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A recently developed spectral method for identifying metastable states in Markov chains is used to
analyse the conformational dynamics of a four residue peptide Valine-Proline-Alanine-Leucine. We
compare our results to empirically defined conformational states and show that the found metastable
states correctly reproduce the conformational dynamics of the system.

I. INTRODUCTION

Conformational dynamics is fundamental for the ma-
jority of biomolecular transformations, including such
well known biochemical processes as protein folding and
ligand docking. The biomolecule passes through many
intermediate configurations on the way from the initial
to the final state. The latter two are normally well de-
fined and can be experimentally identified. This is not
the case, however, for the intermediate states that are
often only possible to elucidate in computer simulation.
The information on the correct intermediates, their prob-
abilities, and the transitions between them is necessary
for the estimation of correct, experimentally verifiable
rates of biochemical reactions and understanding their
mechanisms. For this reason identifying the conforma-
tional states and investigating their dynamics have re-
cently been a topic of very active development (see [1–8]
for a few recent examples). It should be noted that it is
currently impossible to predict the conformational states
of a biomolecule from its chemical structure. The entire
dynamical evolution of the biomolecular system (often
including water molecules explicitly) is required. How-
ever, even all first principle information on the molecu-
lar motion on the atomistic scale does not provide the
conformational states directly: the information has to
be properly processed. Moreover, the resulting physico-
chemical parameters of the whole biomolecular process
strongly depend on how the states are defined and sub-
tle variations in the states definition can lead to orders
of magnitude differences in the molecular characteristics,
especially the kinetics of the process [9, 10].

Significant efforts are devoted to developing ways
of grouping elementary conformations (the ‘mi-
crostates’) into the intermediate metastable states
(the ‘macrostates’), see, for example, the recent overview
in [8]. However, almost all of them use the structural
similarity in either configurational or free energy space
for initial clustering of the instantaneous molecular
conformations into the microstates. This is done before

the application of the kinetic approaches to forming the
macrostates. The procedure is necessary for accumulat-
ing the data on the transitions between the microstates,
however, an unbiased approach based on purely dynamic

(not structural) considerations is highly desirable.
We have recently investigated a four-residue peptide

Valine-Proline-Alanine-Leucine (VPAL), Fig. 1 [9–11].
The peptide is a convenient model for studying conforma-
tional changes as one of the smallest biomolecules having
dynamics that resembles the ”folding” process. The sys-
tem is small enough to sample the conformational space
exhaustively. This is important for statistically correct
conclusions. In our investigations [9–11] we assigned the
molecular configurations to different states empirically,
simply by drawing straight boundaries between the clus-
ters on the Ramachandran plots, Fig. 2. It is, there-
fore, important to investigate how this definition of the
states relates to those rigorously defined by the time
spent in each conformation and using formal analysis of
the Markov chain formed by the system’s conformations.
Most efficient techniques for identification of meta sta-

ble states in large Markov chains are based on the level
structure of the eigenvectors of the transition matrix
whose corresponding eigenvalues are clustered close to
1. The basic idea of using eigenvectors to identify tightly
connected sets of states was first introduced by Fidler [12]
in the context of graph partitioning. The same idea was
later applied to identify meta stable states in reversible
Markov chains [13]. In this paper we use a recent spec-
tral method that can be applied to non-reversible pro-
cesses [14].
We here show that the dynamics of the molecule can

be described as having several meta stable conformations
with quick transitions between them. We also demon-
strate that these conformations largely coincide with our
previous, empirically defined ones. Moreover, the meta
stable conformations found in this paper reproduce more
subtle features of the dynamics that we found using com-
pletely different approach, the Markovian property of the
states [11].

II. IDENTIFYING METASTABLE STATES

USING SPECTRAL METHODS

Consider a Markov chain with a state vector x de-
scribing the probability distribution over the states and
a transition matrix P , such that x(t + 1) = Px(t). As-
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sume that the number of possible states is large such
that they adequately represent the dynamics of the sys-
tem. Metastable states of a Markov chain are defined as
sets of the states such that the transitions between the
states within the same metastable state are much more
likely than the transitions between the states belonging
to different metastable states. Identifying the metastable
states given a large transition matrix can be achieved us-
ing the analysis of the eigenvalues and the eigenvectors of
P [13, 14]. The basic idea can be understood by consid-
ering the extreme case of a completely decoupled Markov
chain with a transition matrix that can be permuted, i.e.
changing the ordering of the states, into a block diagonal
form:

P = SP0S
−1 =






P (1) 0 · · ·
0 P (2) . . .
...

...
. . .




 , (1)

where P0 is the original transition matrix where the rows
and columns are not ordered in such a way that the block
diagonal structure is obvious. Each of the blocks defines a
metastable (in Eq. 1 completely stable) aggregated state.
The block matrices on the diagonal, P (n), describe the
transition probabilities within the corresponding stable
state, i.e. they reflect the fact that the stable states de-
fine independent Markov processes. The problem is now,
given P0, to find the permutation S that reveals the sta-
ble states. The set of complex eigenvalues λi (also called
the ‘spectrum’ of the matrix) and (right) eigenvectors of
P , ui, such that Pui = λiui, can be constructed directly
from the different blocks P (n). To see this, let u(n) be
an eigenvector of P (n) with an eigenvalue λ. Clearly, the
vector u = (0, . . . , 0, u(n), 0, . . . , 0)T is then an eigenvec-
tor of P with eigenvalue λ.
A general property of a Markov transition matrix is

that its largest eigenvalue, called the Perron-Frobenius
eigenvalue, is 1. The corresponding right eigenvector de-
fines the stationary distribution, and the elements of the
left eigenvector are all identical, see [14] for details. The
trivial form of the left eigenvector with the eigenvalue 1
follows from the conservation of probability,

∑

k Pkl = 1
∀l implies vTP = vT if all the elements of v are identi-
cal. Since each block P (n) is a Markov chain, each with
its own Perron-Frobenius eigenvalue, the total transition
matrix P has N eigenvalues at unity if it contains N
metastable states. The vector

v(n) = (0, . . . , 0, a, a, . . . , a, a
︸ ︷︷ ︸

block n

, 0, . . . , 0), (2)

with a constant a given by the normalization of the
eigenvector, is a left eigenvector with eigenvalue 1. The
idea of how the eigenvectors can be used to identify the
metastable states now becomes clear since the states
in a block can be identified by the identical non-zero
elements in one of the left Perron-Frobenius eigenvec-
tors. One possible complication remains. The eigenvec-
tors corresponding to a degenerate eigenvalue λ are not

unique since any linear combination is also an eigenvec-
tor: (αv(n1)+βv(n2))TP = λ(αv(n1)+βv(n2))T . A linear
combination of vectors in the form in Eq. 2 have the form

v = (a1, . . . , a1
︸ ︷︷ ︸

block 1

, a2, . . . , a2
︸ ︷︷ ︸

block 2

, . . .). (3)

Therefore, if a hidden block diagonal structure exists
in P0, the dominant left eigenvectors of P0 are of the
form of Eq. 3 but with the elements in some random
order. The states belonging to the same metastable state
can therefore be identified by identical elements in the N
left Perron-Frobenius eigenvectors (N being the number
of metastable states). This can also be expressed as a
clustering problem, where each state is associated with
a vector consisting of its elements in the N dominant
left eigenvectors of P0. For states belonging to the same
metastable state these vectors of length N should be the
same.
The discussion so far has actually not been on

metastable, but completely stable, states: in Eq. 1 there
are no transitions between the blocks. Meta stability oc-
curs when the transition matrix can be rearranged into a
block dominant, rather than block diagonal, form. This
means that the elements outside the blocks in P are ei-
ther few, small, or both small and few. In this case
we expect the conclusions from the spectral analysis to
hold approximately: the Perron-Frobenius eigenvalue is
almost degenerate with a cluster of N eigenvalues close
to 1, and the corresponding left eigenvectors show an
appropriate level structure. This picture is correct for
Markov chains with symmetric or reversible transition
matrices [13]. However, in more general situations the
spectral analysis is not necessarily stable to perturba-
tions. This follows from the fundamental fact that eigen-
vectors of non-symmetric matrices can be very sensitive
to perturbations, i.e. the eigenvector problem can be ill-
conditioned. This problem can however be addressed by
constructing a symmetric matrix with eigenvectors shar-
ing the same level structure as the original transition ma-
trix, see [15] for details.

III. NUMERICAL SIMULATIONS

A. Obtaining molecular dynamics trajectory

We analyse the molecular dynamics trajectory of
the four residue peptide Valine-Proline-Alanine-Leucine
(VPAL), shown in Fig. 1. The trajectories of the system
are found using a molecular dynamics simulation package
GROMACS [16]. The peptide molecule was placed in a
3× 3× 3nm box with periodic boundary conditions. The
solvent was modelled by 874 SPC water molecules [17].
The pressure and temperature were kept constant dur-
ing the simulation at 1atm and 300K using the Berensen
thermostat [18]. The interactions were modelled by the
forcefield 53a6 optimised for biomolecular systems inter-
acting with water [19–21]. After initial equilibration the
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FIG. 1: The Valine-Proline-Alanine-Leucine (VPAL) peptide
molecule. Carbon atoms are light blue, nitrogens are dark
blue, oxygens are red, and hydrogens are gray.

trajectory was sampled every 0.5ps and the atomic po-
sitions were recorded for 220ns, resulting in a total of
440000 data points. However, we tested our methods
and showed that using only 220000 data points obtained
from 110ns simulation did not affect the results, but ap-
preciably speeds up the calculations. Therefore, further
discussion will be held for 220000 data points.

B. Defining Markov microstates of the peptide

The configurations of the VPAL peptide are obtained
in terms of the atomic positions in Cartesian coordinates.
The peptide consists of 64 atoms in total which produces
64 × 3 = 192 coordinate values per time step and our
220000 time frames result in 42.24× 106 trajectory data
values. Since we are only interested in the changes of the
internal configuration of the biomolecule it is sufficient
to work with the residues’ dihedral angles. We used the
angles of the two central residues, proline and alanine,
because the outermost residues are too flexible and do
not define the general structure of the peptide. Each
residue is described by the two torsional angles, thus,
four angle values describe the molecular configuration,
which in total gives 220000× 4 = 880000 trajectory data
values. Changes of these angles with time are shown in
Fig. 2 (the Ramachandran plots).
Converting the continuous trajectory into a set of dis-

crete microstates has been done by partitioning the four-
dimensional hypercube describing the angular coordi-
nates ([0, 2π[×[0, 2π[×[0, 2π[×[0, 2π[) into cells by divid-
ing each dimension into 10 equal intervals. For our tra-
jectory only 1306 of the total 104 possible microstates
were non-empty. On average each found microstate cor-
responded to 170 time configurations and the occupancy
fluctuated between 1 and almost 12000 points per mi-
crostate, Fig. 3.
The transition probability matrix was constructed

from the trajectory by counting the number of transi-
tions between the microstates and normalising the total
probability to one, Fig. 4.
However, care must be taken at this stage since the

FIG. 2: The Ramachandran plots for the Proline (left) and
Alanine (right) residues of the VPAL molecule. These plots
are partitioned into the areas marked A1, B1, A2, B2, and
C2, where index 1 stands for Proline and index 2 for Alanine.
Each combination of two areas with different indices corre-
sponds to one conformation of the peptide. This partitioning
was used in [9, 10] for defining the metastable conformations.
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FIG. 3: Microstate statistics. Each microstate is a non-empty
cell of the four-dimensional hypercube filled with points repre-
senting the molecular dynamics trajectory. In total there are
1306 non-empty cells (or microstates) and this figure shows
the points (or conformations) occupancy of each such cell.

dynamics of the resulting states can be non-Markovian
if the time step is chosen too short. It was shown in [9]
that the minimum time step for the Markovian dynamics
is 50ps for the system studied here. This value depends
on the partitioning of the state space, therefore, we per-
formed a test for our partitioning that confirmed the re-
sults of [9]. The count matrix was, thus, constructed
using the 50ps time sampling. The sampling rate was
also varied to check for the robustness of the Markovian
property. No significant differences were found and we
conclude that the resulting metastable states do not de-
pend critically on the sampling rate. The count matrix
showed that the minimum number of transitions into a
microstate was 1 whereas the maximum was almost 300,
and on average each microstate had 30 transitions in and
out. The statistics of the microstate transitions is shown
in Fig. 5.
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FIG. 4: The initial P matrix. Darker points correspond to
more transitions.
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FIG. 5: Microstate transitions statistics. Following the tra-
jectory we counted the number of transitions between the
microstates. This figure shows the number of the transitions
to all other microstates in total for each microstate.

IV. RESULTS AND DISCUSSION

We start with analysing the number of metastable
states using the spectrum of the original transition ma-
trix P . As it can be seen from Fig. 6 there are four
eigenvalues close to the Perron-Frobenius eigenvalue of 1.
These eigenvalues are separated from the rest of the spec-
trum by a gap. From this we conclude that the system
exhibits four metastable states. We call these eigenvalues
significant.
The spectrum has a large number of complex eigen-

values. This indicates that the Markov chain is non-
reversible. The reversibility condition for a Markov tran-
sition matrix is that there exists a vector u0i such that
Pjiu0i = Piju0j. By summing over i it is clear that u0
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FIG. 6: The real and imaginary parts of the eigenvalues of
the P matrix, λ. Four eigenvalues are separated from the
others by a spectral gap, from which we conclude that the
peptide has four metastable states (we call these eigenvalues
significant to distinguish them from the others).
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FIG. 7: The first significant eigenvector of P , u, whose ele-
ments, i, are sorted to reveal the level structure.

is the stationary distribution, that is Pu0 = u0. Intu-
itively this means that we observe the transition i → j
and its reverse transition j → i with equal probability,
which is often referred to as the detailed balance condi-
tion. If we define a diagonal matrix Dii = 1/

√
u0i, the

similarity transformationD−1PD transforms a reversible
transition matrix P into a symmetric matrix with real
eigenvalues. Since the similarity transformation does not
change the eigenvalues it follows that the eigenvalues of
a reversible Markov chain are real. In Fig. 6 we see that
this is not true for our system. Another sign of non-
reversibility is that there exists 38012 cases when Pij > 0
while Pji = 0, which contradicts the reversibility condi-
tion. It should be stressed that the non-reversibility is
the results of finite sampling and not a feature of the
underlying system which is in thermal equilibrium. Nu-
merically, however, the non-reversibility can have a sig-
nificant impact on the stability of the spectral analysis of
the transition matrix. In our case this does not happen
however, as can be shown by comparing the result ob-
tained directly from the transition matrix to the results
of using a more elaborate method introduced in [15].

In Fig. 7 the first significant eigenvector of P is shown,
where the elements are sorted to reveal the level struc-
ture. To find the sets of similar values in the eigenvec-
tors we applied the K-means clustering method [22] in the
three-dimensional space formed by the second, third, and
fourth eigenvectors (the first eigenvector can be omitted
since it is constant). The clustering result is shown in
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FIG. 8: Eigenvector clustering results. Three eigenvectors
of the P matrix corresponding to the significant eigenvalues
were clustered into four clusters. Each point represents one
microstate, each group of points of the same colour belongs to
one cluster, and each cluster corresponds to one metastable
state.

Fig. 8. The number of points in each cluster are 250,
480, 207, 369 for the corresponding metastable states.

Using the clustering result the initial transition proba-
bility matrix was permuted (rows and columns sorted so
that the states in the same cluster appear in sequence)
and the hidden block dominant structure was revealed,
Fig. 9. The transitions within the metastable states de-
fined by the blocks are more probable than the transitions
between the metastable states. Not all states belong to
a metastable state. The states outside the metastable
blocks represent transitions between the states, that is
the conformations of the peptide that are visited only
when the molecule changes from one metastable state to
another.

In addition to the visual representation of the results
(Fig. 9), we also present a numerical one, by means of
the reduced probability matrix (4). This matrix was con-
structed from the trajectory in the following way. Each
point of the trajectory belongs to some microstate, at the
same time each microstate belongs to some metastable
state. So, following the trajectory number of the transi-
tions between the metastable states was counted and the
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FIG. 9: The blocked (permuted) P matrix.

total probability of the row was normalised to one.

Pred =






0.7959880 0.0974606 0.0562722 0.0502793
0.0181741 0.9377470 0.0318545 0.0122240
0.0776114 0.0484680 0.8615600 0.0123607
0.0035983 0.0174428 0.0044869 0.9744720






(4)
High values of the diagonal elements indicate good qual-
ity of the results since it means that the transitions are
most probable within the metastable states.

Finally, in Fig. 10 we show the density Ramachan-
dran plots illustrating the found metastable conforma-
tions with the notation defined in Fig. 2. Our result
shows that the VPAL molecule has metastable states cor-
responding to the following dihedral angle combinations:
A1B2 + B1B2, A1A2, B1A2, and A1C2 (B1A1 was not
populated by the trajectory). Compared to what was
obtained in an earlier investigation conducted by visual
inspection the clustering is almost identical. The only
difference is that the method has concatenated two states
into one, namely A1B2 + B1B2. This essentially shows
one of the advantages in using the method which is that
the clustering is based on the dynamics of the system
and not just on where the density of states is high. The
method is therefore much better adapted to distinguish
real meta stable states from spurious ones.

The computation of the dominant eigenvectors of the
transition matrix is done using a power method [23]. The
computational complexity is therefore directly propor-
tional to the number of non-zero elements in the matrix.
The total number of microstates increase dramatically
with the box size used when we partition the phase space
(since we have four angles it scales with the number of
bins l), and consequently the number of non-zero ele-
ments in the transition matrix could possibly grow as
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FIG. 10: Ramachandran density plots. Each pair of plots
shows the area that corresponds to one metastable conforma-
tion. We obtained the following combinations (rows from top
to bottom): A1B2 +B1B2, A1A2, B1A2, A1C2.

(l4)2. However, in practice there are two effects that
prevent this scaling to occur. First, only a relatively
small part of the phase space is actually visited. Second,
the transitions are typically localized in the phase space
resulting in a sparse transition matrix where the total
number of transitions scales essentially linearly with the
number of states. In Fig. 11 the black line shows how the
total number of non-zero transitions scales in relation to
the total number of possible transitions. We also show
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FIG. 11: Black: the number of observed transitions between
the microstates vs the number of possible transitions, (l4)2,
for the given number of bins l. Red: the fraction of non-zero
elements in the corresponding transition matrix

how sparse the transition matrix is measured in percent-
age filling, the red curve in the plot. From this we con-
clude that the computational complexity of the algorithm
suggested here remains reasonable even for relatively fine
partitions of the state space.

V. CONCLUSIONS

We have used a spectral method to identify the
metastable conformational states of a biomolecular sys-
tem represented by a Markov chain. The system con-
sisted of a four-residue peptide simulated using Molecu-
lar Dynamics in a bath of explicit water. The conforma-
tional dynamics of the peptide represented by two pairs of
the dihedral angles reveals four well separated metastable
states. The states coincide with the previously empiri-
cally defined ones [9, 10] thus confirming the intuitive
chemical picture by the rigorous mathematical analysis.
Interestingly, one of the found metastable states is

equivalent to the sum of two previous ones, A1B2+B1B2,
Fig. 2. Our further more elaborate analysis [11] shows
that a significant part of the trajectories passing through
the state A1B2 indeed need to be separated and joined
with the state B1B2 in order to compensate for slight
non-Markovianity of the initial five states.
In the example discussed in this paper the transition

matrix showed a clear sign of meta stability by having
a visible gap in its spectrum. When this is the case it
is easy to immediately conclude how many meta stable
states to search for in the eigenvector clustering algo-
rithm, as well as how many eigenvectors to include in
the analysis. More complex peptides or proteins are not
expected to have such clear spectral gaps, and in addition
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we expect meta stable states to organize into hierarchies
or relevant time scales where meta stability can be identi-
fied. It should be noted however that this situation does
not necessarily prevent the application of the methods
presented here. In the absence of a spectral gap it is
possible to successive extend the number of eigenvectors
and meta stable states and monitor how well the method
manages to identify meta stability, i.e. by measuring how
dominant the diagonal of the reduced transition matrix
is. An example of this type of blind identification was
made in [15]. An alternative method for identifying meta
stable states from the level structure in the eigenvectors
in the absence of a spectral gap in the spectrum was pre-
sented [24].
The identification of meta stable states discussed in

this article is based on a discretisation of the state space.
For a large protein with a backbone defied by hundreds or
thousands of dihedral angels a naive partitioning of the
states space leads to very large number of states in the
Markov chain. As discussed in Sec. IV the actual num-
ber of states visited is typically very small. Still however,
the resulting Markov chain may be too large to allow ef-
ficient analysis. In these cases the discretisation of the
state space can be based on secondary structure or other
properties, see e.g. [25]. It should be noted that the spec-
tral method is independent of the partitioning of the state
space, as long as the partitioning is fine grained enough
for the meta stable states to be resolved.
The sparsity of the transition matrix, illustrated in

Fig. 11, allows for numerically efficient calculation of
the dominant eigenvalues and eigenvectors needed for
the analysis presented in this paper. Still standard lin-

ear algebra software can typically not handle matrices
much larger than 104× 104. It is interesting to note that
the problem of identifying meta stable states in Markov
chains is very similar to the recently very active topic of
finding community structure in large networks [12, 26].
In this area several specially designed algorithms have
been constructed to achieve this task in very large net-
works. For example, in [26], 1684 communities (meta
stable states) were identified in a network with 4 · 105
nodes (states) and 2.5 · 106 edges (observed transitions).
In more recent studies networks with millions of nodes
have been analysed [27]. It would be interesting to in-
vestigate if some of these dedicated algorithms could be
transferred over and applied to protein folding data.
Identifying proper Markov states for molecular systems

is considered one of the most important challenges in the
Markov State Model framework. On the one hand, strict
Markov property is the necessary prerequisite for the the-
ory. The states of the system should be related to physi-
cally meaningful conformations of the molecules in order
to be useful and experimentally verifiable. Currently,
these two criteria are met by using chemical intuition as
the main tool for building the states. Even though the
process sometimes is automated (see, for example, the
very recent work [8]), a formally exact, unsupervised ap-
proach is highly desirable. Our suggested framework is
of this sort: it is mathematically sound and does not re-
quire chemical input. We hope it can be used as a basis
for efficient practical implementations.
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