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Thesis Summary

We address the question of how to obtain effective fusion of identification information such
that it is robust to the quality of this information. As well as technical issues data fusion is
encumbered with a collection of (potentially confusing) practical considerations. These
considerations are described during the early chapters in which a framework for data fusion is
developed. Following this process of diversification it becomes clear that the original question
is not well posed and requires more precise specification. We use the framework to focus on
some of the technical issues relevant to the question being addressed. We show that fusion of
hard decisions through use of an adaptive version of the maximum a posteriori decision rule
yields acceptable performance. Better performance is possible using probability level fusion
as long as the probabilities are accurate. Of particular interest is the prevalence of
overconfidence and the effect it has on fused performance. The production of accurate
probabilities from poor quality data forms the latter part of the thesis. Two approaches are
taken. Firstly the probabilities may be moderaied at source (either analyfically or
numerically). Secondly, the probabilities may be transformed at the fusion centre. Tn each
case an improvement in fused performance is demonstrated. We therefore canclude that in
order to obtain robust fusion care should be taken to model the probabilities accurately; either
at the source or centrally.
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Preface

We begin by motivating the work and describing the organisation of the thesis. In data fusion
systems multiple sources of data are combined (or fused) so that more information is
available for the identification process than if a single sensor were employed. When the
sensors are physically separated some communication is necessary and bandwidth constraints
must be considered. This usually leads to a distributed or de-centralised architecture in which
each sensor performs some processing before communicating its results to a fusion centre.
The reliability of the information supplied to the fusion centre will often vary from one sensor
to the next. Such variation in information quality has an effect on the way the sensors process
their data, the way that the data is fused and the final performance of the fusion system itself.

We therefore concentrate on the following question:

“How does one obtain effective fusion which is robust to the quality of the
identification information being fused?”

The issue has been pursued using a strategy of diversification followed by focussing.

In addition to the technical issues, data fusion i1s also encumbered with a collection of
practical considerations. Despite its roots in the US military research of the 1980’s there is no
broad review of these considerations nor is there a standard data fusion framework. Part 1 (the
diversification) provides a summary of this much-needed activity and establishes a framework
for regarding data fusion systems. This part of the thesis provides an introduction to data
fusion (Chapter | ) and brings together the main approaches (Chapter 2 ) and architectures
(Chapter 3 ). This provides the context of the multi-layered, centralised, empirical approach
adopted in the remainder of the thesis. Part 1 is a qualitative treatment of data fusion and
comprises structured ideas rather than mathematics. It concludes with a reformulation of the

original question as it applies to the fusion of hard and soft decisions.

In contrast, part 2 is devoted to the development of specific algorithms that deal with the
quality of the identity information being fused (the focussing). In Chapter 4 we describe
several decision-level fusion algorithms and analyse the effects of sensor reliability has on
them (the so-called veto effect). The inability for decision fusion to adequately incorporate
source reliability leads us to adopt an approach based on probabilities. The veto effect is re-
addressed from the perspective of probability fusion. The development of methods to handle
this problem forms the basis of the next few chapters. Chapter 5 motivates the use of

probability fusion and assesses the effects of overconfidence. Chapter 6 and Chapter 7 deal
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with algorithms to moderate probabilities at source (first analytically and then heuristically).

In Chapter 8 we develop methods for performing the moderation at the fusion centre.
We summarise the work with conclusions highlighting the main findings. A list of references

is then provided. Appendix A contains the derivations of the key results presented in the main

text and a description of the datasets used for evaluation i1s given in Appendix B.
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Part 1:

A Data Fusion Framework
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Chapter 1 Overview of Data Fusion

Data fusion is the technology for combining information from multiple sources that are
separated spatially or temporally. It enables the user to make inferences about the data based
on a richer variety of sources than would be possible using more conventional techniques
applied to the individual sources. Data fusion is closely related to pattern processing and uses
similar methods. The main points of difference between the two fields are outlined in Chapter
3 . The Joint Directors of Laboratories Data Fusion Group (JDL DFG) was formed in the US
in the early 1980’s to examine the then infant field of data fusion. Representatives from most
of the US Government military research and development laboratories constructed a

definition of data fusion thus {77]:

“Data fusion is a multi-level, multi-facered process dealing with the automatic
detection, association, correlation and combination of data and information from
multiple sources”.

Modern intelligence, surveillance and reconnaissance (ISR) systems generally include large
numbers of electronic sensor devices feeding into highly automated data processing and data
communication networks. In addition collateral sources such as human intelligence
(HUMINT), open source information (OSCINT) and encyclopaedic data may need to be
incorporated (although we shall largely ignore the processing of this type of data in this
thesis). The military requirement is to collate and combine this plethora of data in such a way
that a condensed report may be presented to a commander so that he may make an informed
and effective decision. The military intelligence process recognises many forms of

information. The main source categories recognised in the UK intelligence cycle are shown in

Table I-1.

In order that the highest performance may be obtained from an automatic sensing system, the
full range of signature-generating phenomena should be examined. Several sensors may be
required to obtain adequate performance since the sensors that measure such phenomena are

somewhat restricted in their perceptual coverage.



Category | Expansion Description

IMINT Image Intelligence Visible or IR images

ACINT Acoustic Intelligence Sound or seismic waveforms
COMINT | Communications Intelligence | Communication emissions

SIGINT Signals Intelligence Non-communication emissions
ELINT Electronic Intelligence SIGINT + COMINT

RADINT | Radar Intelligence Radar emissions

LASINT Laser Intelligence Laser emissions

OSCINT | Open Source Intelligence News feeds or media broadcasts
HUMINT | Human Intelligence Verbal or written reports from people

Table 1-1: The UK categories of intelligence sources.

The principal phenomena and sensor types are:

e Electromagnetic energy

0 Magnetic
o Radar

0 Infrared

o Visible

o Ultraviolet

e Mechanical energy

0 Seismographic

O Acoustic

o Ultrasonic

e Chemical particles

e Nuclear particles

Further subdivisions may be made according to whether the sensor operates in passive or

active mode, its frequency, bandwidth, polarisation and resolution. The absolute and relative

locations and motions of the sensor platform(s) and the target(s) also affect the collection of

the sensed signature, as do environmental variables such as weather, clutter and

countermeasures [98].
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Data fusion is widely applicable to modern systems with sensors, sources or databases of
information. Over the last few years a data fusion community has developed with an
increasing amount of international collaboration [25]. For political reasons the early funding
of data fusion came from government sources and many of the initial applications were for
military tasks. Such tasks include non co-operative target recognition (NCTR), multi-sensor
multi-target tracking, situation assessment, battlefield surveillance, reconnaissance analysis
and asset tasking (77]. Applications to non-defence remote sensing tasks and drug interdiction
were next to be analysed using data fusion techniques. More recently, the developments in
data fusion technology are beginning to find application in the commercial world, most
notably in the aerospace, manufacturing and condition monitoring fields. Use of data fusion in
such application areas may lead to increased robustness to jamming or source failure and
extended spatial or temporal coverage. It may also increase confidence in decisions (resulting
from less ambiguous or confirmed information), increased the detection probability and
reduce the operator workload. We shall use the term fusion cell to denote a system sub-

component where data is combined and data fusion occurs.
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Chapter 2 Data Fusion Approaches

2.1 Chapter Introduction

The information about how to process and fuse data can come either from expertise or from
data. We shall separate the use of experts into three approaches that relate to scientific
knowledge of physical processes, expert opinion or the use the human expert directly to
manually process the data during operation. There are therefore four possible approaches to

designing fusion cells:

1. Physical modelling of the input processes

o

Empirical modelling of the input processes
3. Expert encapsulations of human knowledge of the interdependencies in the input
information

4. Human-in-the-loop (HITL) analysis of the incoming data

In the following sections we shall examine examples of these four approaches to the design of

fusion cells and select one of them for more detailed analysis in the remainder of the thesis.

2.2 Physical Modelling

Physical modelling is only possible when the processes governing the production of the
separate streams of data are well (or at least well enough) understood. An example of physical
modelling for data fusion is that of pixel-level fusion of infrared and visible light imagery as
described in [130], [30], [131] and [31]. In this application a model of the heat flux at the
surface of objects observed in the scene was developed and used to characterise the surface
material of a scene. The resulting model used the visible light imagery to estimate the amount
of energy incident on the patch of terrain corresponding to a single pixel in the image. This
process itself may be regarded as a form of data fusion since collateral data (sensor
orientation and position, local time of day and latitude of scene) are used to calculate the
amount of sunlight expected to be available. The infrared image is used to estimate the
temperature of the surface corresponding to the same patch of terrain. The two items of data
together provide sufficient information to calculate a parameter, which largely depends on the

material properties of the surface under scrutiny. An illustration of this technique applied to
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two synthetic images is shown in Figure 2-1. On the left is a synthetic downwards looking
infrared image. The scene comprises an area of sloping terrain, a road network and four pent-
roofed buildings. In the centre is the same field of view imaged in the visible spectrum. The
third image (on the right) shows the output of the fusion system, which has assigned a

material coding to each part of the scene.

Figure 2-1: Physical modelling for image data fusion.

In more detail, the method uses infrared and visible-light images together with estimates of
the wind speed, air temperature and the position of the sun to work out a parameter R. This
parameter 1s defined as:

R — WI)(I/
w

abs

where the quantity W, is the absorbed solar heat flux, and W, , is the heat flux lost from the
surface by conduction, photosynthesis or transpiration. The value of R is found to be
indicative of the localised material type of the surface under scrutiny. In the model it is
assumed that the surface is composed of facets which correspond to the individual pixels in
the infrared and visible-light images. Furthermore, it is assumed that each facet is thermally
isolated from its neighbours. The model for the net heat flow at the surface of the facet is then
given by:

%4

abs

= Wt:v + Wmd + Wl

hal

Where W, is the absorbed heat flux, W, is the heat flux lost by the surface by convection

&

and W,

bal

is balance the heat flux lost from the surface. See Appendix A.1. This is shown

schematically in Figure 2-2.
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Figure 2-2: The heat flow model used for the infrared and

visible light image fusion.

Two types of convection were modelled; free convection for zero wind speed and forced
convection for non-zero wind speed. Each regime had several expressions for 4 dependent on

the circumstances [90].

For given infrared and visible-light images these equations could be used in reverse to
estimate the heat flux balance and therefore the ratio R of the surface material. In experiments
described in [130] it was shown that materials have characteristic ratios. Metallic objects have
a low value of R (of varying values up to 0.25), building materials such as concrete, brick and
asphalt have intermediate values of R (typically in the range 0.49—0.87) and vegetation has

very high values of R (0.86 and higher, owing to the photosynthesis process).

The primary advantage of the technique is that the properties of surface materials are difficult
to change and therefore the technique will be robust in a wide range of domains. The main
disadvantages of this approach are the need for pixel-registered imagery and the high
bandwidth of communication between sensors (both of which make this approach suitable
only for single platform systems). Furthermore, it was shown in [31] that the amount of noise
that can be tolerated is relatively small (although well within the state-of-the-art for such

imagers). This may be a deciding factor if selecting this method for particular applications.
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2.3 Empirical Modelling

The advances in pattern recognition may be readily transferred to data fusion. Several
standard empirical techniques have been used for processing of multi-sensor data including
linear discriminators [50], Gaussian classifiers and their variations [118], Kernel-based
density estimation methods [137] and the nearest neighbour based pattern classification rules
[51] and [81]. Several researchers have used so-called neural network architectures for data
fusion. Methods such as the radial basis function network [40] and the multi-layer perceptron
[148] are popular ([7] and [143] for example). Figure 2-3 shows the configuration for a multi-
layer perceptron (MLP) fusion centre. In this model, the processing for each of the sensors is
performed by a MLP, initially trained separately using standard methods. Two approaches
may then be used for training of the fusion centre — either the fusion MLP is trained in
isolation using the outputs of the sensor MLPs as input or the entire network is treated as a

single MLP and optimised accordingly.

These techniques have also been used to fuse multi-sensor data at both the probability and the
feature levels using slightly different MLP architectures (see Figure 2-3 and Figure 2-4). The
author showed in [22] that by introducing an optimisation criterion which combined the sum
squared error at the fused output and the separate outputs, 1t was possible to produce a fusion
network which compromised between globally optimal and locally optimal features. Such a
network was shown to be more robust to communication failure since the separate sensors

could then operate autonomously.
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Figure 2-3: The probability level fusion configuration for
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2.4 Expert Systems

In the early development of automated data fusion systems, the intelligent knowledge-based
system (IKBS) was seen as an appropriate technique. The approach was well established in
the artificial intelligence (AI) community and had demonstrated potential on a number of
related tasks. One of the first uses of IKBS technology for large-scale data fusion modelling
was undertaken in work introduced in [105] and [106]. A similar, blackboard, architecture has
subsequently been employed in several other, military data fusion systems [151), [152], {64]
and [28]. The principal difficulties, which these researchers have identified with the TKBS or
Al approach, are that there is a requirement for existing manual solutions and the availability
of well-qualified and eloquent experts. In addition the way in which uncertainty can be
expressed in the system (including uncertainty in the received information and in the rule base

itself) is somewhat restricted and the system is sensitive to the introduction of new rules.

it does, however, provide an intuitive development environment which operators dre
generally able to identify with. The symbolic, rule-based, approach also gives the opporiinity

to give reasons for the decisions reached using simple if-then explanations.

More recent data fusion studies that call upon the knowledge of experts to design the fusion
process have concentrated on the Bayesian belief network (BBN). A BBN is a network of
interconnected nodes. Each node encapsulates the state of a particular facet of the system as a
probability distribution. The links between the nodes represent the conditional probabilities of
pairs of variables within the model. States of the system whose nodes are not connected are
assumed to be independent [138]. For an introduction to Bayesian belief networks the reader
is referred to [92]. The BBN model has been used for data fusion at the object level [155] and
the situation assessment and threat assessment levels [66]. An example of the development of
a BBN for information fusion for situation assessment is shown in Figure 2-5. The network
encapsulates the fusion necessary in a simplified air defence scenario [18]. The pale grey
entities to the left of the network concern properties of individual aircraft. The dark grey
properties in the centre concern packages of aircraflt and the mid-grey entities to the right

concern the target.
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Figure 2-5: The air defence Bayesian belief network

developed by the author.

In the BBN developed for this simplified application 25 nodes were defined and 28
conditional probability distributions between the entities these nodes represented were
specified. The development process for this type of network is well structured and is loosely

based on the CommonKADS KBS lifecycle [150]. It proceeds through the following steps:

¢ Identify a small number of abstract entities, or meta-nodes (in this example the
entities aircraft, package and target were identified)

e ldentify the principal qualities in each entity which depend on those in another entity
(in this case the range, role, speed and weapons characteristics ol the aircrali were
determined to be linked to the associated quantities for the package. The targel type,
location and size were shared characteristics of the package and the targel entities)

¢  Refine the abstract entities into a sub-network of nodes which represeni more specific
quantities which may be measured or otherwise ascertained

¢ Define the conditional dependence between individual nodes
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The network as described was used to simulate known air missions flown during the 1991
Gulf conflict. The network was used in two ways. Firstly as an air defence analyst for
determining likely targets given uncertain information on incoming aircraft. Secondly as a
mission planning aid for targeting specific targets. It was noted that the network gave a
plausible representation of the scenario and was robust to missing data. The approach is being
further developed for data fusion by other researchers to admit the use of fuzzy rules [135]

and automatic structuring [ 126].

2.5 Human-in-the-Loop

The integration of human operators info automaled systems, which perform complex data
fusion tasks, has been somewhat overlooked of late. Command and control (C7) is a nofahle
application where human-in-the-loop (HITL) processing is likely to be required for the
foreseeable future. In this application the spectrum of socio-political, ecanomic, military and
interpersonal facets of a situation must be brought 1o bear on the decision-making process.
Although automatic techniques can greatly accelerate the processing of sensor data and
encyclopaedic knowledge, the commander is (currently) still required to make the final
decision. This decision is often made under the dual pressures of time and resources.
Adequate integration of human operators into such a process is little understood and, with a
few exceptions such as [89], [97] and [43], has not been addressed in the data fusion

community.
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2.6 Chapter Discussion

In the preceding sections we have seen that the data fusion process may be approached in
several different ways. The main advantages of physical modelling are that the theories are
usually rigorous and need little maintenance, that the theories can be applied fairly directly
and are widely applicable. The key limitations of physical modelling are that they may not be
robust to missing or inaccurate input data and that they are inflexible. The advantages of
empirical modelling are that there are many existing methods that can be tailored to specific
applications and that they may be able to handle inaccuracies or missing data. The principal
limitation of empirical modelling is that adequate training daia is required. The advantages of
expert models are that it exploits human insight and that it often offers compact solutions
which are understood and accepted by human operators. The main limitation is in the
availability of an expert from which the knowledge can be elicited. Tn some circumsiances the
knowledge capture itself is challenging [62] and the representation of the knowledge may
prove awkward. Human-in-the-loop processing is most appropriate when the process involves

a lot of common sense processing or where other technigues are not possible.

We shall select the empirical approach for the remaining chapters since it offers the flexibility

to handle many data fusion problems and is amenable to quantitative analysis.



Chapter 3 Data Fusion Architectures

3.1 Chapter Introduction

In this chapter we introduce the concept of a system level approach to data fusion. Data fusion
as a discipline only exists because of practical constraints, such as communications bandwidth
or processing power, which affect systems. In the absence of such constraints all of the data
would be available centrally and could be modelled jointly. In the following sections we
describe a number of ways of organising the data fusion processing. This discussion of
functional architectures will establish the context for the analyses that follow. We define two
terms to describe the way in which data fusion algorithms may be embedded in a larger
system. Firstly, we use the term process model to describe a sequence of processes, which
must be undertaken before the system can be regarded as fully operational. Secondly, we
define the term functional topology to mean the way in which these processes are disiributed,
the connectivity and data flows between their component parts. We shall expand on the

options for each of these terms in the next two sections.

3.2 Process Models

The information processing requirements of modern automated systems require a plethora of
data processing, data reduction and data combination capabilities. The specific requirements
will, of course, vary between domains. However, a common strategy for implementing such
systems is to modularise the processing into several components and to process the data either

sequentially or hierarchically using these elements in turn.

3.2.1 Pattern Recognition Hierarchy

The UK Technology Foresight working group on Data Fusion and Data Processing [5],
agreed the pattern recognition hierarchy model in 1996. Pattern recognition is an important
task, which is encountered in many domains including NCTR, target acquisition, medical
diagnosis, fault analysis, direct voice input and autonomous navigation. The recognition and
decision support tasks are typically modularised into a set of four components (sensor and
signal processing, feature extraction, pattern processing and decision making) as shown in
Figure 3-1. In this model the flow of information is from raw data (at the lower levels) (o
abstracted information (at the higher levels). The diagram also illusirates the reduction in

bandwidth, which occurs during the process.
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These sub-problems have historically been viewed as essentially separate disciplines with
only loose, interdisciplinary constraints imposed and interactions driven primarily through the
personalities and contacts of the major research groups. As a result distinet frameworks,

paradigms and expert knowledge have emerged in each.

Decisior]
making
Situation
assessment

Pattern
processing
1T
Feature
extraction
Signal
pProcessing

.

1r

Sensing

Figure 3-1: A schematic modularization of the pattern

recognition process.

3.2.2 JDL Data Fusion Model

The Joint Directors of Laboratories group (JDL) Data Fusion Group (DFG) produced the JDL
data fusion model shown in Figure 3-2. Shown in this model are the three levels of data
fusion and one additional level of process refinement. Some preliminary filtering is assumed
to take place since many data fusion systems will be overwhelmed by the volume of data
produced by modern electronic sensor systems. Such filtering could be carried out on the
grounds of the time of the event, the location of the event, the type of the event or the
signature associated with the event. Once this pre-filtering has taken place the sensor data is

passed on to the data fusion system itself.



This model is based on the proposal in [77] and defines four levels of data fusion [79)
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Figure 3-2: The JDL data fusion model as oviginally

defined.

Hel

Object refinement — the processing of identity or location / kinematic information

pertaining to individual objects (for example single aircraft) within the area of interest.

Information being fused at this stage is generally sensor-derived data. This type of data

may be amenable to physical or empirical modelling. Much of the early work in data

fusion was performed at JDL level 1. Typical functions undertaken at level 1 include:

0

[

O

]

Data alignment (spatial or temporal)

Correlation (gating, association or assignment)

Positional or kinematic estimation (using system or empirical models)

Identity estimation (using physical, feature-based or cognitive approaches)

Situation refinement — once information about individual objects is made available i

can be fused at IDL level 2 to provide context. At this level sets of objecis are combined

into meaningful groups (for example by grouping a number of aircraft into a formation).

It is at this stage of the fusion process that a useful picture of the outside world is first

formed. At this level both sensor derived data and operator derived knowledge needs (o

be brought to bear on the task. Entities under consideration at level | are assaciated with:



a Other entities

0 Environmental data
0 Doctrinal information
G Performance data

3. Threat refinement — the impact that the evolving situation might have on the users well-
being is assessed at JDL level 3. At this level of fusion both the input information and the
collateral knowledge are generally quite abstract concepts, often involving human-in-the-

loop (HITL) processing. Factors under consideration include:

G  Expected courses of action and intent estimation
0 Lethality and countermeasure assessment

@ Composition and deployment

O Environmental effects

4. Process refinement — the management of the (low of information within the model and

the tasking of collection assets are both implied at JDL level 4.

Additionally the JDL model identifies sources, databases and a human-computer-interface.
The primary inputs, or sources, may include sensors, human sources and open sources.
Internal databases of geographical or encyclopaedic daia, for example, contain the necessary
collateral information. The human-computer interface (HCI) which represents the primary
output to the operator may include text, graphics and multimedia. Several workers interpret
the JDL model as a sequential process with information flowing from sources and then

through levels 1—4 in sequence before feeding back into source tasking.

The original JDL model was updated in late 1997 [154] to introduce a specific JDL level 0.
Level O corresponds to the fusion of information at the pre-detection stage. Examples of such
fusion are pixel level fusion or image registration. The new model also makes sensor
management (asset availability, sensor tasking and task prioritisation) an explicit part of level]
4 fusion, which was not clear in the original formulation. The revised DL model is illustrated
graphically in Figure 3-3. This model also incorporates level 0, sub-ohject refinement. As will
be seen subsequently, the process levels may be broadly equated with the layers in the pattern

recognition hierarchy.
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Figure 3-3: The revised JDI. data fusion maodel.

3.2.3 OODA loop

The Observe-Orient-Decide-Act control loop was first described by Boyd in [36] and is
shown graphically in Figure 3-4. The OODA loop is widely used in command and control
analyses, particularly in military domains. The OODA loop identifies the principal stages at
which a commander makes use of information available to him. In the first stage (observe)
sensors and sources are used to collect raw data which may be collated and pre-processed into
a form which can readily be assimilated. In the next (orient) stage, this data is analysed and a
picture of the state of the system and the commander’s role in it is developed. In the third
(decide) phase, the command decision making is undertaken and in the final (act) phase the

commands are put into action.



Figure 3-4: The Observe-Ovient-Decide-Act (OODA)

control loop.

3.2.4 Intelligence Cycle

Intelligence processing involves both information processing and information fusion.
Although the information is often at a high level, the processes for handling intelligence
products are broadly applicable to data fusion in general. There are a number of principles of

intelligence:

o Central control (this avoids the possibility of duplication)

o Timeliness (this ensures that the intelligence is available fast enough to be useful)

e Systematic exploitation (makes sure that the outputs of the system are used
appropriately)

e Objectivity (of the sources and the manner in which their information is processed)

e Accessibility (of the information)

¢ Responsiveness (Lo changing intelligence requirements)

¢ Source prolection (to guarantee a source of information with increased longevity)

¢ Continuous review (of the process and the collection sirategy)

Perhaps the most relevant factor to data fusion is that of objectivity. We will demonsiraie in
later chapters that intermediate decisions that are lacking objectivity, may propagate through

data fusion systems and reduce overall performance. The issue of central conirol will he

L
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addressed in the next section on functional architectures. It will be seen that avoidance of
duplication may be achieved in several ways. The UK intelligence cycle also lends itself to
modelling the data fusion process. The cycle itself is depicted in Figure 3-5. Unlike the
American model the British model does not include a specific planning and direction phase.

The cycle comprises four phases (as in the OODA loop):

¢ Collection — collection assets such as electronic sensors or human derived sources are
deployed to obtain raw intelligence data. In the world of intelligence the information
is often presented in the form of an intelligence report — either free form text or in a

predefined report format.

¢ Collation — associated intelligence reports are correlated and brought together. Some
combination or compression may occur at this stage. Collated reports, however, may

simply be packaged together ready for fusion at the next phase.

¢ Evaluation — the collated intelligence reports are fused and analysed. Historically,
highly skilled human intelligence analysts have undertaken this process. The analysis

may identify significant gaps in the inielligence collection. In this case, the analysi

may be able to task a collection asset directly. More usual, however, is the inclusion

of this requirement in the disseminated information.

¢ Dissemination — the fused intelligence is distributed (o the users (usually
commanders) who use the information to make decisions on their own actions and the

required deployment of further collection assets.
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Figare 3-5: The UK intelligence cycle.

Each intelligence source is tagged with a confidence measure or information grade. The
information grades used in the UK are numeric codes in the range 1-s6 as shown inTable 3-1.
Codes 15 can be regarded as representing approximale belicl values. Code 6 indicaies
complete ignorance regarding the confidence that may be placed in the information. This is
important since it provides our first example of the grading of information quality and raises
the question of how such grading may be incorporated in the subsequent fusion. We shall

return to this issue shortly.

I Confirmed by other sources

2 Probably true
3 Possibly true
4 Doubtful

5 Improbable

6 Unknown confidence

Table 3-1: The information grade codes used by the UK

military.

The different sources of information vary in accuracy, objectivity and reliability. In the UK, a
system of reliability categorics are also used, each category being assigned a letier code. The
reliability of a source depends on the type of source and the historical reliability of thal
particular asset and is assessed by the intelligence analyst. The reliability codes are shown in
Table 3-2.



A Completely reliable

B Usually reliable
Fairly reliable

D Not usually reliable

E Completely unreliable

- Unknown reliability

Table 3-2: The UK intelligence source veliability coding

scheme.

Intelligence analysts use these reliability codes (o mediate the relative weightings given (o
different sources of information. The reliability codes are combined with the information
grades in a somewhat ad hoc manner within the analyst cell. A rigorous means of ASSES8INE
source reliability and automatically combining it with information grade is a desirable feature
of any automatic data fusion system. The aim of combining accuracy and reliability will form

one of the main thrusts of the research described in later chapiers.

3.2.5 Comparison of Data Fusion Models

The four models described in the preceding sections can be compared and equivalencies

identified where appropriate.

Table 3-3 shows a comparison between the process models described thus far. In some cases
the equivalence is approximate. Greyed out boxes are not addressed by (he specific model
identified at the top of the column. It can be seen that there is some overlap in the way that the
different models sub-divide the information flow from sensors (o actions. The main
differences correspond to the amount of detail with which particular processes are
represented. This stems from the different uses of the various models and the emphasis they
place on certain aspects of the information processing and fusion chain. As can be seen from

Table 3-3, the information processing hierarchy contains the finest distinction between the
lower levels of abstraction, the IDL model at the medium level and the OODA loop al the
higher levels. The intelligence cycle covers all levels but in somewhat compressed detail. Tn
[26] a universal architecture is proposed which encompasses the main approaches defined

here.
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Table 3-3: A comparison of the four data fusion process

models identified.

[n the unified model the cyclic nature of the data fusion process is made explicit by retaining
the general structure of the OODA loop. The fidelity of representation expressed by the
pattern processing hicrarchy is then easily incorporated into cach of the four main process
tasks. The points in the process where fusion may Lake place are explicitly located, see Figure

3-6.
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Figure 3-6: The unified data fusion process model.

3.3 Functional Topologies

In the preceding section we described the manner in which the data fusion process is
organised. Since we have already established that the practical constrainis of data Tusion
systems are also of importance it is necessary to examine the physical organisation of these

processes in a data fusion topology.

3.3.1 Centralised

The centralised or, all-source, topology is perhaps the simplest arrangement for handling
multi-sensor data. In this arrangement the raw sensor data from each of the sources is
communicated to a single, central, fusion cell where the information is combined and passed
on to the consumer. The arrangement is illustrated schematically in Figure 3-7. Each source is
labelled “S”, the single fusion cell is labelled “F” and the consumer of the information is

labelled “C”.

The principal advantage of the centralised topology is its ability to use all of the information
collected by the sensors. The performance accuracy of the centralised topology is iherefore
potentially optimal. The main disadvantages of the centralised topalogy are twofold. Firstly
the communications requirements, since the bandwidth necessary for communicating (he raw
sensor data (o the fusion cell may be prohibitive (for example when image data needs (o be
transmitted over radio networks or satellite links). Secondly, the ability (o produce a4 madel

that can effectively deal with all of the data sources.
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Figure 3-7: A centralised or all-source data fusion

topology.

A reduced-bandwidth, centralised topology may be employed in some situations. In this cise
each source performs some local processing of the data (o reduce communicalions loading.
When other constraints admit the centralised topology it should be used in preference (o the

other topologies detailed in the following sections.

3.3.2 Hierarchical

stages. Nomenclature is identical to the previous diagram. In this case, however, several
fusion cells combine the information before finally passing on the outcome to the consumer.
Data fusion that is carried out on raw sensor data is termed low-level fusion and that which
combines previously fused data is termed high-level fusion [108]. The principal advantages of

the hierarchical data fusion topology are:

¢ Lighter processing load

e  Distribution of collateral databases

e Reduced communications loading

»  Faster user access resulting from reduced communications delays

¢  Prevention of information incest as 4 result of single data flow paths

s [Easier modelling
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Figure 3-8: An example of a hierarchical data fusion

topology.

In a hierarchical data fusion topology several levels of abstraction are possible. From high 1o

low-level these are:

[

Decisions — also known as symbolic fusion

e  Probabilities — or belief value fusion
e Features - or intermediate-level fusion

e Data — or sensor level fusion

As was pointed in out by Dasarathy in [S5], however, fusion may occur both at these levels
and as a means of transforming between them. In the model proposed by Dasarathy (which
omits probability-level fusion) there are five possible categories of fusion. Augmenting this
model with the additional probability level we obtain a seven-layer model as depicted in

Table 3-4. Note that the additional levels, which transform between representations, have

direct analogues in classical pattern processing.




Input Output Notation Analogues

Data Data DAI-DAO Data-level fusion

Data Features DAI-FEO Feature selection and feature extraction
Features Features FEI-FEO Fearure-level fusion

Features Probabilities | FEI-PRO Pattern recognition and pattern processing
Probabilities | Probabilities | PRI-PRO Probability-level fusion

Probabilities | Decisions PRI-DEO Rational decision making

Decisions Decisions DEI-DEO Decision-level fusion

Table 3-4: The seven possible levels of data fusion in the

augmented Dasarathy model.

The advantages and disadvantages of conducting fusion at the various levels is depicied in

Table 3-5.

Fugion level Bandwidih Performance Advantages Limitations
Decisions Very low Depends on system Simplicity for large Poor performance
systems for small systems
Probabilities Low Often good Bandwidth / Sophisticated
performance trade- algorithms needed
off for correlated
sources
Features Moderate Good—high High performance Difficult to select
correct features
Data High—very high | Potentially optimal

Possibility of using

physical models

High bandwidih
resiricts use (o
single platform

systems

Table 3-5: The advantages and disadvantages of the four

fevels of data fusion.
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Even within this model there are a number of choices as to the specific format of the data
being fused. For example in the three class problem comprising classes X, Y and Z the

possible formats at the decision and probability levels are [ 168]:

e Hard declaration — most likely class is Y

¢  Hard declaration shortlist — best hypotheses are {X,Y)

e  Ordered hard declaration shortlist — best hypotheses, in order are [ Y, X}

¢ Ordered hypothesis list — ordered list, best choice first is /Y, X, Z)

e  Soft declaration shortlist — best hypotheses are (X, Y] with Py=0.6 and Py=0.3

e  Soft declarations - Py=0.6, Py=0.3 and P,=0./

The first four formats are categorised as decision-level fusion and the remaining two formats
as probability-level data fusion. In order to simplify our subsequent analyses we shall
concentrate on the two extreme cases: decision level fusion in which only the most likely
object type is reported and probability-level fusion in which a full set of soft declarations are

supplied.

3.3.3 Distributed

In a fully distributed data fusion system no single fusion cell is designated as the master
fusion centre. This has both advantages and disadvantages. Since many existing (manual) data
fusion systems are fully distributed, the distributed topology is often imposed rather than
chosen. Distributed topologies may be driven by an information-push from the source or an
information-pull from the consumer (or a mixture of the two). Since there is no single path
along which data needs to flow to get from the sources (o the consumer, the fully distributed
topology is likely to be more robust to communications failures and processor downtime. This
same facet of multiple interconnectivity also poses the main difficulty with the fully
distributed topology. Because the same information may arrive at a fusion cell using more
than one route it is necessary to ensure that it is not fused with itself. Such information incesi
would result in unjustified reinforcement. Some graphical information flow methods have
been used to address the information incest problem [108]. If the information pedigree is
tagged on to the data itself then the point at which self-reinforcement is likely to oceur may be

identified. Three methods for handling information incest were proposed:
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e Restart the fusion using only the current information when incest is detected

e Sever those communications channels which give rise to the transmission of
incestuous information

¢ Divide out the extra confidence which results from the incestuous information and

proceed with the subsequent processing as normal

Figure 3-9: A fully distributed data fusion topology.

Figure 3-9 shows a fully distributed topology in which sources may supply information
asynchronously to associated fusion cells, which exchange information appropriately. The

consumer is provided with the outcome as it becomes updated.

3.4 The Veto Effect

In certain data fusion topologies the so-called veto effect may be observed. When most of the
information sources provide erroneous data it is not unreasonable for the data fusion system
to make an incorrect assessment (or more properly, to defer its decision). When the majority
of the information sources are providing good quality data, however, it is far from desirable
for the system as a whole to make an error. If the minority of erroneous sources is nol given
appropriate weight they can dominate the decisions made by the majority of good quality
sensors. This is called the veto effect. Although the effect is possible in any of ihe
architectures described above, it is most noticeable in the hierarchical topology. Figure 3-10
shows a pathological example of a hierarchical data fusion system drawing information from
27 sources. Although only 8 of the sources are providing erroneous information (indicated in
black) the hierarchical nature of the processing (which in this case uses a majority rile) has

allowed them to dominate.
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Figure 3-10: A pathological example of the veto effect in

hierarchical data fusion.

The veto effect is also observed when the information is graded (as is the case in the
mtelligence process as described on page 32). In this case it is possible for the most certain
sources to dominale the less certain sources. This is fine as long as those sources (hat claim
certainty are actually correct. If the assessment is overconfident, then the veto effect can

erroneously give them additional weight.
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3.5 Chapter Discussion

We have seen that data fusion is generally a multi-layered activity. Raw data is converted
nto understanding via a number of levels of abstraction. During the data fusion process
formation is collated and combined as it progresses from one level of abstraction to the
next. A fusion centre may exist at any level of abstraction. The input to such a fusion centre
will comprise the output of several processes at lower levels. During this collation process the
amount of co-located information increases. During the combination process, however,
irrelevant information is discarded and the reduced quantity (but of more concentrated
quality) of information is passed on (o the next level of abstraction. Figure 3-11 shows the
knowledge pyramid, which illustrates that as the level of abstraction increases so the

information bandwidth decreases.

Machines

Figure 3-11: The knowledge pyramid of data fusion.

We therefore find the prospect of fusion at the decision level highly attractive since it regiires
minimal data communications bandwidth and therefore makes o centralised  {usion

architecture feasible for even large sysiems. We also suspect thai the robustness of sich g



decision level centralised architecture would show robustness in the presence of erroneous
information from a minority of sources. In part 2 we will address the key question posed in
the preface with respect to multi-layered data fusion at high levels of abstraction. In the next
chapter we will address decision level fusion. We shall quantify this robustness of various
decision level fusion architectures and expand on the maxinum a posteriori approaches to

decision level fusion.

We introduced process models and functional topologies for the data fusion process. It was
made clear that most process models use a layered approach to data fusion in which fusion
may occur at increasing levels of abstraction. This was further examined in the context of
functional topologies. It was suggested that fusion at either the probability or decision levels
offer an appropriate low-bandwidth solution for data fusion across separate sensor platforms.
Furthermore, it was noted that hierarchical fusion architectures allow easier modelling and 4
faster, more robust data fusion system (hat is not susceptible (o information incest. Tt was
noted, however, that such hierarchical systems are somewhal sensitive (o faulty sensor
information (the veto effect). Techniques for overcoming the velo effect for these fwo

approaches will be studied in more detail in the following chapiers.



Part 2:

Data Fusion Methods which
Deal with Information Quality
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Chapter 4 Decision Fusion

4.1 Chapter Introduction

Fusion of decision-level information comprised the initial forays into the new field of daia
fusion during the early 1980’s. Decision fusion represents the extreme situation of fusing data
from multiple, distributed sensors using minimal communications bandwidth between the
sensors and the fusion centre. Decision-level data fusion is most appropriate when there are
large numbers of sensors, as described in the preceding sections. 1t has been the subject of
significant research over the last two decades, primarily because the problem is amenable (o
theoretical analysis. In this chapter we shall concentrate on decision level fusion because of
these reasons. We shall begin the study of decision-level fusion with an examination of the

veto effect since we saw in Section 3.4 that this can reduce the benefits of data fusion.

4.2 Decision Fusion Experiments with the Velo Effect

We shall examine the veto effect in which some data sources provide erroneous information
to the fusion process. We shall analyse the robustness of various decision-level topologies to
increasing proportions of misleading information. In the following experiments a decision
level data fusion system comprising 16 sources was simulated. At this preliminary stage the

fusion rule was simple majority voting. Three fusion topologies were used:

e Centralised topology in which all 16 sources were connected directly to the fusion
cell

e Hierarchical topology in which 5 fusion cells were used, each with a fan-in of 4
sources

e Hierarchical topology in which 15 fusion cells were used, each with a fan-in of 2

sources

These topologies are illustrated in Figure 4-1, Figure 4-2 and Figure 4-3 and clearly illustrate

that the fusion is carried oul in one, two or four stages respectively.

For each topology a series of experiments was performed. In each case four of the sources
(just 25% of the total) were made to report the incorrect class. The reports were assigned
randomly to the sources. Furthermore, a certain proportion of the sources was sel as defering

their decision. The proportion of deferring sources varied from none fo all sixieen. Again,



these were allocated randomly. For each allocation the fused decision was calculated using a

simple majority rule method.

Figure 4-1: The centralised topology used in the veto

experiments.
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Figure 4-2: The shallow hierarchical fusion topology used

in the veto experiments.
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Figure 4-3: The deep hierarchical topology used in the

veto effect experimenis.
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The percentage of 10,000 such experiments that gave rise to the correct fused decision being
output was recorded and is shown in Figure 4-4. The solid line shows the performance of a
centralised topology while the other lines show hierarchical topologies with a fan-in of four
(dotted) and two (dashed). In each case 25% of sources was providing an incorrect decision.
This graph shows that a centralised topology shows the most resilience to the veto effect with
little or no degradation in fused performance with over half of the sources deferring their
decision. Both graphs for the hierarchical topologies show less robustness with significant
drops in performance with fewer than hall of the sources deferring. In this case the
hierarchical topology having the larger fan-in of four sources performed slightly better than

the deeper topology associated with the two-fold fan-in.

100 T T v T ¥ T T i ‘l\.\\l_____l__\ T T T T i T 1 l
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Fusion sysiern performance (%)

201 —_

Q.0 0.2 0.4 0.6 0.8 1.0
Proportion of sources which defer

Figure 4-4: The veto effect for a data fusion system

comprising 16 sources.

Further experiments were performed to analyse the performance of the same sysiem as a
function of the proportion of the sources that reported an incorrect decision. In Figure 4-5 the
performance for a system with no deferring sources is shown. Figure 4-6 and Figure 4-7 show
the same information for a deferral rate of 25% and 50% respectively. As in the previous
experiments three topologies were assessed (centralised and hierarchical with a fan-in of
either 2 or 4). It can be seen from the graph that the centralised architecture again yields
greatest robustness to a minority of faulty sensor data with the hierarchical iopology having

fan-in of two giving marginally the worst results. The effect is reversed for scenarios in which
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the majority of sensors are faulty. This is, however, a somewhat artificial situation that is not

likely to be encountered in a well-designed data fusion system.
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Figure 4-5: The robustness of fusion for centralised and

hierarchical topologies.
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4.3 Decision Fusion Formulation

We shall now describe a formulation of decision fusion as applied to the identification
problem. Consider an object recognition task with a set of N target classes,

Ce{c,c,y,-cy ), which has a prior distribution of P(C) = {P(c)),P(cy), - Plcy)). A

particular sensor, S;, makes local decisions, ¢, € {¢,,,C,,C,,, - Cyy ), where &, indicates

[

that sensor i defers its decision. We may later abbreviate EU to ¢, in the interests of brevity if

the particular value of j is unimportant. We characterise the i sensor by specifying a sensor

transition matrix, 7;. The matrix 7, is defined such that the element 1,(j,k)gives the

i

probability that the /™ sensor will cause an output of k& when the /™ obiect type is actuall
I y ] J ] Y1 y

present. For example:

w



shows a typical sensor characteristic matrix for sensor 1. The meaning of this description is

shown in the table below.

Sensor output decision

Object class | Object class | Decision

Q]
o
w
o
[¢%
o

I~
o

Actual object

class

Class 1 (¢))

Class 2 (¢,)

Table 4-1: A typical sensor characterisation matrix

The probability that the sensor will correctly identify an unknown object may be oblained by

forming a weighted average of the values on the matching diagonal since:

N
P(é,=C) =3 Plc,=¢,1c)P(c))

j=

which we shall refer (0 as the expected classification performance. Taking equal priors for the
two classes above we obtain an expected classification performance of 65% for 7,. A similar
method may be used to evaluate the expected error rate, which in this case is 25%. The

remaining 10% of the time sensor 7} defers its decision.

4.3.1 Maximum A Posteriori Decision Fusion

We shall now develop a rational rule for decision fusion based on these sensor characteristics.
In this case the posterior conditional probabilities for each class are computed for each
possible set of sensor outputs and the maximum is selected as the fused decision [129]. The
strategy minimises the probability of making an incorrect classification given the infarmation
provided (the classification labels from the separate sources). The maximum a posterior

(MAP) fused decision is relatively straightforward to calculatle given certain knowledge abonl
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In a similar way we may calculate the probability of each of the possible output triplets given
one target or the other. The full set of 3 =27 sensor outputs for target type ¢, is shown in

Table 4-2.

Now we require the probability of a particular target given that we observe a specific output

triplet. This is easily calculated using Bayes' rule, for example:

P68 1) P(e) | PG, e )PLe)

S P(8,.¢,.8,1e)Ple)
i=l

P(c,1¢,,¢,,¢7)

and the posterior estimate of the target class ¢, given this declaration is

0.036 % P(c,)
0.036 % P(c,) +0.032% P(c,)

P, | 5113521 ) 632) =

and similarly for ¢,

i . 0.032x P(c,
Ple, 1¢,,,0y,0) = (c)

0.036% P(¢,)+0.032% P(c,)

If the prior probabilities of classes ¢, and ¢, are, say, 0.4 and 0.6 respectively we obtain the

MAP decision probabilities of

Plc, 1¢,,,¢,,,C4,) =0.429
and

P(c, 18,,,8y,61,) = 0.571

and in this case we declare as class ¢, being the MAP fused decision (despite the case tha
two out of the three sensors declared the class as being ¢, ). The MAP fused transition mairix,
T", can be found by summing the values for all triples which yield a particular fused
decision, conditioned on a specific target. For example element 7,7 is calculated by summing
all values for which the fused decision was target type ¢, when the actual targel type was
also type ¢, . Summing these values (indicated by shading in the table above) resulls in the
probability 0.824. For the above sensor characteristics the full MAP fused transition matrix,

T is given by:
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0.824 0.176 0.000
0.083 0.917 0.000

7 Fasr

Note that the fused decision may not be deferred using this simplest scheme.

The expected error rate of this fused decision-maker may be calculated as approximately
12%. It may be observed that this is better than the first two sensors (at 14% and 36%) but

worse than the third sensor, S,

R4

which has an error rate of just 10%. However, sensor S,
additionally defers its decision 10% of the time whereas the fused system is foreed to make a
y

decision every time.
4.3.2 Maximum Likelihood Decision Fusion
The maximum likelihood estimate of the fused class probabilities may be obtained by

ignoring the priors on the target class in equations given for the MAP fusion method | 129].

For the same example illustrated in the previous section we have:

0.036
P(c, 1¢,,,¢,,,84) = ——————— =0.529
GGt ) = 5 o0
and similarly for ¢,
A A 0.03
Plcy 1¢,,,¢,,,¢64) 2 0.471

T 0.036+0.032

and so the ML fused decision in this case is in favour of class ¢, (the opposite of the MAP
decision). It is readily seen that the ML decision fusion rule and the MAP decision fusion rule
are identical when the a priori target probabilities for the classes under consideration are
equal (or alternatively when we have no evidence to support the hypothesis that they are
different). The ML fused transition matrix is calculated in exactly the same manner as
detailed in the previous section. In this case the ML fused transition matrix is found to be:

0.909 0.091 0.000

0.151 0.849 0.000

Fu ~

and the expected error rate is approximately 13% - slightly worse than that of the MAP
decision fusion method but nevertheless comparing favourably with the performance of the

individual sensors.

jv
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4.3.3 Deferral with MAP and ML Decision Fusion

When characterising the performance of individual sensors we included the possibility of a
sensor reporting a state of uncertainty in the class type (or deferring the decision). The same
option of deferral may be introduced to either of the decision fusion schemes described in the
preceding sections. One simple, yet effective, rule is to require that the probability (either
MAP or ML) associated with the preferred class exceeds some pre-set threshold. The higher
the threshold is set, the more confident the fusion process is required to be before outputting a
fused decision. For example, say the decision deferral threshold is 0.6. This means that only
decisions whose probability exceeds 0.6 will be reported. All others will be deferred. Using
the sensor characteristics defined in the previous sections we obtain the new fused transition

maltrices for the MAP estimate:

0.812  0.090 0.098
0.075 0.848 0.077

T Fasar o~

with an expecled error rate of approximately 8% and about 8% of decision being deferred.

The corresponding matrix for the ML decision fusion method is:

0.812 0.084 0.104
0.075 0.840 0.085

Far

with an expected error rate of just under 8% but over 9% deferrals. Each of these methods
now performs better than the individual sensors (both in terms of higher decision accuracy
and a lower deferral rate). [n reality the value of the threshold would be carefully chosen with
due consideration for the detrimental effects of a fast, but incorrect decision versus waiting
for a slower (and possibly too slow) correct decision. A rigorous approach to this problem
would use utility theory (described later) to set the threshold 1o that value which minimised
the expected cost of the decision (deferral or otherwise). This approach is not expanded on

here.

4.3.4 Fair Ballot Decision Fusion

Perhaps the simplest approach (o decision fusion is the use of a simple hallat in which each

sensor casts a single vote and the majority decision is adopted. This is essentially the rule that

LA
N



was employed during the veto e

xperiments at the start of the chapter. Deferring sensors are

assumed to abstain, tied ballots result in a deferral by fusion process.

There are 3°

= 27 possible outputs from these three sensors. The list below details each

possible triple and the fair ballot fused decision associated with them.

P(2,,.65,,00, 1¢,) > F,

P(¢),¢y,,Cq 1e)) > F

P(2,,,05,.00 L)) > I,

P(8,,. 00 05, 1) > F

P(C,y, o 05 Le)) > F)

P(c,,,cy 0 le)) = F,

P(C,.Ch Cn ) > F,

P(¢,,,C5, 04 1)) > F,

P(C5, 00,85 Te)) = 1,

prao4oa . ;
P(¢i 0y, 04 Loy = F

P, Chysiyy Le)) = F

P, .Gyl L)) — F,

P(,) 6y by le) > F,

P,y 04, 1e) = F

PGy ey = 8

P(8,,.01,.6,,1¢,) > F,

P(C,, 00,y 1 e) > F,

P&, ConCp L) = F,

P(C,5,ChyCynle)) > F,

])((,,\‘12,(?2.‘,,(/\7“ ] Cl ) —3 ['1,

PGy by by L) = T

P(Gy.Copaly ) > F,

P(¢),, 05,04

le) — F

P(Cy,C0, 0oy le)) = F,

P(C,,Cp,Cyyle)) = 1,

P((“ll ;(?33 5 (?';3 | & } — /"3

Table 4-3: The fair ballot decisions for the 27 possible

sensor output triplets.

The fair ballot fused transition matrix is calculated in exactly the same manner as detailed in

previous sections. In this case the matrix is found to be:

(0778

0.114

0.093 0.783 0.124

and the expected error rate 1s approximately 10% - slightly worse than
] pp Y ghtiy

either the MAP or ML

decision fusion methods with deferral. Furthermore, the expected deferral rate is 12%. This is

higher than either

the MAP or the ML fusion methods.




4.4 Estimating Sensor Characteristics

It should have been noted from the above treatment of decision fusion methods that good
estimates of the sensor characteristics are required to obtain optimum fused performance.
Although much effort has been put into the development of decision fusion algorithms
themselves, little thought has been given to the methodologies with which they could be
applied in real systems. The sensor characteristics are often obtained by observing sensor
performance under known conditions and estimating the proportion events for which the
sensor output was correct, incorrect or was deferred. The collection of appropriate data is a

major factor in determining the operational performance of data fusion sysftems.

4.4.1 Lack of Quality Data

In any pattern recognition task there will be an inherent degree of uncertainty, which it is no
possible (o eradicate. However, this uncertainty can be compounded by an inappropriute
choice of database. It is important to understand the implications that a small sample has on
the results of sensor characterisation experiments and to maintain a sense of what constitutes

a sample of reasonable size.

There are many factors, both theoretical and practical, which determine the amount of data
that should be used for this characterisation process. The amount of data that actually is
collected will to a large extent be constrained by the data collection budget and the
availability of examples. In practice it may be more efficient to “collect an intermediate size

2]

sample of good quality than a large, but messy, dataser.” [45]. These commenis
notwithstanding the following list of cases would require a large amount of quality data to be

collected and used for the individual sensor characterisation:

1. the highest possible performance is required

2. the classification method used is of high complexity

3. high confidence is needed to be placed in the test results
4. the cardinality of the feature set is large

5. the separation between the separate classes is small

6. if little knowledge is available about the problem.



In the following analyses the number of patterns from class 7 which are available to design
the classifier is denoted by N, . The number of classes is denoted by Cand the number of

features or measurements present in each pattern (the input dimensionality) is denoted by D .

The partitioning of data into a design set and a test set is a traditional technique for
developing a classifier and estimating its performance on unseen data. The more accurate
estimators of performance such as the leave-one-out method are often not feasible for
complex pattern recognition tasks in which adaptive methods are used. It has been shown [84]
that for large samples the optimum partitioning of the data allocates at feast S50% of patierns
(o the test set. This partitioning strategy has been shown to be sub-optimal for small samples

as pointed out in later literature [69]. The more training data which is available the better the
estimates of the posterior distributions are likely to be (as long as the training data is
representative). If the form of the underlying distributions is known, and the mathematics is
tractable, then it may be possible to calculate the effect which a small sample size has on the
performance and to make appropriate allowances (o the output prabability estimates. For
example, if the data is isotropic-normally distributed then the correct Bayesian posterior

distribution is a Student's r-distribution [ 16].

However, if the data distributions, or the models, which are used to fil the data, are more
complex, then an analytical approach is not usually feasible. In this case an adaptive
technique is sometimes used in which parameters of the model are adjusted on the training set
in the hope that they will produce adequate performance on the test set. This assumption is
fine if the performance on the training set (re-substitution performance) is similar to the
performance on the test set (generalisation performance). It has been shown that the ratio
between the number of training samples from each class and the dimensionality of each
pattern vector, %/, is a suitable indicator of the adequacy of the design database. A more
complicated scheme has been suggested ([ 116] for example), in which the model parameters
are set using a two part criterion; the usual fit to the data is augmented by a complexity

penalty term which moderates the output.

4.4.2 Bias in Re-substitution Performance

It has long since been known that the expected performance of a classilier tested on the dafa
with which it was designed is higher than the performance expected on a test sel ol pallerns
drawn from the same distribution as the design set. Some analytic results and cansiderable

experimental verifications are available. Others [68] have investigated the size of this effect.



A number of schemes have been suggested for providing the experimenter with a means of
obtaining estimates of the true generalisation performance (the holdout technique or cross
validation technique for example). The disadvantage of these and other schemes is that they
can impose heavy computational demands. Modern pattern recognition methods such as
adaptive networks cannot, in general, use such techniques. With such adaptive methods the
efficacy of a classifier is evaluated and the parameters iteratively tuned in order to improve
the performance. The usual approach is to divide the available data into a design set and a test
set and to hope that the bias introduced by adapting only on the design set does not render the
performance as evaluated on the test set useless. The size of design sei for which the re-
substitution performance does not differ too much from the expected generalisation

performance is therefore of great practical imporiance.

The following computer experiment was performed: N samples were generated from each of
two D -dimensional normal distributions with unit variance and separation .. The separation
was varied between zero and five standard deviations giving Bayes® classification error rates
of 50.0%, 30.8%, 15.9%, 6.7%, 2.3% and 0.6% respectively. D was varied between | and 5.
The means of the distributions were estimated from the training database and the recognition
performance both on the training data and on a large testing datasei consisting of 100,000
examples were measured. The re-substitution classification performance and generalisation
classification accuracy was plotted against the indicator %/, . Each classification performance
value for a given sample size, dimensionality and separation is the mean of 20 experiments.
Figure 4-8 shows the average of the curves for the five values of D (each point is therefore

the average of 100 experiments).
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The difference between the re-substitution misclassification error and the generalisa

misclassification error is plotted in Figure 4-9. It can be noted that a shoulder is present in

these curves at which a further decrease in difference requires

tl

considerably mare data. The



pomnt at which a reasonable amount of data is available depends on the Bayes’ error rate but
appears to lie between 5 and 10 for the distributions analysed in the experiments described
above. This heuristic rule is confirmed by other research [95]. They have analysed the
dispersion in the estimate of covariance matrices for multivariate normal distributions. Their
results suggested that the “performance of the estimators [is| statistically reasonable [when
the number of training samples per class is| about five times the number of features”. Other
research workers [146] have compiled a thorough analysis of the data requirements of five
classification techniques from the family of Gaussian classifiers. Their findings again point (o
the ratio of sample size and dimensionality as the appropriate indicator. Using a hypothetical
problem with a Bayes error rate of 1% it was found that an increase in misclassification rate
to 1.5% would occur when ’% was between 1.0 (for the nearest class mean classifier) and

10.0 (for the Gaussian classifier).

The extension of these results to distributions other than normal and to classilication problems
involving more than two classes is not easy. The results presented above are (o be taken as 4
guide (o the minimum amounts of data necessary. More complex distributions will necessarily

require a larger number of design patterns.

4.4.3 Confidence in Test Set Performance

It is not sensible to place perfect deterministic confidence in a procedure that is derived from
the analysis of a probabilistic event. When designing the system it is wise to determine the
confidence that can be placed in it. The degree to which the in-service performance of the
classifier can be approximated by the performance on a test set will vary according to: how
representative the test set is, how many patterns there are in the test set and how correlated
those patterns are. We consider next the case in which the test set patterns are representative

and independent. In this case the observed error rate has a binomial distribution.

The confidence, which is to be placed in the performance of the classifier and the number of
patierns used lo assess that performance, are related. Tighter confidence intervals being
associated with greater amounts of test data. The relationship can be used to plan in advance
the amount of data that is necessary to provide a desired confidence level; or to determine the

confidence interval for a given amount of test data.

Suppose a recogniser is specified with a maximum misclassification rate of 1%. Suppose also

that it is required that the user should have 95% confidence that this specification has heer

o
N



met (i.e. that the probability that the underlying misclassification rate is <1% is 0.95).
Furthermore, suppose that an independent test set is collected and the recogniser makes no

errors in classifying patterns from it. How many patterns should the test set contain?

Assuming a flat prior on the misclassification rate we have

001 0.01
j dE P(E, | E,N,) J‘ dE (1 - E)™
P(E, <0011 E, N,)=- ~ .0 1090
J}/E PUE, | EN,) j dE (1 — EYM
( 0

which we have specified must be greater than 0.95. This gives

N5 logl=095) .
102(0.99)

The builder of the recogniser would iherefore need (o collect about 300 patterns for esting the
recogniser. If the required misclassification rate was less than 0.1% then the same confidence
would necessitate the use of nearly 3,000 test samples, all of which would need to have been

correctly classified by the recogniser.

This principle can be extended to provide the desired confidence limits for any measured
performance rate. It has been shown that the confidence that should be placed in a
classification error is independent of the number of possible classes [84]. We arbitrarily show
the workings for the 95% confidence interval - any other interval can be calculated in a
similar way. We define the 95% confidence interval to be bounded by a pair of values such

that the underlying error rate [ falls below the lower value with probability no greater than

0.025 and above the higher value, again, with the probability no greater than 0.025. If the
patterns in the test data are independent then the probability of misclassification will have a
binomial distribution. For large test samples, say greater than 100, this binomial distribution
can be approximated by a normal distribution [84] and the calculation of the confidence limits
is very straightforward. The same approximation continues o be widely used when ihe

number of test samples is much smaller (see Figure 4-10 for example).

B(p,N)=N(u,c’)

where

__'\
Co



{=Np and 6° = Np(l— p)

The 95% confidence intervals can then be estimated by appropriate use of tables or
approximations. Figure 4-10 shows these confidence intervals for samples sizes of 2, 5, 10,

15, 20, 30, 50, 100, 250 and 1000 samples.
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Figure 4-10: The 95% confidence using the Gaussian

approximation to the binomial.

For smaller sample size the procedure is somewhat more laborious as outlined in [48]" and
[46]. In such cases we find an approximation to the inverse of the incomplete beta function
based on that of Hastings [2] useful. We give only the lower confidence limit, L,, the upper
confidence limit follows from symmetry: L (x)=1- L, (x). In this approximation N denoles
the total number of palterns in the test set and [ the proportion of test samples mis-
classified. The value of y —is chosen depending on the confidence level - the value of
y, =1.96 used here corresponds to the 95% confidence limit. The approximation holds when

at least one test pattern is either correctly or incorrectly classified (sce Appendix A.2),

' The extensively reproduced confidence limils given in Clopper and Pearson (1934) are
based on a linear interpolation of tables from the Medical Research Council's Reports. The
resulting confidence intervals are tighter than are sirictly justified.
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This is shown in Figure 4-11 for N equal to 2, 5, 10, 15, 20, 30, 50, 100, 250 and 1000. The
graph is read as follows: the measured test set error rate is located on the horizontal scale and
the points at which a vertical from it crosses the upper and lower confidence limits for the
respective sample size are noted. The values of the 95% confidence limits on the underlying
error rate can then be read off the vertical scale. For instance, in a typical recognition
experiment using 1300 test patterns with a measured error rate of 30% we obtain a 95%
confidence interval of 27.5-32.5%. This method has been used for several applications
studies [11], [12] and {14]. It has proved to be a useful technique for assessing significance of

results and gaining some feel for the refiability ol the predicted error rate.
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Figure 4-11: The actual 95% confidence intervals for

generalisation performance.

The above results can be verified experimentally. Data from a pair of normal distributions
separated by one standard deviation were generated. The Bayes error rate for these
distributions is 30.8%. A nearest class mean (NCM) classifier was trained on 100 samples and
tested on 1000 test sets each of 10, 20, 50 and 100 patterns. The error rates for the 1000 tests
were recorded. Figure 4-12 shows the proportion of test resulis that fell below the specified
value. Figure 4-13 shows an enlargement with the proportion 0.025 at the top. The lower
confidence limits were found by linear interpolation between the nearest pair of experimenial
values - note that the curve is concave in this arca and a linear interpolation is likely (o give

an underestimate. The upper limits were calculated in a similar manner. The performance
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values for which the appropriate proportion of test results failed to equal are given in the

accompanying Table 4-4 for a Bayes’ classifier with an error rate of 30.8%.
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Figure 4-12: Experimental verification ol the confidence

interval formulae.
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Sample size | Experimental range

Theoretical range

10 33%—93% 34%—93%
20 44%—8T% 45%—88%
50 54%—81% 54%—81%
100 60%—78% 59%—T78%

Table 4-4: The 95% confidence intervals for a Bayes’

classifier.

4.4.4 The Generalisation / Confidence Dilemma
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The two preceding sections quantify two observations:
O the generalisation error rate is reduced by increasing the sample size of the design
database
Q the confidence in the generalisation error rate can be reduced by increasing the

sample size of the test data

A dilemma faces the experimenter when there is a fixed number of samples (o apportion
between the design and test sets. Reducing the generalisation error rate increases the
uncertainty in its value, and vice versa. The same issue is known as the bias / variance
dilemma in the statistics literature. To illustrate the issue we consider a two-class recognition
problem for normally distributed data with a separation of one standard deviation. Figure 4-14
shows the underlying error rate (30.9%) together with the estimated error rate (solid line) and

the one standard deviation confidence interval for the generalisation error rate (dotied lines).

An appropriate proportion of samples should be allocated to the design and tesi sets according
to circumstances. Unless otherwise stated we shall divide such datasets equally in the

FeMaining experiments,

4.5 Improved Fused Error Rate Estimation

Using the ideas presented in the preceding sections we are now better able to estimate the
error rate performance of the various decision-level fusion algorithms described at the

beginning of this chapter. Let us take the same sensor characteristics described in 4.3.1

0.6 02 02 {06 03 0.1 , 0.8 0.1 0.1
0.1 0.8 0.1

Pt}

0.1 07 02 104 05 0.1

but that we shall further assume that these estimates were produced using 100 samples for 7},

T, and T7. Since the number of samples is relatively large in each case we shall use the
Gaussian approximation (o the error rate distribution as described above. In this case the

standard deviation in the first entry in the characteristic matrix for sensor | iy:

o= 0'6\‘(;(‘)%“0'6) = J0.0024 =~ 0.05

and similarly for the other entries.
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To illustrate the effect of such errors in the characteristic matrices the following experiment
was performed. The three sensor characteristic matrices shown above were used (o produce a
MAP decision fusion rule. Noise of various levels was then added to the elements of the
characteristic matrices and the performance of the original fusion rule was computed for the
noisy sensors. The error rate and deferral rate for the fusion centre was recorded for each
experiment. Bach experiment was repeated 1,000 times and the results averaged. Figure 4-15
shows the result of these experiments graphically. Shown solid is the deferral rate and dotied

is the error rate.
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Figure 4-15: Decision fusion crror rate and deferral rate for

noisy sensors.

It can be seen that the fused error rate increases substantially while the deferral rate remains
roughly constant. In the above experiment the decision threshold was held fixed at 0.6 which

corresponded to an expected fusion matrix of:

; 0.908 0.060 0.032
10150 0790 0.060

The corresponding error and deferral rates were 9.6% and 4.3% respectively. 1t is, of course,
desirable that the deferral rate should be allowed to increase in order (o mainiain adecuate

performance in terms of the error rate. A second sel of experimenis was conducied (o

6H9



tustrate the rate at which the deferral rate alone rises with increased noise on the sensor
characteristic matrices. To hold the error rate approximately constant a set of thresholds was
evaluated under each condition and the threshold that led to the most appropriale error rate
was selected. Figure 4-16 shows the error rate and deferral rate as a function of the standard
deviation added to the sensor characteristic matrices. Again the solid line is the deferral rate
and dotted line is the error rate (which in this case was held constant at 9.6% by adjustment of
the deferral threshold). It can be seen that the increase in deferral rate is approximately finear

in the range of noise levels evaluated in the experiments.
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Figure 4-16: Decision fusion deferral rate at constant error

rate for noisy sensors.

In practice it would not be possible to evaluate different threshold values for each noisy
characteristic matrix since the matrix itself is unlikely to be available directly. We therefore
require a method for setting the deferral threshold o maintain a desired error rate for noisy
sensors. This can be accomplished by using an adaptive deferral threshold for the decision
fusion rule, which monitors performance and changes in such a way as to maintain the
expected fusion error rate at desired levels. In order to balance the requirement (o oblain a
good estimate of the error rate (which would necessitate a large number of ohservalions)
against the requirement to quickly set the threshold to an appropriate level we use 4 sequential

probability ratio test. The method is described by way of a specific example in Appendix A3,
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Assume we have p =0.105, p,=0.095 and ¢, =¢,=0.1 giving a~=0.698 and

b, = b, = 0.295. Applying these tests to an incoming stream of labelled observations yields

the behaviour illustrated in Figure 4-17.
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Figure 4-17: Adaptive threshold and error rate using a

sequential likelihood ratio test.

In the above experiment the sensor characteristic matrices described earlier in the section
were used (without noise). The deferral threshold was initialised at 0.5, The threshold was
adjusted by adding or subtracting a threshold step as prescribed by the likelihood test. The
threshold step was initially set to 0.25 and was divided by 1.25 each time it was used. It can
readily be seen from the graph that the correct threshold is discovered after approximaiely
2,000 observations. Each discontinuity in the error plot corresponds to a change in deferral

threshold.



4.6 Chapter Discussion

In this chapter have introduced the concept of the veto effect and shown that some data fusion
architectures are susceptible to such an effect when a significant minority of the information
sources provide erroneous decision information. We found that the centralised topology was
more robust against the veto effect than the hierarchical approach also assessed. In the
remainder of the chapter we described a maximum a posteriori approach to decision level
fusion which makes use of the sensor characteristic matrices. We further showed that the
performance of the fusion centre could be controlled by altering the decision threshold. In this
way a desired fusion error rate could be maintained even when the underlying sensor
characteristics were known only approximately. This scenario corresponds to a realistic

system with poorly specified or unreliable sources.

Despite the success of this approach we have some misgivings about the suitability of
decision level fusion in circumstances within which the sources are considered to be
unreliable. Although the fused error rate can be controlled this is only achieved at the cost of
an increase in the proportion of deferrals. It would be better to allow for the source
unrehiability in such a way that the error rate could be maintained without any increase in
deferral rate. In the next chapter we begin to use the probability fusion level as a vehicle for
handling this issue. We again focus on an important sub-problem and consider only those
systems for which the deferral rate is zero. Adopting this problem reduces the interaction
between the performance indicators. We shall see that an auxiliary, local performance

indicator such as cross entropy provides a useful metric for assessing such schemes.
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Chapter 5 Probabilistic Fusion

5.1 Chapter Introduction

In this chapter we turn our attention from decision fusion to probability fusion; the next level
of abstraction down in the multi-level data fusion process. We shall motivate the use of
probabilities for rational decision making and illustrate the problems introduced by inaccurate
(or more specifically, overconfident) probabilities. We then describe the Bayesian fusion
algorithm for conditionally independent probabilities and analyse the effect overconfidence
has on the fused performance. The reasons why probabilistic fusion is attractive are that the
performance is generally good, that the communication of probabilities requires low
bandwidth (especially when quantisation is used) and that rational decision making methods

based on probabilities are accessible.

We shall examine the issues of the veto effect resulting from unreliable sensor information as
it is applicable to probability level fusion. It has been shown in the literature [41] that
probabilistic information gives a good compromise between the high performance of feature
based data fusion schemes and the low bandwidth of decision level fusion. Certain studies
[161] have indicated that a considerable advantage is offered over decision level fusion even
when only I bit of confidence information is transmitted with each decision. This was further
extended by the present author and co-workers [32], who showed that some benefits were

worthwhile up to 4 or 5 bits of information for cach probability value.

5.2 Decisions from Probabilities

In order to make rational decisions automatically one must formulate the decision making
process [33]. We define a decision, D, as being a choice from a set of N possible actions

A={a,,a,---a,}with N possibly being infinite. Associated with each action is an outcome

O ={0,,0,,---0, }. An outcome may be mixed i.c. that:

0, — 0,, withPr=p
— 0, WithPr=(1-p)

73



Von Neumann and Morgenstern [166] define a quantity they label wriliry which assigns a
numerical value to the desirability of a particular outcome as perceived by the decision

making party. Therefore:

o, is preferred to o, =U(0,) > U(0,)

Note that the utility framework is not a model of the human decision-making process, rather a
prescriptive model for automated decision-making. The utility of a mixed outcome (or its
expected utility) is defined to be the sum ol the utilities weighted by the probability that each

of the cutcomes will occur:

Ulo))=Plo,, ta)U(o, )+ Plo,, la, Wio,)

A set of utilities can be generated for a set of outcomes O by preferentially ordering the
outcomes and arbitrarily setting the utility of any pair of outcomes from O and calculating all
other utilities using a lotiery model. In finding a utility for 0, let us assume that the wilities

for oyand oyare already available and that U (o,) 2 U (0,) 2 U {0,). Then il 17is a uniforim

random number on the interval [0,1]:

0, =0, 11 (n < p)and o, otherwise

which expresses the fact that the decision making party is indifferent about outcome 0, and a
lottery between outcomes 0, and o, with the former occurring with probability p and the latter

with probability (/-p). This leads to a means for setting the utility of o,

Ulo,)=pU(o)+ (1= p)U(0,)

The process is repeated until the utility of all outcomes has been set. Note that the arbifrary
starting point means that utility is only a relative measure and is invariant under affine
transformations. This is unimportant when a single party uses the framework (o make
decisions. If a decision is made such thai the utility of the outcome is maximised then ihe

decision making can be considered rational:

DAY =a il U(o)2U(o )Vj+#i
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Therefore, given a set of actions with associated outcomes it is possible to select that action
which maximises the expected utility. For example let assume that a decision is to be made
concerning a patient with a suspected diseased appendix. The actions are:

A={operate, don’t operate }

The outcomes are mixed depending on the probability p that the paticnt actually does have a

diseased appendix

}01,\ Oy

O =

}“M Oy
0, = discased appendix is removed with probability p
Oy = patientisunnecessarily risked with probability (1= p)
0,, = burst appendix with probability p
Oy = time and money saved with probability (1 — p)

The outcomes are first ordered, let us assume:

U(0,,)>U(0,,)>U(0,,)>U(0,,)

We may set the best outcome (o have a utility of 1 and the worst to have a utility of 0. Let us

assume that the lottery procedure is followed and that the complete set of utilities is found

U(o,,) = 1.0
U,,) = 09
Ulo,) = 08

Uo,,) = 0.0

Then the expected utility of each of the possible actions is



(Uta)
(U(ay))

09p+0.8(1-p)
0.0p+1.0(1-p)

In making the decision we need to assign a value to p. An approximation (o this may be
obtained automatically using pattern recognition algorithms (based on sensor and diagnostic
attributes for instance). Let us say that the actual probability p that the patient has a diseased

appendix is 0.2. Then

I

0.9x02+08x0.8 = (082
0.0x0.2+1.0x0.8 0.80

(U(a))
<U(az)>

fl
i}

So a rational decision would be (o choose action «,, i.e. (0 operate. However, the probability
output by the pattern recognition system is only an approximation based on the statistical
analysis of a finite amount of previous data. Let us assume that the probability output by the
system is O.1. The most likely diagnosis is still that the patient is healthy. However, 0.1 is an
overconfident probability (too confident that the patient is healthy) which often aceurs in reul

pattern recognition experiments. Now

Il
ii

(Ua)) 0.9x0.1+0.8%0.9 0.81
(U(a)) = 00x0.1+1.0x0.9 = 090

The rational decision based on this estimate of the probability is (o not operate. However, this
overconfident value for the estimated probability has not changed the actual probability
(which remains at 0.2) and (he utility associated with action a, 1s still 0.8 f.e. worse than the
utility associated with the optimum action. Therefore, the accurate assignment of values to
class conditional probabilities forms an essential and important prerequisite for any
probability level data fusion system (or a means of fusing probabilities which is robust (o such

Errors).

5.3 Cross Entropy Scoring

In the previous section the importance of accurate probabilities was made clear. Here we

define a scoring measure that assesses such accuracy. In order (o evaluate the accuracy of ihe



class conditional probabilities produced by the various recognition methods, which are

developed, we use the cross entropy score for pattern x:

E , ==P(clx)logQ(clx)

clely

Where P(clx) 1s the probability that the pattern x under consideration belongs to a particular
class ¢ and Q(cly) is the same quantity as estimated by the recogniser. The values of P and O

for all classes must sum to 1:

o

g

# Ple. 1x)=1

i

1

i

I

Qe 1x)=1

i=l

and under such circumstances £ is minimised when P=0. To evaluate the cross entropy of
a distribution this quantity is integrated over the distribution. If evaluating the cross entropy
given a labelled test set, the values of P are usually either O or 1 since the pattern is ofien

known to have belonged to a particular class.

5.4 Independent Probability-Level Fusion

By assuming conditional independence of the class probabilities we may greatly simplify the
data fusion process for probabilities. If' sensor data x and y are conditionally independent
given class ¢ we have:

Plx,yle)=Pxlc)P(yle)

It then follows (see Appendix A .4) that

‘ Plclx)P(cly) P(x)P(y)
Plclx, y)= X —— y
Pc) Plx,y)
the latier part of which is independent of the class ¢ and so can be treated as an unkinown
constant which may be recovered by normalising over all clusses. We shall proceed {0 use this

result for the remaining treatment of probability level data fusion. [t should he nofed,



however, that the assumption of conditional independence is not generally particularly
accurate. The fusion of correlated probabilities has been dealt with separately in [15], [132],

[133] and [134] and will not be addressed in this thesis.

5.5 Overconfidence

Human operators and the automated machines they use are often subject to overconfidence.
Overconfidence occurs when the degree of belief associated with a hypothesis is greater than
the evidence strictly supports. In the case of probability fusion the issue of overconfidence
applies to the probabilities themselves. We have already seen that inaccurate probabilities can
lead to irrational decisions. Overconfident probabilities are inaccurate probabilitics which
stem from the use of insufficient quantities of design data or when the fest data and design

data have different distributions and that difference was nof allowed for.

5.5.1 Overconfidence Owing to Insufficient Dasign Daia
Consider the following synthetic, two-class problem in which samples from each class are
generated from a normal distribution. The separation between the means of the two classes is

exactly one standard deviation and the Bayes error rate is therefore 30.9%.
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Figure 5-1 shows the underlying distributions of two classes in a synthetic NCTR problem.

Data from each class follow unit normal distributions with means of zero and one.,

Data from each class distribution were obtained and maximum likelihood estimates of the
underlying distributions were calculated. Figure 5-2 shows these probability densities
estimated from a small design dataset (in this extreme case comprising only 10 samples from
each class). Note that the sample means and sample standard deviations vary quite
considerably from the equivalent parameters of the underlying distributions. Figure 5-3 shows
the conditional probability of class 2 that results from these distributions with the correct
conditional probability superimposed. The probability values, which quickly saturate (o zero
outside the region occupied by the design data (the actual probability should actually be close

to one for values of the measurement greater than 2.0).
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Figure 5-3: The maximum likelihood conditional

probability of class 2.

In actual data fusion systems the sensor measurements are (ypically of much higher
dimensionality and the model correspondingly more complex. In this case the number of
samples required of a suitable design dataset is large and ofien expensive (o ohiain
(sometimes prohibitively so). This source of overconfidence, however, is particularly

amenable to distributed moderation, which will be covered in o later section.

5.5.2 Overconfidence Due to Unrepresentative Data

Even when large quantities of design data are available it is usually difficult to ensure that
they are representative of data to be encountered in service. This may be because of changes
in environment between the collection of the design data and the fielding of the system or
through active measures of camouflage and deception by the target under scruting. We may
assume that a greater variety of conditions will tend to broaden the distributions describing
the likelihood of particular measurements. Possible effects of camouflage and deception are

that the target distribution is broadened and moved closer to the non-target distribution.

5.5.3 Distribution Changes with Probability-Level Fusion

We desire that our fusion system should be robust to the data fused in service being drawn
from a different distribution o that encountered during the design of the classifiers and the
fusion rule. It is conceivable that in many situations some of the class distributions will
remain the same, whereas others will differ from the design distributions. For example, if ane
class corresponds to background clutter and a sccond (o targets of interest, then the
background distribution may be quite constant whereas the target distribution would evalve

owing to changed circumstances (equipment modifications or wearing oul of machinery).
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Figure 5-4: An example of changing sensor distributions

by varying the mean.

This is illustrated in Figure 5-4 for a typical scenario. The dotted curve shows the probability
density of samples from the first class (clutier), for both the design and test cases. The dashed
line shows the same quantity for the second (target) class. This is shown as migrating towards
the clutter class during the test phase (shown solid). The vertical line shows the Rayes’

decision boundary produced during the design phase.

In the experiments described in this section we assume that data from just two classes (A and
B) is normally distributed. Without loss of generality we further assume that data from class A
follow a standard normal distribution with mean zero and unit standard deviation. The
distribution for class B is assumed to have a mean greater than zero. We shall also set the
prior to be equal, P(A)=P(B)=7. To assess the effects of changing distributions on a
probability-level fusion process we shall generate data from multiple sensors. The sensors are

assumed to be conditionally independent and have identical characteristics.

We shall use the following discriminant function for assigning test points (o either class A or
B which may be obtained by taking the logarithm of the ratio of the class conditional

probabilities of the two classes:

o
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assigning patterns to A if this function is positive and to B otherwise.
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To quanufy the amount of change between the design and test distributions we use the

Kullback-Leibler number [102], [103] and [160]. In general the Kullback-Leibler number of

two distributions is:

P (x)
Py (x)

K,= f(l,\f in P (x)

For two Gaussian distributions N(g,,0,”) and N(iy,0,°), the Kullback-Leibler number

between the first and second distribution is given by:

2 C o2
. ot I L B
K i 12 = ‘5 “‘“"2'— -1 1+ "“‘“‘““‘"7)“——‘ - ’; ]i)g —‘—:)M

Ty 20‘2 < op

For example, we take class B distribution (o have a design mean standard deviation of one and
change this distribution during testing. For the test phase the standard deviation of 1 remained
at one but the mean was altered to move closer o that of A as previously illusirated in Figire
5-4. This arrangement was analysed for a single sensor system and also for two and (e
sensors using independent probability-level fusion as described earlier. Table 5-1 shows the
error rate as a function of Kullback-Leibler number for each of the data fusion system. The
same quantities are shown graphically in Figure 5-5. Note that the problem is getting harder
(the distributions are less separated) and that this is exacerbated by using the wrong model (o

estimate the class probabilities. Fused classifiers are shown to mitigate this effect.

Kullback-

Actual Leibler |Error rate |Error rate Error rate

mean number |(1 sensor) | (2 sensors) (10 sensors)
1.0 0.000 30.9% 24.0% 57%
0.9 0.005 32.7% 26.3% 8.0%
0.8 0.020 34.5% 28.8% 11.4%
0.7 0.045 36.5% 31.4% 16.0%
0.6 0.080 38.4% 34.25 21.6%
0.5 0.125 40.4% 37.0% 27.8%

Table 5-1: The fused error rate system as a function of

design and test mean change.
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Figure 5-5: The fused error as a function of difference by

varying the mean.

In this case the primary reason for the increase in fused error rate is the increasing overlap
between the two disiributions (and not the difference between the design and test distributions
for class B). The difference in error rates for fusion systems using the original design
distributions and using the correct test distributions is therefore of interest. Figure 5-6 shows
this difference as percent increase in error rate as a function of the Kullback-Leibler number.
Note that the initial degradation caused by the use of the wrong distributions is soon

overtaken by the inevitable difficulty in separating the classes at all.
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Figure 5-6: The difference in fused ervor rate produced

by changing the mean.



The same Kullback-Leibler numbers could be produced in many different ways (not just by
moving the means). A second analysis in which the mean for class B remained at one but the

standard deviation increased as illustrated in Figure 5-7. The numerical results in

Table 5-2, and the graph in Figure 5-7, shows that the specific effect depends on the type as

well as amount of difference between design and test distributions.
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Figure 5-7: Changing sensor distributions by aliering the

standard deviation.

Actual Kuliback-

standard Leibler | Error rate (1 Error rate Errov rate

deviation number Sensor) (2 sensors) (10 sensors)
1.00 0.00 30.9% 24.0% 5.7%
1.25 0.04 32.7% 26.3% 8.0%
1.50 0.13 33.9% 27.9% 10.1%
2.00 0.32 35.5% 30.1% 13.6%

Table 5-2: Fused error rate produced by varying the

standard deviation.
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no.

[t can be seen that the amount of degradation for the same Kullback-Leibler number is not as

large for the broadened distribution as it was for the displaced distribution. However, unlike

the earlier situation, as the test distribution for class B is broadened the intrinsic overlap

between the two classes decreases; this is because (he (wo classes have means which are quite

close together. The task of separating the classes, therefore, eventually becomes easier. The

degradation in fused performance is almost solely due to the inappropriate classifier being

used.
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Figure 5-9: The difference in fused error aliering the

standard deviation.

Figure 5-9 is on a different vertical scale to Figure 5-6 but otherwise shows (he
g £

G,

same

quantities. It should be noted that the initial increase in fused error rale in each case is
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approximately the same. The asymptotic behaviour depends on whether the mean or standard

deviation was different between the design and test distributions.

5.5.4 Summary of Effect of Distribution Changes

It has been shown that under certain configurations of distributions a substantial degradation
in fusion performance may be observed for quite small changes in the underlying
distributions. We shall therefore address the technique of moderation since this down-weights

the contribution of information that may have been derived from such distributions.
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5.6 Chapter Discussion

We have seen that probability estimates can be used as the basis for rational decision making.
Using a Bayesian probability fusion rule for conditionally independent sources we then
examined the effect that inaccuracies play in the probability fusion process. It was
demonstrated that the effect can be significant for relatively minor inaccuracies as might be
caused by lack of design data or migration of the underlying distributions. The effect can be
likened to the veto effect described in the chapter on decision fusion. In the next two chapters
we shall examine methods for producing more accurate probability estimates and in Chapter 8

we describe an algorithm for allowing for inaccurate probabilities al the fusion centre itself.
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Chapter 6 Analytic Moderation for Probability Fusion

6.1 Chapter introduction

The production of accurate probabilities forms the basis of sound, rational decision making,
All too often the probabilities produced by both manual and automatic methods are
inaccurate. In most cases the probabilities are overconfident i.e. that the most likely class has
too high a probability associated with it and all others are too low. This stems from
widespread underestimation of the effects that are produced by finite data samples. In this
chapter we define the concepts of the true posterior, the maximum likelihood | maximuni o
posteriori estimales and compare the two in qualitative and quantitative terms. We (ake
generating model (referred (o as M) with some parameters, 6, , which generates some data,
D. For example, the model might be a normal distribution with parameters 1 and
o corresponding (o the population mean and population variance (nol (o be confused with
the sample mean and sample variance which we would denote by 1 and G5y the
parametric form of the generating model is known the posterior class conditional probability

can be computed by marginalising over the unknown parameters, 6,,
P(C=clx,D,M)= Jc/@M P(C=clx,D,M,0,)PO,, | x,D,M)

L.e. the sum of particular class conditional probabilities for all possible values of the
parameters weighted by the probability that that parameter set could have produced the
observed data. Furthermore, if the form of the generating model, M, is not known then this

must also be marginalised to obtain the correct posterior distribution:

P(C=clx,D)y=|dM (a6 P(C=clx,D,M,0,, )P, | x,D,M)P(M | x,D)
M M M

Since the class conditional probabilities tend (o be less extreme using this paradigm they are
often referred to as moderated probabilities. In many cases this integral is approximated by
taking the maximum likelihood parameters of the maximum likelihood model (in practice this
is often approximated by the model and its parameters which results in the most favourable

performance when measured on (est data):
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P8, | x,D,M) =argmax , P(6, |x,D,M)
and

P(M " | x,D)=argmax ,, P(M | x,D)

In cases where the actual generating model is tested and the amount of data is large enough to

ensure that the probability of the most likely set of parameters is dominant

P, | x,D,M)=0v0, #0,
and

P(M 1 x,D)=0YM =M’

then the use of the maximum likelihood parameters 0 and the maximum likelihood model
M will not incur a high penalty. However, for relatively small amounts of data, as found in
many real pattern recognition problems, there will be a loss in accuracy. For applications
where accuracy is critical then the maximum likelihood model should be discarded in favour
of the true posterior (or a better approximation (o it). The true ¢ posteriori probability can, in
some cases, differ significantly from the probability arrived at using the maximum likelihood
parameters of the known distribution. However, in most cases an analytic solution for the true
posterior is either impossible or computationally intractable. In these cases an approximation
is made which results in a posterior distribution which exhibits some of the traits of the true

posterior without necessitating the computational loads imposed by the exact solution.

We shall attack the double integral given above in two parts: firstly the integral
(marginalisation) over model parameters and secondly the marginalisation over the models
themselves. It will be shown that potential improvements over the best model with maximum

likelihood parameters are available in both cases separately and in concert.

6.2 Analytic Moderation for Normally Distributed Data

In certain, simple, cases il is possible to analytically integrate the hidden parameter variables
and to produce the true posterior given the data. The range of models for which this is
possible is limited to Gaussian distributions (which form the basis of a range of antomatic
pattern recognition methods). We shall work through a few examples of simple generalor

distributions for which the true posterior distribution can be calculated analytically. We wse



Bayes' rule to replace the class conditional probabilities with the data probability (suitably
normalised) and work in this domain using a density model for each class. If the priors on the
mean and variance are uniform and X’z respectively, then it can be shown [16] that the

moderated probabilities follow a r-distribution:

(x—[0) [N-1
o] N +1

W. 5. Gosseltt first discovered this result in 1908 and published under the nom de plume of

“Student”. The posterior of x for various values of N is shown in Figure 6-1.

-2 -1 o 1 2

Sensor 1 measurement

Figure 6-1: Posterior of a normally distributed variable.

Again, the class conditional probabilitics follow easily from Bayes’ rule:

_PIOPC)

P(Clx
(o P(x)

and are illustrated in Figure 6-2 and Figure 6-3.
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Figure 6-2: Posterior conditional probability for normally

distributions.

Figure 6-2 shows the posterior conditional probability of a sample having been drawn from a
. . . . 2, . , ) . .

normal distribution N(g,07) as opposed (o N(=p,07) given that the sample menns

(located at £4) and the sample variances (equal (o 1) were caleulated from N saimples with

N=2,5, 10, 100 (shown solid, dol-dashed, dashed and dotted respectively). The unmoderated

conditional density is shown dotied faintly and is visible alongside the plot for N=100.

Similar results may be obtained for various types of Gaussian distributions in multiple
dimensions. Posterior distributions for spherical, right elliptical (in which the principal axes
of the distribution are aligned with those of the co-ordinate system) and multivariate

Gaussians result in various 7-distributions.
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Figure 6-3: The same conditional probahility as Figure

6-2 on a hroader scale.
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6.2.1 Experimental Results on Normally Distributed Data

The work of the previous two sections has provided us with techniques for moderating the
probability estimates of Gaussian classifiers. A set of databases, sampled from Gaussian
distributions, were used to evaluate the performance gains expected from utilising the
moderated Gaussian classifiers rather than the unmoderated classifiers. Each database was
segmented Into two equal parts comprising a training database and a (est database. The
sample mean and sample variance for each attribute in the training data was used (o
implement a set of methods, which were used to classify the patterns in the test data. A
tabular summary of the databases is show in

Table 6-1.

We will compare the accuracy ol (fused) probabilities from moderated and unmoderaied
classifiers. One could use error rate but this does not reflect the accuracy of the class
probabilities. We therefore also measure performance using cross entropy (as defined in
section 5.2 ). Since the distributions overlap it is unclear what constitutes o good cross
entropy score. We therefore, as a comparison, also provide the cross enlropy error for 4

Bayes’ classifier (with full knowledge of the underlying distributions).

Number of Number of Bayes error rate | Bayes cross
Database dimensions classes entropy
1D2C ] 2 30.9% 0.58
2D4C 2 4 30.9% 0.75
3D8C 3 8 30.9% 0.80

Table 6-1: Summary of the normally distributed

evaluation datasets.
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and the class probability P for one of the classes (arbitrarily the class with mean at L is given

by:

N1
P= 2
N+ N(=1.0)

with N(i,07) denoting a normal distribution with mean i and variance o as defined in

the equation:

Pxlu,0)=—

|
Varo?

Il we calculate the class conditional probabilities from these estimales we ohlain o moderafed
probability output as shown in Figure 6-5. Note that the probabilities are somewhal less
certain than those produced by the maximum likelihood classifier. At no time does (he

probability of either class saturate (o zero.
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Figure 6-5: The conditional probability of the second

class.



Fusion of Moderated Probabilities

For the two-class problem we may calculate the expected performance at the fusion centre
given the individual performance of the separate sensors if the data acquired by the sensors is
normally distributed and conditionally independent. Given these assumptions the separation
of the means in the joint measurement space, Sy can be recovered from the separations in

each of the individual measurement axes, S, and S, using Pythagoras’ theorem thus:

We  shall illustrate the principle using some synthetic data having o (known) normal
distribution. For these experiments we shall simulate two sensors each acquiring independent,
normally distributed data on a target which belongs (o one of two classes.

The mean of the measurement detected by each sensor depends on the jargel type, the
standard deviation of the measurement is unity in each case and the means are separated by
one standard deviation (see Figure 0-4). This configuration gives a Bayes error rate for each

of the sensors separately of:

2

raf—

I et g
E fdx e 4-Id.x e 1=31%

) V2mo® | Y

L
%

and when acting in concert yields a Bayes error rate of:

J2
I 2, S -t
I = e de e ¥+ jc/fx e |=24%
2o | L M1

The performance of the separate sensors was estimated by classilying a large sample of
10,000 patterns from each class and counting the number that were allocated to the correct

class. Table 6-2 shows these performance values.



Underlying distribution 31%

Underlying joint distribution | 24%

Mean of sensors 1 & 2 33%

Fused sensors | and 2

Table 6-2: The error rates foy the individual and fusecd

Sensors.

Note that the average performance of each of the separate sensors is somewhat less than
predicted from the underlying distributions. The fused error rate, however, is much worse

than could have been obtained. This is largely due (o the veto effect.

Table 6-3 shows the performance values for the same sample when employing moderited
probabilities. The error rates for the maximum likelihood classifier are included for
comparison. It clearly shows that the maximum likelihood error rate can be lowered by (he

use of appropriately moderated class conditional probabilities.

Joint distribution a priori 24%

Fused sensors 1&2 | ML 1309

Fused sensors 1&2 Moderated | 26%

Table 6-3: The fused error rates including moderated

conditional probabilities.

In the experiments a training set was created with N samples from cach class. These were
used to calculate the sample means and sample variances, which in turn were used with the
algorithms described above (o classify the 10,000 test patterns. To obtain a value for the cross
entropy score and classification rate for a particular value of N, the average of 10 runs was
used with each of the training and test sets being independently generated for each run. The

training and test sets for different values of N were also independent.
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Figure 6-6: Average cross entropy ervor for the I-

dimensional 2-class test data.

The accompanying graph shown in Figure 6-6 illustrates the advantage of using (he
moderation techniques.  The graph shows the cross entropy crror for each of the (hree
techniques (since the spherical and elliptical methods are equivalent in one dimension) s «
function of the number of patterns in each of the two classes. Shown as a horizontal line is 1he
cross entropy error produced by a Bayes classifier. The local fluctuations are due to the
particular locations of training sample points being either representative or unrepresentative.
The trend is for a lower cross entropy error. The /-distribution method having consistently
lower cross entropy error than the corrected Gaussian or the unmoderated Gaussian
techniques. The gain in performance is most noticeable for small training sample sizes

(number of patterns per class, N</0).



Experiments with 4 class 2-dimensional Gaussian Data

The second set of experiments involved the 4-class 2-dimensional Gaussian data illustrated in
Figure 6-7. The data consisted of four 2-dimensional spherical normal distributions with
variance 1.0 and means at (£0.961,20.961). The Bayes decision boundaries are clearly

aligned with the axes and it can be shown that the Bayes error rate for this set of distributions

//’

four class 2-dimensional problem.

Figure 6-7: The contours at 1 standard deviation for the

is also 30.9% since using the same symmetry arguments as before:

iliifdx dy

00

2n

e

(1-0.961)%4( y-0.961

5

=(0.309

The same Bayes' classifier yields a cross entropy score of 0.75 since:

E = —i
i=1

Where the data density D is given by:
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Do N({0.961,0.961},1) + N({-0.961,0.961},1) + N({0.961,-0.961},1) + N({-0.96 1,-0.961},1)
4

and the class probability P for one of the classes, arbitrarily the class with mean at

(0.961,0.961), is given by:

N({0.961,0.961},1) _
N({{0.961,0.961},1) + N({-0.961,0.961} 1) + N({{0.961,-0.961},1) + N({~0.961,~0.96 | N

with N({p J,o%) denoting a spherical normal distribution with mean =4 ) and

. .2
varuanece o .

As before, N training samples from each of the four classes were generated for estimation
purposes as well as an independent set of 10,000 fes patterns for evaluation. Bach value of N
used a different training and test set and the resulls {or eacl; method are the average of 10

runs. The results are summarised in Figure 6-8 Tor the six methods lested.
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Figure 6-8: Average cross entropy error for the 2-

dimensional 4-class test data.

The performance gains are now more noticeable particularly for the elliptical classifiers,
which demonstrate the robustness of the moderation technique to error in the model seleciion.
For values of N up to about 10 the fully moderated elliptical classifier is actually praducing
more accurate probabilities that the unmoderated spherical classifier. This is despite making

incorrect assumptions about the underlying distributions (which are, of course, spherical). In
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other words, for this problem at small sample sizes, 1t is better to do the correct thing with the

wrong model than the wrong thing with the correct model.

Experiments with 8 class 3-dimensional Gaussian Data

The third set of experiments used the 3-dimensional &-class normally distributed data
illustrated in Figure 6-9. The variance for the spherical distribution of each class was 1.0 and
the means were located at {+1.197,£1.197 £1.197} . The Bayes error rale is once again

30.9% since:

77 N G R TC R L RNy
jjjz/,\’ dy dz ——e 2 =~ (.309
000 (2m):

In these experiments the extension (o right elliptical distributions was used. The RBayes
classifier giving an error rate of 30.3% and a cross entropy score of 0.57 for (he test sel used

in these experiments.

Once again the spherical classiliers arc better than the elliptical classifiers with the f-
distribution classifier having lower error than either the flattened Gaussian or the maximum

likelihood Gaussian in all cases.

Figure 6-9: The 1 standard deviation spheres for the 3-

dimensional, 8-class test data.
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Although the three spherical methods are essentially the same after about 20 patterns per class
the moderated elliptical methods are notably better than their unmoderated counterparts until

after 40 patterns per class. The results are summarised graphically in Figure 6-10.
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Pigure 6-10: Average cross entropy for the 3-dimensional 8-

class test data.

6.2.2 Summary of Experiments with Gaussian Data

It is noted that the performance gains expected of the analytically moderated Gaussian
methods when applied to normally distributed data are significant. The improvement over

unmoderated Gaussian classifiers is greatest for small amounts of training data.
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6.2.3 Experimental Results on Real Data

The same six methods developed in the preceding sections were also evaluated on data
obtained from measurements of actual quantities in the real world. The datasels were mainly
obtamed from the UCI Repository of Machine Learning Databases and Domain Theories al
the University of California in Irvine [128]. These datasets are widely used for benchmarking
by the machine learning community. The data is no longer normally distributed and the
following results give an indication of the relative robustness of the various techniques. As
well as providing experimental results with the classifier methods listed in the previous
sections il is intended that these databases form a core set of evaluation data for use with the
existing and original recognition algorithms used in the multilevel information processing
studies. A tabular summary of the real world datasets used in these experiments is given in
Table 6-4.

Database Dimensions | Classes | Total samples | Training samples
Vowels 2 10 1520 190-760
Irises 4 3 150 50-75
Glasses 9 2 163 82
Breast cancer 9 2 699 350

Table 6-4: Summary of the real world datasets used in

the moderation experiments.

Details of the datasets used can be found in Appendix B.

Results on Peterson and Barney Vowel Formant Data

The moderated and unmoderated Gaussian classifier methods described in the earlier sections
were used to classify the Peterson and Barney vowel formant data’ For these experiments the
data was divided into a training set and a test set by assigning the first and each subsequent
odd numbered pattern to the training set and the second and each even numbered paitern (o
the test set. There were therefore 760 patterns in each of these sets. Three sets of experiments
were carried out. In the first set the whole training set was used to calculate the sample means
and variances. In the second experiment half of the training set was used and in the ihird a
quarter of the training set was used. Therefore the training sets consisted of 760, 380 and 190
patterns in total or 76, 38 and 19 patierns from each class. The resulis are shown in

Table 6-5.
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Method

Training patterns

Error rate

Cross entropy

Spherical ML Gaussian 760 42.5% 1.09
Elliptical ML Gaussian 760 28.7% 0.81
Multivariate ML Gaussian 760 22.1% 0.73
Spherical posterior distribution 760 42.5% 1.09
Elliptical posterior distribution 760 28.9% 0.81
Multivariate posterior distribution 760 22.2% 0.73
Spherical ML Gaussian 380 44.2% 2.27
Elliptical ML Gaussian 380 29.6% .47
Multivariate ML Gaussian 380 23.4% .21
Spherical posterior distribution 380 43.9% [.95
Elliptical posterior distribution 380 20.5% 1.25
Multivariate posterior distribution 380 23.2% 1.07
Spherical ML Gaussian 190 42.4% 3.32
Elliptical ML Gaussian 190 31.4% 2,19
Multivariate ML Gaussian 190 25.9% [.55
Spherical posterior distribution 190 42.2% 204
Elliptical posterior distribution 190 31.4% .41
Multivariate posterior distribution 190 25.3% 119

Table 6-5: Results on the Peterson and Barney vowel

formant data.

The results show that the elliptical methods produce better classifications with more accurate

probabilities than the spherical methods. This is (o be expected since the data is quite clearly

non-spherical. It is also apparent that the moderated Gaussian methods show very little gain

for the experiments with the whole training set. However, the moderated techniques show 4

marked improvement in probability accuracy for the experiments with half of the training set

even though the classification rate is essentially unaffected. For the experiment with one

quarter of the training set the moderated techniques now display a significant accuracy gain.

The classification rate remains unchanged. Even though the classification accuracy is nof

improved the improvement in probability accuracy indicated by the cross entropy score is

worthwhile (either for decision making purposes as described earlier, or as part of o later

fusion scheme).

103




Results on Iris Data

The experiments on the Iris data again analysed the effects of sample size. In the first
experiment the odd numbered patterns were assigned to the training data and the even
numbered patterns to the test data. This resulted in 75 patterns in each database with 25 from
each class. In the second set of experiments every third pattern which appeared in the training
and test sets was discarded. This resulted in 50 patterns in each database. The results are

summarised inTable 6-6.

The results show that there is very little difference between the methods for this problem. On
the full training data there is no change in either classification rate or cross entropy between
the moderated and unmoderated methods. The elliptical classifiers doing slightly better than
the spherical classifiers in this case. For the smaller training database (he results are also very
similar. However, the moderated classifiers do produce slightly more accurate probability

estimates than the unmoderated classifiers.

Training Error rate | Cross
Method patierns entrapy
Spherical ML Gaussian 75 6.7% 0.13
Elliptical ML Gaussian 75 4.0% 0.11
Multivariate ML Gaussian 75 32% 0.10
Spherical posterior distribution 75 6.7% 0.13
Elliptical posterior distribution 75 4.0% 0.11
Multivariate posterior distribution 75 32% 0.10
Spherical ML Gaussian 50 6.3% 0.14
Elliptical ML Gaussian 50 4.0% 0.13
Multivariate ML Gaussian 50 34% 0.11
Spherical posterior distribution 50 6.3% 0.13
Elliptical posterior distribution 50 4.0% 0.1
Multivariate posterior distribution 50 3.4% 0.10

Table 6-6: Results on the iris data.
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Results on Glass Data

Training Error

Method Patiterns Rate

Spherical ML Gaussian i 82 469% | 238
751%11 ML Gaussian % 383%
Multivariate ML Gaussian | 82 372% | a0
;Sphericzll posterior distribution I ‘_735%
Elliptical posterior dismibution 82 | 3059 |
Multiva :E?c;? erior distri bution | gy ] C372% | 3R

Table 6-7: Resulis on the glass data,

The experimental results show that all of the Gaussian based classifiers do nol perform us
well as the resuli previously reporied with neares neighbour [16]. Also apparent is that no
reduction in error rale is obtained by using the moderated methods. However, a small
Improvement in cross entropy score and hence accuracy of probabilities is obtained with the 1-

distribution based technique.

Results on Breast Cancer Diagnosis Data

[ Training [ Brror | Cros
Method Patterns | Rage Entropy
Spherical ML Gaussian | 355 32% | 060
Elliptical ML Gaussian N B VTR v B
Multivariate ML Gaussian ] 0 [4a% | o
Spherical posterior distribution | 350 37 | 555—
Iﬁmmﬂf““w*ﬁ)ﬁj*ﬁf o
v oo oy || 5 | e

Table 6-8: Resuits on the breast cancer diagnasis

database,
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The results show that, on this database, the moderated techniques do not produce increases in
probability accuracy (in fact, the accuracy gets slightly worse although the change is noi
statistically significant). This is probably due to the discrete attribute values being highly non-

Gaussian. Rule based methods would probably be more suited to this database.
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6.3 Analytic Moderation for Other Distributions

Here we develop a Bayesian approach to dealing with noisy data. Initially we restrict our
analyses to problems in which the density model is either Gaussian or a Gaussian mixiure.
Furthermore, we assume that the sensor noise is Gaussian in form but do not make any
assumptions about the amount of sensor noise. We make appropriate approximations (o

ensure that the prescribed algorithms are computationally tractable.

Two important problems arise from the very nature of measuring the attribute values
themselves. Values are not generally measured (o infinite precision, nor are sensors usually
noise-free. As a result the values associated with particular atiributes might more correctly be
viewed as samples from a distribution, the location and dispersion of which depends on the

sensing process (see Figure 6-11).

Underlying value

/ Measurement axis

\

\ Sensor noise distibution

Sensed value

Resolution of digitisation

I

Range associated with maximum likelihood value

Eange associated with 85% confidence values

Figure 6-11: Schematic represeniation of the sources of

noise in a sensor.
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multidimensional spherical distributions is relatively straightforward whereas the multivariate
case 1s somewhat more involved. For practical purposes we may assume a functional form for
the sensor noise - in this case we shall assume the noise is zero-mean Gaussian. However, we
do not know the sensor noise variance, 57, so have o marginalise over this variable [16] and
[91]. Note that all of the probabilities are conditioned on our Gaussian assumptions about the

model - we shall proceed to omit this from our equations for the sake of visual clarity.

oo

P(x1 D)= jd.\-z P(xID,s)P(s> | D)

0

The first of the terms in the integral is merely the probability derived from (he particular
. . . - 5 . . v 2
model under consideration, estimated from the data and using the appropriate value of y°. The

second term can be re-written using Bayes' rule (o give:

P(D1sHP(s?)
P(D)

P(s* I D)=

the denominator simply being an appropriate normalising constant which is found by further

marginalisation:

@

P(D) = Jd.s'z P(D1s?)P(s2)

0

This gives us our canonical formula for incorporating sensor noise into our pattern

recognition density models:

oo

P(x1 D)= jdﬁ P(x1 D, s*)=
0 j ds’ P(D1s*)P(s%)

0

P(DIsHYP(s?)

The first term will depend on the particular model we intend to use. The second term
depending only on the evidence [116] for each possible value of sensor noise variance. Of
course we are required to measure this from our data and in doing so will have (o use some
form of model. This model need not be the same as the {inal model (indeed it is perhiaps

desirable for it not to be so).
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Two plausible (and simple) models for calculating this quantity come to mind; a Gaussian
. . N . . . - 2
estimate and a sum of Gaussian kernels. We further require that the estimates of P(D |s%)

should not unfairly favour small values of s° merely because we take the pragmatic step of
using the same data for estimating the density model and the noise value. This is particularly
important for a kernel estimate but also affects the Gaussian estimate. In either case we
require an estimate of the evidence for a particular data point produced by omitting that data

point from the density model. The problem can be stated thus - il we measure the sample

[}

mean and variance, [ and &7, from a sample of measurement values, what is the sample

. A~ A . . . . . R : ~
mean and variance, H; and 07, of the same set with the jth element omited? Appendix A7

shows that this does not have a simple form. Therefore, although the Gaussian model seems al
first sight to provide us with a suitably tractable method of incorporating the model evidence,
it transpires that the proper leave-one-oui evidence is somewhal complex. In the ensuing
analyses we shall use a leave-one-out estimate for P(D1s°) hased on a Gaussian kernel density

estimate:

v 5 | | o
P(C/,.[AS" — e

N -1 ;\/zm-’-

Assuming that the d;are independent measurements we may write:

Il

P(D1s?)

[1rw@ 157
) ] | S
- T

i - 157 \/27128'2

We are now forced o make a further assumption in order to simplify the necessary
calculations and ensure that the integration is tractable. We assume that the sum is dominated
by its largest component and can be replaced by that component alone. We shall firstly

digress to assess the likely impact of this approximation.

We take a practical standpoint and use computer simulations to assess (he factors involved.

We perform the following experiment; we sample N points independently from a uniform

* Many thanks to Dr. Richard Glendinning who observed that, for certain cases, this problem
may be accessible analytically. For now we shall press on experimentally.
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distribution contained within the d dimensional unit hypercube. We calculate the contribution
of a Gaussian kernel centred on each point at the origin. Various heuristics have been
suggested for setting the kernel [153]. In our experiments, the variance of the kernel depends
on Nand d in such a way that the standard deviation is approximately commensurate with the

expected distance between data points. For this experiment we use:

We plot the proportion of the density estimale contributed by the nearest kernel for various
values of N (between 1 and 20) and (1, 5 and 10). Bach value is averaged over 1,000

experiments. The graph is shown in Figure 6-13.
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Figure 6-13: Proportion of the density estimate

coniributed by the nearest kernel.

It is noted that the portion of the density estimate contributed by the nearest point decreases
with increased sample packing (as expected). However the rate at which this proportion fulls
away is greatest in one dimension and is considerably reduced in 5 and 10 dimensions. In
nearly all cases the nearest kernel contributes half of the total kernel sum (or more) at ihe

origin for up to 20 points.



What is the likely effect on the resulting density estimate? Since we are only taking the
nearest kernel into account, the contribution from more distant kernels is ignored and unfair
weighting is given to narrow kernels. Once incorporated into the final estimate this will result
in a density estimate that is insufficiently smooth. One possible way to circumvent this
problem is to give some extra weight to smoother estimates. The contribution of the nearest
kernel tends to half of the total density. Furthermore, we can partially correct for the bias by
doubling the estimate for the local variance, (3,1 . This, somewhat heuristic, bias correction is

included in all subsequent experiments.

Defining d; to be the nearest data point (o d; we have

| |

N1 %xﬂm‘g /

This approximation results in

] ,__(,’L"“{I">
P(DIs) = [[m—me
i 27s”
M 2((1‘ d;i )
I
275’

We propose a prior (which is admittedly improper) of s* of P(s*) =" and replace (he
Ry
calculable quantity 3w, -a75* with the term 2/ thus giving the required integral

o B

. v
Jsdsz P(DIs)P(sY) zjd,s'?' sV

0 G

We then compare this with the standard equation of the Gamma distribution (itself a superset

of the Chi-square distribution):

1t is noted, by the author and others, that this prior is a matter for debate and that other priors
would result in subtly different posterior distributions.
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we therefore have

it

J(/s P(DI1s*)P(s) K(2r) ’I“( }/

N

2

: 2
K (771:1//) B ( ]

I

Returning to our original formulation we now have

xs

1 RAYA TR
P(x1D) = [ds® P(xID.s") - ACIERTLC

’ Jdst P(D1s™)P(s?)
(
N
T 5 ) te iy ?
~ J‘dx" P(xl D,,s"‘)( ) i, ,h_x -
0 A(Z/Z‘t//) r( N<]
2
N
sy e

= stz P(’xlD,xz)——*——
N
=

17

) l/\w/_Jd‘*'z P(xID,s?)s™ e o

o=

By inserting in the appropriate equation for P(xID,s°) and evaluating the above integral, this
result gives us a method of allowing for Gaussian sensor noise of zero mean and unknown
variance for a variety of density estimate models. Of course the integration will not he
analytically tractable in all cases. However, for some simple models we may evaluate this
quantity with little approximation. We begin with a few definitions; the sample mean, fI, is

normally defined thus:

N

i b
1 NZ

=1



Which presupposes that the d; are exactly measurable. As before there is likely to be some
noise associated with these measurements and it is desirable to allow for this in our analysis.
It we assume that the underlying values corresponding to the measured data can be modelled
as a Gaussian kernel estimate with means at the data values and variance s* we may extend

our definition of sample mean thus:

We can effect a simple change of variables by letting y =- \F giving x = .s'\/?,y and

dy = .S‘\E(/_V . This leads to

(-t
fi=— Z 2s° de ye V2
NA2ms® = Leo

J N 0o d;

This integral is now of a standard form contained in [75]:

Tdy ylem B :__“_._‘/;H“(’:[j)
: 2”['”

-0

where H,(p) is the nth order Hermite polynomial of p.
d i .
We have n=7 and § = —=_ Noting that H,(p)=2p leads o
/2

i I & 2s%rid,

= > :
NA27s? & sy/22i

114



which simplifies to

That is o say the same sample mean as was obtained without the noise. This is per haps to |

expected since the noise is symmetric. We now find an expression for the sample variance

traditionally defined as

(note that this is not an unbiased estimate of the population variance) and extended o cover

noisy data by

- N Lo, 3
A2 5 2
o= | dx (v )" »-_thﬂm 2
Rearranging as before gives
Sty
RS \\/—

N\/i;_[adx (x—)e

We use the same change of variable as earlier (o give

(\'*»~~ )

N “ — — -
Z J.dy .s'\[2(,s'\/2y —1)'e “ﬁ
27’[8 = .
Expanding gives
J.a’y s\/7()s vy’ —Zx/—/lsy |u )e

Of;?
Nx/77rs

which can be written thi



A _ <___d~' 2 £ di 2
7

: N ,—»——Z 2424 de yle vV —4[1szjdy ye ‘“‘_"_r? + 5207 Jn’ye e

—o0

Again using [75] and noting that Hy(p)=1, Hy(p)=2p and 112(])):4;)2—2 we have:

N 27E§~ Q=] 2‘8‘_ 2

N g2
4?2 = M_I : Z 2\/53‘]\/;[ Cj,') ] 40s” f~?/:~~|—s\/—/l \/Tf

which simplifies to
This gives

that 1s to say that the variances add.

In the next section we present the more flexible and analytically simpler noisy Gaussian

kernel density estimate.,



6.3.2 Noisy Gaussian Kernel Density Models

The same principle may be applied to the related method in which the density model is built
up using the sum of a set of Gaussian kernel functions, centred on the data points [137]. We

define a kernel density estimate thus:

S Qe
P(xID,s%) = X}-Z

N 2 . . . x " . . .
where §° is the same sensor noise variance described above, i.e. that the sensor noise is the
only noise in the system. Such a kernel density estimate using Gaussian kernels and a

bandwidth (standard deviation) selected manually (o give an appropriately smooth estimate is

shown in Figure 6-14.
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Figure 6-14: An example kernel density estimate using

Gaussian kernels.

We apply our earlier result to obtain
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Now this is of a form we have seen before - the Gamma distribution of the previous section.
We may immediately write down our solution thus:

(=dy

where ¢ = — -y giving the required probability estimaie as
giving | [ y

/\I
v zr(i\/{lj !
P(xI D)= > P
N\/an(—gj o

Re-expanding the constants ¥ and ¢ gives
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P(xiD) = N Z | N1
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this may be rewritten as

N

N+ Ve . o)
F(QIZ d ; —d /) } |
P(xID) = ! >
N N

- (N Y« L) if 3
N\/;L‘T[~2~IZ((1’1.—-CII.)‘]
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Note the striking resemblance with the /-distribution

r(Nj . N
P(x1D)= 2 { (= f) +1) L

(N + D6E?

ﬁm;r( i )
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1 .
. .. = A2 NG . -
which is further enhanced if one regards {~ = —~—Z(a’i —d; )7 as an estimate of the average

. ~2D N . . .
local variance (a term roughly comparable (o the &7 term in the ~distribution).

r(Nilj Ly ;'E)’;l
P(xID) = — N > (A_fg') +1
vedNmr| M) T e

that is to say a sum of r-distributions.
This may not seem (00 surprising since we require

o

P(xID)=[ds” 3 N,

V] !

2 - L . . 2
where N(f,07) denotes a Gaussian distribution of mean £ and variance 0. Now we may

take the summation out of the integral obtaining

P(x1 D)= ZTW N(d,,s)
0

i

The predicted posterior, P(xID), is therefore in the form of a sum of r-distributions as proved
more rigorously above. What we now have is a parameter-free, Bayesian, noisy kernel density
estimate to compare with traditional Gaussian kernel density estimate. We shall proceed (o

lustrate just such a comparison in the next section.



6.3.3 lllustration of the Bayesian Noisy Kernel Estimate

To illustrate this result and to compare it to other, classical, kernel density estimates we
introduce a synthetic problem. Data is generated from a known distribution - let us say a
Gaussian distribution, N(f,67). N, points are sampled from the distribution for training
purposes and a kernel density estimate is formed. The resultant model is evaluated using a

global entropy based measure of the suitability of the model:

E.=- Igf,\' P(x)log ]3(,.\‘)

o

where P(x) denotes the underlying (correct) distribution and P(x) the estimate of tha
distribution. In practice we [ind it sulficiently accurate to approximate this integral with 1

summation over an appropriate range of test points sampled from the underlying distribition

N, .
2y == log P(x))
i=l

where N, test points x are selected evenly over an interval which covers the distributions. In
the following experiments N,=200 and the interval is centred on the mean of the underlying
distribution and extends 3 standard deviations in both directions. Two models are employed;
the noisy kernel model developed above and the standard Parzen estimator with Gaussian
kernels. The width of the kernels in the Parzen model is required to be set by the user. There
are a number of suggested heuristics for determining this kernel width [153] which reduce the
unwanted burden of searching for the best bandwidth but which do not, generally, give quite
such good results. In order to give least disadvantage to the standard method we therefore

accept the computational expense of the search for optimum bandwidth.

For each experimental run we build 20 standard models of various bandwidths (ranging from
0.1 10 2.0 in steps of 0.1) and evaluate the entropy error on a cross validation set (consisting
of half the training dataset) for each model. We select the best bandwidth found thus and use
it to build a density estimate on the whole dataset. Figure 6-15 shows the cross validaiion

entropy error during the bandwidth search for one of the experiments
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Figure 6-15: The cross validation entropy error of the

standard kernel estimate.

We use a Gaussian underlying distribution with zero mean and unil variance and conducl

experiments with N, between 2 and 10.
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Figure 6-16: Global entropy error for standard and

Bayesian kernel estimates.



Figure 6-16 shows the global entropy error for the standard method, the Bayesian method and
the underlying distribution. We note that the new Bayesian density model provides a more
accurate global density estimate in almost all one-dimensional experiments with fewer than
10 data points. Both techniques, however, improve slowly thereafter. In order to assess in
which regions the Bayesian method is better we use another error criterion, employed
extensively in the literature. We measure the entropy error at the mean of the underlying

distribution (which in our case is at the origin):
AR 5 3
£, = P(O)log P(0)

Figure 6-17 shows the central entropy error for the same set of experiments as the previous

graph.
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Figure 6-17: Central entropy for standard and Bayesian

kernel estimates.

It is noted that the central density estimate is approximately as good for both the Bayesian
scheme and the standard technique (the standard technique being slightly better for the first
few trials and thereafter slightly worse). This seems (o indicate that the improvement in
accuracy is mainly afforded in the tails of the distribution and not in those areas where mosi

samples will be found.
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6.4 Chapter Discussion

We have shown that the simple expedient of marginalising of model parameters can yield
conditional probability estimates that are more accurate than taking the maximum likelihood
values. The effect is most pronounced in the tails of the distributions when outlying
observations are unlike those used during the design process. The benefits of this approach
are clearly justified using the arguments put forward in Chapter 5 . The analytic approach
taken in the Chapter 6 , however, is limited to those distributions for which the necessary
integrals are tractable. In each case the classifier is based on a parameiric density model and
does not make good use of discriminative information. In the nexi chapter we introduce o
number of heuristic approaches to probability moderation that are applicable to density

models and discriminators alike.
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Chapter 7 Heuristic Moderation for Probability Fusion

7.1 Chapter Introduction

In this chapter we develop three approaches to heuristic probability moderation:

. Semi-analytic approaches — in which a discriminative classifier is described which is
composed of Gaussians and is therefore able to be (approximately) moderated using the
results of the previous chapter

2. Discounting approaches — in which the classifier output is discounted by mixing with the
prior distributions

3. More general mixing approaches where a set of classifiers are averaped (o produce (he
moderated output (itself a form of data fusion)

We spend most time developing the semi-analytic technique but include the other approuches

for completeness.

7.2 Semi-analytic Moderation

The treatment of moderation in the previous section relies on the classifier model being used
to be Gaussian. In this case the moderated probabilities can be calculated directly from the
estimated model. However, such data modelling classifiers do not always produce such good
performance as discriminative classifiers such as the multi-layer perceptron (MLP). In this
section we shall develop a discriminative version of the Gaussian classifier which may be

regarded as a variant on the MLP but is nonetheless amenable to analytic moderation.

It is the logistic function in a single layer perceptron (or the output layer of a MLP) that
finally produces the class conditional probabilities [148]. This function has close ties with the
Gaussian distribution (see Appendix A.5). We iherefore note that for a particular, simple
MLP classifier as shown in Figure 7-1, trained discriminatively, produces for a specific pair

of input distributions, precisely the same output as a Gaussian density model.

[\
o



Un-normalised class probabilities

O, T
I ( B g ) Logistic units
W, . Parameters of linear
! N transformation
N LM
) { . .
N ) ) Logistic units
H ™ /7
I AN ,//
\)\/ Parameters of linear
Y 7N

\ transformation

Input paitern

Figure 7-1: The standard wnlti-layer  perceptron

classifier.

This observation leads us 1o postulate a network architecture which is trained discriminaiively
but which outputs class conditional probabilities similar 1o Gaussian density models for g

wider range of (multiclass) distributions.

7.2.1 Discriminative Gaussian Classifier

A hybrid data model which comprises a Gaussian density model which is trained
discriminatively (i.e. to separate the classes) has two benefits. The classification performance
is high and moderation is possible analytically using the results from previous work [16]. The
classifier proposed consists of a set of Gaussian distributions, one for each class with the error
criterion being applied to the posterior class probabilities as computed by Bayes' rule. The
network was developed from work done by the author in 1987 [10] and continued in
collaboration with Bridle in 1989 [38] and [39]. As in the standard MLP formulation, the

input vector {G;/ is first subjected to a hinear transformation:
H, =30,
i

and the output N, of the first layer units mirror their input:
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The squared Euclidean distance of these transformed inputs is then measured to a set of

reference vectors {mj/:

I, :—Z(M ~-N,)

]

this relates to the exponent of a Gaussian distribution with variance + so that the Gaussian

3

response and normalisation can be applied simultaneously giving:

Figure 7-2 shows a diagrammatic representation of the network. The inpul patiern is lincarly
transformed and the response of a set of Gaussian distributions measiired. The FESpONSes wre

then normalised.
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Figure 7-2: The discriminative Gaussian  classificr

network.



Bridle [38] pointed out that the relative-entropy scoring criterion, is particularly suitable for
this network architecture as the computation of the derivative of the criterion function with

respect to each of the parameters is considerably simplified (see Appendix A.6).

With these derivatives we may proceed (o iteratively optimise the weight values using an
appropriate gradient-based non-linear optimisation algorithm (such as gradient descent or
conjugate gradient descent [170]). However, we may noaw initialise our weight values
sensibly (rather than using small random values as is the case for the standard MILLP). We may
mitialise the first layer linear transformation to the identity transformation (weights set (o
v, =08,) and the reference points to the means of the data associated  with  the

corresponding class.

7.3 Discounted Moderation

A basic form of moderation may be used for partially circumventing the problems deseribed
in the previous section. In this case we discount the probabilities derived from (he design data,
D, using prior information. Two strategies are employed; linear discounting or winner-takes-
all discounting. In either case the class B likelihood under test conditions, P(x1 D, B’), is a
combination of the likelihood prescribed by the design data, P(x|D,B), and the class B

prior, P(x1B).

7.3.1 Linear Discounting

For linear discounting the combination rule is a linear mixing parameter, A (0< A <1):

P(xIA,D,B)y=AP(x|1D,B)+ (1 - A)P(x|B)

The extreme value, A =1, corresponds to using the original design likelihood as described in

illustrates the distributions being mixed and the resulting discounted distribution. Note (hai

the discounted distribution has heavier tails than the design distribution.
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The value of A may be found using a uniform one-dimensional search using o small sample
of retuning data (assumed to be available at the start of testing). In practice each sensor in (he
fusion system would require a different value ol 4 . However, for the purpose of illustraiion
we assume that the sensors are identical. In this case the estimation of A may be poaled,

thereby increasing accuracy.

7.3.2 Winner-Takes-All Discounting

One of the distracting facets of the linear discounting model is the requirement to find a value
for the mixing parameter, A . The winner-takes-all discounting model is parameter free and
therefore does not require optimisation. In this model the maximum likelihood from either the
design distributions or the prior is used for classification (with appropriate normalisation (o

ensure that the probabilities integrate to one):
P(xIM,D,B)oc max{P(x|D,B), P(x|B)}
Figure 7-4 shows the application of winner-lakes-all discounting to the same distributions

shown for the linear discounting (Figure 7-3). Again, the heavier tails of the discounted

distribution are clearly visible.
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Figure 7-4: Likelihood functions for winner-takes-all

discounting.

The performance of both the linear discounting and the winner-takes-all discounting methods
were assessed. A probability-level fusion system comprising (en identical sensors was
simulated. For cach sensor the class A distribution was a standard normal and the class #
design distribution was a Gaussian with unit standard deviation and a mean of one. The prior
distribution was taken (o be a Gaussian with mean zero and standard deviation 10. For each
value of A the fused error rate was calculated using a Monte Carlo simulation in which
50,000 samples were drawn from each of the two classes. The optimum value of A was also
calculated using a line search technique based on just 10 labelled samples from each class (the
retuning dataset). This retuning experiment was repeated 5,000 times and a histogram of the
best value for 4 was built up. The results are shown in Figure 7-5 for a test distribution for
class B with altered mean of N(0.8, 7). In this case neither technique reduces the fused error
rate. The optimum value of 4 is 1.0 (i.e. no inclusion of the prior distribution) which was
found in over a quarter of the simulations (mean value of A =0.93). Using the mean value
for A the fused error rate was found to be 13.1% compared 1o 11.5% obtained withou

discounting (this difference is statistically significant).
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Figure 7-5: Fused error vate as a function of A for

distribution N(0.8, 1°).

The same experiment was repeated for a broadened test distribution for class B ol N(1,2°). In
this case, most values for A above 0.25 for the linear discounting method gave hetler
performance than that obtained not using discounting. The optimum value for A was
approximately 0.8 which resulted in a fused error rate of 6.3%. The winner-takes-all
discounting method also reduced the error rate (to 10.4%). Both of these improvements are

statistically significant.
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Figure 7-7 shows the fused error rates for a system of four sensors as a function of the
Kullback-Leibler number for the two discounting techniques and the standard approach. 1t can
be seen that the winner-takes-all method produces an improvement in fused error rate over a
range of conditions. The linear discounting method gives as good or better performance than

the design distributions in all cases.

In these experiments a prior of N(0,10°) was used. The sensitivity of the approaches to choice
of prior was also investigated. In further experiments the mean of the prior was varied from
0—1 and was found to make no significant difference to the results obtained. The standard
deviation of the prior was also varied from 5- 100. Aliering the width ol the prior did have an
effect on performance with fused error rate gradually increasing towards that of the design
distribution classifier. For most plausible values of the prior, however, using the discounting

methods lead to a significant improvement in the fused performance
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Figure 7-7: Fused error rate for the design and

discounted models.



7.4 Mix Moderation

We have already observed the Bayesian posterior probability of a particular class given a set

of measurements and a corpus of training data:

P(C=clx,D)=[dM [d6, P(C=clx,D.M.0,)P©, | x.D.MP(M | x,D)

The analytic moderation of previous sections has addressed the uncertainty in the parameter
values of the selected model. In this section we address the uncertainty in the selection of the
model itself. Ignoring the parameter values for the moment we therefore require a solution (o

the integral:
P(C=clx,D)= Ja’lM P(C=clx,D,MPMIx,D)

Since it will not, in general, be feasible (o integrate over ali possible models, only
approximate solutions to this integral are addressed. The simple approach favoured here,
though not an accurate approximation introduces the philosophy of not taking the single best
model. It replaces the integral over all possible models with the sum over all models that have

been evaluated:

Jam P(C=clx,D.M)P(M 1x,D) = P(C=clx,D.M)P(M, | x,D)

If a sufficient variety of models, M, are chosen to provide some degree of coverage of the
space of all models, then this is likely to provide a more accurate probability than taking the

single best model {163]. Two main issues present themselves:

@ What range of models should be developed?

G How should the probability of the model given the data be evaluated?



7.4.1 Classifier Combination by Averaging

A simple method for allocating the model probabilities (or at least the relative probabilities
since we expect the distribution to integrate to unity) is to set them to be the same and equal

to Jy, » where Ny denotes the number of models used. Since this is likely to give undue

weight to poor models it is proposed that the best N, models are selected (based on some
performance measure such as cross entropy or percent correct) and used in the summation

with equal weight:

Jam P(C=clx,D,MIP(M | x, D) = . S P(C=clnDM,)

M

We therefore average the class conditional probabilities output by the various classifiers. This
introduces some degree of robusiness to overfitting, particularly il a good selection of models
is used. It does, however, fail to give extra weight to those models that are litting the data
well. This may be alleviated by weighting the models according to some simple function of

the error.
7.4.2 Classifier Combining by Likelihood Modelling

We retain the basic model for combining conditional probabilities:

[am P(C=clx,D,M)P(M 1 5,D) =3 P(C=clx,D,M)P(M, | x D)

but use a different method for assessing the model probability. In this case obtained from the

data itself using Bayes' rule:

P(DIM )P(M )
P(D)

P(M. D)=

Now P(D 1M ) can be obtained from the model and the data since, assuming independence

of individual data points, D

PIDIM)y=]]PD,1M,)

]



We may reasonably ignore the probability of the data, P(D), since it will be independent of
the model and can be allowed for by scaling the final weights. The prior on the models P(M,)
should reflect the simplicity (or otherwise) of model M, We may set P(M;) to be inversely
proportional to the number of free parameters in the model. This approach relies on each

classifier producing P(D; IM ) as an intermediate stage in the production of the class

conditional probability. There are many such classifiers that could usefully be combined in
this way. However, there are many discrimination-based classifiers, which estimate the class
conditional probability directly and never produce the data likelihood. These classifiers are

useful in that they are optimised to reduce the mis-classification rate, which is the quantity

ultimately of interest to the decision-maker.



7.5 Chapter Discussion

We have seen that, even when the marginalisation integrals are intractable, there remain
courses of action for ensuring that the probabilities used in a data fusion centre are not unduly
confident. The discriminative Gaussian classifier is trained discriminatively and is capable of
producing as good a classification performance as other simple discriminative techniques. It
offers the additional advantage, however, of being amenable to moderation using the analytic
techniques introduced in Chapter 6 . For the sake of completeness two other approaches were
described which achieve similar moderating results by mixing the classification probabilities

with those from the prior distributions or other classifiers. This work is ongoing.



Chapter 8 Centralised Moderation

8.1 Chapter Introduction

In this section a method is developed which allows moderation to be carried out at the fusion
centre when access to the separale sensor processors is denied. This centralised algorithim
shows that less certainty at the sensor level can lead to increased infallibility at the fusion
cenire and therefore higher overall data fusion performance. In this case transformations are
applied at the fusion centre which can correct for inappropriale sensor processing. We select a
Chebyshev transform for this purpose and demonstrate that the coefficients of this transform
may be optimised using ground truth labelled data. The principle is illustrated using synthetic

data.

Figure 8-1: The centralised moderation data (usion

architecture.

We now consider the situation in which a probability-level fusion centre is presented with
class conditional probabilities from a set of sensors that have not been appropriately
moderated. We shall show that it is possible for some moderation (o occur at the fusion centre

using a set of adaptive transforms that may be learnt from training data.

Consider the case where a sensor oulputs maximum likelihood estimates of the class
conditional probabilities but the fusion centre is aware of the desired, moderated probabilities.
Figure 8-2 shows the mapping of maximum likelihood probabilities (on the horizontal axis) to
moderated probabilities (on the vertical axis) for the samples from sensor | under
consideration in the previous sections. Note that the mapping is not single valued but that 4

trend is clearly visible. We shall exploit this trend by designing a transformation which the



fusion centre applies to incoming (unmoderated) probabilities which converts them (o

moderated probabilities.

0.8

0.

Figare 8-2: Maximum likelihood versus moderated

conditional probabilitics.

We shall use a transformation on the interval [0,/] and select rescaled versions of the
Chebyshev polynomials as a basis set for this purpose (although they are orthogonal we do

not use this property in this instance):

X+
T,(——) = 1
2
ox A+
H(——) = x
2
1 ,
’]‘)(_’\__l) = 2x" -1
2
41
r]‘}(ﬁJr_) = 4x' -3
2
X+ 2
L(LJL) = 8Bx'—8x’ 4]
2
7, o T —200 sk

We have initially used the first six such polynomials 7,7, T, 1, Tyand T as our basis sel. The

fusion process now proceeds as follows. First the incoming probabilities, £,, corresponding (o

|38



the conditional probability of class i estimated by sensor j, are transformed using the basis set

described above:

where 1,; denotes the weight applied to the kth basis function for sensor j. These transformed

probabilities are multiplied and renormalised in the standard way:

T
12
pP=—t
Dy A N1
Pr{i)
where the prior probability of the ith class is given by Pr(i) and the number of sensors is N.
To determine the parameiers of the transformation we define o sum squared error criferion

between the fused, transformed probabilities and the ground truth, D

N B 2
E=o 5D =h )’
!
where
N
P =
2P

and calculate the partial derivatives of the error criterion with respect to each of the

parameters:
21
.([‘-' = 5 =D
oP

and

I
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» I

O Pr(i)P
and finally

op, P+l

-2 = 7 v

o 12

]

The hill-climbing gradient for each parameter can now be obtained using the chain rule and
the parameters iteratively updated using a training database. For our experiments we changed

the parameters in proportion to the gradient with a constant of proportionality equal to 0.01,

8.2 Centralised Moderation with Insufficient Design Data

This procedure was carried out for the same sensor data that has been analysed in previous
sections with a new set of 1,000 sensor samples. After 1,000 iterations the parameters of each
of the sensor transformations had ceased changing. The transformation found for the first

sensor 1s shown in Figure 8-3.

O.& ]

0.6~ —

041 T

Figure 8-3: The adapted transformation for mapping

maximum likelihood probabilities.
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Note that the trend is to moderate the probabilities prior to fusion. Using this transformation
we calculated the error rates using the same evaluation database used previously. Results are

shown in Table 8-1.

- .

Joint distribution a priori 24%
Fused sensors 1&2 | ML [ 30%
Fused sensors 1&2 | moderated | 26%

Fused sensors 1&2 | transformed | 26%

Table 8-1: Tused error vates for woderated and

transformed conditional probabilities.

Observe that the fused error rate has been reduced (o the same valie that would have been
obtained had Bayesian probability moderation been carried out at the individual sensors. The
veto effect has been eliminated despite the presence of (initially) overconfident class

conditional probability estimates.

8.3 Centralised Moderation with Unrepresentative Design Data

To assess the applicability of the centralised moderation algorithm on probabilities that result
from unrepresentative design data a second set of experiments was performed. The design
dala is the same as before comprising two classes each having a unit normal distribution with
means at zero and one respectively. We assume that there is sufficient design data (o
accurately estimate these distributions. The evaluation data, however, is somewhat different.
The data from class 1 is drawn from the same unit normal centred at the origin as estimated
from the design data. The distribution of the second class is broader than the design
distribution. This is illustrated in Figure 8-4. Both the design and evaluation distributions are
the same for cach of the two sensors. The opiimisation of the parametric moderating
transformation proceeded exactly as before except that 2,000 iterations were employed in this

CdseC.
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Figure 8-5: The conditional probability of class 2 for one

of the sensors.

Figure 8-5 shows the probability of class 2 derived from three sources when the underlying
distribution has twice the standard deviation of the design distribution. The sigmoid shows ihe
probability according to the design distributions as produced by each of the sensors. The

highest curve shows the probability of class 2 given the (unobservable) underlying



distributions. Part way between these is the transformed probability produced by the

centralised moderation algorithm.
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Figure 8-6: The mapping of raw sensor  dervived

probabilities to moderated probabilities.

The mapping of design distribution probabilities (o underlying probabilities is shown in
Figure 8-6 as the upper curve. Also shown is the transformation found following the

optimisation process.

The same experiment was performed for a variely of underlying distribution with different
standard deviations. The error rate of the fusion system based on the underlying distributions
falls with increased dispersion as evidenced by the lowest of the three curves in Figure 8-7.
The fused error rate based on the design distributions gets worse with the increasing
difference between the underlying and design distributions. The middle curve, which closely
tracks the lower error rate, shows the performance for the centralised moderation algorithm

described above.
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8.4 Chapter Discussion

In this chapter we described the concept ol centralised moderation where the fusion centre
itself performs the moderating transformation to the conditional probabilities from the
separate sources. An algorithm was presented which learned such a transformation given only
the labels of the design data and not the correctly moderated probabilities from each source.
The resulting transformation was seen to provide a plausible mapping from unmoderated (o
moderated probabilities and was shown to recover the moderated fused performance for
simple synthetic problems. When applied to real data the technique was shown to make
improvements over unmoderated fusion, which were both statistically and operationally

significant.



Conclusions

The thesis began with the question:

“How does one obtain effective fusion which is robust to the quality of the
identification information heing fused?”

During the course of the research it became clear that such a question was not well defined for
many of the profusion of data fusion systems currently deployed (largely in the defence
domain). A major failing of the original objective was its breadth. In order to constrain the
problem sufficiently to allow analysis and computer experimentation, it was [irst necessary (0
map the field of data fusion. No single source provided the required framework [(or
approaches, architectures and functional topologies. In the first part of the thesis an
abbreviated description of such frameworks were provided. It was concluded that o multi-
stage, cyclic model best described the data fusion process. The model identified high-level
fusion (fusion of decisions or probabilities) as being of prictical relevance and theoreiical
interest. The framework allowed us (o hone the question as it applied (o decision level Tusion
in multi-level data fusion systems using a cenlralised architecture. The development and
assessment of data fusion algorithms that improve or allow for information quality was the

subject of the second part of the thesis.

Part two began by examining decision level fusion. An adaptive technique introduced was
able to maintain a desired error rate in the presence of poor quality information. The method
used a sequential error rate test coupled with a simple adaptive deferral threshold. However, if
was thought that such a scheme was not making best use of the data available and we
therefore turned our attention to probability level fusion. We showed that probability fusion
could be used as the basis for rational decision making and that the accuracy of the

probabilities being fused was of importance.

In chapters 6, 7 and 8 we developed the idea of probability moderation. Three approaches
were assessed (analytic, heuristic and centralised). In each case significant improvements
were found to be possible. The analytic approach was found to give good resulis when the
underlying disiributions were Gaussian (or nearly so). The ulility of the approach was alsa
demonstrated on a discriminative Gaussian classifier network. Exiensions of the analyiic
approach to a richer variety of classifiers are left for future work. The heuristic approaches
were motivated by the need for widely applicable, simple techniques and were shown (o give

adequate results in some cases. The final technique of centralised moderation was a novel
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approach to the moderation problem. It used non-linear transformations for each source,
coupled though the subsequent probability fusion. The transformations were learned from
training data in much the same way as a neural network. It has subsequently been applied to a
number of defence-related classification problems and found to offer operationally dramatic
performance gains. The technique is now being further refined and evaluated against other

problems.

We conclude that high-level data fusion is a useful, low-bandwidth technique for increasing
the performance of identification systems as long as measures are taken (o ensure that the
source information is appropriately accurate. Several methods for addressing this accuracy

and / or allowing for it in the fusion process were presented.
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Appendix A: Derivations of Key Results

A.1 Heat Flux Model

The quantity W

. 18 given by the equation:
W, =o W, cosf

where
A

W, o=—r—

R
e S (Y
W, is the radiation flux falling on a surface that is perpendicular (o the sun, @ is the solar
absorptivity of the surface and 0 is the angle between the normal to the facet and the

direction to the sun, A and B are time-of-year paramelters [93] and « is the angular altitude of

the Sun.

Assuming that the rest of environmeni has (he same emmisivity and the environment has the
same temperature as the air, the net heat flux lost by radiation given by the Stelan-Roltznunn

law is:

w

rud

e d -4
:g()o-(T\' '—‘7(“-,,)

Where €, is the emmisivity of the material and ¢ is the Stefan-Boltzmann constant, 7', is
the surface temperature and 7. the ambient air temperature. The heat flux lost by convection

[

is approximated by the equation:

W =hT ~T,,)

[

Where h is the heat transfer coefficient. The quantity /i dependent on the speed, temperature

and thermo-physical properties of air.
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A.2 Approximation to Binomial Confidence Limits

We use the approximation to the inverse of the incomplete beta function based on that of
Hastings [2]. We give only the lower confidence limit, L,, the upper confidence limit follows
from symmetry: L (x)=1-L,(x). In this approximation N denotes the total number of
patterns in the test set and E,. the proportion of test samples mis-classified. The value of Y,

15 chosen depending on the confidence level - the value of y, = 1.96 used here corresponds

to the 95% confidence limit. The approximation holds when at least one test pattern is either

correctly or incorrectly classified

L~ NE,
" TNE, + (N~ NE, +De™

W W, W, Wy

v, Jh+ A
Wy = e
h
] I
W, = e o
o hy b
5 2
Wy = A+ ———
’ 6 3h
2
h=—
hy

hy =2NE, -1
h, = 2N —2NE, +1

I |
hy =—+—
- h h
L

6 2
y, =196

If no test patterns were mis-classified then:
L =0
and if all test pattern were mis-classified then:

Y



A3 Sequential Hypothesis Testing

Assume that we require the fused error rate to lie in the interval [.P; s s ] Furthermore that we
are prepared to accept an equal probability of € that the estimated error rate could be above

or below this interval. We use an interval test of the form:

error rate too high if e>ua+b
error rate too low if e<a—-b

more observations required if a-b<é<a+b

where ¢ is our estimate of the error rate ¢ is a test quantity for the estimate and 25 is the size

of the acceptable range for the estimate.

Define a likelihood ratio test based on N samples with I errors (using the data D):

A -al)(//‘) lp=p) _ /')lk(] - /JJ)N g _ ]);!‘:(‘ - P|)N(I - P:)lw :_( =P ] ( /J|/(I = py)

TPDIp=p) p = p N p A= p ) U=t Ly

Assume that an interval test with limits &, and k, exists for this quantity:
k, <A<k,

this leads to

N N N
k I=p, < /)1/“_/31) <k I=p,
’ N o [=p,

W 1=p P, /(1= p,)

taking logarithms leads to:

258 ~ } e = [y
logk, + Nlog L—B— < Elog| ———— W< logk, + N log 1mp
) = p, P/ =py) = p

o, J(L=py )
dividing throughout by N log w}—‘—é(w———/ﬁ)— gives

Pz/““ P2)
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IN

[1 - p, )

log 3

1-p, N logk, < £

log| 2110 = P0 og| L0=p) ) N
p, /(1= p, ) p, /(1= p,)

which is in the correct form for an interval test on tl

log o
1 - p, N logk,

og LLE=PD __zzlgw_z:)
P /(1= p,) py /(1=

e estimated error rate since ¢ = /N .

As described above we use ideal value @ and range 2b

error rate too high if é2a+b
error rate too low if é<a-b

more observations required il a-b<é<a+b

where

(1 —€
IOg e
b= £
"
log —/:L

gives a likelihood test which is optimal in the sense that it tests the hypothesis that the deferral

threshold should be changed using a minimum number of observations
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A.4 Independent Probability Fusion

First we write the required joint conditional probability as a function of the data likelihoods

using Bayes' rule:

_ P(x,yle)P(e)
Plclx,y) = —till
o) P(x,y)

we then use our assumption of conditional independence o decompose the right hand side

into contributions from the separate sensors:

P(x1c)P(yle)P(e)
P(x, y)

Plclx, y)=

since the fused conditional probability should be written in terms of separate conditional
probabilities (PRI-PRO probability-in / probability-out fusion using the expanded Dasarathy

data fusion model shown in Table 3-4) we apply Bayes’ rule ance more 1o obtain:

bt xpy = PELIPGIPE LY POPE)
T R OPOP( )

and finally, collecting terms we obtain:

Pclxy) = DEIOPLLy)  POPLY)
[)(C) P(,\;, y)

the latter part of which i1s independent of the class ¢ and so can be treated as an unknown
constant which may be recovered by normalising over all classes. This result is easily

extendible to the case of multiple sensors. For N sensors we have the general result:

N N
[[reixy  []ro)
=1 =]

Plel{x —x, )=

- X
Pyt Pl{x - xy )

and again, the second term can be recovered by normalising over clagses.
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A.5 Logistic Function and Gaussians

For a pair of Gaussians of unit variance and means at £ § we have:

(-4’
. 1 i
P = e -
: 21

and

(\'i%)
B — 1 —-7'
P, = ——¢
: 27

¥

l+e™

which is the logistic function used in the multi-layer perceptron.
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A.6 Gradient Calculation for Discriminative Gaussian MLP

The relative-entropy scoring criterion, is particularly suitable for this network architecture as

the computation of the derivative of the criterion function with respect to each of the

parameters is considerably simplified.

J==>3>T,log0,
pook

where & is used to index the network output corresponding to each class for pattern p. We firsi
require the derivative of the criterion function with respect to the /. Since this depends on all

the units in the final layer we have, by use of the chain rule:

dl, = d0, dl,
Now

5(%_:_ A; T logO,(he (‘Q})ZM*;Y:“:
and

90,

a]k = Oh(ghk - Ok)

where 5“ , the Kronecker- & , takes a value of unity when h=k and zero otherwise. Now

) T,
2 ¥ o208, -0,)
;aoh al, Z o, “"
= —27“/;5111»' +()X ZY‘/’
I

h
= -1, + 01;
= 0, -T,

Finally we have the required derivative for the reference point weights

3/ o) oI,

dw, 0, dw,
200, =T N0, —w,)

il

Now the first layer of linear transformation weights can be computed using a similar approach

o the standard MLLP formulation:
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0] _as 9l
aw,j 8]1 BWU.

where
dl
Bw;:(z
and
aJ _ aJ 40,
al,  d0, dl,
Now
20,
dl
and

9 dJ 9,

00, 4401, 90,
which compuies (o

= N0, =T w, =0 )
0 (')j 24 ¢ ! i !

which is noted to be — Za%w which we computed in an carlier equation. Therefore
k Ik

5

w, o ow,




A.7 Leave-one-out Sample Mean and Variance

The sample mean is defined as:

which leads directly to:
;=5 (v - -\',,)

Now the sample variance is defined as:
Az_li(,_A)zwl N,z n2
¢ = 2% i _ﬁ,;/\i -~

and with the jth value omitted as

S
i
P
L=
TN
W z
=
|
-
N
|
=

N R 2
G* = ~—~——] X’ % - Al - %
! N-1%" N-| N~-1 N-1
1 Al ) XZ ! 2 A o] :
— A_m.._ZX - (N"y2 - 2N;Jx}. + _xtf)

which simplifies to




, &, N - —1 ., ¥
G2 = 2 | NA® =2[0x . + X+ -
J N~l§’ LN =Y ! H PN
| & N 5
— ..___Z L. —(NA° = 2[x + x°
N—lll i (N_l)_(‘u IL,I )

R . . a2
which can be rewritten in terms of 0~ as

A2 N A (-'\—/_/7)3
G = 67—
TN -1 N —1

Now, assuming independence, the leave-one-out data evidence can be written down thus

U

N
P(D) [Trw@ 1(D=-d}

=}

| e
[II‘ N ‘1'(N;l dy }

| e d
I 3 ,{V.,.'(;f"' USRI
N N~

I
z'zz
QX

This does not have a simple form.
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Appendix B: Descriptions of Experimental Databases

Many of the experimental datasets used during the course of the research were obtained from
the University of California, Irvine repository of machine learning databases and domain

theories. The data is obtainable via FTP from:
ftp://ftp.ics.uci.edu/pub/machine-learning-databases

B.1 Peterson and Barney Vowel Formant Data

The Peierson and Barney vowel data was originally created by Gordon Peterson and Harold
Barney [141] in 1952 to study the characteristics ol vowels as spoken by 76 American men
(33), women (28) and children (15). Four atributes were measured corresponding (o the
frequencies in Hz of the fundamental voicing and the first, second and third formants
(resonances of the vocal tract) during a portion of the steady state vowel sound. The datn has
since been appropriated by the paitern recognition and machine learning community and used
for vowel classification using the second and third attributes only (first and second Tormants)
since the data is then easily visualised and most of the discriminative information resides i
these features. Numerous results are available based on the data, particularly in the neural
networks literature. An initial data analysis of this vowel formant data reveals the

characteristics shown in Table B-1.

Attribute Variance ratio

Formant 0 0.01

Formant | 2.76

Formant 2 5.03

Formant 3 0.63

Table B-1: The characteristics of the Peterson and

Barney vowel formant data.

The source of this data has a somewhat convoluted history. Peterson and Barney appear (o
have mislaid their original computer readable data and the only versions available were three
data files keyed in from a printout of the magnetic tape before it's destruction. Several

discrepancies existed in these data files which were tracked down by Raymond Watrous as
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being transcription errors. Watrous corrected the data using collateral information and made
the, now definitive, data available at the University of Pennsylvania, USA [169]. This
supersedes the data sourced from Lippmann who obtained the data from Bill Huang who is
reputed (0 have digitised it manually from a diagram of the original data. Due to the
questionable origin of some of these datasets the results presented in other papers may not be
directly comparable to those presented here. However, the definitive database used here is

accessible to readers should they wish to perform comparative experiments.

The F1/F2 data consists of 1520 records associated with the 76 speakers uttering each of the
ten vowel sounds twice in succession. Speakers 133 are adult males, 3461 are adull
females and speakers 6176 are children. Of the child speakers 62, 63, 65, 66, 67, 68, 73 and

76 are female.

The data has ten classes of vowels with two attributes per patiern. The distribution of patterns
from each class is approximately a bivariate Gaussian. Classifiers making this assumption

tend to do well on this data.

Figure B-1 shows the overall scatter of the data and the one standard deviation ellipses

associated with a bivariate Gaussian distribution estimated for each class.

4000 ¥ ¥ T g T T T ¥ T T ¥ ¥ ¥ ¥

T
se L bt

T

3000

RN NS R

LB I B AL B

S 2000 -
[y .
1000 - -
oL : : L i s s M " | s . " _

0 500 1000 1500

F1/Hz

Figure B-1: One standard deviation ellipses for the

Peterson and Barney vowel data.
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B.2 Iris Data

Originally created by R. A. Fisher [67] using measurements made by Dr. E. Anderson and
used by numerous researchers including [53] and [63], the Iris database was obtained from the
UCI Repository of Machine Learning Databases and Domain Theories. The Iris classification

problem is a small task, which i1s relatively easy to obtain high performance rates with.

The data set contains 3 classes of 50 instances each, where each class refers (o a type of iris
plant. Types [ris Serosa and Iris Versicolour were found in the same natural colanies whereas
Iris Virginica was measured at a different location. One class (Iriv Setosa) is linearly

separable from the other classes, which are not linearly separable from each other.

Class index Class name I-from-N code
| Iris Serosa 001
2 Iris Versicolour 010
3 Iris Virginica 100

Table B-2: Class attributions for the Iris database.

There are four attributes per pattern. The first attribute is the sepal length in cm, the second is
the sepal width, also in cm, the third and fourth the petal length and width in cm. All

attributes are measured to an accuracy of I mm.

Standard | Class
Attribute Minimum Maximum | Mean deviation correlation
Sepal length 4.3 7.9 5.84 0.83 0.78
Sepal width 2.0 4.4 3.05 0.43 0.42
Petal length 1.0 6.9 3.76 1.76 0.95
Petal width 0.1 2.5 1.20 0.76 0.96

Table B-3: Attribute characieristics for the [ris database.




Table B-3 details a set of statistics regarding the attribute values of the iris data. Figure B-2
shows the data from the three classes projected onto the two most discriminative attribute

axes.
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Figure B-2: The iris data projected onto the {lwo mosi

discriminative axes.




B.3 Glass Data

The glass 1dentification database was created by B. German of Central Research
Establishment, Home Office Forensic Science Service, Aldermaston. The classification of
glass fragments into types having being float-processed or not could be used to assist
criminological investigations. Six types of glass were analysed: float or non-float building
windows, vehicle glass (all float-processed), container, tableware and headlamp glass. For the
experiments reported here only the building and vehicle glass was used of which floai
processed building windows accounted for 70 samples, non-float processed building windows
for 76 samples and float processed vehicle windows for 17 samples. Both of the float-
processed types were combined into a single class. There were therefore 163 patterns, which
were divided into (raining and test files by assigning all odd numbered patterns to the iraining
database (82 patterns in all) and all even numbered patterns to the test databuse (81 patterns in

all).

Standard | Variance
Attribute Minimum Maximum | Mean deviation vt
Refractive index 151 1.53 1.52 0.00 006
Sodium 10.73 14.86 13.20 0.35 0.02
Magnesium 0.00 4.48 3.29 0.79 0.10
Aluminium 0.29 2.12 1.28 0.10 0.15
Silicon 69.81 74.45 72.59 0.41 0.00
Potassium 0.00 .10 0.48 0.05 0.04
Calcium 7.08 16.19 8.92 |.88 0.01
Barium 0.00 315 0.03 0.06 0.01
Iron 0.00 0.37 0.07 0.01 0.01

Tabie B-4: Atiribute characteristics for the Glass database.

Previous use has included nearest neighbour and rule based systems that obtained as low as

15% error rate.




B.4 Breast Cancer Diagnosis

Dr. William Wolberg of the University of Wisconsin Hospitals, Madison collected several

sets of data concerning the analyses of cell samples. The measured attributes are potentially

useful in diagnosing malignant breast cancers. The data set contains 699 instances from 8

clinical case groups analysed between January 1989 and November 1991, The data is

arranged chronologically. Previous usage has concentrated on the first group of 367 instances.

For each case there are 9 attributes which are scored manually on a scale of | (o 10. For the

purposes of these experiments these scores were scaled by 0.1. Associated with each case is

diagnosis of the sample as being representative of either a benign or malignant tumour. OFf

the 699 samples in the database 458 are classed as benign and the remaining 241 malignant.

Standard | Variance

Attribute Minimum | Maximum | Mean | deviation | ratio

Clump thickness 0.1 1.0 0.44 0.08 .14
Uniformity of cell size 0.1 1.0 0.31] (.09 [.84
Uniformity of cell shape 0.1 1.0 0.32 (.09 1.91
Marginal adhesion 0.1 1.0 0.28 0.08 0.85
Single epithelial cell size 0.1 1.0 0.32 0.05 0.81
Base nuclel 0.1 1.0 0.36 0.13 1.82
Bland chromatin 0.1 1.0 0.34 0.06 1.31
Normal nucleoli 0.1 1.0 0.29 0.09 0.93
Mitoses 0.1 1.0 0.16 0.03 0.19

Table B-5: Attribute characteristics for the Wisconsin

breasi-cancer database.

Atiributes 1 — 6 have missing values which were not recorded are unavailable. For the

purposes of these experiments these were replaced by the intermediate scaled value of 0.5,
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