The first to spread through the whole population
was schema 3, which finally became fixed (i.e. all 400 population members were an
mstance of it) in generation 43. The next to become fixed was schema 6, followed by
schema 4. Schemata 5 and 0 had not quite reached fixation by the time the GA was
terminated at 125 generations, at which time schema 7 was just beginning to spread

through the population.
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Figure 7.6: Change in relative schemata frequencies for one run of ALMX on R1.
The vertical axis shows the number of members of the population which are instan
of each schema. The key lists schemaia in the order in which they spread through the
population.

¢ me of
the R1 schemata. The figures are shown in the order in which the schemaia became
fixed in the population (see figure 7.6). The first figure shows the average linkuge
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average taken over 8 linkage vectors for the 8 genes which represent one schema in
R1. Histograms are shown in the order in which the schemata became widespread in

the population. See text for discussion.




As schema 3 has spread through the population, the ALMX algorithm has
successfully discovered that these genes constitute a complete building block. The
final linkage vector is near-perfect: if any gene from this schema is picked as the first
crossover site, the chances are extremely high that the remaining genes will be picked
from the same schema, and the whole building block will be crossed over. The only
exception is the spurious linkage to gene 54, a gene which is not a member of schema
3. The reason for this is likely to be that this gene has completely converged early in
the run so that its value has become fixed to | in the whole population. There is little
pressure to reduce linkage to a fixed gene, since crossing over such a gene has no
effect.

The second histogram in figure 7.7 shows the average linkage vector for genes
48 to 55, representing schema 6, the second schema to become widespread in the
population. The ALMX algorithm has correctly discovered that these genes are
strongly linked to each other, but has also linked them to the genes from schema 3.
The reason for this can be found in the early stages of the search, when schema 3 is
the only schema to be widely represented in the population. At this time, selection
will ensure that most crossovers will involve at least one parent which is an instance
of schema 3. If the other parent is not an instance of this schema, then any crossover
which involves some, but not all, of the genes from schema 3 is likely to disrupt the
schema 1n the first parent. However, so long as the second parent does not have
zeros for every gene in the schema, there is a chance that the genes which are crossed
over can complete the schema in the second parent. It is not necessary to cross over
every gene in order (o have the same effect as crossing the whole schema — only those
genes which differ need to be swapped. The result of this is that many crossovers
which happen to include just some of the genes from schema 3 will have the same
effect as crossing the whole building block, irrespective of the remaining crossover
sites. Each time this occurs, the ALMX algorithm will reinforce the linkage between
all the crossover sites. The net result over many crossovers is a tendency for ALMX
to link arbitrary genes to those in schema 3. When schema 6 begins to become
widespread, the ALMX algorithm begins to reinforce the linkage between the genes in
this new schema. These genes do not completely lose their linkage to the schema 3
genes, however, because the genes in schema 3 have converged in the whole
population, so there is little pressure to reduce the linkage; one or two crossover sites
within this schema make little difference.

The same pattern can be seen in the average linkage vector for genes 32 to 39,
representing schema 4, and similarly for the genes in schemata 5, 0 and (to some
extent) 7. In each case, although ALMX has reinforced the linkages between genes
within the schema, there is also a tendency for genes to remain linked to genes in

those schemata which were already prevalent when the new schema was discovered.
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The average linkage vectors for the two schemata which eventually died out,
schemata 2 and 1, show little linkage between the genes within these schemata, and

fairly uniform linkage to all the genes in the other schemata.
7.6.2 The Rocky Road - interleaved R1

In a second set of experiments, the ALMX, parameterised uniform and 1-point
crossover operators were tested on an ‘interleaved’ variation of R1 which will be
termed RINT. RINT js a non-deceptive function completely defined by 8 independent,
order-8 schemata, in precisely the same manner as in R1. These schemata are shown

in figure 7.8 below.

So=THH##HHE LR LU LHHHHOHELHHEHH LHOHE D LI =8
Sy =LA LA LA L P DI T L L3 =8
So=HH LI L L3 L L L L S L Cy=8
Sy=HAF LI L L L D LI LI L oy=8
Sy =t LA LI L T LU L L L =8
Se=H LI LAFHHAE L T L LIH I L L co=8
Se=H A Lt T L LS L L L L =8
So=HAHEHE T L D L L I L L L =8

Figure 7.8: The 8 schemata which define RINT,

Since both R1 and RINT are completely non-deceptive, and each has a single
global maximum, both would normally be considered ‘GA-easy’. In fact it is clear
that, as parameter optimisation problems, R1 and RINT are completely equivalent.
The only difference is the order in which the parameters are coded on the
chromosome. Whereas the coding in R1 is designed specifically to reflect the linkage
assumptions made by I-point crossover, RINT is deliberately designed to confound 1-
point (or multi-point) crossover. In RINT, the linked genes are distributed along the
whole length of the chromosome, making the average defining length of the schemata
as great as possible. If R1 lays out a ‘Royal Road’ for the canonical GA, RINT
represents an altogether rockier and more treacherous path towards the optimum.

Figure 7.9 shows the performance of each of the three crossover operators on
RINT - All parameters for the GA were the same as for the earlier experiments with
R1, and each figure shows results averaged over 20 runs, as before. The poor
performance of l-point crossover on RINT makes an important point: making the
wrong a-priori assumptions about genetic linkage is considerably worse than making

no assumptions at all.
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Figure 7.9: Performance of ALMX, 1-point and parameterised uniform crossovers on
function RINT. (a) shows the fitness of the best individual in the population, and (b)
shows the population mean fitness. All results are averaged over 20 runs.
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Parameterised uniform crossover and ALMX make no initial linkage
assumptions, and so their performance is unaffected by the change in coding from R1
to RINT. ALMX is the highest performer on RINT because its ability to learn
something of the linkage relationships during the course of the run makes it
considerably less disruptive than uniform crossover. This is particularly apparent in
figure 7.9(b), which shows the population average fitness — ALMX is clearly
producing far fewer ‘lethal’ low-fitness offspring during the closing stages of the
search than either parameterised uniform or 1-point crossover.

Figure 7.10 shows the change in average crossover non-linearity over time.
Here, the story is the same. Uniform crossover and ALMX are insensitive to the
change in coding from R1 to RINT, whereas 1-point crossover has gone from being
much less disruptive than the other two operators to being initially more disruptive
than either. As it infers some of the linkage relationships in RINT, ALMX achieves

the lowest final degree of crossover non-linearity.
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Figure 7.10: Change in average absolute crossover non-linearity per generation for
parameterised uniform crossover, ALMX and 1-point crossover on RINT,

7.7 Discussion and prospects
Recombination is the GA’s trademark operator, and its usefulness depends critically
on how exactly it respects appropriate genetic linkage relationships for the problem

being optimised, that is, how likely it is that co-adaptive groups of tightly-linked
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genes (representing highly interdependent parameters) will be kept together.
Commonly used crossover operators have been shown to be inherently limited in the
kinds of linkage relationships which they can respect.

The LMX operator was introduced as a generalised recombination operator
which is able to respect arbitrary linkage relationships, including those associated
with existing crossovers. The linkage map used by LMX is a way of making all
linkage assumptions totally explicit — LMX does not introduce the kinds of subtle
implicit linkage assumptions associated with a more traditional ‘cut and splice’ view
of crossover.

It 1s possible to extend the LMX operator by incorporating a mechanism to
adapt the linkage map after each recombination. In this way, the recombination
operator need not rely on any prior knowledge, but is able to discover linkage
relationships which are appropriate to the particular optimisation problem. The
adaptive LMX operator (ALMX) described in this chapter uses a particularly simple
learning rule to adapt the linkage map. Even so, it is able to correctly discover some
important Jinkage relationships for the two test problems studied.

GAs have often been referred to as ‘black box” or general purpose optimisers.
The fact that most existing crossover operators make strong assumptions about which
of the parameters being optimised are interdependent and which are not undermines
this supposed generality. At best, the GA practitioner can try to choose the coding
scheme which best fits the assumptions made by the crossover operator to any
relationships known to exist between the parameters. Of course, this supposes that
the degree to which the various parameters interact is known in advance, which is
unlikely to be the case for anything other than trivial problems. If the GA designer
gets it wrong, and the linkage assumptions don’t match the real dependencies in the
problem, the GA is likely to perform poorly, as illustrated by the dismal performance
of the 1-point crossover GA on RINT,

The ALMX operator offers a route to a truly general purpose optimiser, an
algorithm which can discover the dependencies between parameters for itself, and
tailor the search accordingly. This does not, however, rule out building in problem-
specific knowledge if such knowledge is available. By initialising the linkage map
accordingly, arbitrary linkage assumptions can be built into the operator as a starting
point.

Time constraints have meant that the implementation of ALMX described here
is extremely basic. The learning rule is crude, and improving this aspect of the
operator is likely to be a fruitful area for further research. At present, the linkage
reinforcement signal has only two states: either a fixed positive reinforcement, if one
chromosome has improved as a result of the crossover and the other has got worse,

or a fixed negative reinforcement in all other cases. The implementation of a
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continuously varying reinforcement signal based on the crossover non-linearity ratio
would be a promising topic for future work.

One issue which has not been addressed at all in this chapter is the problem of
choosing an appropriate value for N, the number of genes exchanged in each
crossover. If the value of N is inappropriate, disruption will result. As a simple
illustration, consider choosing a value of N=9 for one of the Royal Road functions
described earlier. In these functions, each building block (schema) consists of 8
genes. Even if crossing over the first 8 genes exchanges a complete schema, crossing
the 9th must disrupt another. Fixing N to a particular value assumes that the co-
adaptive groups which crossover is expected to assort each consist of exactly N
genes, an assumption which is valid for the Royal Road functions, but which is
highly unlikely to be true for real problems. In a real problem, different building
blocks will consist of different numbers of co-adaptive genes. If crossover is always
to swap whole building blocks then the number of genes exchanged should depend
on the starting point.

One solution to this problem would be to choose N independently for each
crossover, after the first crossover site has been chosen. N could be based on the
statistical properties of the linkage vector associated with the chosen starting point.
Possibilities include crossing over all those genes whose linkage to the first gene is
above the average, or crossing over genes until a certain proportion of the original
linkage has been ‘used up’.

In summary, the LMX operator in itself represents a generalised recombination
operator which can model arbitrary linkage relationships, and which emphasises the
need for genetic linkage assumptions to be made explicit during the design phase of a
GA application. Its adaptive form, ALMX, offers a route towards a truly general-
purpose weak optimisation method which needs no prior knowledge at all about the
optimisation problem at hand, although such knowledge can easily be incorporated
should it be available. Although the implementation of ALMX is in its infancy, the

method shows promise on test problems.
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Chapter 8

Conclusions
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In the past few years there have been innumerable efforts to apply genetic algorithms
to the optimisation of neural networks. Almost all of them have been plagued by two
major stumbling blocks: the impractically large computing time involved and the
problem of finding a non-redundant genetic representation for an essentially order-
less structure like a neural network.

Central to this thesis has been the introduction of a novel GA-NN hybrid which
overcomes (or at least avoids) these problems: the GA-bumptree. As well as having
considerably lower redundancy than is typical in GA-NN applications, the
hierarchical genetic coding scheme developed for the bumptree and is also shown to
have the properties of closure, completeness, continuity and isomorphism with
respect to the search space.

A principal aim of this project was to focus on applications where the
computational overheads of GA search could be justified. As far as neural network
training is concerned, pattern classification is an area where there is no obvious
benefit to using a GA since strong methods (such as backpropagation or the
bumptree’s error minimisation rule) can be deployed to good effect and will
outperform the GA’s weaker search (as seen in section 3.4). For classification tasks,
finding the best network topology is a more appropriate application for GAs, and
results such as those in chapter 2 suggest that the GA’s unconstrained search can
discover novel and unexpected topologies even for well-studied problems. The
results with the first GA-bumptree hybrid described in chapter 3 are also encouraging,
with the bumptrees generated by the GA significantly outperforming those generated
by a more constrained top-down constructive algorithm on all test problems.

The artificial life study reported in chapter 5 and the problems described in
chapter 6 were investigated because they seemed to represent learning tasks where
stronger training methods could not easily be applied. The A-life scenario was found
to be unsuitable as a test problem for the GA-bumptree, partly because of its
simplicity, but largely because the work in chapter 5 called into question the original
authors’ experimental method and their interpretation of results. The results reported
in chapter 6 are more positive, and demonstrate how the GA-bumptree can be applied
to two difficult kinds of learning task: temporal credit assignment problems, typified
by the simulated pole balancing and car parking tasks, and learning multi-valued
mappings such as the inverse kinematics of a robot arm.

Given that the computational overheads of genetic search can only be justified
if more efficient methods are not available, however, it is worth mentioning some
recent advances in the field of neural networks. Since this project began, TD methods
have become widespread as the standard approach to learning temporal credit
assignment problems, with many impressive results. A good illustration is Tesauro’s

(1993) TD-gammon system, a neural network backgammon player which learned
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entirely through self-play and is now judged to be among the best players in the
world. Similarly, the recent work of Bishop (1994) and Rohwer and van der Rest
(1994) advances strong, principled methods for the problem of learning multi-valued
mappings. Thus, while the experiments described in chapter 6 demonstrate the
feasibiliry of applying the GA-bumptree to these kinds of learning problems, in the
light of continuing progress in neural network learning algorithms it seems likely that
the practicaliry of an evolutionary approach to neural network training will dwindle
as stronger methods are refined.

One conclusion to emerge from the work described in chapter 6 is that the robot
arm inverse kinematics problem reveals the limitations of the GA-bumptree. The
results given in section 6.3.2 are important because they show that good solutions do
exist in the search space, but that the GA simply isn’t able to find them. Instead, the
GA reliably converges on a simplified architecture which offers initial improvements
in performance, but which is an evolutionary dead end.

As well as introducing and evaluating the GA-bumptree, this thesis has made
some contributions to the field of GAs in general. The convergence profile
introduced in chapter 4 is a tool which can reveal useful information about any real-
valued GA, and the discussion in the latter part of the chapter is relevant to any GA
which uses a geographic selection model. The observed relationship between the rate
of convergence and the tendency away from gradual evolution towards punctuated
equilibrium also has relevance beyond the context of the GA-bumptree, and may help
to explain others’ results. For example, in his invited talk on Tierra given at ECAL
‘93, Tom Ray observed that changing the instruction set used by the simulated
replicators resulted in a change from gradual evolution to punctuated equilibrium,
although he was unable to explain the change.

Finally, the re-examination of the role of recombination described in chapter 7
may prove to be a valuable contribution to the GA field. The concept of the linkage
map offers a general framework for the rigorous design of application-specific
crossover operators, while the ALMX operator is a step towards a truly universal
self-adaptive recombination operator. Although the current ALMX algorithm is rather
simple, the preliminary results certainly encourage further development of the

method.
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