

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our <u>Takedown policy</u> and contact the service immediately (openaccess@aston.ac.uk)

DYNAMICS OF A CONTINUOUS STIRRED TANK REACTOR FOR DIFFERENT REACTION ORDERS

bу

DOBLE MUKESH, M. Tech.

A Thesis submitted to the University of Aston in Birmingham for the degree of Doctor of Philosophy.

Department of Chemical Engineering
June 1980

DYNAMICS OF A CONTINUOUS STIRRED TANK REACTOR FOR DIFFERENT REACTION ORDERS

DOBLE MUKESH

Ph.D. 1980

SUMMARY

The work studies the effect of reaction order on the dynamic behaviour of a jacketted stirred tank reactor under the action of controllers, and hence develops control schemes which improve the performance.

Initially theoretical work determined system stability and behaviour mainly for planning the experiments. Reaction orders 2,1,0 and -1 were studied on the system for various control schemes and disturbances.

The experimental work involved a partial simulation technique in which the mass balance of an exothermic chemical reaction was simulated by a digital computer. The computer calculated the heat generation depending on the reaction order and other operating and reaction rate parameters. Appropriate signals applied to the immersion heaters provided in the vessel liberated the corresponding heat. The cooling water flowrate was the manipulative variable and its setting calculated by the computer for the control scheme chosen.

The transient response of the system for each experimental run was plotted and compared with the corresponding total simulation result. For this comparison the complete plant was simulated by a set of differential equations and samplers.

Invariance of tank temperature and concentration for load disturbances was achieved by a control strategy derived from the state equations. This strategy was an improvement on feedback control.

Decoupling of tank temperature from the other two state variables was achieved by a control scheme involving an iterative procedure for the calculation of coolant flowrate.

The open loop unstable operating point was stabilised by proportional feedback control. The limit-cycle at the open loop stable and unstable points was generated by a feedback control scheme. Conditions for the existence of a limit-cycle were established by the second method of Liapunov and the harmonic contents of these nonlinear oscillations the harmonic contents of oscillations was determined by determined. The effect of oscillations was determined by comparing the time average conversion with the steady-state peformance.

Key Words: Partial-Simulation; Stability; Invariance; Decoupling; Limit-Cycle

ACKNOWLEDGEMENTS

In recognition of the help and advice received the author wishes to extend his sincere gratitude to:

Mr. A.R. Cooper of the Department of Chemical Engineering, for his valuable help, moral support and supervision and his patient review of the manuscript.

Dr. B. Gay of the Department of Chemical Engineering, for his advice and help on computing.

The Commonwealth Scholarship Commission in the United Kingdom for provision of the scholarship.

Mr. D. Bleby for his assistance with electrical and electronic problems.

DEDICATED TO MY FAMILY

CONTENTS

			PAGE
CHAPTER	1	INTRODUCTION	1
CHAPTER	2	LITERATURE SURVEY	4
	2.1	Introduction	4
	2.2	Effect of parameters on order of	
		reaction	5
	2.3	Dynamics of a C.S.T.R	7
		2.3.1 Theoretical study	7
		2.3.2 Experimental work	8 %
		2.3.3 Partial Simulation technique	8
	2.4	Stability analysis	10
	2.5	Unstable operating points	12
	2.6	Interaction and decoupling of state	<i>≨</i> €
		variables	13
	2.7	Invariance control	14
	2.8	Limit-cycles	16
		2.8.1 Theory of Bifurcation	17
	2.9	Conclusions	17
			20
CHAPTER		THEORETICAL DEVELOPMENTS	20
	3.1	Introduction	
	3.2	Mathematical formulation	20
	3.3	Steady-state equations	21
	3.4	Effect of reaction order on operating	0.0
		points	23 -
	3.5	State equations for transient study	
	3.6	Effect of reaction order on the	
		linearised system	26

		<u> </u>	AGE
3.7	Effect o	of inlet parameters	26
	3.7.1	Effect on operating points	26
	3.7.2	Effect on stability	28
3.8	Stabili-	ty analysis of the uncontrolled	
	syster	n	33
	3.8.1	By Krasovskii's theorem	33
	3.8.2	By numerical integration	42
	3.8.3	Comparison of stability region	N.
		obtained by both methods	42
3.9	Effect	of control	47
	3.9.1	Effect on eigenvalues of the	
		characteristic matrix	48
	3.9.2	Effect on stability of the	
		system	48
	3.9.3	Effect on dynamic behaviour	61
3.10) Interac	tion and decoupling	61
	3.10.1	Effect of decoupling control on	
		stability	66
3.11	Invaria	ance control	71
3.12	2 Limit-c	cycle	77.
	3.12.1	Behaviour of eigenvalues as	
		gain is increased	78
	3.12.2	Existence of limit-cycles	78
	3.12.3	Effect of reaction order on	
		limit-cycles	82
	3.12.4	Harmonic contents of	
		oscillation	. 82
3 1	3 Conclu	sions	. 92

]	PAGE
CHAPTER	4	APPARATUS AND COMPUTER SYSTEM	94
	4.1	Introduction	94
	4.2	Apparatus description	94
	4.3	Limitations of instruments	99
	4.4	Calibration	100
		4.4.1 Thermocouples	100
		4.4.2 Turbine flowmeter	100
		4.4.3 Immersion heaters	101
		4.4.4 Control valve	101
	4.5	The Honeywell 316 and the HADIOS data	
		acquisition system	103
		4.5.1 Honeywell 316 computer and its	
		peripherals	103
		4.5.2 Honeywell analog digital input	
		output system	104
		4.5.3 Remote signal conditioning box	105
CHAPTER	5	ON-LINE SUPPORTING SOFTWARE	106
	5.1	Introduction	106
	5.2	HADIOS executive routines	107
	5.3	Integration/simulation routine	. 108
	5.4	Tetronix graphic library	. 109
	5.5	House-keeping subroutines	. 109
	5.6	Overlay routine	. 109.
	5.7	Loading procedure	./-1114
		5.7.1 Initial version of the package.	
		5.7.2 Final version of the package	111

			PAGE
	5.8	Changes in BASIC interpreter	112
	5.9	On-Line BASIC program	113
		5.9.1 Execution time	115
	5.10	Conclusions	116
CHAPTER	6	EXPERIMENTAL STUDIES	117
	6.1	Introduction	117
	6.2	Steady-state behaviour	119
	6.3	Transient response studies	120
	6.4	Stability analysis	121
	6.5	Effect of reaction order	121
	6.6	Controller equations	. 122
	6.7	Limit-cycles	123
	6.8	Parameter values chosen	124
CHAPTER	7	TOTAL SIMULATION OF THE PLANT	125
	7.1	Introduction	125
	7.2	Model equations of the plant	. 125
	7.3	Assumptions in formulating the model	
		equations	2006
	7.4	Solution procedure	. 129
	7.5	Comparison of experiment with total	
		simulation	. 130
CHAPTE	3 8	RESULTS AND DISCUSSION	. 131
	8.1		
	8.2		- 1865 B. S.
		8.2.1 Effect of reaction order	
		8.2.2 Effect of inlet parameters	. 132
	8.3	tability region	The same bearing and the

				PAGE
	8.4	Closed l	oop stability behaviour	134
	8.5	Operatin	g the system at the open loop	
		unstab	le point	136
		8.5.1	Proportional control of tank	
			temperature	136
		8.5.2.	Proportional control of jacket	
			temperature	137
	8.6	Control	for decoupling tank	
•		temper	ature	137
		8.6.1	On region of stability	. 138
		8.6.2	For step in feed temperature	138
		8.6.3	Operation at open loop unstable	
			operating point	. 139
		8.6.4	Effect of D _{max}	. 140
	8.7		ace control	
	8.8	Limit-cy	vcles	. 141
	•	8.8.1	At open loop stable point	. 141
		8.8.2	At open loop unstable point	. 142
		8.8.3	Harmonic components of nonlinear	r
			oscillations	. 143
	8.9	Total si	imulation versus experimental	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		resul	ts	. 143
				172
CHAPTER	9		IONS AND RECOMMENDATIONS	
	9.1	Conclus	ions	
		9.1.1	On theoretical work	. ±/⁄3
		9,1.2	On experimental and total	
			simulation studies	
	9.2	Recomme	ndations	. 177.*

<u> </u>	AGE
BIBLIOGRAPHY	180
APPENDICES	186
APPENDIX 1 LISTING OF COMPUTER PROGRAMS	186
1.1 Program for calculating the	
stable and unstable operating	•
points	186
1.2 Program to determine	
separatrices	189
1.3 Program to find the largest	
region of stability	192
1.4 Program to determine the	
existence of limit-cycles	203
1.5 Program for the simulation of	
the plant	208
1.6 BASIC program for on-line work	213
1.7 Program for plotting experimenta	1 .
and total simulation results	222
APPENDIX 2 FLOW CHARTS OF COMPUTER	
PROGRAMS	226
2.1 Flow chart of A.1.3	226
2.2 Flow chart of A.1.4	228
2.3 Flow chart of A.1.6	229
APPENDIX 3 THEOREMS AND TECHNIQUES USED IN	
PROGRAMMING	1232
3.1 Routh's criteria	. 232
3.2 Solution procedure for	
$J^{T}A+AJ=-B$. 232

		Ī	PAGE
	3.3	Volume of ellipsoid	233
	3.4	Logical search technique	234
	3,5	Sylvester's theorem	234
APPENDIX	4	ON-LINE SOFTWARE PACKAGE	236
	4.1	Calling sequence of subroutines	
		1 to 9	236
	4.2	Listing of subroutine 6 and other	r
		associated routines	243
	4.3	Listings of subroutines 7	247
	4.4	Listing of subroutine 8	249
	4.5	Listing of subroutine 9	251
	4.6	Listing of tape conversion	
		program	252
	4.7	Modifications in BASIC	¥
		interpreter	253
	4.8	Memory map	254
APPENDIX	5	CALIBRATION, R.T.D. STUDIES,	
		& PARAMETER VALUES	258
	5.1	Immersion heaters calibration	
		graph	258
	5.2	2 Control valve calibration graph.	. 259
	5.3	3 Turbine flowmeter calibration	19
		graph	. 260
	5.4	4 R.T.D. studies for tank	. 261
	5.	5 R.T.D. studies for jacket	. 262
		6 Parameter values chosen	
		7 Calibration equations	

		PAGE
APPENDIX	6	EXPERIMENTAL AND TOTAL
		SIMULATION RESULTS 265
	6.1	Experimental Results 265
	6.2	Comparison of experiments and
		total simulation 357
APPENDIX	7	COMPARISON OF DECOUPLING AND
		INVARIANCE TYPE CONTROLS WITH
		CONVENTIONAL CONTROLLERS 404

LIST OF TABLES

TABLE		PAGE
3.1	Inlet conditions	22
3.2	Operating points for various reaction	
	- orders	22
3.3	Operating points for various reaction orders for	:
	a different set of conditions	27
3.4	Difference between stable and unstable	
	operating points for various operating	
	conditions	32
3.5	Liapunov matrix and region of stability for	
	various reaction orders	41
3.6	Nature of eigenvalues as a function of	
	proportional gain for controller of the	
	type in equation (3.27)	49
3.7	Nature of eigenvalues as a function of	
	proportional gain for controller of the	; *
	type in equation (3.28)	50
3.8	Behaviour of the system for various gain	
	values for controller of type in equation	
	(3,60)	79
3.9	Region within which $\dot{v}_{L}^{<}$ O for different	
	reaction orders and gain values	81
3.10	Amplitude of oscillation for different	
•	reaction orders	89
3.11	Harmonic contents of limit-cycles for	
• · · · · -	various orders and gain values	91
8.1	Steady-state operating conditions	

TABLE		PAGE
8.2	Control schemes and load changes	. 157
8.3	Amplitude of tank and jacket temperatures	
	for different reaction orders	. 171
8.4	Harmonic components of the limit-cycles	. 172

LIST OF FIGURES

FIG.	<u> </u>	PAGE
3.1	Eigenvalues of characteristic matrix for	
۰.	various reaction orders at 305 K	25
3.2	Eigenvalues at open loop stable and	
	unstable points for various reaction	
	orders	25
3.3(a)	Effect of operating parameters on heat	
	generation and removal	29
3.3(b)	Effect of reaction order on heat generation	
	and removal	30
3.4	Separatrices 1 to 6 for various reaction	
	orders (A=I) (Open loop)	35
3.5	Separatrices 1 to 6 for various reaction	
	orders (Refer Table (3.5) for A matrices)	
	(Open loop)	37
3.6	Phase-space of the C.S.T.R. system for	
	reaction order = -1 (Open loop)	43
3.7	Phase-space of the C.S.T.R. system for	
	reaction order = 0 (Open loop)	. 44
3.8	Phase-space of the C.S.T.R. system for	
	reaction order =1 (Open loop)	. 45
3.9	Phase-space of the C.S.T.R. system for	
	reaction order =2 (Open loop)	. 46
3.10	Separatrices 1 to 6 for various reaction	
	orders under control of the type given	
	in equation (3.27) (A=I)	. 56
3.11	Phase-space of the C.S.T.R. system for	
	reaction order = -1 for control of the	
	type given in equation (3.27)	. 58

FIG.	<u> </u>	AGE
3.12	Phase-space of the C.S.T.R. system for	
	reaction order =0 for control of the	
	type given in equation (3.27)	59
3.13	Phase-space of the C.S.T.R. system for	
	reaction order =1 for control of the	
	type given in equation (3.27)	60
3.14	\mathbf{D}_{max} vs IAE for various reaction orders and	
	two different operating conditions	64
3.15	Decoupling type control of the C.S.T.R. for	V
	reaction order =-1(at open loop stable	
	point)	67
3.16	Decoupling type control of the C.S.T.R. for	
	reaction order =0	68
3.17	Decoupling type control of the C.S.T.R. for	
	reaction order =1	69
3.18	Decoupling type control of the C.S.T.R. for	
	reaction order =2 (at open loop stable	
	point)	70
3.19	Region of invariance for step in feed and	
	coolant temperatures	7,3
3.20	Effect of step changes in coolant and feed	
	temperatures on coolant flowrate	73
3.21	Invariance control for various load	
	changes	76
3.22	Limit-cycle for reaction order = -1 (at	
• 22	open loop unstable point)	83
3.23	Limit-cycle for reaction order =0 (at open	
- •	loop unstable point)	84

FIG.		PAGE
3.24	Limit-cycle for reaction order =0 (at	
	open loop stable point)	85
3.25	Limit-cycle for reaction order =1 (at	
	open loop unstable point)	86
3.26	Limit-cycle for reaction order =1 (at	
	open loop stable point)	87
3.27	Limit-cycle for reaction order =2 (at oper	1
	loop stable point)	88
4.1	Schematic diagram of the plant and the	
	computer system	95
4.2	Experimental arrangement (front view)	97
4.3	Experimental arrangement (rear view)	98
4.4	Computer and its peripherals	102
6.1	Typical computer output at the end of	
	steady-state section	118
7.1	Block diagram of the plant	126
9.1	Effect of sampling time on the limit-cycle	9
	generated at the open loop stable	
	operating point of a first order system	179
A.5.1	Immersion heaters calibration figure	258
A.5.2	Control valve calibration figure	259
A.5.3	Turbine flowmeter calibration figure	260
A.5.4	R.T.D. studies in tank for step in feed	
	temperature	261
A.5.5	R.T.D. studies in jacket for step in	
	coolant temperature	262

FIG.		PAGE
A.6.1.1		265
to	Experiments 1 to 92	to • 356
A.6.1.92		
A.6.2.1		
to	Comparison of experiments and total	357 to
A.6.2.47	simulation	
A.7.1	Conventional Feedback/Feed-forward	
	Control	. 406
A.7.2	Decoupling Type Control:	. 406
A.7.3	Invariance type control	. 407

NOMENCLATURE

A	Liapunov matrix
$^{ extsf{A}}$ ij	elements of matrix A
В	positive definite symmetric matrix
C	Concentration of reactants (kg/m ³)
Cp	specific heat of feed (kJ/kg K)
D,D ₁ ,D ₂ ,D ₃	exponential decay constant (s)
D _{max}	maximum value of D (s)
D _s	digital signal
E	activation energy (kJ/kg mole)
F	feed flowrate (m ³ /s)
Н	Heat (J/s)
I	unit matrix
IAE	integral of absolute error
J	Jacobian matrix
J _{ij}	elements of matrix J
K	multiplication factor
K ₁	$= k_{O} C_{O}^{n-1}$
K_2	$= K_c \times 10^6$
к ₃	$= \frac{\bar{F}}{V K_1 \alpha_{SS}^n} + e^{-Q/\beta} SS$
K_{4}	= k/V
$^{\mathrm{K}}\mathrm{_{C}}$	proportional gain (m ³ /s)
$^{\mathrm{K}}\mathrm{L}$	Liapunov value
Q	$= \underbrace{E \Delta H C_{O}}_{R \rho C_{p}}$
Q_1	counter rate
R	Universal gas constant (kJ/kg mole

RAS	Region of asymptotic stability
R(X,Y)	$= K_{1}((X+\alpha_{SS})^{n} e^{-\frac{Q}{\beta_{SS}+Y}} - \alpha_{SS}^{n} e^{-\frac{Q}{\beta_{SS}}})$
S	= Laplace transform
$s_1, s_2 \ldots$	inequality constraints for stability
T	tank temperature (K)
T _I	integral time $/K_c(s^2/m^3)$
Tr	Trace of a matrix
$^{\mathrm{T}}\mathrm{_{D}}$	differential time $x K_c(m^3)$
UA	heat transfer conductance (kJ/s K)
V	reactor volume (m ³)
$v_{ m L}$.	Liapunov function
$V_{\mathbf{S}}$	supply voltage
X	dimensionless perturbation in
	concentration = \overline{C}/C_0
$x_0, x_1 x_2$	harmonic contents in C during limit- cycling (kg/m^3)
Υ	dimensionless perturbation in temperatu = Tb
v v v	harmonic contents in T during limit-
Y ₀ , Y ₁ , Y ₂	cycling (K)
Z	dimensionless perturbation in jacket
	temperature = \bar{T}_c b
$\mathbf{z}_{0}, \mathbf{z}_{1}, \mathbf{z}_{2}$	harmonic contents in T _c during limit-
<u> </u>	cyling (K)
a j	constants of polynomial
b	$= \frac{\rho Cp}{\Delta HC_0} (K^{-1})$

f(x)	system of equations
k	Arrehnius type reaction rate constant = $k_0e^{-E/RT}$
^k o	frequency factor
n	reaction order
sf	stable focus
sn	stable node
t	time (s)
uf	unstable focus
un	unstable node
α	trigger angle
α ₁	$= (\pi - \alpha)$
lpha SS	dimensionless steady-state concentration
	$= C_{SS}/C_{o}$
β SS	dimensionless steady-state temperature
	$= T_{SS}b$
^β oss	dimensionless steady-state feed
	temperature = T _{OSS} b
βo	dimensionless perturbation in feed
Ü	temperature = \bar{T}_{O}^{b}
^γ ss	dimensionless steady-state jacket
33	temperature = T _{cSS} b
^Y oss	dimensionless steady-state coolant
033	temperature = T _{coss} b
Yo	dimensionless perturbation in coolant
O ·	temperature = $\bar{T}_{CO}b$

 $\lambda_1, \lambda_2, \lambda_3$ eigenvalues of matrix J density of feed (kg/m^3) ΔH heat of exothermic reaction (kJ/kg) τ residence time in the tank = V/F (s) residence time in the jacket = V_c/F_c (s) τ_{c} $= \frac{1}{\tau} + \frac{1}{\tau} (s^{-1})$ τ_{1} $= 1/_{\tau_c} + 1/_{\tau_I} (s^{-1})$ τ_2 $= 1/_{\tau_0} + 1/_{\tau_T} (s^{-1})$ τ_3 $1/\tau_{o}$ $= \frac{UA}{V \rho C_D} (s)$ 1/_T $= \frac{UA}{V_c \rho_c C_{pc}}$ (s) Time constant of measuring element (s) τ_{m} Sampling time (s) τ_s τ_{v} Time constant of control valve (s) angular velocity (radians/s) W load disturbance φi modulus of or determinant of a matrix 1 1 Subscripts steady-state SS calculated Cal actual act open loop stable point S open loop unstable point U inlet condition 0 pertaining to coolant stream С

(xxii)

m values output from measuring elements

UL upper limit on flowrate

Combinations of these subscripts are also possible.

Superscripts

* sampled values

- perturbation

T transpose of a matrix

differential with respect to time

CHAPTER 1

INTRODUCTION

The study of the effect of reaction order on the dynamics of a continuous stirred tank reactor (C.S.T.R.) is important because a stable system for a particular reaction order can become unstable as the order is This has special relevance when complex changed. homogeneous or heterogeneous rate equations are simplified to yield one reaction order for a certain set of assumptions, but a different one for another set of assumptions. The reaction order is also affected by the operating conditions. For example in solid catalysed reactions the order is different not only for different types of catalyst surface but also for different impurities. In homogeneous liquid phase reactions large excess of one reactant or product during the reaction process can change the order.

A purely theoretical study of the transient behaviour of a C.S.T.R. sometimes deviates too much from practicality while in complete experimentation, practical difficulties reduce the range of study. Hence in the present study, a partial simulation technique which combines both experiment and theory is used. Thus the mass balance of an irreversible exothermic chemical reaction is simulated using a digital computer, and based upon the current rate of reaction, the computer calculates the reaction heat generation and sends the appropriate signal to the immersion heaters situated in the reactor.

Reaction heat is thus released and the actual heat transfer to a surrounding cooling jacket takes place. With water as the reaction as well as the cooling medium various reaction orders can be simulated by the digital computer with little difficulty.

A general theoretical study of the system stability is carried out for all integer reaction orders ranging from -4 to 4. However experiments and complete theoretical work is carried out for reaction orders -1, 0, 1 and 2.

The transient behaviour of the reactor is obtained with and without the action of control on the cooling water flowrate. Theoretical nonlinear stability analyses are carried out by the use of Krasovskii's theorem and the effect of various controller configurations on the region of asymptotic stability (RAS) is determined and also verified experimentally. More importance has been placed on complicated control configurations of the decoupling and invariance type because of their superiority over conventional type controls and because they have not found their way into chemical process control due to lack of proper understanding.

Operation of the reactor system only at a stable operating point or only in a perfectly stabilised mode reduces the scope for changing the system performance. The stabilising of an open loop unstable operating point

with the help of simple proportional controllers opens up a new range of operating points. Inducing sustained oscillations at an inherently stable operating point for constant input conditions sometimes helps in improving the system performance to a certain degree. This nonlinear oscillation, known as limit-cycling, is studied for different reaction orders and their fundamental harmonics evaluated.

The effect of inlet conditions, like feed and coolant temperatures and flowrates on the operating points is also theoretically studied in order to take into account the day to day changes in water temperature.

The transient behaviour and analysis of the reactor alone is carried out in Chapter 3, while the effects of lags and delays introduced by measuring elements and valves are considered when total simulation of the complete plant is performed in Chapter 7. The experimental runs are compared with total simulation. Various computer programs for analysis, simulation and control, and experimental work are also developed.

Although SI units are used throughout this report,
CGS units are used in the computer programs for
theoretical, total simulation and experimental work.

CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

The aim of the work was to study stable and unstable operation of a C.S.T.R. and to investigate control schemes not hitherto applied to chemical reactor systems.

In order to generate interesting cases of stable and unstable reactor operation, the effect of various parameters including reaction order on the dynamic behaviour of a chemical reactor was sought in the literature. The survey included the effect of operating conditions on the order of a chemical reaction.

The implementation of the open loop and the controlled schemes used established techniques of partial simulation, in which the reaction and mass balances were simulated on a computer and the thermal effects existed in plant items.

The literature survey therefore covered the following areas of interest

- (i) The effect of various parameters on the order of chemical reaction.
- (ii) Theoretical simulation studies on a C.S.T.R. both with and without control to predict the transient responses and multiple operating points.
- (iii) Transient experimental work carried out in a C.S.T.R.
- (iv) The partial simulation technique as a tool of study, using either an analogue or a digital computer.

- (v) Stability analysis of a C.S.T.R. and calculation of the maximum region of stability.
- (vi) Operation of the C.S.T.R. at an unstable equilibrium point, as an alternative to the inherently stable point.
- (vii) Decoupling of a multivariable interacting nonlinear system.
- (viii) Advantages of the Invariance type control.
- (ix) Limit-cycling in a stirred tank reactor and its effect on overall performance.

2.2 EFFECT OF PARAMETERS ON ORDER OF REACTION

The order of a given chemical reaction can change with a number of factors including temperature, presence of impurities, type of catalyst and energy level of products. For a particular set of conditions there will be a complete reaction mechanism involving the order. Some examples of variation of order with conditions are given below 1.

In the following liquid phase reaction

$$2I^{-} + S_{2}O_{8}^{-2} \rightarrow I_{2} + 2 SO_{4}^{-2}$$

the order is two for high concentrations of iodide ions while it is three for low concentrations.

In the decomposition of ammonia on platinum catalyst the rate equation is given by

$$-d\{NH_3\} = k_1 \{NH_3\}/\{H_2\}$$

while on iron catalyst it is

$$-d\{NH_3\} = k_2\{NH_3\} \{H_2\}^{3/2}$$

The presence of O_2 as an impurity in the formation of hydrogen chloride changes the rate equation from

$$d\{\frac{HC1}{dt}\} = k_2 \{C1_2\} \{CH_4\}$$

to
$$d\{\frac{HC1}{dt}\} = k_1 \{C1_2\}^2 / \{O_2\}$$

Sometimes the large excess of one reactant or product during the reaction process can change the order. Thus in the following reaction 2

HCO Co (CO) $_4$ + PH $_3$ \rightarrow HCO Co (CO) $_3$ PH $_3$ + CO the rate is first order in HCO Co (CO) $_4$ for large concentrations of phosphine while the rate equation becomes

$$k_1 \{HCO C_O (CO)_4\} = \{PH_3\}$$

for small concentrations of it. This type of behaviour is also observed in liquid phase reactions between acylcobalttetra-carbonyls with hydrogen, olefines, dienes or acetylenes.

It is also seen that the pseudo reaction order for complex reactions changes depending upon the type of assumptions made. Thus negative order type reactions are possible, where one of the components inhibits the main reaction. Generally reaction orders never exceed a value of

three because of the greater loss of entropy in the activated state and the small probability of collision of three or more molecules at the same time to form the activated complex.

2.3 DYNAMICS OF A C.S.T.R.

2.3.1 Theoretical Study

The theoretical dynamic behaviour of a C.S.T.R. with exothermic reaction has been analysed by many authors. The types of dynamic behaviour possible for a first order reaction are classified according to the system parameters like heat transfer coefficient, activation energy, Dam Köhler number and adiabatic temperature rise by Uppal and Ray³. Several kinds of "jump phenomena" like coalescence of limit-cycles with separatrices or merging of two limit-cycles are explained with respect to the parameters. A consecutive first order reaction scheme was analysed by Hlavacek et al⁴. Multiplicity and stability were theoretically analysed in the parametric plane.

A brief communication on the effect of reaction rate on the open loop stability of chemical reactors by the classical approach was presented by Luyben⁵. The importance of assuming the correct mixing effects in a C.S.T.R. was emphasised by Dudukovic⁶. The author concludes that even though micromixing effects are secondary for normal reaction rate equations, they are significant in self inhibited rate expressions which have a maximum rate at some intermediate reaction

concentration. Certain micromixing patterns may give rise to unexpected multiple steady-state at intermediate degree of segregation when only a single steady-state is possible at the maximum mixedness condition.

2.3.2 Experimental Work

Though there are some papers available in the literature that deal with the experimental study of continuous stirred tank reactor performance they all deal with the second order exothermic reaction between sodium-thiosulphate and hydrogen peroxide. The studies by Vejtasa et al⁷, Chang and Schmitz^{8,9} and Schmitz et al¹⁰ covered the following aspects

- (i) steady-state and transient behaviour of the system.
- (ii) stabilisation of an unstable point by means of feedback control.
- (iii) the construction of phase-plane diagrams showing experimental limit-cycles.
- (iv) effect of cooling jacket wall thickness on the dynamics.

The hydrolysis of acetyl chloride was studied in a reactor by Baccaro et al¹¹ mainly to establish the existence of limit-cycles for the particular system.

2.3.3 Partial Simulation Technique

From the literature it can be seen that very little experimental work has been carried out on reactor dynamics because the experiments involve high cost and sophisticated instrumentation. Apart from that, a suitable reaction

be studied within the range of instruments. This is partly overcome without too much deviation from practicality by the partial simulation technique where the chemical reaction and mass balance are simulated with the aid of an analogue or digital computer while the heat effects are actually studied on the plant.

Initial work in the Chemical Engineering Department at Aston on the partial simulation technique was carried out with an analogue computer to simulate the reaction and material balance and it was changed later to a digital computer because of the many disadvantages that are typical of an analogue computer. The principal work covered in the Department follows.

The three authors who used analogue simulation were Chao¹², who studied the optimal and adaptive control of a C.S.T.R, Alpaz¹³, who attempted the simulation of a plug flow reactor with a series of C.S.T.Rs and Buxton¹⁴, who studied the single loop control of a C.S.T.R. acting through a cooling coil. These authors used a conventional type of controller in their work.

H. Farabi¹⁵ was first to study the advantages of cascade control over a single loop control on a jacketted C.S.T.R. for a first order reaction using the partial simulation technique with the aid of a digital computer for the mass balance and also for the control action. The use of a digital computer to generate the controller action helps to simulate complicated controller configurations

that can hardly be tried on conventional controllers.

2.4 STABILITY ANALYSIS

A vast amount of theoretical work has been carried out on the general stability behaviour of a stirred tank reactor. The papers can be broadly classified into two groups according to the method employed. They are Krasovskii's theorem for nonlinear systems and other classical methods for linear and non-linear systems which also include the phase-space technique. In the latter method system stability is analysed by solving the system equations numerically and deducing the transient behaviour for large perturbations. The only article worth mentioning is a communication paper by Berger et al¹⁶ that tries to extend this technique to a series cascade of reactors.

Krasovskii's theorem for nonlinear systems has been applied by many authors. The important step in the application of this theorem is the construction of a positive definite Liapunov function and it is generally agreed in the literature that this is the most difficult step. While Berger et al 17,18 assume unit matrix as the Liapunov matrix and study the positive definiteness of

- $\left[\ J^T + J \ \right]$, Jacques et al 19 assume a Liapunov matrix of the form

$$\begin{bmatrix} 1 & & S \\ S & & \gamma \end{bmatrix} \text{ and maximise it with an inequality}$$
 constraint

$$(\gamma - s^2) > 0.$$

Tarbell²⁰ tries to arrive at a Liapunov function from the fundamentals of thermodynamics but finally admits that the theorem of minimum entropy production does not apply to the near equilibrium C.S.T.R. steady-state due to the presence of convective heat exchange between the reactor and the surroundings.

Lueck and $Meguine^{21}$ give an algorithm to update the Liapunov matrix calculated initially, using the Jacobian matrix.

The various steps involved are

- 1) Calculate J at the origin (x=0) and check whether the necessary condition for stability is satisfied.
- 2) Solve $J^{T}A + AJ = -I$ for A and check whether A is positive definite.
- 3) maximise \mathbf{K}_{L} in the equation $\mathbf{V}_{L} = \mathbf{f}^{T} \mathbf{A} \mathbf{f} = \mathbf{K}_{L}$ satisfying the condition $\dot{\mathbf{V}}_{L} = -\mathbf{f}^{T} \{\mathbf{J}^{T} \mathbf{A} + \mathbf{A} \mathbf{J}\}_{\mathbf{f}} \geq \mathbf{0}$
- 4) find J at this new point (x=x*) where the $^{V}_{L}=^{K}_{L}$ contour touches $-\dot{v}_{L}=0$.
- 5) Check whether the roots of J are on the left half of the plane and if so go to step (2).

The algorithm does not always yield the largest A matrix because the J matrix calculcated from step (4) will invariably fail the test in step (5) because of the fact that the x=x* point will generally be outside the separatrices formed by the conditions for the real parts of roots of J to be on the left half of the plane.

Berger and Lapidus ²² try to maximise the time derivative of the Liapunov function on the closed Liapunov hyper surface but they simplify the problem by assuming a unit matrix as the Liapunov matrix.

Davidson and Kurak ²³ outline a very cumbersome method which involves very high computational time. The Liapunov function is found by maximising the volume of the stable region for the system

 $x^{T}Ax = 1$

2.5 UNSTABLE OPERATING POINTS

Operating a reactor at the unstable point is an attractive alternative for many reasons. Various techniques have been used for this by many authors. These include simple proportional control 24, relay $feedback\ control^{25}$ as control strategies for operation at the unstable equilibrium point. Chang and Schmitz⁹, in their experimental study, used P + I control at the unstable point in the chemical reaction between sodiumthiosulphate and hydrogen peroxide. They also describe the problems involved in shifting the system operating point from the inherently stable point to the open loop Horak et al⁵¹ describe the effect of unstable point. using various manipulated variables in the control of a C.S.T.R. at its open loop unstable point. reasonable manipulated variables used by these authors were flowrate of coolant or feed, outlet flowrate of products or inlet temperature of coolant. Apart from these they also mention other manipulated variables which are not practical.

2.6 INTERACTION AND DECOUPLING OF STATE VARIABLES

A physical system is defined as multivariable when it has a number of inputs and outputs. The most important characteristic of such a system is that they will be generally interacting and coupled, a condition that occurs when there are inputs which simultaneously affect more than one output. The C.S.T.R. with a cooling jacket is a typical example of such a system.

A system which is defined by the set of differential equations:

$$\dot{x}_{i} = f_{i}(x_{1}, x_{2}, \dots, x_{n}) + \phi_{i}$$

$$i = 1, 2, \dots, n$$
(2.1)

is said to be decoupled if it can be expressed as

$$\dot{x}_{i} = -D_{i} x_{i}$$
 $i = 1...n$ (2.2)

where D_{i} 's are constants and ϕ_{i} 's are disturbances entering the system. The value of D_{i} determines the speed of response.

No work has been reported so far on the practical study of the noninteracting type of control on a C.S.T.R. Furthermore very few papers exist for the theoretical study of these control configurations on any chemical process system. Mesarovic 26 and Meerov 27 lay the foundations for a multivariable control system theory.

Decoupling of a multivariable interacting system has been analysed by many authors, though most of them simplify the problem by linearising the state equations.

Foster et al²⁸ and Ballinger and Lamb²⁹ present a method to decouple a C.S.T.R. system by feedback and feedforward compensators. She**2**n Lin Liu³⁰ developed a decoupling technique which can be applied to nonlinear systems over the entire state space, taking into account the constraints on process input variables. Hutchinson and McAvoy³¹ apply this technique for the time optimal control of a noninteracting system. Tokumaru et al³² obtain the necessary conditions for noninteraction using variational methods.

2.7 INVARIANCE CONTROL

The principle of invariance, when applied to a control system, will give the calculated relationships permitting selection of parameters of the system, so that one of its generalised coordinates will be independent of one or several disturbing influences applied to the system. Petrov³³ has dealt with the general aspects of the principle of invariance for both linear and nonlinear systems.

Consider a dynamic system represented by the following set of differential equations

$$a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n = f_i(t)$$
 (2.3)

where
$$a_{il} = A_{il} \frac{d^2}{dt^2} + B_{il} \frac{d}{dt} + C_{il}$$
 (2.4)

and A,B, C are constants (zero or non-zero). Under conditions of absolute invariance of the unknown function \mathbf{x}_{i} (t) of the system (2.3) from the arbitrary forcing function $\mathbf{f}_{i}(t)$ the minor \mathbf{D}_{ij} of the principal determinant

 Δ becomes identically equal to zero. If the conditions of invariance of one of the variables x_j are realised in the system, defining its behaviour relative to a certain disturbing effect, $f_i(t)$, then in the absence of other disturbing effects and zero initial conditions, the variable x_j will be equal to zero. It follows that influences of this variable on other generalised coordinates of the system will be absent.

An essential requirement for the realisation of these conditions of invariance is that there must be identical matching of the set of solutions of the equations of the original system and the system broken at the output of the element, defined by the generalized coordinates x_j (at the point of measurement of the variable x_j) during realization of conditions of invariance and zero initial conditions and when all influences are equal to zero. Another necessary condition is that, there must be at least two channels for propagation of the influences between the point of application of the external effect. and the point of measurement of magnitude, whose relation to this effect must be secured (Dual channel concept).

The only paper available in the literature which applies this principle to the control of a chemical process system is by Haskins et al³⁴. The authors tried a theoretical application of this principle to the control of a heat exchanger acted upon by sinusoidal disturbances in inlet temperature and found it to be very successful.

2.8 LIMIT-CYCLES

The study of the oscillatory nature of a C.S.T.R. response for constant input conditions has attracted several authors.

Oscillations were observed experimentally by Baccaro et al¹⁰ in the hydrolysis of acetyl chloride while Chang et al⁸ observed similar behaviour in the reaction between sodium thiosulphate and hydrogen peroxide in a C.S.T.R. A limit-cycle was also observed by Heemskerk et al³⁵ in the acid catalysed hydrolysis of 2,3 epoxy propanol-1. Both the hydrolyses are first order in nature. Apart from generating limit-cycles the authors do not analyse these nonlinear oscillations.

In addition to these three papers, the following deal with the theoretical aspects of limit-cycles.

Luus et al³⁶ use an averaging technique to determine the time average of state variables while Beek³⁷ uses a truncated power series type expansion to obtain the variation of state variables with time. Douglas et al³⁸ Dorawala et al³⁹ and Gaitonde et al⁴⁰ study theoretically the effect of oscillations on the final conversion and conclude that sometimes oscillations can improve the time average conversion by as much as 20%.

The existence of a limit-cycle is established in two dimensional systems by the use of Bendixon's theorem ⁴¹ while the theory of Bifurcation is used by many authors to establish it in higher dimensional systems.

2.8.1 Theory of Bifurcation

Since the C.S.T.R. with a cooling jacket is a three dimensional system the bifurcation theorems have to be used for establishing the existence of limit-cycles.

Minorsky 42 defines two kinds of bifurcation in a parametric space. The bifurcation of the first kind occurs whenever the limit-cycle nearest to the singular point shrinks in size indefinitely and when the parameter reaches the bifurcation value, the limit-cycle coalesces with the singular point with the result that the latter changes its stability while the limit-cycle disappears. The bifurcation of the second kind occurs whenever two adjoining cycles approach indefinitely giving rise to a semistable cycle which disappears thereafter. The two kinds of bifurcation mentioned are reversible.

Ku et al^{43,44} and Jonnada et al⁴⁵ establish analytical criteria for the existence of a limit-cycle in high dimensional systems using Bifurcation theorems in parametric space. The analytical criteria are derived from the direct method of Liapunov. They also classify the limit-cycle into soft excitation and hard excitation types depending upon their behaviour with respect to the parameter under consideration. No papers were found which make use of the theory of bifurcation for establishing the existence of a limit-cycle in a chemical process system.

2.9 CONCLUSIONS

From the literature survey carried out it could be seen that though a thorough understanding of the C.S.T.R has been carried out theoretically by many authors,

experimental work has been done mainly on the second order exothermic reaction between sodiumthiosulphate and hydrogen peroxide. No experimental work on C.S.T.R. dynamics has been reported in the literature for zero or negative reaction orders.

The partial simulation technique, in spite of its advantages over theoretical simulation or complete experimental work has not been fully exploited so far in understanding the reactor system. Though decoupling and invariance type control have been tried up to a certain extent on electrical systems they have never been tried on chemical process equipment mainly due to their complexities and the fact that a digital (or analogue) computer has to be used as controller.

particular reaction system can change depending upon many parameters. The effect of reaction order on dynamics of a C.S.T.R. offers an interesting study due to the fact that order affects dynamic behaviour appreciably and very few engineers give importance to the effect of order on dynamics of a C.S.T.R. for design purposes.

The stability and limit-cycle behaviour of the C.S.T.R. has been analysed by many authors in a two dimensional plane. These studies in three dimensional phase space introduce many complexities and require new techniques that have never been tried before.

Experimental work reported on the generation of limit-cycles has been only at the open loop stable operating point. There has been no work which compares limit-cycles generated at the open loop stable and unstable points.

No work has been reported so far on stability analysis by the Krasovskii's theorem in a region with multiple equilibrium (singular) points, though such a situation is possible in chemical reactor systems. The Liapunov function in such situations should be chosen with care so that it does not violate the necessary condition, which is that the value should be zero only at x equal to zero (origin) and tend to infinity as x tends to infinity.

The present work not only tries to emphasise the advantages of the partial simulation technique but also makes use of the powerfulness of the digital computer to act as a controller. So control schemes which have not been applied for chemical process systems so far are tried out.

CHAPTER 3

THEORETICAL DEVELOPMENTS

3.1 INTRODUCTION

This chapter deals with the theoretical studies carried out on the system in order to build up an understanding of its dynamic behaviour and hence to design the experimental programme. The stability of the reactor system was analysed for different reaction orders and equations for cooling water flowrate were derived for a number of control strategies.

3.2 MATHEMATICAL FORMULATION

An Arhenius type exothermic nth order irreversible chemical reaction is assumed to take place in a jacketted continuous stirred tank reactor. Neglecting the heat losses to the surroundings and assuming complete mixing in both the reactor and the jacket the mass and energy balances in the reactor and energy balance in the jacket can be written as

$$F (C_O - C) - Vk C^n = V \frac{dC}{dt}$$
 (3.1)

$$FpC_{p}(T_{o}-T) - UA (T-T_{c}) + \Delta HVkC^{n} = VpC_{p} \frac{dT}{dt}$$
 (3.2)

$$F_c \, {}^{\circ}_{c} \, {}^{\circ}_{c}$$

where
$$k = k_0 e^{-E/RT}$$
 (3.4)

The parameters heat of reaction, frequency factor and initial concentration are given in Appendix (5.6) and are chosen so that the operating temperatures are between 293 and 318 K to match the operating range of

parameter values are used in the experimental work. The heat transfer conductance chosen for the theoretical studies is an average value obtained from tests on the equipment. The activation energy is chosen depending upon the order of reaction so that the system has an operating temperature near to 305 K. The values of activation energy chosen for various reaction orders are also given in Appendix (5.6).

3.3 STEADY-STATE EQUATIONS

At steady-state the right hand sides of equations (3.1) to (3.3) are equated to zero. The equation so arising from (3.2) can be split into two parts as heat generation and heat removal to arrive at the following set of steady-state equations.

Heat Generation =
$$\Delta HVk_{o}C^{n}e^{-E/RT}$$
 (3.5)

Heat removal =
$$F_{\rho}C_{\rho}(T-T_{\rho}) + UA(T-T_{\rho})$$
 (3.6)

$$FC + Vk_{O}C^{n}e^{-E/RT} = FC_{O}$$
 (3.7)

$$T_{c} = (F_{c} \rho_{c} C_{pc} T_{co} + UAT) / (F_{c} \rho_{c} C_{pc} + UA)$$
 (3.8)

Equation (3.5)when plotted against T is S-shaped, and depends on the order of reaction; the heat removal line plotted against T is independent of reaction order. The number of times the heat removal line cuts the heat generation curve determines the total number of operating points some of which are stable and some unstable. The lower operating point is generally stable and next higher

TABLE 3.1 INLET CONDITIONS

$$F = 5 \times 10^{-5} \text{m}^3/\text{s}$$

$$F_c = 4 \times 10^{-5} \text{m}^3/\text{s}$$

$$T_o = 288.1 \text{ K}$$

$$T_{co} = 288.1 \text{ K}$$

TABLE 3.2 OPERATING POINTS FOR VARIOUS REACTION ORDERS

Reaction	T _{SS} (K)	C SS (kg/m ³)	T _{css}	Nature of operating point
-1	296.1	19.636	291.95	S
-1	305.1	19.215	296.27	U
0	301.1 306.1	19.405 19.163	294.35 296.75	.U
1	304.5	19.221	296.17	S
	312.1	18.889	299.63	U
2 2	305.1	19.218	296.27	S
	339.0	17.65	312.56	U

one, if it exists, is unstable.

3.4 EFFECT OF REACTION ORDER ON OPERATING POINTS

For the set of inlet conditions in Table (3.1) the steady-state equations (3.5) to (3.8) are solved for integer orders ranging from -1 to 2 and the results presented in Table (3.2). The computer program for obtaining these operating points, written in BASIC for HP 2000 is given in Appendix (1.1).

It can be seen from Table (3.2) that the unstable operating temperature and hence the difference between unstable and stable operating temperatures increases with increase in positive or negative order.

3.5 STATE EQUATIONS FOR TRANSIENT STUDIES

The set of differential equations (3.1) to (3.3) can be written assuming all the inputs as zero, in a form which is suitable for transient analysis as $\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}\mathbf{t}} = -\frac{\mathbf{X}}{\mathbf{T}} - \mathbf{K}_1 \{ (\mathbf{X} + \boldsymbol{\alpha}_{\mathrm{SS}})^n \mathrm{e}^{-\mathbf{Q}/(\mathbf{Y} + \boldsymbol{\beta}_{\mathrm{SS}})} - \boldsymbol{\alpha}_{\mathrm{SS}}^n \mathrm{e}^{-\mathbf{Q}/\boldsymbol{\beta}_{\mathrm{SS}}} \} \quad (3.9)$ $\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}\mathbf{t}} = -\tau_1 \ \mathbf{Y} + \mathbf{Z}/\tau_0 + \mathbf{K}_1 \{ (\mathbf{X} + \boldsymbol{\alpha}_{\mathrm{SS}})^n \mathrm{e}^{-\mathbf{Q}/(\mathbf{Y} + \boldsymbol{\beta}_{\mathrm{SS}})} - \boldsymbol{\alpha}_{\mathrm{SS}}^n \mathrm{e}^{-\mathbf{Q}/\boldsymbol{\beta}_{\mathrm{SS}}} \} \quad (3.10)$ $\frac{\mathrm{d}\mathbf{Z}}{\mathrm{d}\mathbf{t}} = -\tau_2 \ \mathbf{Z} + \mathbf{Y}/\tau_1 + \frac{\mathbf{F}_c}{\mathbf{V}} (\boldsymbol{\gamma}_{\mathrm{OSS}} - \boldsymbol{\gamma}_{\mathrm{SS}} - \mathbf{Z}) \quad (3.11)$

where X, Y and Z are the state variables in dimensionless perturbations of tank concentration, tank temperature and jacket temperature respectively.

 $^{-}_{\text{C}}$ is the control variable, the perturbation of coolant flow from its steady-state value. It thus has

a zero value for open loop and otherwise depends on the control strategy chosen. An upper limit on cooling water flowrate is used in the theoretical work to correspond to the finite coolant pump capacity on the equipment.

The Jacobian matrix J defined by

$$J = \frac{\partial f_{i}}{\partial x_{j}}$$

$$j = 1, 2 \dots n$$

$$i = 1, 2 \dots n$$

for the above system

$$J = \begin{bmatrix} J_{11} & J_{12} & J_{13} \\ J_{21} & J_{22} & J_{23} \\ J_{31} & J_{32} & J_{33} \end{bmatrix}$$

where

$$J_{21} = K_1 n (X + \alpha_{SS})^{n-1} e^{-Q/(\beta_{SS} + Y)}$$

$$J_{11} = -\frac{1}{\tau} - J_{21}$$

$$J_{12} = - \kappa_1 (X + \alpha_{SS})^n e^{-Q/(\beta_{SS} + Y)} Q$$

$$\frac{Q}{(\beta_{SS} + Y)^2}$$

$$J_{22} = - \tau_1 - J_{12}$$

$$J_{23} = 1/\tau_{0}$$

$$J_{32} = \frac{1}{\tau_{I}} + \frac{\partial \overline{F}c}{\nabla_{c}\partial \overline{Y}} (\gamma_{OSS} - \gamma_{SS} - \overline{Z})$$

$$J_{33} = -\tau_2 + \frac{\partial \overline{F}c}{\overline{V}_c \partial \overline{Z}} (\gamma_{OSS} - \gamma_{SS} - \overline{Z}) - \frac{\overline{F}c}{\overline{V}_c}$$
 (3.12)

FIG.3.2 EIGENVALUES AT OPEN LOOP STABLE AND UNSTABLE POINTS FOR VARIOUS REACTION ORDERS

3.6 <u>EFFECT OF REACTION ORDER ON THE LINEARISED</u> SYSTEM

The Jacobian matrix calculated at the origin can be termed as the characteristic matrix of the linearised system. This matrix determines the system behaviour at the origin (operating points).

The nature of the eigenvalues of this characteristic matrix determines the stability of the origin. The eigenvalues of the characteristic matrix are plotted against reaction order at the operating point near 305 K in Fig. (3.1). It can be seen from the figure that one of the eigenvalues is on the right-half of the plane for negative order systems thereby indicating instability. As the order is increased the system becomes stable for reaction order one. A further increase in order makes the eigenvalues complex, indicating oscillations in the system behaviour.

From Table (3.2) it can be seen that systems with reaction order -1 to 2 have a stable and an unstable operating point. The eigenvalues calculated at these points are plotted in Fig. (3.2). From Fig. (3.2a) it can be seen that zero order seems the least stable of the four systems.

3.7 EFFECT OF INLET PARAMETERS

3.7.1 Effect on Operating Points

The operating parameters like reactant flowrate and inlet temperature, cooling water flowrate and temperature have an effect on the equilibrium points and the stability of the system. A brief theoretical study of this effect

TABLE 3.3 OPERATING POINTS FOR VARIOUS REACTION ORDERS FOR A DIFFERENT SET OF CONDITIONS

Reaction order	T _{SS}	C _{SS} (kg/m ³)	T _{css}	Nature of operating point
-1	303.1	19.59	297.43	S
-1		19.27	300.82	U
0	305.1	19.51	298.4	S
	315.1	19.06	303.25	U
1	305.8	19.49	298.0	S
	325.5	18.66	306.28	U
2 2	306.1	19.476	298.9	s
	363	17.07	322.25	u

F = 80 ml/s = 8 x
$$10^{-5}$$
 m³/s
F_C = 50 ml/s = 5 x 10^{-5} m³/s
T_O = 294.1 K
T_{CO} = 292.1 K

is made in order to take into account the day to day changes in water temperature expected in the experimental work. Increase in water temperature moves the equilibrium temperature upwards while increasing the flowrates has the opposite effect.

The operating points for various reaction orders are obtained for different sets of initial conditions and tabulated in Table (3.3). For all further theoretical work only the first set of conditions in Table (3.1) and the operating points in Table (3.2) are considered.

3.7.2 Effect on Stability

Parameters like inlet temperature, inlet coolant flow rate and temperature, change only the heat removal, while tank inlet flowrate affects both the heat generation and heat removal. The unstable operating point is a point above which the heat generation is greater than the heat removal and the system goes out of bounds. So the region between the stable and the unstable operating points, where heat removal is greater than heat generation, can be considered as the stability region, as a first approximation.

The inlet parameters affect the stability region in different ways. Increase in tank inlet temperature decreases the intercept of the heat removal line and hence the stability region. Increase in jacket inlet temperature affects the heat removal line in a similar manner but to a lesser degree. Increase in the tank flowrate increases both heat generation and removal.

l = Heat generation

2 = Heat removal

X axis = Operating temperature

Y axis = Heat gen./ removed

(i) Effect of coolant flowrate (F_c)

(ii) Effect of feed flowrate (F)

(iii) Effect of feed inlet temperature (T_0)

(iv) Effect of coolant inlet temperature (Tco)

FIG.3.3(a) EFFECT OF OPERATING PARAMETERS ON HEAT GENERATION AND REMOVAL

FOR DIFFERENT E VALUES (refer App(5.6))

FOR CONSTANT E VALUE

l = Heat generation

2 = Heat removal

X axis = Operating temperature

Y axis = Heat gen./ removed

FIG.3.3(b) EFFECT OF REACTION ORDER ON HEAT GENERATION AND REMOVAL

However, the increase in heat generation is generally less than the increase in heat removal and hence, there is an increase in the stability region.

Reaction order affects only the heat generation.

If the activation energy is constant for all reaction orders then increase in order will decrease heat generation (assuming not much change in concentration) and hence positive orders will be more stable than negative orders. However, in the present study activation energy decreases as order is increased and although the previous argument cannot be extended to this case, mathematically it can be stated that

|n| is more stable than |n-1|. The effect of various parameters on heat generation and heat removal is shown in Fig. (3.3). The difference between the unstable and stable operating points for various orders and different inlet conditions is tabulated in Table (3.4). Since the various parameters interact with one another the temperature difference is not linearly dependent on the various parameters.

For all inlet conditions the difference in stable and unstable state temperatures is highest for reaction order two. The temperature difference for order one is higher than that of order zero. Except for conditions one and three the difference is higher for order one than for the negative order.

TABLE 3.4 DIFFERENCE BETWEEN STABLE AND UNSTABLE OPERATING POINTS FOR VARIOUS OPERATING CONDITIONS

Reaction	DIFF			NK) F	OR VAR	IOUS C	CONDITI	ONS
orders	1	2	3	4	5	6	7	8
-1	9	11	8	16	14	10	17	21
0	5.1	9	2	17	16	9	18	23
1	7.2	13	7	23	21	16	25	32
2	34	39	37	51.3	49.3	45.1	54.5	62.2

Conditions	$F(m^3/s)$	$F_c(m^3/s)$	T _O	T.CO
	x 10 ⁻⁶	x 10 ⁻⁶	(K)	(K·)
1	50	40	288.1	288.1
2	50	50	288.1	288.1
3	50	50	288.1	290.1
4	60	40	288.1	288.1
5	60	40	288.1	290.1
6	60	40	290.1	288.1
7	60	50	288.1	288.1
8	70	40	288.1	288.1

3.8 STABILITY ANALYSIS OF THE UNCONTROLLED SYSTEM

The stability analysis of the system for various reaction orders is carried out by two methods. The first method is by the application of Krasvoskii's theorem and obtaining the region of asymptotic stability (RAS) using a quadratic Liapunov function. The second method involves actually solving the system equations for various starting conditions and determining the stability region. The limitations of the first method are revealed on plotting the results of both the methods.

3.8.1 By Krasvoskii's Theorem

The stability of the nonlinear system and the region of asymptotic stability can be determined by the application of Krasvoskii's theorem.

The theorem states that for a system defined by $\dot{x} = f(x)$

where f has continuous partial derivatives, if a quadratic function of the form

$$V_L = f^T A f$$

Could be defined with the following properties

- (i) A is positive definite symmetric matrix
- (ii) V_L =o only at x=o
- (iii) $V_L^{\to \infty}$ as $x^{\to \infty}$

and if $\dot{\mathbf{V}}_L = \frac{\mathrm{d}\mathbf{V}_L}{\mathrm{d}t} = \mathbf{f}^T \{\mathbf{J}^T \mathbf{A} + \mathbf{A} \mathbf{J}\} \mathbf{f}$ is negative then the system is asymptotically stable at x=0 and \mathbf{V}_L is the Liapunov function of the system. The largest region that is within the volume $\mathbf{V}_L = \mathbf{K}_L$ and satisfies everywhere along its surface $\dot{\mathbf{V}}_L < \mathbf{0}$ is the region of asymptotic stability of

the system.

Instead of inspecting the sign of the scalar quantity \dot{V}_L , the stability of the system can be determined by looking at the definiteness of the matrix $\{J^TA + AJ\}$. The conditions for the stability of the CSTR system can be obtained from the conditions for the negative definiteness of this matrix. To start with, a simple symmetrix matrix can be assumed for A(viz I, the identity matrix). Then for the system to be stable, $-\{J^T + J\}$ should be positive definite. Applying Sylvester's theorem (see Appendix (3.5)) to this expression, the following conditions are obtained for the stability of the system.

$$S_1 = -2 J_{11} > 0$$
 (3.13)

$$S_2 = 4 J_{11} J_{22} - (J_{12} + J_{21})^2 > 0$$
 (3.14)

$$S_{3} = -2 J_{11} \{ (4 J_{22} J_{33} - (J_{23} + J_{32})^{2} \} + 2 J_{33} (J_{12} + J_{21})^{2} > 0$$
(3.15)

$$S_4 = -2 J_{22} > 0$$
 (3.16)

$$S_5 = -2 J_{33} > 0 (3.17)$$

$$S_6 = 4 J_{22} J_{33} - (J_{23} + J_{32})^2 > 0$$
 (3.18)

These six inequality conditions when plotted in the X,Y plane for different orders divide the region into stable and unstable regions. The stable region obtained by this technique is highly conservative because not only the definiteness of $\{J^TA + AJ\}$ alone is considered but a unit matrix is used as the Liapunov matrix. Fig. (3.4) gives the plot of equations (3.13)-(3.18) for various orders;

FIG.3.4 SEPARATRICES 1 TO 6 FOR VARIOUS REACTION ORDERS (OPEN LOOP) (A= I)

reaction order zero is not considered because the matrix elements are independent of X.

When equation (3.12) is substituted into equation (3.13) and rearranged a lower limit for X is obtained for order -1 and second order reactions as

$$X > \left[\frac{-1}{\tau K_1^{n} e^{-Q/(Y + \beta_{SS})}} \right]$$
 (3.19)

Similarly condition (3.16) can be rewritten as an upper

$$X < \left[\frac{\tau_{1}(Y + \beta_{SS})^{2}}{Q K_{1}e^{-Q/}(Y + \beta_{SS})} \right]^{1/n} -\alpha_{SS}$$
 (3.20)

Equation (3.20) is valid for all orders not equal to zero.

A larger stability region can be obtained if a different A matrix other than the identity matrix is chosen. Then the six conditions for $-\{J^TA+AJ\}$ to be positive definite are

$$S_1 = -2 J_{11}A_{11} - 2 J_{21} A_{12} > 0$$
 (3.21)

$$S_2 = -2 J_{22}A_{22} - 2 J_{32}A_{23} - 2 J_{12}A_{12} > 0$$
 (3.22)

$$S_3 = -2 J_{33}A_{33} - 2 J_{23}A_{23} > 0 (3.23)$$

$$S_4 = S_1 S_2 - S_7^2 > 0$$
 (3.24)

$$S_5 = S_3 S_4 - 2 S_7^2 S_8 S_9 - S_1 S_9^2 - S_2 S_8^2 > 0$$
 (3.25)

$$S_6 = S_2 S_3 - S_9^2 > 0 (3.26)$$

FIG.3.5 SEPARATRICES 1 TO 6 FOR VARIOUS REACTION ORDERS
(OPEN LOOP) (REFER TABLE(3.5) FOR A MATRICES)

where
$$S_7 = A_{12}(J_{11} + J_{22}) + J_{21}A_{22} + A_{11}J_{12} + A_{13}J_{32}$$

$$S_8 = A_{13}(J_{11} + J_{33}) + A_{12}J_{23} + J_{21}A_{23}$$

and
$$S_9 = A_{23}(J_{22} + J_{33}) + A_{22}J_{23} + J_{32}A_{33} + J_{12}A_{13}$$

Fig. (3.5) gives the plot of equations (3.21)-(3.26). It can be seen that the region of stability is increased appreciably from that of Fig. (3.4). The A matrix for each order in Fig. (3.5) is obtained by an optimisation procedure described later in this sub-section.

The Liapunov function considered so far is not a true monotonically increasing function for the C.S.T.R. system under consideration because f and hence V_L are equal to zero not only at the origin but also at the open loop unstable point. So far no work has been reported on determining Liapunov functions near multiple equilibrium (singular)points. In order to make V_L a true monotonically increasing function, a Liapunov function of the form

$$V_L = f^T A f + x^T A x / 10^7 = K_L$$

is considered, which is zero only at the origin and is not equal to zero at any other singular point in the space.

A value of 10⁷ is chosen so that the two terms on the right hand side are of the same magnitude. To obtain the largest RAS, this function has to be maximised under the inequality constraint

$$\dot{\mathbf{v}}_{\mathsf{T}} = \mathbf{f}^{\mathsf{T}} \{ \mathbf{J}^{\mathsf{T}} \mathbf{A} + \mathbf{A} \mathbf{J} \} \mathbf{f} + 2 \mathbf{f}^{\mathsf{T}} \mathbf{A} \mathbf{x} < 0$$

at all points on the surface of the contour. A digital computer program written in FORTRAN for CDC 7600 is presented in Appendix (1.3) and the various steps involved in the calculating procedure are given below.

Step 1: Calculate the Jacobian matrix J at X,Y, Z = O.

Step 2: Check whether the eigenvalues of J have negative real parts; this is a necessary condition for stability.

The checking procedure is given in Appendix (3.1)

The solving method is given in Appendix (3.2)

Step 4: Check whether A is positive definite using Sylvester's theorem (Appendix (3.5))

Step 5: Assume a small Liapunov function value K_{L}

Step 6: For different values of X and Y calculate Z by solving the equation $f^T A f + x^T A x / 10^7 = K_L$. Calculate \dot{V}_L and check whether $\dot{V}_L < 0$. Also calculate the volume of the ellipsoid. The procedure is described in Appendix (3.3)

Step 7: If V_L < 0 at all points, increment K_L and repeat step 6 until the largest K_L that obeys the condition is obtained; otherwise go to Step 9.

Step 8: Calculate J at another X, Y and Z and go to Step 2.

Step 9: With A obtained so far maximise the volume of the Liapunov contour by repeating steps 5-7 by varying the elements of A using the logical search technique described in Appendix (3.4).

The flow chart of the program is given in Appendix (2.1). The largest volume obtained and the corresponding A matrix for various orders are tabulated in Table (3.5).

It can be seen from the Table (3.5) that the RAS of the second order system is largest and that of the zero order one is the smallest. Also the volume of the RAS of the -1 order system is larger than that of the first The region of stability (RS) tabulated in order system. the table is the region which encloses the RAS and is separated from the RAS by a small band where $\dot{v}_{\text{I}} > \text{O}$. semi-stable limit-cycle can be considered to be situated there separating the RAS and the equilibrium point from the remainder of the RS. So any trajectory starting outside this semi-stable limit-cycle but within RS will move towards it, while a trajectory below the limit-cycle will move towards the equilibrium point. An unstable limit-cycle may be considered to separate the RS from the remainder of the phase space. All orders other than -1 possess this RS.

The stability region was determined using the program for proportional type control of the tank temperature and plotted.

TABLE 3.5 LIAPUNOV MATRIX AND REGION OF STABILITY FOR VARIOUS REACTION ORDERS (OPEN LOOP)

***************************************			the second control of the second seco	distribution of the second
Reaction order	A Matrix (upper diagonal elements)		RAS K, /Volume	RS K /Volume
	$0.2411 \times 10^7 - 6897 \times 10^7 = 9378$, T	
I		<		
	0.6553 x 10 ⁸ 0.1655	55 x 10 ⁸	0.19×10^{-2}	
	0.463	0.4636×10^{7}	0.2205×10^{-4}	
0	$0.2249 \times 10^85796 \times 10^74176$	6 x 10 ⁷		
	$0.4844 \times 10^{8} 0.1242$	12 x 10 ⁸	0.27×10^{-2}	0.37×10^{-2}
		10^{7} 10 7	0.6359×10^{5}	0.101 x 10 ⁻⁴
r($0.3921 \times 10^76107 \times 10^71561$	1 x 10 ⁶		
	0.2599 x 10 ⁹ 0.6239	×	0.64×10^{-2}	0.86×10^{-2}
	0,2033	3 x 10 ⁸	0.2051×10^{-4}	0.3167×10^{-4}
¢N∷.	$0.2019 \times 10^8619 \times 10^7934$	x 10 ⁵		
	$0.606 \times 10^8 0.153$	x 10 ⁸	0.203×10^{-1}	0.237×10^{-1}
	0.916	0.916×10^{7}	0.422×10^{-4}	0.54×10^{-4}

3.8.2. By Numerical Integration

The stability region of the system can also be determined by numerically integrating the set of system equations (3.9)-(3.11) for different initial conditions. Though this technique is time consuming it gives the exact behaviour of the system around the operating point. A program is written in SLAM (Simulation Language for Analog Modelling) for the ICL 1904S computer to study the dynamic behaviour of the C.S.T.R. The listing of this program is not given since it is similar to the one described in Chapter 7 (Total Simulation of the plant). The program calculates the values of the state variable at different time intervals by the Fourth order Runge-Kutta Fixed step method. The program can also be used to study the effect of control on the dynamic behaviour of the system by incorporating the type of control required from those available in the program.

3.8.3 <u>Comparison of Stability Region obtained by</u> Both Methods

It can be seen from the figures that Krasovskii's theorem gives a highly conservative region of stability, due to the fact that a positive definite symmetric matrix is assumed as the Liapunov matrix. Plotting the trajectories of the system around the steady-state point by numerically integrating the model equations gives a true picture of its behaviour. The Liapunov contours obtained point towards the unstable operating point because one of the eigenvectors of matrix A coincides with the line joining the stable and unstable points.

l = Liapunov contour of RAS

FIG.3.6 PHASE-SPACE OF THE C.S.T.R. SYSTEM FOR REACTION ORDER==1 (OPEN LOOP)

1 = Liapunov contour of RAS

2 = Liapunov contour of SR

FIG.3.7 PHASE-SPACE OF THE C.S.T.R. SYSTEM FOR REACTION ORDER=0 (OPEN LOOP)

l = Liapunov contour of RAS

2 = Liapunov contour of SR

FIG.3.8 PHASE-SPACE OF THE C.S.T.R. SYSTEM FOR REACTION ORDER=1 (OPEN LOOP)

l = Liapunov contour of RAS

2 = Liapunov contour of SR

FIG.3.9 PHASE-SPACE OF THE C.S.T.R. SYSTEM FOR REACTION ORDER=2 (OPEN LOOP)

Another important drawback of the former technique is that, a given system of differential equations may possess many Liapunov functions, each differing from the others in a non trivial manner. To each of these Liapunov functions there will be a corresponding RAS, which will, in general, be different. The fact that a particular point is not included in the region of stability for a particular Liapunov function does not necessarily indicate that the trajectories through that point fail to go to the origin.

It can be seen that both the techniques indicate that the stability region of the second order system is largest and that of the zero order the smallest; the —1 order system has a stability region slightly larger than that of first order system. In spite of the draw-backs, stability analysis by Krasovskii's theorem is superior to numerical integration because of the ease with which it can be programmed and it gives a very quick idea about the system behaviour. This technique is also useful for higher dimensional systems where phase-space techniques become meaningless. The conservative estimation of the stable region by this technique can also be used when designing reactor systems and gives a certain margin of safety.

3.9 <u>EFFECT OF CONTROL</u>

Incorporating a controller changes the system behaviour around the stable and unstable operating points. Various types of controller configurations affect the

system in various ways. Controllers can be used to stabilise an operating point, to increase the stability region or to improve the transient behaviour of the system. In the sections below the effects of controllers on the eigenvalues, stability and transient behaviour of the system are described.

3.9.1 <u>Effect on eigenvalues of the Characteristic</u> <u>Matrix</u>

The effect of proportional type control of tank temperature of the form

$$\overline{F}_{C} = K_{C} Y \tag{3.27}$$

on the eigenvalues of the characteristic matrix is tabulated in Table (3.6). Control stabilises inherently unstable operating points, which means that simple proportional controllers can be used to operate the system at inherently unstable points with ease.

However, increase in controller gain induces oscillations, as is well known. The eigenvalues change their properties at different values of controller gains for various reaction orders.

A controller of the type

$$\bar{F}_{C} = K_{C} Z \tag{3.28}$$

seem to have a different effect on the eigenvalues of the system. The eigenvalues for this type of control strategy are given in Table (3.7).

3.9.2 Effect on Stability of the System

From equations (3.12)-(3.18) it can be seen that

Reaction order	Type of operating point	Nature of eigenvalues
-1	U	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	S	$\operatorname{sn} \xrightarrow{1300} \operatorname{sf}$
0	U	un $\xrightarrow{3000}$ s node $\xrightarrow{9000}$ sf
	S	sn → sf
1	S	$ \begin{array}{ccc} & 3500 \\ & \text{sn} & \rightarrow & \text{sf} \end{array} $
	U	$un \xrightarrow{2000} sn \xrightarrow{4000} sf$
2	S	$ \operatorname{sn} \xrightarrow{1400} \operatorname{sf} $

un = unstable node
sn = stable node
uf = unstable focus

sf = stable focus

Reaction order	Type of operating point	Nature of eigenvalues
-1	S	sn (up to $K_2 = 47,000$)
	U	un (up to $K_2 = 20,000$)
0	S	sn (up to $K_2 = 30,000$)
	υ.	un (up to $K_2 = 13,000$)
1	S	sn (up to $K_2 = 13,000$)
	Ŭ	un 11,000 sn
2	S	sn $\xrightarrow{4,050}$ sf

control affects only equations (3.15), (3.17) and (3.18). It can also be seen that equation (3.15) reduces the stability region to the maximum extent. Hence the study should involve strengthening equation (3.15) in order to increase RAS. Equations (3.15) and (3.18) can be strengthened if

$$J_{23} + J_{32} = 0$$
or $\tau_3 + \frac{1}{V_c} \frac{d\bar{F}_c}{dY} (\gamma_{OSS} - \gamma_{SS} - Z) = 0$
where $\tau_3 = 1/\tau_o + 1/\tau_I$
(3.29)

Various types of controller configuration can be tried to satisfy equation (3.29).

If a controller of the type described in equations (3.27) is considered, then equation (3.29) becomes

$$\frac{K_{c} = -V_{c} \tau_{3}}{(\gamma_{OSS} - \gamma_{SS} - Z)}$$
(3.30)

Equation (3.30) gives a value for the proportional gain in terms of the system parameters and operating points in order to improve the RAS. If values are substituted in equation (3.30), neglecting Z then

$$K_c = 4.1435 \times 10^{-3}$$

and the controller gain given above will increase the RAS to its maximum value.

A controller of the type described in equation (3.28) cannot appreciably improve RAS because $\frac{dF}{dY} = 0$ and hence

equation (3.29) will yield no result. Equation (3.18) can be written as

$$-4 J_{22} \{\tau_{2} + \frac{F_{c}}{V_{c}} + \frac{K_{c}}{V_{c}} (\gamma_{SS} + Z - \gamma_{OSS})\} > \tau_{3}$$

which on rearranging gives

$$K_{c} > \frac{V_{c}\tau_{3}^{2} / \{-4J_{22}\}}{\{\gamma_{SS} + 2Z - \gamma_{OSS}\}} - \frac{V_{c}\tau_{2}}{\{\gamma_{SS} + 2Z - \gamma_{OSS}\}}$$
 (3.31)

an inequality condition, a lower limit for gain which is not a constant but a function of X, Y and Z.

Integral action incorporated into equation (3.27) gives

$$\bar{F}_{c} = K_{c} Y + \frac{1}{T_{I}} \int Y dt$$
 (3.32)

Substituting this into equation (3.29) and rearranging gives

$$c = V_{c}^{T} \frac{1}{(\gamma_{OSS} - \gamma_{SS} - Z)} - \frac{Y}{(T_{I} \frac{dY}{dt})}$$
(3.33)

The first part on the right hand side of equation (3.33) is the same as equation (3.30) with an approximate numerical value of 4.1435 x 10^{-3} . Normally when Y is greater than zero (i.e. tank temperature greater than the S.S. value) then dY/dt should be less than zero in order to have stable behaviour. Then the second part of equation (3.33) $(-Y/T_I)$ dY/dt)) is greater than zero, thereby indicating that the gain should be greater for a P+I controller than for P controller for the same stability behaviour.

If derivative action is introduced to make

$$\overline{F}_{C} = K_{C} Y + T_{D} \frac{dY}{dt}$$
 (3.34)

then equation (3.29) becomes

$$K_{c} = -V_{c} (\tau_{3}) - T_{D} J_{22}$$
 (3.35)

Since $-J_{22}$ is greater than zero, as per equation (3.16), equation (3.35) shows that the gain value obtained for P+D controller should be greater than the gain obtained for a P controller for the same stability behaviour. From equations (3.33) and (3.35) it can be seen that the addition of integral or derivative action to proportional controller does not improve the stability of the system. If a controller of the form

$$\overline{F}_{C} = f (Y) \tag{3.36}$$

is assumed, where coolant flow is some function of Y then substituting into equation (3.29) gives

$$\tau_{3} + \frac{1}{V_{c}} \frac{d\{f(Y)\}}{dY} (\gamma_{OSS} - \gamma_{SS} - Z) = 0$$
or
$$\int d\{f(Y)\} = -\tau_{3} V_{c} \int \frac{dY}{(\gamma_{OSS} - \gamma_{SS} - Z)}$$
(3.37)

If Y is assumed to be independent of Z then

$$\bar{F}_{c} = -\tau_{3} \frac{V_{c} Y}{(\gamma_{OSS} - \gamma_{SS} - Z)}$$
(3.38)

an equation similar to (3.27) with a value of K_c given in equation (3.30).

If the coolant flowrate is assumed to be a function of jacket temperature, \mathbf{Z}

$$\bar{F}_{c} = f (Z) \tag{3.39}$$

then from equation (3.17)

$$-\tau_2 - \frac{\overline{F}_c}{\overline{V}_c} + \frac{1}{\overline{V}_c} \frac{d\overline{F}_c}{dZ} \quad (\gamma_{OSS} - \gamma_{SS} - Z) < 0$$

on integrating the equation for values of Z >($\gamma_{\rm OSS}$ - $\gamma_{\rm SS}$), it gives:

$$\frac{\bar{F}_{c}}{(\gamma_{SS} - \gamma_{OSS} + Z)}$$
 (3.40a)

and integration for values of Z < $(\gamma_{OSS}^{-\gamma}_{SS})$ gives

$$\bar{F}_{c} < \frac{V_{c}\tau_{2}(-Z)}{(\gamma_{SS}-\gamma_{OSS} + Z)}$$
 (3.40b)

These equations simply specify an upper or lower limit to coolant flowrate.

If coolant flow is assumed to be both a function of Y and Z of the form

$$\bar{F}_{C} = f(Y,Z) \tag{3.41}$$

then simultaneously satisfying equation (3.29) and (3.17) will increase the stability region, i.e. to make

$$\frac{d\bar{F}_{c}}{dZ} (\gamma_{OSS} - \gamma_{SS} - Z) < 0$$
 (3.42)

and

$$\tau_3 + \frac{1}{V_c} \frac{d\overline{F}_c}{dY} (\gamma_{OSS} - \gamma_{SS} - Z) = 0$$
 (3.43)

Equation (3.42) is true if for values of Z > $(\gamma_{OSS}^{-\gamma}_{SS})$,

 $\frac{d\overline{F}_{C}}{dZ}$ is > 0, ie when Z increases \overline{F}_{C} increases and vice versa. Equation (3.43) can be expressed as

$$\bar{F}_c = \tau_3 V_c \int \frac{dY/dt}{(\gamma_{SS} - \gamma_{OSS} + Z)} dt$$

The term inside the integral has to be integrated numerically if this type of control strategy has to be applied to the system. The equations (3.13) to (3.18) are plotted in Fig. (3.10) for proportional control of the tank temperature.

The analysis carried out in this subsection is based on equations (3.13)-(3.18) which assumes a unit matrix as the Liapunov matrix. If some positive definite symmetric matrix is considered as Liapunov matrix then equations (3.21)-(3.26) have to be analysed in the same manner as above. It can be seen from these equations, unlike the previous case, conditions S_2 , S_3 , S_4 , S_5 and S_6 are dependent on the control strategy chosen (equations (3.21)-(3.26)). Strengthening these conditions increases the stability region as mentioned before.

If \mathbf{S}_7 is made equal to zero then condition \mathbf{S}_4 is strengthened and \mathbf{S}_5 (equation (3.25)) becomes

FIG.3.10 SEPARATRICES 1 TO 6 FOR VARIOUS REACTION ORDERS UNDER CONTROL OF THE TYPE GIVEN IN EQN.(3.27) (REFER TABLE(3.6) FOR GAIN VALUES) (A= I)

$$S_5 = S_1 S_2 S_3 - S_1 S_9^2 - S_2 S_8^2 > 0$$
 (3.44)

and if \mathbf{S}_9 is made equal to zero then condition \mathbf{S}_6 is strengthened and \mathbf{S}_5 becomes

$$S_5 = S_1 S_2 S_3 - S_3 S_7^2 - S_2 S_8^2 > 0$$
 (3.45)

So if $(-S_3S_7^2) > (-S_1S_9^2)$ then S_9 can be made equal to zero or if the reverse is true then S_7 can be made equal to zero. If S_7 is made equal to zero then the equation for \overline{F}_c is

$${}^{A_{13}} \frac{(\gamma_{OSS}^{-\gamma_{SS}} - Z)}{V_{c}} \quad \overline{F}_{c} = \{A_{12}(\tau_{1} + \frac{1}{\tau}) - A_{13}/\tau_{1}\}Y$$

where K_{int} is the constant of integration. An approximate analytical solution for the integral can be obtained by expanding the term $e^{-\frac{Q}{(Y+\beta_{SS})}}$ by Maclauren's series and integrating.

If \overline{F}_c is assumed to be a function of Z alone then S_3, S_5 and S_6 are affected because of the presence of term J_{33} . Condition S_6 requires

$$S_3 > = S_9^2 / S_2$$

while condition S_5 specifies

$$s_3 > {s_1 s_9}^2 + s_2 s_8^2 + 2 s_7^2 / s_4$$

FIG.3.11 PHASE-SPACE OF THE C.S.T.R. SYSTEM FOR REACTION ORDER=-1 FOR CONTROL OF THE TYPE GIVEN IN EQN.(3.27) $(K_c=0.00445)$

0 = Open loop stable /unstable operating points

l = Liapunov contour of RAS K_L=0.00425; volume=0.884x10⁻⁵

FIG.3.12 PHASE-SPACE OF THE C.S.T.R. SYSTEM FOR REACTION ORDER=0 FOR CONTROL OF THE TYPE GIVEN IN EQN.(3.27) (K_c=0.003)

0 = Open loop stable/unstable operating points

1 = Liapunov contour of RAS K_L=0.012; volume=0.24x10⁻⁴

FIG.3.13 PHASE-SPACE OF THE C.S.T.R. SYSTEM FOR REACTION ORDER=1 FOR CONTROL OF THE TYPE GIVEN IN EQN.(3.27) (K_c=0.002)

3.9.3 Effect on Dynamic Behaviour

The analysis carried out assuming a positive definite symmetric matrix as the Liapunov matrix is cumbersome and complicated. However, an accurate picture of the system can be obtained by numerically integrating the state equations for various reaction orders and control strategies. The computer program described in the previous section is used to study the transient behaviour for proportional type control of tank temperature and the results plotted in Figs. (3.11)-(3.13) for various reaction It can be seen that the unstable point is orders. stabilised by the introduction of this control, while oscillations are induced around the stable operating point. Although the numerical solution procedure is time consuming, it gives the exact behaviour of the system around the equilibrium points, but will be very tedious for higher The effects of other control strategies order systems. on the system behaviour described in this sub-section are not plotted but they were tried out experimentally on the reactor.

3.10 INTERACTION AND DECOUPLING

The system under consideration is an interacting multivariable one. The problem gets complicated because of the superimposition of interactions on external disturbances. There is however a fundamental difference between the effect of external disturbances and the effect of coupling coefficients. External disturbances do not affect the stability of the system as a whole, whereas the coupling coefficients, or in the general case

the coupling operators, have a substantial influence on system stability.

Non-interaction is said to be achieved if the controlled variation of one of the variables does not influence the other variables. The three state variables, under consideration, can be decoupled to achieve

$$\frac{dX}{dt} = - D_1 X$$

$$\frac{dY}{dt} = - D_2Y$$

$$\frac{dZ}{dt} = - D_3 Z$$

where D's are constants, with the help of three control parameters. In the present study only one state variable (i.e. Y) is decoupled, since only the coolant flowrate can be used as the manipulative variable.

If the load disturbances are assumed to enter the system through feed and coolant temperatures then equations (3.10)and (3.11) can be rewritten as

$$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{dt}} = -\tau_1 \mathbf{Y} + \frac{\beta_0}{\tau} + \frac{\mathbf{Z}}{\tau_0} + \mathbf{R} (\mathbf{X}, \mathbf{Y}) \tag{3.46}$$

$$\frac{dZ}{dt} = -\tau_2 Z + Y/\tau_I + \frac{\gamma_o}{\tau_c} + \frac{\overline{F}_c(\gamma_o - \gamma_{SS} - Z + \gamma_{OSS})}{V_c}$$
 (3.47)

Decoupling of state variable Y is said to be achieved if it is possible to write an equation of the form

$$\frac{dY}{dt} = -DY \tag{3.48}$$

where D is a constant

An algebric equation for the coolant flowrate can be obtained by rearranging equation (3.47) to yield

$$\bar{F}_{c} = \{\dot{z} + \tau_{2}z - Y/\tau_{I} - \gamma_{0}/\tau_{c}\} \qquad v_{c}$$

$$\{\overline{\gamma_{OSS} + \gamma_{0} - \gamma_{SS} - z}\} \quad (3.49)$$

where \mathbf{Z} is given by solving equations (3.46) and (3.48) together. Thus

$$Z = (-DY + \tau_1^Y + \beta_0/\tau - R(X,Y)) \tau_0$$
 (3.50)

The constant D, otherwise known as the exponential decay constant, determines the speed of response. The larger the value of D, the faster will be the response, and the larger will be the coolant rate. As the pump capacity fixes an upper limit to the cooling water flowrate it is possible only to achieve piecewise decoupling, i.e. a condition in which D is modified so that the coolant rate is within the maximum allowable value.

The piecewise decoupling procedure consists of the following steps

- a) Take a large value for D $(=D_{max})$
- b) Solve equations (3.49) and (3.50) for $\overline{\mathbf{F}}_{\mathbf{C}}$
- c) Check whether $\overline{F}_c \leq F_{cUL} F_{cSS}$ and $\overline{F}_c \geq$ F_{cSS}

If so, set that value of coolant flowrate; otherwise reduce D by 10% and go to step b).

FIG.3.14 D_{max} versus IAE FOR VARIOUS REACTION ORDERS
AND TWO DIFFERENT OPERATING CONDITIONS

This iterative procedure requires a digital computer as the controller. When perturbations are large the value of D will be small so as to maintain the coolant flowrate below the maximum value and as perturbations die down the value of D reaches the \mathbf{D}_{\max} value. optimum value for D determines the minimum settling time for the system. The effect of D_{max} on the integral of the absolute error (IAE) can be determined theoretically by simulating the system for various \mathbf{D}_{\max} values and same starting conditions. A plot of IAE versus D_{max} for various orders is shown in Fig. (3.14). It is seen that the error is a minimum for $D_{\text{max}} = 0.007$. A large \mathbf{D}_{\max} value increases the speed at which perturbations die down, while too large a value also induces oscillations thereby increasing the settling time. is also seen from Fig. (3.14 a) and (b) that irrespective of operating conditions or reaction orders the minimum IAE is for a \mathbf{D}_{max} value of 0.007. The behaviour of the system for various reaction orders under the action of this control is shown in Figs. (3.15)-(3.18). The same computer program described in sub-section (3.8.2) is used to simulate the system response for various starting conditions. It can be seen that the stability region is increased enormously and the operating point is a stable node thereby improving the transient response.

The tank temperature and hence the tank concentration is made invariant from load changes in feed or coolant

inlet temperatures by this control scheme. Theoretical studies carried out show that overshoot is negligible for step in feed temperature of the order of 3K and there are no oscillations on the system response. For larger load changes the coolant flowrate reaches the upper limit and hence perfect decoupling is not achieved.

Ż in equation (3.49) can be calculated by numerical differentiation or by differentiating equation (3.50) to arrive at an analytical solution. It was found that the latter method gave a better system performance than the former.

3.10.1 Effect of Decoupling Type Control on Stability

The effect of this control on the stability of the C.S.T.R. can be analysed in the same manner as described in section (3.8). Control affects most of the elements of the Jacobian matrix to give

$$J_{21}, J_{23} = 0$$

$$J_{22} = -D$$

$$J_{31} = \frac{d\bar{F}_c}{dY} \frac{(\gamma_{OSS} + \gamma_0 - \gamma_{SS} - Z)}{V_c}$$

$$J_{32} = \frac{1}{\tau_I} + \frac{d\bar{F}_c}{dY} \frac{(\gamma_{OSS} + \gamma_0 - \gamma_{SS} - Z)}{V_c}$$

$$J_{33} = -\tau_2 + \frac{d\bar{F}_c}{dZ} \frac{(\gamma_{OSS} + \gamma_0 - \gamma_{SS} - Z)}{V_c} - \frac{\bar{F}_c}{V_c}$$

FIG.3.15 DECOUPLING TYPE CONTROL OF THE C.S.T.R. FOR REACTION ORDER = -1 (AT OPEN LOOP STABLE POINT)

FIG.3.16 DECOUPLING CONTROL OF THE C.S.T.R. FOR REACTION ORDER= 0

B) AT OPEN LOOP STABLE POINT

FIG.3.17 DECOUPLING TYPE CONTROL OF THE C.S.T.R. FOR REACTION ORDER= 1

B) AT OPEN LOOP STABLE POINT

FIG.3.18 DECOUPLING TYPE CONTROL OF THE C.S.T.R. FOR REACTION ORDER= 2(AT OPEN LOOP STABLE POINT)

If these values are substituted into equations (3.13)-(3.18) then the separatrices become

$$S_1 = -2 J_{11}$$
 $S_2 = -4 J_{11} D - J_{12}^2$
 $S_3 = S_1 S_6 + 2 J_{33} J_{12}^2 - 2 J_{31} J_{12} J_{32} - 2 J_{31}^2 D$
 $S_4 = 2D$
 $S_6 = -4 J_{33} D - J_{32}^2$

It can be seen that conditions \mathbf{S}_2 , \mathbf{S}_4 , \mathbf{S}_6 and hence \mathbf{S}_3 are strengthened while \mathbf{S}_1 remains unchanged. The larger the value of D, the stronger will be some of the separatrices.

3.11 INVARIANCE CONTROL

The principle of invariance, when applied to multivariable control systems, will give the calculated
relationships permitting selection of parameters of the
system, so that one or more of its generalised coordinates
will be independent of one or several disturbing
influences applied to the system. Invariance of state
variable is said to be achieved if

$$X = 0$$
 and $\frac{dX}{dt} = 0$ (3.51)

for zero initial conditions. Substituting these values into equations (3.9), (3.46) and (3.47) the following relationships are obtained

$$Y = 0 \text{ and } dY = 0$$

$$dt$$
(3.52)

$$Z = -\beta_0 \tau_0 / \tau$$

since β_O is a constant

$$\frac{dZ}{dt} = 0 \quad and \quad (3.53)$$

$$\overline{F}_{c} = \frac{\{\gamma_{o/\tau_{c}} + \beta_{o}(\tau_{o/\tau})\tau_{2}\} V_{c}}{\{\gamma_{SS}^{-\gamma_{o}} - \beta_{o}\tau_{o/\tau_{c}}\}}$$
(3.54)

 $\overline{F}_{\rm C}$ is a function of the operating parameters and step disturbances entering the system. When numerical values are taken from Tables (3.1) and (3.2) and substituted into equation (3.54) and, taking into account the upper limit on coolant flowrate, the inequality relationship:

$$5.88 \ \overline{T}_{CO} + 3.49 \ \overline{T}_{O} \le {}^{T}_{CSS} - {}^{T}_{COSS}$$
 (3.55)

is obtained. It can be seen (Fig (3.19)) from the plot of this equation, for the invariance of state variable X and Y that the load changes should be within the shaded portion of the graph. It can also be seen that step disturbances in feed temperature have a much more serious effect than steps in coolant temperature. If disturbances entering the system are only due to a step in coolant temperature than equation (3.54) simplifies to

$$\bar{F}_{c} = \frac{\gamma_{o} V_{c/\tau_{c}}}{(\gamma_{SS}^{-\gamma_{OSS}^{-\gamma_{O}}})}$$
(3.56)

FIG. 3.20 EFFECT OF STEP CHANGES IN COOLANT AND FEED TEMPERATURES ON COOLANT FLOWRATE

and Z = 0. This means that the invariance of the complete system (i.e. for all three state variables) is achieved when β_0 = 0.

From equation (3.54) it can be seen that the control strategy is similar to feed-forward control, though it is derived from the state equations. The physical characteristics of the reactor and the operating points also affect the manipulated variable.

If disturbances are entering the system only through a step in tank inlet temperature then an equation similar to equation (3.56) is obtained

$$\bar{F}_{c} = \beta_{o} \frac{\tau_{o}}{\tau} \tau_{2} V_{c}$$

$$(\frac{\gamma_{SS} - \gamma_{o} - \beta_{o} \tau_{o}}{0SS} \circ \tau_{o} / \tau_{\tau})$$
(3.57)

Equations (3.56) and (3.57) are plotted to find the effect of γ_{o} and β_{o} on \overline{F}_{c} in Fig.(3.20). It can be seen that there is a discontinuity and at that point \overline{F}_{c} reaches infinity. The discontinuity occurs when in equation (3.56), $\gamma_{o} = (\gamma_{SS} - \gamma_{OSS})$ and in equation (3.57) $\beta_{o} = (\gamma_{SS} - \gamma_{OSS}) \frac{\tau}{\tau_{o}}$

Though the studies carried out so far have been on invariance control for steps in feed and coolant temperature, similar control equations can be obtained if the load change enters through a step in feed flowrate. Then equations (3.9) and (3.46) will be

$$\dot{X} = -\frac{X}{\tau} + \frac{\bar{F}}{V} (1 - X) - R (X, Y)$$
 (3.58)

$$\dot{Y} = -\tau_1 Y - \frac{\bar{F}}{\bar{V}} (\beta_{OSS} + \beta_O - \beta_{SS} - Y) + R(X, Y) + Z/\tau_o + \beta_O/\tau$$
(3.59)

where \overline{F} denotes a perturbation value in feed flowrate. Invariance in X, in this case will not mean invariance in Y. For invariance in X, from equation (3.58)

$$Y = \frac{-Q}{\ln K_3}^{-\beta} SS$$
 where $K_3 = \frac{\overline{F}}{V K_1^{\alpha} SS^n} + e^{-Q/\beta} SS$. The equation for Z

and hence \overline{F}_{C} can be obtained from equations (3.59) and (3.47) respectively. The attainment of invariance mainly depends on the following conditions

- a) the mathematical model adequately described the system behaviour
- b) the theoretically derived controller equations can be accurately executed
- c) the control system is allowable by satisfaction of the dual channel condition.

The behaviour of the system for reaction orders one and two under the action of this control is plotted in Fig. (3.21). The superiority of this type of control can be easily seen when, perturbation value of tank temperature (\bar{T}) remains zero for some values of disturbance.


```
2 = Step of 2K in jacket inlet temperature (uncontrolled)
3 = Step of 5K in jacket inlet temperature (uncontrolled)
4 = Step of 2K in tank inlet temperature (Invariance control)
5 = Step of 5K in tank inlet temperature (Invariance control)
6 = Step of 2K in jacket inlet temperature (Invariance control)
7 = Step of 5K in jacket inlet temperature (Invariance control)
8 = Step of 7K in Jacket inlet temperature (Invariance control)
```

FIG.3.21 INVARIANCE CONTROL FOR VARIOUS LOAD CHANGES

For step load disturbances in feed temperature, the equations for decoupling type control are the same as those for invariance control at t=0. As time increases the two schemes diverge, since there is a feedback loop in the former, while the latter is pure feed-forward control. A more detailed comparison study of these two control schemes with conventional ones is carried out in Appendix 7.

3.12 LIMIT-CYCLES

The limit-cycle behaviour, which is characteristic of a nonlinear system, has been extensively studied for two dimensional systems using Poincare-Bendixon's theorem. The system in phase-space will exhibit a closed curve. The oscillations about the operating point may not always be uniform due to the presence of nonlinearities, thereby exhibiting an average of the performance different from that at stable operation.

The existence of a limit-cycle is studied for a controller of the type

$$\overline{F}_C = -K_C X \tag{3.60}$$

For the generation of limit-cycles the theory of Bifurcation states that if a system of differential equations contains a variable parameter its solution (trajectories in the phase-plane) also varies; and for some critical or bifurcation values of this parameter, if the characteristics of the equilibrium point changes (stable to unstable or vice versa) then, a limit-cycle is also generated (stable or unstable). The limit-cycle can be classified as a soft or hard type depending on whether or not it contracts to the

origin for a particular value of the parameter.

3.12.1 Behaviour of Eigenvalues as Gain, is increased

The behaviour of eigenvalues of the characteristic matrix for different gain values is shown in Table (3.8). The elements of the characteristic matrix are obtained from equation (3.12) where, in this particular case

$$J_{31} = -\frac{F_c}{V_c} (\gamma_{OSS} - \gamma_{SS} - Z)$$
 (3.61)

It is seen from the table that as the gain value is increased the system ultimately becomes unstable, except for the first case. As stated by the theory of Bifurcation, a stable limit-cycle must be generated when the system becomes unstable from a stable configuration and similarly unstable limit-cycle must be generated when the system becomes stable. The existence of stable limit-cycles for this system can be verified by the second method of Liapunov.

3.12.2 Existence of limit-cycles

The direct method of Liapunov can be used for verifying the existence of stable limit-cycle for three or higher dimensional systems. When an unstable equilibrium point can be shown to have a closed region surrounding it within which \dot{V}_{L} , the time derivative of the Liapunov function V_L is negative, and all regions above and below it are positive then, there should be a closed curve inside this region towards which all

TABLE 3.8 BEHAVIOUR OF THE SYSTEM FOR VARIOUS GAIN VALUES FOR CONTROLLER OF TYPE IN EQUATION (3.60) ${\rm K_c} {\rm =} {\rm K_2} \ {\rm x} \ 10^{-6}$

	T	
Reaction order	Nature of operating points	Behaviour of the system
-1	S	$sn \xrightarrow{K_2=1800} sf$
-1	U	un 2300 _{sn} 2400 _{sf} 8960 uf
0	S	$\sin \frac{1500}{\text{sf}} \frac{47690}{\text{uf}}$
0	ט	$un \xrightarrow{1500} sn \xrightarrow{1800} sf \xrightarrow{14090} uf$
1	S	$\sin \frac{1000}{\text{sf}} \frac{36210}{\text{uf}}$
1	U	un $\stackrel{900}{\longrightarrow}$ sn $\stackrel{1200}{\longrightarrow}$ sf $\stackrel{10500}{\longrightarrow}$ uf
2	S	$\sin \frac{450}{5}$ sf $\frac{65840}{5}$ uf

trajectories converge. Since \dot{V}_L is negative inside this region all trajectories converge, and as the equilibrium point is unstable, trajectories near the origin move towards this region. This argument does not hold good if a singular point is present inside the closed region. Again, as mentioned in the previous section, choosing a suitable positive definite symmetric Liapunov matrix constitutes the most important step in this technique. The A matrix is calculated from the relationship given below:

$$J^{T}A + A J = -I$$
 (3.62)

The Jacobian is calculated at the bifurcation value of the gain. The computer program to determine the stability region is given in Appendix (1.4) and the corresponding flowchart in Appendix (2.2).

The program determines the smallest value of \mathring{V}_L for various Liapunov values (\mathring{K}_L) and hence a closed region surrounding the equilibrium point within which \mathring{V}_L is negative. Table (3.9) gives the results from the program run for various reaction orders. From the table it can be seen that all the systems have a stable limit-cycle, and the limit-cycle expands as the gain is increased. These two facts are verified in the next subsection by simulating the system under these conditions. Reaction order -1 does not seem to possess a limit-cycle around its stable operating point. The other interesting observations made during the course of this study are

TABLE 3.9 REGION WITHIN WHICH $\dot{\mathbf{v}}_{\rm L}$ < 0 FOR DIFFERENT REACTION ORDERS AND GAIN VALUES, $\mathbf{K}_{\rm c} = \mathbf{K}_{\rm 2}$ x 10⁻⁶

0>1/4 6	Maximum K _L	0.39 x 10 ⁻²	0.158 x 10 ⁻¹	0.9 x 10 ⁻²	0.11 x 10 ⁻¹	0.172×10^{-1}	0.8×10^{-3}
Region where $\dot{V}_{ m L}^{<0}$	$\frac{\texttt{Minimum}}{\texttt{K}_{L}}$	10000 0.34 x 10 ⁻²	0.115 x 10 ⁻¹	0.89×10^{-2}	15000 0.12 x 10 ⁻²	40000 0.72 x 10 ⁻²	
	Gain K2		20000	50000	15000	40000	75000
ire V _L <0	$^{\rm Max1mum}_{\rm K}$	0.33×10^{-2}	0.158×10^{-1}	0.92×10^{-2}	0.1 x 10 ⁻¹	0.172×10^{-1}	0.6 x10 ⁻³
Region where $ lap{V}_{ m L}<0$	Minimum $^{ m K}_{ m L}$	0.31×10^{-2}	0.55×10^{-2}	0.84×10^{-2}	0.45×10^{-2}	0.6×10^{-2}	0.4×10^{-3}
	Gain K2		15000	48000	12000	36000	66000 0.4
	Nature of Open Loop SS point		n	ß	n	ß	Ω
	Reaction		0	0			2

- 1) Inherently unstable operating points do not possess a limit-cycle but stable limit-cycles appear only when the operating points become unstable from stable conditions.
- 2) Stable points become unstable by throwing out stable limit-cycles and the reverse happens with unstable points.
- 3) The stable and unstable limit-cycles and equilibrium point occur alternately.
- 4) Sometimes a stable and an unstable limit-cycle merge together and the reverse action can also take place.

3.12.3 Effect of Reaction order on limit-cycles

The existence of limit-cycles is verified by solving the dynamic equations (3.9)-(3.11) and (3.60)for the gain values specified in Table (3.8) and are plotted in Figs. (3.22)-(3.27). The limit-cycle forms a closed curve in the phase-space and its shape is not perfectly elliptical due to the presence of nonlinearities and the limits on coolant flowrate. The time period of oscillation and the amplitude increases as gain is The amplitude of oscillations is larger increased. around the open loop unstable operating point than the The amplitude is largest for reaction stable point. order one. Table (3.10) gives the amplitude for different reaction orders. As expected -1 order does not possess a limit-cycle around its stable operating point.

3.12.4 Harmonic Contents of Oscillation

The fundamental harmonics (sine and cosine terms)

0 = Open loop unstable operating point 1 = for $gain(K_c)=0.009$

2 = =0.010

FIG.3.22 LIMIT-CYCLE FOR REACTION ORDER= -1

0 = Open loop unstable operating point

 $l = for gain(K_c)=0.015$

2 = =0.020

FIG.3.23 LIMIT-CYCLE FOR REACTION ORDER= 0

0 = Open loop stable operating point
1 = for gain(K_c)=0.048
2 = =0.050

FIG. 3.24 LIMIT-CYCLE FOR REACTION ORDER = 0

0 = Open loop unstable operating point

 $l = for gain(K_c) = 0.012$

2 = =0.015

FIG.3.25 LIMIT-CYCLE FOR REACTION ORDER= 1

0 = Open loop stable operating point

 $l = for gain(K_c) = 0.036$

2 = =0.040

FIG.3.26 LIMIT-CYCLE FOR REACTION ORDER= 1

0 = Open loop stable operating point

1 = for gain(K_c)=0.066 2 = =0.075

FIG.3.27 LIMIT-CYCLE FOR REACTION ORDER= 2

TABLE 3.10 AMPLITUDE OF OSCILLATION FOR DIFFERENT REACTION ORDERS

Order of Reaction	Nature of Operating Point	Amplitude of Oscillation in Temperature Axis (K)				
2	S	1.1				
1	S	1.9				
О .	S	0.875				
-	77.	0.05				
1	U.	2.85				
Ο	U	2.25				
-1	Ŭ ·	2.45				

in the periodic behaviour can be obtained by approximating the state variables to

$$C = X_0 + X_1 \cos wt + X_2 \sin wt$$
 (3.63)

$$T = Y_0 + Y_1 \cos wt + Y_2 \sin wt$$
 (3.64)

$$T_c = Z_0 + Z_1 \cos wt + Z_2 \sin wt$$
 (3.65)

The constants X_{O} , X_{1} etc. determine the effect of each harmonic on the overall system behaviour. These values can be calculated by substituting equations (3.63)-(3.65) into the state equations and solving the system of simultaneous equations obtained on simplification and neglecting the higher harmonics by the harmonic balance method. The other method, which is more accurate, is to fit equations (3.63)-(3.65) into the system response obtained by actually solving the equations. The values of the constant for various orders and gain values are given in Table (3.11).

The effect of gain on time average values (X_0, Y_0) and Z_0 can be seen from the table. While X_0 remains fairly constant Y_0 increases and Z_0 decreases, except for first order reaction, as gain is increased. The amplitude of the oscillations increases as gain is increased. When Table (3.2) is compared with (3.11) it can be seen that conversion is slightly more for -1 and O order systems at the open loop unstable point under the limit-cycling conditions than under open loop.

TABLE 3.11 HARMONIC CONTENTS OF LIMIT-CYCLES FOR VARIOUS ORDERS AND GAIN VALUES

	4		1	<u> </u>	· †	 	 	+	<u> </u>	-		
Z2 (K)	-1.74	-4.4	2.664	-2.98	918	3.27	461	. 44	2.37	-3.83	2.53	3.8
Z ₁ (K)	-3.04	-1.2	3.62	25	1.78	358	1.86	-5.5	.0787	2.45	-1.51	-1.56
^Z 0 (K)	295.76	294.681	300.11	295.53	294.65	293.94	299.77	300.77	296.56	296.8	296.19	295.92
Y2 (K)	-1.56	0.84	1.81	18	.543	.062	.838	-2.43	.15	. 245	26	-2
Y.1 (K)	1.49	3.01	86	2.35	.301	87	.141	-1.2	8.1	1.57	714	993
Y _O (K)	304.87	305.69	306.07	306.38	301.12	301.18	311.14	311.25	304.53	304.63	305.25	305.26
(kg/m^3)	.027	125	.00068	÷.0546	01056	.0148	018	90.	.0113	033	.0102	.01365
$\begin{pmatrix} x_1 \\ (kg/m^3) \end{pmatrix}$	-0.12	-0.1	.0571	0413	0.006981	0.008879	0.0188	0386	0.011	00346	0.001357	0,003593
XO (kg/m ³)	19.17	19.149	19.149	19.147	19.405	19.4	18.99	18.98	19, 224	19.225	19,22	19.216
Time period.	1900	1920	1370	1450	1070	1070	1350	1380	096	1,236	086	935
Gain K2	9000	10000	15000	20000	48000	50000	12000	15000	36000	40000	00099	75000
Reaction	-10		no		SO		ΩĽ		Set		2.8	

3.13 Conclusions

The theoretical study carried out so far provided the following information for experimental work.

- a) the reaction rate parameters and flowrate values that should be used so that the operating temperatures are within the range of instruments and heat of reaction generation capacity already available on the plant.
- b) the effect of day to day changes in the temperature of water on system behaviour, so as to interpret the experimental results.
- c) optimum gain or constant values to be used for various control strategies that are to be tried out on the plant.
- d) the maximum allowable load disturbances that are permitted on the plant.
- e) ways and effects of stabilising inherently unstable equilibrium points or generation of stable limit-cycles around them.

The theoretical studies also provided the following information about the effect of reaction order on the dynamics of a CSTR for the given set of reaction rate parameters

- (1) as reaction order increases the difference between unstable and stable operating temperature also increases and hence an increase in the stability region.
- (2) The stability region of first order seems to be similar to -1 order system.
- (3) A lower proportional gain value is required to stabilise a first order unstable operating point than a

zero order unstable point.

- (4) All orders have limit-cycles around their steadystate and unsteady-state points except for -1 order at the steady-state point.
- (5) The time period and amplitude of oscillations change depending upon the reaction order and limit-cycles around unstable operating points generally have larger amplitudes than around stable points.

Though the dynamics of the valve and measuring elements, and the effect of sampling rate were not considered while carrying out this work, these effects have to be incorporated while simulating the dynamic behaviour of the complete plant for comparing it with experimental results.

CHAPTER 4

APPARATUS AND COMPUTER SYSTEM

4.1 INTRODUCTION

The complete partially simulated system consists of two interconnected parts, viz the plant items and the computer with its peripherals. The plant and the Honeywell 316 computer, are linked by a Honeywell Analogue Digital Input Output system (HADIOS). The measurements from the plant are amplified, conditioned and transmitted to the computer, where appropriate calculations for the partial simulation are carried out. The signals for control action and heat generation simulation are calculated and sent out from the computer. Water is used for the reactant as well as for the coolant medium.

The schematic diagram of the experimental arrangement is shown in Fig. (4.1).

4.2 APPARATUS DESCRIPTION

A detailed description of the experimental arrangement and various instruments is given in the thesis by ...
H. Farabi¹⁵.

The essential experimental plant item is a copper jacketted cylindrical vessel of 0.285 m diameter and 0.4 m height. The liquid volume in the tank is 0.0173m³ and is maintained constant by an overflow pipe. The cooling jacket surrounds the vessel and the cooling water level is maintained constant by a large outlet at the side. The jacket volume is 0.008532m³. Stirrers inside

the reactor and jacket ensure complete mixing. Three 3 kW immersion heaters are provided at the bottom of the vessel for simulation of the reaction heat release. A thyristor unit controls the amount of energy sent to the heaters. The thyristor unit, which consists of two thyristors in inverse parallel arrangement, sends current pulses to the immersion heaters when they are triggered and the amount of energy received depends upon the trigger angle. The trigger angle is manipulated by the signals from the computer.

Comark thermocouples are fitted inside the tank and the jacket, and also at the feed and coolant inlets for monitoring purposes. The signals from the thermocouples are amplified five-fold before being sent to the computer. The sensitivity of the thermocouples is 0.1 degree C. A turbine flowmeter is fitted in the feed line to measure the flowrate of the feed. The meter outputs pulses to the counter, which are measured by the HADIOS.

A diaphragm control valve regulates the flow of coolant to the jacket. The valve is fitted with a valve positioner to reduce time delay and hysteresis. The analog output signals from the HADIOS are converted to pressure signals by the V/I and I/P converters before they are applied to the valve. The output signals from the computer are directed either to the control valve assembly or to the thyristor unit by the dividing box.

The feed to the reactor could be switched between two feed tanks by the help of an assembly of four

FIG. 4.2 EXPERIMENTAL ARRANGEMENT (FRONT VIEW)

dividing box valve tanks

FIG. 4.3 EXPERIMENTAL ARRANGEMENT (REAR VIEW)

solenoid valves. Two tanks are provided for the jacket feed and the coolant can be switched from one tank to another manually. The feed and coolant flowrates can be monitored by rotameters, and any necessary adjustment made manually to the feed flowrate and to the coolant when on open loop.

No major changes were made on the equipment constructed by the previous research student. The coolant piping assembly was tidied up so as to reduce the time delay in the cooling water line from 30 secs to 2 secs. An extra hot water line was provided to the reactor mainly for use during start up. The amplifiers were modified and rewired so as to reduce noise and drift in the signals. Provisions were made to measure the coolant temperatures in the coolant supply tanks accurately and also to keep the coolant supply tanks well mixed.

4.3 <u>LIMITATIONS OF INSTRUMENTS</u>

Although the thermocouples can accept temperatures in the range $0\text{--}100^{\circ}\text{C}$, because of the immersion heater capacity of 9kW the operating temperature range is restricted to $0\text{--}55^{\circ}\text{C}$, with an accuracy of 0.02°C . Error is introduced into the measurements due to A/D conversion.

The feed rate can be manipulated between $0-8.33 \times 10^{-5} \, \text{m}^3/\text{s}$ and the coolant flowrate between $0-1.5 \times 10^{-4} \, \text{m}^3/\text{s}$. The accuracy in manipulating coolant flow depends on the D/A converter. Even when the

diaphragm valve is fully closed there is a leakage of coolant into the jacket at the rate of $8 \times 10^{-6} \, \mathrm{m}^3/\mathrm{s}$. Since the feed and coolant water are taken from an overhead storage tank, the inlet temperatures to the reactor and jacket vary from day to day. Provisions are there to heat these tanks if required, but there are no facilities for cooling them.

4.4 CALIBRATION

The various instruments and plant items were calibrated to connect the process parameter values to the corresponding signal (analog or counter). The calibration graphs for the turbine flowmeter, control valve and immersion heaters are given in Appendix(5 - Sections1-3) and the calibration equations in Appendix(5.7).

4.4.1 THERMOCOUPLES

The amplified signal from a thermocouple is in the form of an analog signal in the range O-5V and is converted by the A/D converter to a number in the range O-1023. So the digital signals received by the computer are directly correlated to the temperatures in a linear fashion.

4.4.2 TURBINE FLOWMETER

The flowmeter outputs pulses which are stored in counter A. The contents of the counter during one sample interval determines the counter rate. Since a rotameter is provided in the feed line the counter rate is directly calibrated to the feed flowrate by a set of

linear equations.

4.4.3 IMMERSION HEATERS

The immersion heaters are controlled by a thyristor assembly. The power output by the heaters is inversely proportional to the trigger angle which in turn is manipulated by digital signals from the computer. Once the average supply voltage and the resistance of the heating elements were known, the trigger angle was plotted against power output since they are related by:

Power =
$$\frac{V_S^2}{\pi R_L}$$
 ($\pi - \alpha + \frac{1}{2} \sin 2 \alpha$) (4.1)

The digital signal output by the computer is related to the trigger angle as

$$D_{S} = \alpha_{1} 32767/\pi$$
 where $\alpha_{1} = \pi - \alpha$

4.4.4 CONTROL VALVE

The digital signals from the computer in the range O-32767 are converted to analog signals in the range O-10 volts by the D/A converter. This voltage signal is converted to current in the range O-20 mA DC. by a V/T converter and then to a pressure signal in the range O-14 psig by a I/P converter. The coolant flow through the valve is directly correlated to the analog voltage signal. Since the control pressure acts on the top of diaphragm the coolant flowrate is inversely proportional to the HADIOS voltage output.

FIG. 4.4 HONEYWELL 316 COMPUTER AND ITS PERIPHERALS

4.5 THE HONEYWELL 316 AND THE HADIOS DATA ACQUISITION SYSTEM

The computer data acquisition system hardware consists of the following units

- (i) A Honeywell 316 digital computer and associated peripherals.
- (ii) A Honeywell analog digital input output system (HADIOS).
- (iii) A remote signal conditioning box.

4.5.1 HONEYWELL 316 COMPUTER 46,47 AND ITS PERIPHERALS

The Honeywell 316 is a computer designed for real time systems application involving on-line control, data logging, data formatting, process monitoring and message switching. The general characteristics of the system include fully parallel organization, indexing, multilevel indirect addressing, powerful I/O system, a comprehensive 72 command instruction repertoire, and straight-forward logic for easy system interface and field expansion.

The memory cycle time is 1.6 μS with a memory size of 16384 16 bits word. Programs written in Fortran, BASIC-16 or DAP-16 (assembly language) can be run on this machine, with provisions for mixed language segments.

The computer can support

- (i) a Tektronic 4010-1 visual display unit (VDU)
- or an ASR 33/35 teletype.
- (ii) a high speed paper tape reader operating at 200 characters per second.

- (iii) a high speed paper tape punch operating at 75 characters per second.
 - (iv) a magnetic tape cassette unit for input and output at 375 bytes per second.
 - (v) a floppy disk storage system.

4.5.2 HONEYWELL ANALOG DIGITAL INPUT OUTPUT SYSTEM⁴⁸

HADIOS is a modular subsystem allowing a maximum number of mixed inputs and outputs to be interfaced to a computer with maximum efficiency. The HADIOS data highway has fifteen dedicated address lines and each device on the highway is allocated one or more of these. The device or subinterfaces can be analog or digital and input or output. The standard subinterfaces included in the HADIOS system are as follows:

- (i) High level analog inputs:

 This subinterface provides a maximum of thirty two separate analog signals in the range O-5V being converted to a decimal number in the range O-1023.
- (ii) High speed counter input:

 This subinterface can obtain the current contents of the counter which will be in the range of 0-255₁₀. This subinterface can be operated in either the non-interrupt or the interrupt mode. In the interrupt mode an interrupt is generated when the counter is half full (127₁₀).

(iii) Digital output:

This subinterface consists of sixteen parallel output lines. Signals to sixteen analog channels can be sent by the digital to analog converter which makes use of twelve of the sixteen bits for data and the other four for selecting the analog channel. The analog output range is O-10V corresponding to a digital range of O-32767₁₀ transmitted from the computer.

These subinterfaces can operate when control signals, initiated by programmable command, from the computer to the HADIOS are being output.

In this particular research four analog input channels are used to receive signals from the thermocouples, and one counter input for the turbine flowmeter. One digital output subinterface is used to send signals either to the thyristor unit or to the control valve.

4.5.3 REMOTE SIGNAL CONDITIONING BOX

This unit directs the signal from the HADIOS to the two analog output channels depending upon the control signal. The digital signal is also converted to the corresponding analog voltage by this unit. This unit is placed very near to the equipment to reduce noise and losses during transmission.

CHAPTER 5

ON-LINE SUPPORTING SOFTWARE

5.1 INTRODUCTION

A complete chapter has been devoted to the software used for on-line computing since its development formed the most important step in the experimental work. mathematical computing, one is concerned solely with the solution of the problem, be it by analysis or simulation. This is also an element of on-line computing, but an equally important aspect is programming for a pattern of behaviour. The on-line programmer, is very intimately concerned with the manner of execution of his program. He is programming for a system in which the computer is only a part. The most important aspect of on-line computing that is not present in off-line work is control, signal processing, and the identification and modelling of the system.

The most important consideration a programmer should give for on-line computing is timing. He may be faced with the situation where there is an upperbound to the An example of this is the case where it available time. is essential to perform certain calculations between successive samples of a signal, yet maintain the highest Another important consideration possible sampling speed. the programmer must give is the ease with which he can change certain segments of his program and run it as The Historia dest(s process quickly as possible. So the executive which controls the · 为你要忘了了多一的多**类是**美国的 whole program must be written in a language which does

not need compilation. Hence the executive program for the present work is written in BASIC, a language which needs a core resident interpreter. The main drawback of this programming language is its slow execution speed. So the segments which are well defined and free from errors can be written in a higher level language like FORTRAN or assembly language DAP 16 (H316 dependent language), and can be accessed from the executive.

The present package consists of nine subroutines written in FORTRAN and DAP 16 and accessed from the BASIC main program. These subroutines perform various tasks like input and output signals, simulation, plotting and other house-keeping tasks for the smooth execution of the program. The software also makes use of the back-up mass storage, mainly the floppy disk unit for storing program segments. The calling sequence and the listing of various subroutines are given in Appendix (4-sections 1-5).

5.2 HADIOS EXECUTIVE ROUTINES

The first five subroutines form the HADIOS executive and can be used to scan various analog channels and output signals to various devices in the plant.

The first two routines form the scanning sequence. The various analog and counter channels are scanned and their contents passed on to the BASIC program. These routines make use of the hardware clock. The scanning rate and number of samples per scan is modified by the user.

Subroutines 3,4 and 5 can be used to send digital output to various specified devices. While the first two routines can send output signals only at the beginning of a clock interrupt, subroutine 5 can change the values in between two clock interrupts.

The existing HADIOS EXEC O2 was modified so that the subroutine address table and modified error reporting segment were loaded at absolute location 37110_8 . A listing of HADIOS subroutines is available in Webb's thesis 50 .

A/D conversion is generally nonlinear because the quantization prevents it from being additive or homogeneous. This nonlinearity is difficult to deal with and it is generally tackled by treating it as a noise. In digital computation all arithmetic and conversion operations introduce high frequency noise while drift in source signals produces low frequency noise. Since the scanning routines are not provided with a software filter, smoothing of data is performed at the BASIC level.

5.3 INTEGRATION/SIMULATION ROUTINE

This routine performs the simulation of concentration given the operating conditions and reaction parameters by integration of the mass balance equation using the Fourth order Runge-kutta fixed step method. The step length and the initial condition for concentration are input data. The step is divided into fifty intervals internally and the numerical integration performed at each interval. The subroutine can also be used to integrate

another differential equation, which is incorporated in the BASIC program. This facility is required if integral action is introduced into the control law.

5.4 TETRONIX GRAPHIC LIBRARY

The Tetronix extended graphic subroutines are combined together to form a single FORTRAN subroutine in order to reduce the total number of routines accessed from the BASIC level.

5.5 HOUSE-KEEPING SUBROUTINES

Two more subroutines are available which can do the following tasks

- i) send output data either to the visual display unit
- or to the paper tape punch.
- ii) HALT the computer for programmer intervention.
- iii) Punch a portion of blank tape so as to separate two sets of data for identification purposes.
 - iv) calculate the actual time elapsed to execute a set of BASIC program statements.

While the first three tasks are carried out by subroutine 8, the last one is performed by subroutine 9. Setting of sense switch 4 through software diverts output to the paper tape punch. Since subroutine 9 makes use of the hardware clock, this routine should not be run in conjunction with the HADIOS executive routines.

5.6 OVERLAY ROUTINE

This subroutine transfers a specified segment from floppy disk to computer core overwritting the segment

already present. The addition of this subroutine, which can be called from the BASIC level, has increased the computer size to an unlimited extent. This subroutine is core resident and resides at the top of the memory.

For the present work the remaining subroutines were divided into two segments, one consisting of the entire Tetronix graphic library (segment 1) and the other consisting of the HADIOS executive, integrator and clock routines (segment 2). When graphical functions had to be performed segment 1 was copied onto core and if scanning or outputing of signal had to be carried out segment 2 was written onto the core. Although this copying of segments everytime increased the sampling time by 2.4 seconds it increased the core size by another 3K. If graphic functions are not required segment 1 could be completely omitted and segment 2 made core resident. Interrupts during the transfer operation cannot be handled by this routine.

Dummy maths library routines for converting real to integer and vice versa (C \$^221 and C \$ 12) are written so that, similar facilities available in the BASIC interpreter could be made use of instead of loading a duplicate version with the overlay routine. Segments should be transferred to disk from core prior to use by A \$ D14, as the overlay routine is similar to it.

5.7 LOADING PROCEDURE

As there is very little base sector available in the BASIC interpreter, all the loading should be carried out so that each sector has its own cross sector referencing information at the top and no segments cross sector boundaries. The maths library routines must be grouped using utility program OBJCHOP so that each routine could be loaded separately at a suitable starting address. The force load and program break facilities have to be used whenever it is required.

5.7.1 INITIAL VERSION OF THE PACKAGE

In this version all the subroutines and libraries were loaded together starting from the location 20740₈ and moving upwards. Since all the subroutines were core resident there was no need for the overlay routine. The main drawback of this type of configuration was that there was no scope for development as very little free space was available. The simulator was numbered subroutine 6.

5.7.2 FINAL VERSION OF THE PACKAGE

In this version the overlay facilities were introduced making use of the floppy disk unit. As mentioned before the subroutine for transferring segments from disk to core is core resident with the BASIC interpreter. The I/O mod, subroutines address table and the modified error reporting segment are also made core resident. Segments 1 and 2 are loaded separately into core and copied onto disk using A\$ D14. Both the segments were loaded from location 22000₈ upwards so that

subroutine 7 when segment 1 is in the core is the Tetronix graphics library and when segment 2 is in the core is the simulator routine.

Segment 2 is much smaller than 1 at present but can be extended, if required, up to location 37107₈. Care should be taken not to overwrite the common block of segment 1 by segment 2. The memory map of the core resident portion and the two transferrable segments are given in Appendix (4.8).

5.8 CHANGES IN BASIC INTERPRETER

The basic interpreter is modified so as to include a new command which has many uses. The RUN command always clears the tables, thereby erasing all variable values and starts the program execution from the beginning. This particular action may sometimes be unwelcome when the programmer wishes to run a segment of his program making use of the values obtained from a previous segment or to start the program execution from an intermediate point instead of from the beginning, after the program has terminated due to an error. To include such an option, a new BASIC command START is included which is equivalent to RUN in the old version, while RUN m, where m is a statement number, can be used to run a program from the statement number specified without clearing the table. The command CLEAR is removed to accommodate the command START.

The importance of the change is made obvious in the next section which describes the BASIC program executive

used for on-line experimental work.

5.9 ON-LINE BASIC PROGRAM

The program is divided into two main sections, the steady-state and the unsteady-state sections. The second section can be run only after the execution of the first which supplies the steady-state operating conditions. The reaction parameters corresponding to the order under investigation and the appropriate control equations must be loaded prior to the start of the program.

In the steady-state section, the user inputs steady-state feed and coolant flowrates. The computer scans and obtains the inlet temperatures from the plant and then plots the theoretical heat generation and removal curves (equations (3.5) and (3.6)). The scanning is performed and the experimental tank temperature is plotted on the same graph to find its deviation from the theoretical value. The user can manipulate variables until the two coincide to the required accuracy. the user is satisfied that the system has reached the steady-state, he can start the transient response studies by entering the second section after applying suitable load disturbances. In this section the following jobs are performed

- i) scanning of channels and calculating various temperatures.
- ii) calculating instantaneous concentration by numerical integration of the mass balance equation.

- iii) calculating the heat generation and sending appropriate signals to the immersion heaters.
- iv) calculating coolant flowrate depending upon the control strategy chosen and sending signals to the diaphragm control valve.
 - v) punching out values on the paper tape punch.
- vi) plotting tank temperature and concentration, jacket temperature and flowrate.
- vii) repeating all the steps until the simulation time is reached.

Facilities are available for re-running this section of the program with different conditions or continuing the present study further. The listing and flow chart of the BASIC program are given in Appendices (1.6) and (2.4) respectively. Polynomial equations have been formulated connecting process variables like feed and coolant flowrates and heat liberated against appropriate analog signals and counter pulses for the turbine flowmeter, control valve and immersion heaters respectively. (Refer Appendix (5.7)).

If the program stopped somewhere within section 2 due to error, then it could be re-run, if necessary, from the beginning of section 2, instead of from the beginning of section 1 with the modified RUN command discussed earlier.

5.9.1 EXECUTION TIME

A few segments of the BASIC program could have been written in FORTRAN in the form of subroutines for faster execution, but because the program was in the development stage it was much easier to modify and re-run in BASIC language.

The total sampling time during the execution of the second section, for any type of control strategy, except decoupling type control, was 11 seconds. The times taken for executing various sections of the program are listed below

- i) scanning, averaging and calculating
 temperatures = 2 secs
- ii) simulation = 4.3 secs
- iii) scaling and plotting, transmitting
 output signals to various devices = 2.0 secs
 - iv) transferring segments 1 and 2 to
 core from disk = 2.4 secs

It is seen that simulation takes 40% of the computer time and so the user must strike a balance between accuracy of numerical integration and the maintenance of a high sampling rate. The difficulties that arise in not having a large number of steps between each time interval can be seen in chapter 8 when theoretical results are compared with experimental values.

5.10 <u>CONCLUSIONS</u>

The importance of on-line programming and the various aspects of it are described in this chapter.

The subroutines and the program used for the simulation and control of the reactor system are described in detail. It is also shown how the present software could be increased further for larger control systems. The most important consideration in developing a software package is striking a balance between sampling rate and accuracy. It is considered that a reasonable attempt has been made to develop a software package which is able to provide easy and efficient use of the hardware facilities available.

CHAPTER 6

EXPERIMENTAL STUDIES

6.1 INTRODUCTION

Experiments on the plant were performed to study the effect of reaction order, control scheme and various operating parameters like feed and coolant temperatures, and flowrates on the stability and dynamic behaviour of the reactor. While the reaction heat generation and concentration were simulated by the computer depending upon the reaction order under investigation, the feed, coolant, tank and jacket temperatures were measured directly from the plant.

The following studies were made on the system

- (i) Effect of reaction orders on the general stability of the open and closed loop systems.
- (ii) Effect of control on stability and transient behaviour of the system, in moving from an initial condition to its equilibrium point.

The strategies employed were feedback and decoupling type control

- (iii) Control at the open loop unstable operating points using feedback and decoupling type control
- (iv) Effect of feedback and invariance type control around a stable operating point for load disturbances in the form of steps in feed and coolant temperatures
- (v) Generation of limit-cycles by positive feedback at open loop stable and unstable points and the effect of reaction order on these oscillations.

F= 58.3333 FC= 45 T0= 16.9725 TC0= 16.7234 T= 31.063 TC= 23.3851 U*AREA= .390441E-01 KCAL/S/C HEAT INP(W): 4674.62 HEAT CUT(W): 4688.77 C = .19361E-01 GM/CC THEO. OP.TEMP: 31.3735 S.S MEASURED TANK FLOW RATE IN CC/S: 59.91

l = Theoretical heat generation

2 = Theoretical heat removal

3 = Experimental tank temperature

FIG.6.1 TYPICAL COMPUTER OUTPUT AT THE END OF STEADY-STATE SECTION

6.2 <u>STEADY-STATE</u> BEHAVIOUR

For each experiment the system was first driven to a steady-state before starting the transient response studies. Given the operating conditions, the theoretical steady-state operating points were calculated and compared with the experimental values. By suitable modifications the experimental steady-state temperature was made to coincide with the theoretical value. The unstable operating point, if it existed, was also calculated by the computer.

The steady-state conditions for a given reaction order depended on the flowrates and temperatures of the feed and coolant. Since the day to day temperature of water used for experimental work changed, the operating conditions also changed appreciably. It was found that if the inlet water temperatures exceeded 18°C it was not possible to get an operating temperature within the range of present equipment. Generally when the inlet temperatures were high, the feed and coolant flowrates had to be high in order to have a steady-state operating point. Fig. (6.1) gives a typical output from the computer at the end of the steady-state section. The plant thus had to be run for some time in order to confirm that it had reached its steady-state value.

Driving the system to the steady-state point can be considered as a start up problem. The various techniques tried to start the reactor from cold conditions were

(i) reduction of the feed flowrate to zero and subsequent manual adjustment of it.

- (ii) similar manipulation of coolant flow.
- (iii) sending hot water into the tank.
- (iv) applying large signals to the immersion heaters.

6.3 TRANSIENT RESPONSE STUDIES

At the steady-state operating conditions disturbance was applied to the system manually in the following ways

- (i) step in feed temperature by solenoid valves.
- (ii) step in jacket temperature by shut off valves.
- (iii) perturbation in tank or jacket temperature by the addition of hot water.
- (iv) perturbation in tank concentration by feeding the disturbance value into the computer program.

The system behaviour was studied until the end of simulation time. The state variables tank temperature and concentration and jacket flowrate and temperature were plotted while the values were also punched out for later use. The response studies could be continued further or new disturbances could be introduced at the end of the simulation time.

The calculations had to be kept at a minimum during the transient section in order to maintain a high sampling rate. As mentioned in the previous chapter the normal sampling time was 11 seconds but was higher for decoupling type control, which involved iteration for the calculation of coolant flowrate.

For the present set of reaction rate parameters chosen, if the tank temperature exceeded 50°C the

required heat generation exceeded the 9 kW capacity of the immersion heaters. So if the tank temperature increased to beyond 50° C the experiment was terminated and the system was assumed to be unstable for those set of conditions.

6.4 STABILITY ANALYSIS

The only way in which the RAS could be determined experimentally was to observe the behaviour of the system from different initial conditions. If the starting points in the phase space were outside the region of stability, then the tank and jacket temperatures would increase indefinitely. If the system had multiple operating points, one stable and the next higher one unstable then if the starting conditions were below the unstable point the system would be stable and above it would be unstable.

The effect of control on the stability was determined by carrying out similar experiments for different control schemes. Unstable operating points were stabilised by a feedback controller. For these experiments the system was first driven to the stable point and then moved to the unstable point by the use of feedback control.

6.5 EFFECT OF REACTION ORDER

Integer reaction orders ranging from -1 to 2 were simulated. Different activation energies were chosen for the different orders of reaction in order to keep the operating temperature within the limits of the instruments, while the heat of reaction, frequency factor and inlet

concentration were maintained constant. The concentration of reactant in the tank at the steady-state condition was calculated from the steady-state mass balance equation depending upon the reaction order. Although a general algorithm could have been developed for calculating the steady-state concentration from the material balance equation for any reaction order, the actual concentration equations were stored in the computer so as to reduce the computation time during execution of steady-state phase.

The concentration equation for the reaction orders under consideration are given below

$$C_{SS} = \frac{F - (F^2 + 4FC_0K_4)^{\frac{1}{2}}}{-2K_4}$$
 (6.1)

$${\rm ^{C}_{SS}} = {\rm ^{C}_{O}} \over {\rm ^{1} + K_{4}/F}}$$
 (6.2)

$$C_{SS} = C_{o} - K_{4}/F$$
 (6.3)

$$n = -1
C_{SS} = C_{O/2} + (F^{2}C_{O}^{2} - 4FK_{4})^{\frac{1}{2}}/F$$

$$-E/RT_{SS}$$
where $K_{4} = k_{O} V e$
(6.4)

6.6 <u>CONTROLLER EQUATIONS</u>

Various types of control strategies were tried on the system. Apart from the simple feedback controller, complicated schemes for decoupling state variables and maintaining the controlled variables within the limits of stability were considered. The various types of control scheme tried were

- (i) proportional feedback control of
 - a) tank temperature (equation(3.27))
 - b) jacket temperature (equation(3.28))
 - c) tank concentration (for generation of

limit-cycle -(equation(3.60))

- (ii) Decoupling type control of tank temperature

 (equations(3.49)and(3.50))
- (iii) Invariance type control for
 - a) step in tank inlet temperature (equation(3.57))
 - b) step in jacket inlet temperature (equation(3.56))
 - c) steps in both tank and jacket inlet temperatures (equation(3.54))
- (iv) controller equation obtained from stability conditions with a view to strengthen RAS (equation (3.38)).

The controller equations were similar to the ones given in Chapter 3. Sometimes a comparison of controllers was also made for the same set of operating conditions.

6.7 LIMIT-CYCLES

Although the existence and the parameter conditions required for the generation of self sustained oscillations could be derived theoretically, during experimentation limit-cycles were generated by modifying the gain value by trial and error. So the gains chosen for experimental runs could not be termed as the bifurcation values.

Longer simulation times were required in order to confirm that the oscillations were constant and self sustaining.

Limit-cycles were generated not only at the open loop stable operating point but also at the open loop unstable.

points. The harmonic components of the oscillations were obtained theoretically from the system response.

6.8 PARAMETER VALUES CHOSEN

The parameter values chosen for experimental purposes were similar to those of the total simulation studies and are given in Appendix (5.6). The heat transfer coefficient was calculated at the steady-state condition during experimental runs and used for later calculations.

The exponential decay constant for decoupling type control was the optimum value determined in the theoretical studies, while controller gains for other schemes were chosen arbitrarily. Similarly the gains for limit-cycle studies and for stabilising unstable operating points were chosen by trial and error procedure.

CHAPTER 7

TOTAL SIMULATION OF THE PLANT

7.1 INTRODUCTION

The complete experimental arrangement not only consists of the jacketted reactor but also various time lags and transfer functions arising from thermocouples, the control valve and other electrical and pneumatic The effect of sampling (with zero order hold) was also considered since some time is taken up by the computer in processing the signals received from the plant. For verifying the experimental results with theoretical simulation the mathematical model equations of the plant should not only have the material and energy balance equations for the reactor and jacket but also first order transfer functions for the four thermocouples and one control valve together with samplers with zero order hold before the signals enter the computer. The block diagram of the entire plant is given in Fig. (7.1).

7.2 MODEL EQUATIONS OF THE PLANT

The model equations of the entire plant are given below

Mass balance in the reactor

$$F(C_{o}-C) - k_{o}VC^{n}e^{-E/}RT^{*} = V \frac{dC}{dt}$$
 (7.1)

Energy balance in the reactor

$$FpC_{p}(T_{o}-T) - UA (T-T_{c}) + \Delta H k_{o}VC^{n}e^{-E/RT} = V pC_{p} \frac{dT}{dt}$$
 (7.2)

FIG. 7.1 BLOCK DIAGRAM OF THE PLANT

Energy balance in the jacket

$$F_{C \text{ act}} \stackrel{\rho_{C}}{\sim} C_{pc}(T_{CO}-T_{C}) + UA(T-T_{C}) = V_{C} \stackrel{\rho}{\sim} c^{C}_{pc} \frac{dT_{c}}{dt}$$
 (7.3)

Equations for measuring elements

$$T_{\text{m}} \frac{dT_{\text{om}}}{dt} + T_{\text{om}} = T_{\text{o}}$$
 (7.4)

$$^{\tau_{m}} \frac{dT_{m}}{dt} + T_{m} = T \tag{7.5}$$

$$\tau_{\rm m} \frac{\rm dT_{\rm com}}{\rm dt} + T_{\rm com} = T_{\rm co} \tag{7.6}$$

$$\tau_{\rm m} \frac{\rm dT_{\rm cm}}{\rm dt} + T_{\rm cm} = T_{\rm c} \tag{7.7}$$

Equation for valve

$${}^{\tau}v \frac{dF_{cact}}{dt} + F_{cact} = F_{ccal}$$
 (7.8)

Samplers

$$T_{O}^{*} = sampler (T_{OM}, \tau_{S})$$
 (7.9)

$$T^* = sampler (T_m, \tau_S)$$
 (7.10)

$$T_{co}^* = sampler (T_{com}, \tau_s)$$
 (7.11)

$$T_c^* = \text{sampler} (T_{cm}, \tau_s)$$
 (7.12)

This set of thirteen equations represents the plant almost exactly. Equation (7.1) is similar to equation (3.1) except that the effect of sampling on tank temperature is considered here. Similarly the control equation (equation (7.13)) will involve only the sampled temperature values and not the original ones. At steady state, equations (7.1) to (7.3) will be equivalent to equations (3.1) to (3.3) and the other equations can be ignored.

7.3. ASSUMPTIONS IN FORMULATING THE MODEL EQUATIONS

There are a few assumptions in formulating the model which are either verified through experiments or by visual observations. Some of the assumptions are

- (i) Heat losses to the surroundings are negligible.
- (ii) The tank and jacket are well mixed vessels.

 This was verified for several typical operating conditions by residence time studies. These were carried out by comparing the response of these vessels with the response of a single continuous stirred tank for a step in inlet

temperature. The response curves are included in Appendix (5 - sections 4-5).

- (iii) The transfer functions are first order in nature. The time constants of the measuring element and valve are given in Appendix (5.6). The dynamics of the V/I and I/P converters are combined with the valve.
- (iv) the time delay due to immersion heaters is neglected
- (v) Sampling time during a run is constant. This is true except for decoupling type control, where the coolant rate is calculated by an iterative procedure.

- (vi) The heat transfer coefficient does not vary with coolant flowrate. This is true because the jacket is a well mixed tank.
- (vii) Liquid volumes inside the reactor and jacket are constant and do not vary with flowrate. This is generally true because large diameter outlet pipes have been provided for maintaining the liquid volumes.

(viii) All noise and errors entering the system are neglected. Errors are introduced during A/D and D/A conversions and other numerical computations which cannot be measured. Similarly noise enters the system due to drifts in electronic components. These errors and noises could have been simulated as random noise but they have been completely neglected in the present study.

Even when the control valve is fully closed there is some leakage into the jacket which should be considered in the total simulation studies. Since the feed flowrate is assumed constant during an experimental run, the effect of sampling on the determination of feed rate is neglected.

7.4 SOLUTION PROCEDURE

A computer program is written in SLAM for the ICL 1904S to simulate the complete plant using the equations (7.1) to (7.13). The differential equations are numerically integrated by the Runge-Kutta fixed step method. The communication interval is divided into 200 steps so that integrations are performed every 0.1 of a second. Various controller equations are also included in the program. The listing of the program is given in Appendix (1.5) and the corresponding flow chart in

Appendix (2.3).

7.5 COMPARISON OF EXPERIMENT WITH TOTAL SIMULATION

The total simulation program was run for each set of operating conditions obtained from the experimental run. The results of simulation were punched out on paper tape for reading into H-316. Since the tape was of even parity it had to be converted to one with no parity, by a tape conversion program. The listing of the tape conversion program is given in Appendix (4.6).

The converted data tape was read in and plotted with the experimental results for comparison purposes. The BASIC program which plots these two tapes is given in Appendix (1.7). If limit-cycle studies had been carried out, then the harmonic contents of the oscillation could also have been found from the response of the system and the approximate response plotted with the other two results.

CHAPTER 8

RESULTS AND DISCUSSION

8.1 INTRODUCTION

More than 180 experiments were carried out on the reactor system for the four reaction orders under consideration but due to limitations on space the results of only 92 experiments are reproduced here. Initially the system was driven to the steady-state; Table (8.1) gives the steady-state operating conditions for the different experiments. The theoretical steady-state and unsteady-state temperatures given in the table were calculated by the computer. Table (8.2) gives the various control schemes and disturbances introduced for the different experimental runs. The disturbances were either load changes or perturbations (different initial conditions) in state variables. The plots of different experimental runs for various control schemes and reaction orders are given in Appendix (6.1). The graphs for comparison of experimental results with total simulation are given in Appendix (6.2). Only half of the number of comparison graphs are reproduced, again due More experiments were carried to limitation on space. out on reaction order one than any other order. The following sections describe the various studies carried out on the reactor system.

8.2 OPERATING POINTS

It can be seen from Table (8.1) that the experimental steady-state temperature and the theoretical value

coincide generally within 0.5K. For experiments concerning operations at the open loop unstable point the system is driven to the steady-state point and then moved to the theoretical unstable point by a suitable control scheme. The operating points depend on the reaction order as well as inlet conditions. The operating temperatures generally vary from 295 to 315 K.

8.2.1 <u>Effect of Reaction Order</u>

It can be seen that for second order reaction the system unstable point is absent because it is outside the ranges of the thermocouples. All other reaction systems possess a stable and an unstable point. The stable and unstable operating temperatures for the first order system are higher than those of the zero order system as verified by theory. The operating temperatures of the -1 order system are either slightly less or similar to those of the zero order system, though theory predicted that the operating temperatures of -1 order should be less than that of the zero order system for the same inlet conditions.

8.2.2 Effect of Inlet Parameters

The day to day changes in inlet tank and jacket temperatures had made it necessary to use different feed and coolant flowrates thereby changing the operating points. The feed temperature varied from 284 to 291 K (feed and coolant temperatures chosen for theoretical studies were 288 K), while the coolant temperature was in the range 280-291 K.

Increase in tank or jacket inlet temperatures increased tank outlet temperature. When experiment 42 is compared to 43 it can be seen that an increase of 4.5 K in coolant temperature has increased the steady-state temperature by 6K. Similar effects can be seen in experiments 55 and 58. An increase in feed temperature by 1K (experiments 48 and 50) increased the steady-state tank temperature by 2.4 K. Increase in feed flowrate also decreases the operating temperature, as can be seen between experiments 22 and 24.

8.3 Open Loop Stability Region

The system behaviour is studied from different starting conditions to determine the region of stability around the operating point. The stability region depended on the reaction order under consideration as well as the inlet conditions.

The second order system is the most stable of all the four systems. Even for very large disturbances in the state variables the system returns to steady-state (experiments 1 and 2).

1,0 and -1 order systems exhibit a stable region, within which the paths converge to the steady-state and all paths outside the region diverge away from it. For the first order system, experiment 14 shows a stable behaviour while 16 an unstable behaviour. In experiment 15 the tank temperature deviation remains constant (the fall in it is very slow), which could be

termed as meta-stable behaviour. It could be noted that although in experiment 15 the system is meta-stable for a tank temperature deviation of 10 K, it is unstable in experiment 16 for a deviation of 8 K, since the perturbation is above the unstable point. The difference between unstable and stable steady-state tank temperatures is 5.5 K in experiment 16, while it is 10 K in experiment For zero order reaction experiment 48 shows a 15. stable behaviour while 49 an unstable one. Similarly for the -1 order system experiment 71 shows a stable behaviour while 69 an unstable behaviour. Experiment 70 exhibits a meta-stable behaviour.

The effect of a step in feed temperature was also studied on the system behaviour. For a step of 2.5 K the second order system (experiment 3) reaches a new steady-state temperature, an increase of 4.7 K whereas the tank temperature increases without reaching a steady-state for the other three reaction orders. Experiments 17, 52 and 72 give the behaviour of 1, 0 and -1 order systems respectively.

8.4 <u>CLOSED LOOP STABILITY BEHAVIOUR</u>

The stability behaviour of the closed loop system was studied with the following control strategies

- (i) proportional control of tank temperature
- (ii) proportional control of jacket temperature
- (iii) control law obtained by the application of Krasovskii's theorem (equation (3.38)).

(iv) decoupling type control.

A detailed study of the last scheme is described in section 8.6.

The first scheme involves a simple proportional feedback loop for the control of tank temperature. This scheme increases RAS for all reaction orders. strategy is not studied for reaction order 2 because the open loop system is stable within the limits of the instruments. Experiments 18-20 show the behaviour for first order system. Experiment 20 shows that the system becomes unstable for small gain values and large Similar experiments were conducted for disturbances. zero order (experiments 50,51) and -1 order system (experiments 73, 74 and 75). Even meta-stable behaviour similar to open loop conditions was observed in experiments 75 and 51.

When jacket temperature is used as the controlled variable then larger gain values were required.

Oscillations were induced in jacket temperature and flowrates. Experiments 21 and 22 were run for the first order system and experiment 76 for the -1 order system.

Experiment 21 shows a meta-stable behaviour, with a very slow decrease in perturbations.

The third strategy in which the coolant flowrate is calculated from equation (3.38) is found to be superior to the other two schemes in improving RAS. The region is increased enormously and the perturbations die down

very quickly. The fall is generally asymptotic in nature. Experiments 5, 23, 54 and 77 show the behaviour for reaction order 2, 1, 0 and -1 respectively.

The system behaviour is also studied with proportional control of tank temperature for a step in feed temperature in experiments 24, 25, 53 and 78. As expected, offset is introduced in tank temperature although the system is stabilised. This study is carried out mainly for comparing it with decoupling and invariance type control schemes.

8.5 OPERATING THE SYSTEM AT THE OPEN LOOP UNSTABLE POINT

The reactor system was operated at the inherently unstable point by using feedback control or decoupling type control. The feedback control schemes involved proportional control of tank or jacket temperature. Since the second order system does not possess an unstable point no studies were carried out on this reaction system. The studies using decoupling type control are described in Section 8.6.

8.5.1 Proportional Control of Tank Temperature

Experiment 28 shows that the gain value is not sufficient for stabilising the unstable point. The unstable operating point of the first order system is stabilised in experiments 29 and 30. Although the operating point is stabilised the stability region is small. The operating point is a stable node and as the gain is increased further it becomes a stable focus.

Experiments 57 and 58 give the behaviour of the zero order system and 79 and 80 the behaviour of the -1 order system. Although offset in experiment 58 is less than in 57 the operating point is not fully stabilised in both these cases. Experiment 80 shows that the unstable operating point of the -1 order is stabilised although the response is slow.

8.5.2 Proportional Control of Jacket Temperature

In this strategy the gain values have to be higher than those of the previous scheme. Oscillations are observed in jacket temperature and flowrate, since they are directly coupled by the control equation. Experiments 59 and 60 show the behaviour for zero order reaction. The operating point is not stabilised even for very large gain as there is an offset observed in both cases. Experiment 81 and 82 give the behaviour of the -1 order system. The unstable operating point is stabilised in experiment 82.

From the studies carried out on stabilising the open loop unstable point by these two control schemes it is seen that the first strategy has many advantages over the second.

8.6 CONTROL FOR DECOUPLING TANK TEMPERATURE

Many experiments were carried out on this control strategy for all the four reaction orders under consideration. The system behaviour seems to be generally independent of reaction order. The following sections describe the various studies carried out on the

reactor system with this control strategy.

8.6.1 On Region of Stability

It is seen that stability region around the stable point increases enormously and the transient responses indicate that the operating point remains a stable node despite large coolant flowrates, unlike feedback control schemes, where the operating point may become a focus as the gain is increased. Initially coolant flowrate is high and oscillatory, but falls suddenly as perturbations die down. The initial oscillations are due to its sensitivity to the state variables.

Experiments 6, 7, 8 and 9 show the behaviour of the second order system for different initial conditions.

The fall in temperature is generally asymptotic in nature. Experiment 9 shows that tank temperature remains independent of perturbations even in tank concentration. Experiments 32, 33, 34 and 35 show the behaviour for a first order system. Experiment 35 shows an increase in the stability region larger than any other strategy studied so far. Experiments 62, 63 and 64 give the system performance for zero order reaction while 85, 86 and 87 give it for -1 order system.

8.6.2 For Step In Feed Temperature

This strategy also decouples the tank temperature and hence tank concentration from a step in feed temperature. Experiments were carried out for different reaction orders for step in feed temperature. It is seen that there are no oscillations and the

overshoot is generally very small. Experiment 13 gives the response of a second order system for a step of 4.75 K in feed temperature. Experiments 39, 40, 67, 68, 89 and 90 give the response of first, zero and -1 order systems for a step in feed temperature. For a step of 4.5 K (experiment 39) the overshoot is around 1 K. The exponential decay constant value, D, is generally small since the step change is persistent. In experiment 67 the step change was removed at 2200 seconds so there is an undershoot before the system goes back to steady-state. In experiment 90 there is a small negative offset in tank temperature, which may be due to errors either in arriving at the steady-state operating temperature or in the heat transfer coefficient.

8.6.3 Operation at Open Loop Unstable Operating Point

This control strategy was also tested in stabilising the open loop unstable operating point. This scheme was found to be definitely superior to the other methods described in the previous section. The unstable operating point is stabilised and the response is fast and smooth with no oscillations. Experiment 31 shows that the unstable operating point for the first order is stabilised by this scheme. Similar experiments were carried out on zero order (experiment 61) and -1 order system (experiment 83 and 84). In experiment 84 the deviation in temperature is of the order of 11 K in the positive direction, which shows the creation of a large asymptotic stable region around the open loop unstable point.

8.6.4 Effect of D_{max}

The system behaviour is studied for various D_{max} values ranging from 0.002 to 0.016 and different reaction orders. A small D_{max} value reduces the speed at which tank temperature dies down but the fall is asymptotic. Larger values induce oscillations in all state variables and increase settling time. Experiments 12, 37, 65 and 91 show oscillation in jacket flowrate for reaction orders 2,1,0 and -1 respectively for large D_{max} values. These responses can also be compared with the corresponding response with optimum (0.007) D_{max} value (experiments 6, 35, 62 and 85). Experiments 38 and 88 show the system response similar to optimum response for a D_{max} value of 0.005.

8.7 INVARIANCE CONTROL

Invariance control studies were carried out only for a first order reaction system, since the control equation is independent of reaction order. Experiments 41 and 42 show the system behaviour for a step in feed temperature. Perturbations in tank temperature are very small when compared to similar behaviour under the action of feedback control (experiments 24 and 25). Experiments 43, 44 and 45 show that invariance of all the three state variables is achieved for a step in coolant temperature. This is true even for a step of magnitude 7 K. Oscillations in jacket flowrate are due to its sensitivity to the

coolant inlet temperature when $\gamma_{\rm O}$ is very nearly equal to $(\gamma_{\rm SS} - \gamma_{\rm OSS})$ (note the denominator term in equation (3.56)). Experiments 46 and 47 show the system behaviour for steps in feed as well as coolant temperatures. In all the cases perfect invariance of the state variables tank temperature and concentration is achieved since the load changes are such that the coolant flowrate is within the limits.

8.8 LIMIT-CYCLES

A limit-cycle was generated at open loop stable and unstable operating points for the four reaction orders under consideration. Since reaction order two does not possess an open loop unstable point, a limit-cycle was generated only at the stable point. Long simulation times were necessary in order to confirm that the oscillations were persistent. The following subsections describe the various studies carried out in the generation of limit-cycles at the stable and the unstable operating points.

8.8.1 At Open Loop Stable Point

Experiments 4, 26 and 55 show the limit-cycle behaviour of 2,1 and 0 order systems at their respective steady-state operating points. Even for very large gain values, sustained nonlinear oscillations were not found at the steady-state operating point of the -1 order system. The gain of the second order system is higher than that of the other two orders. Oscillations in jacket temperature are highly nonlinear because there are lower

and higher limits on the coolant flowrate. Table (8.3 (a))gives the amplitude of oscillation in tank and jacket temperatures for the three reaction orders under consideration. It shows that the amplitudes are largest for reaction order 2 and smallest for reaction order 1. The time average tank and jacket temperatures are determined by the harmonic balance method, which is described in subsection 8.3.3. The amplitude of oscillation of jacket temperature is larger than that of tank temperature, generally of the order of two in all cases.

8.8.2 At Open Loop Unstable Point

In these experiments the open loop unstable point is stabilised in the sense that all the trajectories inside the region enclosing the limit-cycle will remain within this region as time tends to infinity and some trajectories outside this region tend towards this region (since the limit-cycle is stable from both sides). Experiments 27, 56 and 92 show the limit-cycle behaviour of 1,0 and -1 order systems at their respective open loop unstable The gain of the zero order system is the largest of the three values under consideration. Amplitudes in tank and jacket temperatures are much The amplitudes of the larger than in the previous case. -1 order system are the least and that of zero order system are largest (refer to Table 8.3 (b)). of jacket to tank temperatures is around 1.75.

8.8.3 Harmonic Components of Nonlinear Oscillations

The harmonic contents of the nonlinear oscillations discussed above are determined by fitting the equations (3.63)-(3.65) into the system responses and calculating the constants. Table (8.4) gives the constants for different reaction orders. The accuracy of the determination of these constants can be seen when these approximate equations are plotted with the actual response. $X_{O}^{},Y_{O}^{}$ and $Z_{O}^{}$ give the time average concentration, tank and jacket tempeatures respectively. The cosine component in the jacket temperature (\mathbf{Z}_1) is larger than the sine component (\mathbf{Z}_2) , whereas the sine component in the tank temperature (Y_2) is larger than the cosine component (Y_1) . A comparison of $X_{O}^{}$, $Y_{O}^{}$ and $Z_{O}^{}$ values with corresponding operating points gives the effect of nonlinear oscillations on the system performance. In all cases the conversion is reduced slightly due to oscillations. In certain cases the jacket temperature goes down by 1 K, while there is very little change in the tank temperature.

8.9 TOTAL SIMULATION VERSUS EXPERIMENTAL RESULTS

The experimental results are plotted with corresponding total simulation values for all cases in order to confirm their validity. Only half the number of these comparison graphs are reproduced here, again due to limitation on space. Graphs where the theoretical results fit exactly with the experimental results are omitted. It can be seen that generally the experimental tank concentration coincides with the total simulation.

This may be due to the fact that concentration is simulated in the experimental work. Deviation in experimental and theoretical concentration (Figs. (A.6.2. 10, 12, 31, 32, 33 and 34)) may be due to the fact that different step lengths are used in the integration techniques used. A step length of O.l seconds is used in the Runge-Kutta fixed step method in total simulation, while a step length of 0.2 seconds is used in experimental Another reason for deviation between theoretical work. and experimental results for decoupling type control may be due to the fact that the sampling time changes during an experimental run because of the iterations involved in the calculation of the cooling water flowrate for this particular control scheme. This change in sampling time is not incorporated in the total simulation studies.

Oscillations in jacket temperature are observed in experiments 22 and 60, while there are no oscillations in the corresponding total simulation runs (Figs. (A.6.2. 13, 30)). This may be due to the fact that the thermocouple inside the jacket may be near the coolant inlet so that sudden increase in flow may be affecting the temperature around the region immediately. Due to spurious oscillations in jacket temperature, the jacket flowrate also oscillates because the control is based on jacket temperature.

In limit-cycle experiments (Figs. (A.6.2.3, 15, 16, 28, 29 and 47)), apart from plotting the total simulation results, the approximate responses obtained from equations

(3.63)-(3.65) are plotted with the experimental results. These approximate responses seem to fit the theoretical results very well because the constants of the equations were determined based on the theoretical response.

Large deviations in experimental and simulated tank temperature are observed in Figures (A.6.2.10, 12, and 15). Similarly large deviations in experimental and simulated jacket temperature are observed in Figures (A.6.2, 12, 15,16, 31, 32, 33 and 34). Deviations are observed only when there are sudden changes in temperature or during This may be due to mixing effects of the oscillations. jacket or the thermocouples may possess two time constants, one for increasing and another for decreasing tempera-Noise and errors arising due to D/A and A/D conversions are not included in the total simulation model equations. Although the heaters extend through half of the vessel from the bottom, there may be temperature gradients along the height of the tank when large quantities of heat are output (when temperature and concentration perturbations are large positive numbers).

TABLE 8.1 STEADY STATE OPERATING CONDITIONS

							Reaction	cion Order = 2
	Ŧ	<u>F</u> 4			Operat	Operating points (S)	(S)	Theoretical
Expt. No.	$(x 10^{-5} m^3/s)$	(x 10 ⁻⁵ m ³ /s)	T _O (K) T _{CO} (K)	T _{CO} (K)	T _{SS} (K)	$c_{\rm SS}({ m kg/m}^3)$	$T_{CSS}^{(K)}$	Temperature (K)
1	4.583	3.75	287.16	283.77	302.99	19.219	293.37	302.76
2	3.75	3.33	283.41	282.58	301.4	19.117	292.00	301.61
က	3.75	3.0	283.9	282.58	303.85	19.029	294.05	303.9
4	3.958	3.333	285.99	280.27	302.5	19.12	291.78	302.5
2	3.958	3.417	285.14	281.07	302.2	19.133	291.37	302,54
6-10	4.583	3.333	286.61 280.91	280.91	301.18	19.272	291.37	300.91
[4.33	3,333	286.3	281.44	303.49	19,13	292.827	303.1
12	4.33	3,333	286.09	280.68	301.6	19.196	291.3	302.09
13	4.33	3.5	287.94	282.43	307.37	18.993	295.19	307,74

/continued

TABLE 8.1 (contd.) STEADY STATE OPERATING CONDITIONS

Reaction Order = 1		(K) Temperature (K)	66 303.43 S 310.43 U	302.57 S 312.07 U	5 304.37 S 309.87 U	27 305.46 S 315.27 U	39 302.1 S 311.1 U	19 304.71 S 313.51 U	32 301.27 S 311.67 U
Re	S or U)	T _{CSS} (K)	293.66	295.09	296.5	296.27	292.89	295.19	292.82
And the second s	ing Points(S	$c_{\rm SS}({ m kg/m}^3)$	19.305	19.01	19.225	19.307	19.33	19.286	19.306
	Operating	$T_{SS}(K)$	302.94	302.80	305	305.6	301.49	304.92	301.46
		$T_{CO}(K)$	287.33	287.32	287.8	290.64	285.9	289.21	284.48
		$T_{O}(K)$	287.23	287.47	287.47	289.86	287	288.91	287.47
	Ēų ($(x 10^{-5} m^3/s)$	4.0	3.5	3.33	5.21	3.83	5.0	3,833
	Ħ	$(x 10^{-5} m^{3}/s)$	5	5	5	5.83	4.792	5.417	4.583
		Expt. No.	14	15	16	17	18,20	13	21

Continuation Sheet

								ı
Theoretical	Temperature (K)	302.08 S 311.47 U	303.39 S 308.19 U	300.5 S 313.5 U	303.91 S 314.31 U	299.67 S 310.07 U	297.63 S 312.13 U	306.67 S 314.83 U
S or U)	$T_{\mathrm{CSS}}(\mathrm{K})$	294.12	294.12	293.48	295.05	290.84	298.24	300.4
Operating Points	$\mathbf{c}_{\mathrm{SS}}(\mathrm{kg/m}^3)$	19.250	19.215	19.35	19,304	19,308	18.645	18.727
Opera	T SS(K)	302.8	303.65	300.93	303.71	300.12	312.13	314.83
	$^{\mathrm{T}_{\mathrm{CO}}(\mathrm{K})}$	285.31	284.6	284.95	288.74	282.75	282.06	286.85
	T _O (K)	287.47	286.99	287.5	288.91	286.47	286.23	287.47
Ŧ	$(x 10^{-5} m^3/s)$	3.667	3.333	3.5	5.0	4.0	3.667	3.875
ĒΉ	$(x 10^{-5} m^3/s)$	4.583	4.583	4.792	5.21	4.167	4.167	Ω
	Expt. No.	22	23	24	25	26	27	28

Continuation Sheet

Theoretical Temperature (K)	301.99 S 312.39 U	301.99 S 306.99 U	299.43 S 304.5 U	292.1 S	296.88 S 313.28 U	304.75 S 312.15 U	301.5 S 312.1 U
S or U) T _{CSS} (K)	300.1	295.03	290.3	287.1	289.15	294.86	293.14
Operating Points(S or U) S(K) $C_{SS}(kg/m^3)$ $T_{CSS}(K)$	18.888	18.92	19.24	19.52	19.41	19.308	19.346
Operat T _{SS} (K)	312.39	306.9	299.4	293.17	296.79	304.31	301.04
T _{CO} (K)	286.37	280.82	280.91	280.91	281.05	288.75	284.95
$T_{O}(K)$	286.99	286.09	285.33	283.51	286.28	288.55	287.5
F _c (x 10 ⁻⁵ m ³ /s)	3.6	3.5	3.33	3.33	3.6	5.21	3.5
(x 10 ⁻⁵ m ³ /s)	4.792	3.6	3.6	4.167	4.167	5.417	4.792
Expt.	29-30	31	32-38	39	40	41	42

Continuation Sheet

			-			The state of the s		
	Ŀτ	ET.			Opera	Operating Points(S or U)	S or U)	17h00r0+i0al
Expt. No.	$(x 10^{-5} \text{ m}^3/\text{s})$	$(x 10^{-5} \frac{3}{m^3}/s)$	T _O (K)	$T_{CO}(K)$	T _{SS} (K)	$T_{O}(K)$ $T_{CO}(K)$ $T_{SS}(K)$ $C_{SS}(kg/m^3)$ $T_{CSS}(K)$ Temperature (K)	$T_{CSS}^{(K)}$	Temperature (K)
43-45	4.792	3.6	287.61 280.4	280.4	295.6	19.54	287.7	295.3 S 320.5 U
46	5.417	3.6	288.85	288.85 288.91	303.57 19.335	19.335	296.34	304.05 S 314.05 U
47	5.417	3.5	288.78 289.0	289.0	304.13 19.315	19.315	296.9	304.58 S 313.18 U
			-					

/Continued

Expt. (x 10 ⁻⁵ m ³ /s) (x 10 ⁻⁵ m ³ /s) T _O (K) T _{CO} (K) T _{SS} (K) C _{SS} (kg/m ³) T _{CSS} (Kg/m ³) T _{CSS} (K) Temperature (K) 48 4.792 4.0 288.65 283.25 299.52 19.419 291 305.19 U 50 4.792 4.0 288.32 281.74 297.2 19.512 289.736 297.37 305.12 U 51 4.583 4.792 286.09 286.29 295.3 19.56 291.71 296.67 S 52 4.792 3.167 286.09 286.29 295.3 19.588 291.1 295.3 S 53 4.792 3.747 287.89 284.49 298.64 19.4536 291.37 304.49 U	1				Company - Community of the company o	of the control of the			Rea	Reaction Order=0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	}		Ħ	ا ب			Operat	ing Points (S	- 1	1	_
4.792 4.0 289.79 282.29 300.07 19.422 290.827 299.79 4.583 3.917 288.65 283.25 299.52 19.419 291 299.25 4.792 4.0 288.77 282.66 297.67 19.512 289.736 297.37 4.792 3.167 286.65 296.22 19.56 291.71 296.67 4.583 3.167 286.09 286.29 295.3 19.588 291.71 296.67 4.583 3.747 287.89 284.49 298.64 19.4536 291.71 295.38 304.49 287.89 284.49 298.64 19.4536 291.37 304.49		•	$(x 10^{-5} m^3/s)$	က္မ	$T_{O}(K)$	$T_{CO}(K)$	$T_{SS}(K)$	$c_{\rm SS}({\rm kg/m}^3)$		ineoretica Temperatur (K)	- 0)
4.583 3.917 288.65 283.25 299.52 19.419 291 299.25 4.792 4.0 288.77 282.66 297.67 19.512 289.736 297.37 4.792 3.167 286.47 286.65 296.22 19.51 288.65 296.92 3 4.792 3.167 286.47 286.65 296.22 19.56 291.71 296.67 3 4.792 3.167 286.09 286.29 295.3 19.588 291.11 296.67 4 4.583 3.747 287.89 284.49 298.64 19.4536 291.37 298.89	48	~	4.792	4,0	289.79	282.29	300.07	19.422	290.827		
4.792 4.0 288.77 282.66 297.67 19.512 289.736 297.37 4.583 4.0 288.32 281.74 297.2 19.51 288.65 296.92 4.792 3.167 286.47 286.65 296.22 19.56 291.71 296.67 3.167 286.09 286.29 295.3 19.588 291.11 295.3 4.583 3.747 287.89 284.49 298.64 19.4536 291.37 298.89	49	6	4.583	3.917	288.65	283.25	299,52	19.419	291		
4.583 4.0 288.32 281.74 297.2 19.51 288.65 296.92 4.792 3.167 286.47 286.65 296.22 19.56 291.71 296.67 4.792 3.167 286.09 286.29 295.3 19.588 291.1 295.3 4.583 3.747 287.89 284.49 298.64 19.4536 291.37 298.89	LU.	0	4.792	4,0	288.77	282.66	297.67	19.512	289.736		
4.792 3.167 286.47 286.65 296.22 19.56 291.71 296.67 4.792 3.167 286.09 286.29 295.3 19.588 291.1 295.3 4.583 3.747 287.89 284.49 298.64 19.4536 291.37 298.89 304.49 304.49	Ω	H	4.583	4,0	288.32	281.74	297.2	•	288.65		
4.792 3.167 286.09 286.29 295.3 19.588 291.1 295.3 4.583 3.747 287.89 284.49 298.64 19.4536 291.37 298.89 304.49 304.49	17.3	52	4.792	3.167	286.47	286.65	296.22	19.56	291.71		
4.583 3.747 287.89 284.49 298.64 19.4536 291.37 298.89 304.49	123	53	4.792	3.167	286.09	286.29	295.3	19,588	291.1		
	L'U	46	4.583	3.747	287.89	284.49	298.64	19,4536	291,37		

Continuation Sheet

1	and a	ļ		-	1		ļ :
ical ture	S	S	S	n S	s	S	s n
Theoretical Temperature (K)	296.41 306.61	297.29 305.49	299.29 304.1	298.56 305.16	298.49 304.49	298.6 305.6	298.66 304.46
or U) T _{CSS} (K)	289.19	294.34	293.29	295.4	295,19	295.9	293.82
Operating Points(SS(K) CSS(Kg/m ³)	19.525	19.124	19,203	19.143	19.158	19.156	19.1829
Operati T _{SS} (K)	296.656	305,49	304.1	305.16	304.49	305.6	304.46
$T_{CO}(K)$	283.07	282.7	282	285.64	284.03	284.52	282.33
T _O (K)	287.61	287.89	288.89	287.56	287.89	288.2	288.46
F _C (x 10 ⁻⁵ m ³ /s)	4.0	3,833	3,833	4,0	3,333	3.417	3.708
(x 10 ⁻⁵ m ³ /s)	4.583	4.583	4.583	4.583	4.458	4.792	4.583
Expt.	S	56	22	28	59	09	61

Continuation Sheet

 	ture	S	S	s n	S D	s n
+ 0 5 0 5 5 5	Temperature (K)	298.91 304.11	297.43 305.03	298.82 305.02	299.77 303.47	298.86
or U)	T _{CSS} (K)	290.09	290.19	291.75	291.03	290.65
Operating Points (S	C _{SS} (kg/m ³)	19.445	19,498	19.445	19.433	19.482
Operat	T _{SS} (K)	298.87	297.44	298.87	299.6	298.5
	$T_{CO}(K)$	282.29	284.13	284,54	283.05	282.76
	T _O (K)	288.51	287.23	288.2	289.27	288.86
F	(x 10 ⁻⁵ m ³ /s)	3.708	3.667	3,833	3.747	3.5
	$(x 10^{-5} m^3/s)$	4.583	4.583	4.583	4.792	4.792
+ C &	No.	62-64	65	99	29	8.9

	Table	Table 8.1 (contd.)			The second secon	And the second s		Reac	Reaction Order=-1	
1		ĹΉ	Έ.			Operat	Operating Points(S	or U)		
	Expt. No.	$(x 10^{-5} \text{ m}^3/\text{s})$	$(x 10^{-5} \text{ m}^3/\text{s})$	T _O (K)	$T_{CO}(K)$	T _{SS} (K)	C _{SS} (kg/m ³)	T _{CSS} (K)	Theoretical Temperature (K)	cal
I	69	4.458	2.5	287.94	284.36	298.09	19,513	292.29	298.14 299.34	S
:	70	4.167	2.75	287.59	283.76	296.38	19,55	290.91	296.38 300.18	s n
154	71	3,958	3,5	287.32	285.23	297.3	19,486	291.39	297.32 299.32	s n
•	72	3.958	3,333	286.47	286.42	295.55	19.559	291,25	295.87 300.47	S
	73	3,75	3.917	287.54	283.39	295.78	19.525	289.23	295.54 303.34	S
	7.4	3.958	3.75	288.08	283.02	295.73	19.552	289.09	296.08 300.68	s U
	2/2	3.75	3.5	287.89	282.89	296.56	19.491	289.91	297.09 298.69	s n
					The same of the sa	and & sunnaughturines the attendance while the sunnaughture and	min minimakan mana a a a apimula apimu	A sufficient of the Polar Pola	هري/ الري	70:00 + 400)

Continuation Sheet

		ı	,	1					
A management of the control of the c	ical ture	S	S U	s n	n n	s U	n S	n n	
	Theoretical Temperature (K)	297 299.99	295.69 302.49	296 301.25	295.4 301.8	296.73 298.93	294.55 300.75	295.2 300	
or U)	TCSS (K) Temperature (K)	290.28	291.11	291.57	293.39	292.02	292.87	292.72	and the country of the material and the state of the stat
Operating Points(S	C _{SS} (kg/m ³)	19.543	19.622	19,563	19.282	19.374	19.268	19.314	Annotation of the contract of
Operat	T _{SS} (K)	296.56	295.18	296.06	301.81	298.93	300,76	300	TALLY TO SECURE THE PROPERTY OF THE PROPERTY O
	$T_{CO}(K)$	283.76	287.07	286.65	283.3	284.13	283.85	283.99	
	$T_{O}(K)$	288.29	287.09	286.85	288	287.13	286.75	286.8	A TOTAL MANAGEMENT OF THE PROPERTY OF THE PROP
Ę r n	(x 10 ⁻⁵ m ³ /s)	3.333	3,333	3,333	3,333	3,5	3.5	3.333	
ĬΉ	(x 10 ⁻⁵ m ³ /s)	4.167	4.458	4.167	4,167	3.75	3,75	3.75	
-	Expt. No.	92	2.2	78	79	80	81	83	
				 -155 -			•		

Continuation Sheet

3.1 .: e	S U	n S	n n	n n	n s	s n	
Theoretical Temperature (K)	296.26 301.86	295.7 302.26	296.07 302.07	294.73 303.13	295.3 301	295.81 S 302.22 L	302 S 304.0 U
or U) T _{CSS} (K)	294.52	291.16	291.23	290.1	290.1	291.11	298.571
Operating Points(S SS(K) C _{SS} (kg/m ³)	19.313	19.578	19.6	19.64	19,592	19,603	19.4372
Operat T _{SS} (K)	301.86	296	295.73	294.39	294.95	295.64	304.0
T _{CO} (K)	285.71	286.06	286.1	285.57	285.23	286.01	291.7
T _O (K)	287.65	287,25	287.47	287.13	286.83	287.42	291.2
F _c (x 10 ⁻⁵ m ³ /s)	3,333	3,333	3,167	3,333	3,333	3.167	3.833
F (x 10 ⁻⁵ m ³ /s)	4.36	4.38	4.41	4.36	4.05	4.41	6.455
Expt. No.	83,84	85-87	88	89	06	91	92

	heaction Order=2	Comments	Stable, perturbations die down quickly	Stable, perturbations die down quickly	New SS temperature 4.7K above	Limit-cycle (nonlinear oscillations)	Stable, perturbations die down quickly	Stable, perturbations die down quickly	Tank temperature remains
IEMES AND LOAD CHANGES to Control Strategies)	Changes	T _{co} (K)		ı	I	1	I	I	I
AND LOAD ontrol St	Load (T _O (K)	ļ	l	2.5	I	1	I	I
SCF Key	tion	_ T _c (K)	2	3.5	ŀ	1	9	4.7	l
TABLE 8.2 CONTROL SCHEMES AND LOAD CHANGES (See Page No.170 for Key to Control Strategies	ial Perturbation	_ (kg/m ³)	1	0.8	1	I	0.837	0.22	-]
TABL (See Pa	Initial	T (K)	11.5	12.5	l	ı	11.5	14	l
		Control Strategy	- T			9 K ₂ =90000	4	8 D _{max} =0.007	£
		Figure No.	A.6.1.1	A.6.1.2	A.6.1.3	A.6.1.4	A.6.1.5	A.6.1.6	A.6.1.7
		Expt.	,	7	က	4	ي	9	7

Continuation Sheet

	Comments	Stable	Stable	Tank temperature remains constant	Stable, behaviour similar to 6	Stable, oscillations in tank and jacket temperature	Small overshoot in tank temperature	
Load Changes	(K)	ı	1	l		J	ı	
1 0:	_ T _O (K)	j	ı	က	į	į.	4.75	
ion	T _C (K)	-1.3	l	Ι	4.5	5.2	l	
Initial Perturbation	_ C (kg/m ³)	1	2.0		0.82	0.803	ı	
Initi	Ţ (K)	22	·	1	10.5	12	1	-
	Control Strategy	8 D _{max} =0.007	=		8 D_max=0.005	8 D =0.015	8 D _{max} =0.007	And the second s
	Figure	A.6.1.8	A.6.1.9	A.6.1.10	A.6.1.11	A.6.1.12	A.6.1.13	
	Expt.		6	10	11	12	13	-

d.)
cont
8.2 (
Table 8
,

Reaction Order=1

			Initial	al Derturbation	ion	Load C	Load Changes	
				3.			(4)	Comments
Expt. No.	Figure No.	Control Strategy	Ţ (K)	C (kg/m)	T _C (K)	1 (N)	1co (A)	
14	A.6.1.14	. 1	7.5	l	1.0	1	ŀ	Stable, perturbations die down fast
15	A.6.1.15	1	10.0	İ	4.7	ŀ	į	Metastable, perturbations remain constant
16	A.6.1.16	1	8.0	I	2.0	1	I	Unstable, all state variables move away from SS point
17	A.6.1.17	П	1	1	1	2.75	1	4K increase in tank temperature
18	A.6.1.18	2 K ₂ =500	13	l	5.0	1	ı	Stable, perturbations die slowly
19	A.6.1.19	² K ₂ =30000	10.5	1	2.5	1	ı	Stable, oscillations due to large gain
200	A.6.1.20	² K ₂ =500	14	t	5.5	l	l	Unstable
					And the second s		And the second s	Continued

3		

Continuation Sheet

Initial Perturbation Load Changes	(K) \vec{c} (kg/m ³) \vec{T}_c (K) \vec{T}_o (K) \vec{T}_{co} (K)	- 1.3 - Metastab	Stable, oscillations in jacket temperature and flowrate	; - 3.5 - Stable, fast response	- 4.6 - Offset in tank temperature	- Large oscillations and smaller offset	Limit-cycle behaviour at SS point	Limit-cycle behaviour at
3	_ (kg/m ³)	-	ı	1				
In	Control T (K	M	2 X ₂ =10000 12.5	3 4 12.5	.4 K ₂ =30000	25 K ₂ =50000	26 K ₂ =16000	9 27 7 = 8600
	Expt. Figure		22 A.6.1.22	23 A.6.1.23	24 A.6.1.24	25 A.6.1.25	26 A.6.1.26	27 A.6.1.27

Continuation Sheet

/Continued						27		
Stable	ı	l	-1.5	1 5	-5.2	=	A.6.1.34	34
Tank temperature remains constant	ı	1	I	-1		=	A.6.1.33	33
Stable and fast response	ı	I	6.5	-1	13	8 Dmax=0.007	A.6.1.32	32
The unstable point is stabilised by this strategy	ı	1	-4	-0.17	-5.5	B Dmax=0.007	A.6.1.31	31
The unstable point is stabilised Further confirmation	I	1	1.0	l	2.8	Z K ₂ =20000	A.6.1.30	30
The unstable point is stabilised	ŀ	1	-5.5	ĺ	9 -	$K_2 = 20000$	A.6.1.29	29
The unstable point is not stabilised	1	ŀ	-3,2	0.623	-3.5	$K_2 = 500$	A.6.1.28	28
Comments	T _{co} (K)	_{то} (к)	T _c (K)	_ (kg/m ³)	Ţ (K)	Control Strategy	Figure No.	Expt. No.
	Load Changes	Load C	ion	Perturbat	Initial			

/Continued

								THE STATE OF THE S
			Initial	al Perturbation	ion		Load Changes	
Expt. No.	Figure No.	Control Strategy	Ţ (K)		T. (K)	T _O (K)	T_{co} (K)	Comments
35	A.6.1.35	8 D = 0.007	15.5	9.0	10.5	1	•	Stable
36	A.6.1.36	B Dmax=0.01	12	0.622	4	1	ŧ	A bit of oscillation in jacket flow
37	A.6.1.37	8 D _{max} =0.015	12	0.622	4	l	l	Large oscillations in all state váriables
38	A.6.1.38	8 D _{max} =0.005	17	0.646	4.8		1	Stable, smooth response
39	A.6.1.39	8 D =0.007	1	1 .	I	4.5		Largest offshoot is lK
40	A.6.1.40	D _{max} =0.007	1	I	l	3.5	l	Small perturbation
41	A.6.1.41	9		l	I	3.4	1	Perturbation in tank temperature is very small
		And the second s						/Continued

Continuation Sheet

Continuation Sheet

			Initial	lal Perturbation			Load Changes	
Expt. No.	Figure No.	Control Strategy	_ T (K)	_ C (kg/m ³)	_ T _c (K)	_ T _O (K)	T _{co} (K)	Comments
42	A.6.1.42	9	` 1	ı	!	4.8	l	Perturbation in tank temperature is very small
43	A.6.1.43	2	I	I	I	l	2	Invariance in all three state variables
44	A.6.1.44	2	-	ı	1	-	ರ	Invariance in all three state variables
45	A.6.1.45	<i>L</i>	1	1	1	1	2.5	Invariance in all three state variables
46	A.6.1.46	10	ı	1	I	0.75	2.7	Invariance in tank temperature and concentration
47	A.6.1.47	10		I	I	2.0	2.1	Invariance in tank temperature and concentration
	And the second s	A STATE OF THE PROPERTY OF THE						

Table 8.2 (contd.)

		والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادلة والمتعادلة والمتعادلة والمتعادلة	an deba e a facilitat de segue que debé a de demonstrativo de de seço de					
		-	Initial	al Perturbation	cion	Load C	Changes	
Expt. No.	Figure No.	Control Strategy	T (K)	_ C (kg/m ³)	T _C (K)	_ T _O (K)	T_{co} (K)	Comments
48	A.6.1.48	-	6.5	1	1.1	l]	Stable
49	A.6.1.49	Н	7.5	0.46	2	l	l	Unstable
50	A.6.1.50	Z K ₂ =500	10.5	l	3.5	1		Stable, perturbations die down fast
51	A.6.1.51	² K ₂ =100	11.5	I	ю	I	1	Metastable, perturbations remain constant
52	A.6.1.52	П	1	l	1	2.6	1	Tank temperature deviation is 3.7K
233	A.6.1.53	Z K ₂ =10000	-	1	1	n	1	Offset of 1.2K
54	A.6.1.54	4	13.7	1	6.2	I	I	Stable, fast response
			4.			or and a supplemental of the supplemental of t		/Continued

Continuation Sheet

	Comments	Limit-cycle at stable operating point	Limit-cycle at unstable operating point	Unstable operating point is not stabilised	Unstable operating point is not stabilised but perturbation is less	Unstable operating point is not stabilised	Unstable operating point is not stabilised	Unstable operating point is stabilised, but response is slow	/Continued
anges	T _{CO} (K)	- Li	- Li	- Un	Un is	- Un	- Un	Uns - is res	A CONTRACTOR OF THE PROPERTY O
Load Changes	T _O (K)	l	ı	1	1	l	1	1	
	T _C (K)	I	ı	ကျ	4-	-2.5	-3.5	-3.5	_
Perturba-	_ (kg/m ³)	I	l	l	1	-0.1	-	.01	
Initial	_ T (K)	1	1	15	-6.5	9	-6.4	0.9-	
	Control Strategy	9 K ₂ =60000	9 K ₂ =100000:	2 K ₂ =2000	2 K ₂ =3500	3 K ₂ =15000	3 K ₂ =30000	B D = 0.007	
	Figure No.	A.6.1.55	A.6.1.56	A.6.1.57	A.6.1.58	A.6.1.59	A.6.1.60	A.6.1.61	
	Expt. No.	55	56	-165	2-	59	09	61	

Continuation Sheet

			Tnitial	al Derturbation	ion	Coso C	Load Changes	
Expt. No.	Figure No.	Control Strategy	(X) T	(kg/m ³)	T _C (K)	T (K)	T (K)	Comments
62	A.6.1.62	8 D = 0.007	13.5	0.44	5,5	1	1	Stable, fast response
63	A.6.1.63	Ξ	13.1	9.0-	7.1	I	ı	Stable, fast response
64	A.6.1.64	-	-5.9	9.0-	-0.6	l	1	Stable, fast response
65	A.6.1.65	8 D_=0.016	15.8	0.401	3.8	l	1	Stable oscillations in jacket flowrate
99	A.6.1.66	D =0.002	13.5	0.445	2.9	•	I	Stable, response is slow compared to experiment 62
29	A.6.1.67	Dmax=0.007	1	I	I	4.2		An overshoot of + 1.0K
89	A.6.1.68		-	I	I	2.5	l	No offset
					AND THE RESIDENCE OF THE PROPERTY OF THE PROPE			

/Continued

Metastable, perturbations Reaction Order=-1 Unstable, 3.8K deviation in 1200 seconds Stable, slow response Stable, slow response Comments remain constant Metastable Unstable Unstable T_{co} (K) Load Changes 1 1 ١ l I I T_O (K) 2.5 1 1 ı I I _ T_C (K) 1.2 3.5 0.5 9.0 9.0 1 Initial Perturbation က _C (kg/m³) 0.01 ١. I ١ \bar{T} (K) 12.5 4.8 4.5 4.8 13 I ∞ Control Strategy 2 | K₂=2000 $A.6.1.73 \left| \frac{2}{K_2} \right| = 500$ A.6.1.75 A.6.1.74 A.6.1.72 A.6.1.70 A.6.1.71 A.6.1.69 Figure No. 75 Expt. No. 74 73 72 71 69 70

Continuation Sheet

			Initial	Perturba	ion	Load (Load Changes	· ·
	Figure No.	Control Strategy	Ţ (K)	_ (kg/m ³)	T _c (K)	T _O (K)	Tco (K)	Comments
	A.6.1.76	$_{\rm K_2=10000}^3$	13.5	0.4	4.7	l	l	Stable, very slow fall in tank temperature
7	A.6.1.77	7	15	8.0	6.2	1	1	Stable, fast response
1	A.6.1.78	2 K ₂ =30000	*	I	I	2.6	l	Stable, very small offset
	A.6.1.79	X ₂ =2000	-6.2	0.01	-3.7	I	ı	Unstable operating point is not stabilised
1	A.6.1.80	$K_2 = 3500$	6+	l	1.0	1	l	Unstable point is stabilised, slow response
	A.6.1.81	$X_2 = 8000$	-5.2	I	-2.5	I	\$	Unstable point is not stabilised
+	A.6.1.82	$K_2 = 10000$	-4	ı	-2.7	1	1.	Unstable point is stabilised

	Comments	Unstable operating point is stabilised. Fast	Unstable operating point is stabilised. Fast response. Further confirmation.	Stable, fast response	Tank temperature remains constant	Stable	Stable, slower response when compared to experiment 84	No offset, an overshoot of 0.4K
Load Changes	T 00 (K)	I	l	ļ	I	I	I	l
Load (_ T _O (K)	Ī	1	I	I	l	ı	3,6
Perturbat	T _C (K)	-3.2	3.0	4.2	0	ſ	2.4	l
	<u>с</u> (кg/m ³)	-0.2	1	0.4	0.43	-0.4	1	1
Initial	Ţ (K)	-5.4	11.2	12.5	0	-2.8	8.8	l
	Control Strategy	8 D _{max} =0.007	=	# E	11	Ξ	8 D =0.005	8 D _{max} =0.007
	Figure No.	A.6.1.83	A.6.1.84	A.6.1.85	A.6.1.86	A.6.1.87	A.6.1.88	A.6.1.89
	Expt. No.	83	84	85	86	87	88	80

Continuation Sheet

Continuation Sheet

	1		Initi	Initial Perturbation	ion	Load C	Load Changes	
Expt. No.	Figure No.	Control Strategy	_ T (K)	_ (kg/m ³)	$\Gamma_{\rm c}$ (K)	T (K)	Tco (K)	Comments
06	A.6.1.90	0 D 8 = 0.007	ı	l	1	2.3	Ļ	An offset of - 0.3K
91	A.6.1.91	8 D _{max} =0.011	10.2	l	E	l	l	Stable, fast response, oscillations in jacket
60	A.6.1.92	A.6.1.92 $K_2 = 28000$	l	l	1	l	I	Limit-cycle at unstable point
1 4 5 6 7		(()						

Control strategies

l = uncontrolled

proportional feedback control of tank temperature

proportional feedback control of jacket temperature

controller equation derived from stability conditions

6 = invariance control for step in feed temperature 7 = invariance control for step in coolant temperature

3 = decoupling type control of tank temperature

and coolant temperatures proportional feedback control of tank concentration invariance control for steps in feed

TABLE 8.3 AMPLITUDE OF TANK AND JACKET TEMPERATURES FOR DIFFERENT REACTION ORDERS

Reaction order	Amplitude of Tank Temperature (K)	Amplitude of Jacket Temperature (K)
2	2.5	5.5
1	0.85	1.5
0	2	4.5

a) at open loop stable point

Reaction order	Amplitude of Tank Temperature (K)	Amplitude of Jacket Temperature (K)
1	4.2	6
0	5	8.5
-1	0.95	1.25

b) at open loop unstable point

TABLE 8.4 HARMONIC COMPONENTS OF THE LIMIT-CYCLES

1						
[4] (K)	-2.094	1.143		1.86	-1.59	-1.694
Z ₁ (K)	-5.725	.993	-3.08		-5.7	.496
Z _O (K)	290.5	292.26	298.82	296.35 6.73	297.41	298.73
Y ₂ (K)	.01054 -3.0311	.2147	-1.42	4.22	-3.28	.0232
Y ₁ (K)	.01054	-5972	0203 -1.42	-2.25	-3.58	0.796
Y _O (K)	302.38	300.087	296.62	312.71	304.22	304.23
X ₂ (kg/m ³)	.01557	.0058	.00732	02812	.1181	01757
x_1 (kg/m ³)	-0.03467	.01148	02523	.1962	0149	00995
XO (kg/m ³)	19.1248	19,3082	19.5199	18.668	19.194	19.4338
Time period (S)	1295,2	1500	1395	1750	1800	1720
Nature of op. pt.	S	ಬ	ಬ	n	Ω	Ω
Reaction order	2	-	0	⊢ 1	0	-1

CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

Many conclusions are drawn from the theoretical, experimental and total simulation studies carried out so far on the C.S.T.R., and are summarised in the following sections. A few recommendations are also made for further studies.

9.1 CONCLUSIONS

9.1.1 On Theoretical Work

The theoretical work carried out initially helped to design the experiments. It also gave an idea about the operating ranges for various parameters. Much of this work was verified later through experiments. The conclusions drawn are listed below.

- (i) Reaction order |n| (absolute of n) is more stable than order |n-1| for any inlet conditions. Generally reaction order 1 is more stable than -1 but for certain inlet conditions the reverse is true.
- (ii) The region of asymptotic stability (RAS) depends on the reaction order to a large extent.
- (iii) Although the algorithm for the determination of the RAS, using Krasovskii's theorem, can easily be programmed its limitations and conservativeness is brought out in the comparison graph.

- (iv) Although qualitative stability analysis by
 Krasovskii's theorem has limitations, it can be used to
 design control schemes, which are much superior to
 conventional control schemes.
- (v) The open loop unstable operating point is easily stabilised by simple proportional feedback control. Sometimes limit-cycle is also generated at this point by a suitable control scheme.
- (vi) A control strategy which decouples tank temperature from other state variables (decoupling type control) is found to be superior to conventional controllers for increasing RAS, for step type disturbance in feed temperature or for stabilising open loop unstable points.

LIMB BULL TO CHOUSE BULL

- (vii) Invariance control is simple and found to be very effective for load disturbances in feed or coolant inlet temperatures.
- (viii) Liapunov's method was tried for determining the existence of limit-cycles in three dimensional state space and found to be successful. There are no other methods reported so far for high dimensional systems. This method is also useful for the determination of the existence of multiple stable and unstable limit-cycles.
- (ix) A method was devised to determine the harmonic components of the nonlinear oscillations and found to be very successful.

9.1.2 On Experimental and Total Simulation Studies

The partial simulation technique is confirmed as a powerful tool in studying the dynamics of a reactor. This technique embraces the advantages of total simulation and the realities involved in experimental work. It is seen that various exothermic chemical reactions are simulated in the reactor with ease. Different complicated control schemes are also applied to the system since a digital computer is used as the controller. The on-line software package developed as part of the study is found to be versatile and powerful. Other important conclusions drawn on the studies carried out are

I LANGE TO CHEWARTH FOR FOR

- (i) The operating points and RAS depend on the inlet conditions, and order of reaction. The later affects the system behaviour qualitatively.
- (ii) The unstable operating point separates the state space into stable and unstable regions. So the difference between unstable and stable temperatures gives an idea about the stability region.
- (iii) A simple proportional feedback controller increases RAS. A control scheme developed based on the second method of Liapunov is found to be better than feedback control schemes.
- (iv) The open loop unstable point is easily stabilised with proportional feedback control or decoupling type control schemes. Using the latter scheme a system

operating point can be switched from a stable to an unstable point in the shortest time without oscillation. Control of tank temperature was found to be superior to control of jacket temperature.

- (v) Decoupling type control increases RAS for all reaction orders to a large extent.
- (vi) Invariance control for load disturbances is definitely superior to feedback control schemes, although an additional feedback loop may reduce drifts.
- (vii) Decoupling type control also makes tank temperature and concentration invariant to changes in feed temperature.
- (viii) A limit-cycle is generated at stable and unstable operating points. The amplitude and time period of oscillation depends on reaction order and the nature of the operating point.
- (ix) The harmonic components of the nonlinear oscillation determined are found to be very accurate, as seen in the comparison graphs. Only the first harmonics are found to be predominant.
- (x) The time average conversion is found to be slightly less than steady-state conversion.
- (xi) The model of the entire plant developed for total simulation studies consists of several differential equations and samplers. The transient

behaviour of the reactor coincides well with the corresponding model response.

(xii) Limitations on coolant flowrate limits the largest disturbances and load changes that can be applied to the system without making it unstable.

9.2 RECOMMENDATIONS

There is a large scope for further work on the reactor system by making a few modifications. Examples of these are

- (i) The feed flowrate can also be used as a manipulative variable by adding a control valve to the feed line. With two manipulative variables tank temperature and concentration can be decoupled in the same way as described in the previous chapters. Invariance control for step in feed concentration can also be incorporated in the system.
- (ii) The addition of another C.S.T.R. in series creates many stability problems. The effect of flow of coolant cocurrent or countercurrent to the feed on the stability can be studied.
- (iii) As the equation generated for invariance control scheme is different from that of the conventional feed-forward control a comparative study of invariance and P+I+D and feed-forward control could usefully be carried out.
- (iv) Sampling with zero order hold introduces time

lags and hence instabilities. Thus if the sampling time is large, time lag may be large and the effect of this on limit-cycle offers an interesting study. A stable limit-cycle for low sampling time may become unstable as sampling time is increased. Fig. (9.1) shows the effect of sampling on the limit-cycle generated at the first order open loop stable operating point. The period of oscillation increases as the sampling time is increased and for a sampling time of 80 seconds is no longer a closed stable trajectory but slowly unwinds.

Gain (K_c) =0.036 0 = Open loop stable operating point 1 = Sampling time =0 secs., Time period=960secs. 2 = =20 secs., =1160secs. 3 = =80 secs., =1300secs.

FIG.9.1 EFFECT OF SAMPLING TIME ON THE LIMIT-CYCLE GENERATED AT THE OPEN LOOP STABLE OPERATING POINT OF A FIRST ORDER SYSTEM

BIBLIOGRAPHY

- Benson, The foundations of chemical kinetics,
 McGraw Hill (1960)
- Basolo, F. & G. Pearson, Mechanisms of inorganic reactions - A study of metal complexes in solution, second edition, Wiley (1967)
- Uppal, A. & W.H. Ray, On the dynamic behaviour of C.S.T.R., Chem. Engng. Sci., Vol.29, (1974) p.967
- Hlavacek, V., M. Kubicek and K. Visnak, Modelling of chemical reactors XXVI, Multiplicity and stability analysis of a C.S.T.R. with exothermic reaction A+B+C, Chem. Engng. Sci., Vol. 27, (1972) p.719
- Luyben, W.L., Effect of reaction rate on the open loop stability of chemical reactors, A.I.Ch.E., Vol.20, No. 1, (Jan.'74) p.175
- Dudukovic, M.P., Micromixing effects on multiple steady-states in isothermal chemical reactors, Chem. Engng.Sci., Vol.32, No. 9, (1977) p.985
- Vejtasa, S.A. & R.A. Schmitz, An experimental study of steady-state multiplicity and stability in an adiabatic stirred reactor, A.I.Ch.E., Vol.16, No.3, (May 1970) p.410
- Chang, M. & R.A. Schmitz, An experimental study of oscillatory states in a stirred reactor, Chem. Engng. Sci., Vol. 30, (1975) p.21
- 9 Ibid, Feedback control of unstable states in a laboratory reactor, Chem. Engng. Sci., Vol.30, (1975) p.249

- Schmitz, R.A., Bautz, W.H. Ray & Uppal, The dynamic behaviour of a C.S.T.R.: some comparisons of theory and experiment, A.I.Ch.E., Vol. 25, No.2, (March 1979) p.289
- Baccaro, G.P., N.Y. Gaitonde & J.M.Douglas, An experimental study of oscillating reactors,
 A.I.Ch.E., Vol.16, No.2, (March 1970) p.249
- 12 Chao, Y.C., The study of optimum model reference adaptive control of a C.S.T.R., Ph.D. Thesis,
 University of Aston in Birmingham (1972)
- Alpaz, M., The simulation of a controlled tubular reactor with counter current heat exchanger,

 Ibid (1975)
- Buxton, B., The control of a C.S.T.R., Ibid (1971)
- Farabi, H., The cascade control of a partially simulated C.S.T.R., Ibid (1978)
- Berger, J.S. & D.D. Perlmutter, Stability of cascade reactors, I. & E.C. (fund.), Vol.4, No. 1, (Feb. 1965) p.90
- Ibid, Chemical reactor stability by Liapunov's direct method, A.I.Ch.E., Vol.10, No.2, (March 1964) p.233
- Ibid, The effect of feedback control on chemical reactor stability, Ibid, p.238
- Jacques, F.G., R.A. Smoak & C.H. Baron, A note on optimised quadratic form for generating Liapunov function, Chem. Engng. Sci., Vol. 27, (1972) p.835

- Tarbell, J.M., A thermodynamic Liapunov function for the near equilibrium C.S.T.R., Chem. Engng. Sci., Vol. 32, (1977) p.1471
- Liapunov's direct methods, I. & E.C. (fund.),
 Vol.6, No. 3, (Aug. 1967) p.432
- Berger, A.J. & L. Lapidus, Stability of high dimensional nonlinear systems using Krasovskii's theorem, A.I.Ch.E., Vol.15, No. 2 (March 1969) p.171
- Davidson, E.J. & E.M. Kurak, A computational method for determining quadratic Liapunov function for nonlinear systems, Automotica, Vol.7, (1971) p.627
- Aris, R. & N. Amudson, An analysis of chemical reactor stability I, II & III, Chem. Engng. Sci., Vol.7, (1958) p.121
- Bruns, D.D. & J.E. Bailey, Nonlinear feedback control for operating a nonisothermal C.S.T.R. near an unstable steady-state, Chem.Engng.Sci., Vol.32, No.2 (1977) p.257
- Mesarovic, The control of multivariable systems,
 Technology Press of M.I.T. and John Wiley & Sons,
 N.Y. (1960)
- Meerov, Multivariable control systems, Translated from Russian, I.P.S.T., Jerusalem (1968)
- Foster, R.D. & W.F. Stevens, An application of noninteracting control to a continuous flow stirred tank reactor, A.I.Ch.E., Vol.13, No.2, (March 1967) p.340

- Bollinger & Lamb, Multivariable system analysis and feedforward control synthesis, I. & E.C. (fund.), Vol. 1, No. 4, (1962) p.245
- 30 Shean Lin Liu, Noninteracting process control,
 I. & E.C. (process design and dev.), Vol. 16,
 No.4, (Oct. 1967) p.461
- Hutchinson, J.F. & T.J. McAvoy, On line control of a nonlinear multivariable process, Ibid, Vol.12, No.3, (1973) p.226
- Tokumaru & Iwai, Noninteracting control of nonlinear multivariable system, Int.J.Control, Vol.16, (1972) p.945
- Petrov, B.N., The invariance principle and the conditions for its applications during the calculations of linear and nonlinear systems,

 Proceedings of the I International Congress of the International Federation of Automatic Control,

 Moscow (1960) p.117
- Haskins, D.E. & C.M. Sliepcevich, The invariance principle of control for chemical processes,

 I. & E.C. (fund.), Vol.4, No.3 (Aug.1965) p.241
- Heemskerk, A.H., W.R. Dommers and J.M.H. Fortuin,

 Limit-cycles measured in a liquid phase reaction

 system, Chem. Engng. Sci., Vol. 35, No. 1/2 (1980)

 p.439
- Luus, R. & L. Lapidus, An averaging technique for stability analysis, Chem. Engng. Sci., Vol. 21, (1966) p.159

- Beck, J., Series description of small oscillations in nonlinear autonomous systems, Chem.Engng.Sci., Vol.32, No.3, (1977) p.265
- Douglas, J.M. & N.Y. Gaitonde, Analytical estimates of the performance of chemical oscillators,

 I. & E.C. (fund.), Vol.6 No.2, (May 1967) p.265
- Dorawala, T.G. & J.M. Douglas, Complex reactions in oscillating reactors, A.I.Ch.E., Vol.17, No.4, (1971) p.974
- Gaitonde, N.Y. & J.M. Douglas, The use of positive feedback control systems to improve reactor performance, A.I.Ch.E., Vol.15, No.6 (Nov.1969) p.902
- Daoud, A.T., An application of a screening test for limit-cycles for the stability analysis of a chemical system, Chem.Engng.Sci., Vol.31, (1976) p.510
- 42 Minorsky, Theory of nonlinear control systems,

 Mcgraw Hill (1969)
- Ku, Y.H. & R.K. Jonnada, Bifurcation theorems and limit-cycles in nonlinear systems I, pt.I, Journal Franklin Inst., Vol.292 (July-Dec.1971) p.19
- 44 Ibid, pt. II, p.293
- Jonnada, R.K. & C.N. Weygandt, Limit-cycles of higher order nonlinear autonomous systems, Ibid, Vol.291 (Jan.-June 1971), p.195

- Honeywell information system Ltd., "H316 and HADIOS general information", Brentford, England.
- Programmers reference manual, H316 and DDP516
 General purpose digital computers,
 Doc. no: 42400343401A
- HADIOS data highway controller, H316 Hardware, Doc. no: 41286101087C
- Honeywell series 16 Assembly languages, DAP16 and DAP16 MOD 2, Doc. no: 41286384-000-01
- Webb, R., Development of an adaptive Kalman filter for estimation in chemical plants, Ph.D. Thesis, University of Aston in Birmingham (1977)
- Horak, J. & F. Jiracek, Control of stirred tank
 in open loop unstable states, Chem. Engng. Sci.,
 Vol. 35, No. 1/2 (1980) p. 439
- Barnett & Storey, Matrix methods in stability theory, London: Nelson (1970)

APPENDICES

APPENDIX 1 LISTING OF COMPUTER PROGRAMS

A.1.1 PROGRAM FOR OBTAINING THE STABLE AND UNSTABLE OPERATING POINTS

```
REM GENERALISED PROGRAM FOR OBTAINING SS VALUES AND
  10
  15 REM ROUTS OF LINEARISED SYSTEM FOR VARIOUS REACTION
  17
     REM URDERS.
 20 READ V.VI.CO.R.R.D.U
    DATA 17300,8532,.001,.00198,2000,30,.037
  30
     PRINT"WHAT ARE THE INLET CUMDITIONS";
  50
     INPUT F, FI, TO, TI, CI
  60 FUR I=1 TU 9
 70 \Box = I - 5
 80 PRINT "TYPE OF STUDY: I=CALCULATE E.GIVEN OP. TEMPR."
 90 PRINT TAB(15);"2=CALCULATE OP. TEMPR. GIVEN E"
     INPUT 12
 91
 92 T9=V/F
 94 T8=V1/F1
 96 IO=U/(V*CO)
 98
     I1=U/(V1*C0)
100
    I9=0
105 IF I2 >= 2 THEN 500
     REM CALCULATE ACTIVATION ENERGY FOR THE GIVEN
107
108
    REM UPERATING TEMPERATURE
    PRINT"WHAT IS THE STEADY STATE TEMPERATURE DESIRED";
110
115 INPUT T2
    PRINT"WHAT IS THE NEAREST E VALUE";
190
200
    INPUT E
210
    E=E+.005
220
    Q=E*C0/(R*D*C1)
230
    19=19+1
240
    B1=T2*Z
250
    C2=C1-.0001
2 60
    C3=C2
270
     X=K*C3 ** U*EXP(-Q/B1)
280
    HU=F*(C1-C3)-X*V
290
    h1=-F-U*x*V/C3
300
     C2=C3-HU/H1
320
    1F ABS((C2-C3)/C3)>.00001 THEN 260
330
    T3=(U*T2+F1*C0*T1)/(U+F1*C0)
340
    HU=F*CU*(TU-T2)-U*(T2-T3)+X*V*D
360
     IF 19=1 AND H0<0 THEN 2470
400
    IF H0*1000 > 1.E-08 THEN 210
405
     0=E/R
410
     PRINT"REACTION ORDER=";0
420
    Print"E=";E;"T1=";T2;"C1=";C3;"TC1=";T3
430
    PRINITHEAT IN KWS=";4.181*V*K*D*C3 ** 🛈*EXP(-E/(R*T2))
440
     GUTU 2000
445
     KEM CALCULATE OPERATING TEMPERATURE FOR GIVEN
447
    KEM ACTIVATION ENERGY
500
    DIM B(9)
520
    MAT READ B
530
    DATA 21.99,19.605,17.22,14.83,12.444,10.06
535
    DATA 7.67,5.285,2.9
610
    0=B(I)/k
62 U
    T5=T0+1.5
```

630

T2=T5

```
X=EXP(-Q/T2)
       T3 = (U*T2+F1*K*C0*T1)/(U+F1*K*C0)
  650
  660
       C2=C1-.00001
  670
       C3=C2
      H1=F*(C3-C1)+K*V*X*C3 ** U
  680
  690
      H2=F+K*V*X*U*C3 ** (U-1)
  700
      IF H2=0 THEN 720
  710
      C2=C3-H1/H2
      IF ABS(C3-C2)/C2 <= 0.0001 THEN 740
 720
 730
       GUTU 670
 740
      Y=K*D*V*C3 ** U*X
      H2=Y*Q/T2 ** 2-F*R*C0-U
 750
 760
      H1=F*R*C0*(T0-T2)-U*(T2-T3)+Y
 780
      12=.9
 790
      IF ABS(T5-T2)>.5 THEN 810
 800
      12=.4
      T5=T2-(H1/H2)*I2
 810
     IF ABS(12-15)/T5 <=.00001 THEN 410
 820
 830
     GUTU 630
 1995 REM CALCULATE EIGEN VALUES
2000 DIM A(3,3)
2010 A1=C3/C1
     B1=T2*Z
2020
2030 Q = E * C0 / (D * R * C1)
2040 \quad A(1,3)=A(3,1)=0
      A(2,1)=K*C1 ** (U-1)*A1 ** (U-1)*U*EXP(-Q/B1)
2050
20 60
     A(1,1) = -1/T9 - A(2,1)
2070 A(1,2)=K*C1 ** (U-1)*A1 ** U*EXP(-Q/B1)
2080 A(1,2)=A(1,2)*Q/B1 **2
2090
     A(2,2) = -(1/T9 + I0) - A(1,2)
2100 A(2,3)=10
2110 A(3,2)=11
2120 \quad A(3,3) = -(1/T8+II)
2130
     B5 = -(A(1,1) + A(2,2) + (3,3))
2140 P7=A(2,2)*A(3,3)
2150 P8=A(2,3)*A(3,2)
2160 P9 = A(1,2) * A(2,1)
2170
     B6=A(1,1)*(A(2,2)+A(3,3))+P7-P8-P9
2180 B7=-(A(1,1)*(P7-P8)-A(3,3)*P9)
2190 R9=-B7/B6
2200
      R8=R9
     H0=R8 ** 3+R8 ** 2*B5+R8*B6+B7
2210
2220 H1=3*k8 ** 2+2*k8*B5+B6
2230 H2=6*R8+2*B5
2240
     K9=R8-H0/H1-H1/2/H2
2250
     IF ABS(H0)>1.E-U7 THEN 2200
226U B8=B5+R8
2270
     B9=B6+k8*(B5+R8)
2280
      k9=k8
2290 R8=0
23UU B6=B8 ** 2-4*B9
2310
     IF B6>0 THEN 234U.
2320 K8=1
```

```
2330
      B6=ABS(B6)
2340 B6=SQKT(B6)
2350
     B5=-B8
      PRINT"THE ROOTS ARE"
2360
2370
      IF R8=1 THEN 2400
     PRINT R9, (B5+B6)/2, (B5-B6)/2
2380
2390
      GUTU 2410
      PRINT R9, B5/2;"+1"; B6/2, B5/2;"-1"; B6/2
2400
      KEM CALCULATE THE NEXT HIGHER UPER. TEMPR.
2405
      IF 19<0 THEN 2450
2410
2420
      19=-1
2430
      T5=T1+2.5
2440
      GDTU 630
      NEXT I
2450
2460
      END
      PRINT "GIVE A LÜWER VALUE UF E"
2470
2480
      GUTU 190
2490
      END
```

A.1.2 PROGRAM TO DETERMINE THE SEPARATRICES

```
TRACE2
      MASTER SEPARATRIX
 PRUGRAM TU CALCULATE SEPARATRICES BASED UN
 KRASUVSKII'S THEUREM
      INTEGER ORD
      REAL K, IU, II, K8, KC
      DIMENSIUN A(3,3), EE(4), B(3,3)
      DATARH, RHC, CP, CPC, V, VC, R, K, DH/1., 1., 0.001, 0.001, 17300.
     1,8532.,0.00198,2000.,30./,U/0.037/
      DATAEE/14.83,12.445,10.06,7.67/
      READ(5,209)F,FC,T0,TC0,C0
      READ(5,2099)((B(I,J),J=1,3),I=1,3)
2099 FURMAT(3E0.0)
      1 J J = 0
 209 FURMAT(5F0.0)
 100 FURMAT(3F0.0)
     A(1,3),A(3,1)=0.
      ZZ=RH*CP/(DH*C0)
      TH=V/F
      I0=U/(RH*CP*V)
     I1=U/(RHC*CPC*VC)
     THC=VC/FC
     G0 = TC0 * ZZ
     WRITE(6,99)((B(I,J),I=1,3),J=1,3)
     FORMAT(10X, '[A]MATRIX: '/,3(3(5X,F9.4)/))
99
200
     FURMAT(5x, 'URDER UF REACTION=',12)
     FURMAT(2x, 'SEPARATRIX=', I2//20x, 'TEMP', 10x, 'CUNC')
300
2888 READ(5,2099,END=9000)KC,XKC
     WRITE(6,1134)KC,XKC
1134 FURMAT(20x, 2E15.6)
     I \downarrow J = I \cup J + I
     X3=0
     DU1000IJK=1,4
 CALCULATE SEPARATRICES FÜR RN. URDER=-1.1 & 2
     IF(IJK.EQ.2)GUTU1000
     URD=IJK-2
     IF(IJJ.EQ.1)READ(5,100)TISS,CISS,TCISS
     Q=EE(IJK)*CP/(R*DH*C0)
     AISS=CISS/CO
     BISS=TISS*ZZ
     GISS=TCISS*ZZ
     WRITE(6,200) ORD
     Di)20001JX=1,5
     IF(IJX.EQ.1.AND.IJK.EQ.3)GUTU2000
     I \cup X = I \cup X
     IF(IJX \cdot GT \cdot 4)IJKX = IJX + I
     WRITE(6,300)IJKX
    DU30001x=1,13
    T1 = 290 \cdot + (IX - I) * 5.
    X2 = (T1 - T1SS) * ZZ
    RI = EXP(-Q/(X2+BISS))
    C2=C0
    IRM=0
```

```
C1 = C2
      A(2,1)=K*山RD*C1**(山RD-1)*R1
      A(1,1) = -1/TH - A(2,1)
      A(1,2)=-K*C1**URD*R1*Q/((B1SS+X2)**2*C0)
      A(2,2) = -(1/TH+10) - A(1,2)
      BB=VC/(G0-G1SS-x3)
      DFCX3=XKC
      DFCX2=KC
      A(3,2)=11+DFCX2/BB
      FCB=KC*X2+XKC*X3
      A(3,3) = -(1/THC+I1) - FCB/VC+DFCX3/BB
      A(2,3)=10
      DF1=-K*URD*(URD-1)*R1*C1**(URD-2)
      DF2=-A(2,1)*Q/(C0*(B1SS+X2)**2)
      DF3 = -DF1
      DF4=-DF2
      FN1=2*A(1,1)*B(1,1)+2*A(2,1)*B(1,2)
      FN2=2*A(2,2)*B(2,2)+2*(A(3,2)*B(2,3)+A(1,2)*
     1B(1,2))
      DFN1=2*DF1*B(1,1)+2*B(1,2)*DF3
      DFN2=2*DF4*B(2,2)+2*DF2*B(1,2)
      GUTU(10,20,30,30,202),IJX
   SEPARATRIX 1
 10
      FN=TH*K*R1*(B(1,1)-B(1,2))/B(1,1)
      IF(IJK.EQ.1)C1=SQRT(FN)
      IF(IJK \cdot EQ \cdot 4)C1 = -1/(2*FN)
      IF(IRM.EQ.1)GJTU 401
      GUTU70
   SEPARATRIX 2
 20
      FN = -(-(1/TH + I0) *B(2,2) + B(2,3) *A(2,3))/(B(1,2))
     1-B(2,2))*C1**URD/A(1,2)
      1F(1JK.EQ.1)C1=1/FN
      IF(IJK.EQ.3)C1=FN
      IF(IJK.EQ.4.AND.FN.LT.0.)GUTU3000
      IF(IJK.EQ.4)C1=SQRT(FN)
      IF(IRM.EQ.1)GUTU 401
      GUTU70
   SEPARATRIX 3
      XX = B(1,2) * (A(1,1) + A(2,2)) + A(2,1) * B(2,2) + B(1,1)
 30
     1*A(1,2)+B(1,3)*A(3,2)
      DXX=B(1,2)*(DF1+DF4)+DF3*B(2,2)+B(1,1)*DF2
      FN=FN1*FN2-XX**2
      DFN=DFN1*FN2+FN1*DFN2-2*XX*DXX
      IF(IJX.EQ.4)GUTU40
      GiTU50
   SEPARATRIX 4
      YY=B(1,3)*(A(1,1)+A(3,3))+B(1,2)*A(2,3)+A(2,1)
     1*B(2,3)
      DYY=B(1,3)*DF1+DF3*B(2,3)
   SEPARATRIX 6
      ZZ=B(2,3)*(A(2,2)+A(3,3))+B(2,2)*A(2,3)+A(3,2)*
202
     1B(3,3)+A(1,2)*B(1,3)
      S3=-2*A(3,3)*B(3,3)-2*A(2,3)*B(2,3)
```

190

```
DZZ=B(2,3)*DF4+DF2*B(1,3)
        FN=S3*FN-2*XX*YY*ZZ+FN1*ZZ**2+FN2*YY**2
        DFN=S3*DFN-2*DXX*YY*ZZ-2*XX*DYY*ZZ-2*XX*YY*DZZ+
      1DFN2*YY**2+FN2*DYY*2*YY
      2+DFN1*ZZ**2+FN1*DZZ*2*ZZ
       IF(IJX.EQ.4)G0T050
       FN=-S3*FN2-ZZ**2
       DFN=-ZZ*2*DZZ-1*S3*DFN2
   50
       IF(IRM.EQ.1)GUTU 401
       IF(DFN.EQ.0)GUTU60
       C2=C1-FN/DFN
       C3=C1
       IF(C1.E0.0.)C3=C2
       IF(C3.EQ.0.)G0T060
       IF(ABS(C2-C1)/C3.GE.0.0005)GUTU1
  60
       C1 = C2
  70
       WRITE(6,400)T1,C1
       FURMAT(19X, F6.2, 8X, F9.7)
 400
       C2=C1*1.1
       IRM=1
       GUTU 1
  401 IF(FN.GE.O.) WRITE(6,1012)
 1012 FURMAT(1H+,46X,'+')
      IF(FN.LT.0.) WRITE(6,1013)
 1013 FORMAT(1H+,46X,'-')
      ZZ=CP/(DH*C0)
3000
      CONTINUE
2000
      CONTINUE
1000
      CUNTINUE
 2222 CONTINUE
      GUTU2888
9000
      CUNTINUE
      STUP
      END
      FINISH
```

A.1.3 PROGRAM TO DETERMINE THE LARGEST RAS

```
PRUGRAM TO DETERMINE THE LARGEST RAS USING
 KRASUVSKII'S THEUREM
     SUBRUUTINE MAXLIAP (XKA1, XDKA, XKA2, A, XK, VSUM1)
 SUBRUUTINE TU CALCULATE LARGEST LIAPUNUV VALUE
 WITHIN WHICH -VDOT > 0
     REAL KA, KAI, KA2
     DIMENSIUN DF(3,3), X4(3), X3(3), A(3,3), X(3), FN(3)
     REAL ITHU, ITHI, KC
     INTEGER URD
     CUMMUN/THREE/IUU4, 15, 1ST
     CUMMUN/SIX/A1, B1, A2, B2, C2, AAA, BBB, CCC, DDD, FN1
     COMMON/SEVEN/IPK, IPD, KA1, KA2, IFAIL, DKA
     CUMMUN/FIVE/TH, THC, CO, AISS, BISS, GISS, ITHO, ITHI, K
    1,Q,ZZ,URD,CORD,GO,BO,VC,KC,XX,XIO,XII,XGG
     VSUM1=0.
     KA1=XKA1
     KA2=XKA2
     DKA=XDKA
     IPK=0
  52 FURMAT(9X, 'LIAP K', 12X, 'X1C', 12X, 'X2C', 12X, 'X3C', 12X,
    1'UBJ',12X,'VULUME')
     SINDEX=190 . * 178 .
     NX = 3
     KA=KAI
1929 WRITE(2,300)
 300 FURMAT(/5x, '[A] MATRIX:')
     D \cup 4 I = I \cdot NX
     WRITE(2,200)(A(I,J),J=1,NX)
   4 CUNTINUE
     CALL SYLVES(NX,A,0), RWTURNS(9999)
200 FURMAT(2X,3(E14.6,2X))
     WRITE(2,52)
  54 FURMAT(8X,'X1C')15X,'X2C',15X,'X3C',15X,'UBJ',15X,
    1'X3C',15X,'UBJ',15X,'X3C')
   7 WRITE(1004,50)KA
  50 FURMAT(/2X, 'LIAPUNUV K=',E13.6)
     XK=KA
     WRITE(I004,54)
     X(1) = -0.003 + .82
     SMIN=10.**70
     VSUM=0 .
     DU 1002 IJ1=1,61
     M=IJ1/2
     INDEXI=2
     IF(M*2.EQ.IJ1)INDEXI=4
     IF(IJ1.EQ.1.UR.IJ1.EQ.61)INDEXI=1
     X(1) = X(1) + \cdot 003
     X1C=X(1)-A1SS
     XB = -0.015375
     DO 1003 IJ2=1,65
     XB = XB + \cdot 0.15375
     X(2) = XB/10.25
     M = I J2/2
```

```
INDEXJ=2
     IF(M*2.EQ.IJ2)INDEXJ=4
     IF(IJ2.EQ.1.UR.IJ2.EQ.65) INDEXJ=1
     INDEX=INDEXI*INDEXJ
     X2C=X(2)-(BISS-B0)
     YY = EXP(-Q/(BISS+X2C))
     FN1=-X1C/TH-((X1C+A1SS)**DRD*YY-XX)*CORD
     FN(1) = FN1
     X3(1)=X3(2)=X3(3)=0.
     IUDEX=0
1010 CALL VAR3(X1C, X2C, X3C, IODEX, KA, A), RETURNS(1005)
     X3(IDEX)=X3C
     IF(X3C.LT.XGG)X3(IDDEX)=XGG
     IF(X3C.LT.XGG)GUTU 1010
     CALL JACUBIA(X1C, X2C, X3C, DF)
     FN(2) = A1 + B1 * X3C
     FN(3) = A2 + B2 * X3C + C2 * X3C * * 2
 808 DSUMF=0.
     DU 802 L=1.NX
     DU 802 I=1,NX
     DU 802 J=1,NX
 802 DSUMF=DSUMF+FN(I)*FN(J)*DF(L,J)*((A(I,L)+A(L,I))*I5
     X4(1) = X1C
     X4(2) = X2C
     X4(3) = X3C
     DO 803 I=1.NX
     DO 803 J=1,NX
803 DSUMF=DSUMF+(A(I,J)*X4(I)*FN(J)+A(I,J)*X4(J)*FN(I))/10.**7
     DBJ=-DSUMF
     WRITE(IUU4,1006)X1C,X2C,X3C,UBJ
1006 FORMAT(5X,4(E14.7,2X))
     IF(OBJ.LT.O..AND.IST.EQ.1)GOTO 1911
     IF(OBJ.LT.O..AND.IST.EQ.O)GUTO 1909
     IF (DBJ.GT.SMIN) GDTD 1010
     SMIN=UBJ
     XIMIN=XIC
     X2MIN=X2C
     X3MIN=X3C
     GUTU 1010
1005 CONTINUE
     IF(X2C*KC.GT.120.)VSUM=VSUM-FLUAT(INDEX)*.18*
    1(X3(1)-X3(2))*(1./10.25-(B1SS-B0)-120./KC)/SINDEX
 VULUME OF THE ELLIPSOIDAL REGION
     VSUM=VSUM+FLUAT(INDEX)*.18*(X3(1)-X3(2))/SINDEX
1003 CUNTINUE
1002 CUNTINUE
     IF(SMIN.GT.10.**69)GUTU 1009
1919 WRITE(7,1007)KA, X1MIN, X2MIN, X3MIN, SMIN, VSUM
     VSUM 1 = VSUM
1007 FURMAT(5X, 6(E14.6,2X),5X)
     IPD=0
     IF(IST-EQ-1) GOTO 1910
1911 CALL LIAPK(KA)
```

```
IF(IPD.LE.D)GOTO 7
       GUTU 9999
 1009 KA1=KA1+DKA
       WRITE(7,1007)KA
       KA=KA1
       GOTO 7
 1909 XK=KA-DKA
 1910 WRITE(2,1008)XK, VSUM1
 1008 FURMAT(5X, E14.6, 64X, E14.6)
 9999 CUNTINUE
      RETURN
      END
      SUBRUUTINE LIAPK(KA)
C TO INCREASE LIAPUNOV VALUE
      CUMMUN/SEVEN/IJK, IPD, KA1, KA2, IFAIL, DKA
      REAL KA, XK(3), KAI, KA2
       IPD=-1
      KA=KA+DKA
      KA1=KA
      IF(KA.GE.KA2)IPD=1
      RETURN
      END
       SUBROUTINE SYLVES(N, B, INDEX), RETURNS(NA)
   DETERMINE PUSITIVE DEFINITNESS OF A SYMMETRIC MATRIX
      REAL C(3,3), DET, WKSPCE(3)
      DIMENSION B(3,3)
      DU 10 K=1.N
      IFAId=0
      DU 1 1=1.K
      WKSPCE(I) = 0.
      DU 1 J=1,K
    1 C(I_{\bullet}J) = B(I_{\bullet}J)
      IC=3
      CALL FOGAAF(C, IC, K, DET, WKSPCE, IFAID)
      IF(IFAID.GT.0)GOTO 5
      IF(DET.LT.0)GOTO 2
   10 CUNTINUE
      IF(INDEX.EQ.O) WRITE(2,400)
  400 FURMAT(/20X, '[A] MATRIX IS +VE DEFINITE')
      RETURN
    2 IF(INDEX.EQ.0)WRITE(2,100)
  100 FURMAT(/20x, ' [A] MATRIX IS -VE DEFINITE')
      RETURN NA
    5 IF(INDEX.EQ.0) WRITE(2,500)
  500 FURMAT(/20x, '[A] MATRIX IS INDETERMINATE')
      RETURN NA
      SUBROUTINE CONSTAN(KAI, DKA, KA2, XMULTI, IJK)
C REACTUR UPERATING PARAMETERS AND CUNSTANTS
      INTEGER URD
      REAL ITHU, ITHI, KAI, KA2, KC
      COMMON/EIGHT/AIUS, BIUS, GIUS
      COMMON/THREE/IOO4, I5, IST
```

```
COMMON/FOUR/I6
   COMMON/FIVE/TH, THC, CO, Alss, Blss, Glss, ITHO, ITHI, K, Q,
   1ZZ, URD, CORD, GO, BO, VC, KC, XX, XIU, XII, XGG
   DATA RH.RHC.CP.CPC.V.ZC.R.QK.DH/1..1..0.001,0.001,17300.,
   18532.,0.00198,2000.,30./,0/0.037/
    VC = ZC
90 FURMAT(412)
   READ(1,90) URD
    E = 14.83
    IF(ORD.EQ.0)E=12.445
    IF(URD.EQ.1)E=10.06
    IF(URD.EQ.2)E=7.67
    READ(1,100)F,FC,TO,TCO,CO
100 FORMAT(5F10.6)
    READ(1,200)TISS,CISS,TCISS
    READ(1,200)TIUS, CIUS, TCIUS
200 FURMAT(3F11.7)
    READ(1,201)KC
    WRITE(2,150) ORD
150 FORMAT(/20x, ORDER OF REACTION : 12)
    WRITE(2,151)F,FC,T0,TC0,C0
151 FURMAT(/5X, 'F=',F10.3,5X, 'FC=',F10.3,5X, 'T0=',
   1F10 · 3 · 5X · 'TC0 = ' · F10 · 3 · 5X · 'C0 = ' · F10 · 8)
    WRITE(2,152)TISS,CISS,TCISS
152 FORMAT(/5X, 'TISS: ', F10 . 3, 5X, 'CISS: ', F10 . 3, 5X,
   1'TC1SS:',F10.3)
    WRITE(2,185)KC
185 FURMAT(/20X, CUNTRULLER GAIN=', 1PE14.7)
900 A1SS=C1SS/C0
    ZZ=RH*CP/(DH*C0)
    BISS=ZZ*TISS
    GISS=ZZ*TCISS
    G0 = ZZ * TCO
    Alus=Clus/CO
    Blus=ZZ*Tlus
    G1US=ZZ*TC1US
    B0 = T0 * ZZ
    K=ORD-1
    TH=V/F
    CORD=QK*CO**K
    ITHU=U/(RH*CP*V)
    ITHI=U/(RHC*CPC*VC)
    THC=VC/FC
    Q=E*RH*CP/(R*DH*C0)
    XX=EXP(-Q/BISS)*AISS**ORD
    CHTI+HTV.1=DIX
    XII=1./THC+ITHI
    READ(1,201)KA1, DKA, KA2
201 FORMAT(3E13.6)
    READ(1,90)IUU4,I5,16,IST
    READ(1,201)XMULT1
    READ(1,90)IJK
    IF(16.EQ.1)WRITE(2,186)
```

```
186 FURMAT(20x, 'CUNTRUL UN TANK TEMPERATURE')
       IF(I6.EQ.2)WRITE(2,187)
  187 FURMAT(20x, 'CUNTROL ON TANK CONCENTRATION')
       IF(I5.EQ.1)WRITE(2,188)
  188 FORMAT(20x, 'REAL TIME SYSTEM')
       IF(15.EQ.-1)WRITE(2,189)
  189 FORMAT(20X, 'INVERSE TIME SYSTEM')
      XKC=KC
      XGG=G0-G1SS
      IF(IST.EQ.0) WRITE(2,190)
  190 FURMAT(20X, 'MAXIMISATION OF REGION OF ASY. STABILITY')
      IF(IST.EQ.1)WRITE(2,191)
  191 FORMAT(20X, 'MAXIMISATION OF REGION OF STABILITY')
      RETURN
      END
      SUBROUTINE RUTH(N,A, INDEX), RETURNS(NA)
   DETERMINE THE NATURE OF ROOTS OF JACOBIAN MATRIX
C BY RUTH'S CRITERIUN
      REAL 11(3,3)
      CUMMON/THREE/I004, I5, IST
      DIMENSIUN A(3,3),B(4,4),C(3,3),P(5)
      IF(15.EQ.1)GUTU 6
      DO 7 I=1.N
      DO 7 J=1,N
    7 A(I_*J) = -A(I_*J)
    6 P(1)=1.
      DO 2 1=1.N
      DU 2 J=1,N
      B(I,J)=0.
      IF(I \cdot EQ \cdot J)B(I \cdot J) = 1 \cdot 0
    2 CONTINUE
      DU 10 K=1.N
      DÜ 3 I=1,N
      DU 3 J=1.N
      SUM = 0 .
      Di 13 L=1.N
   13 SUM=A(I,L)*B(L,J)+SUM
    3 C(I,J)=SUM
      TR = 0.
      DU 5 1=1.N
    5 TR=TR+C(I,I)
      P(K+1) = -TR/K
      DO 1 I=1.N
      DO 1 J=1,N
      II(I,J)=0.0
      IF(I \cdot EQ \cdot J) II(I \cdot J) = P(K+1)
    1 CUNTINUE
      DO 4 I=1.N
      DO 4 J=1.N
   4 B(I_{\bullet}J)=C(I_{\bullet}J)+II(I_{\bullet}J)
   10 CONTINUE
      K11=N+1
      DU 22 I=1,KII
```

```
DO 22 J=1.K11
    IF((I.NE.K11.AND.J.NE.K11).AND.I5.EQ.-1)A(I,J)=-A(I,J)
    I=N/2
    M = (K11)/2
    IF(I*2.EQ.N) M=(N+2)/2
    K = 0
    K12 = M - 1
    DJ 21 I=1.M
    DJ 21 J=1.2
    K=K+1
 21 B(J, I)=P(K)
    DO 23 J=3,K11
    Di 23 K=1,K12
 23 B(J,K)=B(J-2,K+1)-(B(J-2,1)*B(J-1,K+1))/B(J-1,1)
    DO 25 J=1,K11
    IF(B(J,1)) 24,25,25
 25 CUNTINUE
    GÜ TÜ 26
 24 IF(INDEX.EQ.0) WRITE(2,200)
    RETURNNA
200 FORMAT(/20x, 'REAL PARTS OF THE ROOTS OF [J] MATRIX ARE +VE')
    RETURNNA
 26 Di 27 I=1,K11
    IF(B(I,1)) 24,28,27
 27 CUNTINUE
    IF(INDEX.EQ.0)WRITE(2,300)
300 FORMAT(/20x, 'REAL PARTS OF THE ROOTS OF [J] MATRIX ARE -VE')
   RETURN
28 IF(INDEX.EQ.0) WRITE(2,400)
400 FORMAT(/20X, 'PURE IMAGINARY RUUTS IN [J] MATRIX')
    END
    SUBROUTINE JACOBIA(X1C, X2C, X3C, DF)
CALCULATE JACUBIAN OF THE SYSTEM AT A GIVEN POINT
    INTEGER URD
   REAL ITHU, ITHI, KC
   DIMENSIUN DF(3,3)
      COMMON/FIVE/TH, THC, CO, AISS, BISS, GISS, ITHO, ITHI, K, Q,
  1 ZZ, URD, CURD, GO, BO, VC, KC, XX, XIU, XII, XGG
   DF(1,3)=0.
   DF(2,3)=ITHO
   CALL CUULANT(X1C, X2C, X3C, FCB, DFCX1, DFCX2, DFCX3)
   DF(3,1)=DFCX1*(XGG-X3C)/VC
      DF(3,2)=ITHI+DFCX2*(XGG-X3C)/VC
        DF(3,3)=-XII-FCB/VC+DFCX3*(XGG-X3C)/VC
   YY = EXP(-Q/(BISS+X2C))
40 DF(1,1)=-1./TH-YY *CURD*URD*(X1C+A1SS)**K
                                   *(Q/(X2C+B1SS)**2)
   *CORD
   DF(2,1) = -DF(1,1) - 1.7H
   DF(2,2) = -XIJ - DF(1,2)
   RETURN
```

-197-

```
END
      SUBRIJUTINE CUOLANT(X1, X2, X3, FCB, DFCX1, DFCX2, DFCX3)
C DETERMINE COULANT FLOWRATE
      INTEGER URD
      REAL ITHU, ITHI, KC
      CUMMUN/FOUR/I6
      COMMON/FIVE/TH.THC.CO.AISS.BISS.GISS.ITHO.ITHI.K.Q.
     1ZZ, URD, CORD, GO, BO, VC, KC, XX, XIO, XII, XGG
      DFCX3=0.
      IF(16.EQ.2)GUTU 20
     CUNTRUL
C
                  FCB=KC*X2C
   10 FCB=KC*X2
      DFCX1=0 .
      DFCX2=KC
      RETURN
C
     CONTROL
                FCB=-KC*X1C
   20 FCB = -KC * XI
      DFCX1=-KC
      DFCX2=0.
      RETURN
      END
      SUBROUTINE VAR3(X1C, X2C, X3C, IDDEX, KA, A), RETURNS(NA)
C CALCULATE X3(STATE VARIABLE CURRESPONDING TO
  JACKET TEMPERATURE) GIVEN THE LITHER TWO VALUES
      INTEGER URD
      REAL KC, ITHU, ITHI, KA, KA1, KA2
      DIMENSION A(3,3)
      COMMON/SIX/ A1,B1,A2,B2,C2,AAA,BBB,CCC,DDD,FN1
      COMMON/EIGHT/AIUS, BIUS, GIUS
      COMMON/FIVE/TH, THC, CO, AISS, BISS, GISS, ITHO, ITHI, K
     1. Q. ZZ. ORD. CORD. GO. BO. VC. KC. XX. XIO. XII. XGG
      IUDEX=IUDEX+1
      IF(IDDEX.NE.0)GDTD 100
      YY = EXP(-Q/(BIUS+X2C))
      FN1=-X1C/TH-((X1C+A1US)**ORD*YY-A1US**ORD*EXP(-Q/B1US))*COR
  100
           IF(IDDEX+GT+2) RETURN NA
      IF(IDDEX.EQ.2)GUTU 1000
      A1 = -X2C \times XIII - FNI - XIC/TH
      B1=ITHO
      CALL CUULANT(X1C, X2C, X3C, FCB, DFCX1, DFCX2, DFCX3)
      A2=X2C*ITHI+FCB*XGG/VC
      B2=-XII-FCB/VC
      C2 = 0.0
      AAA=A(2,2)*B1**2+2*A(3,2)*B1*B2+A(3,3)*B2**2
      BBB=2*(A(2,1)*FN1*B1+B2*A(3,1)*FN1+A(2,2)*A1*B1+
     IA(3,2)*(A1*B2+A2*B1)+A(3,3)*A2*B2)
      CCC=2*A(2,1)*FN1*A1+A(2,2)*A1**2+2*A(3,1)*FN1*A2
     1+A(1,1)*FN1**2+2*A(3,2)*A1*A2+A(3,3)*A2**2 -KA
     AAA=AAA+A(3,3)/10.**7
     BBB=BBB+2 • * (A(1,3) * X1C+A(2,3) * X2C) / 10 • * * 7
     CCC=CCC+(A(1,2)*X1C*X2C+A(1,1)*X1C**2+A(2,2)*X2C**2)/10,**7
     DDD=BBB**2-4*AAA*CCC
      IF(DDD.LT.O.) RETURN NA
```

```
X3C=(-BBB+SQRT(DDD))/(2*AAA)
      RETURN
 1000 X3C=(-BBB-SQRT(DDD))/(2*AAA)
      RETURN
      END
      SUBRIGUTINE FUNCTIO(X1C, X2C, X3C, FN)
   CALCULATE FUNCTION AT A GIVEN POINT
      DIMENSION DF(3,3), FN(3)
      INTEGER ORD
      REAL KC, ITHO, ITHI
        COMMON/FIVE/TH, THC, CO, A1SS, B1SS, G1SS, ITHO, ITHI, K
     1,Q,ZZ,QRD,CQRD,GO,BO,VC,KC,XX,XIQ,XII,XGG
      YY=EXP(-0/(B1SS+X2C))
      FN(1)=-X1C/TH-CDRD*(YY*(A1SS+X1C)**DRD-XX)
      FN(2)=-XI0*X2C+X3C*ITHU-FN(1)-X1C/TH
       CALL COOLANT(X1C, X2C, X3C, FCB, DFCX1, DFCX2, DFCX3)
      FN(3) = -XII * X3C + X2C * ITHI + FCB * (XGG - X3C) / VC
      RETURN
      END
      SUBROUTINE SOLVEA(N,B,A,I)
C TO SULVE [J]T [A]+[A] [J] =-[B]
      REAL P(9,9),A(3,3),B(3,3),AV(9,1),BV(9,1)
     1, WKSPCE(9), AA(9,9), BB(9,1), I(3,3)
      IEXIT=0
      IA=1
      IB=9
      P(1,1)=2*B(1,1)
      P(2,2)=B(1,1)+B(2,2)
      P(7,7)=P(3,3)=B(1,1)+B(3,3)
      P(4,4)=B(1,1)+B(2,2)
      P(5,5)=2*B(2,2)
      P(8,8)=P(6,6)=B(2,2)+B(3,3)
      BV(1,1)=I(1,1)
      BV(5,1)=I(2,2)
      BV(9,1)=I(3,3)
      BV(4,1)=BV(2,1)=I(1,2)
      BV(7,1)=BV(3,1)=I(1,3)
      BV(6,1)=BV(8,1)=I(2,3)
      P(9,9)=2.*B(3,3)
     P(1,5)=P(1,6)=P(1,8)=P(1,9)=
     1P(2,4)=P(2,6)=P(2,7)=P(2,9)=
    2P(3,4)=P(3,5)=P(3,7)=P(3,8)=
     3P(4,2)=P(4,3)=P(4,8)=P(4,9)=
     4P(5,1)=P(5,3)=P(5,7)=P(5,9)=
     SP(6,1)=P(6,2)=P(6,7)=P(6,8)=
     6P(7,2)=P(7,3)=P(7,5)=P(7,6)=
     7P(8,1)=P(8,3)=P(8,4)=P(8,6)=
    8P(9,1)=P(9,2)=P(9,4)=P(9,5)=0.0
     P(2,5)=P(3,6)=P(1,4)=P(1,2)=P(4,5)=P(7,8)=B(2,1)
     P(2,8)=P(3,9)=P(1,7)=P(1,3)=P(4,6)=P(7,9)=B(3,4)
     P(5,2)=P(5,4)=P(6,3)=P(4,1)=P(2,1)=P(8,7)=B(1,2)
     P(3,1)=P(8,2)=P(9,3)=P(7,1)=P(6,4)=P(9,7)=B(1,3)
```

```
P(2,3)=P(4,7)=P(5,8)=P(6,9)=P(8,9)=P(5,6)=B(3,2)
      P(3,2)=P(6,5)=P(7,4)=P(8,5)=P(9,8)=P(9,6)=B(2,3)
       CALL FU 4AEF(P, IB, BV, IB, NI, IA, AV, IB, WKSPCE, AA, IB,
      1BB, IB, IEXIT)
       K = 0
       DU 20 L=1.N
       DO 20 J=1.N
       K = K + 1
   20 A(J,L)=AV(K,1)*10.**5
       RETURN
       END
      PROGRAM JFINLI(DATA1, OUTPUT, ERROR2, ERROR1, TAPE 1=DATA1,
     1TAPE 2=UUTPUT, TAPE 6=ERRUR1, TAPE 7=ERRUR2)
 MASTER WHERE MAXIMISATION OF LIAPUNOV VOLUME IS
  CARRIED DUT
      COMMON/EIGHT/Alus, Blus, Glus
      DIMENSIUN DF(3,3),AA(3,3),A(3,3),NT(6),DAA(6),B(3,3)
      CALL CUNSTAN(XKA1, DKA, XKA2, XMULT1, IJK)
      CALL JACUBIA(0.,0.,0.,DF)
      X1C = X2C = X3C = 0.0
      WRITE(2,201)
  201 FORMAT(20x, 'JACOBIAN AT THE ORIGIN'/5x, '[J] MATRIX')
      Dü 3I=1,3
      WRITE(2,200)(DF(I,J),J=1,3)
  200 FURMAT(2X,3(E15.8,3X))
    3 CONTINUE
      CALL RUTH(3,DF,0), RETURNS(9999)
  101 FORMAT(312)
      IF(IJK-1)999,998,1000
   INPUT MATRIX B FOR CALCULATING MATRIX A IN
  [J] = [L] [A] + [A] = -[B]
999
         READ(1,100)((B(I,J),J=I,3),I=1,3)
        CALL SULVEA(3,DF,A,B)
      CALL EIVECT(A)
      WRITE(2,1025)
      CALLMAXLIAP (XKA1, DKA, XKA2, A, XK, VUL)
  998 IF(IJK.EQ.1)READ(1,100)X1C,X2C,X3C,VUL
      READ(1,100)X1MIN,X1D,X2MIN,X2D,X3MIN,X3D
      READ(1,101)NX1,NX2,NX3
      DU 1026 I=1,3
      DU 1026 J=I,3
 (U,I)A = (U,I)AA 6201
C MAXIMISE VOLUME FOR DIFFERENT (A) MATRIX VALUES
   CALCULATED WITH DIFFERENT JACOBIAN MATRICES
      DO 887 II=1,NX1
      X1 = X1MIN + X1D * I1
      DU 887 I2=1,NX2
      X2=X2MIN+X2D*I2
      DU 887 I3=1,NX3
      X3 = X3MIN + X3D * I3
      CALL JACOBIA(X1, X2, X3, DF)
```

```
CALL SULVEA(3, DF, A, B)
      WRITE(2,109)X1,X2,X3
      CALL MAXLIAP (XKA1, DKA, XKA2, A, XK, VSUM)
      IF(VSUM·LT·VOL)GOTO 887
      X1C = X1
      X2C=X2
      X3C=X3
      VUL=VSUM
      DO 1023 I=1,3
      DU 1023 J=I,3
 1023 AA(I,J)=A(I,J)
 887 CONTINUE
  109 FURMAT(10x, 'MAXIMISATIUN CARRIED OUT AT: ',3(E14.7,2X))
 1025 FORMAT(30X, 'MATRIX [A] OBTAINED FROM JTA+AJ=-I')
           IF(IJK.NE.2)G0T0105
 1000 READ(1,100)((AA(I,J),J=I,3),I=1,3)
  100 FORMAT(6E13.6,12)
      READ(1,100)VOL
  105 INK=INK1=0
      DU 1021 I=1,3
      DO 1021 J=I,3
      (L,I)AA=(L,I)A
 1021 A(J_0I) = A(I_0J)
      IDIR=1
C MAXIMISE LIAPUNOV VULUME BY MUDIFYING THE ELEMENTS
OF [A] MATRIX
 1005 XMULT=XMULT1+1.
      INDEX=1
 1010 \text{ IMP} = 0
 1020 IF(INDEX.GT.3)GUTU 1022
      K = 1
      J=INDEX
      A(K_J) = AA(K_J) * XMULT
      A(J_*K)=A(K_*J)
      GUTU 1024
 1022 J=INT(INDEX/2.+.89)
      K=2
      IF(INDEX.EQ.6)K=3
      A(K,J)=AA(K,J)*XMULT
      A(J_*K)=A(K_*J)
 1024 CALL MAXLIAP(XKA1, DKA, XKA2, A, XK, VSUM)
      IF(VSUM·GT·VOL)GOTO 1030
      IF(IMP.EQ.1)GUTU 1040
      IMP=1
      XMULT=1 -- XMULT1
      IDIR=-1
      GJTU 1020
 1040 INDEX=INDEX+1
      A(K,J) = AA(K,J)
      A(J_*K)=A(K_*J)
      XMULT=1.+XMULT1
      IF(INDEX.LT.7)GOTO 1010
      IF(INK.EQ.0)G0T0 9000
```

```
INK=0
     GOTO 1005
1030 INK=1
     VUL = VSUM
     AA(K,J)=A(K,J)
     GOTO 1010
9000 INK1=INK1+1
     IF(INK1.E0.3)G0T09001
     XMULT1=XMULT1/2.
     GUTU 1005
9001 DO 800 I=1.3
     DO 800 J=I.3
     (L \in I)AA = (L \in I)A
 (U,I)A=(I,U)A
     XK = -1 \cdot E + 05
     CALL MAXLIAP (XKA1, DKA, XKA2, A, XK, VSUM)
     CALL EIVECT(A)
     IN = -1
     CALL VAR3(A1US, B1US, X3C, IN, XK, A), RETURNS(300)
     IN=1
     CALL VAR3(A1US, B1US, X3C1, IN, XK, A), RETURNS(0300)
     WRITE(2,1002)XK, G1US, X3C, X3C1
1002 FORMAT(2X, 4(E13.6,2X))
 300 CUNTINUE
9999 CONTINUE
     STUP
     END
     SUBROUTINE EIVECT(A)
  DETERMINE EIGEN VALUES/VECTORS OF MATRIX [A]
     DIMENSIUN A(3,3), R(3), V(3,3), E(3)
     IFAIL=0
     CALL FO2ABF(A, 3, 3, R, V, 3, E, IFAIL)
     IF(IFAIL.NE.0) WRITE(2,100) IFAIL
 100 FURMAT(20X, 'IFAIL=', 12)
     WRITE(2,105)(R(I),I=1,3)
 105 FORMAT(5X, 'EIGEN VALUES: ',3(E14.7,3X)//5X, 'EIGEN VECTORS: ')
     DO 1000 I=1.3
     WRITE(2,110)(V(I,J),J=1,3)
 110 FURMAT(19X,3(E14.7,3X))
1000 CONTINUE
     RETURN
     END
```

A.1.4 PROGRAM TO DETERMINE THE EXISTENCE OF LIMIT-CYCLES

```
PROGRAM TO DETERMINE THE EXISTENCE OF LIMITCYCLES
  IN THREE DIMENSIONAL SPACE BY DIRECT METHOD OF LIAPUNOV
      SUBRUUTINE MAXLIAP (XKA1, XDKA, XKA2)
  SUBRUUTINE TO DETERMINE THE REGION WITHIN WHICH
  VDUT <0 FUR A SYSTEM WITH UNSTABLE ORIGIN (OPERATING POINT)
      REAL KA, KA1, KA2
      DIMENSION DF(3,3), X4(3), J1(3,3), X3(3), A(3,3), X(3), FN(3)
      REAL ITHO, ITHI, KC
      INTEGER ORD
      COMMON/EIGHT/I7
      COMMON/THREE/IO04, I5
      COMMON/SIX/A1, B1, A2, B2, C2, AAA, BBB, CCC, DDD, A, FN1
            COMMON/SEVEN/IPK, IPD, KA1, KA2, KA, I FAIL, DKA
        CUMMON/FIVE/TH, THC, CO, AISS, BISS, GISS, ITHO, ITHI, K
     1, Q, ZZ, DRD, CDRD, GO, BO, VC, KC, XX, XID, XII, XGG
      KA1=XKA1
      KA2=XKA2
      DKA=XDKA
        IPK=0
   52 FORMAT(9X, 'LIAP K', 12X, 'X1C', 12X, 'X2C', 12X, 'X3C', 12X, 'OBJ',
     112X, 'VÜLUME')
      SINDEX=190 .* 178.
           S = XN
           CALL JACUBIA(0.,0.,0., DF)
      ICHECK=0
         WRITE(2,100)
 100 FURMAT(/5X, 'JACUBIAN MATRIX')
      KA=KA1
      DO 3 I=1.NX
      WRITE(2,200)(DF(I,J),J=I,NX)
 200 FORMAT(2X,6(E15.8,3X))
    3 CUNTINUE
      CALL RUTH(NX,DF,0),RETURNS(8888)
8888 DO 8887 I=1.3
      Di 8887 J=1,3
      0 = (L \setminus I) \mid L
      IF(I \cdot EQ \cdot J) J I(I \cdot J) = -1
8887 CUNTINUE
      IF(I7.EQ.O)CALL SULVEA(NX,DF,A,JI)
      IF(I7 \cdot EQ \cdot 1)READ(1, 141)((A(I, J), J=I, 3), I=1, 3)
  141 FORMAT (6E13.6)
      A(2,1)=A(1,2)
      A(3,1)=A(1,3)
      A(3,2)=A(2,3)
1929
          WRITE(2,300)
 300 FÜRMAT(/5X, '[A] MATRIX:')
      DIJ 4 I = I \cdot NX
      WRITE(2,200)(A(I,J),J=1,NX)
    4 CONTINUE
      CALL SYLVES(NX)A,0), RETURNS(6666)
      CALL EIVECT(A)
      WRITE(2,52)
   54 FURMAT(8X, 'X1C', 15X, 'X2C', 15X, 'X3C', 15X, 'UBJ', 15X, 'X3C'
```

```
1,15X,'OBJ',15X,'X3C')
   7 WRITE(I004,50)KA
  50 FORMAT(/2X, 'LIAPUNDV K=',E13.6)
     WRITE(I004,54)
     X(1) = -0.003 + .82
     SMIN=10 • ** 70
     VSUM=0 .
     DO 1002 IJ1=1,61
     M=IJ1/2
     INDEXI=2
     IF(M*2.EQ.IJI) INDEXI=4
     IF(IJ1.EQ.1.UR.IJ1.EQ.61) INDEXI=1
     X(1)=X(1)+0.003
     X1C=X(1)-A1SS
     XB = -0.015375
     DO 1003 IJ2=1,65
     XB = XB + 0 \cdot 015375
     X(2) = XB/10.25
     M = I J2/2
     INDEXJ=2
     IF(M*2.EQ.IJ2) INDEXJ=4
     IF(IJ2.EQ.1.QR.IJ2.EQ.65) INDEXJ=1
     INDEX=INDEXI*INDEXJ
     X2C=X(2)-(B1SS-B0)
                YY=EXP(-Q/(B1SS+X2C))
        FNI
            =-X1C/TH-((X1C+A1SS)**ORD*YY-XX)*CORD
     FN(1)=FN1
     X3(1)=X3(2)=X3(3)=0.
     IDDEX=0
1010 CALL VAR3(X1C, X2C, X3C, IUDEX), RETURNS(1005)
     X3(IDDEX)=X3C
     IF(X3C.LT.XGG)X3(IDEX)=XGG
     IF(X3C.LT.XGG) GUTU 1010
     CALL JACUBIA(X1C, X2C, X3C, DF)
     FN(2) = A1 + B1 * X3C
     FN(3)=A2+B2*X3C+C2*X3C**2
808 DSUMF
              =0.0
     DU 802 L=1.NX
     DD 802 I =1.NX
     DU 802 J=1.NX
802 DSUMF=DSUMF+FN(I)*FN(J)*DF(L_{J})*((A(I<sub>J</sub>L)+A(L_{J}I)))*I5
     X4(1) = X1C
     X4(2) = X2C
     X4(3) = X3C
     DO 803 I=1.NX
    DO 803 J=1,NX
803 DSUMF=DSUMF+(A(I,J)*X4(I)*FN(J)+A(I,J)*X4(J)*FN(I))/10.**10
     UBJ=-DSUMF
     WRITE(I004,1006)X1C,X2C,X3C,0BJ
1006 FORMAT(5X,4(E14.7,2X))
     IF(OBJ.LT.O.)GOTO 1909
     IF(OBJ.GT.SMIN)GOTO 1010
     SMIN=UBJ
```

```
XIMIN=XIC
      X2MIN=X2C
      X3MIN=X3C
      GUTU 1010
1005 CONTINUE
      IF(X2C*KC.GT.120.) VSUM=VSUM-FLDAT(INDEX)*.18*
     1(X3(1)-X3(2))*(1./10.25-(B1SS-B0)-120/KC)/SINDEX
      VSUM=VSUM+FLOAT(INDEX)*.18*(X3(1)-X3(2))/SINDEX
 1003 CONTINUE
1002 CONTINUE
      IF(SMIN.GT.10.**69) GO TO 1009
          WRITE(2,1007)KA, X1MIN, X2MIN, X3MIN, SMIN, VSUM
1919
1007 FORMAT(5X, 6(E14.6, 2X), 5X,)
      IPD=0
      CALL LIAPK
      IF(IPD.LE.0) GO TO7
      GU TU 9999
 1009 KA1=KA1+DKA
      WRITE(2,1007)KA
      KA=KA1
      GUTU 7
 1909 X1MIN=X1C
      X2MIN=X2C
      X3MIN=X3C
      SMIN=UBJ
      VSUM=0 .
      GOTO 1919
 6666 A(1,1)=ABS(A(1,1))
      A(2,2) = ABS(A(2,2))
      A(3,3) = ABS(A(3,3))
      ICHECK=ICHECK+1
      IF(ICHECK • EQ • 2) GUTU 6667
      GUTU 1929
 6667 KC=KC*0.98
      WRITE(2,185)KC
  185 FURMAT(/20x, 'CONTRULLER GAIN=', 1PE14.7)
      GOTO 2
9999 CONTINUE
      RETURN
      END
      SUBRUUTINE CONSTAN(KA1, DKA, KA2)
  INPUT REACTOR OPERATING PARAMETERS AND
  CONSTANTS
      INTEGER URD
      REAL ITHO, ITHI, KAI, KA2
                                •KA •KC
      CUMMUN/EIGHT/I7
      COMMUNITHREE/I004,15
      COMMON/FOUR/I6
        COMMON/FIVE/TH, THC, CO, AISS, BISS, GISS, ITHO, ITHI, K, Q,
     1 ZZ, URD, CURD, GO, BO, VC, KC, XX, XI U, XII, XGG ACCONST
      DATA RH, RHC, CP, CPC, V, ZC, R, QK , DH/1., 1., 0.001, 0.001, 17300.
     18532.,0.00198,2000.,30./,U/0.037/
      VC = ZC
```

```
90 FÜRMAT(412)
    READ(1,90) ORD
      E=14.83
             IF(ORD.E0.0) E=12.445
             IF(\BoxRD • EQ • 1) E=10 • 06
             IF(URD.EQ.2) E= 7.670
    READ(1,100) F,FC,TO,TCO,CO.
100 FORMAT(SF10.6)
    READ(1,200)TISS,CISS,TCISS
200 FURMAT(3F11.7)
    READ(1,201)KC
    WRITE(2,150) ORD
150 FORMAT(/20X, ORDER OF REACTIONS : ',12)
     WRITE(2,151)F,FC,T0,TC0,C0
      FORMAT(/5X, 'F=',F10.3,5X, 'FC=',F10.3,5X, 'T0=',F10.3,5X,
151
      'TC0=',F10.3,5x,'C0=',F10.8)
      WRITE(2,152)TISS,CISS,TCISS
      FORMAT(/5X, 'TISS:', FIO.3, 5X, 'CISS:', FIO.8, 5X, 'TCISS:',
152
      F10 - 3)
    WRITE(2,185) KC
185 FORMAT(/20X, CONTROLLER GAIN = ', 1PE14.7)
900 AISS=CISS/CO
    ZZ=RH*CP/(DH*C0)
    BISS=ZZ*TISS
    GISS=ZZ*TCISS
     G0 = TC0 * ZZ
    B0 = T0 * ZZ
    K=ORD-1
    TH=V/F
    CURD=QK*C0**K
    ITHU=U/(RH*CP*V)
    ITHI=U/(RHC*CPC*VC)
    THC=VC/FC
    Q=E*RH*CP/(R*DH*CO)
    XX=EXP(-Q/BISS)*AISS**ORD
    XIU=1./TH+ITHU
    XII=1./THC+ITHI
    READ(1,201) KA1, DKA, KA2
201 FURMAT(3E13.6)
    READ(1,90)I(104,15,16,17
    IF(16.EQ.1) WRITE(2,186)
186 FORMAT(20X, 'CONTROL ON TANK TEMPERATURE')
    IF(I6.EQ.2) WRITE(2,187)
187 FORMAT(20X, 'CONTROL ON TANK CONCENTRATION')
    IF(I5.EQ.1)WRITE(2,188)
188 FURMAT(20X, 'REAL TIME SYSTEM')
    IF(I5.EQ.-1)WRITE(2,189)
189 FORMAT(20X, 'INVERSE TIME SYSTEM')
    XKC=KC
    XGG=G0-G1SS
    RETURN
    SUBROUTINE VAR3(X1C, X2C, X3C, IODEX), RETURNS(NA)
```

```
TO CALCULATE X3 GIVEN THE OTHER TWO VALUES
     INTEGER ORD
     REAL KC, ITHU, ITHI, KA, KA1, KA2
     DIMENSIUN A(3,3)
     CUMMUN/SIX/ A1, B1, A2, B2, C2, AAA, B88, CCC, DDD, A, FN1
     CUMMUN/SEVEN/IPK, IPD, KA1, KA2, KA, IFAIL, DKA
     COMMON/FIVE/TH. THC. CO. AISS. BISS. GISS. ITHO, ITHI, K
    1 - Q - ZZ - URD - CORD - GO - BO - VC - KC - XX - XIO - XII - XGG
     I ddex=I ddex+1
     IF(IDEX.GT.2) RETURN NA
     IF(IDDEX.EQ.2)GDTD 1000
     A1 = -X2C * XIO - FN1 - XIC/TH
     B1=ITHO
     CALL CUULANT(X1C, X2C, X3C, FCB, DFCX1, DFCX2, DFCX3)
     A2=X2C*ITHI+FCB*XGG/VC
     B2=-XII-FCB/VC
     C2=0.0
     AAA=A(2,2)*B1**2+2*A(3,2)*B1*B2+A(3,3)*B2**2
     BBB=2*(A(2,1)*FN1*B1+B2*A(3,1)*FN1+A(2,2)*A1*B1+
    1A(3,2)*(A1*B2+A2*B1)+A(3,3)*A2*B2)
     CCC=2*A(2,1)*FN1*A1+A(2,2)*A1**2+2*A(3,1)*FN1*A2
    1+A(1,1)*FN1**2+2*A(3,2)*A1*A2+A(3,3)*A2**2 -KA
     AAA=AAA+A(3,3)/10.**10
     BBB=BBB+2.*(A(1,3)*X1C+A(2,3)*X2C)/10.**10
     CCC=CCC+(A(1,2)*X1C*X2C+A(1,1)*X1C**2+A(2,2)*X2C**2)/10.**10
     DDD=BBB**2-4*AAA*CCC
     IF(DDD.LT.O.) RETURN NA
     X3C = (-BBB + SQRT(DDD))/(2*AAA)
     RETURN
1000 X3C=(-BBB-SQRT(DDD))/(2*AAA)
     RETURN
     END
     PROGRAM JFINLI(DATAO, OUTPUT, DATA, ERRORS, TAPE 1=DATAO,
    1TAPE 2=UUTPUT, TAPE 6=ERRORS)
     CALL CONSTAN(XKA1, DKA, XKA2)
     CALL MAXLIAP(XKA1,DKA,XKA2)
     STUP
```

END

A.1.5 PROGRAM FOR THE SIMULATION OF THE COMPLETE EXPERIMENTAL ARRANGEMENT

```
FURTRAN(CP)
      OPTIONSERRMSG, DEBUGI, SLIST
      PROGDESC
      LIST(LP)
      PROGRAM(SLAM)
      INPUT 1=CR0
      INPUT 3=TRO
      INPUT 5=CR1
      OUTPUT2=LP0
      JUTPUT 6=LP1
      CUMPRESSINTEGER ANDLUGICAL
      COMPACT
      END
      MASTER REACT
C
    TOTAL SIMULATION OF THE COMPLETE PLANT
    SLAM SOURCE PROGRAM
      INTEGER ORD
      REAL KakcallalO
      DATAV/17300./, VC/8532./, R/.00198/, K/2000./,
     1CP/0.001/,CPC/0.001/,RH/1.0/,RHC/1.0/,I/0/
     2.DH/30./
   REACTOR OPERATING PARAMETERS
      AISS=CISS/CO
      TH=V/F
      THC=VC/FC
      Q=E*RH*CP/(R*DH*C0)
      ZZ=RH*CP/(DH*C0)
      I0 = U/(V*RH*CP)
      I1=U/(VC*CPC*RHC)
      BST=BSTT*ZZ
      BISS=TISS*ZZ
      G1SS=TC1SS*ZZ
      B0 = B00 * ZZ
      G0 = TC0 * ZZ
      G0S=G00*ZZ
      XKN=K*C0**(GRD-1)
      RR2=EXP(-Q/(B1SS+X2S))*(X1+A1SS)**ORD
      RR1=EXP(-Q/BISS)*AISS**ORD
      DC1 = -X1/TH - XKN*(RR2 - RR1)
  VALVE TRANSFER FUNCTION
      TVA=2.
      DFCBA=(FCB-FCBA)/TVA
      FCBA=INTGRL(DFCBA,0.0)
   MEASURING ELEMENTS TRANSFER FUNCTION
      TME=19.
      DX2B=(X2-X2B)/TME
      X2B=INTGRL(DX2B,BST)
      DX4B=(X3-X4B)/TME
      X4B=INTGRL(DX4B,BGT)
      NU SURT(X2S, X4S=X2B, X4B)
   SAMPLERS FOR TANK & JACKET TEMPERATURES WITH
C
   ZERO ORDER HOLD
      IF(ABS(TIME-TIMEX).LT.1.E-05)X4S=X4B
```

```
IF(ABS(TIME-TIMEX).LT.1.E-05)X2S=X2B
      IF(KEEP.NE.1.OR.(INT(TIME/TSA+.0001).
     1LE.ITIM)) GOTO 1223
      ITIM=ITIM+1
      X2S=X2B
      X4S=X4B
 1223 CUNTINUE
      END
      NO SORT(FCB, AX=X1, X2S, X4S, DC1)
   CUNTRUL STRATEGIES BLUCK
      AX = 0.
      GUTO(10,20,30,40,50,60,70,90,100),INDEX
      WRITE(2,99)
   99 FORMAT(20X, *****ERROR IN INDEX******)
      STOP
C
       UNCUNTROLLED SYSTEM
   10 FCB=0.
      GOTO 80
     PROP CONTROL OF TANK TEMPERATURE
C
   20 FCB=KC*X2S
      GOTO 80
     PROP CONTROL OF JACKET TEMPERATURE
   30 FCB=KC*X4S
      GOTO 80
   FN. OF X2S
   40 FCB=(I0+I1)*VC*X2S/(G1SS-G0+X4S)
      GOTO 80
C
    INVARIANCE FOR STEP IN TANK FEED TEMPERATURE
   50 FCB=B0*(I1+1/THC)*VC/(I0*TH*(G1SS-G0-
     1B0/(TH*I0)))
      GO TO 80
    INVARIANCE FOR STEP IN JACKET FEED TEMPERATURE
   60 FCB=G0S*VC/(THC*(G1SS-G0-G0S))
      GUTU 80
    INVARIANCE FOR STEP IN
   TANK & JACKET INLET TEMPERATURES
   70 A11=B0/(TH*I0)
      FCB=(G0S/THC+A11*(I1+1/THC))*VC
     1/(G1SS-G0-G0S-A11)
      GOTO 80
C
      NONINTERACTING CONTROL
      AX=KC
 1001 TDT1=-AX*X2S
      TX3=(TDT1+(1/TH+I0)*X2-XKN*(RR2-RR1))/I0
     1-B0/(TH*I0)
      IF(TX3/ZZ.LT.-8.. | R.TX3/ZZ.GT.10.) GUTU1002
      TDTC1=-AX*TDT1/I0+(1/TH+I0)*TDT1/I0-XKN*(
     1URD*(A1SS+X1)**(URD-1)*DC1*EXP(-Q/(B1SS+X2S))+
     2RR2*Q*TDT1/(B1SS+X2S)**2)/IO
      FCB=(-TDTC1+X2*I1-(1/THC+I1)*TX3+G0S/THC)*VC/
     1(TX3+G1SS-G0-G0S)
      IF(FCB.GT.(8.-FC).AND.FCB.LT.(150.-FC))GOTO1000
 1002 AX=AX/1.1
```

-209-

```
IF(AX.LT.1.E-06)GOTO 1003
     GO TO 1001
1003 FCB=150 -- FC
1000 CONTINUE
     GOTO 80
     LIMIT CYCLE
 100 FCB=-KC*X1
  80 IF(FCB.LT.(-FC+8.))FCB=-FC+8.
     IF(FCB.GT.(150.-FC))FCB=150.-FC
     END
     NOSURT (E=ORD)
  ACTIVATION ENERGY
     E=14.83
     IF(ORD.EQ.0)E=12.445
     IF(QRD.EQ.1)E=10.060
     IF(@RD.EQ.2)E=7.670
     END
     TC1=X4S/ZZ
     TERMINATE(TIME.GT.FTIM. OR.T1.GT.30.)
 REACTOR MASS AND ENERGY BALANCE
     X1=INTGRL(DC1,BCT)
     BCT=BCTT/C0
     BBST=BST
     x2=INTGRL(DT1,BBST)
     BBGT=BGT
     X3=INTGRL(DTC1,BBGT)
     DT1=-X2/TH+B0/TH-(X2-X3)*I0-DC1-X1/TH
     DTC1 = -X3/THC + (X2 - X3) * I1 + (FCBA) * (G0 - X3 - G1SS + G0S)
    1/VC+G0S/THS
     T1=X2S/ZZ
     NOSORT (ORD, F, FC, TO, TCO, CO, TISS, CISS, TCISS,
    1INDEX, IDD, KC, U, GOO, BSTT, BOO, BCTT, BGTT, FTIM,
    2ISTEP, TIME=I)
  INPUT AND OUTPUT. INPUT FLOW RATE IN CC/S,
  TEMPR. IN K & CONCN. IN GMS/CC
     I = I + 1
     ITIM=0
     JJ=0
     IF(I.GT.1)G0T098
     INPUT ORD
     INPUT F, FC, TO, TCO, CO
     INPUT TISS, CISS, TCISS, U
     TITLE DYNAMIC BEHAVIOUR OF A CSTR FOR REACT. ORDER
     DUTECIURD
     OUTECIF, FC, TO, TCO, CO
     DUTECITISS, CISS, TCISS, U
    INPUT INDEX, KC, BSTT, BCTT, BGTT, B00, G00,
 98
    ITIMEX, FTIM, ISTEP, TSA
     TIME=TIMEX
     OUTPUT 'INDEX=', INDEX
     CALL HEAD (INDEX)
     IF(INDEX.EQ.2.DR.INDEX.EQ.3) WRITE(2,113)KC
 113 FORMAT(10X, 'KC=',E13.5)
```

```
IF(B00.GT.1.E-09)WRITE(2,111)B00
       IF(G00.GT.1.E-09)WRITE(2,112)G00
  111 FORMAT(10X, 'STEP IN TANK INLET TEMPERATURE: ', F6.2)
  112 FORMAT(10x, 'STEP IN JACKET INLET TEMPE .: ', F6.2)
  811 CUNTINUE
      END
      JUTHD'TIME', 12S, 'T1', 12S, 'C1', 12S, 'TC1', 12S,
     1'FCB'
      NO SORT (=TIME, T1, C1, TC1, FCBA, AX)
      IF(1006.NE.1)GOTU 114.
      OUTECI TIME, TI, C1, TC1, FCBA
      IF(INDEX.EQ.8) WRITE(2,115)AX
      IF(INDEX.EQ.9)CALL MINMAX(JJ,T1,TIME,CINT)
  115 FORMAT(1H+,68X,1PG13.5)
  114 CUNTINUE
      END
      C1 = X1 * C0
      BGT=BGTT*ZZ
   INTEGRATION PARAMETERS
      INTINF
      ALG: RKFS
      INDVAR: TIME
      CI:CINT=20
      STEPS: ISTEP
      END
      REPEAT
      END
      SUBROUTINE MINMAX(I, TCI, TIME, CI)
  SUBROUTINE TO FIND AMPLITUDE DURING
C LIMIT CYCLE STUDIES
      DIMENSION XMAX(3)
      I = I + 1
      T=TIME-CI
      XMAX(I) = TCI
      IF(I.LT.3) RETURN
      IF(XMAX(2) • GE • XMAX(3) • AND • XMAX(2) • GE • XMAX(1))
     1WRITE(6,1010)XMAX(2),T
 1010 FORMAT(5X, 'T1=', E14.7, 'AT TIME=', E9.2, 'SECS')
      IF(XMAX(2).LE.XMAX(3).AND.XMAX(2).LE.XMAX(1))
     1WRITE(6,1010)XMAX(2),T
      XMAX(1) = XMAX(2)
      XMAX(2) = XMAX(3)
      I = 2
      RETURN
      END
      SUBRUUTINE HEAD(IND)
C SUBROUTINE TO WRITE TITLE
      GUTU(1,2,3,4,5,6,7,8,9), IND
    1 WRITE(2,100)
  100 FORMAT(10x, 'UNCONTROLLED SYSTEM')
      RETURN
    2 WRITE(2,101)
  101 FURMAT(10x, 'PRUPURTIONAL CONTROL OF TANK TEMPERATURE')
```

211

RETURN 3 WRITE(2,102) 102 FORMAT(10X, 'PROPORTIONAL CONTROL OF JACKET TEMPERATURE') RETURN 4 WRITE(2,103) 103 FORMAT(10x, 'COOLANT RATE FUNCTION OF TANK TEMPERATURE') RETURN 5 WRITE(2,104) 104 FORMAT(10X, 'INVARIANCE CONTROL FOR STEP IN . 1, 'FEED TEMPERATURE') RETURN 6 WRITE(2,105) 105 FORMAT(10x, 'INVARIANCE CONTROL FOR ' 1. STEP IN COULANT TEMPERATURE') RETURN 7 WRITE(2,106) 106 FORMAT(10X, 'INVARIANCE CONTROL FOR STEP' 1, 'IN FEED AND COOLANT'/20X, 'TEMPERATURES') RETURN 8 WRITE(2,107) 107 FURMAT(10X, 'NUNINTERACTING TYPE CUNTRUL') RETURN 9 WRITE(2,108) 108 FORMAT(10X, 'LIMIT CYCLE STUDIES') RETURN END

FINISH

A.1.6 BASIC PROGRAM FOR ON-LINE WORK

A.1.6.1 EXECUTIVE PROGRAM

DIM A(13), B(120): REM INITIALISATION: 16, 17=0 INPUT B(120):A(0)=1:A(1)=3:A(2)=2:A(3)=30:A(4)=33:A(5)=2 11 A(6)=1:A(7),A(8),A(9),A(10),A(11)=0:A(12),A(13)=112 GOSUB 902: 19, 18=0: J6=4 PRINT "INFUT TANK FLOW RATE IN LIR/MIN": INFUT FI PRINT "INPUT JACKET FLOW RATE IN LIR/MIN";: INPUT F2 21 TRANSFER SEGM2 TO CORE FROM DISK: GOSUB 1600 24 F5=F2*1000/60:B(90)=0:D=0 SET JACKET FLOW: GOSUE 1000: GOSUB 9005:U=.37E-01 27 REM SCAN & PLOT THEORETICAL HEAT GN. & REM.: GOSUB 6500 FOR J7=1, J6: GOSUB 1600: GOSUB 9000: I6=1 SET IMMERSION HEATERS: GOSUB 2000 67 HEAT TRANSFER COEFFICIENT: U=F5*(T3-T2)*.1E-02/(T1-T3) REM 68 TRANSFER SEGM1 FROM DISK TO CORE: GOSUB 1550 70 REM PLOT MEASURED VALUES: GOSUB 6900 FEM 75 IF J7<>J6 THEN 110 $C(0)=1:C(5)=1:C(6)=45:B(15)=3:GOSUB_5900$ C(7) = 4:B(15) = 5: GOSUB 590096 REM OUTPUT S.S. VALUES TO THE SCREEN: GOSUB 9100 97 98 I6=0: GOSUB 3000: GOSUB 6025 NEXT J7: GOSUB 9500:B(15)=6: GOSUB 5900: GOSUB 1600 110 INPUT I7: ON I7+1 GOTO 65,20,129,131,800 111 SCAN AND PRINT WITHOUT PLOTTING: 16=0: FOR J7=1, 10 129 130 GOSUB 9005: GOSUB 9100: GOSUB 2000: NEXT J7: GOTO 111 THIS LINE IS USED BY CONTROL SUBROUTINES 131 REM 132 $J \in 3: H9 = 2 \times A(0) \times (A(2) - 1): H2 = 6.5: H = H9 + H2$ 133 REM STORE S.S. VALUES: S1=C1: S2=T1+273.1: S3=T3+273.1 PRINT "TYPE OF CONTROL";: INPUT K1 147 IF K1<>2 THEN IF K1<>3 THEN IF K1<>9 THEN 600 148 150 PRINT "INPUT P. AND I. VALUES";: INPUT K2, K3: GO TO 600 15 1 PRINT: PRINT "EXPT. NO:"; B(120): PRINT "RN. ORDER:"; 01 152 PRINT "F(L/M):";F1,"FC(L/M):";F2: FRINT "10:";10,"TC0:"; PRINT T2: PRINT "S.S. VALUES"; S1; S2; S3: GOSUB 6025 153 154 PFINT "CONTROL STRATEGY"; K1: GOSUB 902 155 I7=1: CALL (8, I7, B(91)): E(92)=4: T=-H: B(19)=0: I2=3 157 REM START OF TRANSIENT RESPONSE STUDIES 11.0 I6=1:T=T+H: GOSUB 9005:B(120)=0: CALL (9, P(120), H2) 180 GOSUB 699: GOSUB 7000: IF (F5+F3)<0 THEN F3=-F5 185 IF (F5+F3)>150 THEN F3=150-F5 JACKET FLOW RATE: F2=(F5+F3) * 60/1000 200 REM GOSUB 1000: GOSUB 2000: IF (B(89)-T)>.1E-02 THEN 160 205 217 IF B(90)=1 THEN 220 218 $B(89)=0:E(90)=1:GOIO_155$ 250 B(18)=1: GOSUB 4000: B(120)=1: CALL (9, P(120), H2) 222 H2=H2*20/1000:H=H2+H9: IF T<Z(0)-.1E-02 THEN 160 223 REM END OF TRANSIENT RESPONSE STUDIES 249 B(90)=0:17=1: CALL (8,17,B(90)): GOSUB 9500 250 INPUT B(90): E(89)=0 251 ON B(90) GOTO 155, 253, 147, 255 253 E(90) = 0: GOTO 155 255 END: REM END OF MASTER SEGMENT

```
REM OUTPUT STATE VARIABLES TO PAPER TAPE: GOSUB 900
500
    PRINT T0;","; T1;","; C1: PRINT T2;","; T3;","; (F3+F5)
72
    GOSUB 902: RETURN
510
    FEM
511
    PRINT "TIME FROM WHICH GRAPHS TO BE PLOTTED";
600
    INPUT E(89): PFINT "INPUT SIMULATION TIME";
£ 1
    INPUT Z(0): A9=INT(Z(0)/100+.1E-02-1)
622
    PRINT "INPUT MIN, MAX & NO OF DIV. IN TI GRAPH";
603
    INPUT B(1), B(2), B(9); B(9) = B(9) - 1
604
    PRINT "INPUT MIN, MAX & NO OF DIV. IN TC1 GRAPH";
605
    INPUT B(3), B(4), B(10): B(10) = B(10) - 1
€0 €
    PRINT "INPUT MIN, MAX & NO OF DIV. IN C1 GRAPH";
607
    INPUT B(5), B(6), B(11): B(11)=B(11)-1
628
    GOSUB 900: IF B(90)=3 THEN 154
609
    GOTO 151
612
698
    REM
         CONC. SIMULATOR: X1=(C1-S1)/C0
699
    PEM
    X2=(T1+273.1-S2)/600:X3=(T3+273.1-S3)/600
700
    IF B(90)=1 THEN 705
701
    IF T<>0 THEN 705
703
7/3 PRINT "INPUT INITIAL CON. DEV.";: INPUT X1:X1=X1/C0
705 CALL (7,01, F6, E, C0, S2, S1, X1, X2, J3, F3, F4, H, J4, J5)
    C1=X1*C0+S1: RETURN
706
800 PRINT "INPUT TEMPR. AT WHICH CONTROL IS DESIRED";
    INPUT T1: I 6= 1: GOSUE 3000
801
     T3=(U*T1+F2*T2/60)/(F2/60+U):I7=3: GOTO 131
802
899
     REM
               SET SNSW4 ON: B(91)=1: GO TO 904
    REM
900
               RESET SNSW4: B(91)=0
     REM
902
    17=0: CALL (8,17,8(91)): RETURN
904
    REM
906
                  ROUTINE TO SET JACKET FLOW RATE
     REM
1000
     IF F2<=2.3 THEN G1=-1.41542*F2+9.54589
1002
     IF F2>=7.5 THEN @1=-.583999*F2+7.21557
1004
     IF F2>2.3 THEN IF F2<=5 THEN @1=-.825452*F2+8.13453
1006
      IF F2>5 THEN IF F2<7.5 THEN 01=-.493939*F2+6.46235
1008
      01=01*.32767E05/10:N=8
1010
                   SEND SIGNAL TO CHANNEL 2: GOSUB 9000
1012
     REM
     RETURN
1014
1016
     REM
          TO TRANSFER SEGM1 FROM DISK TO CORE: B(119) = . 15323E05
1530
      REM
     B(115)=1:B(116)=1:B(117)=1:B(118)=9216:I7=1
1: 02
     CALL (6, B(115), B(116), B(117), B(118), B(119), F7)
1504
      IF F7=0 THEN RETURN
1506
      PRINT "ERROR NO"; F7; "TRANSFERRING SEGM"; I7: STOP
1510
              TO TRANSFER PART OF SEGM1 FROM DISK TO CORE
1550
      REM
     B(119)=.12286E05: GOTO 1502
1552
              TO TRANSFER SEGM2 FROM DISK TO CORE: 17=2
1600
      B(115)=1:B(116)=7:B(117)=1:B(118)=9216
1602
     B(119)=.12286E05: GOTO 1504
```

1604

```
SUBROLTINE TO SET IMMERSION HEATERS: DIM Z(3)
      FEM
2000
      GOSUB 3000
2001
      IF H2>500 THEN 2006
2002
      Z(1)=-.153234E-05:Z(2)=.197036E-02:Z(3)=.340653
2004
      GOTO 2050
2005
      IF H2<2400 THEN 2010
2006
      Z(1)=.675824E-06:Z(2)=-.296997E-02:Z(3)=5.20372
2008
      GOTO 2050
2019
      Z(1)=0:Z(2)=.50393E-03:Z(3)=.738165
2010
      @1=Z(1)*H2+Z(2)*H2+Z(3)
2050
      01=01*.32767E05/3.1415:N=4
2052
                  SEND SIGNALS TO CHANNEL 1: GOSUB 9000
      REM-
2054
2056
      RETURN
     REM
2058
            REACTION KINETICS ROUTINE
     FEM
3000
            ** REACTION FARAMETERS** CO=. 02, DH=30, K=2000
      REM
3002
      REM V=17300, VC=8532
3004
      F6=F1*1000/60:J8=F6:C0=.2E-01
3012
      J9=2000*.173E05*EXP(-E/(.198E-02*(11+273.1)))
3015
      H4=(U*T1+F2*T2/60)/(F2/60+U)
3021
     H = 4 \cdot 18 * * (F \cdot 6 * (T1 - T0) + 1000 * U * (T1 - H4)
3022
      REM HEAT REMOVAL
3023
      H3=4.18*1000*(F1*(71-70)+F2*(73-72))/60
3024
      REM HEAT GEN .: H1=30*C1+01*J9* 4. 18*1000: H2=H1/3
3025
      IF I 6= 1 THEN FETURN
3027
      PRINT "HEAT INP(W):";H1, "HEAT OUT(W):";H3
3030
      PRINT "C1="; C1; "GM/CC": RETURN
3035
      REM
30 40
      REM ROUTINE FOR PLOTTING & OUTPUT TRANSIENT RESPONSE
4030
       B(19)=B(19)+1:B(92)=B(92)+1
 402
      IF E(92)>2.2 THEN GOSUB 500
 4004
      Y1=30:Y2=45:B(7)=0:B(8)=150:B(12)=3
 4010
      IF B(18)<>1 THEN 4025
 4020
       J1=Y1+(Y2-Y1)*(T1-B(1))/(B(2)-B(1)): GOTO 4070
 4022
       IF B(18)<>2 THEN 4035
 4025
      J1=Y1+(Y2-Y1)*(T3-E(3))/(E(4)-E(3))
 4030
       IF E(18)<>3 THEN 4045
 4035
       J1=Y1+(Y2-Y1)*(C1-B(5))/(B(6)-B(5))
 40 40
       IF B(18) <> 4 THEN 4070
 40.45
       J1=Y1+(Y2-Y1)*((F5+F3)-B(7))/(B(8)-B(7))
 4050
       GOSUB 5000: B(18) = B(18) + 1: IF B(18) < 4.2 THEN 4020
 4070
       GOSUB 1600: RETURN
 4080
```

-215-

```
REM PLOTTER FOUTINE: DIM C(7)
5000
      B(16)=0:B(17)=1500:B(15)=1
5002
      C(1)=0:C(4)=0: IF B(18)>1.1 THEN 5030
50.15
      IF B(19)>1.1 THEN 5030
50 17
      C(2)=3700:C(4)=6+2*(Y2-Y1): GOSUB 5900
5020
5022
      B(15)=2: GOSUB 5900
      IF B(18)>1 THEN 5032
5030
      P1=400:P2=5:Y4=B(2):Y6=B(1): GOTO 5050
50.31
5032
      IF B(18)>2 THEN 5037
      P1=1950: P2=5: Y4=B(4): Y6=B(3): GO TO 5050
5035
      IF B(18)>3 THEN 5042
5037
      P1=400:P2=6+Y2-Y1:Y4=B(6):Y6=B(5): GOTO 5050
50.40
      P1 = 1950: P2 = 6 + Y2 - Y1: Y4 = B(8): Y6 = B(7)
5042
      IF B(19)>1.1 THEN 5100
5050
      GOSUB 5800
5055
      C(0) = 3: C(5) = T*1500/Z(0) + P1: C(6) = J1 - Y1 + P2
5100
5102
      IF B(19)<1.1 THEN 5115
5110
      B(15)=3:C(0)=1:C(5)=B(101+(B(18)-1)*2)
      C(6)=B(102+(B(18)-1)*2): GOSUB 5900
5111
      C(0) = 3: C(5) = T*1500/Z(0) + P1: C(6) = J1 - Y1 + P2: GOSUB 5900
5112
5115
      B(101+(B(18)-1)*2)=C(5):B(102+(B(18)-1)*2)=C(6)
5116
      IF T<Z(0)-.1E-01 THEN 5200
5117
      C(5)=P1-260: IF B(18)=4 THEN C(5)=P1+1450
      IF B(18)=2 THEN C(5)=P1+1400
5118
      IF B(18)=3 THEN C(5)=P1-400
5119
5120
      C(6)=Y2-Y1+P2-1: GOSUB 5505: PRINT Y4:C(5)=P1-295
5125
      C(6)=(Y2+Y1)/2-Y1+P2: IF E(18)>2 THEN 5130
5127
      C(5)=P1-225: IF B(18)=2 THEN C(5)=P1+1540
5128
      GOSUB 5505: PRINT "DEG": C(6) = C(6) - 2: GOSUB 5505
      PRINT " C": C(5)=P1-260
5129
5130
      IF B(18)<>3 THEN 5135
5132
      C(5)=P1-295: GOSUB 5505: PRINT "GM/CC"
      IF B(18)<>4 THEN 5142
5135
5137
      C(5)=P1+1550: GOSUB 5505: PRINT "CC/S": C(5)=P1+1380
      C(6)=P2: IF B(18)=3 THEN C(5)=P1-400
51 42
5143
      IF B(18)=2 THEN C(5)=P1+1400
      GOSUB 5505: PRINT Y6: FOR 61=1, A9
5144
5145
      C(5)=P1+Q1*100*1500/Z(0): GOSUB 5520: NEXT Q1
      C(6)=P2-2:C(5)=P1: IF B(18)>2 THEN 5170
5157
      GOSUB 5505: PRINT "0":C(5)=P1+450: GOSUB 5505
5160
      PRINT "TIME(SECS)": C(5)=P1+1280: GOSUB 5505
5165
      PRINT Z(0): GOSUB 5300: IF B(18)<4 THEN 5200
5170
      GOSUB 5500: PRINT "TANK TEMPERATURE": GOSUB 5500
5182
      PRINT "JACKET TEMPERATURE": GOSUB 5500
5184
      PRINT "TANK CONCENTRATION": GOSUB 5500
5137
      PRINT "JACKET FLOW RATE": B(15)=6: GOSUB 5900: PRINT
5139
      PRINT : PRINT : PRINT : PRINT : RETURN
5195
3200
      RETURN
```

```
E(15)=3:C(0)=1:C(5)=P1+E(16)
5300
      FOR I3=1, B(8+B(18)):C(6)=P2+I3*(Y2-Y1)/(B(8+B(18))+1)
5305
      GOSUB 5400: NEXT I3: RETURN
5307
      GOSUB 5900: C(0)=3: C(5)=P1+B(16)+30: GOSUB 5900
5400
      C(0) = 1: C(5) = P1 + B(16): RETURN
5410
      B(15)=4:C(7)=0: GOSUB 5900
5500
      REM
5502
           OUTPUT CHARACTERS ON SCREEN: B(15) = 3: C(0) = 1
5505
      REM
      GOSUB 5900: B(15) = 5: C(7) = 2: GOSUB 5900: RETURN
5507
      REM
5520
      REM
           DRAW WINDOWS: C(0) = 1:B(15) = 3:C(5) = P1:C(6) = P2
5800
      GOSUB 5900: C(0)=3: C(5)=B(17)+P1: GOSUB 5900
5801
      C(6)=Y2-Y1+P2: GOSUB 5900: C(5)=B(16)+P1
5802
      GOSUB 5900: C(6)=P2: GOSUB 5900: RETURN .
5804
3806
      REM
      CALL (7, B(15), C(0)): RETURN
59 00
      REM
5902
           ROUTINE TO CALCULATE THEORETICAL HEAT
5000
      REM
           GENERATION & REMOVAL: B(116)=T1:I6=1
6002
      REM
     T1=T0+4:B(12)=0: FOR I5=1,60:T1=T1+.4: GOSUB 3000
6004
      GOSUB 6800: IF I5=1 THEN 6018
6007
      IF SGN(H1-H4)=SGN(H5) THEN 6018
6015
      B(12)=B(12)+1:H5=H1-H4:B(B(12)+12)=T1
6016
      B(B(12)+16)=-1: IF H5<0 THEN B(B(12)+16)=1
6017
      H5=H1-H4: NEXT I5: T1=B(116): I6=0: RETURN
6018
6020
      REM
      REM ROUTINE TO PRINT THEOR. OP. POINTS
6022
     PRINT " THEO. OP TEMP.:": IF B(1\overline{3})=0 THEN
                                                    RETURN
6025
      FOR I5=1, B(12): PRINT B(12+15);
6027
     IF B(16+15)<>1 THEN PRINT "U.S."
6028
                          PRINT "S. S. "
     IF B(16+15)=1 THEN
6032
     NEXT IS: RETURN
6035
          PLOT HEAT GENERATION AND REMOVAL CURVES: GOSUB 1500
6500
      C(1)=0:C(4)=100:E(15)=1:C(2)=100:C(3)=0: GOSUB 5900
6501
      E(15)=2: GOSUE 5900:P1,P2,B(17),Y1=50:Y2=100
6502
      B(16)=0: GOSUE 5800: GOSUE 6000: RETURN
6503
6505
      REM
      C(5) = (B(92) - (10+4))*50/30+50: C(6) = (B(91) - 1800)*50/8000+50
6700
6702
      GOSUB 5900: RETURN
```

```
E(19)=E(19)+1: IF H4<1800 THEN H4=1800
6800
      IF B(19)=1 THEN 6808
B02
     FOR Q1=1,2:C(0)=1:B(92)=T1-.4:B(91)=B(88+Q1): GOSUB 6700
6804
      B(92)=11:C(\emptyset)=3:B(91)=H1: IF 01=2 THEN B(91)=H4
806
      GOSUB 6700: NEXT 01
6807
      B(89)=H1:B(90)=H4: RETURN
6808
6810
      REM
          PLOT EXPTL. S.S. VALUES: B(92)=T1: B(91)=H1: C(0)=1
      REM
6900
      B(15)=3: GOSUB 6700:B(15)=5: GOSUB 5900: PRINT "*"
802
6904
      B(19)=0: RETURN
6906
      REM
      REM
            CONTROL SUBROUTINE
7000
8999
      PEM
      REM
           SEND DIGITAL OUTPUT TO ANALOG CHANNELS
9000
      CALL (5, D, N, Q1): N=0: CALL (5, D, N, Q1): RETURN
9002
9004
      REM
      REM SCANNING ROUTINE: B(119)=0
9005
9007
      CALL (1, A(0), B(0)): CALL (2): B(119)= B(119)+1
      IF B(119)=2 THEN 9050
9010
      B(115)=B(33):B(116)=B(30):B(117)=B(32)
9040
      B(118)=B(31): GOIO 9007
9042
9050
      TØ=(E(33)+E(115))*97/2046: T1=(B(30)+B(116))*95/2046
      T2=(B(32)+B(117))*94/2046: T3=(B(31)+B(118))*94/2046
9052
9054
      RETURN
      PRINT "F="; F6, "FC="; F5
9100
      PRINT "T0="; T0; "TC0="; T2; "T1="; T1; "TC1="; T3
9101
9102
     U=F5*(T3-T2)*.1E-02/(T1+-T3)
9104
      REM
          CALCULATE TANK FLOW RATE
9500
      REM
9502
      Q1 = ((127 - A(7)) * B(50) + B(49))/A(0)
      F7=01*.296448E-01+.678044
9504
      IF F7>3.5 THEN F7=01*.340529E-01+.325588
9505
      PRINT "MEASURED TANK FLOW RATE IN CC/S";
9508
      PRINT F7*1000/60: RETURN
9510
```

A.1.6.2 REACTION ORDERS

```
3005 REM **ORDER=-1**:01=-1:E=14.83
3019 IF J6<>3 THEN C1=SGR((J8*C0)†2-4*J8*J9)
3020 IF J6<>3 THEN C1=C0/2+C1/(2*J8)
```

3005 REM **ORDER=2**:01=2:E=7.67
3019 IF J6<>3 THEN C1=SQR(J8+2+4*J8*C0*J9)
3020 IF J6<>3 THEN C1=(-J8+C1)/(2*J9)

A.1.6.3 VARIOUS CONTROLLER EQUATIONS

```
131 $5=12+273.1:$4=10+273.1
     IF K1>4 THEN 7005
7002
      ON K1 GOTO 7015, 7025, 7035, 7045
7003
     ON K1-5 GOTO 7055, 7065, 7085, 7095, 7105
7005
7014
     REM
          UNCONTROLLED SYSTEM: F3, F4=0: RETURN
7015
      REM
7022
     REM
      REM PROPORTIONAL CONTROL ON TANK TEMP.
7025
7027
     F3=K2*X2:F4=0: RETUEN
7030 REM
          PROPORTIONAL CONTROL ON JACKET TEMP.
7034
     REM
     X3=(T3-S3+273.1)/600:F3=K2*X3:F4=0: RETURN
7035
70:37
     REM
          COOLANT PATE FUNCTION OF TANK TEMPR.
7043
     REM
     S4=S3+T3-S3+273.1-S5:F3=(8530/.173E05+1)*U
70 45
     F3=F3*(T1+273.1-52)/(54*.1E-02):F4=0: RETURN
7050
     REM
7052
     REM INVARIANCE FOR STEP IN TANK FEED TEMPR.
7863
      S = 10+273.1-54:F3=S5-S3+.1E-02*S6*F6/U:F4=0
70.65
     F3=-S6*F6*.1E-02*(1000+F5/U)/F3: IF S6<0 THEN
                                                      RETURN
7070
     IF (F3+F5)>@ THEN RETURN
7072
7073
     REM
          INVAFIANCE FOR STEP IN JACKET FEED TEMPR.
7074
     REM
     S4=273.1+T2-S5:F3=S3-S5-S4:F3=S4*F5/F3
7075
7077
     IF S4<0 THEN RETURN
     IF (F3+F5)>0 THEN RETURN
7078
     F3=150-F5: RETURN
7019
7081
      REM
          LIMIT CYCLE STUDIES
7093
     REM
     X1=(C1-S1)/C0:F3=-K2*X1:F4=0: RETURN
7095
7097
     REM
           INVAFIANCE FOR CHANGES IN TANK & JACKET
     REM
7103
     REM
           INLET TEMPR.
7104
     $6=(10+273.1-54):F3=56*F6*(1+F5*.1E-02/U)
7105
      S7=T2+273.1-S5: +3=S7*+5+F3: F4=0
7110
      F3=F3/($3-S5-S7-S6*F6*.1E-02/U): KETURN
7111
```

A.1.6.4 DECOUPLING TYPE CONTROL OF TANK TEMPERATURE

```
131
     B(37)=.173E@5/F6:E(39)=2@@@*C@+(01-1):54=T0+273.1
134
     S5=(12+273.1)/600:B(38)=U/17.3:B(40)=(F5+U*1000)/8532
135
     B(3f) = (51/(6) + 01 * EXP(-1/(.1981 - 62 * 52))
7084
7085
      FFM
            DECOUPLING TYPE CONTROL
708€
      FFM
            INITIALISATION: GOSUE 7200
7088
            ITERATION: E(49) = E(43) * B(50) + E(44)
      IF (E(49)-(55-53/600))*(8-E(49)/600)<0 THEN 7093
7089
      GCSUB 7300: IF (F3+F5)*(150-F3-F5)>0 THEN
7090
                                                    HEILKN
      B(50)=B(50)/1.1: IF B(50)>.1E-04 THEN 7088
7093
7097
      F3=150-F5: FETURN
      REM
7100
7200
      B(41) = (X1 + S1/C0) + O1 * EXF(-E/(.198F-02*(X2*600+52)))
7202
      E(42) = -X1/B(37) - B(39) * (E(41) - E(36)) : B(50) = .7E - 2
7203
      E(43)=-X2/B(38)
7.204
      E(44) = ((1/B(37) + E(38)) * X2 - E(39) * (E(41) - E(36)))/E(38)
7205
      B(44)=E(44)-(10+273.1-54)/(600*E(37)*B(38))
720 f
      E(45)=(1.188*(X2+S2/600)+2)*E(38)
7207
      E(45) = -X2*(1/E(37) + E(38))/E(38) + X2*E(41)*E(39)*E/E(45)
7208
      E(46)=-01*E(42)*E(41)*E(39)/(E(38)*(S1/(0+X1))
7210
      E(48)=X2*U/8.532: RETURN
7212
      FEM
7298
      FEM
           CALCULATION OF COOLANT FLOW HATE
7300
      B(47)=-B(50)+2*B(43)+B(45)*B(50)+B(46)
7305
      F3=(-b(47)+b(48)-b(40)*b(49))*8532/(b(49)+$3/600-55)
7307
      RETURN
```

A.1.7 PROGRAM FOR PLOTTING EXPERIMENTAL AND TOTAL SIMULATION RESULTS

```
B(29),B(19),C3=0
   DIM A(13), B(120)
         GET SCALES FOR THE PLOTS: GOSUB 600
         OPERATING POINTS
    REM
19
    READ S1, S2, S3: DATA 32.39, . 19124E-01, 21.24
20
         READ RESULTS FROM TOTAL SIMULATION PROGRAM
     PEM
     I 6= 1: INPUT T, T1, C1, T3: J3= 1: F5=0
160
     T1=T1+S1:C1=C1+S2:T3=T3+S3
         PLOT SIMULATION VALUES
219
     B(18)=1: GOSUB 4000: IF T<Z0-2 THEN 160
220
     REM PLOT CURVE FIT: GOSUB 8999:B(19)=.1E08
22.1
     REM READ EXPIL. VALUES & PLOT: INPUT T: INPUT N8, 11, C1
222
     INPUT N8, T3, N8: B(18) = 1: GOSUB 7000
     IF T<Z0-2 THEN 222
225
          EXIT FROM GRAPHICS: GOSUB 5182
226
     REM
235
     FEM
          END OF MASTER: END
237
     REM
600
     PRINT "INPUT SIMULATION TIME";: INPUT ZØ -
     PRINT "INPUT MIN, MAX & NO OF DIV. IN TI GRAPH";
60 1
602
     INPUT B(1), B(2), B(9): B(9)=B(9)-1
603
     B(9) = B(9) - 1
     PRINT "INPUT MIN, MAX & NO OF DIV. IN TC1 GRAPH";
604
     INPUT B(3), B(4), B(10): B(10) = B(10) - 1
635
686
     PRINT "INPUT MIN MAX & NO DIV. IN C1 GRAPH";
     INPUT B(5), B(6), B(11): B(11)= B(11)-1
     A9=INT(Z0/100+.1E-02-1): RETURN
611
     INPUT B(5), B(6), B(11): B(11) = B(11) - 1: RETURN
     REM
612
4000
     REM
           PLOTTING ROUTINE: B(19) = B(19) + 1
           FIND TIME PERIOD OF OSCILLATION: GOSUB 4950
4001
     IF B(19)=5 THEN 4004
4003
      IF B(19) <> 30 THEN IF B(19) <> 55 THEN 4010
4004
      B(29)=B(29)+1:B(29+B(29))=T:B(32+B(29))=C1
4005
      B(35+B(29))=11:B(38+B(29))=T3
     Y1=30:Y2=45:B(7)=0:B(8)=150:B(12)=3
4010
4020
     IF B(18)<>1 THEN 4024
4022
      J1=Y1+(Y2-Y1)*(T1-B(1))/(B(2)-B(1))
4024
     IF B(18)<>2 THEN 4035
4030
      J1=Y1+(Y2-Y1)*(T3-B(3))/(B(4)-B(3))
4035
     IF E(18)<>3 THEN 4045
46 40
     J1=Y1+(Y2-Y1)*(C1-B(5))/(E(6)-B(5))
     IF B(19)> • 9E06 THEN 7002
4045
      GOSUB 5000: B(18) = B(18) + 1: IF B(18) < 3.2 THEN 4020
4870
4030
      RETURN
```

```
49 49
      REM TIME PERIOD OF OSCILLATION
4950
      IF P(19)=1 THEN C2=T1
      IF B(19)=2 THEN B(28)=SGN(11-C2)
4951
49 52
      IF B(28)<0 THEN 4955
      IF T1>C2 THEN IF C3<C2 THEN N=2*3.141/T
4953
4954
      GOIO 4956
                      IF C3>C2 THEN N=2*3.141/7
49 5 5
      IF TI<C2 THEN
      C3=11: RETURN
4956
49 58
     F.EM
      DIM C(7): B(16) = 0: E(17) = 1500: B(15) = 1
5000
      C(1)=0:C(4)=0: IF B(18)>1.1 THEN 5030
50 15
5017
      IF P(19)>1.1 THEN 5030
5020
      C(2) = 3700: C(4) = 6 + 2 * (Y2 - Y1): GO SUB 5900
50:21
      B(15)=2: GOSUB 5900
      IF B(18)>1 THEN 5032
5030
      P1=400:P2=5:Y4=B(2):Y6=B(1): GO10 5050
5031
5032
      IF B(18)>2 THEN 5040
5035
      P1=1950:P2=5:Y4=B(4):Y6=B(3): G010 5050
5.40 \cdot P1 = 1200: P2 = 6 + Y2 - Y1: Y4 = B(6): Y6 = B(5): GO10 5050
     IF B(19)>1.1 THEN 5100
50.50
      C(0)=1:E(15)=3:C(5)=F1:C(6)=P2: GOSUB 5900
5051
5052
      C(0)=3:C(5)=B(17)+F1: GOSUB 5900
5055
      C(6)=Y2-Y1+F2: GOSUB 5900:C(5)=B(16)+F1
      GOSUB 5900: C(6)=P2: GOSUB 5900
5056
5100
      C(0)=3:C(5)=1*1500/20+F1:C(6)=J1-Y1+F2
5101
      IF B(19)<1.1 THEN 5115
5110
      B(15)=3:C(0)=1:C(5)=B(101+(B(18)-1)*2)
5111
      C(\epsilon) = B(102 + (B(18) - 1) * 2): GOSUB 5900
      C(\ell) = 3: C(5) = 1*1500/2\ell + P1: C(\ell) = J1 - Y1 + F2: GOSUB 5900
5112
5115
      E(101+(E(18)-1)*2)=C(5):E(102+(E(18)-1)*2)=C(6)
511E
      IF T<Z0-2 THEN 5200
      C(5)=P1-260: IF E(18)=4 THEN C(5)=P1+1450
5117
5118
      IF B(18)=2 THEN C(5)=F1+1400
5119
      IF B(18)=3 THEN C(5)=F1-500
      C(6)=Y2-Y1+P2-1: GOSUB 5505: FKINT Y4:C(5)=F1-295
5120
5125
      C(6)=(Y2+Y1)/2-Y1+P2: IF E(18)>2 THEN 5130
5127
      C(5)=P1-225: IF B(18)=2 THEN C(5)=F1+1540
      GOSUB 5505: PRINT "DEG": C(6)=C(6)-2
5128
      GOSUB 5505: PRINT " C": C(5)=P1-260
5129
5130
      IF E(18)<>3 THEN 5135
      C(5)=P1-295: GOSUE 5505: PRINT "GM/CC"
5132
5135
      IF B(18)<>4 THEN 5142
      C(5)=P1+1550: GOSUB 5505: PHINT "CC/S": C(5)=P1+1380
5137
```

```
C(6)=P2: IF B(18)=3 THEN C(5)=P1-500
5142
     IF B(18)=2 THEN C(5)=P1+1400
51 43
      GOSUB 5505: PRINT YE
5144
      FOR @1=1, A9: C(5)=P1+@1*100*1500/Z0: GOSUB 5520
5145
      NEXT 01:C(6)=P2-2:C(5)=P1: IF B(18)>2 THEN 5170
51 57
      GOSUB 5505: PRINT "0": C(5)=F1+450: GOSUB 5505
5160
      PRINT "TIME(SECS)": C(5)=F1+1280: GOSUB 5505: PRINT Z0
51 65
      GOSUB 5300: RETURN
5170
5172
      REM
      GOSUB 5500: PRINT "TANK TEMPERATURE"
5182
      GOSUB 5500: PRINT "JACKET TEMPERATURE"
5183
      GOSUE 5500: PRINT "TANK CONCENTRATION"
5187
      B(15)=6: GOSUE 5900: PRINT : PRINT : PRINT
5195
      RETURN
5200
      B(15)=3:C(0)=1:C(5)=F1+B(16)
5300
      FOR I3=1, E(8+E(18)):C(6)=F2+I3*(Y2-Y1)/(B(8+B(18))+1)
53 Ø 5
      GOSUB 5400: NEXT 13: RETURN
5306
      GOSUB 5900: C(0) = 3: C(5) = P1+B(16) + 30: GOSUB 5900
5400
      C(\emptyset) = 1:C(5) = P1 + B(16): RETURN
5410
      B(15)=4:C(7)=0:GOSUB5900
5570
      B(15)=3:C(0)=1: GOSUB 5900:B(15)=5:C(7)=2
5' 05
      GOSUB 5900: RETURN
5506
      GOSUB 5505: PRINT "!": RETURN
5520
5522
      REM
      CALL (7, E(15), C(0)): RETURN
5900
59 02
      REM
          PLOT CURVE FIT
5999
      REM
      FOR T=0, Z0, . 2/W
6000
      X = X @ + X 1 * COS(W * T) + X 2 * SIN(W * T) : B(19) = .2 E11
6001
      Y=B(65)+B(66)*COS(N*T)+B(67)*SIN(N*T)
6002
      Z = B(68) + Z1*COS(W*T) + Z2*SIN(W*T):T1=Y:C1=X:T3=Z
6003
      GOSUB 7000: NEXT I
6004
6006
      REM
          PLOT EXPTL. VALUES
7000
      REM
      FOR @1=1,3:B(18)=@1: GOTO 4010
7001
      IF B(18)<>1 THEN 7012
7002
      P1=400:P2=5:Y4=B(2):Y6=B(1)
7005
      GOTO 7050
7010
      IF B(18)<>2 THEN 7020
7012
      P1=1950: P2=5: Y4=B(4): Y6=B(3): GOTO 7050
7015
      IF B(18)<>3 THEN 7050
7030
      P1=1200: P2=6+Y2-Y1: Y4=B(6): Y6=B(5)
71 22
      C(5) = T*1500/Z0+P1:C(6)=J1-Y1+P2
7050
      IF B(19)> . 1E11 THEN 7055
7052
      GOSUB 5505: PRINT "O": GOTO 7057
7653
      GOSUB 5505: PRINT "1"
70.55
7057
      NEXT 01: RETURN
```

```
8999
      FEM
           OBTAIN THE HARMONICS OF THE OSCILLATIONS
      FOR I = 1/3: B(51+(I-1)*3)=COS(W*B(29+I))
9000
      B(52+(I-1)*3)=SIN(k*B(29+I)): NEXI I
9002
      FOR I=1, 3: B(50)=B(33+(I-1)*3): B(53)=B(34+(I-1)*3)
9005
      B(56)=B(35+(I-1)*3)
9006
9009
      B(59)=B(50)-E(53):E(60)=B(51)-B(54):B(61)=B(52)-B(55)
      B(62)=B(50)+B(56):B(63)=B(51)+B(57):B(64)=B(52)+B(58)
9011
      B(66) = B(60) * B(64) - B(63) * B(61)
90113
9014
      B(66) = (E(59) * B(64) - E(62) * B(61)) / B(66)
9015
      E(67) = (E(59) - E(66) * E(60)) / E(61) * E(65) = E(66) * E(51)
      B(65)=B(50)-B(65)-B(67)*B(52): IF I<>1 THEN 9020
9016
9018
      IF I<>1 THEN 9020
9019
      X\emptyset = B(65): X1 = B(66): X2 = B(67)
      IF I <> 2 THEN 9025
9020
      Y\emptyset = B(65): Y1 = B(66): Y2 = B(67)
9022
9025
      IF I<>3 THEN 9050
      B(68) = B(65) : Z1 = B(66) : Z2 = B(67)
9027
       NEXT I: I=0: B(65)=1: REM
9050
                                  SEND VALLES TO PAPER TAPE
9051
       CALL (8, I, E(65)): PFINT "X (AL"; X0; X1; X2
      PFINI "Y \AL"; Y0; Y1; Y2: FFINI "Z \AL"; E(68); Z1; Z2
9052
       F(65)=0: CALL (8,1,E(65)): F(65)=Y0: F(66)=Y1: F(67)=Y2
9053
9054
       GOSUF EPPP: FEILEN
```

APPENDIX 2 FLOW CHART OF COMPUTER PROGRAMS

A.2.2 FLOW CHART OF PROGRAM A.1.4

A.2.3 FLOW CHART OF PROGRAM A.1.6

230

APPENDIX 3 THEOREMS AND TECHNIQUES USED IN PROGRAMMING

APPENDIX 3

THEOREMS AND TECHNIQUES USED IN PROGRAMMING

A.3.1 Routh's Criterion for Matrix J⁵²

The necessary and sufficient condition that the eigenvalues of the matrix J are on the left half of plane is that the $n^{\mbox{th}}$ order polynomial formed

$$a_0 S^n + a_1 S^{n-1} + \dots \qquad a_n = 0$$

satisfies the Routh-Hurwitz criteria namely

$$a_0, a_1 > 0$$

$$\begin{vmatrix} a_1 & a_3 \\ a_0 & a_2 \end{vmatrix} > 0$$

$$\begin{vmatrix} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ o & a_1 & a_3 \end{vmatrix} > 0$$
 etc.

The constants a_0 , a_1 ,... a_n can be directly obtained from the matrix J by the following rule

$$P_1 = {}^{a}1/{}_{a_0} = -Tr(J)$$
 (Trace of Jacobian)
 $P_k = a_k/_{a_0} = -\frac{1}{k} Tr(JG_{k-1})$ $k = 2, ... n$
 $G_1 = J + P_1 I_n$
 $G_k = JG_{k-1} + P_k I_n$ $k = 2 ... (n-1)$

A.3.2 Solution of $J^{T}A + AJ = -B$ for Matrix A

The left hand side of the equation can be expanded to arrive at a matrix equation of the form

$$\{P\} \{A_C\} = \{B_C\}$$

where $A_{\rm c}$ and $B_{\rm c}$ are (9x1) column yectors and P a (9x9) matrix if A is a (3x3) matrix. The elements of $A_{\rm c}$ and $B_{\rm c}$ are formed from matrix A and B respectively. This equation is solved for $A_{\rm c}$ by the Gauss Jordan elimination method. If matrix B is symmetric then A will also be symmetric.

A.3.3 <u>Volume of Ellipsoid</u>

The volume of the Liapunov contour is given by

$$Volume = \int_{X = -\alpha_{SS}} Y=Y \text{upper}$$

$$V = \int_{X = -\alpha_{SS}} Y=Y \text{upper}$$

The upper limit on Y, $Y_{\rm upper}$ is arbitrarily chosen. The functions \mathbf{f}_1 and \mathbf{f}_2 are obtained by manipulating the Liapunov equation

$$f^{T}Af + x^{T}Ax/10^{7} = K_{L}$$

The volume is numerically evaluated by the extended Simpson's rule

Volume =
$$\frac{(b-a)^2}{(\sum w_1)(\sum w_j)}$$
 $\stackrel{m}{\underset{j=1}{\sum}}$ $\stackrel{n}{\underset{j=1}{\sum}}$ (f_2-f_1)

where n and m are the number of steps in the X and Y directions. $\mathbf{w_i}$ and $\mathbf{w_j}$ are the weighting factors.b and a are the upper and lower bounds on the variables X and Y. The boundary is made square, if necessary, by change of variable.

For 6 divisions in the i direction and 4 divisions in the j direction, the product $\mathbf{w}_i \mathbf{w}_j$ is given in the

following table.

A.3.4 Logical Search Technique for Determining the Largest Liapunov Volume

The search method involves two parts. They are

(i) calculate the Jacobian at different places in the

state space and hence a A matrix according to procedure

given in Appendix (3.2). Determine the A matrix which

gives the largest Liapunov volume and then

(ii) change the elements of this matrix A to maximise on the volume. The elements of the matrix are changed one at a time as

$$A_{ij} = A_{ij} - K A_{ij}$$

Initially a large multiplication factor (K) is used and if the maximisation fails, the factor is reduced by half and the process continued. This halving procedure is carried out thrice before it is stopped.

A.3.5 <u>Sylvester's Theorem</u>

A matrix is said to be positive definite if the determinants formed by the principal diagnol elements are greater than zero.

For matrix A to be positive definite the following conditions have to be satisfied.

$$A_{11} > 0$$
 $A_{11} A_{12} > 0$
 $A_{21} A_{22} > 0$
 $A_{21} > 0$

APPENDIX 4 ON-LINE SOFTWARE PACKAGE

APPENDIX 4

ON LINE SOFTWARE PACKAGE

The listing and calling procedure of various FORTRAN and DAP16 subroutines loaded with the BASIC interpreter to form the ONLINE SIMULATION PACKAGE are described in detail.

A.4.1 CALLING PROCEDURE OF SUBROUTINES 1 to 9

Subroutines 1 and 2 together from the scanning routines.

Subroutine 1

CALL (1,A(0),B(0))

A and B are dimensioned 12 and 120 respectively in the program

Inputs - A(0) = scanning interval, secs

A(1) = Device required

= 1 Analog inputs

= 2 Counter 1

= 4 Counter 2

= 8 Counter 3

= 16 Digital input A

= 32 Digital input B

= 64 Digital output A

= 128 Digital output B

A(2) = number of scans required including the initial scan

A(3) = first analog channel to be scanned

A(4) = last analog channel to be scanned

```
A(5)
                          = number of samples of each
                             analog channels per scan
           A(6)
                          = counter 1 scan type
                                   =O no counter interrupt
                                   =1 enable counter
                                        interrupt
           A(7)
                          = counter 1 preset value
           A(8) & A(9)
                          = counter 2 scan and preset
                              values
           A(10)& A(11) = counter 3 scan and preset
                              values
           A(12)
                          = digital output A mode
                          = O from 16 bit array at BASIC
                              level
                          = 1 from subroutines 3,4 or 5
                          = 2 from user supplied
          A(13)
                          = digital output B mode
Outputs - B(0)-B(47)
                          = analog input channels
          B(48)
                          = counter 1 interrupt time
          B(49)
                          = counter 1 contents at scanning
                              time
          B(50)
                          = number of interrupts by the
                              counter 1 during last scanning
                              interval
         B(51), B(52) \& = Counter 2
            B(53)
          B(54),B(55) &
                        = Counter 3
           B(56)
         B(57)toB(72) = value read on bits 1 to 16 of
                              digital input A
```

B(73) to B(88) = digital input B

B(89)toB(104) = values output on digital

output A

B(105)toB(120) = for digital output B

Subroutine 2

CALL (2)

A call to this routine discontinues clock and counter interrupt when all scans requested have been done.

Subroutine 3

CALL (3,D,N,X)

to send digital signals to various devices during scanning

D = O digital output A

= 1 digital output B

N = analog output channel

= 4 for thyristor unit

= 8 valve drive

x = digital signal to be output

0 < x < 32767

Subroutine 4

A special subroutine which can control up to eight valve drives, which is not used for the present work.

Subroutine 5

CALL (5,D,N,x)

the arguments in this routine are the same as those of subroutine 3. Subroutine 5, when called, sends signals to the devices immediately while, subroutine 3 sends only at the beginning of each scan.

Subroutine 6

This routine transfers segments from disk to core. The segments should have been stored in disk previously by the program A\$D14.

CALL (6, U, T, S, B1, B2, E)

U = disk unit number

T = Track number

S = sector number

Bl= starting address on core, a decimal number

B2= Last address on core, a decimal number

E = error on return

= o normal exit

Subroutine 7

There are two routines available with the same number because of the overlaying facility. If segment 1 is in core, then the Tetronix graph library can be assessed by a call to subroutine 7, whereas a similar call when segment 2 is in core can be used to access the simulator and integrator routine.

Tetronix graphic package

Various plotting facilities can be performed by a call to this routine

CALL (7,N,A(O))

where A is dimensioned 7

N = 1 Enter graphic mode

= 2 set the windows

= 3 perform the graphic functions like draw, move etc.

= 4 to invoke cursor facilities

- = 5 output alphanumeric characters on screen
- = 6 leave the graphics mode.
- A(O) = perform graphics when N = 3
 - = 1 dark move
 - = 2 move and draw the point
 - = 3 draw a line connecting the initial and the final point

for these three cases the absolute value of x and y coordinates are given for plotting (A(5) and A(6)).

- A(0) = 4, 5 and 6 perform similar operations if Δx Δy are given.
 - A(1) = minimum value of x value
 - A(2) = range of x
- A(3), A(4) = minimum value and range of y
- A(5),A(6) = x and y value to be plotted
 - A(7) = to output text on the screen or to invoke the cursor facility.

Simulator and Integrator

This routine numerically integrates the mass balance equation by the Fourth order Runge-kutta fixed step method to obtain the instantaneous concentration. This routine can also be used to integrate the error when Integral action is incorporated in the control scheme.

CALL (7,0,F,E,CO,S2,S1,X1,X2,INDEX,FCB,DFCB,H,

IRP, IJK)

Inputs

0 = reaction order

 $F = feed flowrate, cm^3/s$

E = activation energy, kcal/mol/K

 $CO = inlet concentration, gm/cm^3$

S2 = steady state temperature, K

S1 = steady state concentration, gms/cm^3

X2 = state variable corresponding to tank
 temperature

= (T -S2)/600

X1 = state variable corresponding to tank concentration = $(C -S1)/C_0$

(initial condition for integration)

 \neq 1, error DFCB is to be integrated and output in FCB

H = step length for integration, s

IRP = > 0 \leq 4 if integration is not completed from one step to next step interval

IJK = house keeping variable

= 1 initially

Output X1 = present value corresponding to X2

FCB = integrated value of DFCB

IJK = 51 integration is completed.

IRP = 10 integration is completed.

Subroutine 8

This routine is used to access sense switch 4 through. software or to perform other housekeeping tasks

CALL (8,I,J)

I = O set or reset SNSW4

J = O reset SNSW4

J = 1 set SNSW4, so output will be directed to
 paper tape punch

 $I \neq 0$ to perform other tasks

J = 1 HALT the computer until START button is
 pressed

Subroutine 9

To obtain CPU time for executing a set of BASIC program commands.

CALL (9,I,T)

Input I = O start the clock

I = 1 stop the clock

Output On exit when I = 1, the time elapsed in seconds is given by = T* 20/1000.

A.4.2 LISTING OF SUBROUTINE 6 AND OTHER ASSOCIATED ROUTINES

A.4.2.1 SUBROUTINE DTOC

```
SUBFOUTINE TO TRANSFER FFOM DISK TO CORE
          SUBFOUTINE DIOC(UNIT, TR1, SE1, BUFF1, BUFF2, ERR)
 3
          IUNIT=UNIT
 4
          I 1= TR1
 5
          12=SE1
 \epsilon
          IBUFI=BUFFI
 7
          IBUF2=BUFF2
 8
       70 K=IBUF2-IBUF1+1
 9
          IF(K.GT. 64)K=64
10 C
       CALL THE DISK THANSFER FOUTINE
11
          DO 30 II=1,20
12
          CALL RWSC(IUNII, II, I2, IBUF1, K, IER)
13
          IF(IER. EC. 0)GO1050
14
          IF(II.EC.10)CALL ASDO3(IUNIT)
15
       30 CONTINUE
16
       50 IF(K.LT. 64.OF. IER. NE. 0) GO TO 90
17
          12 = 12 + 3
18
          IF(12.LE.26)G01080
19
          12=12-26
20
          IF(I2.E0.1) I 1= I 1+1
21
      80 IEUF1=IEUF1+64
22
          G0T070
23
      90 ERR=IER
24
          CALL ASDO3(IUNIT)
25
          RETURN
26
          END
```

A.4.2.2 SUBROUTINE RWSC

			SLER	ANSC
	000130	01.45	F.EL	
	001030	OPME		130
	000230	DSKO OPCE	_	1030
	000530	LEMK		230
	000030	IFME		*530
	000130	DEMK		'030 '130
	000530	IFLA	-	130
	001030	DSKI		1030
	000330	OPDA		'332
	200430	SIAI		· 430
୧୧୧୧୧	0 00 00000			0.0
00001	@77777	517		77777
00000	0 00 00000	DEAH	* * *	
୧୧୧୧३	001000	SCCE	OCI	1000
00004	0 00 00000	TEMP	***	_
00005	0 00 00000	SELF	* * *	
0000 <i>E</i>	0 000000	FWSC	DAC	* *
00007	0 10 00000		CALL	F\$AT
00010	00000 <i>E</i>		DEC	E
00011		LNIT	LAC	* *
00012	0 000000	THAK	DAC	* *
00013	0 000000	SECT	DAC	* *
66614	0 000000	ELFF	LAC	* *
00015	0 000000	SECL	LAC	* *
00016	0 000000	EFF	E'AC	* *
00017	14 0130		OCP	OFMD
00020	-0 02 00015		LLA*	SECL
00021	140407		ICA	
96955	0 04 00000		SIA	COLT
00023	-0 02 00014		L[A*	BUFF
00024	0 04 00005	SP	SIA	SEUF
99925	0 02 00115		L L·A	= '37777
96956	0 07 00005		SLE	SEUF
00027	140407		TCA	
00030	0 04 00005		STA	SEUF
00031	1 466 40		CFA	
00032	0 04 00002		STA	LEKK
00033	-0 02 00011	S 1	L LA*	UNIT

```
240€ 76
                            AKK
                                   2
        -0 06 00013
00035
                            ALD*
                                   SECT
          0 06 00003
00036
                            ALD
                                   SCCD
00037
          74 1030
                            OTA
                                   LSKO
00040
          0 01 00037
                            JMF
                                   *-1
00041
          14 0230
                            OCP
                                  OPCD
        -0 02 00011 52
00042
                            L LA*
                                  LNII
00043
         040€ 76
                            ARR
                                   2
00044
        -0 06 00012
                            ADD*
                                  TRAK
00045
         0 04 00004
                            STA
                                   TEMP
         0 02 00114
00046
                           LDA
                                  = 1
00047
         0406 73
                            AFR
                                   5
00050
         € 6€ 66004
                            ADD
                                  1 EMP
00051
         74 1030
                           AIO
                                  LSKO
00052
         0 01 00051
                           JMF
                                  * - 1
00053
         14 0230
                           OCF
                                  OFCD
00054
         0 35 00005
                           LLX
                                  SBLF
00055
          14 0030
                            OCF
                                  IFMD
00056
          34 0130
                      54
                            SKS
                                   DFMK
00057
         0 01 00075
                            JMF
                                   DEST
00060
          14 0530
                            OCF
                                  IPDA
         54 1030
00061
                            INA
                                  LSKI
00062
         0 01 00061
                            JMP
                                  *-- ]
00063
        -0 04 00001
                            SIA*
                                  SII
00064
         140040
                            CHA
00065
         € 12 00000 S€
                            IRS
                                  8
00066
         101000
                           NOF
00067
         0 12 00000
                           IFS
                                  COUI
00070
         0 01 00056
                           JMF
                                  54
         34 0530
00071
                           SKS
                                  LEMK
00072
         0 01 00071
                           JMP
                                  * - 1
00073
         14 0030
                           OCF
                                  IFMD
00074
         0 01 00101
                           JMP
                                  D2
00075
         34 0530
                      DEST SKS
                                  DEMK
0007E
         0 01 00056
                           JMP
                                  54
00077
         0 02 00113 D1
                           LDA
                                  = '100
00100
         0 04 00002
                           STA
                                  DERK
00101
         14 0030
                      D2
                           OCF
                                  IFMD
00102
         14 0430
                           OCF
                                  SIAI
00103
         54 1030
                           INA
                                  DSKI
00104
         0 01 00103
                           JMF
                                  *-1
00105
         0 03 00112
                           AN A
                                  = '37000
0010E
         0 06 00002
                           ADD
                                  LERR
20107
         0404 72
                           LGF
                                  E
        -0 04 00016
00110
                           SIA*
                                  EKK
00111
        -0 01 00006
                           JMF*
                                  HV.SC
00112
         037000
                           END
00113
         000100
00114
         000001
```

00034

A.4.2.3 SUBROUTINE A\$D03

```
SUBR
                                  A$D03, AD03
                           REL
                     ADO3 DAC
00000
         0 000000
00001
         0 10 00000
                           CALL
                                  F $AT
         000001
00002
                           DEC
                                  1
00003
         0 000000
                     LD
                           DAC
                                  * *
       -0 02 00003
                           LDA*
00004
                                  LD
         0406 76
00005
                           ARR
                                  2
00006
         0 03 00014
                           AN A
                                  CM D
         14 @130
                                  O PM D
00007
                           OCP
         74 1030
                                  DSKO
00010
                           OTA
00011
         0 01 00010
                           JM P
                                  *-1
         14 0230
                           OCP
                                  OPCD
00012
        -0 01 00000
                                  ADO 3
00013
                           JMF*
                     OPMD EQU
                                  130
         000130
         001030
                     DSKO EQU
                                  1030
00014
         034400
                     CM D
                           VFD
                                  2,0,3,7,2,0,1,1,1,0,7,0
                     OPCD EQU
                                  .230
         000230
                           EN D
```

A.4.2.4 SUBROUTINES C\$12,C\$21

for the second of the second o		•		
	C\$12	SUBR		
	**	REL D£12 DAC	0 000000	00000
CONVERT INT	C12	JST	0 10 06247	00001
	C\$12	JMP*	-0 01 00000	00002
	6247	C12 EQU	006247	
	C\$21	SUBR		2222
	**	C\$21 DAC	0 000000	00003
CONVERT REAL	C21	JST	0 10 06260	00004 00005
	ERR C\$21	JMP*	0 01 00007 -0 01 00003	00006
	·6260	21 EQU	-0 61 66663 606260	00000
ERROR REPORT	BER	ERR JST	0 10 05243	00007
	1 × RI	BCI	151311	00010
	'5243	BER EGU	005243	
		EN D		

A.4.3 LISTINGS OF SUBROUTINES 7

A.4.3.1 SUBROUTINE GRAPH

```
1 C
       GRAPH
          SUBROUTINE GRAPH (XN, A)
 3
          DIMENSION A(8)
 4
          IX=IFIX(XN+.2)
 5
          GO TO(10,15,20,30,40,50),IX
 6
      10
          CALL INITI(0)
 7
          RETURN
          CALL VWINDO(A(2), A(3), A(4), A(5))
      15
 9
          RETURN
10
     20 IF=IFIX(A(1)+.1)
1 1
          GO TO(1,2,3,4,5,6), IF
        1 CALL MOVEA(A(6), A(7))
12
13
          RETURN
14
        2 CALL POINTA(A(6),A(7))
15
          RETURN
16
        3 CALL DRAWA(A(6), A(7))
17
          RETURN
18
        4 CALL MOVER(A(E), A(7))
19
         RETURN
        5 CALL POINTR(A(6), A(7))
20
21
          RETURN
25
        € CALL DRAWR(A(6),A(7))
23
          RETURN
24
     30
          IC=IFIX(A(8)+.2)
25
          CALL VCURSR(IC, A(6), A(7))
26
          A(8) = FLOAT(IC)
27
          RETURN
28
     40
          IC=IFIX(A(8)+.2)
29
         CALL ANCHO(IC)
30
         RETURN
31
     50
         IX = A(6)
32
          IY = A(7)
33
         CALL FINITT(IX, IY)
34
         RETURN
35
         EN D
```

A.4.3.2 SUBROUTINE SIMULATOR/INTEGRATOR

```
1 C
       SUBROUTINE SOLVE
          SUBROUTINE CNIRL (OR, F, E, CO, TISS, CISS, X1, X2, XIND, FCB,
 3
         1DFCB, DELT, XRP, XJK)
          INTEGER ORD
 5
          DIMENSION XK(4,2)
 6
          INDEX=IFIX(XIND+@.1)
          TH=17300./F
 8
          ZZ=1./(30000.*C0)
 9
          ORD=IFIX(OR+0.1)
          G=E/(59.4*C0)
10
1 1
          Z1SS=C1SS/C0
12
          BISS=TISS*ZZ
13
     215 XRP=XRP+1.01
14
          IRP=IFIX(XRP)
     210 DC1=-X1/TH-2000.*C0**(ORD-1)*((X1+Z1SS)**ORD*EXF(-Q/(
15
16
         1B1SS+X2))-Z1SS**OFD*EXP(-Q/B1SS))
17
          IF(IRP.EQ.1) XX=X1
18
          XK(IRP, 1) = DC1 * DEL 1/50.
          YY=FLOAT(IFIX(FLOAT(IRP)/2.+0.9))*.5
19
20
          X = X + XK(IRP, 1) * YY
21
          IF(INDEX. EG. 1. AND. IRP. NE. 4) GO TO 215
22
          IF(INDEX.EG. 1. AND. IRP. EQ. 4) GO TO 220
          IF(IRP.EG.1) XXK=FCB
23
24
         XK(IRP, 2) = DFCB* DEL T/50.
25
          FCB=FCB+XK(IRP,2)*YY
26
     205 IF(IRP.NE. 4) RETURN
27
     220 XRP=0.
28
         XJK=XJK+1.001
29
          IJK=IFIX(XJK)
30
         X1=XX+(XK(1,1)+2.*(XK(2,1)+XK(3,1))+XK(4,1))/6.
31
         IF(INDEX.GT.1) FCB=XXK+(XK(1,2)+2.*(XK(2,2)+XK(3,2))
32
         1+XK(4,2))/6.
33
          IF(IJK.LE.50. AND. INDEX. EG. 1) GO TO 215
34
          IF(IJK.LE.50. AND. INDEX. GT. 1) RETURN
35
         XRP=-10.
36
         RETURN
37
         EN D
```

A.4.4 LISTING OF SUBROUTINE 8

A.4.4.1 SUBROUTINE SU89

			SUBR	SU89	
00000	0 000000	SU89	DAC	**	
00001	0 10 00025		JSI	VAL	•
00002	101040		SNZ		
00003	0 01 00014		JMF	SU8	JMP TO SN4 ROUT
00004	0 10 00025		JST	VAL	
00005	101040		SNZ		
00006	0 01 00012		JMP	PL D1	JMP TO PUNCH 1 -
00007	000000		HLT		PAUSE
00010	0 12 00000	PLD2	IRS	SU89	
00011	-0 01 00000		JMP*	SU89	RETURN
00012	0 10 05432	PLD1	JSI	PL D	PUNCH LEADER
00013	0 01 00010		JMP	PL D2	
	005432	PL D	EGU	'5432	
00014	0 10 00025	SU8	JST	VAL	SNSW4 ROUTINE
00015	101040 .		SNZ		
00016	0 01 00021		JMP	*+3	
00017	-0 12 00024		IRS*	PFLG	
00020	0 01 00023		JMP	*+3	
00021	140040		C.F.A		• The state of the
00022	-0 04 00024		STA*	PFLG	
00023	0 01 00010		JMP	PL D2	
00024	0 000000	PFLG	XAC	FFLG	
00025	0 000000	VAL	DAC	**	ARGUMENT ROUTIN
00026	-0 02 00000		LDA*	SU89	
00027	0 04 00033		STA	TEMP	
00030	-0 02 00033		L DA*	TEMP	
00031	0 12 00000		IRS	SU89	
00032	-0 01 00025		JMP*	VAL	
00033	000000	TEMP	BSZ	1	
			EN D	•	

A.4.4.2 I/O MOD

```
I/Ø MOD FOF SIR 8
                            RLL
                            ENI
                                  IOMOL, AA
                            ENT
                                  FFLG
  00000
          161667
                      AA
                            553
  00001
          0 01 00002
                            JMF
                                  *+3
  00002
          148040
                            CHA
  66663
          P R4 88185
                            STA
                                  1165
  00004
         0 02 00406
                           LLA
                                  . 40€
 00005
        -0 01 00006
                           JMF*
                                  * + 1
 8000€
         884143
                           001
                                  4143
 00007
          P 12 00105 EE
                           IFS
                                  1185
 00010
         140040
                           CHA
 66611
         8 84 8018E
                           STA
                                  110€
 60012
         -0 10 00014
                           J ニ l *
                                  *+2
        -0 01 00015
 00013
                           JMF*
 00012
         4830E5
                           001
                                  3065
 00015
         004575
                           001
                                 4575
 00016
          9.92 99936 CC
                           LLA
                                FFL G
 00017
         100040
                           SZE
 66656
          6 61 66653
                           JMF
                                 *+3
 66651
         101002
                           SSA
 66655
          0 01 00025
                           JMF
                                 *+3
 66653
         14 6665
                           OCF
                                 2
 00024
        € 12 6610€
                           IFS
                                 118€
 00025
        -0 10 00027
                           J57*
                                 *+2
 88826
        -0 01 00030
                          JMF*
                                 *+2
88827
         663647
                          OCT
                                 3047
00030
         004212
                          001
                                 4212
66631
        0 12 00105 EE
                          115
                                 1165
00032
        140040
                          CHA
66633
         8 84 88186
                          STA
                                 118€
00034 -0 01 00035
                          JMF*
                                 *+1
60635
        005245
                          061
                                 5245
0003E
        000000
                     FFLG ESZ
                          ABS
         666757
                     EASE EQU
                                 '727
                          ONG
                                 BASE
88727
         0 666666
                          LAC
                                 AA
         0 000007
66736
                          LAC
                                 PF
00731
        0 000016
                          LAC
                                CC
66732
        0 000031
                          LAC
                                LL
                          OFG
                                '4142
84142
       -0 01-00727
                          JMF*
                                BASE
                          OFG
                                14574
84574
       -0 61 66736
                          JMF*
                                EASE+1
                         OFG
                                '4211
84211
       -6 61 66731
                          JMF*
                                BASE+2
                         OKG
                                15244
85240
      -0 01 00732
                         JMF*
                                BASE+3
                          LNL.
```

A.4.5 LISTING OF SUBROUTINE 9

			SUER	MITI
			REL	
00000	0 000000	MITI	DAC	**
00001	-6 65 00000		L DA*	MITI
00002	0 04 00020		STA	EMY
00003	0 12 00000		IRS	ITIM
.00004	-0 02 00020		L DA*	EMY
00005	101040		SN Z	
00006	0 01 00021		JMF	TER
00007	-0 02 00000		LDA*	MITI
00010	0 04 00016		STA	DMY1
00011	0 02 00061		LDA	TIM
00012	0 07 00027		SUB	CONS
00013	14 0220		OCP	.550
00014	-0 10 00675		JST*	C\$12
00015	-0 10 00654		JST*	H\$22
00016	0 000000	DMY 1		**
00017	0 01 00024		JMP .	OUT
00020	000000	DM Y	BSZ	1
	000061	MIT	E. G.U	61
	000675	C\$12	EEU	* 675
	000654	H\$22	EGU	* 654
00021	0 02 00027	TER	LDA	CON S
00022	0 04 00061		STA	MIT
00023	14 0020		OCF	' 20
00024	0 12 00000	OUI	IRS	MITI
00025	0 12 00000		IRS	MITI
00026	-0 01 00000		JMP*	ITIM
00027	100010	CONS	DEC	-32760
			FND	

A.4.6 LISTING OF TAPE CONVERSION PROGRAM

```
ABS
                            ORG
                                   . 20000
 20000
          0 10 20023 SIRT JST
                                   INF
 20001
          100040
                            SZE
 20002
          0 01 20005
                            JMF
                                  NEXT
 20003
         0 10 20031
                            JSI
                                  001
         0 01 20000
 20004
                           JMF
                                   STRT
         0 03 20046 NEXT ANA
 20005
                                  = 177
20006
         0 04 20022
                            STA
                                  CHAK
20007
         0 05 20045
                            ERA
                                  = 4
20010
         101040
                            SNZ
20011
         000000
                           HL I
20012
         0 02 20022
                           LDA
                                  CHAR
20013
         0 05 20044
                           ERA
                                  = '12
20014
         101040
                           SNZ
20015
         0 10 20036
                           JSI
                                  CR
20016
         0 02 20022
                           LDA
                                  CHAR
20017
         0 05 20043
                           ERA
                                  = .500
20020
         0 10 20031
                           JST
                                  OUT
20021
         0 01 20000
                           JMF
                                  STRT
20022
         000000
                      CHAR BSZ
                                  1
26623
         0 000000
                      INF
                           DAC
                                  * *
20024
         14 0001
                           OCP
20025
         54 1001
                           INA
                                  1001
20026
         0 01 20025
                           JMP
20027
         14 0101
                           OCF
                                  101
20030
        -0 01 20023
                           JMF*
                                  INP
20031
         0 000000
                     001
                           DAC
                                  * *
20032
         14 0002
                           OCF
                                  2
20033
         74 0002
                           AIO
                                  2
20034
         0 01 20033
                           JMF
                                  *-1
20035
        -0 01 20031
                           JMF*
                                  OUT
20036
         0 000000
                     CR
                           DAC
         0 02 20042
20037
                           LDA
                                  = .215
20040
         0 10 20031
                           JST
                                 OUT
        -0 01 20036
20041
                           JMF*
                                  CR
20042
         000215
                           EN D
20043
         000200
20044
         000012
20045
         000004
20046
         000177
```

A.4.7 MODIFICATIONS IN THE BASIC INTERPRETER

LOCATION		CONTENTS	
{'1036}		'1054	
{'1037}	armajos materias	'1100	
{'2130}	=	'151724	(ST)
{'2131}	=	'140722	(AR)
{'2132}	=	'152000	(T∇)

- i) Command START is equivalent to RUN in the old version
- ii) Command RUN in this version does not clear tables
- iii) Command CLEAR in the old version is removed.

{ '7367}	=	'22000 highest octal
		address available
		for user program and
		tables
{ '522}	=	'27606 starting location
		of subroutine 5
{ '523}	=	'37204 starting location
		of subroutine 6
{ '524}	=	'22000 starting location
		of subroutine 7
{ '525}	=	'37150 starting location
		of subroutine 8
{ '526}	*****	'27740 starting location
		of subroutine 9

A.4.8 MEMORY MAP

A.4.8.1 MEMORY MAP OF GRAPHICS ROUTINES (SEGMENT 1)

```
*LOW
        22000
*STAFT 21777
        34446
*HIGH
*NAMES 11104
*COMN
       35441
*BASE : 34457
*BASE
        33641
*BASE
        32631
*BASE
        30760
*BASE
       31373
*BASE
       26635
*BASE
       27175
*BASE
       25314
*BASE
       23712
*BASE
       24652
*BASE
       22711
GRAFH
       22000
INITI
       22402
FINITT 22552
WINDO 22566
MCTEA
       22626
P( INTA 23000
[FAWA 23030
MOLER
       23074
POINTF 23122
DRAWR 23150
MOVABS 23176
VCURSR 23216
DCURSE 23244
AN CHO 23342
ANMODE 23376
NEWLIN 23420
CARTN
       23426
LINEF
       23466
NEWPAG 23512
SVSTAT 23556
RESTAT 24000
LVLCHT 24142
VECMOD 24176
V2SI
       24250
PN TMOD 24456
MC7CHK 24514
REL 2AB 24542
XYCN VT 25000
```

TK DASH REVCOT IOWAIT 27106 Q_IPT 30000 WINCOT 31000 PCLIPT 31116 TOUTPT 31316 TINPUT 31334 EXP 32000 SORTX 32340 SORT 32340 ABS 32454 MOD 32466 32514 FLOAT INT 32524 IDINT 32524 IFIX 32524 E\$21 32534 33000 M\$11X M\$11 33000 D\$11X 33060 D\$11 33060 M\$22X 33130 M\$22 33130 D\$22X 33311 D\$22 33311 C\$12 33550 C\$21 33602 S\$22 34000 34006 A\$22 N\$22 34230 REAL 34242 L\$22 34242 H\$22 34252 FSER 34270 FSHT 34300 **FSAT** 34336 ARG \$ 34420 AC1 34440 AC2 34441 AC3 34442 AC4 34443 AC5 34444 SAVE 35441 TK TRNX 35631

A.4.8.2 MEMORY MAP OF SIMULATOR (SEGMENT 2)

*L CW 22000 *STAFT 21777 *HIGH 25500 *NAMES 12561 *COMN 37777 *BASE 23750 *BASE 24743 *FASE 227 62 CNITEL 55600 N\$22 23000 FEAL 23012 L\$22 23012 H\$22 23655 F S E F 23040 F\$HT 23050 0\$12 23106. 5\$22 23140 A\$22 2314€ FSAT 23370 AFG5 23454 W\$25X 24000 M\$22 24000 L\$22X 24161 E:\$22 24161 EXF 25000 FLCAT 25340 INT 25350 II:INT 25350 IFIX 2535@ E\$21 25368 C\$21 25440 AC1 25472 AC 2 25473 AC3 25474 AC Z 25475 AC5 2547€

A.4.8.3 MEMORY MAP OF HADIOS ROUTINES (SEGMENT 2)

```
*LOW
       00551
*START 00551
*HIGH
        37137
*NAMES 12762
*COMN 37777
*EASE
       37148
*EASE
       27723
*EASE
       26666
HADIOS 26000
IFLG
       26477
FFAT
       2€€7€
MYSR
       27 603**
SUB5
       27686
       27740
ITIM
ERCL
       3712€
```

A.4.8.4 MEMORY MAP OF DISK TRANSFER ROUTINES (CORE

RESIDENT)

*START 37150 *HIGH 37771 *NAMES 12716 *COMV 37777 *FASE 3777€ SU89 37150 DIOC 37204 0512 37420 C\$21 37423 EWSC 37440 AFD03 37550 FF AL 375€€ L\$22 375*EE* H\$22 37576 **L\$**33 37 € 14

37 630

37712

37732

3777€

00727

*LOW

FSAT

ARG \$

IOMOI

PFLG

APPENDIX 5 CALIBRATION, R.T.D. STUDIES AND PARAMETER VALUES

FIG.A.5.1 IMMERSION HEATERS CALIBRATION FIGURE

FIG.A.5.2 CONTROL VALVE CALIBRATION FIGURE

FIG.A.5.3 TURBINE FLOWMETER CALIBRATION FIGURE

1 = Step change in feed temperature

2 = Model response of a single continuous stirred
 vessel

3,4 = Actual response of the tank

FIG.A.5.4 RTD STUDIES IN TANK FOR STEP IN FEED TEMPERATURE

l = Step change in coolant temperature

2 = Model response of a single continuous
 stirred vessel

3,4 = Actual response of the jacket

FIG.A.5.5 RTD STUDIES IN JACKET FOR STEP IN COOLANT TEMPERATURE

A.5.6 PARAMETER VALUES CHOSEN

A.5.6.1 FOR TOTAL SIMULATION/THEORETICAL STUDIES

 $V = 17.3 \times 10^{-3} \text{ m}^3$ $V_c = 8.532 \times 10^{-3} \text{ m}^3$

 $\rho, \rho_{c} = 1000 \text{ kg/m}^3$

 $C_p, C_{pc} = 4.1868 \text{ kJ/kg K}$

UA = 0.1549 kJ/s K

 $\tau_{\rm m} = 19 \text{ s}$

 $\tau_{v} = 2 s$

 τ_s = 11-15 s

n	E (kJ/kg mole K)	k _o
4	92067.73	$2 \times 10^{18} \text{ kg}^{5}/\text{m}^{15} \text{ s}$
3	82061.28	$2 \times 10^{15} \text{ kg}^4/\text{m}^{12} \text{ s}$
	72012,96	$2 \times 10^{12} \text{ kg}^3/\text{m}^9 \text{ s}$
3	22127.24	$2 \times 10^{-3} \text{ m}^6/\text{kg}^2 \text{ s}$
4	12141.72	$2 \times 10^{-6} \text{m}^{9}/\text{kg}^{3} \text{s}$

A.5.6.2 FOR TOTAL SIMULATION/EXPERIMENTS

 $\Delta H = -125604 \text{ kJ/kg}$

 $C_{O} = 20 \text{ kg/m}^3$

R = 8.28986 kJ/kg mole K

 $F_{cUL} = 1.5 \times 10^{-4} \text{ m}^3/\text{s}$

<u>n</u>	E (kJ/kg mole K)	k _o
-1	62090.24	$2 \times 10^9 \text{ kg}^2/\text{m}^6 \text{ s}$
0	52104.73	$2 \times 10^6 \text{ kg/m}^3 \text{ s}$
1	42119.21	2000 s ⁻¹
2	32112.76	2 m ³ /kg s

A.5.7 CALIBRATION EQUATIONS

TURBINE FLOWMETER

 $F = Q_1 \times 0.49408 \times 10^{-6} + 11.30073 \times 10^{-6}$ If F > 5.833 x 10⁻⁵ F = Q₁ x 0.56748 x 10⁻⁶ + 5.42647 x 10⁻⁶

CONTROL VALVE

If
$$F_c < = 3.833 \times 10^{-5} V_S = -84925.2 \times F_c + 9.54589$$

If $F_c > = 12.5 \times 10^{-5} V_S = -35039.94 \times F_c + 7.21557$
If $F_c > 3.833 \times 10^{-5}$ and $< = 8.33 \times 10^{-5}$

$$V_S = -49527.12 \text{ x } F_C + 8.13453$$

If $F_C > 8.33 \text{ x } 10^{-5}$ and < 12.5 x 10^{-5}

$$V_S = -29636.34 \times F_C + 6.46235$$

IMMERSION HEATERS

$$\alpha_1 = Z_1 H^2 + Z_2 H + Z_3$$

If H < 500
$$Z_1 = -0.153234 \times 10^{-5}$$

 $Z_2 = .197036 \times 10^{-2}$
 $Z_3 = .340653$

If H > 2400
$$Z_1 = .675824 \times 10^{-6}$$

 $Z_2 = -.296997 \times 10^{-2}$

$$Z_3 = 5.20372$$

If H > 500 and < 2400
$$Z_1 = 0$$

$$Z_2 = .50393 \times 10^{-3}$$

$$Z_3 = .738165$$

APPENDIX 6

EXPERIMENTAL AND TOTAL SIMULATION GRAPHS
(REFER TABLES (8.1) AND (8.2) FOR OPERATING CONDITIONS)

Reaction order = 2
Open loop studies
Initial perturbations in state variables

FIG.A.6.1.1 EXPERIMENT NO:1

FIG.A.6.2.9 EXPERIMENT NO:12

FIG.A.6.2.10 EXPERIMENT NO:14

FIG.A.6.2.11 EXPERIMENT NO:19

FIG.A.6.2.12 EXPERIMENT NO:20

FIG.A.6.2.13 EXPERIMENT NO:22

FIG.A.6.2.14 EXPERIMENT NO:23

FIG.A.6.2.15 EXPERIMENT NO:26

FIG.A.6.2.16 EXPERIMENT NO:27

FIG.A.6.2.17 EXPERIMENT NO:29

FIG.A.6.2.18 EXPERIMENT NO:31

FIG.A.6.2.19 EXPERIMENT NO:32

FIG.A.6.2.20 EXPERIMENT NO:35

FIG.A.6.2.21 EXPERIMENT NO:36

FIG.A.6.2.22 EXPERIMENT NO:37

FIG.A.6.2.23 EXPERIMENT NO:38

FIG.A.6.2.24 EXPERIMENT NO:48

FIG.A.6.2.25 EXPERIMENT NO:49

FIG.A.6.2.26 EXPERIMENT NO:50

FIG.A.6.2.27 EXPERIMENT NO:54

FIG.A.6.2.28 EXPERIMENT NO:55

FIG.A.6.2.29 EXPERIMENT NO:56

FIG.A.6.2.30 EXPERIMENT NO:60

FIG.A.6.2.31 EXPERIMENT NO:62

FIG.A.6.2.32 EXPERIMENT NO:63

FIG.A.6.2.33 EXPERIMENT NO:65

FIG.A.6.2.34 EXPERIMENT NO:66

FIG.A.6.2.35 EXPERIMENT NO:69

FIG.A.6.2.36 EXPERIMENT NO:71

FIG.A.6.2.37 EXPERIMENT NO:73

FIG.A.6.2.38 EXPERIMENT NO:74

FIG.A.6.2.39 EXPERIMENT NO:76

FIG.A.6.2.40 EXPERIMENT NO:77

FIG.A.6.2.41 EXPERIMENT NO:80

FIG.A.6.2.42 EXPERIMENT NO:83

FIG.A.6.2.43 EXPERIMENT NO:84

FIG.A.6.2.44 EXPERIMENT NO:85

FIG.A.6.2.45 EXPERIMENT NO:88

FIG.A.6.2.46 EXPERIMENT NO:91

FIG.A.6.2.47 EXPERIMENT NO:92

APPENDIX 7 COMPARISON OF DECOUPLING AND INVARIANCE TYPE CONTROLS WITH CONVENTIONAL CONTROLLERS

APPENDIX 7

COMPARISON OF DECOUPLING AND INVARIANCE TYPE CONTROLS WITH CONVENTIONAL CONTROLLERS

Figure A.7.1 gives a conventional feedback and feed-forward multiloop control. The scheme has two feed-forward paths for the two load disturbances entering the system. For a P+I+D control the equation for the feedback path is given by

$$\bar{F}_{c} = K_{c}Y + \frac{1}{T_{I}} \int Ydt + T_{D} dY/dt \qquad (A.7.1)$$

The equation for the first feed-forward path is given by

$$\bar{F}_{c} = K_{c} \dot{\beta}_{o} + \frac{1}{T_{I}} \int \beta_{o} dt + T_{D} \frac{d\beta_{o}}{dt}$$
(A.7.2)

and for the second feed-forward path by

$$\bar{F}_{c} = K_{c} \gamma_{o} + \frac{1}{T_{I}} \int \gamma_{o} dt + T_{D} \frac{d\gamma_{o}}{dt}$$
(A.7.3)

The controllers are generally tuned for optimum settings.

Figs. (A.7.2) and (A.7.3) respectively give the configuration of the decoupling and invariance type control schemes discussed in the text. The two new control schemes, have feed-forward paths but differ from conventional feed-forward control in that the controller action is, in each case, derived from the state equations of the system. In addition decoupling control is a multivariable scheme with a feedback loop.

Thus for decoupling control

$$\bar{F}_{c} = \{\dot{Z} + \tau_{2} Z - Y/\tau_{I} - \gamma_{o}/\tau_{c}\} \frac{V_{c}}{(\gamma_{OSS} + \gamma_{o} - \gamma_{SS} - Z)}$$
(3.49)

where \mathbf{Z} is given by equation (3.50) and for invariance control

$$\overline{F} = \frac{\{\gamma_{o}/\tau_{c} + \beta_{o}(\tau_{o}/\tau)\tau_{2}\}V_{c}}{\{\gamma_{SS}^{-\gamma_{o}SS}^{-\gamma_{o}} - \beta_{o}\tau_{o}/\tau\}}$$
(3.54)

Decoupling and complete invariance cannot be achieved with conventional feed-forward/feedback schemes and the present work investigates the improvements obtained with these new schemes.

FIG. A.7.1 CONVENTIONAL FEEDBACK/FEED-FORWARD CONTROL

FIG. A.7.2 DECOUPLING TYPE CONTROL

FIG. A.7.3 INVARIANCE TYPE CONTROL

 G_{v} = valve transfer function

 G_{p1}, G_{p2} = process transfer function

 G_{m1} to G_{m5} = measuring element transfer function

 G_{L1}, G_{L2} = load transfer function

 $G_{C1}^{to} G_{C3}^{c}$ = controller transfer function

Reaction order = 2

Open loop studies

Initial perturbations in state variables

FIG.A.6.1.2 EXPERIMENT NO:2

Reaction order = 2 Open loop studies Step in tank inlet temperature = 2.5 K

FIG.A.6.1.3 EXPERIMENT NO:3

Reaction order = 2 Limit-cycle around open loop stable operating point $Gain (K_c=0.09)$

FIG.A.6.1.4 EXPERIMENT NO:4

Reaction order = 2

Controller equation derived from stablity conditions(eqn.(3.38))

Initial perturbations in state variables

FIG.A.6.1.5 EXPERIMENT NO:5

Reaction order = 2

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbations in state variables

FIG.A.6.1.6 EXPERIMENT NO:6

Reaction order = 2

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbations in state variables

FIG.A.6.1.7 EXPERIMENT NO:7

Reaction order = 2

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbations in state variables

FIG.A.6.1.8 EXPERIMENT NO:8

Reaction order = 2

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbations in state variables

FIG.A.6.1.9 EXPERIMENT NO:9

Reaction order = 2

Decoupling type control of tank temperature(D_{max}=.007)

Step in tank inlet temperature = 3 K

FIG.A.6.1.10 EXPERIMENT NO:10

Reaction order = 2

Decoupling type control of tank temperature(D_{max} =.005)

Initial perturbations in state variables

FIG.A.6.1.11 EXPERIMENT NO:11

Reaction order = 2

Decoupling type control of tank temperature(D_{max} = .015)

Initial perturbations in state variables

FIG.A.6.1.12 EXPERIMENT NO:12

Reaction order = 2

Decoupling type control of tank temperature(D_{max}=.007)

Step in tank inlet temperature =4.75 K

FIG.A.6.1.13 EXPERIMENT NO:13

Reaction order = 1
Open loop studies
Initial perturbations in state variables

FIG.A.6.1.14 EXPERIMENT NO:14

Reaction order = 1
Open loop studies
Initial perturbations in state variables

FIG.A.6.1.15 EXPERIMENT NO:15

Reaction order = 1
Open loop studies
Initial perturbations in state variables

FIG.A.6.1.16 EXPERIMENT NO:16

Reaction order = 1
Open loop studies
Step in tank inlet temperature = 2.75 K

FIG.A.6.1.17 EXPERIMENT NO:17

Reaction order = 1 Proportional feedback control of tank temperature(K_c =.0005) Initial perturbations in state variables

FIG.A.6.1.18 EXPERIMENT NO:18

Reaction order = 1

Proportional feedback control of tank temperature(K_c=.03)

Initial perturbations in state variables

FIG.A.6.1.19 EXPERIMENT NO:19

Reaction order = 1
Proportional feedback control of tank temperature(K_c=.0005)
Initial perturbations in state variables

FIG.A.6.1.20 EXPERIMENT NO:20

Reaction order = 1
Proportional feedback control of jacket temperature(K_c=.001)
Initial perturbations in state variables

FIG.A.6.1.21 EXPERIMENT NO:21

Peaction order = 1 Proportional feedback control of jacket temperature(K_c =.01) Initial perturbations in state variables

FIG.A.6.1.22 EXPERIMENT NO:22

Reaction order = 1
Controller equation derived from stability conditions(eqn.(3.38))
Initial perturbations in state variables

FIG.A.6.1.23 EXPERIMENT NO:23

Reaction order = 1 Proportional feedback control of tank temperature(K_c =.03) Step in tank inlet temperature = 4.6 K

FIG.A.6.1.24 EXPERIMENT NO:24

Reaction order = 1
Proportional feedback control of tank temperature(K_c=.05)
Step in tank inlet temperature = 3.5 K

FIG.A.6.1.25 EXPERIMENT NO:25

Reaction order = 1 Limit-cycle behaviour around open loop stable operating point(K_c =.016)

FIG.A.6.1.26 EXPERIMENT NO:26

Reaction order = 1 Limit-cycle behaviour around open loop unstable operating point(K_c =.0086)

FIG.A.6.1.27 EXPERIMENT NO:27

Reaction order = 1 Proportional feedback control of tank temperature(K_c =.0005) Stabilising open loop unstable operating point

FIG.A.6.1.28 EXPERIMENT NO:28

Reaction order = 1 Proportional feedback control of tank temperature(K_c =.02) Stabilising open loop unstable operating point

FIG.A.6.1.29 EXPERIMENT NO:29

Reaction order = 1 Proportional feedback control of tank temperature(K_c =.02) Stabilising open loop unstable operating point

FIG.A.6.1.30 EXPERIMENT NO:30

Reaction order = 1

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbations in state variables

Stabilising open loop unstable operating point

FIG.A.6.1.31 EXPERIMENT NO:31

Reaction order = 1 Decoupling type control of tank temperature(D_{max} =.007) Initial perturbations in state variables

FIG.A.6.1.32 EXPERIMENT NO:32

Reaction order = 1 Decoupling type control of tank temperature(D_{max} =.007) Initial perturbation in a state variable

FIG.A.6.1.33 EXPERIMENT NO:33

Reaction order = 1

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbations in state variables

FIG.A.6.1.34 EXPERIMENT NO:34

Reaction order = 1

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbations in state variables

FIG.A.6.1.35 EXPERIMENT NO:35

Reaction order = 1 Decoupling type control of tank temperature(D_{max} =.01) Initial perturbations in state variables

FIG.A.6.1.36 EXPERIMENT NO:36

Reaction order = 1
Decoupling type control of tank temperature(D_{max} =.015)
Initial perturbations in state variables

FIG.A.6.1.37 EXPERIMENT NO:37

Reaction order = 1

Decoupling type control of tank temperature(D_{max}=.005)

Initial perturbations in state variables

FIG.A.6.1.38 EXPERIMENT NO:38

Reaction order = 1

Decoupling type control of tank temperature(D_{max}=.007)

Step in tank inlet temperature= 4.5 K

FIG.A.6.1.39 EXPERIMENT NO:39

Reaction order = 1
Decoupling type control of tank temperature(D_{max} =.007)
Step in tank inlet temperature = 3.5 K

FIG.A.6.1.40 EXPERIMENT NO:40

Reaction order = 1
Invariance control
Step in tank inlet temperature = 3.4 K

FIG.A.6.1.41 EXPERIMENT NO:41

Reaction order = 1
Invariance control
Step in tank inlet temperature = 4.8 K

FIG.A.6.1.42 EXPERIMENT NO:42

Reaction order = 1
Invariance control
Step in jacket inlet temperature = 7 K

FIG.A.6.1.43 EXPERIMENT NO:43

Reaction order = 1
Invariance control
Step in jacket inlet temperature = 5 K

FIG.A.6.1.44 EXPERIMENT NO:44

Reaction order = 1
Invariance control
Step in jacket inlet temperature = 2.5 K

FIG.A.6.1.45 EXPERIMENT NO:45

Reaction order = 1
Invariance control
Step in tank inlet temperature = .75 K
Step in jacket inlet temperature = 2.7 K

FIG.A.6.1.46 EXPERIMENT NO:46

Reaction order = 1
Invariance control
Step in tank inlet temperature = 2. K
Step in jacket inlet temperature = 2.1 K

FIG.A.6.1.47 EXPERIMENT NO:47

Reaction order = 0
Open loop studies
Initial perturbations in state variables

FIG.A.6.1.48 EXPERIMENT NO:48

Reaction order = 0
Open loop studies
Initial perturbations in state variables

FIG.A.6.1.49 EXPERIMENT NO:49

Reaction order = 0

Proportional feedback control of tank temperature(K_c=.0005)

Initial perturbations in state variables

FIG.A.6.1.50 EXPERIMENT NO:50

Reaction order = 0 Proportional feedback control of tank temperature(K_c =.0001) Initial perturbations in state variables

FIG.A.6.1.51 EXPERIMENT NO:51

Reaction order = 0
Open loop studies
Step in tank inlet temperature = 2.6 K

FIG.A.6.1.52 EXPERIMENT NO:52

Reaction order = 0

Proportional feedback control of tank temperature(K_c=.01)

Step in tank inlet temperature = 3 K

FIG.A.6.1.53 EXPERIMENT NO:53

Reaction order = 0

Controller equation derived from stability conditions(eqn.(3.38))

Initial perturbations in state variables

FIG.A.6.1.54 EXPERIMENT NO:54

Reaction order = 0 Limit-cycle behaviour around open loop stable operating point $(K_c = .06)$

FIG.A.6.1.55 EXPERIMENT NO:55

 $\label{eq:Reaction order = 0} % \begin{center} \textbf{Reaction order = 0} \\ \textbf{Limit-cycle behaviour around open loop unstable operating} \\ \textbf{point}(\textbf{K}_{\textbf{C}}\textbf{=.1}) \\ \end{center}$

FIG.A.6.1.56 EXPERIMENT NO:56

Reaction order = 0

Proportional feedback control of tank temperature(K_c=.002)

Stabilising open loop unstable operating point

FIG.A.6.1.57 EXPERIMENT NO:57

Reaction order = 0 Proportional feedback control of tank temperature (K_c = .0035) Stabilising open loop unstable operating point

FIG.A.6.1.58 EXPERIMENT NO:58

Reaction order = 0

Proportional feedback control of jacket temperature(K_c=.015)

Stabilising open loop unstable operating point

FIG.A.6.1.59 EXPERIMENT NO:59

Reaction order = 0

Proportional feedback control of jacket temperature(K_c=.03)

Stabilising open loop unstable operating point

FIG.A.6.1.60 EXPERIMENT NO:60

Reaction order = 0

Decoupling type control of tank temperature($D_{max} = .007$)

Stabilising open loop unstable operating point

FIG.A.6.1.61 EXPERIMENT NO:61

Reaction order = 0

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbations in state variables

FIG.A.6.1.62 EXPERIMENT NO:62

Reaction order = 0

Decoupling type control of tank temperature(D_{max} =.007)

Initial perturbations in state variables

FIG.A.6.1.63 EXPERIMENT NO:63

Reaction order = 0

Decoupling type control of tank temperature(D_{max} =.007)

Initial perturbations in state variables

FIG.A'.6.1.64 EXPERIMENT NO:64

Reaction order = 0

Decoupling type control of tank temperature(D_{max}=,016)

Initial perturbations in state variables

FIG.A.6.1.65 EXPERIMENT NO:65

Reaction order = 0

Decoupling type control of tank temperature($D_{max} = .002$)

Initial perturbations in state variables

FIG.A.6.1.66 EXPERIMENT NO:66

Reaction order = 0

Decoupling type control of tank temperature(D_{max}=.007)

Step in tank inlet temperature = 4.2 K

FIG.A.6.1.67 EXPERIMENT NO:67

Reaction order = 0

Decoupling type control of tank temperature(D_{max}=.007)

Step in tank inlet temperature = 2.5 K

FIG.A.6.68 EXPERIMENT NO:68

Reaction order =-1
Open loop studies
Initial perturbations in state variables

FIG.A.6.1.69 EXPERIMENT NO:69

Reaction order = -1
Open loop studies
Initial perturbations in state variables

FIG.A.6.1.70 EXPERIMENT NO:70

Reaction order = -1
Open loop studies
Initial perturbations in state variables

FIG.A.6.1.71 EXPERIMENT NO:71

Reaction order = -1
Open loop studies
Step in tank inlet temperature = 2.5 K

FIG.A.6.1.72 EXPERIMENT NO:72

Reaction order = -1

Proportional feedback control of tank temperature(K_c=.0005)

Initial perturbations in state variables

FIG.A.6.1.73 EXPERIMENT NO:73

Reaction order = -1
Proportional feedback control of tank temperature ($K_c = .0005$)
Initial perturbations in state variables

FIG.A.6.1.74 EXPERIMENT NO:74

Reaction order = -1 Proportional feedback control of tank temperature(K_c =.002) Initial perturbations in state variables

FIG.A.6.1.75 EXPERIMENT NO:75

Reaction order = -1

Proportional feedback control of jacket temperature(K_c=.01)

Initial perturbations in state variables

FIG.A.6.1.76 EXPERIMENT NO:76

Reaction order = -1

Controller equation derived from stability conditions(eqn.(3.38))

Initial perturbations in state variables

FIG.A.6.1.77 EXPERIMENT NO:77

Reaction order = -1 Proportional feedback control of tank temperature(K_c =.03) Step in tank inlet temperature = 2.6 K

FIG.A.6.1.78 EXPERIMENT NO:78

Reaction order = -1 Proportional feedback control of tank temperature(K_c =.002) Stabilising open loop unstable operating point

FIG.A.6.1.79 EXPERIMENT 79

Reaction order = -1
Proportional feedback control of tank temperature $(K_c = .0035)$ Stabilising open loop unstable operating point

FIG.A.6.1.80 EXPERIMENT NO:80

Reaction order = -1

Proportional feedback control of jacket temperature(K_c=.008)

Stabilising open loop unstable operating point

FIG.A.6.1.81 EXPERIMENT NO:81

Reaction order = -1

Proportional feedback control of jacket temperature(K_c=.01)

Stabilising open loop unstable operating point

FIG.A.6.1.82 EXPERIMENT NO:82

Reaction order = -1

Decoupling type control of tank temperature(D_{max} = .007)

Stabilising open loop unstable operating point

FIG.A.6.1.83 EXPERIMENT NO:83

Reaction order = -1
Decoupling type control of tank temperature(D_{max} =.007)
Stabilising open loop unstable operating point

FIG.A.6.1.84 EXPERIMENT NO:84

Reaction order = -1

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbations in state variables

FIG.A.6.1.85 EXFERIMENT NO:85

Reaction order = -1

Decoupling type control of tank temperature(D_{max}=.007)

Initial perturbation in a state variable

FIG.A.6.1.86 EXPERIMENT NO:86

Reaction order = -1

Decoupling type control of tank temperature(D_{max} =.007),

Initial perturbations in state variables

FIG.A.6.1.87 EXPERIMENT NO:87

Reaction order = -1
Decoupling type control of tank temperature(D_{max}=.005)
Initial perturbations in state variables

FIG.A.6.1.88 EXPERIMENT NO:88

Reaction order = -1

Decoupling type control of tank temperature(D_{max}=.007)

Step in tank inlet temperature = 3.6 K

FIG.A.6.1.89 EXPERIMENT NO:89

Reaction order = -1

Decoupling type control of tank temperature(D_{max}=.007)

Step in tank inlet temperature = 2.3 K

FIG.A.6.1.90 EXPERIMENT NO:90

Reaction order = -1

Decoupling type control of tank temperature(D_{max}=.011)

Initial perturbations in state variables

FIG.A.6.1.91 EXPERIMENT NO:91

Reaction order = -1
Limit-cycle around open loop unstable operating point $(K_c=.028)$

FIG.A.6.1.92 EXPERIMENT NO:92

A.6.2 COMPARISON OF EXPERIMENTS WITH TOTAL SIMULATION

(continuous lines indicate total simulation,

- O experimental points and
- first harmonic response
 (eqn. (3.63)-(3.65)))

FIG.A.6.2.1 EXPERIMENT NO:1

FIG.A.6.2.2 EXPERIMENT NO:2

FIG.A.6.2.3 EXFERIMENT NO:4

FIG.A.6.2.4 EXPERIMENT NO:5

FIG.A.6.2.5 EXPERIMENT NO:6

FIG.A.6.2.6 EXPERIMENT NO:8

FIG.A.6.2.7 EXPERIMENT NO:9

FIG.A.6.2.8 EXPERIMANT NO:11