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Thesis Summary

The concept of ‘chemical space’ is of fundamental importance for chemoinformatics and virtual
screening research, specially in the early stages of drug discovery. To discover new drugs and to
use effectively new chemical tools to understand biology, strategies are required that allow us to
systematically explore the ‘chemical space’ which is huge and high-dimensional since a molecule can
be represented by thousands of different descriptors. It is generally thought that high-dimensional
representations are too complex for the successful application of many chemoinformatics and virtual
screening methods.

This thesis introduces a flexible visual data exploration framework which combines advanced pro-
jection algorithms from the machine learning domain with visual representation techniques developed
in the information visualisation domain to help a user to explore and understand effectively large
multi-dimensional datasets. The advantage of such a {ramework to other techniques currently avail-
able to the domain experts is that the user is directly involved in the data mining process and advanced
machine learning algorithms are employeed for better projection. A hierarchical visualisation model
guided by a domain expert allows them to obtain an informed segmentation of the input space. Two
other components of this thesis exploit properties of these principled probabilistic projection algo-
rithms to develop a guided mixture of local experts algorithm which provides robust prediction and a
model to estimate feature saliency simultancously with the training of a projection algorithm.

Local models are useful since a single global model cannot capture the full variability of a het-
erogeneous data space such as the chemical space. Probabilistic hierarchical visualisation techniques
provide an effective soft segmentation of an input space by a visualisation hierarchy whose leal nodes
represent different regions of the input space. We use this soft segmentation to develop a guided
mixture of local experts (GME) algorithm which is appropriate for the heterogeneous datasets found
in chemoinformatics problems. Moreover, in this approach the domain experts are more involved in
the model development process which is suitable for an intuition and domain knowledge driven task
such as drug discovery.

We also derive a generative topographic mapping (GTM) based data visualisation approach which
estimates feature saliency simultaneously with the training of a visualisation model. The approach
not only provides a better projection by modelling irrelevant features with a separate noise model but
also gives feature saliency values which help the user to assess the significance of each feature. As
demonstrated in this thesis, this approach has many applications in the drug discovery domain.

The approaches proposed in this thesis are evaluated on real-life datasets from chemoinformatics.

Keywords: Visual data mining, guided mixture of local experts, feature selection, machine
learning, information visualisation, chemoinformatics
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Chapter 1

Introduction

The concept of chemical space is of fundamental importance for chemoinformatics® research.
Chemical space is vast and heterogeneous [Dobson, 2004]. The total number of possible small
organic molecules that populate ‘chemical space’ has been estimated to exceed 10%° and each
of these molecules can be represented by thousands of different descriptors [Bohacek et al.,
1996; Karelson, 2000]. It is generally thought that high-dimensional space representations are
too complex for the successful application of many data exploration, compound classification
and decision making methods [Godden and Bajorath, 2006]. To discover new drugs and to
effectively use new chemical tools to understand biology, strategies are required that allow us
to systematically explore ‘chemical space’. In the following section we highlight some of the

issues in the drug discovery process which has motivated the work presented in this thesis.

1.1 The motivation

Drug discovery continues to be a challenging area. Drug discovery and development is a
critical but lengthy and costly process, taking an average of 15 years and US$ 880M to
generate a successful medicine [Flanagan et al., 2001]. Currently, quick and cost effective
drug discovery is a major focus of competition between pharmaceutical companies. When no
ligand? for a particular protein is known, a search in chemical space is often undertaken in the
hope of identifying compounds that bind to the protein with reasonable affinity. The recent
advances in decoding of the human genome sequence, which help in identifying biological

targets® for disease, have introduced many new biological targets [Sanseau, 2001]. Developing

!The combination of chemical synthesis, biological screening, and data-mining approaches used to guide
drug discovery and development.

2 A molecule (compound), or a molecular group that binds to another chemical entity.

3 A biological target is an enzyme, receptor or other protein that can be modified by an external stimulus.

10



CHAPTER 1. INTRODUCTION

drugs for these new targets as quickly as possible is the current research thrust for major
pharmaceutical companies.

The dominant technique for the identification of new ‘leads™ in drug discovery is the
physical screening (high-throughput screening — HTS) of large libraries of chemicals against
a biological target [Fox et al., 1999]. Despite of its wide use, high attrition rates in the later
stages of drug discovery have raised questions about the viability of the high-throughput
screening paradigm on its own [Lahana, 1999; Handon, 2002; Englebienne, 2005]. It is being
recognised that increasing the quality of screening libraries and better triage and understand-
ing using HTS results, rather than their quantity, is likely to be an important determinant for
the identification of active compounds that have a chance to make it through the drug dis-
covery pipeline [Bajorath, 2001; Handon, 2002; McGovern et al., 2002; Gribbon and Sewing,
2005]. If the results are only triaged by potency, which was until recently the practice
in pharmaceutical industry, then heavier compounds will be selected as hits® to follow up.
Heavier hits will lead to heavier drugs which lead to absorption/half-life problems in the later
stages [Brennan, 2000]. Biological activity data of chemical compounds collected using tech-
nologies such as HTS and the availability of detailed physicochemical properties of chemical
compounds could be used to mine useful information [Good et al., 2000]. One of our main
alms in this research is to provide an effective data exploration tool which helps screening
scientists (e.g. biologists, chemists) to understand large datasets better and take effective
decisions in an informed way.

Given the vast size of organic chemical space drug discovery cannot be reduced to a simple
‘synthesise-and-test’ lottery. Even though technologies such as HTS can expose the target to
a large number of chemical compounds, it is financially and time-wise impossible to screen all
the compounds in a library for a target. A complementary approach, known as virtual screen-
ing, has become popular: this means to screen computationally large number of compounds
from the chemical space to find compounds that complement targets of known structure, and
experimentally test those that are predicted to bind well [Clark and Pickett, 2000; Kitchen
et al., 2004; Shoichet, 2004]. Although these two approaches to ligand discovery are distinct,
they can be used together to enhance the chances of finding an active compound [Bajorath,
2002a]. In particular, within the pharmaceutical industry, the use of computational models

as a ‘filter’ to select compounds for chemical synthesis from very large virtual libraries for

4A representative of a compound series with sufficient potential (as measured by potency, selectivity,
pharmacokinetics, physicochemical properties, absence of toxicity and novelty) to progress to a full drug
development programme.

3Library component whose activity exceeds a predefined, statistically relevant threshold.
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CHAPTER 1. INTRODUCTION

experimental screening (HTS) and as a tool for understanding complex datasets have be-
come increasingly common [Gasteiger, 2003; Lahana, 2004; Chen, 2006]. Data mining and
prediction techniques are used to find the hidden gems in the HTS hits and in the chemical
libraries: maybe not showing enough potency (because of noisy HTS operation), but very
attractive otherwise. One of the major challenges in this area is to build effective prediction
models which can cope with the diversity in chemical space [Bajorath, 2002b]. We address
this issue by developing a mixture of local experts model which works locally in the data
space and also involves the domain expert in the model development process.

Typical datasets found in drug discovery involve many descriptors. The question of which
descriptors are important is always of a significant interest. Screening scientists would like to
know the significance of these descriptors during the modelling process so that compounds can
be optimised by concentrating on the descriptors which are more significant for a particular
behaviour. In this thesis, we introduce an approach to estimate significance of the descriptors
during the training of a data visualisation model.

In the next section, we briefly summarise the major contributions of this thesis.

1.2 Overview of this thesis

In this thesis we introduce a flexible visual data exploration framework for effective data
mining (in chapter 3), new mixture of local experts approaches (in chapter 4) and an algorithm
which estimates feature saliency during the training of a data visualisation model (in chapter
5). The following is a brief introduction to each of these topics; further details are in the

corresponding chapters.

1.2.1 An integrated visual data exploration framework

The exploration of heterogeneous information spaces requires suitable mining algorithms as
well as effective visual interfaces. Most existing systems, e.g. SpotFire, Tripos, concentrate
on information visualisation and interaction techniques using basic statistical and machine
learning algorithms such as PCA, factor analysis and multi-dimensional scaling. Though
visual and interaction methods have been helpful, for improved understanding of a large
high-dimensional dataset, an effective projection onto a lower-dimension (2D or 3D) mani-
fold is required. In this chapter we introduce a flexible visual data exploration framework
which combines advanced projection algorithms developed in the machine learning domain

and visual representation techniques developed in the information visualisation domain. The

12



CHAPTER 1. INTRODUCTION

advantage of such a framework is that the user is directly involved in the data mining pro-
cess. We integrate principled projection methods, such as the generative topographic mapping
(GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnifica-
tion factors, directional curvatures, parallel coordinates and billboarding, to provide a visual
data exploration framework. Results on a real-life chemoinformatics dataset using GTM are
promising and have been analytically compared with the results from the traditional projec-
tion methods. It is also shown that the HGTM algorithm provides additional insight and
good segmentation for large datasets. The computational complexity of these algorithms
is also discussed to demonstrate their suitability for the visual data exploration framework

(chapter 3).

1.2.2 Guided mixture of local experts

A single global predictive model cannot capture the full variability of a data space such as
chemical space since the mapping in different regions of the data space may vary. Proba-
bilistic hierarchical visualisation techniques can provide an effective soft segmentation of an
input space by a visualisation hierarchy whose leaf nodes represent different regions of the
input space. We use this soft segmentation to develop new guided mixture of local experts
approaches which are appropriate for a heterogeneous dataset such as found in chemoin-
formatics problems. Moreover, in this approach the domain experts are directly involved
in the model development process which is suitable for an intuition and domain knowledge
driven task such as drug discovery. The performance of the algorithms on two different real-
world datasets from chemoinformatics is benchmarked against conventional local models and

popular global models (chapter 4).

1.2.3 Data visualisation with simultaneous feature selection

Data visualisation algorithms and feature selection techniques are both widely used in chemo-
informatics/bioinformatics but as distinct analytical approaches. We derive a generative
topographic mapping based data visualisation approach which estimates feature saliency
simultaneously with the training of the visualisation model. Such saliency measures the im-
portance of a feature on the definition of the cluster structure yielded by a data visualisation
model. The approach not only provides a better projection by modelling irrelevant features
with a separate noise model but also gives feature saliency values which help the user to

assess the significance of each feature. We compare the quality of projection obtained us-

13



CHAPTER 1. INTRODUCTION

ing the new approach with the projections from traditional GTM and self-organising map

(SOM) algorithms. The results obtained on a synthetic and a real-life chemoinformatics

dataset demonstrate that the proposed approach successfully identifies feature significance

and provides coherent (compact) projections (chapter 5).

1.3 Publications based on work in this thesis

This thesis gathers and complements the material in following publications. The chapter

numbers given refer to the chapter of this thesis where the main content of the corresponding

paper can be found.

mn:

[Maniyar et al., 2006]: D. M. Maniyar, I. T. Nabney, B. S. Williams, and A. Sewing.
Data visualization during the early stages of drug discovery. Journal of Chemical In-

formation and Modelling, 46(4):1806-1818, 2006 (Chapter 3).

[Maniyar and Nabney, 2006c|: D. M. Maniyar and I. T. Nabney. Visual data min-
ing using principled projection algorithms and information visualization techniques. In
Proceeding of the 12th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. pp 643-648, 2006 (Chapter 3).

[Maniyar and Nabney, 2005]: D. M. Maniyar and I. T. Nabney. Guiding local regression
using visualisation. In Deterministic and Statistical Methods in Machine Learning,

LNAI, Springer-Verlag, 3635:98-109, 2005 (Chapter 4).

[Maniyar and Nabney, 2006a]: D. M. Maniyar and I. T. Nabney. Data Visualization
with Simultaneous Feature Selection, In Proceeding of the IEEE Symposium on Com-
putational Intelligence in Bioinformatics and Computational Biology. pp 156-163, 2006

(Chapter 5). [It won ‘the best student paper award’]

D. M. Maniyar and I. T. Nabney. Exploiting Probabilistic Visualization Algorithms,
IEEE Transactions on Knowledge and Data Engineering. In submission, (chapter 4

and chapter 5).

A longer version of the paper [Maniyar and Nabney, 2006¢] was invited to be published

e [Maniyar and Nabney, 2006b]: D. M. Maniyar and I. T. Nabney. Visual Data Mining:

Integrating Machine Learning with Information Visualization. In Proceeding of the 7th

International Workshop on Multimedia Data Mining. pp 63-72, 2006 (chapter 3).
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CHAPTER 1. INTRODUCTION
1.4 Notation and conventions

In the mathematical notation, the convention will be that an italic typeface indicates scalar
values, e.g. tnq, T, while bold typeface indicates vectors and matrices, the former using lower
case symbols, e.g. t,,x, and the latter using upper case symbols, e.g. T, X. Exceptions to
this convention do appear, but they will be explicitly pointed out. The symbols used for the

most commonly occurring quantities in this thesis are listed in Table 1.1.

N number of data points

n data label

D number of data dimensions (features)

d feature label

L number of latent (projection) dimensions
l latent dimension label

M number of components in a mixture model
T dataset stored as a N x D matrix

1 an identity matrix

WT  transpose of matrix W

P probability mass function

D probability density function

L likelihood

Table 1.1: Symbols used.

1.5 Thesis structure

The thesis is organised as follows:

Chapter 2: We provide an introduction to the drug discovery process and major phases
during the early stages of pharmaceutical research. Then we review current technologies
and challenges in experimental and virtual screening in pharmaceutical research. The
chanter ends with a discussion on the challenges we aim to address in this thesis.

Chapter 3: Here the importance of data visualisation and exploration is first discussed. We
then describe selected projection and information visualisation techniques. Then the
visual data exploration framework is introduced with a description of the software we
have developed. Finally the results of different projection algorithms using the visual
data exploration framework are discussed and concluded.

Chapter 4: In this chapter we introduce the guided mixture of local experts algorithm.
The requirement of a local approach is motivated and related work is discussed. A few

popular global and local models are also briefly introduced. Later in the chapter, the



CHAPTER 1. INTRODUCTION

results of our approach with the results of other global and local regression algorithms
are compared. The chapter finishes with a discussion and conclusion.

Chapter 5: First we motivate the reader about why treating data visualisation and feature
selection simultaneously is not only a synergistic but also a logical step forward. Then
we introduce the novel approach for estimating feature saliency during the training of
a probabilistic data visualisation algorithm. The results on a synthetic and a real-life
dataset from chemoinformatics are presented and discussed thoroughly.

Chapter’ 6: First the work presented in this thesis is summarised and final conclusions are
drawn. Then we discuss the directions for the future research work.

Appendix A: The derivation of the M-step of the EM algorithm for GTM-FS is presented

here.
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Chapter 2

Screening in Drug Discovery

Discovering a new drug is a complex and lengthy task. Although, historically the discovery of
novel drugs has been led by biology, chemistry and pharmacology, recent advances in compu-
tational methods and the availability of large datasets have made extensive data analysis and
computational modelling an increasingly important part of the early pharmaceutical research.
Currently, A report on in silico’ technology estimated that by 2006 ~10% of pharmaceutical
R&D expenditure would be on computer simulation and modelling, a figure set to rise to 20%
by 2016 [Anderson, 2002]. It seems clear that as a whole, the pharmaceutical R&D landscape
will change further. This chapter provides a brief introduction to the general process of the

early stages of pharmaceutical research and various molecule-screening methods.

2.1 The drug discovery process

The modern drug discovery process (see Figure 2.1) can be abstractly divided into 2 phases:
early phase and late phase. Target and lead discovery are the main components of early
pharmaceutical research. Most of chemoinformatics applications, and also this thesis, are
focused on the computational methods used during lead discovery and optimisation.
Drug-discovery programs typically start with the identification of suitable drug target
(proteins such as receptors, enzymes and ion channels) which is the causes for a disease.
During the stepwise process of target validation, a sufficient level of ‘confidence’ has to be
established that the target is of relevance to the disease under study and that modulation
of the target will lead to effective discase treatment. Once the target has been validated,

its modulators are identified. Such modulators can be agonists or antagonists in the case of

1Refers to modelling research conducted using computers in conjunction with informatics capabilities.
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Figure 2.1: The process of pharmaceutical research, often referred to as the ‘drug discovery
process’, can roughly be divided into an early and late phase. The early phase is mainly
represented by target and lead discovery, whereas the later phase deals mainly with clinical
evaluation and development.
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receptors, activators or inhibitors of enzymes, and openers or blockers of ion channels.

Once the target are understood in detail and modulators are identified, the lead identifica-
tion step starts with the design and development of a suitable biological assay to monitor the
target under study. Various in vitro? and in silico methods are used during such biological
assay design and development. Subsequently, high-throughput screening (HTS) technology
is used to expose the target to a large number of chemical compounds that increasingly come
from high-speed parallel and combinatorial synthesis®. Active compounds that demonstrate
dose-dependent target modulation are called ‘lead’ compounds when a certain degree of selec-
tivity? for the target under study can be shown and the first positive results in animal models
are obtained. Such lead compounds are optimised in terms of potency® and selectivity as well
as physicochemical properties, and their pharmacokinetic® and safety features are assessed
before they can become candidates for drug development. At this point the late phase of
drug discovery process starts, this is dominated by extensive clinical trials.

As shown in Figure 2.1, it is important to note that during the later stages of the drug
discovery process, the compound attrition rate decreases while the cost of such attrition
increases. The drug discovery process is characterised by a high attrition rate; typically up
to 76% between target identification and an investigational new drug filing [Edwards et al.,
2002] and ~90% by the end of clinical trials [Dimasi, 2001]. A rational approach to increase
the efficiency and reduce the cost of pharmaceutical R&D is to reduce the attrition rate
in the costly downstream stages by increasing the attrition rate in the less costly, earlier
stages of the process — a ‘fail early, fail cheap’ strategy that has been widely accepted in the
pharmaceutical industry [Smith and Waterbeemd, 1999; Lin et al., 2003; Yu and Adedoyin,
2003].

A successful drug is a combination of biological activity and drug-like properties [Selick
et al., 2002]. A number of properties of small molecules are important for their use as a build-
ing block or potential drug, in addition to their ability to bind potently and specifically to a

particular protein target. Such ‘drug-like’ properties include their ability to cross biological

?Biological study which is carried out in an artificial environment (in the laboratory) outside a living
organism.

3Using a combinatorial process to prepare sets of compounds from sets of building blocks combined in
many different ways.

4The word selectivity describes a drug’s ability to affect a particular cell population in preference to others.

5An expression of the activity of a drug, in terms of the concentration or amount needed to produce a
defined effect.

SProcess of the uptake of drugs by the body, the bio-transformation they undergo, the distribution of the
drugs and their metabolites in the tissues, and the elimination of the drugs and their metabolites from the
body. Both the amounts and the concentrations of the drugs and their metabolism are studied [taken from
TUPAC Compendium].
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membranes, their chemical stability, and their solubility in water and dimethyl sulphoxide
(a common organic solvent). Until recently, major proportion (~40%) of development com-
pounds failed to reach the market due to poor ‘drug-like’ properties [Venkatesh and Lipper,
2000]. There has been much interest in the pharmaceutical industry in engineering ‘drug-like’
properties and discarding candidate compounds that are unlikely to be effective drugs, even
before they are synthesised [Waterbeemd et al., 2001; Kerns and Di, 2003]. Now property
screening in parallel with activity screening, which allows medicinal chemists to optimise
biological activities as well as drug-like properties, is widely accepted and implemented in
pharmaceutical companies.

Although most of the processes of early pharmaceutical research rely predominantly on
experimental work in the laboratory, use of in silico methods, particularly to evaluate ‘drug-
like’ properties, has become increasingly important to speed up the drug discovery process
and further decrease late-stage attrition [Anderson, 2002].

In the next two sections we describe two distinct but complementary approaches for

screening: experimental screening and virtual screening.

2.2 Experimental screening

Advanced experimental, in vitro, technologies are used during the “Lead identification” and
“Lead optimisation” stages to find molecules that bind the target and possess ‘drug-like’ prop-
erties. Experimental screening efforts accounts for a substantial part of the total research and
development expenditures of the pharmaceutical industry [Handon, 2002]. According to their
functions, experimental screening technologies can broadly categorised into two categories:

evaluating biological activity and evaluating drug-likeness.

2.2.1 Evaluating biological response

Currently, physical screening of large libraries of chemicals against a biological target (high-
throughput screening — HTS) is the dominant technique for the identification of new lead
compounds in drug discovery. In a high-throughput screen, many different molecules are
evaluated in the same biological test for their effect on a protein or cellular process. The
term ‘screen’ is used to indicate that many different chemicals are tested but only a small
number of them are expected to be active. The term ‘high-throughput’ is used to indicate
that many chemicals are put through this process in a short period of time, typically 108

chemical compounds a day [Roberts, 2000]. Because of this capability, HTS technologies
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have become an important part of the drug discovery process.

HTS is highly automated by the use of sophisticated laboratory equipments, robotics and
chemical analysis techniques. Figure 2.2 displays an example of different kinds of microplates’
used during an assay and a robot in action during HTS. A good review of HTS technology

and advances in the field is available in [Liu et al., 2004].

(a) 96, 384 and 1536 well microplates (b) A robot in action during HTS

Figure 2.2: High-throughput screening.

The selection of compounds to screen (biological assay) during an HTS campaign is based
on understanding of drugs for similar targets, experience of the screening scientists (medicinal
chemists, biologists, etc.) and computational methods (as discussed in Section 2.3). Under-
standing the large amount of information available is critical to good assay development.
Effective assay development continues to present major bottlenecks for biological screen-
ing [Bajorath, 2001; Fox et al., 2002]. In addition, it is also being recognised that increasing
the quality of screening libraries and HTS assays, rather than their size, is likely to be an
important determinant for the identification of active compounds that have a chance to make
it through the drug discovery pipeline [Fox et al., 1999; Handon, 2002]. Chemoinformatics
tools are increasingly used to handle the vast amounts of data from HTS [Oprea et al., 2003]
and to bring rigour to the process of looking for genuine leads. How in silico methods are

used to develop effective assays is briefly discussed in Section 2.3.1.

7A standardised plastic tray with “wells,” or depressions, for holding small quantities of material.
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(drug-likeness) [Bachmann and Ghosh, 2001]. In recent years, combinatorial chemistry and
high-throughput screening have significantly increased the number of compounds for which
early data on ADME-Tox are needed, which has in turn driven the development of a variety
of medium and high-throughput in vitro ADME-Tox screens [Kerns and Di, 2003]. Protocol
simplification and a widespread use of microtiter plate formats have made it possible for
many assays to be automated using robotic systems. Detailed description of such laboratory
techniques is out of the scope of this thesis; a good review is available in [Yu and Adedoyin,

2003).

2.3 Virtual screening

Screening compounds with the use of computational methods is broadly known as virtual,
in silico, screening. Virtual screening of compound databases is currently one of the most
popular chemoinformatics applications in pharmaceutical research. It has been argued that
virtual screening techniques complementing experimental screening, particularly HTS, can
make the drug discovery process more efficient [Bajorath, 2002a; Oprea and Matter, 2004].
In this section we provide an overview of popular virtual screening techniques and discuss
them in the context of the experimental screening techniques described in the previous sec-
tion. According to their functions, virtual screening methods can be broadly divided in two

categories: library design and predicting drug-likeness.

2.3.1 Library and assay design

In silico, techniques are widely used in compound library and assay design to reduce the
number of compounds to be tested, and two basic applications can be distinguished: diversity

and structure-based design.

Diversity-based library design

When no structural information about the target is available, the assay should be designed
to test a diverse set of molecules. Diversity design aims to select a smaller sub-library from
a larger compound library in such a way that the full range of chemical diversity is best
represented [Gorse and Lahana, 2000]. The different computational methods for compound
selection are mainly based on compound similarity clustering, grid-like partitioning of chem-

ical space or the application of genetic algorithms [van Drie and Lajiness, 1998]. The results
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of such in silico diversity selections are smaller sub-libraries of manageable size with a high

degree of chemical diversity that are then subjected to HTS in vitro.

Structure-based library design

Structure-based library design is biased by structural requirements for activity on a particular
target and needs prior information of the target structure (e.g. using X-ray crystallography
or nuclear magnetic resonance). The goal is to select from existing compound libraries or
to design compounds with three-dimensional complementarity (i.e. shape, size and physico-
chemical properties) to the target-binding site. In the latter case, new approaches can directly
guide the design of virtual combinatorial libraries, which are first screened in silico for target
complementarity, thus reducing the number of compounds that will have to be synthesised
and tested in vitro. It can be expected that the hit-rate (rate of compounds found to be
active on the target under study in a dose-dependent manner) of such focused libraries will
be higher than that of diversity screening. Based on virtual screening, it is relatively easy to
exclude parts of libraries from further consideration that are clearly not compatible with a
targeted binding site or chemically too distinct from known actives. A good review of some of
the popular structure-based screening (QSAR - quantitative structure activity relationships)
techniques is given in [Bajorath, 2002b; Lyne, 2002; Balen et al., 2004]. Programs such as
AutoDock, DOCK, FlexX, FRED, GOLD and Glide can be used to examine millions of com-
pounds for their propensity to interact with the target protein, and the relative fit of each
candidate scored [Ewing et al., 2001; Osterberg et al., 2002; Kramer et al., 1999; Halgren
et al., 2004].

Both diversity and structure-based screening can be performed in an iterative manner. In
this case, the results of in vitro HTS are analysed n silico to derive rules that can be used
for the rational selection of further molecules to be tested n vitro.

Although in silico library design is a useful emerging technology, current success rates
are low because it is difficult to predict how small molecules will interact with a protein;
there is flexibility in the torsion angles in both the protein and small molecule, causing un-
certainty regarding the three-dimensional structure of both. Improvements in the predictive
accuracy of such programs will affect virtual screening, and so the discovery of novel protein

ligands [Stockwell, 2004].
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2.3.2 Predicting drug-likeness

As stated earlier, poor pharmacokinetics and toxicity are significant causes of costly late-stage
failures in drug development, it has become widely appreciated that these properties should
be considered as early as possible in the drug discovery process [Waterbeemd and Gifford,
2003]. In addition to their use in the ‘Lead optimisation’ stage, the computational techniques
described here can be used early on to select a subset of compounds for screening or to guide
combinatorial library design.

Though in recent years throughput provided by the simplified in vitro ADME-Tox assays
has increased, throughput capacity remains low in comparison with that of HTS activity
assays or combinatorial chemistry, consequently limiting the application of these assays to
only a fraction of the compounds evaluated in discovery. The need for increased ADME-Tox
throughput to fully meet the demands of discovery has led to renewed and increasing interests
in computational, in silico, models [Selick et al., 2002; Yu and Adedoyin, 2003; Waterbeemd
and Gifford, 2003].

In silico approaches to predict pharmacokinetic parameters (ADME) were pioneered by
Lipinski et al. [1997]. By studying the physicochemical properties of more than 2000 drugs
from the world drug index (WDI) database, which can be assumed to have entered Phase
IT human clinical trials (and therefore must possess drug-like properties), the so-called ‘rule-
of-five’ was derived to predict oral bioavailability (intestinal absorption) of a compound. It
identifies several key properties that should be considered for small molecules that are in-
tended to be orally administered. These properties are: molecular mass less than 500 daltons;
number of hydrogen-bond donors less than 5; number of hydrogen-bond acceptors less than
10; calculated octanol /water partition coefficient (an indication of the ability of a molecule to
cross biological membranes) less than 5. In general, such studies point to the most important
physicochemical and structural properties characteristic of a good drug in the context of our
current knowledge. These properties are then typically used to construct predictive ADME
models and form the basis for what has been called property-based design [Ekins et al., 2000;
Waterbeemd et al., 2001; Podlogar et al., 2001]. Prediction approaches ranging from simple
multiple linear regression (LR) to machine learning techniques are now being applied to the
analysis of ADME data [Livingstone and Manallack, 2003; Waterbeemd and Gifford, 2003;
Xiao et al., 2005]. Data mining and machine learning methods such as principal compo-
nent analysis, artificial neural networks (ANN), self-organizing maps (SOM), classification

and regression trees (CART), and genetic algorithms (GA), originally developed and used
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in other fields, are now also successfully being used for ‘drug-likeness’ prediction [Sadowski,
2000; Schneider, 2000; Hou and Xu, 2002; Bai et al., 2004].

For compounds targeted at the central nervous system, another important aspect is blood-
brain barrier (BBB) penetration. On the basis of predictive models described by Abraham
et al. [1994], a simple two-variable equation has been devised that allows rapid automated in
silico screening of (virtual) libraries for compounds with a potential to cross the BBB [Clark
and Pickett, 2000]. Predicting the toxicity of compounds, another important aspect, has been
reviewed in [Dearden, 2003].

Sufficient high-quality and reliable data are not yet available to develop robust models;
thus the predictive ability of the underlying models is limited and needs further development.
As a result of the availability of experimental data in the literature, considerable effort has
gone into the development of models to predict physicochemical properties relevant to ADME,
such as lipophilicity. However, despite its importance, the prediction of pharmacokinetic
properties such as clearance, volume of distribution and half-life directly from molecular
structure is making slower progress owing to a lack of published data. Similarly, the prediction

of various aspects of metabolism and toxicity is also underdeveloped.

2.4 Challenges and opportunities

Though the last decade has seen a lot of development in pharmaceutical research and particu-
Jarly in in silico techniques, there are still many challenges ahead. In this section we highlight
the challenges in in silico research which we aim to address with the work presented in this

thesis.

Data visualisation and exploration: Good understanding of biological activity results
and physicochemical properties can help to guide the design of future assays and li-
braries. Moreover, exploring chemical space and understanding the datasets for the
problem at hand are important aspects to avoid being misled by noisy results from
experimental and in silico methods. For example, one of the problems with the new
types of organic compound that are now being explored as drugs is that they may be ex-
tremely potent when tested against isolated targets in the laboratory environment, but
within the complex cellular milieu, they might interact with cellular components other
than the desired target. That is why understanding and exploring screening results

with other descriptors is important rather than just relying on an activity measures.
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Obtaining such an overview and understanding of large high-dimensional datasets re-
quires effective projection and exploration techniques. The use of powerful visualisation
tools, such as SpotFire!?, is common in pharmaceutical research. Though these soft-
ware are quite useful, the lower-dimensional projection obtained using the traditional
projection algorithms provided in them is not satisfactory for large high-dimensional
datasets. In this thesis we introduce a visual data exploration framework which iden-
tifies appropriate principled projection algorithms to obtain an effective projection of
higher-dimensional dataset on to a lower-dimensional space and integrates advanced

visual exploration facilities to support domain experts in data exploration.

Effective prediction models: A bottleneck for effective prediction of ‘drug-likeness’ prop-
erties is that good predictive accuracy the predictability of regression models is generally
limited to the chemical space that is covered by the compounds in the training set or
those fairly close to them. The use of a more diverse set of chemical molecules in model
development and computational models which can cope with such diversity should en-
sure a better predictability and wider applicability [Yu and Adedoyin, 2003]. Most of
the prediction models used in drug discovery are global models. A single global model
usually fails to model all the diversity in different region of input space. Moreover,
many prediction models used in pharmaceutical industry are ‘black boxes’ for most
people so there is a need to involve domain experts (chemist, biologists, screening sci-
entists) in the model development process to increase their confidence in the results. In
this thesis we introduce a guided mixture of local experts algorithm which works well
with heterogencous datasets and involves the domain experts in the model development

process.

Estimation of descriptor importance: The screening scientists have to consider many
descriptors for a successful drug discovery operation. Though, most of the times, the
selection of the descriptors is based on their domain knowledge and experience, the
question of which descriptors are important has always been of a significant interest
in pharmaceutical research. Morcover, good clustering and prediction often depend
crucially on the right molecular descriptors for the problem at hand. It would be
interesting if a model can predict relevance of the descriptors. In this thesis we present

a data visualisation with simultancous feature significance determination approach.

108 potfire: http://www.spotfire.com/



Chapter 3

An Integrated Visual Data

Exploration Framework

Multi-dimensional compound optimisation is a new paradigm in the drug discovery process,
yielding efficiencies during early stages, and reducing attrition in the later stages of drug
development. The success of this strategy relies heavily on understanding multi-dimensional
data about compounds and extracting useful information from it. The exploration of het-
erogeneous information spaces requires suitable mining algorithms as well as effective visual
interfaces. In this chapter we introduce a flexible visual data exploration framework which
combines advanced projection algorithms from the machine learning domain and visual rep-
resentation techniques developed in the information visualisation domain. The advantage of
such an framework is that the user is directly involved in the data mining process. Results
on several real-life case studies using principled probabilistic projection algorithms, such as
the generative topographic mapping, are promising and have been analytically compared
with the results from the traditional projection methods. It is also shown that a hierarchical
visualisation approach, such as the hierarchical GTM algorithm, provides additional value
for large datasets. The research is carried out with the domain experts (screening scientists)
at Pfizer. The computational complexity of these algorithms is analysed to demonstrate
their suitability for the visual data exploration framework where interaction and speed of the

algorithms are important parameters.
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CHAPTER 3. AN INTEGRATED VISUAL DATA EXPLORATION FRAMEWORK
3.1 Introduction

Today, the data available to tackle many scientific challenges is vast in quantity and diverse
in nature. The wide availability of ever-growing data sets from different domains has created
a need for effective knowledge discovery and data exploration. An important component of
effective data exploration is to obtain “natural” groupings in a large multivariate dataset. In
a recent review on “Statistical Challenges in Functional Genomics”, Sebastiani et al. [2003],
stated “The newly born functional genomic community is in great need of tools for data
analysis and visual display of the results”. Since it is difficult for a human to visualise data
in more than three dimensions, effective visualisation which gives better clustering (group-
ing) of high-dimensional data onto lower-dimensional space is desirable for an effective data
exploration tool. Here, we use the term visualisation to mean any method of projecting
data into a lower-dimensional space in such a way that the projected data keeps most of the
topographic properties (i.e. ‘structure’) and makes it easier for the users to interpret the
data to gain useful information from it. Exploration of complex information spaces is an
important research topic in many fields, including computer graphics, data mining, machine
learning, and other areas of statistics, as well as database management and data warehousing.
In the last decade, many new machine learning techniques have been proposed for effective
projection.

Machine learning is often split into three categories: supervised learning, where a data
set is split into inputs and outputs and the goal is to relate inputs to associated outputs;
reinforcement learning, where typically a reward is associated with achieving a set goal, and
unsupervised learning where the objective is to understand the structure of a data set while
there might be no specific target for a pattern. One approach to unsupervised learning is
to represént the data, T, in some lower dimensional embedded space, X. In a probabilistic
model the variables associated with such a space are often known as latent variables. In this
chapter our focus will be on those machine learning methods that represent the data in this
latent space.

For a complex large high-dimensional dataset, where clear clustering is difficult and group-
ing of data points is in soft clusters (overlaping clusters) or separate clusters of similar types,
using visual aids to explore further can reveal insight that may prove useful in data mining.
For data mining to be effective, it is important to include the domain expert in the data explo-
ration process and combine the flexibility, creativity, and general knowledge of the domain

expert with automated machine learning algorithms to obtain useful results [Keim, 2002].
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The principal purpose of the visual aids developed in the information visualisation domain is
to present data in a visual form provided with interactive exploration facilities, allowing the
domain expert to get insight into the data, draw conclusions, and understand the structure
of the data. Visual representation techniques on their own cannot entirely replace analytic
nonvisual mining algorithms to represent a large high-dimensional dataset in a meaningful
way. Rather, it is useful to combine multiple methods from different domains for effective
data exploration [Hinneburg et al., 1999; Won, 1999; Kreuseler and Schumann, 2002].

Traditionally the research in information visualisation does not involve focus on applying
advanced machine learning algorithms to project high-dimensional data on to low-dimension
(latent space) effectively. Recently, the core research in visual data mining has focused on
combination of visual representation techniques and projection algorithms as well as on inte-
grating the user in the exploration process. Integrating visual and nonvisual methods in order
to support a variety of exploration tasks, such as identifying patterns in large unstructured
heterogeneous information or identifying clusters or studying data in different clusters in de-
tail etc., requires sophisticated machine learning algorithms, visual methods, and interaction
techniques.

Ankerst [2001] classified visual data mining approaches into three categories. Approaches
of the first type apply visual methods independently of data mining algorithms. The second
type uses visual methods in order to represent patterns and results from mining algorithms
graphically. The third type tightly integrates both mining algorithms and visual methods in
such a way that intermediate steps of the mining algorithms can be visualised and further
guided by the domain expert. This tight integration allows users to control and steer the
mining process directly based on the visual feedback they receive. The approach we present
here belongs to the third type; we introduce a flexible framework for visual data mining
which combines principled projection algorithms developed in the machine learning domain
and advanced visual representation techniques to provide feedback and involve the domain
expert in the model development process.

A visual data exploration framework requires to be implemented in an easy-to-use inter-
face. Shneiderman’s mantra of “Overview first, zoom and filter, details-on-demand” [Shnei-
derman, 1996] nicely summarises the design philosophy of modern information visualisation
systems for better usability. First, the user needs to get an overview of the data. In the
second stage, the user identifies interesting patterns and focuses on one or more of them.

Finally, to analyse patterns in detail, the user needs to drill down and access details of the
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data. Visual representation and interaction techniques may be used for all three steps of
the data exploration process [Kreuseler and Schumann, 2002]. The interface we developed
using our framework follows Shneiderman’s mantra to provide an effective user interface. The
advantage of such an interface is that the user is directly involved in the data mining process
taking advantage of powerful and principled machine learning algorithms.

As reviewed in [Ferreira de Oliveira and Levkowitz, 2003], traditional projection methods
such as principle component analysis (PCA) [Bishop, 1995], factor analysis (FA) [Harman,
1967, multi-dimensional scaling (MDS) [Young, 1987], Sammon’s mapping [Sammon, 1969
and the self-organizing maps (SOM) [Kohonen, 1995] are already widely used in the knowledge
discovery and data mining domain [Hoffman et al., 1997; Wang and Wang, 2002; Koua and
Kraak, 2004; Huang et al., 2005]. For many real-life high-dimensional datasets, the generative
topographic mapping (GTM) [Bishop et al., 1998], a principled projection algorithm, provides
better (i.e. more informative) projections than those obtained from traditional methods, such
as PCA, Sammon’s mapping, and SOM [Maniyar et al., 2006]. Moreover, since the GTM
provides a probabilistic representation of the projection manifold, it is possible to analytically
define and calculate (local) geometric properties anywhere on the manifold. For example, we
can calculate the local magnification factors [Bishop et al., 1997b], which describe how small
regions in the visualisation space are stretched or compressed when mapped to the data space.
Note that it is not possible to obtain magnification factors for Sammon’s mapping. For PCA,
the magnification factors are constant as it is a linear map. For the SOM, the magnification
factors can only be approximated [Bishop et al., 1997¢c]. It is also possible in the GTM to
calculate analytically the local directional curvatures of the projection manifold to provide
the user with a facility for monitoring the amount of folding and neighbourhood preservation
in the projection manifold [Tiito et al., 2001a]. The details of how these geometric properties
of manifold can be used during visual data mining are presented in Section 3.4.

Moreover, it has been argued that a single two-dimensional projection, even if it is
non-linear, is not usually sufficient to capture all of the interesting aspects of a large high-
dimensional datasets. Hierarchical extensions of visualisation methods allow the user to “drill
down” into the data; each plot covers a smaller region and it is therefore easier to discern
the structure of the data. Hierarchical GTM (HGTM) is a hierarchical visualisation system
which allows the user to explore interesting regions in more detail [Tiilo et al., 2001b]. In
Chapter 4, we also demonstrate how probabilistic hierarchical visualisation models can be

used to develop effective local prediction models [Maniyar and Nabney, 2005].
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The results presented, on a real-life dataset from the chemoinformatics domain, clearly
show that the interface developed using the framework proposed in this chapter provides a
useful platform for visual data mining of large high-dimensional datasets. Projection results
of GTM are analytically compared with projection results from other methods traditionally
used in the drug discovery domain.

The remainder of this chapter is organised as follows. The next section discusses related
work in the visual data mining community. In Section 3.3, we provide an overview of some
existing techniques for mapping a high-dimensional data set to a low dimensional embedding.
The main information visualisation and interaction techniques we used are described in Sec-
tion 3.4. The integrated visual data exploration framework we propose is discussed in Section
3.5 with a brief discussion of the software implementation we have developed. In Section 3.6
we present the evaluation methods used to assess the quality of the projection results. A
detailed case study is presented in Section 3.7 on a real-life datasets from chemoinformatics.
In Section 3.8, we discuss computational costs for the projection algorithms. Finally, we draw

the main conclusions from this work in Section 3.9.

3.2 Related work

Popular data exploration software in pharmaceutical research, such as SpotFire, include tra-
ditional statistical projection algorithms (PCA, FA, MDS) and powerful visual techniques for
further exploration, but not much work has been done to utilise advanced projection algo-
rithms frem machine learning community to explore large high-dimensional chemoinformatics
datasets. Though the projection methods implemented in SpotFire have been of some help,
they fail to provide effective grouping (clustering) while projecting high-dimensional complex
datasets onto lower dimensions.

Research in the visual data mining domain has attempted to bring machine learning and
visual techniques together to some extend but mainly the focus here has been the visual
techniques. A typical use of visualisation in mining consists of visually conveying the results
of a mining task, such as clustering or classification, to enhance user interpretation. Following
are a few examples of such systems.

Hoffman et al. [1997] provided a case study describing how high-dimensional visual data
exploration techniques such as RadViz [Ankerst et al., 1996], parallel coordinates [Inselberg
and Dims‘dale‘, 1990] and Sammon’s mapping have been used in combination with rule-based

classifiers and neural networks to classify DNA sequences. It proved to be a good way of
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providing visual interaction but Sammon’s mapping is not always effective for large high-
dimensional datasets. Another example is given by the BLOB and H-BLOB clustering algo-
rithms [Gross et al., 1995; Sprenger et al., 2002], which use implicit surfaces for visualising
data clusters. The SOM has been 5pplied in data mining and multidimensional exploratory
data analysis in several domains [Vesanto, 1999, 2000]. Hinneburg et al. [1999] illustrates
tight coupling of visualisation resources into a mining technique. Other recent work of im-
portance which has focussed on forming the proximity matrix includes Isomap [Tenenbaum
et al., 2000], where an approximation to geodesic distance is used to obtain spectral cluster-
ing. The proximity data is derived from a graph which is generated over all data points by
connecting points i and j if they are closer than e (e-isomap).

As discussed above, there has been some efforts to utilise recent development in unsu-
pervised projection algorithms in the visual data exploration frameworks, but traditionally
the visual data mining domain has been dominated by information visualisation researchers.
Scientists in information visualisation domain have developed powerful techniques to visu-
alise and provide effective interactions, but advances in machine learning have not been fully
exploited. In the last 10 years, the machine learning and statistics communities have devel-
oped a range of principled projection algorithms which can provide effective projection for
high-dimensional complex datasets found in chemoinformatics domain. One of our main aims
in this research is to develop an integrated visual data exploration tool which integrates the
most effective projection techniques from machine learning with powerful visual aids from
information visualisation to provide effective solutions for challenges in chemoinformatics.

In the following section we briefly introduce important projection algorithms.

3.3 Projection algorithms

The problem of finding a low-dimensional representation of high-dimensional data is not
new and a considerable number of models have been suggested in the statistics and machine
learning literature. This section provides a brief introduction to some of the important

projection algorithms, they are broadly categorised into

e projection models: They aim at finding low-dimensional manifolds in the space of
the data, such that the distance between data and its projection on the manifold is
small. Principal component analysis (PCA) is reviewed in Section 3.3.1 as an example

of this category.
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e generative models: They try to model the distribution of the data by defining a
density model with low intrinsic dimensionality in the data space. In this category,
we discuss factor analysis (FA), probabilistic PCA (PPCA), generative topographic
mapping (GTM) and hierarchical GTM (HGTM) in Sections 3.3.2 to 3.3.4.

e other models: Models not belonging to any of the previous two categories are clas-
sified as other models. In this category, we discuss self-organizing maps (SOM) in

Section 3.3.5 and approaches based on multidimensional scaling in Section 3.3.6.

Finally we end this section with a discussion in section 3.3.7, highlighting important issues

and giving a comparison matrix.

3.3.1 Principal component analysis (PCA)

Principal component analysis (PCA) [Jolliffe, 2002] is a multivariate procedure which rotates
the data such that maximum variabilities are projected onto the axes. Essentially, a set of
correlated variables are transformed into a set of uncorrelated variables which can be ordered
by reducing variability. The uncorrelated variables are linear combinations of the original
variables, and in many cases the last few of these variables can be removed with minimum
loss of information.

The first principal component is the combination of variables that explains the greatest
amount of variation. Subject to being orthogonal to the first principal component, the second
principal component defines the next largest amount of variation to the first principal compo-
nent. If the data covariance matrix has full rank, there can be as many principal components
as there are variables.

Given a set of observations t, € R”? . n = 1,..., N, which are centred, Zﬁ;l t, = 0, in

PCA we find the principal components by diagonalising the covariance maftrix,

N
C = %ZtntnT, (3.1)
n=1
and then finding its eigen-structure
CU =UA. (3.2)
U is a D x D matrix which has the unit length eigenvectors, uj,...,up, as its columns
and A is diagonal matrix with the corresponding eigenvalues, Aj,...,Ap, along the diagonal.

The eigenvectors are the principal components and the eigenvalues are the corresponding

variances.
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It is difficult to control and navigate more than two-dimensional representation of data
on a computer screen which is a two-dimensional device. Thus our aim is to project higher-
dimensional datasets onto two dimensions and use three or more dimensional representation
only in rare cases. Since we want to project multi-dimensional data onto two dimensions,
we use the first two principal components for projection. PCA is the most commonly used
of the projection models in current practice. The fact that PCA defines a linear, orthogonal
model space gives it favourable computational properties, but it is also its main limitation

since any non-linear correlation between variables will not be captured.

3.3.2 Factor analysis (FA)

Traditionally, factor analysis (FA) [Bartholomew, 1984; Gorsuch, 1996] has been the ‘gener-
ative cousin’ of PCA; in fact, the two techniques are sometimes confused. The key difference
is that where PCA is focusing on variance, FA focus on covariance. Covariance between a
set of observed variables is seen as an indication that these variables are, if only to a certain
extent, functions of a common latent factor. The effect of this difference becomes apparent
when the observed variables are subject to significantly different noise levels. While PCA
will try to capture all variance in the data, including variance due to noise affecting only
individual variables, FA will focus on the covariance, regarding additional variability in the
observed variables as noise.

Factor analysis represents an observed D-dimensional continuous variable, t, as a linear
function of an L-dimensional coutinuous latent variable, x, and an independent Gaussian

noise process, €,

t=Wx+p+e (3.3)

Here W is a D x L matrix defining the linear function relating the two sets of variables,
while the parameter vector g permits the model to have non-zero mean. The motivation
is that, with D < L, the latent variables will offer a more parsimonious explanation of the
dependencies between the observations. Conventionally, x ~ N(0,I), and the latent variables
are defined to be independent and Gaussian with unit variance. By additionally specifying
the error, or noise, model to be likewise Gaussian € ~ N(0,%), equation (3.3) induces a
corresponding Gaussian distribution for the observations t ~ N(p, WW T + ). The model
parameters can then be determined by maximum-likelihood, although because there is no

closed-form analytic solution for W and 1, their values must be obtained via an iterative
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Hierarchical GTM (HGTM)
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Level 11

Level 2 Q

Level 3 :>

Figure 3.2: An example structure for the HGTM model.

Level(M) £ Frha ;
n(M) = JI . m(Path(M); | Path(M)i-y),

1=2
where Path(M) = (Root, ..., M) is the N-tuple (N :E'/L'ei)él(fM‘)') ’6f/f/i1“0d’¢s" defining the path
in 7 from Root to M. FAaR 0

(3.9)

The distribution given by the hiera,rchicalf5m§delfi'/'/' mixt

eI T) = 3

Me Leaves(T)

Thus we obtain a soft segmentation of the mput spa e fron

in the context of data visualisation can be useful for determmmg the relatlonshxp

related subplots in the hierarchy.

The HGTM is trained using a variant of the EM algorlthm to ma.xnmse 1ts hkehhood w1th< ;

respect to the data sample ¢ = {t1,to, ..., t N} Trammg of a hlerarchy:of GTMS proceeds in

a recursive fashion. Visualisation and mteractlon 1s prov1ded to the domam experts durmg

the intermediate steps of training an HGTM model A deta,lledcdescmptlon of the 1nteract10n

we provide in the software tool we devcloped is glven in sect10n’3 5

3.3.5 Self-organizing maps (SOMK)/ a

The SOM is a popular unsupervised learning algorithm, based on a grid of artiﬁ,gi;x:l, neuron H

whose weights are adapted to match input vectors in a fraining set _[Kohongr,;/,w,lg%}i, ;
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are many variants of SOM traini‘ng’algofiﬁhmé\;,:’I‘h.
berdescribed as follows.
A setiof reference vectors x; is defined in the data space m.whl;

with a node on a regular lattice in a (typically) tw ‘fea,ture map’. ‘The algonthm:

begins by initialising the reference vectors (for example tt ’gsthem to random val‘ues by'

setting them equal to a random subset of the data pomts or y smg principal component

analysis). Each cycle of the algorithm then proceeds as foll@ . /Qr;;ev,,erykdat.a, vector t, the
corresponding ‘winning node’ j(n) is identified, corresponding to the reference vector x; with

the smallest Euclidean distance ||x; — tn|[? to-t, . The reference vectors are then updated

by setting them equal to weighted averages of the data points:given by

25 Mij(nytn
zn h’ij (n)

where h;; is a neighbourhood function associated with the ith node. This is generally chosen

X; =

3

to be a uni-modal function of the feature map coordinates centred on the winning node, for
example a Gaussian. The steps of identifying the winning nodes and updating the reference
vectors are repeated iteratively. A key ingredient in the algorithm is that the width of the
neighbourhood function h;; starts with a relatively large value and is /griadually reduced after

each iteration.

3.3.6 Multidimensional scaling (MDS)

We have already mentioned several projection techniques which rely on learning a mapping
from a latent space (the embedded space) to the data space. In this section we will briéﬂ_y\
review methods that use proximity data to obtain a projection in the opposite direction.
Broadly speaking, these methods are all variants or en-hahcement;s of the technique known as-“

multidimensional scaling (MDS) [Cox and Cox, 2001] leen an N x N matrix of ‘distances’,

D, between N points, MDS gives a correspondlng set of N pomts X = {x1,X2,...,XN} In
an L-dimensional space, such that the distances between points in X reflect those given in
D. The ‘distances’ need not be Euclidean distances, but can be more general, e.g. distance
measures for categorical variables or subjective measures of sir‘r}ilar‘i’c‘)/(;ﬁ which case they are
often called dissimilarities. These dissimilarities are the only iﬁi’oﬁna’cion about the data, ﬁha‘c
is required, so indeed the data does not even need to have an explicit form. However, in the
context that we are interested in, where the data has an explicit representation as a set of

points in RP, for which the Euclidean distance is the obvious dissimilarity measure, it can be
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popular variants of MDS model.

Sammon’s mapping

Sammon’s mapping [Sammon, 1969] represents a particular form of MDS [Ripley, 1996] —
the basic idea is the same, but Sammon’s mapping pays more attention to smaller distances,
thereby achieving a varying resolution in the new representation of the data. Regions with
a dense population of data points, between which distances are large, will be ‘magnified’ in
the new representation because of relative distance differences. To formalise, given a set of
‘distances’ between N data points®, the Sammon’s mapping tries to find the set of points
{xp}, n =1,2,... ,N . in RE that minimises the stress measure, E. The stress measure

emphasises large distances (because of squared term) as,

N N
E=>Y > (d—dy)? (3.12)

i j>i
dij =l xi —xg [l v s s - (313)
dij =l ti —t; || - (3.14)

Neuroscale

FEATURE SPACE
DATA SPACE

Figure 3.3: Schematic representation of the Neuroscale model.

1We assume that these distances are symmetric and that the distance from a point to itself is zero.
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(in this case characterised by Fuclidean distance) between points in the data spae_e_x
latent space (x). As shown in Figure 3.3 (adapted /from;‘[/’]f‘ip.pijng‘and Lowe, ‘19‘9.8_];)',: .
The topographic nature of the transformation-is impdée&:by the “stress” term, similar to
(3.12), which accounts for the preservation of inter-point similarity.
Points are projected from the data space ontothe latent space by means of a radial basis
function (RBF) neural network which adapts to the required projection mapping. The RBF
parameters are defined by minimising the “stress” term, rather than the traditional residual

error minimisation. Now the targets are projected using the RBF as

t = Weh(x). (3.15)

where W is a weight matrix and ¢(-) are the basis functions.

3.3.7 Discussion

We have reviewed a number of algorithms intended to capture the low-dimensional structure
of data in high-dimensional spaces, or at least provide a low-dimensional representation of
this data. FA and PCA, are both linear models, but FA allows for a/iricher noise'mod'el than
PCA. All other algorithms mentioned in this section have a non-linear interpretatioh. In

Table 3.1 we have summarised some of the properties of these algorithms/models.

{ | Proximity | X = T | T — X | Non-linear | Probabilistic | Convex

PCA I Y Y I Y
FA Y Y Y Y
PPCA Y Y
GTM Y Y Y
SOM Y Y
Sammon’s mapping Y Y
Neuroscale Y Y Y

Table 3.1: Overview of the relationship between the projection algorithms. A ‘Y’ indicates
the algorithm exhibits that property, an ‘I’ indicates that there is an interpretation of the
algorithm that exhibits the associated property. The characteristics of the algorithm are:
proximity: is the method based on proximity data? X — T: does the method lead to a
mapping from the embedded (latent-space) to the data-space? T — X: does the method
lead to a mapping from data to embedded space? Non-linear: does the method allow for non-
linear embedding? Probabilistic: is the method probabilistic? Convex: algorithms that are
considered convex have a unique solution, for the others local optima can occur (presenting
the relationships in this way was inspired by a similar table in [Lawrence, 2005}).
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Although the SOM has been the subject of a c_bnsidérabl_e amount of research a,ﬁd has
been applied to a wide range of tasks (including in drug discovery domain), t'h,(\a;r\r}gjor:lpréble :
with SOM is that it does not define a density model in the data space. Because @  this there
are other issues like, the SOM training algorithm does not optimise an objective function,
there is no general guarantee the training algorithm will cénVerge, there is no theoretical
framework based on which appropriate values for the model parameters can be chosen, and it
is not obvious how SOM models should be compared to other SOM models: “This has inspired
the search for re-formulations of the SOM within the framework of probability theory and
statistics. In fact, GTM was proposed as a principled alternative to the SOM [Bishop et al.,
1997al.

A striking fact is that two of the ‘non-generative’ models that we considered - PCA
and the SOM - have been re-interpreted or reformulated for the purpose of bringing them
into the family of generative models. The attraction of this type of model stems from the
fact it fits into the much wider framework of probability theory and statistics. They can
therefore directly make use of well-founded theory for fitting models to data, combining
models, treatment of incomplete data, and other extensions such as developing guided local
models (discussed in Chapter 4) and estimating feature relevance (discussed in Chapter 5).

The GTM outlined above is typically designed to embed a data set in-two dimensions; it
relies on either randomly sampled latent space centres, or a grid of points in the latent space
to achieve this embedding, this causes problems when the dimensionality of the latent space
increases. For the GTM, the data distribution is not that important as (with enough kernels)
it can model an arbitrary distribution.

Point representations of the latent space are useful because they allow for non-linear
models: each point is easy to propagate through the non-linear mapping to the data space.
These non-linear mappings are designed to address the weaknesses in visualising data sets
that arise when using standard statistical tools that rely on linear mappings, such as principal
component analysis (PCA) and factor analysis (FA): with a linear mapping it may not be
possible to reflect the structure of the data through a low dimensional embedding.

Sammon’s mapping suffer from a weakness in that the projection of data points which
were not in the original data set can be computationally demanding, i.e. despite their name
they do not provide an explicit mapping between the data and latent-space. The lack of a
mapping was addressed by the Neuroscale algorithm, so in this thesis we use Neuroscale for

benchmarking this category of projection methods.
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Latent space H Data space D

Figure 3.5: An explanation of local directional derivative of the visualisation manifold. A
straight line x(b) passing through the point xo in the latent space 'H is mapped via f to the
curve u(b) = f(x(b)) in the data space D. Curvature of p at f(x0) = p(0) is related to the
directional curvature of the projection manifold f(H) with respect to the direction h. The
tangent vector f1(0) to p at p(0) lies in Ty, (dashed rectangle), the tangent plane of the
manifold f(H) at p(0) (adapted from [Tifo et al., 2001a}).

3.4.2 Directional curvatures (DC)

Tifio et al. [2001a] derived a closed-form formula for directional curvatures of the GTM
projection manifold, €, for a latent space point x € ‘H and a directional vector h € H.
Directional curvature plots allow the user to observe the direction and amount of folding in
the GTM manifold. This can help the user detect regions where the GTM manifold does not
fit the data well. It is possible that groups of data points far apart when projected onto the
projection manifold are close together in the data space due to high folding in the manifold.
This neighbourhood preservation in the data space can be spotted with a strong curvature
band on the corresponding directional curvature plot. The idea of directional curvature-is
explained in figure 3.5.

The direction of folding in the projection manifold plot is presented using a small line for
each part of the projection manifold in the directional curvature plots (e.g., see Figure 3.6).
In this example, and other directional curvatures plot presented in this thesis, direction
curvatures were calculated in 16 certain directions. Maximal curvature was plotted as a
small line for each region. The length and the shade of the background colour represents the
magnitude of folding. The longer the line and the lighter the background colour, higher the

folding (curvature).
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Figure 3.6: An example directional curvatures plot.

3.4.3 Local parallel coordinates

The parallel coordinates technique [Inselberg and Dimsdale, 1990] maps a D-dimensional
data space onto two display dimensions by using D equidistant axes which are parallel to one
of the display axes. It displays each multi-dimensional datapomt as a polygonal line which
intersects the horizontal dimension axes at the position cofréisp&t;d;né to the dat_atvalue for
the corresponding dimension. 7 At '

Instead of displaying parallel coordinates for all the data points together, which is im-
practical for a large dataset, we provide an interactive facility to let the user select a point
on the projection manifold and display parallel coordinates for a few nearest neighbours of
that selected point. Figure 3.7 displays an example of parallel coordinates used on a GTM
projection: when the user clicks on a point in the projection (upper plot), the data space visu-
alisation graph shows a colour coded plot of normalised property values for a group of points
close in the projection space. We call this a local parallel coordinates technique. This facility
has proved very useful for the domain experts at Pfizer to understand large high-dimensional
datasets. Using this facility, the user can study properties of a point in the high-dimensional
data space while working with the lower-dimensional latent (projection) space. A detailed
example discussing how local parallel coordinates are used to explore a projection manifold

is presented in Section 3.7.4.
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3.4.4 Billboarding

For many real-life datasets which have a natural representation, e.g. chemical’y}\éomp\;)\ﬁ\:rl\\é‘”
structure, handwritten digit recognition, face recognition, galaxy classification, eﬁc.,‘using
this natural representation of data points in the projection is more helpful for understanding
the data compared with data represented by labelled and/or coloured dots.

Here the term ‘billboarding’ means visualising a natural representation of a data point in
the form of an image, in such a way that the image always faces the viewer (even in 3D). A
chemical compound structure or a hand written digit image is certainly more user-friendly
than a dot.

Partiview [Levy, 2001] is an interactive 3D visualisation tool supporting a billboarding
facility, primarily created for astronomy-related applications. But recently it has been suc-
cessfully used for visualising the output of some machine learning algorithms [Surendran and
Levy, 2004].

The number of pictures that can be displayed at a time depends on how much graphics
memory is present. Figure 3.8 presents a close up of the points visualised for the MNIST
database [LeCun et al., 1998] using Laplacian eigenmaps [Belkin and Niyogi, 2003]. Billboard-
ing presentation of images of the handwritten digits provides us an intuitive visualisation and
can help us to identify why certain data points are misclassified (e.g., notice that in Figure 3.8,
images of 7s and 9s on the top left corner of the plot are quite similar). Partiview also pro-
vides many useful interaction facilities, such as 3D zooming and traversal, selective plotting

of classes, properties displace, etc. [Levy, 2001].

3.5 The integrated visual data exploration framework

The integrated visual data exploration framework combines principled projection algorithms,
discussed in Section 3.3, and visual techniques, discussed in Section 3.4, to achieve a better
understanding of a high-dimensional data space. It follows Shneiderman’s mantra [Shnei-
derman, 1996], “Overview first, zoom and filter, details on demand”, to provide an effective
interface.

To support the ‘overview first’ stage of Shneiderman’s mantra, output of the projection
algorithms and basic visualisation aids such as coloured labelling, rotate, etc., are provided.
For the second stage, ‘zoom and filter’, visualisation aids such as zooming, filtering interest-

ing regions on the projection manifold with the use of magnification factor and directional
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curvatures plots, etc., are provided. This allows the user to identify and concentrate on
interesting subsets of the projection we obtained in the first stage. The third stage, ‘details-
on-demand’, is supported using local parallel coordinates and billboarding. Integration with
other visualisation tools is also possible at various stages.

Moreover, since a single two-dimensional projection, even if it is non-linear, is not usually
sufficient to capture all of the interesting aspects of a large high-dimensional data sets, a
hierarchical system which allows the user to interactively drill down in the projection can be
useful.

Interactive visual methods support the construction of hierarchical models, such as HGTM,
and allow the user to informatively explore interesting regions in more detail. Visual aids
described in Section 3.4 are provided at each stage of the HGTM model development. First,
a base (Root) GTM is trained and used to visualise the data. Then the user identifies in-
teresting regions on the visualisation plot that they would like to explore in greater detail.
In particular, the user chooses a collection of points, ¢; € H, by clicking on the projection
plot. The “regions of interest” given by these points (centres) are then transformed into the
data space as Voronoi compartments [Aurenhammer, 1991] defined by the mapped points
froot(ci) € D, where froot is the map of the Root GTM. The child GTMs are initiated by lo-
cal PCA in the corresponding Voronoi compartments [Tinio and Nabney, 2002]. After training
the child GTMs and seeing the lower level visualisation plots, the user may decide to proceed
further ard model in greater detail some portions of the lower level plots, etc.

When the dataset is very large, the higher-level projection plots may be cluttered and
confused (with densely clustered and overlapping projections). This makes it difficult for
the user to select locations for submodels at the next level. In such cases, an alternative
semi-automatic submodel initialisation algorithm [Nabney et al., 2005], based on minimum
message length (MML) [Wallace and Dowe, 1999] criteria, which decides both the number
of submodels and their location can be used for higher-level projections of the visualisation
hierarchy and then the domain expert can take control to guide the lower-level projections.

Visualisation is a valuable tool for exploring and understanding data, but in many appli-
cations the fundamental task is one of prediction. It has been argued that a single global clas-
sification,/regression model can rarely capture the full variability of a huge multi-dimensional
dataset. Instead, local models, each focused on a separate area of input space (a cluster),
often work better since the mapping in different areas may vary. The framework also sup-

ports the guided mixture of local experts model, which uses the soft segmentation obtained
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using probabilistic hierarchical visualisation algorithms, such-as HGTM, to formulate the
guided local mixture of experts model [Maniyar and Nabney, 2005]. Thus the visual mining
framework is not just a visual exploration tool but also supports guided modelling where the
domain expert is closely involved. Details on this are in Chapter 4.

One of the main novelties of this framework is that we have identified principled projec-
tion algorithms from the machine learning domain which effectively project multi-dimensional
datasets found in the drug-discovery domain and integrated them with suitable visual explo-

ration techniques from the information visualisation domain.

The software tool

We have developed an interactive software tool that supports this integrated visual data
exploratidn framework [Maniyar, 2006]. The interface was developed in MaTtLAB? using the
NETLAB toolbox [Nabney, 2001]. The tool supports several projection methods, such as PCA,
PPCA, GTM, HGTM, SOM and Neuroscale, and useful information visualisation techniques
discussed in Section 3.4. The interface has proved useful for domain experts to understand
and mine large high-dimensional datasets. A website? is set up for the tool which provides

access to the user manual and other information.

3.6 Evaluation methods

In some datasets there are labels attached to data points. We would like the visualisation pro-
jection to show good separation between these classes. The class information is not included
when training the visualisation models but is used for better presentation (eg. through colour
or marker style or both). Though visually we can observe the effectiveness of a projection in
such a coloured plot, it is hard to compare objectively projections obtained using different
methods. We employed the following three evaluation methods to compare different aspects

of the projections.

3.6.1 Kullback-Leibler (KL) divergence

It is useful to get an analytical measurement of the separation between different data classes
in the projections. To obtain such a measurement, first we fit a Gaussian mixture model

(GMM) [Bishop, 1995] to each class in the projection space and then we calculate the

2The MathWorks Inc., http://www.mathworks.com/
3http://www.ncrg.aston.ac.uk/ maniyard/dvms/
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Kullback-Leibler (KL) divergence [Cover and Thomas, 1991] between the fitted GMMs:

Dict(ra 1) = X pala) log 222, (3.16)

where p, and p, are the GMMs for classes a and b respectively. Since KL-divergence is an
asymmetric measure we calculate Dy for each class pair in both directions and sum the
values up to obtain a KL-divergence sum, sk, as below

M M

SKL = Z ZDKL(pa Il pb)s (3.17)

a=1 b=1
where M is the number of classes. The greater the value of KL-divergence sum, the greater

the separation between classes.

3.6.2 Nearest-Neighbour (NN) classification error

Though data visualisation is an unsupervised learning problem, it can be useful to objectively
evaluate the quality of a classifier based on the visualisation output. We calculate the Nearest-
Neighbour (NN) classification error when we classify each data point according to the class
of its nearest neighbour in the two dimensional latent space obtained by the visualisation

algorithms.

3.6.3 Magnification Factors (MF) sum

As discussed in Section 3.4.1, one of the main advantages of using GTM-based models is
that it is possible to analytically calculate manifold properties such as the magnification
factors (MF). We sum the MF for each grid on the projection manifold to obtain an overall
measure of the magnification. This measurement is useful to compare manifold properties of

GTM-based models in chapter 5 where we present an extension to GTM for feature selection.

3.7 A case study : HTS dataset

The physicochemical properties of a drug have an important impact on its ‘drug-likeness’ and
safety aspects so a careful study these properties coupled with their biological response against
a target is crucial for a successful drug discovery programme. A typical challenge in the early
stages of the drug discovery process is to understand and explore large datasets containing
high-throughput screening (HTS) results (biological activity) alongside some whole-molecule

properties [Englebienne, 2005]. Screening scientists are interested in studying and exploring
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| Label Description | Marker [ Compounds ]
Not active in any screen ® 21540

Active for peptidergic typel + 236

Active for peptidergic type2 s 362

Active for aminergic typel O 100

Active for aminergic type2 818

Active for kinase O 412

Active for more than 1 screen o 132

Table 3.2: Marker information and compound distribution across labels for the HTS dataset.

clusters of active compounds to understand the data and make informed decisions for future
library design and assays development. The HTS dataset provided by the chemists at Pfizer

is described below:

3.7.1 The dataset

The HTS dataset is composed of 23,600 compounds with values for biological activity data
(% of response?) for five different biological targets and 11 whole-molecular physicochemical
properties.

Out of these five biological targets, two are peptidergic G-Protein coupled receptor (GPCR)
targets, two are aminergic GPCR, targets, and one is a kinase target. The four GPCR targets
are of related receptor types whilst the kinase is a completely unrelated enzyme target class.
Table 3.2 lists the label information and distribution of compounds in different labels. Table

3.3 lists the physicochemical properties used.

3.7.2 Preprocessing

Since different input variables in the dataset have different ranges, before the development
of visualisation models we apply a linear transformation (Z-score transformation) to have

similar ranges for all variables. Each variable is treated independently and is rescaled as

follows:
N
1 n
b= Zmi (3.18)
n=1
1 N
2 - P 2
g;" = ]\7 1 Z(.I,i” — /,Lz') N (319)
n=1
‘Efficacy of compound at a single concentration, which is expressed as
(Measured response—Minimun response) 100.

(Mazimum response—Minumurn response)
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Property name | Description

Logarithm of the ratio of a molecule’s solubility

ALogP . . i
in n-octanol to its solubility in water

Molecular solubility | Logarithm of solubility of compound in water
(measured in mol/litre)

Number of atoms Total number of atoms in the compound

Number of bonds Total number of bonds in the compound

Number of hydrogens Total number of hydrogens in the compound

Number of ring

bonds Total number of rings in the compound

bonds not in a ring and not terminal

Number of rotatable Number of single bonds between heavy atoms that are both

Number of hydrogen .
Total number of hydrogen acceptors in the compound
acceptors

Number of hydrogen .
Total number of hydrogen donors in the compound

donors

Molecular polar Total surface area for nitrogen and oxygen atoms,
surface area and any atom with a non-zero formal charge
Molecular weight The molecular weight of the compound

Table 3.3: Molecular physicochemical properties used in the HTS dataset.

where n = 1,..., N indexes the patterns, and u; and o;? represent mean and variance of
variable 7 respectively. Then the values are scaled by

i 3«,-.7’4 —
gr= 2 B (3.20)
g3
where Z7 is the scaled value of variable i for the pattern n. Figure 3.9 shows histograms of

all the 16 variables after the scaling. These show approximately normal distributions.

3.7.3 The analysis

We consider two applications using this dataset. In the first application, the aim is to
understand and explore a large dataset containing past HTS results (biological activity data)
alongside the whole-molecule properties. The objective in the second application using this
dataset is to visualise the dataset with only the whole-molecule physicochemical properties
as input to understand and prioritise unscreened compounds from a virtual library® to select
compounds for future HTS campaigns.

50% of the dataset was used as the training set and the remaining 50% was used as the

5A compound library which has no physical existence, being constructed solely in electronic form. The
building blocks required for such a library may not exist, and the chemical steps for such a library may not
have been tested. These libraries are used in the design and evaluation of possible libraries (physical).
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Not surprisingly, for an extremely large high-dimensional dataset such as this, PCA,
Neuroscale, and the SOM did not prove effective. The projections obtained using PCA
(on the first two significant principal components), Neuroscale, and SOM visualisation are
presented in Figure 3.10(a), Figure 3.10(b), and Figure 3.10(c) respectively. The visualisation
results of all these three algorithms do not show any useful separation of the active compounds
from the inactive compounds. The projected data is like a ‘blob’ and there is no apparent
clustering; this does not give much insight into the detailed structure of the data. Active
compounds are distributed all over the plots instead of forming any cluster and thus the
results are not very useful to understand the dataset.

The GTM visualisation results are shown in Figure 3.10(d). The GTM plot shows clear
clusters for the compounds active for different targets and is certainly more informative. It
is easier to understand and explore the data space using the GTM projection compared to
the projection we obtained using the other visualisation techniques.

The information visualisation facilities (discussed in Section 3.4) integrated in the visual
data exploration framework have proved useful during the various stages of data exploration.
Local parallel coordinate plots help us to observe variations in the patterns in different regions
of a projection plot. Figure 3.11 shows how patterns of biological activity and physicochemical
properties vary in different regions of the GTM projection. A careful study with the parallel
coordinate technique reveals interesting structures in the projection space. It can be observed
that the active compounds for different targets are nicely clustered. The compounds active for
peptidergic type 1 (marked as +) and peptidergic type 2 (marked as «) targets are respectively
clustered at the middle and bottom-right of the GTM projection plot (Figure 3.10(d)). Close
study using the software tool reveals that the compounds marked as ‘o’, present in the
clusters for peptidergic type 1 and peptidergic type 2, are the active compounds for both
of the peptidergic targets. That is in line with the fact that some compounds are active
for both of the peptidergic targets. The compounds active for aminergic type 1 (marked
as [0) and aminergic type 2 (marked as /) targets are respectively clustered separately at
bottom-left and middle-right of the GTM projection plot (Figure 3.10(d)). The compounds
active for kinase target (marked as O) are mostly clustered at top-middle of the plot. Such
different clusters are useful to understand the diversity of compounds for different targets.
The compounds active for more than one target (marked as o) are useful to observe overlaps
and to understand the similarity of compounds active for different targets. It was observed

that many inactive compounds (marked as e) near the active compounds have activities
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Significant Principal Components (with Eigenvalue > 1)

1 2 3 4
Number of atoms 984
Number of bonds 974
Molecular weight 968
Number of hydrogens 757 327
Number of ring bonds .740 —.310 310 —.312
Molecular solubility —.726 AT8 301
Number of rotatable ring bonds 584 403 —.268 411 —.321
Molecular polar surface area 393 781
AlogP 011 —-.715
Number of hydrogen acceptors 517 .684 .268
Number of hydrogen donors .660 —.395
Active for aminergic type2 694
Active for aminergic typel 061
Active for peptidergic type2 .392 389
Active for kinase —.355
Active for peptidergic typel 768

Table 3.5: Component matrix with factor loading sorted in ascending order. The threshold
for a loading, [, to be included is | I |> 0.3.
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also to understand areas of overlap. The observation that a few physicochemical parameters
with a combination of screening results can be successfully used to characterise active from
inactive compounds is in agreement with the recent work of Diller and Hobbs [2004]. It is
also in line with the observations at Pfizer that the properties (molecular weight, AlogP,
polar surface area etc.) of molecules active against different target classes show differences
in the distribution and median of the property values [Gribbon and Sewing, 2005]. Visuali-
sation allows the screening scientists to understand these relationships in relation to specific
compounds and in greater depth and detail.

A single 2D projection is not enough for a large dataset since many points are projected on
top of each other. Thus the HGTM is useful to explore regions of a top level GTM projection
in detail.

One of our main aims in this analysis, to understand and explore biological activity
data combined with other whole-molecule physicochemical properties (Application 1, Section
3.7.4), was triggered from the needs of the screening scientists at Pfizer. The GTM and
HGTM projections have proved very useful for the purpose and have out performed the
projections obtained from other visualisation techniques. Even with only whole-molecule
physicochemical properties as input during the model creation (Application 2, Section 3.7.5),
the GTM gave a relatively soft but still useful grouping. As one can expect, the grouping
in the projection obtained with only whole-molecule physicochemical properties as input
is less clear than the grouping in the projection obtained with the biological activity data
also included, since in the former case the model has less information to learn from. The
performance could be improved by including more useful whole-molecule properties in input
dataset (structure information, past HTS results on similar targets, ete.).

Clearly, the leaf nodes of the HGTM hierarchy in Figure 3.13 represent individual groups
of compounds. Using these groupings, it is possible to develop local classifiers to classify
compounds for activity using physicochemical properties and past screening data. A single
global classification/regression model can rarely capture the full behavioural variability of a
huge multi-dimensional dataset such as one used here. Instead, local classification/regression
(expert) maodels, cach focused on a separate arca of input space, often work better since the

behaviour of different areas may vary.
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Figure 3.18: PCA projection on PC 4 and 5. Refer to Table 3.2 for legend.

3.8 Computational cost

Although the rapid development of high-performance computing has to some extent altered
our perception of computational complexity, this issue cannot be ignored in a visual data
exploration framework where user interaction is important.

The computational cost for PCA scales linearly, O(N), in the number of data points (V).
Neuroscale suffers from the fact that the computational demands grow with the square of the
number of data points, O(N?). This is because each evaluation of the stress error requires
the computation of N(N — 1)/2 inter-point distances. In practice, for large data sets, it is
common to apply an initial clustering phase to the data set (using for example the K-means
algorithm), to generate a set of K prototype vectors (where K < NN). Neuroscale can then
be applied to these prototype vectors at a much reduced computational cost. Here we used
Neuroscale with the fast shadow targets training algorithm [Tipping and Lowe, 1998].

The distance calculation between data points and mixture components of reference vec-
tors, respectively, is identical in SOM and GTM training algorithms. Updating the pa-
rameters in SOM training depends on the neighbourhood function. In the experiments
presented here it was continuous on the latent space so the parameter updating scales as
O(M?ND + M?), where M is the number of grid points in the SOM and D is the dimension
of the data space. When updating parameters, the GTM requires a matrix inversion of an
K x K matrix, where K is the number of basis functions, followed by a set of matrix multi-

plications. The matrix inversion scales as O(K 3), while the matrix multiplications scales as
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O(MND), where M is the number of grid points in the GTM latent space®.
Table 3.6 shows the time taken to train different projection models on the training set
using an Intel Pentium 4 - 2.4GHz machine with 2GB of RAM. The implementation of the

algorithms in C/C++ instead of MATLAB could further improve the speed.

![ The model | Time (seconds) | Architecture i

PCA 1] -

Neuroscale 546 | -

SOM 36 | M =256

GTM 42 | M = 256, K = 64

Table 3.6: Training time for different projection models (N = 11800, 20 iterations) for the
HTS dataset.

Once the models are trained, the computational cost to project data for the subsequent

test set scales linearly, O(IN), in the number of data points (N) in the test set.

3.9 Conclusions

To understand a large high-dimensional dataset, close integration of principled projection
methods and information visualisation techniques is useful to develop an effective visual data
exploration framework.

Traditional projection algorithms used in drug discovery, such as PCA, Neuroscale, and
SOM, are not powerful enough for many real-life scientific problems. For example, for the
dataset analysed in this chapter, these techniques proved to be ineffective and failed to gen-
erate additional knowledge, as we could not distinguish populations of molecules active for
different biological targets. GTM certainly gave much better results. Several evaluation
methods clearly showed the effectiveness of the clustering we obtain using GTM compared
to PCA, Neuroscale, and SOM. The GTM algorithm is known as a ‘principled’ alternative
to SOM because it is derived from probability theory and statistics, whereas the SOM is
motivated by heuristic and empirical arguments. Because of its sound theoretical base, other
than similar or better projection results than SOM, useful manifold properties such as mag-
nification factors and directional curvatures can be calculated for a GTM projection.

Magnification factor and directional curvature plots of GTM helped to provide a better
understanding of the projection manifold and its fitting on data in the data space. The

local parallel coordinates technique proved to be a useful tool to understand data points in

6T6 be exact, the matrix multiplications scales as O(M KD + M N D), but normally the number of data
points, N, exceeds the number of basis functions, K.
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interesting regions of the projection manifold more in detail. Since the structure of compounds
is very important in drug discovery, billboarding could be a useful feature for the domain
experts at Pfizer to visualise chemical structures in the projection manifold.

Hierarchical GTM models are useful to explore clusters and interesting local regions in
details in a large dataset. The number of compounds one has to consider during the drug
discovery process is enormous; in such situations, a single GTM projection can look clut-
tered but a well trained HGTM model could be very useful to provide a better grouping.
Effective groupings obtained using HGTM can be used to develop powerful local predictive
models [Maniyar and Nabney, 2005] as described in the next chapter.

The computational cost of training a GTM model is acceptable for inclusion in the visual
data exploration framework. The GTM and HGTM algorithms are scalable so having a large
number of data points during training, causes no difficulty beyond increased computational
cost.

The interface developed using this framework and following Shneiderman’s design guide-
lines provided us with a useful tool for better understanding and exploration of large high-
dimensional datasets. A loose integration (by having capability of exporting the projection
results) of this tool with other industry standard software used in drug discovery domain
such as SpotFire” has given the domain experts more flexibility and a greater range of tools
to work with. Thus the scientists could now apply new algorithms like GTM and HGTM
while maling best use of their existing software. Combining effective use of all these software
tools is likely to increase the chances of identifying active molecules and linking compound

properties with bioclogical activity.

"Spotfire: http://www.spotfire.com/
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Chapter 4

Guided Mixture of Local Experts

In the previous chapter we introduced a visual data exploration framework which helps in
exploring-large high-dimensional datasets. Though, understanding data is very useful, many
tasks involved in chemoinformatics are of prediction, either classification or regression [Wa-
terbeemd and Gifford, 2003; Tino et al., 2004; Plewczynski et al., 2006]. A single global
prediction model cannot capture the full variability of a large & complex data space, such
as chemical space, since the mapping in different regions of the data space may vary. Proba-
bilistic hierarchical visualisation techniques can provide an effective soft segmentation, which
means that points belong to more than one region, of an input space by a visualisation hi-
erarchy whose leaf nodes represent different regions of the input space. We use this soft
segmentation to develop a guided mixture of local experts (GME) algorithm. Moreover, in
this approach the domain experts are more involved in the model development process which
is appropriate for a task, such as drug discovery, that requires intuition and domain knowl-
edge for its successful completion. The performance of the algorithm on real-world datasets
from chemoinformatics is better than the conventional mixture of experts model and popular

global predictive models.

4.1 Introduction

As discussed in Chapter 2, because the high overall attrition rate in drug discovery is caused
mostly by limited ‘drug-likeness’ of the compounds, the early prediction and analysis of
drug-likeness has became common practice in pharmaceutical research. The aim of molecule
screening according to ‘drug-likeness’ properties is early identification and elimination of

candidate molecules that are unlikely to survive later stages of drug discovery (‘fail-early,
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fail-cheap’). Various statistical and machine learning methods are applied to predict ‘drug-
likeness’ parameters (see Section 2.3.2 for further details). Most of these methods involve
developing a single global model for a particular series of compounds or region of the input
space. A barrier to effective prediction using such models is that reliably accurate predic-
tion is limited to a particular region of chemistry space that is covered by the compounds
in the training set, they fail if the datasets have great diversity of compounds. Moreover,
screening scientists (chemists, biologists, etc.) see many prediction models as ‘black boxes’
as often prediction models developed using compounds from certain region of chemical space
do not work effectively for compounds from a different region of chemical space. In a domain
knowledge-driven research process like drug discovery, it is important to involve the domain
experts in the model development process. Therefore, we have developed a modelling ap-
proach which not only can effectively work with heterogeneous spaces such as chemical space
but also involves domain experts.

It has been argued that a single global prediction model can rarely capture the full
variability of a huge multi-dimensional dataset. Instead, local models, each focused on a
separate area of input space, often work better since the mapping in different areas may vary.
One of the most important aspect of developing such local model is to segment the input
space effectively so that each sub-model is trained on a restricted region with limited overlap.

For classification problems, a widely applied method for implementing the Bayes classifier
is based on obtaining the posterior probabilities of class membership through the estimation
of class prior probabilities and class-conditional densities [Duda et al., 2000]. One of the
popular ways to obtain these estimates is independently to apply density estimation methods
to each class-labelled dataset (a hard segmentation). However, such an approach does not
benefit from the existence of any common characteristics among data of different classes (i.e.
segmentation is based on target rather than input). For example, different area of input space
(clusters) may have common characteristics, e.g. it is common to have clusters in chemical
space containing molecules from different series with similar behaviour.

Alternatively, with advances in probabilistic approaches it is possible to divide the prob-
lem into sub-problems which can have common elements - a ‘soft split’ of the input space
into a series of overlapping clusters. Local models developed using soft segmentations, such
as mixture of experts (MoE), are popular in the machine learning community for prediction
tasks [Jacobs et al., 1991]. The MoE can be viewed as a conditional mixture model in which

the distribution of the target variables is given by a mixture of component distributions in
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which the components, as well as the mixing coefficients, are conditioned on the input vari-
ables. The component distributions are referred to as experts, while the mixing coefficients
are controlled by a gating network. Values for the model parameters can be estimated using
maximum likelihood, for which there exists an efficient EM algorithm (further details of Mok
are presented in the next section). Thus the segmentation of the input space is determined
simultaneously with the training of the local experts. Though this process is automatic and
faster then the two step approach presented in this chapter, for large multi-dimensional input
space, the soft segmentation so obtained is not always appropriate, which can affect the over-
all performance of the model. Moreover, the lack of guidance from a domain expert implies
that the segmentation of the input space may not have a useful interpretation. This feature
is very important in drug discovery where the screening scientists and medicinal chemists
would like to understand and interpret the model and the input space.

The algorithm introduced in this chapter takes advantage of probabilistic visualisation
techniques which provide a hierarchy whose leaf nodes represent different regions of the input
space. Because of their probabilistic nature, the sub-model conditional density estimates
(responsibilities) provide a soft segmentation which can be directly used as mixing coefficients
for the development of the mixture of local experts models. Once the responsibilities have
been obtained from the visualisation hierarchy, a separate local expert is trained for each leaf
node in the hierarchy. Each local expert can be relatively simple, while the lack of flexibility
of individual models is compensated for by the overall flexibility of the complete hierarchy.
The overall model structure is similar in spirit to the MoE approach, but since the domain
experts guide the visualisation hierarchy, the advantage of this approach is that the domain
experts are directly involved during the model development process and they may be able to
provide a better (and certainly more meaningful) segmentation.

Here we introduce a general framework for using probabilistic hierarchical visualisation
to develop a guided mixture of local experts model. We also discuss several ways of using
the responsibility matrix obtained from the probabilistic visualisation hierarchy. Building on
recent developments in probabilistic hierarchical visualisation algorithms, we apply a semi-
automatic method for the development of the visualisation hierarchy which is particularly
useful when working with very large datasets.

In the next section we briefly introduce some of the popular prediction models in drug
discovery, as mentioned in chapter 2, as they are used to benchmark our approach. In

Section 4.3 we review the probabilistic hierarchical visualisation approach and discuss how
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we can use it to develop an user-informed visualisation hierarchy. In Section 4.4, the guided
mixture of local experts algorithm is presented with a discussion on various ways of using
soft segmentation obtained using a trained hierarchy to weight models. A straightforward
extension to the Bayesian committee machine algorithm is introduced in Section 4.5. Results
on two different real-life datasets from chemoinformatics are reported and discussed in Section

4.6. Finally, in Section 4.7 we draw the main conclusions from this chapter.

4.2 Prediction models

In this section, we briefly introduce some popular global prediction models widely used in
drug discovery domain and a few local models which have similarities with the guided mixture
of local experts model.

4.2.1 Global models

Here, a single model is trained for the problem which is responsible to model the entire input
space.

Linear regression (LR)

Linear regression (LR) consists of a linear combination of the input variables. So the output

y is a linear combination of input values x

d
y = y(x;w) = Z w;z; + b, (4.1)

i=1
where d is the dimensionality of the input space and w = (wy,...,wq,b) is the parameter

vector. The following sum-of-squares error function is minimised to find the optimal weights.

1 N
E= 5 § {y(xn;w) — tn}Q‘ (4.2)
=1

where t,, is the target and N is the number of data points.

Here since E is a quadratic function of the weights (eq. 4.2), the optimum weights can
be found using the pseudo-inverse of the data matrix, a standard technique from linear
algebra [Golub and Loan, 1996].

A similar approach for classification known as linear discriminate analysis (LDA) has also

been used in drug discovery domain [Mahmoudi et al., 2005].
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Multi-layer perceptron (MLP)

The multi-layer perceptron, a traditional artificial neural networks (ANN) architecture, is a
non-linear prediction model. Conventional two-layered MLP consists of two layers of adaptive
weights with full connectivity between inputs and hidden units, and between hidden units
and outputs.

The first layer of the network forms Ny;q linear combinations of these inputs to give a set
of intermediate activation variables which are then transformed by the non-linear activation

functions of the hidden layer, here we choose to the tanh function, to give the hidden unit

outputs z;
d
zj = tanh <Zw§;)w?¢ + b§1)> j=1,..., Npig. (4.3)
i=1
Here wﬁ) represents the elements of the first-layer weight matrix and b;l) are the bias pa-

rameters associated with the hidden units.
The z; are then transformed by the second layer of weights and biases to give the network

output ¥ according to an activation function.
e
Y= Z w§~ )Zj + 52, (4.4)

Training of MLP is typically performed using variations of gradient descent based algorithms
trying to minimise an error function (according to the regression or classification task). To
avoid overfitting cross-validation can be used for finding optimal complexity of the network

(number of units in the hidden-layer).

Gaussian process regression (GP)

Though Gaussian processes regression (GP) have just relatively recently become popular in
the machine learning community, they have a longer history in spatial statistics, where the
technique is also known as “kriging” [Rasmussen and Williams, 2006]. Gaussian processes
are particularly suited to regression problems since in these circumstances we can perform
the first level of Bayesian inference (computing the posterior distribution of the parameters)
analytically.

A Gaussian process is a stochastic process Y (x) where every joint density function is
Gaussian and is therefore defined completely by its mean and covariance. For simplicity, we
will consider only Gaussian processes with zero mean. The covariance of Y (x) and Y (x') is

usually defined by a function C(x,x').
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Consider a training data set consists of ordered pairs (xi1,t1),. .., (XNypp» ENern ). NOW
suppose that t; is a sample from a random variable T(x;). To make a prediction T at a
new input x* we need to compute the conditional distribution p(T*|T1,...,Tn,,.,). Since our
model is a Gaussian process, this distribution is also Gaussian and is completely specified by
its mean and variance. Let K denote the covariance matrix of the training data, k denote
the Nyn, X 1 covariance between the training data and 7%, and k* denote the variance of
T*. Then K., the (N + 1)(Nym + 1) covariance matrix of (71,73, oy T, T*), can be

partitioned

K k
K,=| _ (4.5)
k' k

The conditional mean and variance at x* are given by

BE[T*] = kKTK "™ (4.6)

var[T*] = k* — kKT K 'k (4.7)

We use the mean as our prediction, while the covariance can be used to compute error
bars.
The covariance function is defined by the spherical Gaussian kernel of width o?

C(x, %) = exp (9‘1‘.-)3) (4.8)
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It is well-known that GP prediction scales badly with the number of training examples.
This is because K is an Nym X Ny matrix, and the matrix inversion needed in (4.6) is
(Q(Ntam). This is problematic in chemoinformatics applications, as we need to deal with large
training sets to obtain good generalisation performance in chemoinformatics. We therefore

applied a sparse on-line version of GP prediction developed by Csato and Opper [2002].

4.2.2 Local models

Local regression models use a combination of models, each of which works on a smaller part

of the input space. In this section, we briefly introduce two popular local models we used.

k-nearest neighbour (k-NN) algorithms

Initially, the k-nearest neighbour algorithm (£-NN) was introduced as a method for classifying
objects based on closest training examples in the feature space. It can also be used for

regression with slight modification of output determination.
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First the training points are mapped into multidimensional feature space and then they
are used for prediction (classification or regression).

For classification of a new point using kNN, the point is assigned to the class c if it is the
most frequent class label among the k nearest training samples. Usually Euclidean distance
is used.

For regression problems: given a test input x the prediction yj of the j-th expert is equal

r

trn #71) whose input XE(Z) is the j-th closest

of the training pair (xj(x), 00

point to x among all the training inputs x!™ ..., x%" }. The output of the model is then
g o p 1 ? Ntrn p

to the target value t;r(z)
the average target value for the K training data points closest to x.

The accuracy of the k-NN algorithm can be severely degraded by the presence of noisy
or irrelevant features, or if the features scales are not consistent with their relevance. The
algorithm is easy to implement, but it is computationally intensive, especially when the size

of the training set grows.

Regression trees (RT)

Regression trees (RTs) are computationally efficient nonparametric models that constitute
a good compromise between comprehensibility and predictive accuracy. A regression tree
consists of a hierarchy of nodes. With the exception of the bottom nodes (leaves) of the tree,
each node contains a logical test on one of the input variables z;,7 € {1,...,d}. Each test has
the form 'Variable Operator Value] (e.g. zo < 5.7) and has two possible outcomes, true or
false. Any path from the top node (root) to a leaf can be seen as a conjunction (i.e. logical
and) of logical tests on the input coordinates. These conjunctions are logical representations
of a partition of the input space. Each leaf contains a local predictive model, which in the
case of standard RTs is simply a constant value. The local model associated with a leaf
operates over a corresponding region of the input space that is defined by the conjunction.

However, constant values in the leaves lead to a regression surface that is not continuous
(in fact, a step function). A smoother model is achieved by allowing nonconstant leaf models,
e.g. linear functions of inputs x [Torgo, 1997]. An example of a regression tree with linear
models in the leaves is shown in Figure 4.1

The construction of RTs involved a pruning mechanism, where for each hyperparameter
value a sequence of trees is generated (using a method called lowest statistical support [Torgo,
1999]), and for every regression tree in that sequence its generalisation error is estimated via

cross validation on the training set. The representative RT for each particular hyperparameter
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{f(x)z-—x—l i [ f(x)=x+1 i

Figure 4.1: Example of regression tree with linear models in the leaves. The tree defines a
piece-wise linear function on real line. Arcs corresponding to true and false decisions are
shown as solid and dashed lines, respectively (adapted from [Tifio et al., 2004])

setting is the one with the lowest estimated generalisation error.

Mixture of experts (MoE)

Jacobs et al. [1991] introduced the idea of mixture-of-experts model, which determines decom-
position of the data as part of the learning process. The architecture of the mixture-of-experts
model is shown in Figure 4.2.

Here all of the expert networks, and the gating network are trained together. The goal
of the training procedure is to have the gating network learn an appropriate decomposition
of the input space into different regions, with each expert network responsible for generating
the outputs for input vectors falling within a specific region. The error function is given by
the negative logarithm of the likelihood with respect to a probability distribution given by a

mixture of M Gaussians of the form

M
E=_ Z In {Z!ji(xn)Oi(tnlxn)} , (49)

1==]

where the O;(t|x) are regression model with Gaussian noise given by

- (t = p(x))? } (4.10)

1
Oi(tlx) = (Q—W‘)‘C/—QCXP{ 5

There is one expert network for each Gaussian, and the output of the ith expert network is
a vector representing the corresponding conditional mean p;(x) where x is the input vector.

The mixing coefficients g;(x) are determined by the outputs v; of the gating network through

7
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Gating network

f

Expert 1 Expert 2 Expert 3
X X X

Figure 4.2: Architecture of the mixture-of-experts network during prediction (adapted
from [Bishop, 1995]).

a softmax activation function

gi = _A?M._ (4.11)

S exp()
The gating network has one output for each of the expert networks, as indicated in Figure 4.2.
The mixture-of-experts network is trained by minimising the error function (4.9) simulta-
neously with respect to the weights in all of the expert networks and in the gating network.
The standard choices for gating and expert networks are linear regression (LR) models or
multi-layer perceptrons.
When the trained network is used to make predictions, the input vector is presented to the
gating network and all of the expert networks. The output vector of a MoE is the weighted
(by the gating network outputs) mean of the expert outputs:

M

y(x) = gi(x)0s(x) (4.12)

i=1
The gating network outputs g;(x) can be regarded as the probability that input x is attributed
to expert 7. This probabilistic interpretation is ensured because of the choice of gating network
as the soft-max function (eq. 4.11).

Jordan and Jacobs [1994] also formulated hierarchical mixture of experts model (HMoE).
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The hierarchy can be specified by the depth D of the hierarchical tree and the branching factor
BPF-the number of children of each internal node. The number of experts in the hierarchy,

i.e., the number of leaves of the hierarchical tree, is given by (BF)P~1.

Bayesian committee machine (BCM)

There are two important difficulties in applying standard GPs (reviewed in 4.2.1) to large
and heterogeneous datasets. Firstly, inference on the GP scales poorly with the dataset size;
typically requiring O(N?3) time, where N is the number of data points. Secondly, GP models
are usually stationary as the same covariance structure is used throughout the entire input
space. In chemoinformatics applications, where different regions of chemical space may have
different behaviour, this limitation is unacceptable. These shortcomings can be addressed
by partitioning the input space into regions, and fitting separate GPs within each region.
Partitioning allows for non-stationary behaviour, and can reduce some of the computational
demands (by fitting models to less data).

Recently, Tresp [2000] introduced the Bayesian committee machine (BCM) approach,
which is a principled way of combining estimators which were trained on different datasets. In
BCM, the data are partitioned into M data sets D = D, ..., DM (of typically approximately
same size) by a clustering algorithm such as K-means [Bishop, 1995] and then the data of
each cluster is used to train a separate estimator (e.g. a GP). When applied to a set of query
points, each of the M GP systems outputs a prediction I( f9|D?) together with covariance
cov(f9| DY), calculated employing equations (4.6) and (4.7).

The BCM combines the M estimates and calculates an approximation to the expected

values E(f9|D) of the functional values at the query points as

M
E(fD) = Cplyy »_ coo(f|D) " E(fD") (4.13)
=1
M
Coen = @u(f4D)™ = —(M = 1)(Z9) "+~ cov(f9| D)~ (4.14)
7=1

Thus the prediction of each GP system i is weighted by the inverse covariance of its
prediction.

In Section 4.5 we introduce a guided BCM (GBCM) approach which uses segmentation
of the input space obtained using probabilistic hierarchical visualisation technique described

in the following section.
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4.3 Probabilistic hierarchical visualisation models

Probabilistic hierarchical visualisation based on a mixture of latent variable models can pro-
vide a hierarchy whose top-level projection displays the entire dataset, perhaps revealing the
presence of clusters, while lower-level projections display internal structure within individual
clusters, such as the presence of subclusters, which might not be apparent in the higher-
level projection [Bishop and Tipping, 1998]. This has been proved to be an effective way of
visualising large multi-dimensional datasets.

Since, in such a visualisation hierarchy, the data is modelled with a probabilistic mixture
of latent variable models, we obtain a soft partitioning of the dataset into “clusters”, and
at the same time obtain multiple visualisation plots corresponding to the clusters. The
corresponding density model takes the form

M

p(x) = > mp(x|i), (4.15)
=1

where M is the number of components in the mixture, and the parameters 7; are the mixing
coefficients, or prior probabilities, corresponding to the mixture components p(x | 7). Each
component is an independent latent variable model with required parameters. ‘These model
parameters can be set using a variant of the EM algorithm [Bishop and Tipping, 1998]. During
the derivation of the EM algorithm, the missing data now also includes labels which specify
which component is responsible for cach data point. The prior expectations for the component
labels are given by the m; and corresponding posterior probabilities, or responsibilities, are

calculated as
mip(Xn | 1)

Z?’.’ T p(Xn | 4)

This mixture distribution forms the second level in the hierarchical mixture of latent variable

Ry = P(llxﬂ) = (416)

model. The hierarchical structure, 7, can be extended to any desired number of levels, for
any component distributions from the exponential family. [Tino and Nabney, 2002] have
presented a full hierarchical derivation for a hierarchical mixture model using generative
topographic mapping (GTM) [Bishop et al., 1998] as the latent model. Model responsibilities,

R, for models M;, i =1,..., M, in the hierarchical structure, T, are calculated as follows:

Rin = P(M; | Parent(M;), Xn), (4.17)
B m(M; | Parent(M;))P(x, | M;)
 Yoweppmy TN | Parent(Mq)) P(xy [N’

(4.18)

where [M;] = Children(Parent(M;)).
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Figure 4.3: Example structure of a hierarchical model. The numbered circles indicate the
submodel centers.
Imposing P(Root | x,) = 1, the unconditional (on parent) model responsibilities are
recursively determined by the formula:
P(M; | xp) = P(M; | Mp, X ) P(M,, | Xp). (4.19)
where M, = Parent(M;). The eq. (4.19) automatically satisfies the relation
Z RNn = RM,,n (420)
NE[M;]
where [M;] = Children(Purent(M;)) and M, = Parent(M;). The eq. (4.20) implies that
responsibility of each model at level L for a given data point n is shared by a partition of
unity between the corresponding group of offspring models at level L + 1.
Thus the model responsibility matrix, R, has an important property
> Ryn=1 Va (4.21)
Ne[M]
where [M;] = Leaves(T ) and 7 is the hierarchy structure.
Eq. (4.21) confirms the soft segmentation of the input space we obtain from the hierar-
chical mixture of latent models. It corresponds to the segmentation derived from the softmax

function in the trained gating network in the MoE.
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The latent variable models in the hierarchy could be linear or non-linear. Experimental
results presented in this chapter use a hierarchy of linear latent model based on probabilistic
principal component analysis (PPCA) [Tipping and Bishop, 1999a] and a hierarchy of the
non-linear latent model based on GTM [Tifio and Nabney, 2002].

Figure 4.3 depicts an example of the structure of a hierarchical model. The hierarchy
can be built interactively in a top-down fashion using a software tool, DVMSv1.8, support-
ing visual data mining framework [Maniyar and Nabney, 2006¢] introduced in the previous
chapter. This software tool supporting advanced information visualisation facilities to assist
interactive exploration of the projections obtained at each level of the visualisation hierarchy
is provided to the domain experts. The targets (e.g. class labels) can be used to guide the
development of the visualisation hierarchy using colour, symbols or both. After studying a
projection carefully, a domain expert selects “regions of interest” by selecting centers which
becomes the centers of the submodels in the next level of the hierarchy. We refer this process
as ‘drilling-down’. For example, the numbered circles in the visualisation hierarchy plot (see

Figure 4.3) indicates the selected submodel centers.

Figure 4.4: An example of strongly overlapping clusters: projection of a chemical compound
dataset with 23000 compounds.

The construction of the visualisation hierarchy guided by the domain expert using an
interactive software tool is a powerful method when the clusters are separated clearly in
the two-dimensional latent space. On the other hand, when the dataset is very large, it

is difficult for a domain expert to select locations for submodels at the next level as the
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higher-level projection plots may be cluttered and confusing due to densely clustered and
overlapping projections, eg. Figure 4.4.

Recently a semi-automatic submodel initialisation algorithm, based on a minimum mes-
sage length (MML) criterion, which decides both the number of submodels and their location,
was introduced for Hierarchical GTM (HGTM) [Nabney et al., 2005]. At any stage in the
hierarchy construction process, either the semi-automatic or manual method can be applied.
We use this algorithm to obtain the higher-level projections of the visualisation hierarchy for
a large dataset and then the domain expert can take control to guide the lower-level projec-
tions. The visualisation hierarchy semi-automatically developed in such a way benefits from
the automatic submodel initialisation at the higher levels of the hierarchy and involvement

of the domain expert at lower levels to better guide the hierarchy.

4.4 Guided mixture of local experts (GME)

The GME models are developed in a two stage process. First a probabilistic visualisation
hierarchical model is developed as discussed in the previous section. Then the responsibility
matrix, R, calculated using the trained visualisation hierarchy, is used to train a guided

mixture of local experts as described in Procedure 1 below.

4.4.1 Training

Procedure 1 (Training). 1. Using a previously trained visualisation hierarchy, calculate

the model responsibility matriz, R, for all the training points (Eq. 4.17 ).

2. For each leaf node in the visualisation hierarchy, train o corresponding expert model.
Train each local expert, ¢:i(t | x), individually on all the training points using the

corresponding responsibility vector to weight the error function.

3. During the training of each expert, ¢:(t | x), select the best architecture through cross-

validation (or some other appropriate reqularisation scheme).

Note that in the step 2 of Procedure 1, all the data points of the training set are used
to train each local expert. The corresponding respousibilities are utilised for weighting the
error function during the training of the local experts. For example, for regression problems,
the sum-of-squares error function for expert i is weighted by the responsibility as below.

N

1 .
Ez = 5 Z Rin(@i(tn l xn) - tn)z (4‘22)

n=1



CHAPTER 4. GUIDED MIXTURE OF LOCAL EXPERTS

output

M
Responsibility

o Q— matrix calculated
S f using the visualisation
d hierarchy
Trained
Trained Trained Trained hierarchical
expert 1 expert 2 || expert N visualisation

T T mo;iel

input

Figure 4.5: Prediction using guided mixture of local experts (GME).

where ¢;(t,, | x») is the output from the expert : and t,, is the target for the nth pattern.
Thus by weighting error function appropriately, we give more weight to those data points

which belong to an input region related to a particular local expert. The individual experts

can arbitrarily be a linear or a non-lincar regression or classification models (eg. LR, LDA,

MLP, GP, etc.).

4.4.2 Prediction

The prediction process is presented in procedure 2 and is depicted in Figure 4.5. For predic-
tion, the inputs are first presented to the trained visualisation hierarchy and responsibilities
for each expert are calculated using eq. (4.17). The responsibilities are used to weight the
outputs of the local experts.
Procedure 2 (Prediction). 1. Culculate the model responsibility matriz, R, for all the
testing points using a trained visuolisation hierarchy.
2. Each trained expert is presented with oll the inputs (see Figure 4.5). All experts produce

an cutput for all the input patterns.

3. These outputs are then weighted by the corresponding model responsibilities and summed
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to obtain the final output:
M
Yn = Z Rz’nd)i(tn l Xn)> (423)
i=1
where ¢i(ty | Xn) is the output from the trained expert i.

According to the task different activation functions are used. For example, for regression
tasks, the weighted output of all experts, obtained from the step 2 of the testing procedure,
is summed to obtain the final output of GME. For classification problems, the weighted
posterior class probability obtained from all local expert is summed individually and the

class with highest posterior probability wins.

4.4.3 Discussion

Another way of using the responsibility matrix to train a guided mixture of experts is to
select only those data points which ‘belong’ to a particular local region to train the expert
responsible for modelling that region. This is achieved by training each expert, ¢;(t | x), in
step 2 of the training procedure (Procedure 1) individually on only those training points, Xn,
for which R;, is greater than a threshold. Different thresholds can be tried and validated.
The remaining training procedure remains the same as Procedure 1. Similarly, the threshold
is also applied during the prediction process.

Weighting the error functions with the model responsibilities is a probabilistic and more
principled way of utilising the model responsibility than the responsibility threshold approach.
The main drawback of the responsibility threshold approach is that using cross-validation to
select the threshold is time consuming since for each validation iteration all the experts have
to be trained and evaluated. However, to use the segmentation in a setting where a hard
split is required, like in the next scction, the threshold method can be used to decide which

points belong to which segment.

4.5 Guided Bayesian committee machine (GBCM)

The soft segmentation obtained through the responsibility matrix can also be used with other
established ways of combining local experts such as the BCM described in Section 4.2.2. As
proposed by Tresp [2000], BCM is trained by first clustering the data using k-means and
by then assigning the data of each cluster to a separate estimator. Then the estimators are
combined to produce a consistent estimate of the output distribution. A better clustering

could not only lead to a better BCM based model but is also useful in understanding the
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model. For many real-life large high-dimensional datasets, the clustering obtained using the
k-means algorithm is not effective since the user must specify the number of clusters (i.e. k)
which is very difficult a priori for many datasets and if the data does not naturally fall into
separate clusters, the clustering results are poor.

Here instead of using k-means to separate the data, we use the threshold method discussed
in Section 4.4.3 which utilises the model responsibility matrix obtained using a trained visu-
alisation hierarchy. Then a separate predictor is trained for each leaf node in the hierarchy

as in BCM. The predictions from the estimators are then combined as in BCM.

Summary

First, a trained visualisation hierarchy is used to calculate the model responsibility matrix, R,
using (eq. 4.17). Once the hierarchy is obtained, GBCM can be trained or used for prediction

as described below:

e Training: Train an estimator corresponding to each leaf node in the hierarchy. Each
estimator, ¢;(t | x), (e.g. a GP) is trained individually on the training points, Xp, for

which R;, is maximum amongst all the leaf nodes.

e Prediction: While combining estimators, the output of each estimator, ¢;(t | x), s
weighted by the inverse covariance of its prediction like in BCM (see Section 4.2.2).
Thus estimators uncertain of their predictions are automatically weighted less than

estimators which are certain about their prediction.

Though developing a GBCM model requires user interaction and thus more time than
developing a BCM model which automatically splits the data using k-means, the prediction

process is straightforward once we have a trained hierarchy.

4.6 Experiments

The development of the guided mixture of local experts model was motivated from problems
in the chemoinformatics domain where there is a need for computational models that work
with large heterogeneous datasets.

The formation of the mixture of experts model depends on the soft segmentation of the
input space we obtain. Thus, it is important to evaluate the quality of the soft segmentation

we obtained using different local models. To do so, we measure their entropy [Ellis, 1985].
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The entropy is calculated as follows:
M

= ]\{[ Z N Z-Pm Xn) 100 ( ) <424)

m=1 n=1

where P, (x,)log Pp(xy) is defined as 0 if P, (x,) = 0. For MoE, P, (xy) is the output of
the gating network for the mth expert, and input point z,, while for all GME-based models,
Pr(xy) is the model responsibility, Rm.». A smaller entropy corresponds to a sharper (and
more interpretable) segmentation.

The NETLAB toolbox [Nabney, 2001] was used to develop LR/LDA, MLP, GP, and k-NN
models. Experiments for MoE were carried out using the Mixlab toolbox [Moerland, 2000].
RT's with constant and linear regression models in the leaves were trained using the system
RT4.1 [Torgo, 1999]. The BCMv1.0 toolbox [Schwaighofer, 2005] was used to create the BCM
models.

The DVMSv1.8 software, developed using the visual data exploration framework discussed
in the previous chapter, was used to develop expert-guided and semi-automatic visualisation
hierarchies. Facilities such as magnification factors, directional curvatures and local parallel
coordinates (described in Section 3.4) have proved helpful to the domain experts at Pfizer to
guide informed visualisation hierarchies.

The MATLAB code for the GME algorithm is also available in the DVMSv1.8 soft-
ware (http://www.ncrg.aston.ac.uk/~maniyard/dvms/). The GBCM code is based on
the BCMv1.0 toolbox.

In this section we provide two case studies from the chemoinformatics domain; a classifi-

cation problem and a regression problem.

4.6.1 Case study 1: The HTS dataset (classification)

As mentioned in chapter 2 it is useful to relate properties of compounds to their biological
activity both to explore quickly a large chemical library for potency and to develop biological
assays for HTS future campaign [Lipinski and Hopkins, 2004]. Our aim in this case study 1s
to show the usefulness and suitability of local models over global models.

We used the HTS dataset (see Section 3.7.1) to compare the performance of different clas-
sifiers. We used the 11 whole-molecule physicochemical properties as input (see Section 3.7.1
for details). We aim to classify compounds as inactive or active for any of the 5 different
biological targets.

As can be seen from the distribution presented in Table 3.2, the inactive compounds

are dominant (~94% compounds were inactive for all five targets). A screening scientist
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Visualisation Latent True positive rate .
Model training mode model | Training set ‘ Test set Architecture | Entropy
LDA - - 17.53% 15.18% - -
MLP - - 18.02% 15.39% | N_hid =12 -
k-NN - - 10.02% 818% | k=6 -
MoE - - 26.45% 21.37% | Negperts = 11 0.2195
GME Expert-guided | GTM 43.30% 39.10% | Negperts =9 0.0274
GME Semi-automatic | GTM 36.76% 32.26% | Negperts = 8 0.0357
GME Expert-guided | PPCA 30.54% 26.19% | Newperts =7 0.0472

Table 4.1: Performance of different global and local models for the HTS dataset.

is interested in increased accuracy of prediction for active compounds, and thus the true
positive rate for the classification of active compounds. True positive rate is very important,
screening scientists do not mind false negatives.

50% of the dataset was used as the training set and the remainder was used as the test

set.

Results

The architecture of the MLP (number of hidden nodes) and k-NN (optimum k) was decided
using 10-fold cross validation.

We developed three different visualisation hierarchies using the training set; a com-
pletely expert-guided visualisation hicrarchy with GTMs as the latent variable models, a
semi-automatically (using MML, as described in Section 4.3) hierarchy with GTMs as the
latent variable models, and an expert-guided hierarchy with PPCAs as the latent variable
models. The hierarchical visualisation plots obtained on the test set using these three trained
hierarchies are displayed in Figure 4.6, Figure 4.7 and Figure 4.8 respectively. Note that all
data points are plotted on all the submodel projection plots in the visualisation hierarchy,
with the density of “ink™ in proportion to the corresponding responsibility which a submodel
projection plot has for that particular data point. Thus, if one particular submodel plot in
the hierarchy takes most of the responsibility for a particular data point, then that point will
effectively be visible only on that corresponding submodel plot.

The true positive rate for the active compounds, model architecture and average entropy
for different models are presented in Table 41. In all mixture of experts models, LDAs are

used as the experts.
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issues. Models developed after careful selection of input descriptors are likely to improve the

results further.

4.6.2  Case study 2: LogP prediction (regression)

Lipophilicity is the key physicochemical parameter linking membrane permeability — and
hence drug absorption and distribution — with the route of clearance (metabolic or renal).
The lipophilicity of a, compound is readily amenable to automated measurement. The gold
standard for expressing lipophilicity is the partition coefficient P (or LogP to have a more
convenient scale) in an octanol/water system. There is continued interest in developing and
improving LogP calculation programs, and there are many such programs available. Most
calculation approaches rely on fragment values, although simple methods based on molecular
size and hydrogen-bonding indicators for functional groups to calculate LogP values have also

been shown to be extremely versatile.

The datasets

We studied a dataset used in [Tirio et al., 2004]. The aim is to develop a predictive model
for the LogP using a novel molecular representation (an interaction fingerprint) developed
at Pfizer. In this encoding, the molecule is represented by fourteen numerical variables
based on a two-dimensional representation of the molecular structure. Variables 1-10 are the
InterAction Fingerprints, IAFs [Losel, 1998] of the compounds. TAFs are the average counts
for noncovalent interactions (strong, medium, weak hydrogen bonds, van der Waals and pi-
interactions) around individual atom types as found in experimental structures deposited in
the Cambridge Structure Database summed up over the whole molecule. Value 11 is the sum
of volumes of Voronoi polyhedra which were used to determine the IAFs and is used as a

measure of size. Values 12-14 are halogen counts for fluorine, chlorine, and bromine,

Dataset I: This dataset has a set of 6912 compounds together with their LogP values that are
freely available on the Internet. 20% of the set was used as a test set, and, when needed,
another 10% was set apart as a validation set for model selection. The remaining data
was used as a training set.

Dataset I+11: It consists of Data set 1 augmented by Data set I, a new set of 226 compounds
whose LogP values were measured at Pfizer. Data set II served as a completely blind
test set for models trained on the whole of Data, set I. When needed, 10% of Data set

I was set apart as a validation set for model selection.
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Performance measures

As in [Tino et al., 2004], we evaluated the test-set model performance via two related mea-
sures, namely mean square error and percent improvement over the naive model.

Suppose we are given Ny, and Ny training and test input-target pairs (x7™,#7") and
(xEst tst), respectively. Model prediction, given a test input x&¢, is denoted by #,.

Mean squared error (MSE) measures the average squared difference between model pre-

dictions t, and the corresponding targets ¢t

Nist
1 .
MSE = t, — thsh)2, 4.25
iy 2 =8 (4.25)

The naive predictor always predicts the unconditional mean of the training targets

lt\ltrn
) 1 .

tnaive = Nivm Z tn " (4.26)

" n=1

MSE, give 18 the MSE of this predictor
1 Nist A
MSE, 4ive = N > (Enaive — thH* (4.27)
Tt =1

The degree of improvement (expressed in percentages) of the model over the Naive pre-

dictor is quantified by the improvement over Naive (ION) measure

MSE,. . — MSE
ION = HELVE 100%. (4.28)
MSEnaffvc

ION is closely related to squared multiple correlation that uses variance in test targets instead

of MSE Variance in test targets can be viewed as MSE of a simple predictor always

naive
predicting the mean of the test targets. Usually the variance over the training targets is close
to that of the test targets, in which case squared multiple correlation can be interpreted as

measuring ION.

Results

The experimental results for sets Dataset I and Dataset 1-+11 are presented in Tables 4.2.
The architecture of models were determined by the performance on the validation set: the
architectures with the smallest validation set MSE were selected. A user guided visual hi-
erarchy (Figure 4.9) was used to train GBCM and GME models. The hierarchy has GTMs
as the latent models. Entropy values of the soft segmentation obtained using the trained

hierarchy are 0.0063 and 0.0069 for Dataset I and Dataset 1411, respectively. Entropy of the
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Model Dataset I Dataset I+II

MSE | ION | Architecture MSE | ION | Architecture
Naive | 2.6902 0 - 4.0751 0 -
LR 0.7993 | 70.3 - 1.1904 | 70.8 -
MLP 0.6413 | 76.2 N_hid =15 1.0751 | 73.6 N_hid =15
GP 0.6012 | 77.7 0% =40 1.0739 | 73.6 o? =50
k-NN | 0.9182 | 65.9 k=4 1.0751 | 57.6 k=4
RT 0.7372 | 72.6 | LR, N=21, L=11 | 0.9791 | 76.0 | LR, N=21, L=11
MoE 0.6611 | 754 | N_experts=9 | 0.9610 | 76.4 N _experts =9
BCM 0.6101 | 77.3 k=28 0.9621 | 76.3 k=28
GBCM | 0.6038 | 77.6 | N_experts=8 | 0.9522 | 76.6 | N_experts =38
GME 0.6481 | 75.9 | N_experts =8 | 0.9557 | 76.5 | N_ezperts =8

Table 4.2: Performance of different global and local models for the LogP dataset.

soft segmentation obtained using MoE algorithm are 0.1362 and 0.1398 for Dataset I and
Dataset I+1I, respectively. This demonstrates that soft segmentation obtained using user
guided trained hierarchy is relatively ordered and has less overlap. For a fair comparison of
GBCM with BCM, we kept k (a priori for k-means) as 8.

Using the local parallel coordinate (LPC) facility, we can observe diversity of patterns
of the compounds in different regions in Figure 4.9. Magnification factors and directional

curvatures plots were used to guide the development of this hierarchy.

Discussion

Our aim in this analysis was to apply the novel guided local expert models to compare
their performance with other methods. Clearly guided models, GBCM and GME, provided
comparable results. Though the two-stage process of guiding hierarchy first and then training
the model only improves the accuracy slightly, it also enhances the interpretability of the
models. Guiding a visualisation hierarchy without class labels during a regression problem
can be dealt with using information visualisation tools such as local parallel coordinates and

calculated manifold properties such as maguification factors and directional curvature plots.

4.7 Conclusions

The essence of our idea is to exploit hierarchical non-linear visualisation approaches and to
allow user interaction to obtain a meaningful segmentation of the input space into regions
with similar behaviour which is then used to train a mixture of local experts. The use of

the user guided hierarchy means that expert beliefs is used to guide the segmentation of the
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input space, which could be very useful when dealing with large heterogeneous datasets.

While the conventional approach to local modelling, mixture of experts, combines the
segmentation and prediction in a single training algorithm, it has the drawback that the
segmentation is often poor and cannot be understood by the domain expert. Our approach
divides the problem into two steps: segmentation using a hierarchical visualisation model,
and local prediction on each segment. The benefit of this is that the segmentation can
be interpreted by the domain expert and the results in this chapter show that this can
also improve the prediction results. The performance and interpretability are worthwhile
advantages for spending more time and efforts in developing a good prediction model.

Semi-automatic training of the visualisation hierarchy at the higher levels of the hierarchy
is useful for datasets where the higher-level plots are cluttered, but still requires expert
interaction to determine which models require further ‘drilling down’.

Utilising the segmentation of the input space obtained using a user-guided hierarchy for
other local experts approaches such as shown here in the form of Guided Bayesian committee
machine (GBCM) has proven to be a successful experiment.

The main goal of the development of the guided local models is to provide better in silico
prediction of molecular (biological and chemical) properties. One key aspect of this is to
understand, model, and interpret structural aspects of molecules, as these have a significant
impact on their biological properties. However, because Pfizer need to keep structural in-
formation confidential, in our rescarch collaboration, we have only been able to use features
computed by Pfizer from structure, and this has limited the accuracy we have been able to
achieve with our methods. Although our predictive techniques outperform those in routine
use and leading edge methods, the level of performance is not yet at the level we are aim-
ing at, and our belief is that further research is needed on the representation of drug-like
molecules. A proposed avenues of research in this direction is outlined in Chapter 6. In the
next chiapter we introduce an algorithm which estimates significance of features during the

training of a data visualisation model.
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Chapter 5

Data Visualisation with

Simultaneous Feature Selection

Real-life datasets in chemoinformatics frequently have large number of descriptors. Data
visualisation algorithms and feature selection techniques are both widely used in chemoin-
formatics but as distinct analytical approaches. Until recently, not much research has been
done on estimating feature saliency while training a data visualisation model since feature
selection for unsupervised learning is a challenging task. In this chapter, we derive a genera-
tive topographic mapping (GTM)-based data visualisation approach which estimates feature
saliency simultaneously with the training of the visualisation model. The approach not only
provides a better projection by modelling irrelevant features with a separate noise model but
also gives feature saliency values which help the user to assess the significance of each feature.
We compare the quality of projection obtained using the new approach with the projections
from traditional GTM and self-organizing maps (SOM) algorithms. The results obtained on
a synthetic and real-life chemoinformatics datasets demonstrate that the proposed approach

successfully identifies featurce significance and provides coherent (compact) projections.

5.1 Introduction

As discussed in Chapter 3, data visualisation is an important part of the visual data explo-
ration framework. In many real-life problems in chemoinformatics and bioinformatics we are
required to work with datasets with large number of descriptors [Baldi and Hatfield, 2002;
Liu, 2004]. Many of these descriptors (features) may not be relevant to obtaining an effec-

tive projection. In principle, the more information we have about each pattern, the better a
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visualisation algorithm is expected to perform. This seems to suggest that we should use as
many features as possible to represent the patterns. However, this is not the case in prac-
tice. Some features can be just “noise”. For a large multivariate dataset, feature selection
is important for several reasons, the fundamental one being that noisy features can degrade
the performance of most learning algorithms.

Feature selection has been widely studied in the context of supervised learning and ap-
plied to many supervised learning problems in pharmaceutical research [Blum and Langley,
1997; Xing et al., 2001; Li et al., 2004]. Feature selection algorithms for supervised learning
problems can be broadly divided into two categories filters and wrappers. Filter approaches
evaluate the relevance of each feature (subset) using the data set alone, regardless of the
subsequent learning algorithm [Blum and Langley, 1997]. On the other hand, wrapper ap-
proaches [Kohavi and John, 1997] invoke the learning algorithm to evaluate the quality of
each feature.

Feature selection for unsupervised problems is more difficult and has received compara-
tively little attention because, unlike in supervised learning, there are no class labels for the
data and, thus, no obvious criteria to guide the search [Mitra et al., 2002; Dy and Brodley,
2004]. Recently Law et al. [2004] proposed a solution to the feature selection problem in
unsupervised learning using Gaussian mixture models (GMM) by casting it as an estimation
problem, thus avoiding any combinatorial search. Instead of selecting a subset of features,
they estimate a set of real-valued (in [0,1]) variables (one for each feature) which are called
the feature saliencies. They adopted a minimum message length (MML) [Wallace and Dowe,
1999] penalty for model selection. This approach can be classified as of wrapper type.

As described in Section 3.3.4, GTM is a principled probabilistic mixture-based data visu-
alisation algorithm where cach data point is modelled as having been generated by one of a
set of probabilistic models. Since GTM is a mixture-based projection method, it is possible
to adopt the feature selection approach proposed for GMM in [Law et al., 2004] to the GTM.
For clustering using data visualisation, the GTM provides many advantages over GMM be-
cause of their ability to intuitively visualise data on a low dimensional representation space
(projection) and probabilistic interpretation of the projection manifold (magnification factors
and directional curvature plots).

In this chapter, we introducc a GTM-based data visualisation with simultaneous feature
selection (GTM-FS) approach which not only provides a better visualisation by modelling

irrelevant features (“noise”) using a separate shared distribution but also gives a saliency
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value for each feature which helps the user to assess their significance. Such notion of feature
saliency is more appropriate than a “hard” feature selection (a feature is either selected or
not) for many real-life datasets [Modha and Spangler, 2003].

The remainder of this chapter is organised as follows: the proposed approach, GTM
with feature saliency (GTM-FS) determination, is introduced and mathematically derived
in Section 5.2. The experimental results on both synthetic and real-life chemoinformatics
datasets are reported in Section 5.3. In Section 5.4, we discuss computational costs for the
projection algorithms. A similar research, which was recently brought to our attention, is

discussed in Section 5.5. Finally, we draw the main conclusions in Section 5.6.

5.2 GTM with feature saliency (GTM-FS) determination

As discussed in Section 3.3.4, the generative topographic mapping (GTM) is a probability
density model which describes the distribution of data in a space of several dimensions in
terms of a smaller number of latent (or hidden) variables. The map f : H = D between the
latent space, H, and the data space, D, is non-linear, which implies that the image of the
(flat) latent space is a curved and stretched manifold in the data space. It uses a mixture of
Gaussians as a latent grid to model the data in the data space. Given a point z,, € H in the

latent space, its image under the map [ is

./f(Z’m,a W) = (I)(Z-,,,,)W, (51)

where ®(z,,) = (¢1(21m), ..., dic(zm))T is aset of fixed non-linear basis functions, Wisa K'xD
matrix of weight parameters and f(z,,, W) forms the centre of the Gaussian component, m,
in the data space.

In GTM, the Gaussians arc chosen to have spherical covariance as this corresponds to
uniform noise in data. This may not be appropriate for many real-life datasets where we
may have irrelevant features. To model this noise effectively and to calculate feature saliency,
we assume that the features are conditionally independent given the mixture component
label. In the particular case of Gaussian mixtures, the conditional independence assumption
1s equivalent to adopting diagonal covariance matrices. So instead of having a mixture of
spherical Gaussians, as in GTM, we use a mixture of diagonal Gaussians with a common

variance for each feature. Then the probability density function presented in (3.7) changes

to,
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A D
]9(1377,f9) = Z Qi Hp(tndlen'zd)) (52)
d=1

m=1

where M is the total number of components in the mixture (equal to the number of grid
points in latent space), and as in GTM, we take the mixing coefficient, Qm, to be constant
and equal to % D is the total number of features in the input space, t,, is a D-dimensional
vector representing the input point n, and p(- [#,,4) is the pdf of the dth feature for the mth
component, with parameters 6,,, = {®,, wy, 0(12}. The variance o,4% is common across all the

components for each feature d. Thus p(t,4|0,,4) is a one dimensional Gaussian with the form

(tnd — Prmwy)? } (5.3)

P(tndem) = —1* exp{— D)
\/2mo? 204
d

Before we introduce the notion of feature saliency in the Gaussian mixture model described
in (5.2), it is important to note that this mixture model structure is a constrained GMM where
all components of the mixture share the same variance in each direction d and the mixing
coefficients are all fixed to £7. In contrast, Law et al. [2004] used unconstrained GMM with
model selection criteria to decide clustering according to the final structure of the mixture.
Our aim is effective data visualisation with simultancous feature saliency estimation where
we treat the mixture as the projection manifold. Like in GTM, the constraints imposed here
will favour a two-dimensional structured manifold to represent the data and desirable uniform
distribution of data on resulting projection.

The dth feature is irrelevant if its distribution is independent of the component labels,
Le., if it follows a common ‘background’ density, denoted by ¢(t,4|Ag) which is taken to be a
diagonal Gaussian, with Ay as the set of parameters. Let W = (1), ..., p) be an ordered set
of binary parameters, such that ¢, = 1 if feature d is relevant and 104 = 0, otherwise. Now
the probability density is

M oD

1 s /3 b, —h
[)(tn{A) = 7\7 Z HU)(/"/:(IEO'/':L(Z)]“l'[(I(tndl)\d,)](l /d)’ (54)

m=1d=1
where A = {{,q}. {\a}, ¥u}.
The notion of feature saliency is modelled as follows: 1) The 9y4s are treated as “missing
variables” in the expectation maximization (EM) algorithm [Dempster et al., 1977 sense and
2) the feature saliency is defined as py = P(4)y = 1), the probability that the dth feature is

relevant.
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Now the resulting model can be written as

M D
1
])(tn‘@) = ]\_/_[ Z H(p(,’,p(i'n,(l’{)?nd) + (1 - pd)Q@nd‘)\d)), (55)

m=1d=1
where © = {{0.4}, {\a}, {pa}} is the set of all the parameters of the model. An intuitive way
to see how (5.5) is obtained is to notice that [p(tnq|0ma)]¥? [q(tndl)\d)](l“‘/’d) can be written as
Yap(tnalOma) + (1 — ¥q)q(tnalAg), because g is binary.

Figure 5.1 illustrates the notion of data visualisation with simultaneous feature selection in
a GTM-FS model for three-dimensional data with feature 1 (d;) and feature 2 (dy) as salient
features and feature 3 (ds) as an irrelevant feature (“noise”). Then the fitting of a GTM
with four components (given by (5.2), represented as a two dimensional manifold, shown as
‘Latent Space’ in Figure 5.1) can be illustrated schematically as four oblate spheroids (fat
disks) on the manifold having larger width (variance) in the directions of features d; and
dy and near-zero width in the direction of the ds in the data space. The separate shared
pdf, g(:|\), which models the irrelevant features, ds, is displayed as a prolate spheroid in the

middle of the manifold in the data space.

Sf(z;W)
e ™ /——\J\

VA

I

d2

Latent space Data space

Figure 5.1: Schematic representation of the GTM-FS model. Features di and do have high
saliency and d3 has low saliency.

We exploit the latent-variable structure of the model in the same way as for standard GTM
and use an EM algorithm to cstimate the paramcters in the model as described in the next
section. The learning algorithm was modified from the one in [Law et al., 2004] to account
for the constraints on component means imposed by the nonlinear mapping, f(z,, W), and

the common ¢4. Moreover we do not prune components during the training as in [Law et al.,
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2004] as the component grid in the latent space is the manifold and, like in GTM, our aim is

to fit the manifold uniformly in the data space for data visualisation purposes.

5.2.1 An EM algorithm for GTM-FS

For each feature d = {1,..., D}, we flip a biased coin whose probability of a head is pg; if we
get a head, we use the mixture component p(-|6,,4) to generate the dth feature; otherwise,
the common density g(- [A\g) is used.

We treat y (the hidden class labels) and the 14s as the missing variables. In the E-step we
use the current parameter set, @, to evaluate the posterior probabilities (responsibilities),
Rym = P(yn = mlt,), of each Gaussian component m for every data point t, using Bayes’
theorem in the form

_ Hf:l(;0«1])(1?77,(110777,(1) + (1 — pa)q(tnalAa))
27!:3:1 fiy_—_l(f)dp(tndland) + (1 = pa)q{tnala))

Rpm = Plyn, = mlty) ) (5.6)

Using the responsibilities matrix R, we can calculate upmg = P(g = 1,yn = mity),
which measures how important the nth pattern is to the mth component, when the dth

feature is used, and Vg = P(1g = 0,1, = mlt,) as follows

pdp(tnd ] Bmd,)

(T — P, = 1,/1 L =1 t, = - R7 2.7
nnd (lv ¢ I 1 I) f)(ﬂ)(trl,(ll()ﬂ',.d) + (J - f)d,)(](tm.l}/\d) o ( )
Unmd = P(w(l, =0,y = 7/’1»“37:,) = 1%un — Unmd- (58)

In the M-step we use the posterior probabilities to re-estimate the weight matrix W by
solving the following system of linear equations for cach feature (see Appendix A for a detailed
derivation)

&G bW, = &7 U ty, (5.9)
where ® is a M x K matrix, w, is a K x 1 weight vector (the dth column of W), Uy is a
M x N matrix calculated using (5.7), ty is a N x 1 data vector, and G, is an M x M diagonal

matrix with elements N

Yrnmd = Z Uryrnd - (5 . 10)

T
Then using this re-estimated W, it is straight forward to obtain the centres of the mixture

components in data space, using (5.1), as follows:

Moan Oy = fin = (2 W, (5.11)

where 1, is a 1 x D vector.
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Using the updated centre locations of the components of the mixture in the data space,
the width of the diagonal Gaussians in each direction, corresponding to one feature each, is

re-estimated by
_ Zm Zn umnd(tnd - /J'md)2

o7 S S (5.12)
Recall that the width is common to all the components in the mixture.
The parameters of the common density, A, are updated as follows:
Mean g = 2zl Vama)bud. (5.13)
> nm Unind
\m\/\d _ Y n O Vrmd) (tnd — I\/Iea/n\/\d). (5.14)

Znul Unmd

It is natural that the estimates of the mean and the variance in, Ay, are weighted sums with
weight Vinma-
The feature saliency variable, pg, is updated as follows:

. nlaX(an Unmd — #7 6) (5 15)
d = /] .
nlaX(Z”m U’TI,TTLd —_ %, f) + l]l'(lx(znm ’Um’nd - %) 6) bl

where L and S are the number of parameters in #,,q9 and Ay, respectively. ¢ is the smallest
positive number that the machine can represent. We use 1t to make sure py does not be-
come zero. So, unlike in [Law ct al., 2004], we do not prune p(-[0,4) since GTM-FS has a
constrained mixture model.

The term )

e Ynond 111 (5.15) can be interpreted as how likely it is that g equals one,

explaining why the estimate of py is proportional to D n Unand-

A summary of the GTM-FS algorithni is presented in Algorithm 1.

5.3 Experiments

We tested GTM-FS on a synthetic dataset and the HTS dataset. Projection results using
GTM-FS are compared with the results from traditional GTM and SOM algorithms and
also evaluated using the evaluation methods described in Section 3.6. The experiments were
carried out 5 times with different random seeds in the training algorithm to calculate standard
deviations for the estimated feature saliency values. Label information was used for better
presentation of the distribution of data points from different classes in the projections. Label

information was also used to calculate KL-divergence and NN classification error.
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Algorithm 1: Summary of the GTM-FS algorithm
Input: Training dataset.

Output: Trained GTM-FS visualisation model with estimated feature saliency values
for all the features.

begin

Generate the grid of latent points {z,,} € H.m =1,2,..., M;

Generate the grid of basis functions, ®(zy,), centres {v},k=1,...,K;

Select the basis functions, ®(z,y,), width;

Compute the matrix of basis function activations, @ (like in GTM [Bishop, 1995]);

Initialise W, randomly or using PCA;

Initialise width of the diagonal Gaussians in the grid (mixture);

Initialise feature weight, py, for each feature d, to 0.5;

Initialise the mixing coefficient, oy, for each component, m, in the grid to 1/M;

Set the mean and the variance of the shared distribution, g(-|A\), as the mean and

covariance of the training set;

repeat
Compute R, U and V using (5.6), (5.7) and (5.8) respectively, using current

parameters, @™°Y;

for d — 1 to D do
Reestimate the weight vector, wy, using wy = (&7 Gy®)~1®TUyt,, derived

from (5.9);
end
Obtain the centre, fi,,, of cach component, m, of the mixture in the data space,
using (5.11);
Reestimate the width of the diagonal Gaussians, o4, using (5.12), for all the
features;
Reestimate the mean and the variance of the shared distribution using (5.13)
and (5.14) respectively;

-

Reestimate the feature weight, py, using (5.15), for all the features;

until convergence;

end
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5.3.1 Case study 1: A synthetic dataset

The synthetic dataset consists of 800 data points from a mixture of four equiprobable Gaus-
sians V(m;,1),4 = 1,2,3,4, where m; = (§),my = (}),m3 = (§),mq = (). Eight
independent “noisy” features (sampled from a A(0,1) density) are then appended to this
data, yielding a set of 800 10-dimensional patterns.

The projections obtained using GTM, GTM-FS and SOM algorithms are presented in
Figure 5.2. Background colour shading in Figure 5.2(a) and Figure 5.2(b) displays the cor-
responding magnification factors for those projection manifolds. A comparative evaluation

of these projections is presented in Table 5.1. The estimated saliencies of all the 10 features,

together with standard deviations (error bars), are shown in Figure 5.2(d).

Method | Dataset GTM | GTM-FS | SOM
Synthetic 111.63 82.32 -
MEsum P TS datasel | 125,02 | 7118 -
KL Syuthetic 15.31 19.43 12.34
divergence | The HTS dataset | 128.17 167.56 56.37
NN error | Synthetic 0.75 0.75 0.62
(%) The HTS dataset | 38.32 41.24 92.40

Table 5.1: Evaluation of visualisation models.

Discussion

As expected, all three projection algorithms gave fowr well separated cluster for the synthetic
dataset. GTM-based algorithms create a uniform distribution in latent space so they spread
the data more than SOM projection. This is also revealed from their higher KL-divergence
sum value and NN error rate compared to SOM. The MF-sum of the GTM-FS manifold is
smaller than the MF-sum of the GTM manifold which indicates that the GTM-FS manifold
is comparatively less stretched. Close observation of Figure 5.2(a) and Figure 5.2(b) also
reveals that the GTM-FS manifold is morc colicrent (compact). This is because in GTM-FS
the irrelevant features (“noise™) are modeled using the separate shared distribution, g(-|A),
and thus the actual manifold is less stretched. Irom the estimated feature saliency values
using the GTM-FS model (Figure 5.2(d)) we can conclude that, in this case, the GTM-
FS algorithm not only provided a good projection but also correctly estimated the feature

saliencies.
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features using GTM-FS, together with their standard deviations (error bars), are shown in
Figure 5.3(d).

The main aim in analysis of this dataset, to understand and explore biological activity
data combined with other whole-molecular physicochemical properties, was triggered from
the need of the screening scientists at Pfizer to visually explore such high-dimensional large
dataset. The GTM-based projections have proved very useful for the purpose and have
outperformed the projections obtained fromn the traditional visualisation techniques, such
as SOM. GTM-FS also gave feature relevance values. The screening scientists were able to
identify common features of compounds active against different targets using the visualisation
plot obtained using GTM-FS.

A comparative evaluation of these projections is presented in Table 5.1. A screening
scientist is interested in increased accuracy of prediction for active compounds, and thus the
NN classification error for active compounds is reported in Table 5.1 instead of overall NN

classification error for the HTS dataset.

Discussion

The projection in Figure 5.3(c), obtained using SOM, is like a blob and does not help us to
understand the ‘structure’ of data in data space. The GTM-based projections, in Figure 5.3(a)
and Figure 5.3(b), show clear clusters for the compounds active for different biological targets.
We get better KL-divergence and MI%-sum values for GTM-IS which indicates the manifold
obtained using GTM-FS is more coherent. G'TM and GTM-FS provided much better NN
classification error rate for active compounds than SOM where the data points are cluttered
on top of cach other in the projection manifold. The estimated feature saliency values for
the chemoinformatics dataset, presented in Figure 5.3(d), confirms the general consensus
in the pharmaceutical domain that physicochemical properties such as, molecular solubility,
number of atoms, molecular weight, cte.. are responsible for compounds grouping in the
chemical space [Lipinski et al.. 1997]. Chemists at Pfizer also confirmed that they would

have expected higher feature saliency values for these physicochemical properties.
p g Y Yy p

5.4 Computational cost

The distance calculation between data points and mixture components of reference vectors
(used in calculation of p(x,|@)). respectively, is identical in GTM, GTM-FS and SOM train-

ing algorithms. Updating the paramecters in SOM training depends on the neighbourhood
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function. In the experiments presented here it was continuous on the latent space so the
parameter updating scales as O(M2ND + M?), where M is the number of grid points in
the SOM map and D is the dimension of the data space. When updating parameters, the
GTM and GTM-FS require a matrix inversion of an K x K matrix, where K is the number
of basis functions, followed by a set of matrix multiplications. The matrix inversion scales
as O(K?), while the matrix multiplications scales as O(MN D)}, where M is the number of
grid points in the latent space. GTM-FS requires an extra loop over the number of features,
D, to reestimate the weight vector, wy, in the EM algorithm.

Table 5.2 shows the time taken to train different projection models on the chemoinformat-
ics dataset using an Intel Pentium 4 - 2.4GHz machine with 2GB of RAM. An implementation

of the algorithms in C/C++ instead of MATLAB would further improve the speed.

{The model [ Time (seconds) [ Architecture [

GTM 42 | M =256, K =64
GTM-EFS 45 | M = 256, K = 64
SOM 36 | M = 256

Table 5.2: Training time for different projection models for the training set of the HTS dataset
(N = 11800, D = 16, 20 iterations).

Once the models are trained, the computational cost to project data for the subsequent
test set scales linearly in the number of data points (N) in the test set but is negligible by
comparisort.

To use GTM-FS under the visual data exploration framework (Chapter 3), the issue of the
speed of the algorithin cannot be ignored as user interaction is important. The computational
complexity of GTM-FS algorithm is shmilar to GTM, thus it can be directly used in such an

interactive data mining framework.

5.5 Related work

It was brought to our attention in September 2006 that at the same time as our work Vellido
et al. [2006] introduced a variant of GTM as a mixture of Student’s t-distributions (&-GTM)
to make it more robust to outliers and handle missing values. They then extended the
t-GTM to implement simultancous feature sclection using the same mixture-based principle

proposed in [Law et al., 2004]. Our method differs from [Vellido et al., 2006] in the sense that

'To be exact, the matrix multiplications scales is O(M K D + M N D), but normally the number of data
points, N, exceeds the number of basis functions, A,
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we use diagonal Gaussian distribution as the components of the mixture. In [Vellido et al.,
2006}, it is mentioned that Vellido [2005] did look into feature selection with Gaussian GTM.
Derivation of our algorithm was first reported in [Maniyar, 2005]. In future, a comparison
of these two approaches for different datasets could be interesting. Wang and Kaban [2005]

have implemented a similar feature sclection approach for binary data.

5.6 Conclusions

Deriving useful information from a real-life large multivariate dataset in the chemoinformatics
is difficult due to the inherent noise and the sheer amount of data. Data visualisation and
feature selection are both individually important topics in data mining. Addressing both
these problems jointly is not only logical but also synergistic as each endeavour could benefit
from advances in the other when they are addressed jointly.

We successfully modified a feature selection method for unsupervised learning and applied
it to the training of a probabilistic mixture-based data visualisation algorithm. The new
algorithm, GTM-FS, not only provided a better projection by modelling irrelevant features
(“noise”) using a separate shared distribution but also estimated the feature saliency values
correctly which helps the user asscss the significance of each feature. The usefulness of the
algorithm was demonstrated on both synthetic and real-life chemoinformatics datasets.

Since the estimation of feature saliencies is conveniently integrated with the training of
a probabilistic mixture-based data visualisation model using a variant of EM algorithm, the
computational complexity of the new algorithm remaing tractable.

One of the interesting avenues for future work is to extend the approach for a probabilis-
tic mixture-based hierarchical visualisation algorithin, such as hierarchical GTM [Tifo and

Nabney, 2002]. This is discussed further in the next chapter.
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Chapter 6

Conclusions and Future Directions

In this final chapter first we summarise the work described in this thesis and draw some

conclusions. Then we discuss some open questions and future avenues for the research.

6.1 Summary

This thesis has primarily been concerned with developing practical data exploration and mod-
elling methods for large heterogencous datasets that occur frequently during the early stages
of pharmaceutical rescarch. The work was imotivated by a demand from the domain experts
(i.e. screening scientists, chemists, biologists, ¢te.) to have better control and understanding
over model development and data cxploration so that informed decisions can be taken. We

now summarise the main achicvements in this thesis.

Visual data exploration framework (chapter 3)

In this chapter we introduced o Hexible visnal data exploration framework which combines
advanced projection algorithms developed in the machine learning domain and powerful vi-
sual representation techniques developed in the information visualisation domain to facilitate
direct involvement of the domain cxperts in the data exploration process. We identified ap-
propriate probabilistic projection algorithins which not only give better clustering but also
provide other projection manifold propertics like magnification factors and directional curva-
tures plots which help the domain experts to nnderstand the structures and the shape of pro-
jection manifolds for large datascts. Visual techniques such as local parallel coordinates and
billboarding support effective data exploration by providing a means to study local patterns

in different regions of a projection manifold and facilitating better navigation of a natural
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representation of data points (i.e. display of chemical structure image instead of a marker on
the plot for chemical compounds dataset) on the projection plot, respectively. Hierarchical
probabilistic visualisation algorithmns provided additional insight and good segmentation for
very large datasets where plotting all the data points on a single plot gives a cluttered and
confusing plot. The tractable computation efficiency of the suggested algorithms demon-
strates their suitability for a real-time softwarce tool developed using the proposed visual data

exploration framework.

Guided mixture of local experts (chapter 4)

In this chapter we exploited hicrarchical non-linear projection algorithms and allowed user
interaction using the visual data exploration framework to obtain a meaningful segmentation
of the inpuat space into regions with similar behaviour which was then used to develop user-
guided variants of the mixturc-of-experts model and the Bayesian committee model. The
guided mixture of local experts model proved appropriate for heterogeneous pharmaceutical
datasets. Though developing a model in such a way is a two-step process, i.e. first developing
the hierarchy and then training the local experts according to the hierarchy, the performance
and interpretability are worthwhile advantages for spending more time and effort in devel-
opment. On the other hand, some kernel-based global prediction models, such as Gaussian
processes, scale poorly with dataset size, typically requiring O(N?) time and O(N?) space,
where N is the number of data points. T such cases, developing a guided mixture of local
experts is not only faster but also provides better prediction by fitting individual local models

to a restricted region with limited overlap.

Data visualisation with simultaneous featurc selection (chapter 5)

Here we derived a generative topographic mapping (GTM) based data visualisation approach
which estimates feature salicncy simultancously with the training of the visualisation model.
We adopted a diagonal structure for the Gaussian components in GTM and introduced a
separate background probability density function which models irrelevant features (‘noise’)
in a dataset. The new algoritlhim not only provided better projection results by modelling
irrelevant features using a scparate background distribution but also estimated the feature
saliency values correctly whicli helps the user to assess the significance of each feature. The
results obtained using the algorithim are encowraging. There is a lot of potential in applying

this algorithm to many other problems in chemoinformatics where the domain experts are
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always interested in finding the significance of different descriptors in a dataset. The com-
putational complexity of the new algorithm remains tractable for use within the visual data,

mining framework.

6.2 Future directions

We envisage the following immediate future dircctions for the work presented in this thesis:

Visual data exploration framework

Though it might not be a core rescarch arca as it is mostly a software engineering issue,
integrating the software developed using the visual data exploration framework with other
popular data exploration tools in pharmaccutical research could be valuable for wider appli-
cations. The current version of the tool allows the results to be exported in such a way that
they can be used in other tools, such as Spot[iive, but tighter integration is desirable for the
domain experts to have an easier access to the framework. We are currently working in this
direction with Pfizer Global Research in which Pfizer plans to implement our framework as
a part of their program to provide important visualisation techniques as a web-service to be
used globally within Pfizer.

The research to extend important probabilistic projection algorithms, such as GTM and
HGTM, for discrete data has already been done [Nabney et al., 2005). Currently our tool
does not provide a stable facility to carry out analysis on discrete datasets. In pharmaceutical
research, domain experts often work with binary fingerprint! data of molecules so support
for discrete data can be useful. Further soltwire development is required in this direction to
make that facility stable.

Guidiﬁg effective visualisation hicrarchics is not a straight forward task. Experience
and understanding of the manifold propertics plots, such as magnification factors plots and
directional curvatures plots, is required. This demands training for the domain experts in
pharmaceutical research who are not used to work with such manifold properties plots. In
this direction, we already have organised o training session for the researcher at Pfizer to
use the software tool we developed and a tutorial for liow to develop effective hierarchies.
More research in antomating paramcter determination for GTM and providing more feedback

during hierarchy development to non-statistical users is desirable.

YA binary representation of 4 molecule which describes in a cornputationally simple fashion absence or
presence of a set of attributes (deseriptors).
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It is cumbersome to study patterns obtained using local parallel coordinates facility if the
number of descriptors is high (more than 30). In such cases, rule induction as description for

local groups of points could be useful.

Guided mixture of local experts

Development of GBCM, presented in chapter 4, is recent and was motivated from the lim-
itation of the popular emulator methodology to niodel complex models due to high dimen-
sionality and size of the datasets. As we suggested in a recent poster [Maniyar and Cornford,
2006], in the future we can exploit the projection of high dimensional inputs to a lower
dimensional probabilistic manifold in a manner similar to the “warping” methods of [Samp-
son and Guttorp, 1992] although this will require careful modification of GTM. We plan
to implement such a method within the managing uncertainty in complex models (MUCM)
project (http://mucm.group.shef.ac.uk), and will also employ a related method which is
approximately distance prescrving, a feature that might be useful for mapping prior beliefs
about the model inputs into the reduced dimension representation. It will be interesting to
relate these methods to the kernel PCA (KPCA) [Scholkopf et al., 1998] and the Gaussian
process latent variable model (GP-LVM) [Lawrence. 2005] methods recently developed in the

machine learning community.

Data visualisation with simultancous featurce selection (GTM-FS)

Here one of the immediate interesting avenues for future work is to extend this approach
for a probabilistic mixture-hased hicrarchical visualisation algorithm, such as hierarchical
GTM (HGTM). The major challenge in extending the approach for hierarchical models is in
deciding the strategies to carry forward the feature significance estimation obtained at the
higher levels.

It will also be interesting to compare results of GTM-I'S with visnalisation and feature
significance estimation obtained using a Gaussian process latent variable model (GP-LVM)

with integrated automatic relevance deternmination (ARD).

The CASE award: Improved in silico prediction

Althouech cuided local predictive techuignes iniroduced in Chapter 4 outperform those in
ot 5 1 |
routine use and leading edge methods. the performance is not yet at the level that Pfizer

require, and our belief is that further rescarcli is needed on the representation of drug-like
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molecules.

One way forward on this issue is to study small drug-like molecules that are not directly
used by Pfizer with the aim of exploring different ways of representing structural information
in order to assess which arc the most effective in terms of predicting properties of inter-
est. Aston University has a 3-year CASE studentship with Pfizer for this proposed research
starting from October 2006. Therc arc a nuber of publicly accessible databases containing
structural information on ligands. including MSD ligand chemistry and CheBI (Chemical
entities of Biological Interest) from EBI PubChem? ete. These, and others recommended by
Pfizer, will be used as the basis for the project.

During this research, it is also planed further investigate the relationship between the
molecular descriptors and data visualisation. The new molecular descriptors will be used to
characterise compounds in local regions sclected nsing the software (DVMS) developed on

the basis of the work carried out in this thesis.

http://pubchem.ncgi.nlm.nih.gov/
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Appendix A

The M-step of the EM Algorithm
for GTM-FS

We can write the complete-data log-likelihood for the model in (5.5) as

D
H (/)117)(1//).z119171.{l))wd((l - p(},)(](tndl/\d))(l_wd) (Al)

d=1

P(tn)y'n, = M, @) = M

During the E-step, we calculate following quantities as in (5.6), (5.7) and (5.8) using the

current parameter estimate @0V,
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Then the expected complete data log-likeliliood based on @™ ig
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where py is the feature saliency for feavure o, p(-16,,4) is the probability density function
(pdf) of the dth feature for the ntli component, with parameters 6.,y = {®,wg,04%},
and q(tag|Ag) is a ‘background’ Gaussian density. Note that the densities p(-) and ¢(-) are

univariate Gaussian and are characterised by their means and covariances. Also note that
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the three parts in the equation above can be maximised separately with respect to different
parameters.
By differentiating (A.5) w.r.t w;y where 7 € 1,..., X and K is the number of basis functions

in the nonlinear mapping (5.1), and using (5.3), we get

nd - (l)'mwd) y
5 y‘“mml ——q)mi ;

BUM{/ m n d

setting above equation to 0 we get
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m

We get such K equations for7=1..... K which can be written in matrix notation as

‘I)U.G,/‘]?\i’d = (I)G"Udt([, <A7)

where @ is a M x K matrix, wy is a " x 1 weight vector (the dth column of W), Uy is a

—~

M x N matrix calculated using (5.7), t,; is a N x 1 data vector, and G is an M x M diagonal

matrix with elements .

Gmd = E Unand- (A8>

1

Similarly, differentiating (A.5) w.r.t o,. we get
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setting above equation to 0 and solving it. we get
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Equations for the ve-estimation of the parincters of ¢(+) and feature saliency py are discussed

(A.10)

4=

in Section 5.2.1.
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