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SUMMARY

The aims of this work have been to identify an enzymatic reaction system suitable to investigate and develop the
high-speed centrifuge as a novel reaction system for performing such reactions. The production of galacto-
oligosaccharides by the trans-galactosyl activity of the enzyme P-galactosidase on lactose monohydrate was
identified as a model enzymatic system to elucidate the principles of this type of process. Galacto-
oligosaccharides have attracted considerable commercial interest as food additives which have been shown to
be beneficial to the health of the human gastrointestinal tract. The development of a single unit operation
capable of controlling the biosynthesis of galacto-oligosaccharides whilst simultaneously separating the enzyme
from the reaction products would reduce downstream processing costs.

This thesis shows for the first time that by using a combination of (a) immobilised or insolubilised
B-galactosidase , (b) a rate-zonal centrifugation technique, and (c) various applied centrifugal fields, that a high-
speed centrifuge could be used to control the formation of galacto-oligosaccharides whilst removing the enzyme
from the reaction products. By layering a suspension of insolubilised B-galactosidase on top of a lactose
monohydrate density gradient and centrifuging, the applied centrifugal fields generated produced sedimentation
of the enzyme particles through the substrate. The higher sedimentation rate of the enzyme compared to those
of the reaction products allowed for separation to take place. Complete sedimentation, or pelleting of the
enzyme permits the possible recovery and re-use. Insolubilisation of the enzyme allowed it to be sedimented
through the substrate gradient using much lower applied centrifugal fields than that required to sediment free
soluble enzyme and this allowed for less expensive centrifugation equipment to be used.

Using free soluble and insolubilised B-galactosidase stirred-batch reactions were performed to investigate the
kinetics of lactose monohydrate hydrolysis and galacto-oligosaccharide formation. Based on these results a
preliminary mathematical model based on Michaelis-Menten kinetics was produced. It was found that the
enzyme insolubilisation process using a chemical cross-linking agent did not affect the process of galacto-
oligosaccharide formation.

Centrifugation experiments were performed and it was found that by varying the applied centrifugal fields that
the yield of galacto-oligosaccharides could be controlled. The higher the applied centrifugal fields the lower
the yield of galacto-oligosaccharides. By increasing the applied centrifugal fields the ‘contact time’ between
the sedimenting enzyme and the substrate was reduced, which produced lower yields. A novel technique
involving pulsing the insolubilised enzyme through the substrate gradient was developed and this was found to
produce higher yields of galacto-oligosaccharide compared to using a single enzyme loading equivalent to the
total combined activity of the pulses. Comparison of the galacto-oligosaccharide yields between stirred-batch
and centrifugation reactions showed that the applied centrifugal fields did not adversely affect the trans-
galactosyl activity of the insolubilised enzyme.

KEY WORDS: Applied Centrifugal Fields, Centrifugation, Galacto-oligosaccharide, B-Galactosidase,
Insolubilisation, Lactose Monohydrate, Rate-Zonal Centrifugation, Transgalactosidation.
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max) for 0 minutes, at 40°C.

A comparison of the position of blue dextran with the corresponding lactose
monohydrate density gradient after centrifugation at 13 000 r.p.m. (26 122 g
max) for 30 minutes, at 40°C.

A comparison of the position of blue dextran with the corresponding lactose
monohydrate density gradient after centrifugation at 13 000 r.p.m. (26 122 g
max) for 60 minutes, at 40°C.

A comparison of the position of blue dextran with the corresponding lactose
monohydrate density gradient after centrifugation at 13 000 r.p.m. (26 122 ¢
max) for 90 minutes, at 40°C.

A comparison of the position of blue dextran with the corresponding lactose
monohydrate density gradient after centrifugation at 13 000 r.p.m. (26 122 g
max) for 180 minutes, at 40°C.

A comparison of the movement of 19%"/v blue dextran (1 cm’) to the
corresponding 10-40%"/v lactose monohydrate density gradient profile (36
cm’), during centrifugation at 13 000 r.p.m. (26 122 g max) for 0 and 180
minutes, at 40°C. A is at 0 minutes and B is at 180 minutes. Blue dextran
movement monitored by absorbance measurements at 617.6 nm of the
gradient fractions.

The particle size distribution for P-galactosidase immobilised using
industrial-grade dextran.

Lactose monohydrate density gradients (10-40%"/v, 36 cm’) top-layered with
a solution of industrial-grade dextran/B-galactosidase particles (1 cm’ of bulk
solution, equivalent to Smg cm”® (16 U cm™) B-galactosidase and 10 mg cm™
of industrial-grade dextran) and centrifuged at 13 000 r.p.m (26 122 g max)
for 0, and 30 minutes, at 40°C. A is after 0 minutes and B is after 30 minutes.

A comparison of the chromatograms obtained for the bottom fraction of the
B-galactosidase/dextran and the soluble free B-galactosidase centrifugation
experiments, performed at 13 000 r.p.m. (26 122 g max) for 30 minutes, at
40°C. A is for top-layered soluble free B-galactosidase (5 mg em>, 16 U cm”,
1 cm®) and B is for top-layered B-galactosidase/dextran conjugate (1 cm’ of
bulk solution, equivalent to Smg cem® (16 U cm™) of B-galactosidase and
10 mg cm” of industrial-grade dextran).

Comparison of the galacto-oligosaccharide distribution profile with the
dextran distribution profile for top-layered p-galactosidase/dextran conjugate
(1 cm’® of bulk, solution equivalent to Smg em™ (16 U cm™) B-galactosidase
and 10 mg cm” of industrial-grade dextran) loaded on to a 10-40%"/v lactose
monohydrate density gradient and centrifuged at 13 000 r.p.m. (26 122 g
max) for 30 minutes, at 40°C.

Comparison of the galacto-oligosaccharide distribution profiles for the top-
layered p-galactosidase/dextran conjugate (1 cm® of bulk, solution equivalent
to 5mg cm” (16 U cm™) p-galactosidase and 10 mg cm™ of industrial-grade
dextran) and the soluble free B-galactosidase (Smg em>, 16 U cm™), loaded

16

162

166

167

168

169

170

171

172

173

174

175




Figure 5.17

Figure 5.18

Figure 5.19

Figure 5.20

Figure 5.21

Figure 5.22

Figure 5.23a

Figure 5.23b

Figure 5.24a

Figure 5.24b

on to a 10-40%"/v lactose monohydrate density gradient -and centrifuged at
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1.0 INTRODUCTION
This chapter describes the background to this research and gives the initial research

objectives. The evolution of the experimental programme is reported and the structure of the

thesis is presented.

1.1 Bioreaction and separation in centrifugal fields

Centrifugation is a technique designed to utilise centrifugal forces which are greater than the
force of gravity to effect the sedimentation of particles suspended in a fluid, at a rate
depending on their size and density. Such sedimentation only occurs if the density of the
particles is greater than that of the fluid. Centrifugation is mainly used for the separation,
purification, characterisation and/or the clarification of solids and liquids. The purpose of
this research project was to investigate and develop the centrifuge as a novel reaction system
for performing enzymatic reactions. A literature survey was carried out to determine the
reported use of the centrifuge as a reaction system for performing chemical and enzymatic

reactions: there are only a few instances in the literature concerning such studies.

1.1.1 Literature survey

In 1967, Cohen, Giraud and Messiah " studied the behaviour of an enzyme in an applied
centrifugal field using the rate-zonal technique. The rate-zonal technique is used to separate
two or more sample components based upon the differences in their sedimentation rates in an
applied centrifugal field; this technique is described in detail in Chapter 4. Cohen et al.
studied the reaction of glutamic dehydrogenase (E.C.1.4.1.2) which is summarised in Figure

1.1.

glutamic
dehydrogenase

NAD" + glutamic acid + HO NADH + H' + 2-oxoglutarate + NH;

Figure 1.1. The enzymatic reaction of glutamic dehydrogenase (E.C.1.4.1.2.) @,

Within a sample cell a small volume of the buffered enzyme was layered onto the top of a
glutamic acid solution, which acted as both the supporting solution and the substrate

solution. This was then centrifuged using an analytical ultracentrifuge: the analytical

22



ultracentrifuge is described in Section 3.3.3.1. At uniform time intervals the sample cell was
photographed using light at a wavelength of 334nm, which is the wavelength of light only
absorbed by NADH. The decrease in the optical density due to the absorbance of light was
directly proportional to the NADH concentration and the distribution of the NADH within
the sample cell at any time interval could thus be determined. The results obtained were
used to determine the sedimentation rate of the glutamic dehydrogenase based upon the fact
that NADH was only synthesised where the enzyme was present in the cell. This was the

first example of an active enzyme centrifugal bioreaction system found in the literature.

The work of Cohen et al. was not intended to investigate the use of the centrifuge as a novel
bioreaction system, but to use it as an analytical tool to elucidate characteristics of enzyme-
molecule complexes formed during enzymatic reactions. For example, during a
polymerisation reaction, the molecular weight of the complex will be proportional to its
sedimentation rate and data can be obtained for the enzyme-molecule complexes and the

changes that occur under the influence of various enzyme activators and inhibitors ®)

In 1975, Parts and Elbing ™ studied the polymerisation of acrylonitrile to polyacrylonitrile in
centrifugal fields. Acrylonitrile was uniformly dispersed in a sample cell containing
solutions of hydrogen peroxide and iron[lII] nitrate. The decomposition of the hydrogen
peroxide by the ferric nitrate initiated the polymerisation reaction and the formation of
polyacrylonitrile. The sample cell was placed in an analytical ultracentifuge and centrifugal
fields ranging from 2 000 to 180 000g were applied. The reaction was monitored by the
measurement of the level of sedimented polyacrylonitrile deposited at the base of the sample
cell. Parts and Elbing found that the rate of polymerisation was lower in all of the applied
centrifugal fields compared to that obtained at the normal gravitational field of 1g. When
centrifuged at 180 000g for 597 minutes it was found that 51.2% of the monomer had
polymerised, but the same degree of conversion was found to occur after 50 minutes at 1g.
Experiments were performed at 2 000g, 6 000g and 23 000g and these confirmed that the rate
of polymerisation decreased as the applied centrifugal fields increased. This was because as
the polymer particles formed their mass increased, which caused the particles to sediment to
the base of the sample cell where they were subsequently covered by further polymer
particles. The sedimentation rate of the polymer particles was greater as the applied

centrifugal fields was increased. This process effectively cut off the supply of further
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monomer to these particles and hence the rate of polymerisation decreased. In 1979,
Carenza, Tavan and Palma © monitored the radiation-induced polymerisation of vinyl
chloride under various applied centrifugal fields and found similar results to those of Parts

and Elbing .

In 1992, Setford @ investigated the principle of using the centrifuge as a bioreaction system
for performing enzymatic reactions. The enzymatic reaction that he studied was the
formation of dextran and fructose by the action of the enzyme dextransucrase on the

substrate sucrose; the reaction scheme is shown in Figure 1.2.

Dextransucrase

v

n Sucrose (Glucose), + n Fructose

Dextran

Figure 1.2. The formation of dextran and fructose by dextransucrase ©,

Setford overlaid buffered solutions of dextransucrase onto the top of sucrose substrate
solutions contained within centrifuge tubes and centrifuged them at various rotation speeds at
25°C, the optimum temperature for the enzyme. Batch reactions were performed using a
high speed centrifuge capable of generating a maximum relative centrifugal force (RCF) of
57 000g at the tube base. Further batch reactions were performed using a similar high speed
centrifuge fitted with a zonal rotor capable of performing rate-zonal centrifugation, details of
which are given in Section 3.3.3.2 and in Chapter 4. Setford found that under the influence
of the applied centrifugal fields the enzyme could be sedimented through the substrate
solution towards the base of the centrifuge tube or the wall of the zonal rotor. It was also
found that the use of rate-zonal centrifugation techniques produced the most stable reaction
environment. High molecular weight dextran was produced as the enzyme sedimented
through the sucrose substrate and this rapidly sedimented to the base of the tube or the rotor
wall due to its high sedimentation rate. The fully sedimented dextran formed a gel which
increased in thickness as more dextran was produced. The fructose formed, having a low

molecular weight and hence a very low sedimentation rate, effectively remained at the
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position within the substrate solution where it was formed. Hence, the reaction products had
been separated and the use of the centrifuge as a bioreaction and separation system had been

demonstrated.

The enzymatic reaction system chosen by Setford had several experimental drawbacks which
made it unsuitable for fully investigating the processes underlying, and the potential of, the
centrifuge as a novel enzymatic bioreactor. The first drawback was the non-ideal
sedimentation of the enzyme produced by its interaction with the dextran formed. Ideally,
the enzyme layered onto the top of the substrate should have sedimented as a discrete band
through the substrate, but it was found that the dextran particles formed entrapped the
enzyme molecules and transported them to the gel layer. This produced an artificially high
sedimentation rate for the enzyme, which reduced the contact time with the substrate and
imposed diffusional limitations on the activity of the enzyme, thus limiting further
conversion of the substrate. The dextran product formed was therefore contaminated with
the enzyme and this required thermal quenching of the dextran product to denature the

active enzyme content.

Setford found that the most stable reaction environment was to use a rate-zonal technique
where the enzyme was layered onto the top of a sucrose density gradient. A density gradient
is formed by layering solutions of increasing density within the centrifuge tube or rotor, so
that the substrate density gradually increases the further it is away from the centre of rotation,
or the closer it is to the base of the centrifuge tube or rotor wall. The formation of dextran by
the sedimenting enzyme removed glucose molecules from the sucrose gradient which
affected the sucrose gradient profile and hence the stability of the reaction system. Also,
smearing of the dextran gel down the walls of the centrifuge tubes towards the base of the

tube would be expected to create turbulence and disrupt the gradient.

The aims of this research project were; to identify an enzymatic reaction system suitable to
investigate and develop the high speed centrifuge as a novel reaction system for performing
such reactions, to determine the reaction conditions required to produce sedimentation of the
enzyme through a suitable substrate medium, to monitor the formation of reaction products,
to effect bioreaction and separation of the enzyme from the reaction products in a single unit

operation. Based on preliminary results, centrifugation experiments were performed to
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develop a novel reaction system using the enzyme in either an immobilised or insolubilised
state. Various methods used for enzyme immobilisation and insolubilisation were assessed

and their efficacy for use with a centrifugal bioreaction system was investigated.

1.1.2 The search for a model enzymatic reaction system for use in the centrifugal
bioreactor
A search was conducted to identify a suitable enzymatic reaction system that would allow the
use of the centrifuge as a novel bioreaction system to be investigated and to overcome the
experimental drawbacks of the enzymatic reaction used by Setford 39 In 1996, West ”
based at Aston University investigated the use of a batch chromatographic system for
combined bioreaction and separation. The enzyme reaction studied was the conversion of
lactose monohydrate (milk sugar) to glucose, galactose and galacto-oligosaccharides by the
enzyme [-galactosidase (lactase), isolated from Aspergillus oryzae: full details of the
reaction are given in Chapter 2. The galacto-oligosaccharides produced are intermediate
compounds that are ultimately hydrolysed to yield further glucose and galactose. There is
currently considerable industrial interest in the use of galacto-oligosaccharides as food
additives, which have been shown to be beneficial to the health of the human gastrointestinal
tract: optimisation of yields of such oligosaccharides is consequently of commercial

importance.

It was decided that this would be an ideal model enzyme reaction system to investigate the
potential of a centrifuge as a novel bioreactor, particularly since no instances were found in
the literature concerning the behaviour of the B-galactosidase reactions in centrifugal fields.
A diagrammatic representation of the proposed reaction system is shown in Figure 1.3. In
principle, the reaction system involves layering a solution of P-galactosidase on top of a
lactose monohydrate substrate solution contained within a centrifuge tube. The centrifuge
tube is then placed in a centrifuge and can be subjected to various centrifugal forces. The
enzyme is allowed to fully sediment to the bottom of the tube and fractions can then be taken
from the tube and analysed to determine the distribution of the substrate, enzyme and
reaction products within the tube. Allowing the enzyme to fully sediment should effect

separation from the reaction products.
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centre of rotation EENTRIFUG AL FORCE!
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B-galactosidase solution

centrifuge tube

A \ I

lactose monohydrate solution

reacted substrate unreacted substrate

\
B

LR

sedimenting enzyme reaction zone

Figure 1.3. Overview of the active enzyme centrifugal bioreaction system studied In
this research project. Diagram A corresponds to the start of the reaction
and B is the enzyme sedimenting during the reaction.

As the experiments were performed the research project evolved and novel modifications
were made to the basic reaction system presented in Figure 1.3. The structure of the thesis

introduced below, reflects the evolution of the project.

1.2 Structure of the thesis

The thesis consists of seven chapters followed by the references and appendices. Each
chapter starts with a short summary describing the contents of the associated chapter. Every
chapter contains the theory and literature survey associated with the experimental work
presented in that chapter. This provides the reader with the necessary information to fully
appreciate the particular experimental results presented in each chapter, without having to

refer back to an initial extensive literature survey.
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Chapter 1 is a general introduction to the research performed in this project and describes the
background to the thesis and introduces the initial research objectives. The model enzymatic
reaction chosen to be studied in the centrifugal bioreaction system is described and the

reason for its choice is explained. The overall structure to the thesis is also presented.

Chapter 2 describes stirred-batch reactions performed using the [-galactosidase enzyme
chosen for the centrifugal studies. These experiments were performed to allow the
B-galactosidase reaction to be fully understood using a conventional reaction system and to
allow these results to be compared to the results obtained using the centrifugal bioreaction
system. This chapter also includes the results of kinetic studies, and a preliminary

mathematical model for the reactions of 3-galactosidase is presented.

Chapter 3 describes the historical development of the centrifuge and the principles and
practices of centrifugation. The initial centrifugal studies using soluble, free -galactosidase

and using a modified version of the normal rate separation technique are presented.

Chapter 4 introduces the concept of rate-zonal centrifugation techniques and also describes
the practical aspects associated with this technique. The reasons for using this technique in
preference to the normal rate technique are discussed and experimental results obtained using

free, soluble -galactosidase using the rate-zonal technique are presented.

Chapter 5 describes the theory and practical aspects of enzyme immobilisation and
insolubilisation. Results obtained from novel centrifugal bioreaction experiments performed
using immobilised and insolubilised -galactosidase are presented and the reasons for using

such a system are discussed.

Chapter 6 gives the conclusions of this research project and an integrated discussion allows
the results obtained from all of the experimental work performed to be compared. This is
followed by recommendations for further work.

Chapter 7 describes the materials used and details the experimental methods performed.

The structure of the thesis is shown diagrammatically in Figure 1.4.
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Chapter 1 Introduction

Bioreaction and separation in centrifugal fields
Literature survey

Structure of thesis

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6 Conclusions and integrating discussion

Recommendations for further work
Chapter 7 Materials and experimental methods
Figure 1.4. Structure of the thesis. The chapters highlighted in yellow are those where
experimental work has been performed and the results presented.
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2.0 STIRRED-BATCH REACTION STUDIES USING SOLUBLE AND
INSOLUBILISED B-GALACTOSIDASE

In this chapter, the hydrolytic and trans-galactosyl activity of B-galactosidase is discussed.

The industrial production and uses of galacto-oligosaccharides are reported. The kinetics of

single-substrate enzyme-catalysed reactions is described. The results obtained from stirred-

batch reaction studies performed using soluble and insolubilised B-galactosidase are

presented. A preliminary mathematical model based on Michaelis-Menten-type kinetic

behaviour is presented.

2.1 The hydrolytic and trans-galactosyl activity of B-galactosidase

2.1.1 An historical perspective

Galactose-containing oligosaccharides, or galacto-oligosaccharides, are naturally occurring
compounds that are found in many types of food including fruit, vegetables and milk.
Oligosaccharides are usually defined as glycosides containing between three to ten sugar

®  Lactose and certain

moieties although certain disaccharides possess similar properties
galacto-oligosaccharides can act as substrates for B-galactosidases (EC 3.2.1.23), and this
enzyme is found widely in micro-organisms, animals and plants ®, B-Galactosidase, also
known as lactase, is a hydrolase which attacks the glycosidic bond of lactose. The hydrolytic
activity of B-galactosidase breaks down lactose to yield equimolar amounts of glucose and

galactose (10,

Experiments performed in the 1950°s reported the trans-galactosyl activity of B-galactosidase
to produce galacto-oligosaccharides. This trans-galactosyl activity proceeded in tandem with
the normal hydrolytic activity. In 1951, Wallenfels () reported the formation of three
galacto-oligosaccharides during the hydrolysis of lactose by P-galactosidase isolated from
Aspergillus oryzae. In 1952, Aronson U2 incubated B-galactosidase, isolated from
Saccharomyces fragilis, with various concentrations of lactose. In addition to the hydrolytic
products, four galacto-oligosaccharides were isolated. In 1953, Roberts and McFarren 3
observed the formation of ten different galacto-oligosaccharides, whilst hydrolysing the

lactose contained in whey, using B-galactosidase isolated from Saccharomyces fragilis. In
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1957, Roberts and Pettinatti (% found that the yield of galacto-oligosaccharides was
dependent upon the initial lactose concentration. Experiments they performed using
B-galactosidase, isolated from Saccharomyces fragilis, showed that the higher the initial
lactose concentration, the higher the yield of galacto-oligosaccharides. This relationship was
maintained up to a lactose concentration of 35%"/v, and at higher concentrations there was
no significant increase in the galacto-oligosaccharide yields. In 1958, Pazur, Tipton,
Budovich and Marsh ¥ identified three disaccharides in addition to the ten galacto-
oligosaccharides identified by Roberts and McFarren, using similar reaction conditions. The
three different disaccharides consisted of galactose-galactose and galactose-glucose
conjugates. By 1985, twenty individual galacto-oligosaccharides had been isolated and the

structures determined using B¢ nuclear magnetic resonance spectroscopy (NMR) (16),

The main reasons for enzymatic lactose hydrolysis are (a) to remove lactose from a product
making it suitable for consumption by people with low levels of intestinal 3-galactosidase, or
lactose intolerance, (b) to increase its value by conversion to glucose/galactose syrup, which
has a higher degree of sweetness and can be used for product sweetening, and (c) to
minimise the formation of crystals as glucose and galactose are less prone to crystallisation

UTI819)  The galacto-oligosaccharides formed during lactose hydrolysis can be

than lactose
regarded as intermediate compounds because they are ultimately hydrolysed to yield glucose
and galactose as the reaction reaches equilibrium. Up until the last fifteen years these
intermediate compounds were regarded as undesirable and their presence in the product
stream was minimised by allowing the reaction to reach equilibrium, although this
considerably increased the process time. In the 1980’s there was a resurgence of interest in

the mechanisms of enzymatic galacto-oligosaccharide formation, mainly driven by

commercial considerations as described below.

In the early 1980’s, the use of B-galactosidase to produce low lactose milk, yoghurt and other
dairy products was a well established industrial process. The Japanese had performed
extensive research in this area, driven by the requirement to offer these products to a large
lactose intolerant population. At this time there was an increasing interest in the spectrum of
sugars present in these products. In 1982, Toba, Watanabe and Adachi @9 investigated the
range and concentrations of galacto-oligosaccharides present in low lactose yoghurts. They

found that the yoghurts contained less than 0.1% galacto-oligosaccharides. Flaschel, Raetz
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and Renken @V investigated the kinetics of lactose hydrolysis using B-galactosidase from
Aspergillus niger and proposed a simple model based on Michaelis-Menten-type kinetics.
This model was designed to be used by industry in the processing of whey. The model was
based on the kinetics of glucose liberation, but did not incorporate the role of glucose in the
trans-galactolysation process. In 1984, Betschart and Prenosil @2 developed a technique
involving high performance liquid chromatography (HPLC) to enable the identification and
quantification of the products of enzymatic lactose hydrolysis. Prior to this technique, paper
chromatography was used and this offered only qualitative analysis. Jeon and Mantha @3)
improved on this technique by extending the range of galacto-oligosaccharides detected. The

HPLC provided a simple and fast method for monitoring the hydrolytic and trans-galactosyl

activity of B-galactosidase in more detail than was previously available.

In the mid 1980’s the terms ‘functional foods’ and ‘nutraceuticals’ were proposed in Japan to
describe foods or food components that impart a physiological benefit that enhanced overall

health &17:2425

. The potential benefits to health of galacto-oligosaccharides were recognised
and this led to a considerable amount of research into the process of galacto-oligosaccharide
formation. Galacto-oligosaccharides were found to promote the growth of bifidobacteria in
the human intestinal tract. These bacteria improve the intestinal environment by suppressing
the growth of putrefractive and harmful bacteria (®.17.2627.2829) " 1 1987, Yang and Tang ©*

and Prenosil, Struker and Bourne ©'*%

performed extensive studies into the formation of
galacto-oligosaccharides during lactose hydrolysis and proposed mathematical models for the
hydrolytic and trans-galactosyl activity of B-galactosidase. During the 1990’s, the use of
galacto-oligosaccharides as a prebiotic food additive increased and by 1995 the annual

production had reached 15 000 tonnes world-wide @

A prebiotic compound is a non-
digestible food ingredient that beneficially affects the host by selectively stimulating the
growth and/or activity of one or a limited number of bacterial species already resident in the

colon ®.

The production was predominantly based in Japan, where the Yakult Honsha
Corporation (Tokyo) alone produced 6 500 tonnes per year marketed under the trade-name
Oligomate® "'® The industrial process used was a two stage decoupled system consisting of
a stirred-batch reaction followed by chromatographic product isolation ®¥. In 1998, the
market for a whole range of functional foods/nutraceuticals reached nearly £55 000 million
within the United States, £2 400 million in Japan and in excess of £1 200 million in Europe

@3 These values are expected to rise as the food industry conglomerates release more
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products. The use of galacto-oligosaccharides can be expected to rise in line with this future

expansion.

2.1.2 Mechanism of galacto-oligosaccharide formation

Many researchers have proposed reaction schemes for the hydrolytic and trans-galactosyl
activity of B-galactosidase. Prenosil, Stuker and Bourne " produced probably the most
detailed and cited model. A simplified version based on this model is presented in Figure
2.1. Figure 2.1 does not show the possible complex range of chemical linkages formed

within the galacto-oligosaccharide products (see Table 2.1).

Aston University
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s

Figure 2.1. The hydrolytic and trans-galactosy! activity of B-galacto

Figure 2.1 is limited to the formation of hexasaccharides, but the trans-galactolysation

process can produce higher oligosaccharides. Prenosil, Stuker and Bourne ©?

reported that
during the hydrolysis of lactose by [-galactosidase from Aspergillus oryzae, the highest
galacto-oligosaccharides detected were pentasaccharides. The relative ratio of tri- : tetra- :
pentasaccharides was found to be approximately 14 : 4 : 1, obtained at lactose conversions

between 48 to 64%. The trans-galactosyl activity of (3-galactosidase varies considerably
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depending upon the source of the enzyme. B-Galactosidases from Aspergillus oryzae,
Bacillus circulans and Lactobacillus bulgaricus have been reported to exhibit the highest
trans-galactosyl activity (7 The trans-galactosyl activity of B-galactosidase is enhanced
when the initial lactose concentration is high, which results in a lower water activity

. 14,17,27,31,34
environment & 21417:27:3134)

Low water activity means that there is a reduced number of
water molecules available to act as an acceptor. This allows other molecules to act as
acceptors and produce galacto-oligosaccharides. This effect is analogous to enzymatic
reactions performed in virtually non-aqueous environments where the water activity is
extremely low. An example of this is the formation of sucrose-containing polyesters
produced by the transesterification activity of Proleather, an alkaline protease from Bacillus
amyloliquifaciens, in anhydrous pyridine. In aqueous solution Proleather exhibits proteolytic

activity, but acts in reverse when in a low water environment @9,

The molecular weight of PB-galactosidase varies depending upon the source organism.
B-Galactosidases isolated from Escherishia coli and Aspergillus oryzae have reported
molecular weights of 540 000 and 90 000 daltons respectively (3637.38) " The differences in the
molecular weights and amino acid sequences indicate a wide variety of tertiary structures.
The quaternary structure forms a functional region, or active site, where the catalytic activity
takes place. The chemical groups associated with the active site are not definitively known,
but based upon inhibition experiments with sulfahydryl reagents and pH activity studies,
Wallenfels and Mahotra proposed a mechanism for B-galactosidase activity. For
B-galactosidase with a pH optimum of 7 they concluded that the catalytic mechanism
involved a sulfahydryl group (methionine) acting as an acid and an imidazole group
(histidine) providing nucleophilic assistance for breaking the glycosidic linkage. This was
confirmed by Proctor who found that 3-galactosidase activity was inhibited when iodoacetate
was added, iodoacetate reacting with both sulfahydryl and histodyl groups to render them
catalytically inactive 39 Figure 2.2 shows a diagrammatic representation of the hydrolytic
and trans-galactosyl processes of the active site of [B-galactosidase 4041 " Shukla “V
described the hydrolysis process as a Sx2-like displacement mechanism. The methionine
group acts as a general acid to protonate the galactosidic oxygen atom. The histidine group
acts as a nucleophile, which attacks the C1 carbon to remove the galactosyl group and release

glucose. In the removal of the galactosyl group the sulfahydryl anion (S7) acts as a general
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base to remove a proton from a water molecule, which assists in the OH™ attack at the C1
position. If water is the acceptor molecule then the galactose is released, but if the OH group
is part of a saccharide then a galacto-oligosaccharide molecule is released. The rate of trans-

galactolysation for a specific acceptor is known to be influenced by the structural features of

(40,41)

that acceptor The general mechanism shown in Figure 2.2 is applicable to

B-galactosidase from various sources with differing pH optima, however the catalytic groups

involved may vary @,

Aston University
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Figure 2.2. The hydrolytic and trans-galactosyl processes of the active site of

B-galactosidase @040 A is a lactose molecule at the active site, B is

hydrolysis of the lactose molecule to release a glucose molecule, C is the
B-galactosidase-galactose complex (R-O-H is the acceptor molecule, H,O
yields a galactose molecule and a saccharide yields a galacto-
oligosaccharide molecule), and D is the release of either galactose or
galacto-oligosaccharide.
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A typical range of galacto-oligosaccharide compounds formed by the trans-galactosyl activity

of B-galactosidase is shown in table 2.1. A more comprehensive list is presented by Prenosil,

Stuker and Bourne ©V. Non-enzymatic (chemical) hydrolysis of lactose does not yield

galacto-oligosaccharides, only glucose and galactose M

Aston University
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Table 2.1. A typical range of galacto-oligosaccharide compounds formed by the

trans-galactosyl activity of p-galactosidase ®V.
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2.1.3 The effect of galactose inhibition and mutarotation on B-galactosidase activity.

Galactose acts a competitive inhibitor for B-galactosidase and it has been reported that a
concentration of only SmM can decrease the activity of the soluble enzyme by 50% 4243 1n
solution monosaccharides can exist as either pyranoses or furanoses, and these can be in
either o or B forms. The interconversion between the o and [ forms is known as
mutarotation, or anomerisation. Pure forms of a and § monosaccharides mutarotate until
equilibrium is reached and this can be monitored by optical rotation measurements.
Pyranose ring structures usually exist as two chair (C) conformations, IC, and *C,, although
less commonly skew (S) and boat (B) forms are formed. Furanose ring structures exist as
two conformational forms which are envelope (E) and twist (T). With galactose there is an
initial fast mutarotation, followed by a slow mutarotation. The fast mutarotation has been
attributed to the furanose interconversion, whilst the slow mutarotation has been linked to

@9 The process of galactose mutarotation is shown in Figure

the pyranose interconversion
2.3. Mutarotation is produced by the protonation of the ring oxygen which promotes
cleavage of the bond between the ring oxygen and Cl to give an acyclic intermediate, which
re-cyclises to either the o or B forms. The rate of mutarotation varies depending upon the pH
of the solution, with mildly acidic and basic solutions accelerating the speed at which

equilibrium conditions are reached. The equilibrium composition of galactose in aqueous

solution is as follows “%:
o-Furanose 1.0%
B-Furanose 3.1%
o-Pyranose 32.0%
B-Pyranose 63.9%

The a-pyranose form of galactose has been reported to have approximately 12 times the

competitive inhibition effect on B-galactosidase isolated from Aspergillus niger @b,
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Figure 2.3. The mutarotation of galactose in aqueous solution, the bracketed values
give the % composition at equilibrium “e,

Modelling of the hydrolysis of lactose by -galactosidase is complicated by mutarotation of
galactose, especially due to the vast difference in the inhibitory effect of the o and [ forms.
The hydrolysis of lactose by P-galactosidase yields only B-galactose and the rate of
mutarotation to the o form is determined by the pH of the reaction environment. To produce
a workable model the mutarotation of galactose needs to be fully investigated over a range of

reaction conditions.
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2.2 Theory of single-substrate kinetics

This section introduces the theory of enzyme single substrate kinetics and the use of the
Michaelis-Menten equation to calculate kinetic parameters. The kinetics of enzyme
inhibition is described and a method for calculating this parameter is presented. The effects

of immobilisation or insolubilisation on an enzyme’s kinetic parameters are discussed.

2.2.1 Introduction

For an enzymatic reaction to occur, the reactant molecules must contain sufficient energy to
cross a potential energy barrier, the activation energy. Enzymes catalyse a reaction by
forming a transition state with the reactant, which has a lower free energy than that in an
uncatalysed reaction. The lowering of the activation energy is primarily achieved by the
binding energy between the enzyme and the substrate to form a bound complex, and the
formation of this complex allows the catalytic reaction to proceed to completion. Michaelis

and Menten illustrated this process with the following kinetic model (19).

k+1 k+2
E + S — ES > P 2.1
k.
where: E = enzyme molecule.
S = substrate molecule.

ES = enzyme-substrate complex.
P = product molecule.

kii, k.y and ks = the rate constants.

This model assumes that none of the product reverts back to the substrate and this is valid at
the initial stages of the reaction where the concentration of the product is low, and where the

reaction is effectively irreversible.

The rate of reaction (V) is the rate at which the product is formed and is given by the

following expression:
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v o AP Es)

2.2
dt (2.2)

where:  [] indicates the molar concentration (mol dm™).

The rate of change of the concentration of ES is equal to the rate of its formation minus the

rate of its breakdown and this may be expressed as:

d[ES]
dt

= ka[El[S]- (ka+ ko)[ES]  — @3

Assuming “steady-state kinetic conditions”, that is [S] and [P] are changing, but [ES] does

not change (a constant flux of S “through” the enzyme), then the following applies;

0~ ky[E][S] - (ki + kio)[ES] @9
or,
dES] . o — 25
dt

Since d[ES}/dt ~ 0, then the rate of formation of [ES] must equal the rate of breakdown of

[ES]. Also, from the conservation of matter the following applies;

[E] = [E]o - [ES] — (2.6
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where the total enzyme at the beginning of the reaction, [E]o, is present either as the free

enzyme, [E], or as the enzyme-substrate complex, [ES].

Assuming “steady-state kinetic conditions”, then the rate of formation of [ES] must equal the

rate of breakdown of [ES] and the following are true:

1.) Rate of formation of [ES] = k+1[E][S]
2.) Rate of breakdown of [ES] = (k.; + ki+2)[ES]
3.) k+[E][S] = (k. + ki)[ES]

Rearranging the above and solving for [ES] gives:

k+1[E] [S]

[ES] = 2
(k-l + k+2)

2.7)

Substituting for [E] in (2.7) using (2.6) gives:

ky
[ES] = (’(ETT{;") (8] {[E}- [ES]} — #)

Expanding the RHS of (2.8):

- ke k.1 [ES][S]
[ES] = Tk, [S][E]o - (ot ko) (2.9)
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Rearranging Equation (2.9) gives:

ES] Q1+ ——— [S1) = § + - ) [EbIS] —@I10

Combining Equation (2.2) with Equation (2.10) and expressing for the rate of reaction (v)

gives:

k+1
v = — (2.11)
L f [S]
k. + ki

Equation (2.11) can be simplified to give:

(k2 [E]o) [S]

(2.12)

ko + ko
k.,

+ [8]

The maximum reaction velocity (Vmax) and the Michaelis constant (K,) can be expressed as:

Vimax = (k+2 [Eo) and K, = Kit ko
Ko
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The simplified form of the Michaelis-Menten equation shown in (2.13) is derived by
inserting the Vpax and Kp, into Equation (2.12):

Vinax[S]
y= —————— — (2.13)
[S]+ K

Il

where: Vv rate of reaction (mol dm? s™.

Vo = the maximum reaction velocity (mol sh).

K

I

the Michaelis constant (mol dm™).

2.2.2 Calculation of kinetic parameters using the Michaelis-Menten equation

The Michaelis-Menten equation can be used to determine the kinetic parameters Vpax and
K. Vinax 1S the maximum reaction velocity and Ky, the Michaelis constant, is the substrate
concentration at which half of the enzyme active sites are occupied. The K, value is also a
measure of the affinity of an enzyme towards a particular substrate and this can be used to
identify a particular enzyme @) " If an enzyme exhibits Michalis-Menten-type kinetics then a

graph of initial reaction velocity, Vo, determined at various initial substrate concentrations

and plotted against the substrate concentration, [Sg], will have the form of a rectangular
49,

hyperbola, as shown in Figure 2.

K

[Sol >

Figure 2.4. A graphical representation of a Michaelis-Menten-type enzymatic reaction.
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This type of plot is not entirely satisfactory for determining Vmax and Kn unless there are
sufficient data points to accurately define the plateau region. If an enzyme obeys the
Michaelis-Menten equation then the Lineweaver-Burk plot, or double-reciprocal plot, can be
used to produce a straight line graph, allowing a more accurate determination of Vax and Kp,.

A diagrammatic representation of the Lineweaver-Burk plot is shown in Figure 2.5.
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Figure 2.5. The Lineweaver-Burk, or double reciprocal, plot “3),
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2.2.3 The kinetics of enzyme inhibition

Competitive inhibition is where an inhibitor compound competes for an enzyme’s active site
with the substrate and this process can be either reversible or irreversible. The effect of a
competitive inhibitor on the enzyme activity depends upon; the inhibitor concentration, the

substrate concentration and the relative affinities of the inhibitor and substrate for the active

R S S G TR o s A A R

site. A Michaelis-Menten plot for an enzyme in the presence of a fixed concentration of a

competitive inhibitor shows a straightening of the usual rectangular hyperbola @5 This

PR R

produces an apparent increase in the Ky value and this is represented by K'm. With the

R R

Lineweaver-Burk plot there is an increase in the slope of the line, which becomes steeper as

AR

the concentration of the inhibitor increases. The dissociation constant for the reaction
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between the enzyme and the inhibitor is known as the inhibition constant, or Kjand K can

be represented by the following expression:

P -

The Michaelis -Menten equation shown in equation (2.13) can be modified to incorporate the

apparent increase in Ky, resulting from the presence of a competitive inhibitor and this can be

. 4
written as “34647;

Vinax[S]
v = — (2.15)

]
BthQ+—~
K;

The inhibition constant is a measure of the potency of a compound to inhibit the activity of a
particular enzyme and can be used along with other kinetic parameters to identify a particular

enzyme.

2.2.3.1 Determination of the inhibition constant, K;, using the Dixon plot method.

In 1953, Dixon proposed a graphical means of calculating the inhibition constant, K “3),
The Dixon plot involves incubating a fixed concentration of an enzyme, [Eo], with different
concentrations of the relevant substrate [Sg]iec, in the presence of various inhibitor
concentrations. Plotting the reciprocal of the initial velocity, vo, against the initial inhibitor
concentration, Iy, produces linear plots and at the point where the lines intersect is equivalent

to the inhibition constant. An example of a typical Dixon plot is shown in Figure 2.6 (45.46),
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Figure 2.6. Determination of the inhibition constant, K;, using the Dixon plot method.

2.2.3.2 Effects of enzyme immobilisation and insolubilisation on enzyme kinetic
parameters.

The kinetic behaviour of an immobilised or insolubilised enzyme can vary significantly to

that of the soluble free enzyme. The immobilisation/insolubilisation process can produce

conformational changes to the enzyme and also introduce partitional and diffusional

problems. In 1968, Lilly et al postulated that around a particle there is an unstirred layer of

solution, ranging in thickness from 10-100pm “8),

This layer is described as the
microenvironment and the surrounding solution is the bulk macroenvironment; this is shown

in Figure 2.7.

Within the microenvironment there is a partition layer (~20nm thick) which is affected by the
charge and hydrophobicity of the particle surface (9 A partitioning of substrate and
product/s can occur between the bulk solution and the microenvironment. Molecules of
opposite charge to the particle surface are partitioned into the microenvironment and those
molecules with the same charge as the particle are partitioned into the bulk

macroenvironment.
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Figure 2.7. The microenvironment and bulk macroenviroment surrounding an
idealised spherical immobilised/insolubilised particle 19),

The effect of solute partition can be quantified by the calculation of the electrostatic partition

coefficient (A) which is represented by the following equation (19),

A= — = —— — (2.16)

where: A = electrostatic partition coefficient.
[Co™] = cation concentration in the bulk macroenvironment (mol dm™).
[C™] = cation concentration in the microenvironment (mol dm™).
[A¢"] = anion concentration in the bulk macroenvironment (mol dm'3).
[A™] = anion concentration in the microenvironment (mol dm™).
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The value of A for a particular reaction system can be used to calculate the apparent

Michaelis constant, K,,*"?, for an immobilised enzyme using the following expressions:

K, P = K,A (for a positively charged substrate) —— (2.17)
or,
K™ = K. /A (for anegatively charged substrate) ————— (2.18)

Similarly, the electrostatic partition coefficient can be used to calculated the apparent
inhibition constant, K;**?, by replacing K, with Kj in expressions (2.17) and (2.18). Solute
partition can produce an apparent increase or decrease of the kinetic parameters Vpay, Km and
K; depending upon the charged status of the immobilised/insolubilised particle, the substrate

charge, and the ionic strength of the media.

The apparent kinetic parameters described in (2.17) and (2.18) above can be further affected
by diffusion factors. The substrate contained within the microenvironment may be rapidly
utilised by the enzyme and the reaction velocity will then be dependent upon the rate at
which the substrate contained within the bulk macroenvironment diffuses through the
microenvironment and the partition layer. Usually, the substrate concentration surrounding
the immobilised/insolubilised enzyme particle will be lower than that of the bulk
macroenvironment, which produces a reduction in the reaction velocity compared to that
expected for the bulk solution. The apparent values of V.« and Ky, will be affected and the

new Ky, (K'y) value can be calculated using the following equation (19,

K.,=K*+V, ... 08/D —(2.19)

where: K m — the apparent Michaelis constant corrected for diffusional effects.

V'max = the maximum reaction velocity corrected for diffusional effects.

>
=
i

the thickness of the unstirred layer (cm).
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D = diffusion coefficient (cm’ s'l).

Equation (2.19) refers to external diffusion and the effects of internal diffusion must also be
considered. Internal diffusion is the transport of substrate and product/s within the pores or
interstitial spaces of an immobilised/insolubilised enzyme particle. Internal and external
diffusion problems can make the effects of product inhibition more severe due to the high
localised concentration of the inhibitor compared to that found in the bulk

macroenvironment.

2.3 The industrial use of soluble and immobilised B-galactosidase.
B-Galactosidase, especially of fungal origin, is used widely by the dairy industries. Most of
the population of Northern Europe are lactose tolerant, but up to 97% of Thai, Chinese,

(9 This creates

Japanese and Black American populations are reportedly lactose intolerant
a large world-wide market for low-lactose products. On an industrial-scale, 3-galactosidase
from Kluyveromyces fragilis is used for the treatment of milk and PB-galactosidase from
Aspergillus oryzae is used to treat whey. -galactosidase is also used in the production of ice
cream and sweetened flavoured milk drinks. The soluble enzyme is added to the milk or
whey and incubated for 24 hours at 5°C until approximately 50% of the lactose has been
hydrolysed, giving a sweeter product that will not crystallise if frozen. If the lactose content
within ice cream and other frozen dairy products is not reduced an unpleasant grainy texture

4 (17.19)

is produce . Immobilised B-galactosidase is not generally used in the manufacture of

low-lactose dairy products due to the fouling produced by the colloidal nature of milk and

whey (48,49)

Over the past 15 years, a recognition of the potential health benefits of galacto-
oligosaccharides has created a large world-wide market. In 1987, Honsha ©®* patented a
process for the industrial-scale production of galacto-oligosaccharides. The process involved
the incubation of a lactose-containing solution with B-galactosidase from Aspergillus oryzae;
the reaction was then thermally quenched and the reaction products were separated

chromatographically. The product marketed as Oligomate 50% contained a minimum of
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55%"/v galacto-oligosaccharides and is used today as a food additive and a supplement to
infant milk formulas. By 1995, 15 000 tonnes of Oligomate 50® was being produced in

Japan ®

In Europe, Borculo Whey Products (The Netherlands) markets a galacto-
oligosaccharide syrup (TOS-Syrup) which is added to milk beverages, confectionery and

health drinks &%,

2.4 Stirred-batch reactions using B-galactosidase from Aspergillus oryzae (Biolactase F).

2.4.1 Properties of B-galactosidase from Aspergillus oryzae (Biolactase F).

The B-galactosidase used in all of this research was isolated from Aspergillus oryzae and was
produced by Biocon Biochemicals Limited (Co. Cork, Ireland) under the trade-name
Biolactase F. This enzyme has a reported effective pH range of 2.5-7.0 with an optimum

43,51)

range at 4.5-5.5, and an optimum temperature range at 55-60°C Begum, Canuto,

2 performed stirred-batch reactions to confirm the pH and temperature

Hussain and Petrou
optima for this enzyme and the results obtained are presented in Figure 2.8. The results
obtained correlate closely to the literature values and confirm the broad effective pH and
temperature range of this enzyme. The profile of the plots obtained may indicate the

overlapping of differing enzyme activities.

Biolactase F is a comparatively crude product that possibly contains contaminating enzymes
and growth medium compounds. Experiments were performed to determine the purity of
Biolactase F by incubating solutions of the enzyme (10 mg em?, 1 em?®) with starch, maltose,
raffinose and glucose (all 1%"/v, 2 cm’®) at 40°C for 30 minutes. The reactions were
thermally quenched by placing the solutions in boiling water for 5 minutes, and the solution
was then analysed by HPLC to determine the product profiles. A solution of the enzyme was
incubated with lactose so that the relative activities of any contaminating enzymes could be
related to the B-galactosidase activity. The analytical procedure is fully detailed in Chapter
7. The results obtained are presented in Table 2.2. Table 2.2 shows that Biolactase F
exhibits enzyme activity other than that of [-galactosidase. A comparison of the
concentrations of the reaction products formed showed that these contaminating enzymes
were present in extremely low concentrations and therefore no attempt was made to remove

them from Biolactase F solutions used in stirred-batch and centrifugation reaction studies.
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Figure 2.8. The % Relative enzyme activity of 3-galactosidase from Assgergillus oryzae
(Biolactase F) at varying pH and temperature (°C) values 52),
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Substrate Reaction products Possible contaminating Relative activity
detected enzyme/s
lactose galacto-oligosaccharides, B-galactosidase extremely high
(control) glucose, galactose (~32U cm™)
starch maltose, glucose B-amylase, a-glucosidase, very low
amyloglucosidase (~0.5U cm™)
raffinose |sucrose, glucose, fructose a-galactosidase, very low
B-fructosidase (~0.3 U cm™)
sucrose glucose, fructose B-fructosidase very low
(~0.1 U cm™)

Table 2.2. The enzymatic activities present in Biolactase F (1 unit (U) is defined as the
amount of enzyme which converts 1 pmole of substrate in 1 minute at the
stated conditions of pH and temperature).

B-Galactosidase from Aspergillus oryzae has a reported molecular weight of 90 000 daltons
(73637 and the approximate molecular weights of [-amylase, o-glucosidase,
amyloglucosidase, a-galactosidase and p-fructosidase are 57 000, 68 500, 97 000, 26 000
and 97 000 daltons respectively G7) " The variation in the molecular weights of the enzymes
present in Biolactase F will have no effect on stirred-batch reaction studies, but will produce
broadening of the soluble enzyme band during centrifugation studies. The protein content of

Biolactase F was determined using the Bio-Rad protein assay method (Bio-Rad Laboratories

Ltd, Herts) and found to be 22.4%.

2.4.2 Stirred-batch reactions performed using soluble f-galactosidase from
Aspergillus oryzae (Biolactase F)

Stirred-batch reactions were performed using soluble Biolactase F (1.25 mg cm”, 4 U cm™)
incubated with various initial concentrations of lactose monohydrate (5, 10, 15, 20 and

25%"/v) at 40°C (1 unit (U) is defined as the amount of enzyme which converts 1 pmole of
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Jactose monohydrate in 1 minute at the stated conditions of pH and temperature). The pH of
the substrate solutions ranged from 4.4 to 5.2 and as shown in Figure 2.8 the enzyme activity
is high and fairly constant over this range, and therefore the solutions were not buffered.
Samples were taken at timed intervals and chemically quenched using sodium hydroxide.
The samples were then analysed by HPLC and the raw data was entered into an Excel
spreadsheet (see Appendix A-1) to determine the concentrations of the substrate and reaction
products after various incubation times. The full experimental protocols used are presented
in Chapter 7. A reaction temperature of 40°C was used as this was both the maximum
attainable temperature for the centrifuge and the chosen reaction temperature used to perform
subsequent centrifugal studies. A limited number of reactions were performed at 25°C and
55°C to determine the effects of temperature on galacto-oligosaccharide formation. Figure
2.9a shows the % Galacto-oligosaccharides of Total Sugar and % Lactose monohydrate
conversion against Reaction time (minutes), for stirred-batch reactions performed using
soluble Biolactase F (1.25 mg cm?, 4 U cm™) incubated with initial lactose monohydrate
concentrations of 5 and 10%"/v, at 40°C. Figure 2.9b shows the results obtained for lactose
monohydrate concentrations of 15 and 20%"/v and Figure 2.9¢ shows the results obtained for

25%"/v lactose monohydrate.

Table 2.3 shows a comparison of the maximum galacto-oligosaccharide yields obtained

using various initial lactose monohydrate concentrations, and performed at different

temperatures.
Temperature Initial Lactose Monohydrate Concentration (%' /v)
(°C) 5 10 15 20 25
25 11.3% 16.4% 19.1% 20.0% 21.4%
40 8.0% 14.4% 17.9% 21.2% 22.0%
55 8.2% 12.3% 15.3% 17.7% 20.4%

Table 2.3. Comparison of the maximum galacto-oligosaccharide yields (%" Iv)

obtained using various initial lactose monohydrate concentrations (%" Iv),
and performed at various temperatures (°C).
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2.4.2.1 Determination of Vya and K, for soluble P-galactosidase from Aspergillus
oryzae (Biolactase F)

The results obtained from the stirred-batch reactions performed using soluble B-galactosidase
from Aspergillus oryzae (Biolactase F) were used to determine the values of Vg and K, at
40°C. The data used to calculate Vyax and Ky, was that obtained for glucose, as glucose is the
reaction product least affected by the trans-galactosyl activity of the enzyme. The method
used was a Lineweaver-Burk plot, or double reciprocal plot and is outlined in Section 2.2.2
and diagrammatically represented in Figure 2.5. The initial velocity, vo, was determined for
glucose production at various initial lactose monohydrate concentrations, with a fixed
enzyme concentration and the reciprocal of the initial velocity was plotted against the
reciprocal of initial lactose monohydrate concentration. The graph obtained is presented in

Figure 2.11.

Voax = 76.3 mM min™
Ko = T4 mM

T 1 1 1 71T T 11 71T T T T T T T 1
14 -13 .12 -11 -10 -9 -8 -7 6 5 4 -3 -2 -1 0 1 2 3 4 5 6 7 8

I—S:] (x 107

Figure 2.11. Determination of Vy.x and K, for soluble Biolactase F using a
Lineweaver-Burk, or double reciprocal plot.

The values of Vpma and K, for Biolactase F were determined to be 76.3 mM min™ and 74

mM respectively and these values were similar to those reported in the literature (38,41.43,5D)
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Figure 2.11 clearly shows that substrate inhibition is taking place at the higher initial lactose
monohydrate concentrations, as is shown by the distinctive feature of the highest lactose
monohydrate data points curving sharply upward as the 1/v axis is approached 63,
Generally, substrate inhibition occurs when a molecule of the substrate binds to one site on
the enzyme and another molecule of the substrate binds to a separate site on the enzyme to
form a dead-end complex. This can be regarded as a form of uncompetitive inhibition, with

the extra substrate molecule being the inhibitor “6),

2.42.2 Determination of K; for soluble p-galactosidase from Aspergillus oryzae
(Biolactase F)
The inhibition constant, K;, was determined for B-galactosidase from Aspergillus oryzae
(Biolactase F) using the Dixon Plot method, which is described in Section 2.2.3.1. Stirred-
batch reactions were performed using two different lactose monohydrate concentrations, 10
and 15%"/v, and for each substrate concentration either 25mM or 50mM galactose was
initially added. The Biolactase F enzyme concentration was fixed (1.25 mg cm?, 4 U cm™)
and at timed intervals samples were removed and analysed by HPLC to determine the rate of
lactose conversion. Using the Dixon Plot the value of K; was determined to be 4.3mM

(0.0043M).

2.4.3 Stirred-batch reactions performed using glutaraldehyde insolubilised
B-galactosidase from Aspergillus oryzae (Biolactase F)
Stirred-batch reactions were performed as described in Section 2.4.2, except that
glutaraldehyde insolubilised p-galactosidase (Biolactase F) was used. Sufficient
insolubilised B-galactosidase was added to give an equivalent activity to that obtained for
1.25 mg em® (4 U cm™) of the soluble enzyme. The raw data generated by the HPLC was
inserted into a spreadsheet to determine the concentration of the substrate and reaction
products, and to monitor the overall mass balance; examples of the type of spreadsheets
produced are shown in Appendix A-1. Figure 2.12a shows the % Galacto-oligosaccharides
of Total Sugar and % Lactose monohydrate conversion against Reaction time (minutes), for
stirred-batch reactions performed using glutaraldehyde insolubilised p-galactosidase

incubated with initial lactose monohydrate concentrations of 5 and 10%"/v. Figure 2.12b
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shows the results obtained for lactose monohydrate concentrations of 15 and 20%"/v, Figure
2.12¢ shows the results obtained for 25 and 30%"/v and Figure 2.12d shows the results for
40%"/v.

2.4.3.1 Determination of V,,x and K, for glutaraldehyde insolubilised (-galactosidase
from Aspergillus oryzae (Biolactase F)
The results obtained from the stirred-batch reactions performed using glutaraldeyde
insolubilised B-galactosidase from Aspergillus oryzae (Biolactase F) were used to determine
the values of Vi and K, at 40°C. The data used to calculate V. and K, was that obtained
for glucose, as glucose is the reaction product least affected by the trans-galactosyl activity of
the enzyme. The method used was a Lineweaver-Burk plot, or double reciprocal plot and is
outlined in Section 2.2.2 and diagrammatically represented in Figure 2.5. The initial
velocity, vy, was determined for glucose production at various initial lactose monohydrate
concentrations, with a fixed enzyme concentration and the reciprocal of the initial velocity
was plotted against the reciprocal of initial lactose monohydrate concentration. The graph

obtained is presented in Figure 2.13.

Voax = 43.5 mM min’'

Kp = 104.2 mM

I T T T T T T T T T T 1
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1
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Figure 2.13. Determination of ¥V, and K, for glutaraldehyde insolubilised Biolactase
F using a Lineweaver-Burk, or double reciprocal plot.
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The values of Viax and K, for gluataraldehyde insolubilised Biolactase F were determined to
be 43.5 mM min" and 104 mM respectively. Figure 2.13 clearly shows that substrate
inhibition is taking place, which is demonstrated by the upward curvature of the higher

substrate concentration data points as the 1/v axis is approached.

2.4.3.2 Determination of K; for glutaraldehyde insolubilised B-galactosidase from
Aspergillus oryzae (Biolactase F)
The inhibition constant, K;, was determined for glutaraldehyde insolubilised -galactosidase
from Aspergillus oryzae (Biolactase F) using the Dixon Plot method, which is described in
Section 2.2.3.1.  Stirred-batch reactions were performed using two different lactose
monohydrate concentrations, 10 and 15%"/v, and for each substrate concentration either
25mM or 50mM galactose was initially added. The insolubilised Biolactase F enzyme
concentration was fixed (a soluble enzyme equivalent of 1.25 mg em>, 4 U em™) and at
timed intervals samples were removed and analysed by HPLC to determine the rate of
lactose conversion. Using the Dixon Plot the value of K; was determined to be 2.5mM

(0.0025M).

2.44 Comparison of the results obtained from soluble and glutaraldehyde
insolubilised [3-galactosidase stirred-batch reactions

A comparison of both the % Galacto-oligosaccharides of Total Sugar and the % Lactose
monohydrate conversion for soluble [-galactosidase and glutaraldehyde insolubilised

B-galactosidase shows:

1. The rate of lactose monohydrate conversion is slower for the insolubilised
B-galactosidase.

2. For a given % Lactose monohydrate conversion the % Galacto-oligosaccharides
of Total Sugar is slightly lower for the insolubilised 3-galactosidase.

3. The insolubilisation process does not greatly affect the hydrolytic and trans-

galactosyl activity of -galactosidase from Aspergillus oryzae (Biolactase F).
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Table 2.4 shows a comparison of the experimentally obtained values for Viax, K and Kj for

soluble and glutaraldehyde insolubilised Biolactase F.

Kinetic parameter
Biolactase F Vinax Ky K;
(mM min™) (mM) (mM)
Soluble 76.3 74 4.3
Insolubilised 43.5 104 2.5

Table 2.4. Comparison of the experimentally determined kinetic parameters for
soluble and insolubilised B-galactosidase (Biolactase F).

The soluble and insoluble B-galactosidase V. values presented in Table 2.4 show a lower
Vmax value for the insolubilised enzyme and this may be possibly explained by the diffusion
and partition effects resulting from the insolubilisation process. The lower V. value
correlates with the slightly slower rate of lactose monohydrate conversion and galacto-
oligosaccharide formation obtained with the insolubilised enzyme. A comparison of the
maximum galacto-oligosaccharide yields obtained using various initial lactose monohydrate

concentrations for soluble and insolubilised B-galactosidase, at 40°C, is shown in Figure 2.5.

State of Initial Lactose Monohydrate Concentration (%" /v)

enzyme 5 10 15 20 25

Soluble 8.0% 14.4% 17.9% 21.2% 22.0%
Insolubilised 7.1% 12.9% 14.5% 19.1% 21.1%

Table 2.5. Comparison of the maximum galacto-oligosaccharide yields obtained
during stirred-batch reactions using soluble and insolubilised
B-galactosidase (1.25 mg em>, 4 U cm"”) performed using various initial
lactose monohydrate concentrations, at 40°C.
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Table 2.4 shows that the values obtained for X, and K; for both the soluble and insolubilised
enzyme are comparatively close, which confirms that the insolubilisation process does not

adversely affect the catalytic action of the enzyme.

2.4.5 Kinetic modelling of lactose hydrolysis

Producing a kinetic model for the hydrolysis of lactose by B-galactosidase is hindered by the
complexity of the reaction. The reaction is complicated by the formation of galacto-
oligosaccharides, which are intermediate compounds that are ultimately hydrolysed to yield
glucose and galactose. The rate of galacto-oligosaccharide formation and its yield are
dependent on the initial lactose concentration, the complete hydrolysis of lactose to yield
glucose and galactose being favoured by low initial lactose concentrations. Increasing the
complexity further is the variation in the inhibitory effect of galactose due to mutarotation.
The rate of mutarotation depends upon the specific reaction conditions and the origin of the

(21,44)

particular -galactosidase used . Based on research performed by Prenosil, Struker and

(€29 (30)

Bourne ', and Yang and Tang -’ a simplified reaction scheme for the hydrolytic and trans-

galactosyl activity of B-galactosidase can be proposed and is as follows:

E+L = (EL)
(EL) + H,0 == (E.Gal) + Glu
(E.Gal) === [ + Gal
(E.Gal) + L — E + Tn + H,O
(E.Gal) + Tri — E + Tet + H,O

I

where: E enzyme
L = lactose

Gal = galactose
Glu = glucose

Tri = trisaccharide

Tet = tetrasaccharide
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The reaction scheme presented above ignores the effects of mutarotation and only considers
galacto-oligosaccharides up to tetrasaccharides, because higher saccharides were not detected
during the stirred-batch experiments performed as part of this research. Flaschel, Raetz and
Renken @V produced a model for lactose hydrolysis which considered mutarotation, but
ignored galacto-oligosaccharide formation. In 1974, Weetall, Havewala, Pitcher, Detar,
Vann and Yaverbaum ©¥ produced a model for lactose hydrolysis in batch reactions based
on Michaelis-Menten kinetics with competitive inhibition. The effects of mutarotation and
galacto-oligosaccharide formation were ignored. This model was used to predict the
hydrolysis of lactose contained in acid whey and stirred-batch reactions were performed
using fungal PB-galactosidase (Lactose-M, Miles Laboratories, New York) to compare with
the calculated model values. The acid whey contained 15-20% solids of which 70-80% was
lactose, thus giving a possible lactose range of 10.5-16%.

(54

The expression used by Weetall, Havewala, Pitcher, Detar, Vann and Yaverbaum 1S

derived as follows using Equation (2.15), which may be written as:

_d[L] Vmax [L]
- = (2.20)
dt L] + K, [Gall
1+
K;
where: [L] = lactose concentration (mol dm™).
[Gal] = galactose concentration (mol dm™).
Assuming [L]o - [L] = [Gal]
and [L] = [L]o att=0.

Separating the variables, [L] and t, substituting for [Gal] and then integrating gives:
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L
Voo tdt - _ ] K Ky . [L]O _ K d[L] — @21

0 [Llo [L] K [L] K

K. K. [L]o
Voot 1 = (Ll-[L1) + 1 Ll + K =
............ — 22

The expression (2.22) may be used to estimate kinetic constants or to approximate lactose

conversion in a batch reactor of reaction time t, having fixed the enzyme concentration [E]o.

Using the kinetic parameters obtained for soluble and insoluble [-galactosidase from
Aspergillus oryzae an Excel spreadsheet was constructed based on Equation (2.22). The
spreadsheet was used to calculate the theoretical values of lactose monohydrate hydrolysis,
for reactions performed using various initial lactose monohydrate concentrations incubated
with soluble and insolubilised (-galactosidase from Aspergillus oryzae at 40°C, and using a
fixed enzyme concentration of 1.25 mg cm™ (4 U cm™). The kinetic parameters K;, and K;
obtained experimentally for the soluble and insolubilised enzyme were inserted into the
appropriate spreadsheets. In the spreadsheets, the Vnax values used were based upon glucose
formation results obtained from the stirred-batch reactions. Based on glucose formation, the
Vimax value for soluble and insolubilised B-galactosidase from Aspergillus oryzae was 76.3
and 43.5 mM min™' respectively. Examples of the spreadsheet are presented in Appendix A-
2. The theoretical values calculated were compared to the actual results obtained from the
stirred-batch reactions, described in 2.4.2 and 2.4.3. Figure 2.14 shows a comparison of the
theoretical and actual lactose monohydrate conversions for soluble P-galactosidase from

Aspergillus oryzae using; initial lactose monohydrate concentrations of 5 and 20%" /v, an

enzyme concentration of 1.25 mg cm™ (4 U cm™), and a reaction temperature of 40°C.

Figure 2.15 shows a comparison of the theoretical and actual lactose monohydrate
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conversions for insolubilised B-galactosidase from Aspergillus oryzae using; initial lactose
monohydrate concentrations of 5 and 20%" /v, an enzyme concentration of 1.25 mg cm> (4 U

cm™), and a reaction temperature of 40°C.

Figure 2.14 shows that for soluble B-galactosidase at a lactose monohydrate concentration of
5%"/v (Graph A) the model fits closely to the experimental values, with only a slight
divergence as the reaction progresses. With a higher lactose monohydrate concentration of
20%"/v (Graph B) the deviation from the model values is much greater. In both cases, the
divergence from the model values may be explained by; (a) the formation of galacto-
oligosaccharides which compete with the lactose monohydrate for the active site and with
higher initial lactose monohydrate concentrations more galacto-oligosaccharides are
produced, (b) the incorporation of lactose monohydrate into galacto-oligosaccharides during

trans-galactosylation, and (c) the effects of mutarotation of galactose.

Figure 2.15 shows that for insolubilised B-galactosidase at the lower lactose monohydrate
concentration of 5% /v (Graph A) the experimentally derived values deviate from the model
almost immediately. This deviation is greater than that observed for the soluble
B-galactosidase at the same lactose monohydrate concentration.  Incubation of the
insolubilised p-galactosidase with 20%" /v lactose monohydrate (Graph B) shows the
greatest divergence from the predicted model values and is considerably greater than that for
the soluble enzyme at the same initial substrate concentration. With the insolubilised
enzyme, the increased degree of poor fit between the model and experimental values was
probably due to diffusional and partition effects resulting from the particulate nature of the
enzyme. To fully accommodate these effects and improve the model more work needs to be

performed to investigate the structure of the enzyme particles and the microenvironment.

2.4.5.1 Preliminary study of insolubilised p-galactosidase particles

Samples of the insolubilised B-galactosidase particles were observed using a Cambridge
Stereoscan Model 90 Scanning Electron Microscope (SEM) (Cambridge Instruments,
Cambridge, UK) to determine the morphology and size range of the particles. The results
obtained are shown in Figure 2.16. Figure 2.16 (Photographs A and B) shows that the
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particles were comparatively spherical in shape. The particles observed ranged in size from
approximately 10 to 30um and confirmed the results obtained using the laser particle sizer
(see Figure 5.19). Ata magnification of 6 410x the surface texture of a particle (Photograph
C) showed no obvious porous structure and this indicates that diffusional limitations due to
the movement of substrate/product/s through the particle is minimal. The almost spherical
shape of the particles would seem to show that they are formed during the insolubilisation

process and the mechanical grinding process just re-disperses the agglomerated particles.

Drying experiments were performed to determine the approximate water content of the
insolubilised particles. A suspension of insolubilised P-galactosidase particles was
centrifuged at 13 000 r.p.m to form a densely pelleted material at the bottom of the centrifuge
tube, so that the majority of the liquid present was contained in the supernatant. The
supernatant was decanted and the surface of the pelleted material was gently blotted using
absorbent paper towel. The centrifuge tube containing the pelleted material was weighed and
then dried using a laboratory air dryer at ~35-40°C until constant weight was achieved. The
water content of the pelleted material was calculated to be 83.5%. This high water content
value would indicate that the particles may exit as a hydrogel, which is a water-rich colloidal
system where the insolubilised particle structure consists of chemically-linked colloidal
particles (53 Typically, colloidal particles are defined as particles with a size ranging from

(9 Although, the resolution limit of a scanning electron

1 to 500 nm in diameter
microscope is ~6nm it was not possible to achieve this with the insolubilised particles due to

the focused electron beam vaporising the sample ©n,
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3.0 CENTRIFUGAL STUDIES USING SOLUBLE B-GALACTOSIDASE

In this chapter, the historical development of the centrifuge is discussed. The theoretical
principles upon which centrifugation and sedimentation theory are based will be described.
The different types of centrifuge, and their uses are discussed. The centrifugal separation
technique known as normal rate separation is described. Centrifugal studies performed with
soluble, free B-galactosidase, and using a modified version of the normal rate separation

technique are presented.

3.1 Development of the centrifuge
The basic principles upon which centrifugation and sedimentation theory are based originate

6 89 Stokes’ equation was initially used

from Stokes’ Law, which was published in 185
by physicists to calculate the radius of a spherical droplet sedimenting under the influence of
the earth’s gravitational field. Centrifugation is a technique designed to utilise centrifugal
forces, which exceed that of the force of gravity, to speed up the sedimentation rate of the
particles, allowing faster separation, and analysis of small particles. In terms of
centrifugation, the word particle describes all of the materials that are present in a sample,

except for the medium in which the material is suspended 9

The application of centrifugal forces to effect separation was first used on an industrial-scale
over 120 years ago. The industries predominantly associated with this early use were those
involved with the manufacture of sugar and milk products. In 1877, the Swedish engineer
DelLaval invented the first continuous centrifugal separator, which was designed to separate

k © The types of centrifugal separators increased as new applications were

cream from mil
discovered. Rapid developments in industrial centrifuges occurred during World War I,
driven by research in the field of isotope separation and enrichment. Today, centrifuges are
widely used in the oil, chemical, biochemical, pharmaceutical and food industries (3.60,61,62)
In the oil industry centrifuges are used on oil platforms to remove salt water and other
contaminants from lubricating oils. The pharmaceutical industry utilises centrifuges to
recover products such as penicillin from solvents. The food industry use centrifuges to
remove impurities from coffee, tea and fruit juices, as well as extracting edible proteins from
both animal and vegetable products 6061 The centrifuge is also used for environmentally

beneficial applications, such as sludge dewatering and heavy metal removal from wastewater
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(9 Industrial centrifugal separators may be required to process tonnes of materials under an
extreme range of operating conditions, such as temperatures from -62°C to 230°C (60)
Industrial centrifuges have become an integral part of product recovery and downstream

processing.

The laboratory-scale centrifuge was first used as an analytical tool by Dumansky in 1913 (58),
He attempted to compare particle size determinations obtained using a laboratory centrifuge,
with those obtained using an optical microscope. This proved unsuccessful due to the non-
ideal sedimentation of the particles produced by the mechanical limitations of the centrifuge.
During the 1920°s Svedberg and Pedersen, researchers at the University of Uppsala in
Sweden, were responsible for improving the design of laboratory centrifuges (58.60.59) " Their
improvements allowed higher centrifugal forces to be achieved, reduced the level of
vibration during use, and incorporated the ability to control operational temperature. In
1923, they developed a small optical centrifuge which was capable of centrifugal forces
equivalent to 150 times that of the force of gravity, or 150g. This type of centrifuge is now
known as an analytical centrifuge, as distinct from a preparative centrifuge which is designed
solely for separation. The inclusion of an optical system allowed the progress of sedimenting
particles to be recorded on film, using either changes in refractive index or optical absorption

to visualise the boundaries of sedimenting particles %),

The application of the laboratory centrifuge in the field of biochemistry, which required the
separation and analysis of biological macromolecules such as proteins, led to rapid
development. By 1933 certain centrifuges were capable of producing centrifugal forces up to
19 000g, and by 1934 centrifugal forces reaching 900 000g had been achieved, although this
equipment usually exploded after several experimental runs due to mechanical failure 8,
By the 1970’s the laboratory centrifuge had reached its zenith for the separation and analysis

(65)

of biological macromolecules ", with certain centrifuges capable of attaining 500 000g

(5768 " Ovyer the past 20 years the introduction of new methods for defining the characteristics
of macromolecules such as; gel and zonal electrophoresis, laser particle sizing,
chromatographic systems linked to mass spectrometry (GC-MS, LC-MS), and
chromatographic techniques have reduced the use of the centrifuge as an analytical tool.
Although the popularity of the analytical centrifuge has declined, the use of the preparative

centrifuge for the separation of materials has increased.
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3.2 Principles and practices of centrifugation

3.2.1 Introduction

In a gravitational field of force, a particle suspended in a liquid medium possessing a lower
density tends to migrate through the fluid in a downward direction. For a given medium and
fixed external conditions, the rate of this particle sedimentation depends upon its mass,
shape, size, the difference in density that exists between the particle and the liquid medium,
and the viscosity of the liquid. Sedimentation does not occur if the density of the particles is
lower than that of the liquid medium, or if the transport of the particles is counteracted by the
effects of back diffusion. Back diffusion results from the concentration gradient produced by
the partial sedimentation of the particles into the medium. The effects of back diffusion can
be overcome by subjecting the medium containing the particles to fields of force exceeding
that of gravity. Centrifuges are capable of generating very high gravitational fields, which
enables the particles to sediment through the medium. Centrifuges achieve high gravitational
forces by rapidly rotating the particles around a fixed axis, generating a relative centrifugal
field or RCF, which is designated as the ‘g’ value. This ‘g’ value is a measure of the applied

centrifugal field relative to the earth’s gravitational force.

3.2.2 Concepts of Sedimentation Theory

The basic principles of sedimentation theory originate from Stokes’ Law. As the
sedimentation of a spherical particle placed in a gravitational field reaches a constant
velocity, the net force on the particle is equal to the force resisting its motion through the
liquid. This resisting force is called the frictional or drag force. If the sedimentation of a

spherical particle in a gravitational field is considered, Stokes’ equation can be expressed as:

1 3 _
+ 7d(p - p)g=3mdny  ——— ()
where v = sedimentation rate or velocity of the sphere (cm sec™).
d = diameter of the sphere (cm).
p, = density of the spherical particle (g cm™).
Pm = density of the liquid medium (g cm™).
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n = viscosity of the liquid medium (g cm™ sec™).

g = gravitational force (g cm™ sec™).

[f this equation is solved for v:

1
~ nd’ - DOn
b= 6 (P - Pm) g 52)
3ndn

[f this expression is simplified:

dz(pp - ,Dm)g
L= — (3.3)
18 1

The expression given in Equation (3.3) is known as Stokes’ Law. From Stokes’ Law it can

be seen that:

1. The sedimentation rate of a given particle is proportional to the square of the
diameter, d, of the particle.

2. The sedimentation rate is proportional to the difference that exists between the
density of the particle and the density of the liquid medium, ( p, - pm ).

3. The sedimentation rate is zero when the density of the of the particle is equal to the
density of the liquid medium.

4. The sedimentation rate decreases as the viscosity, 7, increases.

5. The sedimentation rate increases as the gravitational force, g, increases.

Stoke’s Law applies to 1g sedimentation, thus Equation (3.3) can be written as follows:

_ dr
v= — (3.4)
dt
dr d? (P - Pm)g . B
where dt = 18 7 = rate of particle movement (cm sec™).
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The sedimentation rate, v, is used to characterise a particle and can be determined using an

analytical centrifuge, as explained by the following equation:

dr ,
v= T = SXxOT (3.5
dt
where S = sedimentation coefficient (sec).
@ = time rate of angular motion about an axis, rotor speed (radians sec™).
r = distance between the particle and the centre of rotation (cm).
dr
i - the rate of movement of the particle (cm sec™).

The sedimentation rate of a particle per unit of centrifugal force is known as the

sedimentation coefficient and using Equation (3.5) can be written as:

S = (021_ dt - (3'6)

S = o’ (3.7)
which can be written as:
L
S = 0)2r — (3.8
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The rotor speed, o, can be calculated from the speed at which the centrifuge is being
operated, which is expressed in revolutions per minute, or r.p.m., from the following

equation:

21
® = rpm X = r.pm x 0.10472 —(3.9)
60

the value obtained for @ can then be inserted into Equation (3.7). Sedimentation coefficients
are expressed in Svedbergs, or S, where 1S is equivalent to 107" seconds. A particle whose
sedimentation coefficient is measured at 10™'* seconds has a value of 10S. Typical values of

S for enzymes range from 2 to 25 7367,

3.2.3 Calculation and standardisation of the sedimentation coefficient

Using an analytical centrifuge the sedimentation rate, or v, of a particle in an homogeneous
medium can be measured. The corresponding values of the gravitational field and the speed
of rotation, g and ® respectively, can be calculated. The equation given for the

sedimentation coefficient, or S, in (3.7) can be expressed as:

dr
= Soldt — (3.10)
Integration of both sides gives:
In(r) = S ®°t + Constant — (3.11)

Plotting In(r) against t gives a straight line having the slope of (Sw?) , which can be inserted

into expression (3.12) to calculate S:
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S = — — (3.12)

Deviations from linearity usually indicate that the concentration of the sedimenting particles
is too high, which causes a concentration gradient of the particles to be formed in the

centrifuge cell 77896368

The standard or normalised sedimentation coefficient, or Sy, is defined as that equivalent to
centrifugation in water at 20°C, where both the density and viscosity of the medium

65,6869 Qtandardisation of the sedimentation

surrounding the particles are standardised ¢
coefficient allows comparison of values obtained using various media and reaction
conditions. Sedimentation coefficients, Sy, obtained experimentally in a medium of
density, pr., and viscosity, 77r., at a temperature, T, can be corrected to standard coefficients

using the equation:

Soow = Stm @ — x —— (3.13)

3.2.4 Sedimentation theory applied to gradient centrifugation

Sedimentation coefficients determined using an analytical centrifuge are based upon the
movement of particles through an homogeneous medium. Typically, most centrifugal
separations, except for normal rate separations, use the rate-zonal technique, which is
described in detail in Chapter 4. The rate-zonal technique involves the sedimentation of
particles through a supporting density gradient formed by the medium. As the particles
sediment through the medium they encounter differing environments produced by the
variation in the viscosity and density of the medium. The gravitational forces exerted on the

sedimenting particles also varies as they move further away from the centre of rotation. With
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a gradient only the situations at the start and at the end of an experiment are known. If all of

these aspects are coupled together the following expression can be written:

t - Po,w NTm dr
Sow | o°dt = x — ——(3.14)
0 7720 W pp Pr,m r

If this equation is integrated between the limits from time zero to a fixed time, t (sec), and
during that interval the particles move from an initial position, 1 (cm), to a final position, r
(cm), then both integrals can be evaluated. These integrals cannot be solved analytically, but
can be determined numerically using an iterative process. For the calculations it is essential

that the medium gradient must be unaffected during the centrifugation.

The calculations are performed stepwise, in which each step corresponds to a fraction
collected from the gradient on completion of an experimental run. Sedimentation
coefficients are equated to specific fractions, and these values are related to fractions
containing the maximum concentrations of the sedimenting particles. Resolving Equation

(3.14) is best achieved by dividing the calculation into a series of steps, which are:

t
1. Determination of the force-time integral, IO w”dt.

2. Determination of the radial movement of the particles, dr
r

3. Analysing the effect of the gradient on sedimentation, tm

Pp = Prm

4. Standardising the estimated coefficients to water at ZOOC, Sa0,w-

3.2.4.1 Calculation of the force-time integral.

Many modern ultracentrifuges display the force-time integral during operation, but in most

cases the value must be calculated. The force-time integral consists of contributions from
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the acceleration period, or 4, the actual run period, or P, and the deceleration period, or D.

The run period contribution is given by the equation:

(n Q' P
15

o, (60P) = (21t O/ 60)* (60P) = (3.15)

l

where @, = rotor speed during the actual run period, (radians sec™).

60P = o is linear during this time period (minutes) ©3),
P = the actual run period, (minutes).
O = the average rotor speed during the actual run period, r.p.m, (7T® /30).

If it is assumed that the acceleration is constant, then the angular velocity during

acceleration, m,, can be expressed as:

0, = Kyt —— (3.16)

. . -1
where k, = acceleration (radians sec™).

The value of ” is linear during the time period 604, thus the acceleration is given by:

k, = @ = 21 Q/60 _ 2mQ (3.17)
604 604 60°4

Combining Equations (3.16) and (3.17) gives:
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2
604 604 604
2 2 .2 _ 2n 9 2 4
o, dt = (k,” t° ) dt (602/1) J. t dt
0 0 0

(@n QY (60 4)° (m 0)’ 4

X —
By inference the equation for deceleration is given by:
60D 2
2 Q) D — (3.19)

Combining Equations (3.15), (3.18) and (3.19) the force-time equation can be expressed as:

t 2 X [P+(A4+D)/3
o’ dt = Q) x [15+( +D) Al (3.20)

and this value can be inserted into Equation (3.14).

3.2.4.2 Determination of the radial position of particles

To determine the radial position of the particles zone at the start and end of centrifugation the
volume-radius relationship is used. Analysis of the samples taken allows the particle zone
mass centre to be assigned to a specific fraction, and using the volume-radius relationship the

radial position of the fraction can be determined. This research has been limited to the use of
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centrifuge tubes and a swing-out rotor, so the equations presented are specific to that system.

The volume-radius relationship is given by (6,

R =rpet (V/m rTz) — (3.21)

where R = the total radius from the centre of rotation (cm).
Imen = the radius of the meniscus from the centre of rotation (cm).
V= the total summed volumes of the fractions up to the one being
considered (cm®).
rr = the internal radius of the cylindrical part of the tube (cm).

The volume-radius relationship for the hemispherical bottom of the tube is expressed as:

V = (nr, h)-(1/3nh) (3.22)

where 13 the internal radius of the hemispherical bottom (cm).

h

the radial length of the hemispherical bottom including the thickness
of the tube wall (cm).

Equation (3.22) is solved for h and this is added to the calculated radii for fractions collected
up to the rounded bottom of the tube. A diagrammatic representation of the volume-radius
relationship based on Equations (3.21) and (3.22) is shown in Figure 3.1. The initial and

final radial positions of the particles, 1 and r, can be inserted into Equation (3.14).

Alternatively, the volume-radius relationship can be determined empirically by adding a

successive fraction volume to the tube and measuring the radial distance to the centre of
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rotation. The smaller the fraction volumes, the more accurately the particle zone mass centre

can be determined.

— I'ment (fraction 3, 4, 5 and 6) P B 5 h_’

— Tmen T r(fraction ) ——

— I'ment I(fraction ) >

rmen
® o
/ It V\
centre of rotation ¥ centrifuge tube
Fraction volume (x cm’) f XT X T XT XT XT X 41
Total volume, ¥ (cm’) 0 X 2x  3x  4x  5x 6x

Figure 3.1. Diagrammatic representation of the volume-radius relationship
expressed in Equations (3.21) and (3.22), and based on six fractions
collected. rpen = radius to the meniscus (cm), F(gacion x) = radial
contribution of the fraction/s (cm), rr = internal radius of the cylindrical
part of the tube (cm), ry, = the internal radius of the hemispherical bottom
(cm), h = radial length of the hemispherical bottom including the tube
thickness (cm), and V' = the total summed volumes of the fractions up to
the one being considered (cm®).

3.2.4.3 Analysis of the gradient medium

After the completion of a gradient centrifugation experiment the contents of the centrifuge
tube are divided into a number of fractions and the fraction/s containing the particles
identified. The volume-radius relationship is used to assign a radial position to each of the
fractions, and this can be related to the fraction containing the particle zone mass centre. The
density of each fraction can be determined using refractive index, or using an electronic
density meter. The viscosity of each fraction can be measured using a glass viscometer , or
by using a rotational viscometer. A value for the density of the particle material itself,

preferably determined in the same gradient medium as that used in the actual experiments, is

86




required. The protocol for determining the density of the particle material is given in

Chapter 7. The experimentally obtained values can be inserted into the term:

7Tm — (3.23)
,Op - ,0 T,m

The final values required to allow the sedimentation coefficient to be determined are that for
dr and r. The term dr is the radial increment, in cm, equivalent to the volume of a sample
fraction and r is the radial position of the particle within a fraction, and is taken as the

average radius of the fraction, in cm.

3.2.4.4 Standardising the estimated sedimentation coefficient of a particle in a gradient
medium

The values obtained using Equations (3.20), (3.21), (3.23) and the values of dr and r can be

inserted into Equation (3.14), and the value of Syow calculated. Standardisation of the

sedimentation coefficient allows comparison of values obtained for different particles, and

for values obtained using different gradient medium.

3.2.5 Estimation of the sedimentation coefficient using isokinetic gradients.
The sedimentation coefficient of a particle can be estimated using an isokinetic gradient

62 In 1961, Martin and Ames "” suggested that a density and viscosity gradient

medium
could be constructed to produce a uniform sedimentation velocity by compensating for the
centrifugal force along the centrifuge tube; this is known as an isokinetic gradient. In a
gradient the viscosity increases towards the bottom of a centrifuge tube; with an isokinetic
gradient the linear increase in radial distance is offset by a linear increase in viscosity, which

9 Tn

makes the sedimentation rate of the particle independent of the radial position
general, the shape of an isokinetic gradient is convex and exponential if the relationship

between the medium concentration and the viscosity is logarithmic.
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An example of an isokinetic gradient is that of a 5-20%("/w) linear sucrose gradient, which is
widely used for the separation of macromolecules (97172 " This type of gradient can be used
experimentally to calculate the sedimentation coefficient of a particle by comparing the
sedimentation distance of a marker particle with a known sedimentation coefficient, with that

of the sedimentation distance of the particle. The relationship is described as:

Sy 1§
_— = — — (3.24)
Sy 1Y)
which can be rearranged to give the expression:
1§
S, = S x — — (3.25)
I
where S; = the unknown sedimentation coefficient (Svedbergs, S).
S, = the known sedimentation coefficient of marker particle
(Svedbergs, S).
I = sedimented distance of particle (cm).
r, = sedimented distance of marker particle (cm).

A list of commonly used marker particles for this comparative method is shown in Table 3.1.
The accuracy of the estimated sedimentation coefficient can be increased by using two
marker particles, one of a lower molecular weight, and one of a higher molecular weight to
that of the particle under test. This method also allows the estimation of the molecular
weight of a test particle by direct comparison to the molecular weights of the marker

particles used.
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Table 3.1. Sedimentation coefficients of marker p
centrifugation (67,

3.2.6 The relationships between sedimentation coefficients and molecular parameters

The sedimentation coefficient is a function of particle size, density and shape. For
macromolecules the size is given by its molecular weight (M), the density by the partial
specific volume (V), and the shape determined by the frictional coefficient ratio (f/fy). The
frictional coefficient ratio is a measure of how much the macromolecule deviates from the

shape of a perfect sphere. The four parameters s, M, v and f/f, are inter-related as shown

below ©¥:
_ 1-vp 3\/ -
S =M —= / [(Nn6n~N0.75/(N=) (f/fo) ] (3.26)
v
where S = sedimentation coefficient (Svedbergs, S).

M = molecular weight.

v = the partial specific volume of the particle (g cm™).

p = the average density of the medium through which the particle has

sedimented (g cm™ ).
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N = Avogadro’s number (6.022169 x 10 molecules mole™).
flfo

the frictional coefficient ratio of the particle.

If any three parameters are known then the fourth can be calculated by transposition of
Equation (3.26). Table 3.2 gives examples of the sedimentation coefficients, partial specific

volumes, frictional coefficients and molecular weights for different types of protein.

Aston University
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1 | 1 i i

(65,67)

—

Table 3.2. Molecular parameters of various proteins

3.2.6.1 The Partial Specific Volume

The partial specific volume is defined as the volume increase resulting from the addition of
one gram of the solute species to an infinite volume of water. This can be regarded as the
contribution per gram of dissolved material to the total volume of the solution ®) MecCall
(%9 proposed a simple method for calculating the ‘apparent’ partial specific volume based
upon the volume contribution of 1 kg of the solute to 100 kg of the solution; this can be

expressed as:

— _100/p-[(100 - n) /py]

Vapp  — — (327
0 (3.27)
where V., = the apparent partial specific volume (m’/ kg).
p = the density of the solution (kg m™).
po = the density of the solvent (kg m™).
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n = the percentage concentration of the solute.

Provided that the solutions are very dilute, ;app may be used instead of v without serious

(3,58,73)

error The solution and solvent density can be experimentally determined at the

required temperature using a density bottle, or by using an electronic density meter. For

proteins, Vapp is considered independent of concentration 3.73)

The partial specific volume of a protein can be calculated from a knowledge of the amino
acid composition of the specific protein. An amino acid analyser is used to determine the
% by weight of individual amino acids contained within the protein. The individual partial

G® 1t is assumed that the

specific volumes of each amino acid are available in the literature
partial specific volume of the protein is an additive property of the partial specific volumes
of the constitutive amino acids, and this assumption is used to calculate the answer. An
example of this technique using a fictitious protein which contains only five amino acids is

presented in Table 3.3.

Aston University
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Table 3.3. Calculation of the partial speiﬁc volume of a fictitious protein using amino
acid analysis 8,
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The reciprocal of the partial specific volume is equal to the particle density (p,) of a given

particulate.

3.2.6.2 The Diffusion Coefficient

Diffusion is the transfer of material from a region of higher to lower concentration. The rate
of diffusion, dm/dt, is proportional to the concentration gradient, dc/dr, and the cross-
sectional area A through which it occurs. The relationship is shown in the following

expression:

dm/dt o -A dc/dr — (3.28)

The negative sign in the expression is because material diffuses in the opposite direction to
the concentration gradient. The diffusion coefficient (D) is a proportionality factor that can

be added to Equation (3.28) as follows:

dm/dt = -DA dc/dr — (3.29)

A knowledge of the diffusion coefficient allows the molecular weight of a particle to be

determined using the Svedberg equation given below (68),

Mw = —RL_ drdt — (330)
D(1-vp) ot
where MW = molecular weight of the particle.

o)
I

the gas constant (8.314 J mol” K.

-
I

temperature (°K).
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D = diffusion coefficient (cm® sec™).
v = the partial specific volume of the particle (cm’/g).
p = density of the medium (g cm™).

The expression given in (3.30) can be simplified by using Equation (3.7) to replace part of

the expression with the sedimentation coefficient of the particle, (S), as follows:

Mw = RIS (331
D(1-Vp)

The diffusion coefficient can be determined using data obtained from an analytical
ultracentrifuge, where the spread of the sedimenting particles is visually monitored over a

period of time. The diffusion coefficient can be converted to the standard state, that of pure

water at 20°C by using the equation:

Dyow = Dogs ;2_9_%.1.6. T souy — (3.32)
. w

where Dyow = the corrected diffusion coefficient (water at 20°C).
Doss = the experimentally observed diffusion coefficient.
T = the temperature at which the diffusion coefficient was observed
(°K).

1. soLy = the viscosity of the medium at T.

r.w = the viscosity of water at T.

3.2.6.3 The Frictional Coefficient
The shape of sedimenting particles is given by the frictional coefficient ratio, f/fo, which

indicates how much the particles deviate from the shape of a perfect sphere. The value of
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f/fo, can be calculated using Equation (3.26) if the parameters, S, M and v for the particles
are known. Alternatively, the values of f and fo can be determined independently and the
ratio calculated. The value of the frictional coefficient, f, can be determined if the diffusion

coefficient, D, for the particles is known. The expression for calculating f is:

f =k, T/D _ (3.33)

where ky = the Boltzman constant (1.318 x 102 7P K.

The term f; relates to the frictional coefficient of an equivalent ‘ideal’ particle, that is, a

perfectly spherical non-hydrated particle. The value of fo can be calculated using the

following expression ©%6%);

3 MW v,
fo = 6NNl ——— —_— (3.34)
4N

where 7y = the viscosity of the medium at T°C, the same medium and
temperature used for the test particle.
vr = the partial specific volume of the ‘ideal’ particles, determined at the

same temperature as for the test particles.
MW = the molecular weight of the ‘ideal” particle.
N = Avogadro’s number (6.022169 x 10% molecules mole™).

The value of the frictional coefficient ratio should be 1 if the test particle is perfectly
spherical and non-hydrated. The greater the asymmetry of the test particles, the higher the

value above 1 of the frictional coefficient ratio.
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The frictional coefficient, f, can also be used to estimate particle size using Stokes’ equation:

f = 6nnr — (3.35)

where 7 = viscosity of the medium (g em™ sec™).

the radius of the particle (cm).

5
li

Substituting for f with Equation (3.33), (3.35) can be written as:

ks /D = 6711, — (3.36)

The calculated value of the particle size is only an estimate as the equation assumes that the

particle is spherical.

3.2.7 Hydrostatic Pressure

A spinning centrifuge rotor generates hydrostatic pressure within the medium in which the
particles are suspended. The hydrostatic pressure generated is dependent upon the rotation
speed and the height of the liquid column. The hydrostatic pressure at any point within the

liquid column can be calculated using the equation (63),

P = po (- Ine) —(3.37)

where P = the hydrostatic pressure (N mz).
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the angular velocity (radians sec™).

Il

Il

the distance from the centre of rotation (m).

= the distance of the meniscus from the centre of rotation (m).

The angular velocity in Equation (3.37) can be replaced by rotations per minute (r.p.m.) as

follows:

P = p(1.10x10? rp.m?) (P -Tpe’)  — (3.38)

The pressures generated can be very high; for example, the pressure at the bottom of a lem
column of water 8cm from the centre of rotation and centrifuged at 50 000 r.p.m. is
equivalent to 112 x 10° Nm?, or 120 atmospheres. The high pressures generated can have
significant effects on the permeability of biological membranes, and disassociate complexes

such as ribosomes and cytoskeleton proteins (65.67)

3.2.8 Wall Effects

The centrifugal force is radial in direction which means that sedimenting particles try to
move radially away from the centre of rotation. Ideally, the vessel containing the medium
and particles should be sector-shaped, to accommodate the radial movement of the particles.
The analytical centrifuge has a sector-shaped cell which means that it does not suffer from
wall effects. Most centrifugation work involves the use of a centrifuge tube which is usually
narrow and parallel-sided. The radial movement of the particles during sedimentation tends
to lead to their collision with the wall of the tube, which interrupts the sedimentation process.
This is known as the wall effect and this is most noticeable when fixed-angle and swing-out
rotors are used "*">7% This research has used the swing-out rotor and centrifuge tubes and
so the wall effects specific to this system will be discussed. In the case of swing-out rotors,
only those particles contained within a cone reach the bottom of the centrifuge tube without

colliding with the walls; this is shown diagrammatically in Figure 3.2.
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Figure 3.2. Diagram of the forces exerted on particles in a cylindrical tube used in a
swing-out rotor. The particles inside the inner cone do not collide with the
tube wall. The radius of the tube is ry, L is the length, R is the maximum
radius (rmax) of the rotor, and 0 is the angle subtended by the two ends of

the chord defining the width of a plane within the tube 63),

The wall effect can be calculated using the following parameters:

1. radius of the tube, ry (cm).

N

length of the tube, L, + radius of the hemispherical bottom, rp, (cm).

. distance from the centre of rotation to the bottom of the tube, R (cm).

(S

4. volume of the solution unaffected by the walls, V (cm?).

For the system shown in Figure 3.2, and neglecting the small contribution from the
hemispherical bottom of the centrifuge tube, the total volume of the cone subtended from the

centre of rotation to the bottom of the tube is given by:

T rTz(R/3) — (3.39)
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This includes the volume outside the tube which extends from the meniscus to the centre of

rotation and this is calculated by:

1 [(r: - (t: / R)]* [R (R + 1y)] /3 —— (3.40)

Subtracting the volume outside the tube from the total volume and rearranging the

expression gives:

V=nr{3-BL+r)/R] + [L+1,)/R]} /3 _—_ (3.41)

The terms contained within the curly brackets represent the proportion of particles that hit
the centrifuge tube walls. Increasing the radial position of the tube without increasing the
tube diameter or length reduces the proportion of the particles that collide with the wall.
Particles that reach the centrifuge tube walls are then subjected to less centrifugal force than
those remaining within the cone. The particles that reach the walls may adhere to it which

amn

would adversely affect the separation efficiency of the centrifugation *'”, and also any

bioreaction taking place. It has been reported that the wall effects do not appear to affect the

rate-zonal sedimentation of small (< 10S) proteins .

3.2.9 Droplet Sedimentation

When a sample containing particles is layered on top of a medium, diffusion between the
layers occurs. The medium usually contains a low molecular weight solute which rapidly
diffuses into the sample layer. The diffusion rate of the particles in the sample layer into the
medium is less than that of the medium solute into the sample layer. Over time, the density
of the sample layer rises and may exceed that of the medium. If the density of the sample
layer is considerably higher than that of the medium then the phenomena known as droplet

sedimentation can occur. The higher density of the sample layer causes it to ‘stream’ into the
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medium and this produces an increase in the local density of the medium. If a medium of

uniform density is used then the sample layer will continue to tumble uncontrollably to the

bottom of tube because the medium is unable to support the sample layer ¢

. The process
of droplet sedimentation is shown in Figure 3.3.
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Figure 3.3. Droplet sedimentation ),
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If droplet sedimentation occurs then the sample layer does not sediment as a distinct zone.
The effects of droplet sedimentation can be reduced by; using low sample concentrations,
applying centrifugal force immediately after the sample is layered on top of the medium,
minimising vibrational disruption during centrifugation, and using a density gradient
medium. Using a density gradient medium stabilises the sedimenting zone of particles
because any increase in the sample layer density, due to medium solute diffusion, is less than
the density of gradient medium supporting the sedimenting layer. The steeper the rise in the
medium gradient towards the bottom of the centrifuge tube, the greater the stability of the
sedimenting sample layer. For maximum stability the sample concentration loaded onto a
medium should be less than 10% of the medium concentration at the sample/medium
interface ®”. Using a sample concentration over this value can cause broadening of the

sedimenting particle zone.

3.2.10 The Swirling Effect

Swirling or vortexing of the centrifuge tube contents during acceleration and deceleration can
produce serious disturbance to the medium and the sedimenting particle zone. The changes
in the angular velocity of the rotor are accompanied by an angular momentum called the
Coriolis forces which cause rotational movement of the fluid within the centrifuge tube. The
main methods for counteracting this effect are; to reduce the rate of acceleration and
deceleration of the rotor, use a steeper density gradient medium, and to increase the distance

from the centre of rotation .

3.3 Classification of centrifuges

3.3.1 Introduction

Primarily, centrifuges can be classified into two main groups which are industrial and
laboratory. The classification of centrifuges showing the two areas of use is presented in
Figure 3.4 © ). Industrial centrifuges can be either settling or filtering machines depending
upon the mode of operation. Settling centrifuges separate materials according to their
sedimentation properties and phase density differences. Filtering centrifuges use centrifugal
fields to force liquid through a filtering medium where particulate material is retained.

Laboratory centrifuges have far less capacity than that of industrial centrifuges and have been
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developed for small-scale preparative work, and for research and development. Laboratory-
scale centrifuges are often used in the pharmaceutical industries for separation and

purification of low volume/high value products.

3.3.2 Industrial Centrifuges

Industrial centrifuges can be classified as either settling or filtering machines depending on
their mode of action. Settling machines are either tubular, disk-type, or decanter and are
used primarily to clarify liquids, concentrate emulsions and to separate immiscible liquids

('8 " The tubular-bowl centrifuge is used for particle size ranges of 0.1

such as oil and water
to 200 um and up to 10% solids content of the in-going slurry; a diagram of a tubular-bowl

centrifuge is shown in Figure 3.5 62),

Aston University
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Figure 3.5. The Sharples AS 26 tubular-bowl centrifuge €2 the lettering is
described in the text.
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The main component of the centrifuge is a cylindrical bowl, or rotor (A), which is suspended
by a flexible shaft (B) driven by an overhead motor (C). The inlet to the bowl is through the
bottom bearing (D). The feed consisting of solids and light and heavy phases enters via the
nozzle (E). During operation the solids sediment to the bowl wall and the phases separate
into the heavy phase located at zone G, and the light phase located at the central zone H. The
two liquid phases are kept separate as they exit the bowl by an adjustable ring. The Sharples
AS 26 Tubular Bowl Centrifuge (Pennwalt Limited, Surrey, UK) has a throughput of
between 390 to 2400 dm’ h™" .

Larger throughputs can be achieved using the disk-type centrifuge which is shown in Figure
3.6.

Effluent  Effluent
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Figure 3.6. The disk-type Centrifuge ©2),

The disk-type centrifuge consists of a central inlet pipe surrounded by a stack of stainless-
steel conical discs. Each disk is separated by a spacer so that a stack can be built up. The
medium to be separated flows outward from the central feed pipe , then upwards and inwards

at an angle of 45° to the axis of rotation. The close packing of the cones allows rapid
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sedimentation and the angle of the cones is sufficiently large that the aggregated solids slide
radially down the cones and eventually accumulate on the inner wall of the rotor. Ideally, the
sedimented solids should form a sludge which can flow rather than a hard particulate
sediment. The sediment can be continually discharged or allowed to build up before being
removed via discharge nozzles arranged around the circumference of the rotor. Disk-type

centrifuges are commonly used to clarify fruit juices, dewater kaolin clay, and purify oil 60),

This type of industrial centrifuge can handle feed rates of between 45 to 1800 dm’® min™®?,

The decanter centrifuge, or the solid-bowl scroll centrifuge, is designed to handle coarse

material such as sewage sludge. A diagram of the decanter centrifuge is shown in Figure 3.7.

A
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Figure 3.7. The decanter, or solid-bowl scroll centrifuge ©2)

The sewage slurry is fed through the spindle of an Archimedean screw within the horizontal
rotating solids bowl. The solids settling on the walls of the bowl are fed to the conical end of
the bowl! and the slope of the cone allows excess liquid to be removed from the solids before
it is discharged. The liquid phase is discharged from the other end of the bowl. The
centrifuge usually operates at between 2 000 to 4 000 r.p.m. because of the lack of balance
within the bow! assembly. This type of centrifuge is capable of handling 200 000 dm’ h™ of

liquid and can process 40 tonnes h™' of solid material ©¢?.
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Filtering centrifuges contain perforated metal plates or fabric material through which the
process medium passes. A cake of solid material forms on the filter during the centrifugation
process. The solid material can be removed from the filter using a knife, although some
! systems are designed to continuously discharge the solid material ©9 " Figure 3.8 shows the

Rousselet SC-KSA basket-type centrifuge, Rousselet UK Ltd, Harrogate, UK.
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Figure 3.8. The Rousselet SC-KSA basket-type filtering centrifuge ™),

The basket-type filtering centrifuge is used mainly for separating mould mycelia or

crystalline compounds from liquid medium. The filter bag is usually made from nylon or
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cotton. A continuous feed is used , and when the basket is filled with the solids filter cake it

is possible to wash the cake before removing it. This type of centrifuge is normally operated

l, and

at speeds up to 4 000 r.p.m. and can handle feed rates of 50 to 300 dm” min’
accommodate 30 to 500 dm™ of solid material ®®. The principles of operation of the push,
screw conveyor and the self discharge centrifuges are similar to that of the basket-type
centrifuge, but they have been primarily designed to constantly discharge the solid material

for continuous operation.

3.3.3 Laboratory Centrifuges

Laboratory centrifuges may be classed as either analytical or preparative centrifuges.
Laboratory centrifuges are further classified according to their operational speed range. Low
speed centrifuges are defined as those having maximum rotational speeds below 10 000
r.p.m.. High speed centrifuges have a maximum rotation speed of 20 000 r.p.m. and super-
speed centrifuges can attain 30 000 r.p.m.. Ultracentrifuges are the fastest of all the

centrifuges and are capable of reaching speeds up to 120 000 r.p.m. (57.66)

3.3.3.1 Analytical Ultracentrifuges

The analytical ultracentrifuge has made a major contribution to the characterisation of
biological macromolecules in terms of their molecular properties such as; molecular weight,
sedimentation and diffusion coefficients, and their density. Data from these measurements
have also allowed the determination of shape, frictional coefficients and the partial specific
volume factors of a wide variety of particles ®”. Analytical ultracentrifuges are fitted with
sophisticated optical systems that allow the sedimentation behaviour of particles to be
observed during a centrifugal run. The most widely used type of optical system is the
Schlieren. The Schlieren optical system measures the differences in refractive index
between the medium and the medium containing particles, which allows the movement of
the particles to be visualised and photographed. A simplified diagram of the analytical
ultracentrifuge is shown in Figure 3.9. The basic design of the optical rotor has not
appreciably altered since the original work of Svedberg was performed @6 The use of the
analytical ultracentrifuge has declined over the last 30 years as new, cheaper, and simpler,
methods of macromolecule characterisation such as gel and zonal electrophoresis, mass

spectrometry, and laser particle sizing, have been introduced.
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Figure 3.9. The analytical ultracentrifuge fitted with a quartz optical system

3.3.3.2 Preparative Centrifuges

This group of centrifuges is classified according to the type of rotor used, namely fixed
angle rotors, swing-out rotors, zonal rotors and continuous flow zonal rotors. Fixed-angle
and swing-out rotors are usually made from aluminium alloys, but the zonal rotors which

have higher sample capacities are made from titanium alloys © 57.65.67),

The fixed-angle rotors hold centrifuge tubes at a fixed angle and when the rotor begins to
turn the liquid reorientates. At the end of run the liquid again reorientates as gravity
becomes stronger than the applied centrifugal forces; this process is shown in Figure 3.10.
The angle of the tubes in the rotor ranges from 10° to 50° but the most widely used system

has an angle of 35° to the vertical. Systems with a 35° tube angle have been found to be

most suitable for separating large, slowly diffusing macromolecules

. For smaller, faster
diffusing macromolecules, the tubes should be angled closer to the centre of rotation.
Beckman Instruments have designed a near vertical tube rotor (NVT) for rapid isolation of

plasmid DNA using cesium chloride/ethidium bromide gradients 7,
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Figure 3.10. Separation in a fixed-angle rotor. A, the initial orientation of the particle-
containing medium before centrifugation; B, as the rotor begins to move
the liquid in the tube begins to reorientate; C, the particles sediment
down the tube; and D, the tubes reorientates as gravity becomes stronger
than the centrifugal force 7,

Swing-out rotors consist of removable centrifuge tubes that are held in buckets that swing
out to an angle of 90° from the vertical under the influence of centrifugal force. The
sedimentation of the particles is approximately parallel to the sides of the tube. The
maximum distance of sedimentation of the particles is equal to the length of the centrifuge
tube. The process of separation using a swing-out rotor is shown in Figure 3.11. When the
rotor begins to rotate the buckets swing out to a horizontal position and this is usually
achieved when the rotor attains speeds between 500 to 1 000 r.p.m.. With this type of rotor
the centrifugal force is exerted along the axis of the tube. However, because the centrifugal
force generated is a radial force, some of the particles are sedimented against the walls of the
tube; this effect is described in 3.2.8. The rotor used in this research was a swing-out rotor
manufactured by Beckman Instruments, High Wycombe, UK, and is described in detail in
Chapter 7.
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Figure 3.11. Separations in a swing-out rotor. At rest the buckets containing the
centrifuge tubes hang vertically, A. As the rotor begins to move they
move out so that they are perpendicular to the axis of rotation, B. During
centrifugation the particles sediment down the tube, C. When the rotor
stops the tubes return to the vertical position, D.

Zonal rotors were developed so that larger sample volumes can be processed. Zonal rotors
are large bowl-shaped vessels with capacities of between 50 to 100 times that of a typical
swing-out rotor system @D A photograph of a zonal rotor is shown in Figure 3.12a. The
cylindrical bowl cavity is divided into four equal sector-shaped compartments by vanes
attached to the bowl core. The rotor assembly is enclosed by a removable lid which is fitted
with a rotating seal assembly. The rotating seal assembly allows fluid to be pumped into the
bowl cavity whilst the rotor is spinning which is known as dynamic loading. Reorientation
zonal rotors allow the rotor bowl to be loaded and unloaded whilst the rotor is at rest. The
shape of the rotor core allows the smooth reorientation of the gradient medium to a vertical
position when the rotor is spun. The reorientation zonal rotor is normally used for
sedimenting fragile macromolecules which may be damaged by passage through a rotating

seal assembly. In zonal rotors the particles sediment radially towards the outer wall and so

109




wall effects do not occur. Processing large volumes of medium induces high stresses on the

rotor bowl so the zonal rotor is usually constructed from titanium alloys.

Aston University

Content has been removed for copyright reasons

Figure 3.12a. Batch-type zonal rotor (Beckman Instruments) ®),

Figure 3.12b shows a diagrammatic representation of the operation of a batch-type zonal
rotor, such as that shown in Figure 3.12a. Zonal rotors fitted with a special feed head allows
them to be dynamically loaded or unloaded, as opposed to statically loaded and unloaded. If
dynamically loaded, the rotor bowl is spun at ~2 000 r.p.m and a discontinuous density
gradient is fed to the rotor wall. The lower density layer is displaced towards the centre of
the rotor by the incoming denser solutions (Figure 3.12b, diagram A). When the bowl is
fully loaded with the density gradient, the particulate material to be separated is fed to the
centre of the rotor and the rotor speed is then increased (Figure 3.12b, diagram B).
Centrifugation proceeds until the desired separation of the particulate material has occurred
(Figure 3.12b, diagram C) and then the rotor is decelerated to ~2 000 r.p.m. A displacement
fluid of greater density than that of the highest gradient density is pumped into the rotor
wall. This displaces the gradient (lowest density first) through the feed head for collection.
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Figure 3.12b. Diagrammatic representation of the operation of a batch-type zonal
rotor, the lettering is described in the text ©6),

Continuous flow zonal rotors have a similar design to that of the batch-type zonal rotors,
shown in Figure 3.12a. In a continuous flow rotor the central core is much wider. Once the
rotor has been loaded with a gradient medium a special feed head is attached which allows a
continuous stream of sample to flow over the core surface and then out of the rotor. This
type of rotor is mainly used for the harvesting and partial purification of bacteria and viruses

from large volumes of medium ®2)

3.4 Normal rate separations

Normal rate separation is also known as differential pelleting, and is the most common and
crudest method of centrifugal separation. In this type of separation the centrifuge or bowl is
initially filled with a uniform mixture of medium containing different particle species.
Under the influence of centrifugal force two distinct fractions are obtained; a pellet at the
bottom of the tube containing fully sedimented particles and a supernatant solution

containing unsedimented particles. The pellet contains a mixture of all the sedimented

111



particles and unsedimented particulate material that was initially present at the tube base.
The supernatant liquid may contain particles that are predominantly found in the pellet and
this is dependent on the centrifugation run time and the centrifugal forces applied. The

process of normal rate separation is shown in Figure 3.13.
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Figure 3.13. The normal rate separation, or differential pelleting.

The two fractions are separated by decanting the supernatant and this can be further purified
by re-centrifugation at a higher rotation speed. The pellet can be re-centrifuged after

re-suspension in fresh medium.

3.5 Centrifugation studies with soluble free B-galactosidase using a modified version of
the normal rate separation technique

3.5.1 Introduction

Batch centrifugation studies were performed using the Beckman J2-MC high speed
centrifuge fitted with a Beckman JS13.1 swing-out rotor which has a maximum rotation
speed of 13 000 r.p.m. (26 122 g max), both of which are shown in Chapter 7. The
enzymatic system studied was the hydrolysis of lactose by the enzyme B-galactosidase. The
reaction system consisted of layering -galactosidase from Aspergillus oryzae, Biolactase F,

Quest Ltd, Cork, Ireland, on top of solutions of lactose monohydrate, the substrate, contained
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within centrifuge tubes. The tubes were then centrifuged at various rotation speeds and
stopped at various times; the tubes were then removed and fractions taken which related to a
known position within the tube. The fractions collected were chemically quenched to
prevent further enzymatic reaction and analysed using high performance liquid
chromatography to determine the concentrations of the substrate and products formed. The
distribution of the enzyme within the tubes was also determined using a protein assay. The
aim of these experiments was to determine if, by varying the applied centrifugal force, the
‘contact’ time between the sedimenting enzyme and the substrate could be controlled. In
principle, this would allow the formation of galacto-oligosaccharides, produced by the trans-
galactosyl activity of B-galactosidase, to be controlled. All reactions were performed at 40°C
which was the highest temperature attainable by the centrifuge. The experimental protocols

used for these experiments are discussed in detail in Chapter 7.

3.5.2 Beckman J2-MC centrifuge temperature attainment and control

Experiments were performed to determine (a) at what range of rotation speeds the reaction
temperature of 40°C could be achieved using the JS13.1 swing-out rotor, and (b) the
accuracy to which this temperature could be maintained; experimental details are described
in Chapter 7. The centrifuge is heated purely by the heat generated by friction as the rotor
rotates. The heat generated at lower rotation speeds is insufficient to attain the maximum
temperature of 40°C. The centrifuge is fitted with a refrigeration system which can cool the
rotor if it exceeds the set temperature. Experiments showed that the rotor could attain a
temperature of 40°C if the centrifuge was operated at rotation speeds ranging from 9 000
(12 520 g max) to 13 000 r.p.m. (26 122 g max). The accuracy to which an operational

temperature of 40°C could be maintained was +/- 1°C.

3.5.3 Soluble free B-galactosidase centrifugation studies

The bioreaction system used was a modified version of the normal rate separation technique
previously described in Section 3.4. The modification to this method was that the
sedimenting material, the B-galactosidase, was not uniformly distributed throughout the
medium, but was layered on top of the medium contained in the centrifuge tube. Also, the
medium through which the enzyme sediments is also the substrate.  Individual tubes were

then centrifuged at rotation speeds of 9 000 (12 520 g max), 11 000 (18 703 g max) and
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13 000 (26 122 g max) r.p.m. At each speed experiments were performed at various run
times, 0, 30, 60, 90 and 120 minutes, so that the progression of the reaction could be
monitored. For each experiment performed fractions were taken and the distribution of
galacto-oligosaccharides within the centrifuge tube was determined. The experimental

details are given in Chapter 7. The reaction system used is shown in Figure 3.14.

Centrifugation at 9-, 11- and 13 000 r.p.m., at
40°C for 0, 30, 60, 90, 120 minutes

v

B-galactosidase
125mgem™, 4 U em™ (1 cm®)

20%"/v Lactose monohydrate (36 cm’)

Figure 3.14. Reaction system used to determine galacto-oligosaccharide distribution
profiles.

The protein distribution experiments used an identical reaction system to that shown in
Figure 3.14, except that the enzyme concentration was increased from 1.25 mg em® (4 U
cm™) to 5 mg em> (16 U cm™), so that the protein concentration was high enough to allow
accurate determination by the protein assay used. As described in Section 3.2.9, the sample
concentration loaded onto the medium should not exceed 10% of the medium concentration.
In these experiments the maximum B-galactosidase concentration loaded was only 2.5% of
the lactose monohydrate concentration. The results obtained for the galacto-oligosaccharide
distribution profiles are shown in Figure 3.15, and the results obtained for the protein

distribution profiles are shown in Figure 3.16.
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3.5.4 Discussion of results

The galacto-oligosaccharide distribution profiles in Figure 3.15 show uniform distributions
of the galacto-oligosaccharides at all speeds tested after 60 minutes run time. As the enzyme
zone is subjected to increasingly higher centrifugal forces as it sediments through the
medium the enzyme/substrate contact time would be expected to decrease, and the formation
of galacto-oligosaccharides would be expected to reduce. The uniform increase in the
profiles after 90 and 120 minutes would suggest that enzyme is evenly distributed throughout
the tube contents. Also, against expectation the profiles show increasing galacto-
oligosaccharide formation as the rotation speed increases. This can be correlated with the
corresponding protein distribution profiles in Figure 3.16, which clearly show that more of
the enzyme has moved from the loading position as the rotation speed increases. The protein
profiles show that the enzyme does not sediment as a distinct band. To illustrate this, the
% Galacto-oligosaccharide of Total Sugar and Protein Concentration (mg c¢m™) for each
rotation speed were compared at two different Radial Distances (9.9 and 12.8 cm), after 120

minutes, and the results are presented in Table 3.4.

Rotation Speed (r.p.m.)
Radial Position 9 000 11 000 13 000
9.9 cm
% Galacto-oligosaccharide
of Total Sugar 5 6 8
Protein Concentration
(mg cm™) 0.10 0.17 0.20
12.8 cm
% Galacto-oligosaccharide
of Total Sugar 7 9 10
Protein Concentration
(mg cm™) 0.10 0.18 0.20

Table 3.4. Comparison of % Galacto-oligosaccharide of Total Sugar to Protein
concentration obtained at Radial Positions of 9.9 and 12.8 cm, after
centrifugation at 9 000, 11 000 and 13 000 r.p.m. (12 520, 18 703 and
26 122 g max respectively).
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The results would seem to indicate that the reaction system is very unstable. It is likely that
the movement of the enzyme from the Joading position may be due to the effects of droplet
sedimentation and swirling, and not due to true sedimentation. At all the rotation speeds, a
considerable proportion of the protein remains at the loading position which indicates that
the applied centrifugal forces are insufficient to produce sedimentation of the protein. Using
a uniform medium concentration is inherently unstable because it provides no support to the
enzyme as it sediments. The results obtained clearly show that the modified form of the
normal rate separation method used is an unsuitable reaction system. The system ought to be
improved by using a gradient , formed using lactose monohydrate; a gradient system should
stabilise the enzyme zone as it sediments. Using a gradient should also minimise the effects
of droplet sedimentation and swirling; this approach will help to confirm that the maximum
rotation speed of 13 000 r.p.m. (26 122 g max) generates high enough centrifugal forces to
sediment the enzyme. Experiments using a lactose monohydrate density gradient reaction

system are detailed in Chapter 4.
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4.0 RATE-ZONAL CENTRIFUGATION USING SOLUBLE B-GALACTOSIDASE

In this chapter, the theoretical principles upon which rate-zonal, or density gradient,
centrifugation is based are discussed. The practical considerations of rate-zonal separation
techniques are described. Centrifugal studies performed with soluble, free B-galactosidase,

and using rate-zonal centrifugation are presented.

4.1 Introduction

Separations of particles in density gradients may be due to differences in size between the
particles (rate-zonal centrifugation) or to differences in density between the particles
(isopycnic centrifugation). With rate-zonal centrifugation the sample is layered as a narrow
zone at the top of the gradient, but with isopycnic centrifugation the sample may be layered
on the top or mixed within the gradient itself. An illustration of rate-zonal and isopycnic

gradient centrifugation is shown in Figure 4.1.
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Figure 4.1. An illustration of rate-zonal and isopycnic gradient separation ©5),
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Density gradient centrifugation involves using a supporting column of fluid whose density
increases the further it is away from the centre of rotation. An isopycnic density gradient
encompasses the whole range of densities of the particles present, whereas with rate-zonal
operation the density of the sample particles must exceed the density at any specific point
along the gradient medium. This research utilises the rate-zonal technique, whereby a density
gradient is formed using the substrate, lactose monohydrate, and the enzyme,
B-galactosidase, is layered on top of the gradient contained within a centrifuge tube prior to
centrifugation. Under the influence of centrifugal force the enzyme sediments through the
substrate gradient and is fully sedimented to the bottom of the tube, which effectively
separates the enzyme from the majority of the tube contents. The general principle of the

rate-zonal technique used in this research is shown in Figure 4.2.

Layered enzyme
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Reacted
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Centrifugation time

v

Figure 4.2. The general principles of the rate-zonal technique used in this research.

The rate-zonal technique was initially developed for preparative purposes, although the data
obtained from such centrifugation allows the calculation of fairly accurate sedimentation

(83)

coefficient values Separation is dependent upon differences in particle sedimentation

rates, which is linked to the size, shape and the density of the various particle species, and
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also to the density and viscosity of the medium. Rate-zonal centrifugation is used to separate
particles ranging in size from macromolecules to cellular components and whole cells
(57.6583) " 1 this research, the gradient was formed using lactose monohydrate which when
reacted with B-galactosidase produces the monosaccharides, glucose and galactose, as well
as galacto-oligosaccharides which are intermediate compounds consisting of up to 10
monosaccharide residues. The similar and very low sedimentation rates of these products
relative to that of the substrate ensured that they remained at the position in the gradient
where they were formed. The range of centrifugal forces applied was limited by the
maximum operational speed of the rotor used; this would not allow the separation of the

products formed.

4.2 Practical aspects of rate-zonal, or density gradient centrifugation

4.2.1 Density gradient media
(65,66).

The properties of an ‘ideal’ density gradient media can be listed as follows
1. Its density range should allow separation of the particles of interest, without over-

stressing the rotor.

[t should be neither hyperosmotic nor hypoosmotic.

[t should not affect the activity of the sample.

[t should not interfere with any assay techniques used.

[t should be inexpensive and readily available.

It should not be corrosive to the rotor.

N AN

It should not be flammable or toxic if aerosols are formed.

Ridge ®9 states that the gradient material should be totally inert towards the sample material,
although the reaction system used in this research requires the use of an interactive gradient
material. The most commonly used gradient materials, with their applications and maximum
densities at 20°C, are shown in Table 4.1 ©®. The most popular gradient medium used is
sucrose, which is readily soluble and covers the density range from 1.00 to 1.32 g cm™.
Sucrose 1s not suitable for the fractionation of living cells as even isotonic solutions can be
deleterious or toxic. The disaccharide sugar lactose monohydrate, used as the gradient

medium in this research, has very similar physical properties to that of sucrose and so is

suitable as a gradient medium.
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Table 4.1. Commonly used gradient material, properties and uses ©3),

4.2.2 Density gradient preparation

Density gradients may be prepared in several ways depending on the type of gradient
required and there are four main types of gradient: linear, convex, concave and step. Linear,
convex and concave gradients are known as continuous, whereas step gradients are known as
discontinuous. Examples of the different types of gradient profiles are shown in Figure 4.3,
Discontinuous or step gradients are formed by layering solutions of increasing densities into
a centrifuge tube, so that sharp interfaces are formed between the different solutions. The
most popular method for producing discontinuous gradients is the under-layering technique,
where the least dense solution is put into the tube first and successively denser solutions are
introduced to the bottom of the tube to underlay the previous solution. The under-layering
technique was used in this research and the basic principles of this technique are shown in

Figure 4.4.; full experimental details are given in Chapter 7.
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Figure 4.3. Examples of the different types of gradient profiles.
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Figure 4.4. The under-layering density gradient technique.
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The ‘shape’ of a gradient refers to its concentration profile, but concentration does not
always have a linear relationship with either density or viscosity. The density gradient
should be steep enough to provide support to the sedimenting zone during centrifugati;)n.
Linear gradients are most commonly used as they often produce the highest resolution of
cellular components and proteins 9 Convex gradients are used where maximum support is
required at the top of the gradient where the sample is loaded, but does not have to be so
steep further down the gradient if the sample components are adequately resolved. Concave
gradients are mostly used for lipoprotein separation and discontinuous, or step, gradients are

used for the separation of whole cells, cellular organelles and viruses 3.39)

A step gradient can be used to form a continuous gradient if the gradient solute is readily-
diffusible. A step gradient consisting of only two solutions layered in a centrifuge tube will
form a continuous, almost linear, gradient after standing for about 24 hours due to the

(7.69) " The diffusion process can be increased if more than two steps

diffusion of the solute
are used. The diffusion process can be further speeded up if the sealed centrifuge tube is laid
horizontally which increases the surface area between the layers, and this allows a

©9 " An apparatus designed to produce a

continuous gradient to form in about 1 hour
continuous gradient from a step gradient in about 1-2 minutes by rotating the centrifuge tube

at a predetermined angle is shown in Figure 4.5.
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Figure 4.5. The Biocomp Gradient Master automatic continuous gradient former
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Another method used to speed up the formation of a continuous gradient from a step gradient
is to increase the temperature at which the step gradient is incubated. The rise in temperature
increases the rate of diffusion of the gradient solute and reduces the time of formation.
However, if the temperature is too high convection currents can be introduced, which will
adversely affect the profile of the gradient. In this research, continuous gradients were
prepared from step gradients at 40°C, and this incubation temperature was found not to
adversely affect the gradient profile. Schumaker U has calculated the time required for

continuous gradient formation using the equation:

tp =y*/ 8D S—

where tp = the time required for continuous gradient formation (seconds).

the distance between the initial sharp boundaries (cm).

M

the diffusion coefficient of the gradient solute at the gradient
formation temperature (cm? sec™).

Once the gradient has been formed it will deteriorate due to diffusion. Fortuin ®5 has

reported that the time that a linear gradient will remain stable can be defined as:

ts = b*/100D (42

where ts = the time of stability (seconds).

b = the total gradient length (cm).

4.2.3 Sample loading and convection during rate-zonal centrifugation
Convection in a rate-zonal centrifugation may be defined as any form of mass transport by
means other than by sedimentation and diffusion ). The overloading of the gradient

medium with sample material can lead to convection effects as well as ‘sinking’ of the
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material into the gradient, which is known as density inversion. Before any centrifugation is
undertaken the maximum sample capacity should be determined. Griffith 59 has reported
that gradients in swing-out rotors can support most protein samples provided that the ratio
between the sample concentration and the starting gradient concentration is 1:10. Griffith
also reported the maximum sample volume that can be loaded onto a gradient used in a
swing-out rotor system and this value is 10% of the total gradient volume. These values are
based on actual experimental data, rather than by theoretical calculations proposed by
Svenssen et al % Berman ®” and Spragg and Rankin @ and so these experimentally
determined limits have been used during this research. Applying these limits reduces the

effects of density inversion and droplet sedimentation, which is described in Chapter 3.

4.2.4 Conditions during centrifugation

It is essential that the speed control and temperature control of the centrifuge is accurate to
enable reliable and reproducible centrifugal experiments to be performed. The temperature
attainment and control of the Beckman J2-MC centrifuge used in this research is reported in
Chapter 3. It is beneficial to the stability of a gradient centrifugation experiment if the
acceleration and deceleration periods are as slow as possible to minimise disturbance of the
gradient medium and its contents. Ideally, the rotor should be accelerated to 500 r.p.m. as
slowly as possible and decelerated from 500 r.p.m. as slowly as possible and this was
achievable using the Beckman J2-MC centrifuge, which is programmed to do this
automatically. The instrument should be correctly levelled and the rotor balanced to

minimise vibration which can instigate droplet sedimentation, as described in Chapter 3.

4.2.5 Recovery of fractions from the gradient

In order to collect the whole gradient in a series of fractions, there are four different methods
that can be used; these methods are shown in Figure 4.6. The oldest and simplest method is
to pierce the bottom of the centrifuge tube and to collect volumes of the gradient as it drips
from the bottom of the tube. This method can be expensive and certain centrifuge tube
materials are not easily pierced or crack when pierced, leading to non-ideal leakage. Another
method is to place a pipette tip at the top of the gradient and withdraw a fixed volume of
liquid from the gradient whilst maintaining the pipette tip at the top of the falling gradient

column. This method is simple but requires a high degree of practical ability to ensure that
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the gradient is not disturbed, that air is not entrained into the fraction being taken, and that

liquid is not removed from below the fraction being taken which would affect the resolution.

Gradient pumped out Displacement fluid

Graduated pipette A in

Gradient out
Vo

[ARE AR PACARTLEAE PARAE BLS

Tube seal
assembly

High density
displacement
fluid

Tub clamp

Tube pierced d

Sample collection
tube

Figure 4.6. Methods for collecting density gradient fractions after centrifugation: A is
the tube bottom piercing method; B is the withdrawal of the fractions from
the top downwards using a graduated pipette; C is where fractions are
removed by being pumped out; and D is the bottom displacement method
using a dense liquid.

A pump can be used to remove the gradient via a narrow tube which is carefully lowered to
the base of the tube. This method is not normally used because density inversion of the
solution occurs during removal and there is a loss of fraction resolution as the liquid passes
through the pump % A technique commonly used is the bottom displacement method
where a dense liquid, such as sucrose or fluorocarbons, are pumped to the bottom of the tube
which upwardly displaces the gradient via a tapered cap and fractions are collected in
collection tubes. In this research, the graduated pipette technique was preferred to the other

methods because of its simplicity, after much practice, and the acceptable degree of

resolution achieved.
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4.2.6 Determining the density gradient profile
The profile of the gradient will be approximately known from the intended shape of the

generated gradient. However, it is normal practice to determine the exact nature of the
profile by measuring the density of the individual fractions. Accurate measurement of the
density of the fractions is required for the calculation of sedimentation coefficients using
Equation (3.14). The density of the fractions is normally measured using techniques such as
pycnometry and refractive index measurement of the gradient solute concentration in the
fractions, which can be converted to density using calibration graphs. In this research
refractive index measurements were used to monitor the lactose monohydrate gradient
profiles and this is described in detail in Chapter 7. Alternatively, density marker beads can
be added to the gradient and these will band in the gradient at a position equal to their
density. Density marker beads are available in a wide range of density values and each
density value corresponds to a specific bead colour. The position of the beads can be
correlated to their expected position if the gradient has successfully formed. Visual
observations can be performed on the gradient to monitor the sharpness of the density
interfaces if a step gradient is used, or to confirm the absence of interfaces if a continuous
gradient is used. Ideally, transparent polycarbonate centrifuge tubes should be used for most
centrifugal separations to allow visual monitoring of the separation process. Polycarbonate
centrifuge tubes were used for all of the experiments performed during this research, details

of which are given in Chapter 7.

4.2.7 Analytical determination of the fraction contents

This depends on the exact nature of the sample applied to the density gradient. Fractions can
be analysed using a wide range of analytical techniques which include microscopy,
UV/visible spectrophotometry, colorimetric assays, and various chromatographic methods
including High Performance Liquid Chromatography (HPLC). The method used is
dependent on the nature of the sample to be analysed as well as possible interference caused
by the gradient solute used. In this research, a combination of HPLC and protein assay
techniques have be used to analyse the fraction composition and these techniques are

described in Chapter 7.
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4.3 Centrifugation studies with soluble free B-galactosidase using the rate-zonal
separation technique

4.3.1 Introduction and Experimental Programme

Chapter 3 describes modified normal-rate centrifugation experiments performed using free
B-galactosidase, the reaction system being shown in Figure 3.14. Results presented in
Figures 3.15 and 3.16 showed that the enzyme had become distributed throughout the single
concentration lactose monohydrate solution contained within the centrifuge tube. This
indicated that the enzyme was either non-ideally sedimenting through the substrate as a very
broad band, or mixing was occurring due to the inherent instability of a single substrate
concentration reaction system. Effects such as droplet sedimentation and mixing during
centrifugation are associated with normal-rate separation techniques. The results clearly
show that the enzyme movement from the loading position was due to these effects and not
produced by the enzyme sedimenting under the influence of the applied centrifugal forces.
The almost uniform distribution of the galacto-oligosaccharides, shown in Figure 3.15,
confirms this conclusion. A more stable reaction environment was required that would
minimise the effects of droplet sedimentation and mixing; the system that achieves this 1s
rate-zonal, or density gradient, centrifugation. Such systems should confirm that the applied

centrifugal force was sufficient to produce sedimentation of the enzyme.

Before any active enzyme reactions were performed, the formation and stability of the
lactose monohydrate gradient was investigated. The continuous gradient formation time, tp,
for lactose monohydrate was determined both theoretically and practically. The time of
stability of the gradient, ts, was also determined theoretically and practically. The stability
of the gradient during centrifugation at 40°C was investigated by comparison to identical
gradients incubated in a waterbath at the same temperature. [3-galactosidase was then loaded
on top of the lactose monohydrate density gradient and centrifuged using the highest
centrifugal forces attainable with the swing-out system used. The movement of the enzyme
was monitored by protein assay and the gradient profile determined after varying
centrifugation run times. Finally, p-galactosidase was layered within the gradient to

increase the enzyme’s radial position and increase the initial applied centrifugal forces.
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4.3.2 Density and viscosity of lactose monohydrate solutions

The density and viscosity of aqueous lactose monohydrate solutions up to 40%"/v were
determined at 40°C, so that the physical properties of the gradient fractions taken after
centrifugation could be characterised. Determination of the density and viscosity of
individual fractions would also allow the calculation of sedimentation coefficients using
Equation (3.13). The analytical procedures used to determine the density and viscosity of
lactose monohydrate solutions are detailed in Chapter 7. The relationship of viscosity to

lactose monohydrate concentration at 40°C is shown in Figure 4.7.
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Figure 4.7. The relationship of viscosity to lactose monohydrate concentration at 40°C.

Figure 4.7 shows the non-linear relationship between viscosity and lactose monohydrate
concentration. The relationship of density to lactose monohydrate concentration at 40°C is
shown in Figure 4.8. Figure 4.8 shows that there is a linear relationship between density and
lactose monohydrate concentration. By determining the total sugar content of the fractions

collected after a reaction and taking these values to be lactose monohydrate, reasonably
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accurate fraction density and viscosity values can be obtained by using the data presented in

Figures 4.7 and 4.8.
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Figure 4.8. The relationship of density to lactose monohydrate concentration at 40°C.

4.3.3 Reaction system sedimentation coefficients

A knowledge of the sedimentation coefficients for the enzyme, substrate and products was
required to ensure that the sedimenting enzyme was effectively separated from the reaction
products allowing no further enzymatic reactions to take place in the reacted zone, as shown
in Figure 4.2. The larger the sedimentation coefficient for the enzyme compared to the
substrate and products the greater the separation. Providing that the centrifuge equipment
used can generate high enough centrifugal forces, then the differences in the sedimentation

coefficients can be exploited to produce an effective bioreaction and separation system.
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4.3.3.1 pB-Galactosidase sedimentation coefficient

A review of the literature revealed no instances of a sedimentation coefficient for free
B-galactosidase, isolated from Aspergillus oryzae, being reported. Determination of the
sedimentation coefficient was not possible because of the unavailability of an analytical
ultracentrifuge. The operational limitations of the centrifugation equipment used in this
research did not allow the sedimentation coefficient of free f-galactosidase to be estimated.
However, Halsall 39 developed a series of empirical equations based on the Atassi-Ghandi
relationship. This relationship links the sedimentation coefficients of proteins to their
molecular weight and Halsall produced equations that extended the relationship to a wider
range of molecular weights. If the molecular weight of a protein is known, then an estimate
of its standard sedimentation coefficient can be calculated.  B-Galactosidase from

(36)

Aspergillus oryzae has a reported molecular weight of 90 000 daltons “”. For proteins with

a molecular weight in the range of 1.7 x 10* to 4.9 x 10 the following equation is given:

Swa = 0.00242 M* — (43)
where Swao = the standard sedimentation coefficient (Svedbergs).
M = the molecular weight of the protein.

If the molecular weight for B-galactosidase is inserted into Equation (4.3), then a standard
sedimentation coefficient of 5.05 Svedbergs is obtained. This value compares closely to an

expected value based on the data presented in Table 3.2.

4.3.3.2 Carbohydrate sedimentation coefficients

This research has been concerned with the enzymatic activity of B-galactosidase on lactose
monohydrate and the resulting products formed. In Chapter 2, it was shown that depending
on the reaction conditions, the products formed were identified as galacto-oligosaccharides
(di-, tri- and tetra-), glucose and galactose. A review of the literature revealed no instances

of sedimentation studies being performed on these compounds or on lactose monohydrate
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itself. However, sedimentation coefficients have been determined on similar compounds
and this allows for the estimation of sedimentation coefficient values. The standard
sedimentation coefficient (Sw.2o) of sucrose, a disaccharide of glucose and fructose, was
determined by LaBar and Baldwin ©0 and found to be around 0.276 Svedbergs. This value
can be used as an estimate for lactose monohydrate and for other disaccharides. Setford @
determined the standard sedimentation coefficient of fructose to be around 0.280 Svedbergs;
this value can be used as an approximate one for glucose and galactose. The almost
identical sedimentation coefficients reported for a monosaccharide and a disaccharide
indicate that the sedimentation coefficients for galacto-oligosaccharides would be very
similar to these values. For the purposes of this research, the standard sedimentation
coefficient for galacto-oligosaccharides was estimated to be 0.276 Svedbergs, as this value

is for a disaccharide which is the closest comparable compound for which sedimentation

data are available.

4.3.3.3 Comparison of the reaction system sedimentation coefficients

In Section 4.3.3.1, the estimated standard sedimentation coefficient for B-galactosidase from
Aspergillus oryzae was calculated to be 5.05 Svedbergs. In Section 4.3.3.2, the estimated
values for lactose monohydrate, glucose, galactose and galacto-oligosaccharides were 0.276,
0.280, 0.280 and 0.276 Svedbergs respectively. Providing that high enough centrifugal
forces can be generated, the differences in the enzyme sedimentation coefficient value
compared to the substrate and reaction products values should allow effective separation of
the enzyme from the reaction zone. However, the almost identical sedimentation coefficient

values for the substrate and reaction products should prevent separation of these compounds.

4.3.4 The formation and stability of lactose monohydrate density gradients

Before any active enzyme reactions were performed, it was necessary to determine the
formation time (tp) and the stability time (ts) for the lactose monohydrate density gradients
used in this research. For these centrifugation experiments to be reproducible, the
continuous profile of the density gradient should be fully formed and this should remain

stable during the duration of the experiment.
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4.3.4.1 The formation time (tp) and the stability time (ts) for a 10 to 40%" /v lactose
monohydrate continuous density gradient at 40°C

For the active enzyme centrifugation experiments performed at 40°C, a 10 to 40%" /v
lactose monohydrate continuous density gradients was used, and so the formation time and
stability time for such a gradient was determined. A step gradient consisting of 10, 15, 20,
25, 30 and 40%" /v lactose monohydrate solutions (6 cm® of each concentration) was

generated at 40°C using the under-layering technique, shown in Figure 4.4. Duplicate sets
of centrifuge tubes filled with the step gradients were either incubated at 40°C in a
waterbath or centrifuged at 13 000 r.p.m (26 122 g max) at 40°C for varying times. At 0,
30, 60, 90 and 180 minutes sets of tubes were removed from both the waterbath and the
centrifuge. Fractions were taken from the tubes, and the lactose monohydrate gradient
profile was determined by refractive index measurements of the fractions; full experimental
details are given in Chapter 7. The results obtained for the waterbath incubated gradients
are shown in Figure 4.9 and the results obtained for the centrifuged gradients are presented

in Figure 4.10. A comparison of the two sets of results is shown in Figure 4.11.

The results presented in Figures 4.9, 4.10 and 4.11 clearly show that at 40°C the initial step
profile forms a continuous gradient between 0 to 30 minutes, although slight degeneration
occurs at the top of the gradient. The gradients maintain an acceptable continuous profile up
to 180 minutes, but increasing degeneration of the top end of the gradient occurs after 30
minutes. The similarity of the waterbath incubated gradients to the centrifuged gradients
demonstrated that the centrifugation process did not drastically affect the gradient stability.
These results show that ideally the step gradient should be allowed to form a continuous
gradient over a period of 30 minutes before an enzyme zone is layered on top of it, and that
centrifugation experiments could be run for a further 150 minutes without significant
degeneration of the gradient. These findings can be compared to calculated values for the
gradient formation time (tp) and the gradient stability time (ts) using equations (4.1) and
(4.2). After under-layering the density gradient solutions a sharp boundary between
successive solutions was not visible. The theoretical distance between the sharp boundaries
(y) was calculated to be 1.2 cm and the gradient length (b), measured immediately after
under-layering at 40°C, was found to be 7.4 cm. The diffusion coefficient (D) for lactose
monohydrate at 40°C was determined, by extrapolation of values obtained from the

literature, to be 0.66 x 10° cm? sec”, details of which are shown in Figure 4.12.
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The gradient formation time (tp) was calculated to be 8 hours and the gradient stability time
(t) was calculated to be 23 hours. These calculated values differ radically from the
experimentally determined value for tp between 0 to 30 minutes and a ts value between 30

to 60 minutes.
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Figure 4.12 The diffusion coefficient for lactose monohydrate at 40°C determined by
extrapolation of literature values O192),

4.3.4.2 The formation time (tp) and the stability time (ts) for a 20 to 40%" /v lactose
monohydrate continuous density gradient at 40°C

Experiments were performed to determine the formation time and stability time for a 20 to

40%"/v lactose monohydrate. A step gradient consisting of 20, 22.5, 25, 27.5, 30 and

40% /v lactose monohydrate solutions (6 cm’ of each concentration) was generated at 40°C
using the under-layering technique, shown in Figure 4.4. Duplicate sets of centrifuge tubes
filled with the step gradients were centrifuged at 13 000 r.p.m at 40°C for varying times. At
0, 30, 60, 90 and 180 minutes sets of tubes were removed from the centrifuge. Fractions
were taken from the tubes and the lactose monohydrate gradient profile was determined by
refractive index measurements of the fractions; full experimental details are given in

Chapter 7. The results obtained for the centrifuged gradients are presented in Figure 4.13.
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Figure 4.13 shows that the gradient formation time (tp) occurred between 0 to 30 minutes
and the gradient stability time (ts) was between 30 to 60 minutes. The decay of the top of
the gradient was very marked and after 180 minutes the decay had extended to half of the

total gradient length.

4.3.4.3 Discussion of lactose monohydrate gradient formation and gradient stability
results

The experiments performed using 10 to 40 %"“/v lactose monohydrate density gradients
determined the formation time (tp) to be between 0 to 30 minutes and the gradient stability
time (ts) to be between 30 to 60 minutes before degeneration of the gradient began.
However, the gradient maintained an acceptable profile for at least 150 minutes after the
initial formation time. Using Equations (4.1) and (4.2), the theoretical value of tp and tg was
calculated to be 8 and 23 hours respectively. The difference between the experimental and
theoretical values may be due to (a) the equations are generally applied to density gradients
formed at 20°C and below, where sharp boundaries are formed between the gradient layers,
(b) the lower density and viscosity of lactose monohydrate at 40°C compared to that at
20°C, allowing mixing of successive solutions during under-layering and no sharp boundary
formation, and (c) the effect of lower density and viscosity on the gradient stability during

centrifugation.

The continuous gradient was formed from a step gradient consisting of the lactose
monohydrate concentrations, 10, 15, 20, 25, 30 and 40%"/v. The gradient concentration
steps corresponded to increases in the lactose monohydrate of 5%"/v, except for the 10%"/v
increase at the bottom of the gradient between 30 to 40%"/v. This larger incremental step
was positioned at the bottom of the gradient so that when the active enzyme is centrifuged
the maximum support is given to the sedimenting material when it is exposed to the highest
centrifugal forces. Comparison of the 10 to 40%"/v gradient results with those obtained for
the 20 to 40%/v gradient showed that reducing the concentration of the gradient steps from
59%%/v to 2.5%"/v decreased the stability. Similar results obtained for gradients incubated in
a waterbath at 40°C and those centrifuged at 13 000 r.p.m. (26 122 g max) at 40°C showed

that the centrifugal process did not adversely affect the gradients, except for a slight loss of
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B-galactosidase solution at 13 000 r.p.m. (26 122 g max) was insufficient to sediment the
enzyme faster than the degeneration of the lactose monohydrate density gradient. The range
of centrifugal forces applied to the top-layered lactose monohydrate density gradients can be

calculated using the following equation:

2
oo )

p.m
RCF = 11.121 (1000 — (4.4)

where RCF = relative centrifugal force (g).
r = radial distance from the centre of rotation (cm).
r.p.m = the rotation speed (rotations per minute).

The distance from the centre of rotation to the middle of the top-layered B-galactosidase
sone was 6.3 cm and the distance from the centre of rotation to the bottom of the centrifuge
tube was 13.9 cm. If these values are inserted into Equation (4.4) then the relative
centrifugal force range at 13 000 r.p.m was 11 840g to 26 122g. The centrifugal force
applied to the top-layered B-galactosidase zone was insufficient to produce sedimentation of
the enzyme faster than the degeneration of the lactose monohydrate density gradient. To
increase the initial centrifugal forces applied to the enzyme zone, it must be placed further
from the centre of rotation. This can be achieved by reducing the gradient length or layering
the enzyme within the density gradient. Reducing the gradient length, whilst maintaining
the concentration range, decreases the gradient stability time and adversely affects the
gradient resolution. To maintain the gradient stability time and resolution, layering of the

B-galactosidase within the lactose monohydrate density gradient was the preferred option.

4.3.6 Layering of soluble free B-galactosidase within a 10 to 40%"/v lactose
monohydrate density gradient

A 10 to 40%"/v lactose monohydrate density gradient was prepared at 40°C as for the

previous experiments, except that a 5 mg cm™ (16 U cm'3) B-galactosidase solution (2 cm’),

prepared using 17.5%"/v lactose monohydrate, was under-layered between the 15%"/v and

20%"/v lactose monohydrate solutions during the preparation of the step gradient. Full
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degradation of the gradient. To increase the sedimentation rate, either the individual size or
the density of the enzyme particles must be increased, or the range of applied centrifugal
forces needs to be increased. The applied centrifugal forces used were the maximum
possible due to the limitations of the centrifuge and the rotor system used. Without
upgrading the equipment used, the sedimentation of the enzyme can be increased by either
immobilising the enzyme onto a ‘carrier’ material or by insolubilising the enzyme using a
cross-linking agent. Both of these approaches effectively increase the size and the density of
the enzyme particles and therefore increase the sedimentation rate. Increasing the
sedimentation rate allows the enzyme to sediment through the density gradient without
being affected by any degradation of the gradient. Immobilisation or insolubilisation also
aid visualisation of the sedimenting enzyme and make recovery and re-use simpler. The
preparation and use of immobilised and insolubilised P-galactosidase for rate-zonal

centrifugation studies is presented in Chapter 5.
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50 RATE-ZONAL CENTRIFUGATION USING IMMOBILISED AND
INSOLUBILISED 3-GALACTOSIDASE

In this chapter, the principles of enzyme immobilisation and insolubilisation are discussed.
The practical considerations of both techniques are described. Centrifugal studies performed
with immobilised and insolubilised B-galactosidase, and using rate-zonal centrifugation are

presented.

5.1 Introduction

An immobilised enzyme is one which has been attached to, or enclosed by, an insoluble
support medium, or carrier. Insolubilisation is where the enzyme molecules are chemically
cross-linked to each other and form complexes that are insoluble in the liquid medium, and
where the protein constitutes the bulk of the complex ©3) " There are four main methods for
immobilising enzymes and these are; adsorption, covalent binding, entrapment, and
membrane confinement. A diagrammatic representation of the main methods of enzyme

immobilisation is shown in Figure 5.1.

A B
:@ - ) Solid or porous
AN support
c D
Porous polymeric Semi-permeable
matrix membrane

Figure 5.1. Different methods of enzyme immobilisation; A is adsorption, B is
covalent binding, C is entrapment, and D is membrane confinement.
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Insolubilisation of an enzyme is effected by using a chemical cross-linking agent and this is

shown diagrammatically in Figure 5.2.

/ / Enzyme molecule

Chemical cross-linking
agent

Figure 5.2. Enzyme insolubilisation using a chemical cross-linking agent.

Enzyme immobilisation or insolubilisation adds additional cost to an enzymatic reaction
process and is only undertaken if the benefits exceed the extra expense. The main benefits
include: easier separation of the enzyme from the reaction products, reduced downstream
processing costs, recovery and re-use of the active enzyme, the reduction of the quantity of
enzyme used, and a possible increase in the stability and activity of the enzyme “893) " The
possible disadvantages of immobilisation and insolubilisation include: the process of
immobilisation or insolubilisation may involve the use of highly toxic compounds, complex
protocols may be required, the loss of enzyme activity and specificity, surface charge
repulsion of the substrate from the immobilised/insolubilised enzyme’s micro-environment,

and a reduction in the enzyme activity due to internal and external diffusion effects.

Experimental results presented in Chapter 4 showed that the centrifugation equipment used
was unable to generate sufficiently high centrifugal forces to effect the sedimentation of
soluble free B-galactosidase before the degradation of the reaction environment occurred.
According to Stokes” Law, represented by equation (3.3), the sedimentation rate of a particle

is proportional to the square of its diameter and also proportional to the difference that exists
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between the density of the particle and the density of the liquid medium. By using
immobilisation or insolubilisation the sedimentation rate of an enzyme can be substantially
increased due to the apparent increase in the size and density of the enzyme particles.
Increasing the sedimentation rate of an enzyme allows it to be sedimented through a substrate
using lower rotation speeds, and hence lower applied centrifugal forces. Reducing the
rotation speed required to sediment the enzyme allows a low speed or high speed centrifuge
to be used instead of a super-speed centrifuge or an ultracentrifuge. The cost of low speed or
high speed centrifuges is significantly less than that of a super-speed centrifuge or an
ultracentrifuge, the former can cost less than £10K compared to £20K+ for the latter.
Applying lower centrifugal forces allows the rotor to be constructed from aluminium, instead
of titanium which is required if very high centrifugal forces are used. A typical aluminium
rotor costs approximately £4K compared to a titanium rotor which costs in the region of
£14K. Immobilisation or insolubilisation of an enzyme also allows visualisation of the

enzyme as it sediments through the substrate and aids in its recovery and re-use.

5.2 Methods of immobilisation and insolubilisation
In this section, the main methods used to immobilise or insolubilise enzymes are discussed

and the advantages and disadvantages of each technique are reported.

5.2.1 Adsorption

In 1916, Nelson and Griffin were the first to immobilise an enzyme using the adsorption
technique ©9 " They adsorbed the enzyme invertase on to activated charcoal without any
significant loss in the enzyme activity. Adsorption is the simplest of the immobilisation
techniques for producing a water-insoluble enzyme/support conjugate. It consists of mixing
an aqueous solution of an enzyme with a surface-active adsorbent at a suitable pH, followed

by washing the conjugate to remove any non-adsorbed enzyme (93.94)

The enzyme forms
weak linkages to the adsorbent due to Van der Waals forces and hydrogen bonding. Van der
Waals forces are produced due to the electron charge cloud around a molecule not being
perfectly symmetrical. At any particular moment, there is more negative charge on one side
of a molecule than on the other side, and therefore the molecule possesses an instantaneous
electric dipole. This dipole induces dipoles in neighbouring molecules of an opposite charge

(56)

and this produces a weak induced dipole-induced dipole attraction This attraction is

sufficient to weakly bind the enzyme to the support material.
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Hydrogen bonding is produced when an hydrogen atom is attached to highly electronegative
elements, such as N, O and F, and the shared pair of electrons in the covalent bond is drawn
towards the electronegative atom. The hydrogen atom has no electrons, except for its share
of the covalent bond which is drawn towards the electronegative atom. The hydrogen atom
has no inner shell of electrons and the single proton in the nucleus is available to form a
dipole-dipole attraction with an unshared pair of electrons on another electronegative atom
(56)  In an aqueous environment, hydrogen bonding allows strong intermolecular bonds to be
formed between the enzyme and the support material. Table 5.1 lists support materials

commonly used for immobilisation of enzymes by adsorption.

Support Material ! Enzvme Immobhilised l
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Table 5.1. Support materials commonly used for enzyme adsorption ©4),

5.2.1.1 Activity of adsorbed enzymes
The activity of adsorbed enzymes can vary from low activity, to values very similar to that

(93)

obtained for the soluble free enzyme “>). The enzyme loading on the support is affected by

the pH at which adsorption takes place. The adsorption of B-fructofuranosidase (invertase)
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to DEAE-Sephadex (diethylaminoethyl group (-OC,HsNH(C,Hs),) attached to cross-linked
dextran), and CM-Sephadex, (carboxymethyl group (-OCH2CO7) attached to cross-linked
dextran), is an example of the pH dependence of enzyme adsorption. Table 5.2 shows the %
binding of B-fructofuranosidase (400U cm”) to DEAE-Sephadex and CM-Sephadex (both

50mg) at various pH values (19),
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Table 5.2. The % binding of B-fructofuranosidase to DEAE-Sephadex and
CM-Sephadex at varying pH a9,

Adsorption of an enzyme to a support material can produce loadings of up to 1g of enzyme
per gram of support (1g g'l) (1993) A review of the literature showed that the activity of an
adsorbed enzyme is dependent upon the support material used and by varying the support

used improvements in the activity can be achieved.

5.2.1.2 Stability and reversibility of adsorption

Depending on the specific enzyme and support material used the thermal stability of
adsorbed enzyme can be increased, decreased, or remain unchanged. The storage stability of
adsorbed enzymes varies depending upon the enzyme/support system used, but usually they
are stable for several weeks if stored at 4°C ©®. Theoretically, the adsorption process can be
reversed by changing the pH, ionic strength, or temperature of the enzyme/support
environment. Reversibility of adsorption is not always possible and this is demonstrated by

the irreversible binding of urease to kaolinite (93.93)
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5.2.1.3 Advantages and disadvantages of immobilisation by adsorption

The main advantages of immobilisation using adsorption are: the simplicity, the extensive
range of charged support materials, no toxic chemicals are required to effect immobilisation,
and the immobilisation process does not usually produce inactivation of the enzyme. The
disadvantages of this method include: the correct pH, ionic strength and temperature for
successful adsorption must be determined; desorption of the enzyme can occur at high
substrate concentrations or if physical changes in the reaction environment occur; there is no

protection against microbial degradation; and contaminants may become adsorbed to the

support.

5.2.2 Covalent binding

Covalent binding produces more permanent linkages between the enzyme and the support
material compared to adsorption. The binding occurs due to the sharing of electrons between
protein side-chain nucleophiles and nuclei on the surface of the support material. The
propensity of the side-chain nucleophiles to form covalent bonds depends upon their state of

protonation, or charged status and this is given by the following relationship:

. §$>_—-SH> —0O0 > —NH, > —COO" > —OH >> — NH;"

decrease in reactivity of side-chain group ———*

The amino acid, lysine, is the most useful group for covalent linkage of an enzyme to an
insoluble support, mainly due to its exposure on the enzyme’s surface, its high reactivity, and
the fact that it is rarely located in an enzyme’s active site (9 The formation of the covalent
bonds between the enzyme and the support material should be performed under mild reaction

conditions, which ensure that the majority of the activity is retained after immobilisation.

5.2.2.1 Covalent bond formation between enzymes and support materials
There are three main approaches used to covalently link enzymes to water-insoluble support

materials and these are:
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1. Linkage of the enzyme to a reactive polymer, where no activation of the support
material is required.

2. Linkage of the enzyme to an activated polymer, where the polymer has been
activated by chemical conversion of a functional group, and this is followed by the
addition of the enzyme.

3. Formation of an activated polymer by chemical conversion of a functional group in

the presence of the enzyme.

An example of a reactive polymer used as a support is maleic anhydride copolymer. This
copolymer usually consists of maleic anhydride with ethylene or styrene. On the addition of
an enzyme to the copolymer covalent bonds are formed between the maleic anhydride and
amino acid groups on the enzyme’s surface ©%. this process is shown in Figure 5.3. 1, 6
Diaminohexane is added to enhance the cross-linking of the polymer chains to produce a
highly insoluble enzyme/support conjugate. This method has been successfully used to

immobilise enzymes such as alcohol dehydrogenase, papain and trypsin ©3),
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Figure 5.3. Enzyme immobilisation using maleic anhydride copolymer O4),

The most common method used for immobilising an enzyme on a research-scale is the use of
a chemically activated polymer support, which when prepared is mixed with the enzyme to
produce covalent linkages. The support material most often used is Sepharose, poly (B-1,3-

D-galactose-o.-1,4-(3,6-anhydro)-L-galactose, which has been activated using cyanogen
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bromide. The hydroxyl groups of Sepharose combine with the cyanogen bromide to yield
the reactive cyclic imido-carbonate. This reacts with amino acid groups on the enzyme under
slightly alkaline conditions (pH~9); the two-stage reaction system is shown in Figure 5.4.

This method has been used successfully to immobilise enzymes such as [B-amylase,

B-galactosidase and trypsin (93,54.96.97.58)
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Cyanogen bromide is a highly toxic compound and therefore Sepharose beads are normally

purchased ready-activated, although this is very expensive. A less hazardous and cheaper
method is the covalent linkage of an enzyme to a triazine dye activated support. Reactive
triazine-based dyes, such as Cibacon Blue F3G-A and Procion Blue MX-R, have been
extensively used in affinity chromatography to bind dehydrogenases and other enzymes ©9)

The dye is bound to a support material by a triazine bond, which is formed by the reaction of
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hydroxyl groups on the support with chloride groups on the dye. The enzyme binds to the
immobilised dye by a coupling reactions between amino acid groups on the enzyme’s

399 " procion Blue

surface, usually lysine, and the activated carbon of the triazine molecule
MX-R, 1—amino—4-[3—(4,6—dichlorotriazin-2—ylamino)-4-sulf0phenylamino]anthroquinone-Z-
sulfonic acid, binds to dextran to form blue dextran. Under suitable reaction conditions blue
dextran is capable of forming covalent bonds with numerous enzymes, although the
maximum loading is extremely variable 9 The activation of dextran by Procion Blue MX-

R and the resulting enzyme coupling is shown in Figure 5.5.

Activation:

o NH,

(¢}

SO4H

HN

+ Dextran-OH —

. SO4H
Procion Blue ’

MX-R N N o HN AN ODextran
r T
T T
Coupling:

enzyme/support
conjugate

Enzyme-NH;

v

Y TODBX"M
\(

Enzyme-HN

Figure 5.5. Enzyme immobilisation using Procion Blue MX-R activated dextran.
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5.2.2.2 Activity of covalently bound enzymes

The activity of enzymes covalently bound to insoluble matrices can vary from low activity to

©3 " Only small amounts of

values approaching that obtained for the free soluble enzyme
enzyme can be immobilised on to a support material using this technique; usually loadings of
~0.02¢ of enzyme per gram of support (0.02¢g g'l) are produced, and this is substantially less

than that produced using adsorption techniques {19,

5.2.2.3 Stability of covalently bound enzymes

Covalently bonded enzymes are extremely stable due to the strength of the binding between
the enzyme and the support material, and very little leakage of the enzyme from the support
oceurs. Most covalently bound enzymes exhibit enhanced pH and thermal stabilities ©%.
The storage stability varies depending on the particular enzyme/support used, but usually

they are stable for several months if stored at temperatures between 0 to 5°C @,

5.2.2.4 Advantages and disadvantages of immobilisation using covalent binding

The main advantages of immobilisation using covalent binding are: the binding force
between the enzyme and the support is extremely strong and there is very little enzyme
leakage, diffusional effects are minimal, and the enzyme/support conjugate produces very
few operational difficulties during use. The main disadvantages of this method include: the
possible difficulty of preparation, the potential high cost of preparation, the selective

applicability, and the potential for microbial degradation.

5.2.3 Entrapment

Enzyme molecules can be physically entrapped within the interstitial spaces of a polymerised
gel lattice, or within a semi-permeable membrane. Entrapment of an enzyme within a semi-
permeable membrane is also known as microencapsulation. Entrapment allows suitably
sized substrate and product molecules to transfer across and within a gel matrix or
membrane, whilst preventing the enzyme from permeating from these structures. The pore
size of the gel can be controlled by the degree of cross-linking that is allowed to take place,

and the degree of crosslinking is determined by the proportions of the reactants used. In
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1963, Berfeld and Wan (100) were the first to successfully use the lattice entrapment method
to immobilise the enzymes [-amylase, papain and trypsin within cross-linked
polyacrylamide, and this is still the most widely used method for enzyme entrapment.
Another entrapment method involves the use of high molecular weight dextran, which is a
polymer predominantly of a,-1,6 glucose monomeric units. High molecular weight dextran
has been shown to form particles when in aqueous solution 310D " 1f this dextran is added to
an enzyme-containing aqueous solution particles are formed that entrap the enzyme
molecules. In 1964, Chang (192) developed an interfacial polymerisation method to
microencapsulate urease within a nylon semi-permeable membrane. In 1970, Sessa and
Weissman (% developed a microencapsulation method using liposomes. Liposomes consist
of amphipathic lipids, such as phosphatidyl choline and cholesterol, which can form
membranes around water droplets containing soluble enzyme/s. A proportion of the enzyme
remains within the aqueous phase contained within the membrane and the rest is

incorporated into the membrane structure (“46),

5.2.3.1 Methods for enzyme entrapment and microencapsulation

The most popular method used for the entrapment of enzymes is the use of polyacrylamide.
An agqueous solution of acrylamide is mixed with N,N-methylene-bisacrylamide (BIS) in the
presence of the enzyme, as well as with reaction initiators and accelerators. The reaction

scheme is shown in Figure 5.6.

Aston University

Content has been removed for copyright reasons

Figure 5.6. The reaction scheme for polyacrylamide formation (without
stoichiometry) “e),
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The lattice structure produced by the formation of polyacrylamide contains interstitial spaces
which entrap enzyme molecules. The polyacrylamide entrapment method has been
successfully used to immobilise a wide range of enzymes that includes aminoacylase

(93.94
). Dextran entrapment relies upon the

glucose oxidase, invertase, trypsin, and urease
property of high molecular weight dextran to form gel-like particles in aqueous solution.
Dextran contains around 95% a1-6 glucopyranose linkages and 5% al-3 glucopyranose
linkages . The o.1-6 linkages produce a linear monomeric chain, whilst a1-3 linkages form

branches from the linear chain @'Y, The structure of dextran is shown in Figure 5.7

Aston University

Content has been removed for copyright reasons

Figure 5.7. The chemical structure of dextran ®),

Hi i
gh molecular weight dextran has a filamentous structure which when in aqueous solution

undergoes hydrogen bonding between the Cs hydroxyl groups. Intramolecular and
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intermolecular hydrogen bonding produces dextran particles which can physically entrap
enzyme molecules within the interstitial spaces; also hydrogen bonding between the dextran
and the enzyme can occur. The entrapment of an enzyme within dextran particles has been

demonstrated with the enzyme dextransucrase @),

The microencapsulation method developed by Chang (102) involves the formation of semi-
permeable nylon membranes. An aqueous solution of both the enzyme and the hydrophilic
monomer 1,6-diaminohexane is added to a chloroform/cyclohexane mixture. An emulsion 1s
formed by vigorous stirring of the mixture, and to this is added the hydrophobic monomer
sebacoyl chloride. Polymerisation of the monomers take place at the interface between the
organic and aqueous solvents, and this produces spherical semi-permeable membranes
containing the enzyme. Typically, the diameter of the nylon spheres range in size from 10 to
200pm (46.93.99) A djagrammatic representation of enzyme-containing nylon microspheres is

shown in Figure 5.8.
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Figure 5.8. The microencapsulation of enzyme molecules in a semi-permeable nylon
membrane.

The nylon microencapsulation method has been successfully used to immobilise the enzymes

asparaginase, urease, and trypsin (93.94)
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Liposome membranes are made up of amphipathic lipids, such as phosphatidyl choline
(lecithin), which are lipids that contain hydrophilic and hydrophobic regions.  The
hydrophilic region of the molecule is small in proportion to the hydrophobic region which
contains long hydrocarbon chains. Liposomes are formed by dissolving the lipid in
chloroform and using a rotary evaporator the chloroform is removed, leaving a uniformly
thin film of lipid on the flask wall. An aqueous solution containing the enzyme is added to
the flask and the lipid is dispersed by shaking. The lipid forms membranes around the
enzyme-containing water droplets, with a small proportion of the enzyme becoming

(46,103)

incorporated into the membrane A diagrammatic representation of a liposome

microencapsulated enzyme is shown in Figure 59

enzvmp-ranteini=

Aston University

Figure 5.9. A diagrammatic representation of a liposome microencapsulated enzyme
(104)

5.2.3.2 Activity of entrapped and microencapsulated enzymes

The activity of lattice entrapped or microencapsulated enzymes is usually lower than that
obtained for the soluble free enzymes, mainly due to external and internal diffusion effects.
If the substrate molecular size exceeds the pore size/s of the lattice or membrane then the
apparent enzyme activity will be zero. Also, if the product/s molecular size is too large they
may be permanently trapped within the lattice structure or membrane, which would intensify

the diffusional problems and further reduce the activity. Enzyme loadings are extremely
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variable, but loadings approaching 1g of enzyme per gram of support (1g g’) have been

reported .

5.2.3.3 Stability of entrapped and microencapsulated enzymes
Polyacrylamide lattice entrapped and microencapsulated enzymes generally demonstrate
enhanced thermal stability, and may maintain appreciable activity for several months if

stored between 0 to 5°C O3,

5.2.3.4 Advantages and disadvantages of enzyme entrapment and microencapsulation
methods
The advantages of immobilisation by entrapment are the wide applicability, and the
protection from microbial degradation. The disadvantages are the preparation may be
difficult, the binding force is weak, enzyme leakage occurs, and the problems of
substrate/products diffusion. The advantages of membrane confinement of enzymes include:
the preparation is simple, no enzyme leakage, the very wide applicability, and the protection
against microbial degradation. Possible disadvantages of this method include the high cost

of preparation, and the problems of substrate/product diffusion.

5.2.4 Insolubilisation
The insolubilisation of a soluble free enzyme is usually performed using a cross-linking
agent such as glutaraldehyde. This was first performed by Quiocho and Richards in 1964

who insolubilised carboxypeptidase A (48)

Glutaraldehyde contains two aldehyde groups
which form linkages between free amino acids groups on the surface of enzyme molecules;
the reaction scheme is shown in Figure 5.10. Lysine is the predominant amino acid that
forms a chemical linkage with glutaraldehyde, but other amino acids such as tyrosine and
cysteine are also involved. The degree of cross-linking can be controlled by the amount of
glutaraldehyde that is present during the insolubilisation process. A high degree of cross-

linking can produce interstitial spaces smaller than the molecular size of a substrate and this

prevents the substrate diffusing to the active site, effectively preventing any catalytic activity.

161




Aston University

Content has been removed for copyright reasons

insoluble enzyme/glutaraldehyde conjga e

Figure 5.10. The reaction scheme for the insolubilisation of an enzyme using
glutaraldehyde (pentane-1,5 dial) 19),

The rate and efficiency of insolubilisation is pH and temperature dependent and the optimum
conditions vary for different enzymes. Examples of enzymes that have been insolubilised
using glutaraldehyde include glucose oxidase, P-galactosidase, o-amylase, papain, and

urease (93’94).

5.2.4.1 Activity of glutaraldehyde insolubilised enzymes

The activity of glutaraldehyde insolubilised enzymes varies depending upon the type of
enzyme and the insolubilisation conditions used. Activities can range from zero to that
obtained for the free soluble enzyme. The most important factor is the concentration of

glutaraldehyde used for insolubilisation ©3),

the higher the concentration, the greater the
degree of cross-linking, along with an increase in diffusional problems. Also, if high
concentrations of glutaraldehyde are used, the enzyme’s active site may become blocked or
undergo conformational changes, which leads to a reduction in activity. From the literature,
most insolubilisation is performed using glutaraldehyde solutions ranging from 1 to 2.5%"/v

and this allows the retention of enzyme activity !0%106107.108)
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5.2.4.2 Stability of glutaraldehyde insolubilised enzymes
With a number of enzymes the insolubilisation process produces enhanced thermal stability

©3) " The cross-

by maintaining the enzyme’s structure at higher than optimal temperatures
linked structure can in some cases enhance the pH stability by resisting major conformational
changes associated with shifts in pH (1993)  Glyutaraldehyde insolubilised catalase, pepsin
and papain have been reported to retain up to 80% of their initial activity after storage for

several months at 4°C (93,105,106)

5.2.4.3 Advantages and disadvantages of glutaraldehyde insolubilisation

The main advantages of this method are: the insolubilisation process is simple, the process is
reproducible, the process is effective for a wide range of enzymes, and the cost of
glutaraldehyde is comparatively low. The main disadvantages include the optimal reaction
conditions for insolubilisation must be determined, the high toxicity of glutaraldehyde, the
formation of insoluble aggregates which require mechanical dispersion, and the variability of

the insoluble particle size.

5.3 Centrifugation studies with immobilised and insolubilised B-galactosidase using the
rate-zonal separation technique

5.3.1 Introduction

Chapter 4 described rate-zonal centrifugation experiments performed using soluble free
B-galactosidase, and results presented in Figures 4.14, 4.15 and 4.16 showed that the
maximum attainable rotation speed of 13 000 r.p.m. (26 122 g max) was insufficient to effect
sedimentation of the free enzyme. According to Stokes’ Law, represented by equation (3.3),
the sedimentation rate of a particle can be increased by increasing the size or density of the
particle. As previously described in this chapter, immobilisation or insolubilisation of an
enzyme can be used to increase both the apparent size and density of the enzyme particles.
Using the rate-zonal centrifugation technique a stable reaction environment promoting the

sedimentation of the immobilised or insolublilised enzyme as a distinct band is possible.

In this chapter, various immobilisation techniques are evaluated, to determine their suitability

to produce the sedimentation of (-galactosidase through a lactose monohydrate density
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gradient, performed at rotation speeds up to 13 000 r.p.m. (26 122 g max). Setford ®
described the entrapment of dextransucrase by high molecular weight dextran particles:
Dextran particles immobilise an enzyme by a combination of physical entrapment within the
interstitial spaces and adsorption to the dextran chains. Centrifugation experiments were
performed using blue dextran (Mwt ~2 000 000) to visualise the movement of high
molecular weight dextran through a lactose monohydrate density gradient, and to determine
the molecular weight of dextran required to produce particles of sufficient size and density to
act as a carrier for -galactosidase. Rate-zonal centrifugation experiments were performed

using B-galactosidase immobilised using industrial-grade dextran (Mwt 5 x 10° - 40 x 10°).

The immobilisation of B-galactosidase using covalent binding was investigated and various
support materials were evaluated. Blue dextran consists of dextran (Mwt ~2 000 000)
covalently bound to a triazine dye. Experiments were performed to link Procion Blue MX-R
dye to industrial-grade dextran particles, and to then link (-galactosidase to these activated
particles. The effectiveness of this immobilisation process was determined and evaluated as a
possible support for -galactosidase during rate-zonal centrifugation. Amberlite resin beads
were evaluated as a possible support material, allowing covalent linkage of [3-galactosidase

using cyanogen bromide.

The insolubilisation of [-galactosidase using glutaraldehyde was performed and the
production of a particulate product suitable for rate-zonal centrifugation was investigated.
Rate-zonal centrifugation experiments were performed at various rotation speeds using
insolubilised p-galactosidase of varying activities, and the galacto-oligosaccharides profile

within the lactose monohydrate density gradients was determined.

5.3.2 Rate-zonal centrifugation studies using blue dextran

Rate-zonal centrifugation experiments were performed using 1%"/v blue dextran (Mwt
~2 000 000). This concentration was used because at higher values the dextran solution has
a consistency similar to wallpaper paste, which would have presented loading problems.
Lactose monohydrate density gradients (10-40%"/v, 36 cm’®) were prepared at 40°C as

described in detail in Chapter 7, and these were top-layered with 1%"/v blue dextran solution
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(lem®). The top-layered gradients were centrifuged at 13 000 r.p.m. (26 122 g max) for 0,
30, 60, 90 and 180 minutes, at 40°C. At the termination of a run, the centrifuge tube was
removed and photographed to allow the comparison of the positions of the blue dextran after
different centrifugation times. Blue dextran top-layered density gradients were centrifuged at
13 000 r.p.m. for 0 and 180 minutes and fractions taken were analysed using a uv/visble
spectrophotometer, to allow a more precise comparison of the movement of blue dextran to
the gradient profile. Control gradients top-layered with water (1 cm?) were centrifuged for 0,
30, 60, 90 and 180 minutes to enable changes in the gradient profile to be determined by
refractive index measurement of the gradient fractions. Figure 5.11 shows the movement of
blue dextran after centrifugation at 13 000 r.p.m (26 122 g max) for 0, 30, 60, 90 and 180
minutes, at 40°C. A comparison of the position of the blue dextran with the corresponding
lactose monohydrate gradient profile at 0, 30, 60, 90 and 180 minutes is shown in Figures
5.11a, 5.11b, 5.11c¢, 5.11d and 5.11e. A comparison of the movement of blue dextran after
centrifugation for 0 and 180 minutes, monitored by absorbance measurements at 617.6 nm,

to the lactose density gradient profiles is presented in Figure 5.11f.

The photographs presented in Figure 5.11 show the movement of the blue dextran from the
initial loading position (0 minutes). During centrifugation at 13 000 r.p.m., the blue dextran
does not sediment as a narrow discrete band, but broadening does occur. Broadening of the
band slowly occurs (from the initial loading position), until after 180 minutes a
comparatively uniformly coloured band extending approximately half the length of the
lactose monohydrate density gradient was produced. By comparing the lactose monohydrate
density gradient profiles to the position of the blue dextran, as shown in Figures 5.11a, 5.11b,
5.11c, 5.11d, 5.11e and 5.11f, the movement is shown to correspond closely to the
progressive degeneration of the gradient profile. These results show that the maximum
attainable rotation speed of 13 000 r.p.m. (26 122 g max) used was insufficient to produce
sedimentation of the blue dextran (Mwt ~2 000 000) at a rate faster than the degradation in
the profile of the lactose monohydrate gradient. Using dextran with molecular weights
higher than 2 000 000 would produce particles of increased size and density compared to

those obtained for blue dextran, and this would increase the particle sedimentation rate.
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5.3.3 Rate-zonal centrifugation studies using dextran entrapped B-galactosidase.

Rate-zonal experiments were performed using industrial-grade dextran with a molecular
weight range of 5 x 10° to 40 x 10°. An aqueous solution containing dextran immobilised
B-galactosidase was prepared by adding industrial-grade dextran (1g) to a solution containing
B-galactosidase (100 cm’ of Smgem™>, 6 U cm™), and this was stirred vigorously. A sample
of the solution was taken and the particle size distribution measured using a laser droplet and
particle sizer; details are given in Chapter 7. The size distribution of the dextran/B-

galactosidase particles is shown in Figure 5.12.
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Figure 5.12. The particle size distribution for [-galactosidase immobilised using
industrial-grade dextran.

Lactose monohydrate density gradients (10-40%"/v, 36 cm3) were prepared at 40°C as
described in detail in Chapter 7, and these were top-layered with the industrial-grade

dextran/B-galactosidase suspension (1 cm®). The top-layered gradients were centrifuged at
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whilst the opacity at the top of the gradient indicated that a considerable amount did not
sediment to the bottom of the tube. To confirm that dextran immobilised B-galactosidase
had sedimented, a comparison was made between the HPLC analysis of the fractions
obtained for the dextran/p-galactosidase and the soluble free enzyme reactions. A
comparison of the chromatograms obtained for the bottom fraction of the density gradients

after centrifugation at 13 000 r.p.m. for 30 minutes, at 40°C, is shown in Figure 5 14.

Soluble frce enzyme - fraction 19
(bottom of tube)

particulate contamination of
the enzyme solution

15,49

B

B-Galactosidase/dextran - fraction 19
(bottom of tube)

tetrasaccharides

ﬁi—galac&osidasc/dextran J

1B 44
S.46

Figure 5.14 A comparison of the chromatograms obtained for the bottom fraction of
the p-galactosidase/dextran and the soluble free [-galactosidase
centrifugation experiments, performed at 13 000 r.p.m. (26 122 g max)
for 30 minutes, at 40°C. A is for top-layered soluble free 3-galactosidase
(Smg em>, 16 U cm”, 1 em®) and B is for top-layered
B-galactosidase/dextran conjugate (1 cm’ of bulk solution, equivalent to

Smg em” (16 U cm"3) of p-galactosidase and 10 mg cm” of industrial-
grade dextran).
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53.4 Rate-zonal centrifugation studies using [-galactosidase covalently linked to

industrial-grade dextran

The triazine dye method was used to covalently link B-galactosidase to industrial-grade
dextran particles, following the reaction scheme shown in Figure 5.5 (see p.152). The
dichlorotriazine dye, Procion MX-R, was used, as this was readily available and
comparatively inexpensive. Procion MX-R is an intense blue coloured dye, which when
linked to the B-galactosidase/dextran would aid in the use and recovery of the conjugate. The
experimental protocol used was based on that described by Dean and Watson ©9 " Briefly, a
buffered aqueous solution of 1%"/v industrial-dextran (70 cm’, pH 5.2) was prepared, and to
this was added 1 cm® of a Procion MX-R solution (10 mg cm™), producing triazine dye
activated dextran particles. The activated particles were recovered and re-suspended in
buffered water (20 cm’, pH 5.2), which was then added to a 10 mg cm™ (32 U em™) solution
of B-galactosidase (60 cm’, pH 5.2). After incubation, the particles were recovered and
re-suspended in buffered water (10 cm3). Lactose monohydrate density gradients (10-
40%"/v, 36 cm’) were prepared and these were top-layered with the triazine linked
industrial-grade dextran/{3-galactosidase solution (1 cm’). The top-layered gradients were
centrifuged at 9 000 and 13 000 r.p.m. (12 520 g max and 26 122 g max respectively) for 0
and 30 minutes, at 40°C. At the termination of a run the centrifuge tube was removed and
photographed; also fractions were taken and analysed by HPLC. The HPLC results were
used to determine the galacto-oligosaccharide distribution profile within each gradient. The
photographs taken after 0 and 30 minutes centrifugation at 9 000 r.p.m are shown in Figure
5.17. A comparison of the galacto-oligosaccharide distributions obtained for gradients

centrifuged at 9 000 and 13 000 r.p.m., for 30 minutes, is presented in Figure 5.18.

Figure 5.17 shows that at 9 000 rp.m. (12 520 g max), the lowest speed at which an
operational temperature of 40°C can be attained, full sedimentation of the triazine linked
B-galactosidase/dextran conjugate is achieved. The distribution profiles presented in Figure
5.18 show that very little galacto-oligosaccharide was produced, indicating that the
B-galactosidase activity was very low. The galacto-oligosaccharide produced was far less
than that achieved for the physically entrapped B-galactosidase/dextran conjugate, results of

which are presented in Figure 5.16
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Activity assays were performed on the triazine linked f-galactosidase/dextran conjugate to
determine the enzyme loading, and a value of 3 mg per g of dextran (3 mg g"), or 0.03 mg
cm” was obtained. This loading is extremely poor compared to 20 mg ¢! usually obtained
by covalent linkage, and explains why the galacto-oligosaccharide formation is so low. The
B-galactosidase loading may have been higher than that calculated, due to a proportion of
the enzyme being bound, but inactivated by the position of the linkages. Variation of the
triazine experimental protocol did not increase the enzyme loading, and this method of
immobilisation was found to be unsuitable for B-galactosidase isolated from Aspergillus

oryzae.

Figure 5.18 shows the slight difference in the galacto-oligosaccharide distribution profiles
obtained at 9 000 and 13 000 r.p.m., indicating that, at the lower rotation speed, the longer
the contact time between the enzyme and substrate resulted in more galacto-oligosaccharide
being produced. This gives the first indication that by varying the applied centrifugal fields,
the formation of galacto-oligosaccharides can be controlled. To increase the activity of the
sedimenting enzyme and produce higher yields of galacto-oligosaccharides, insolubilisation

of the enzyme using glutaraldehyde was pursued.

5.3.5 Glutaraldehyde insolubilisation of 3-galactosidase

Insolubilisation of B-galactosidase was performed using glutaraldehyde, as shown by the
reaction scheme presented in Figure 5.10. Various methods are described in the literature
and the main differences are the concentration of glutaraldehyde used, the incubation
temperature, and the incubation time. The experimental conditions depend upon the

particular enzyme being insolubilised and on the concentration of the enzyme. Schejter and

Bar-Eli %% insolubilised catalase using 4%"/v glutaraldehyde, after incubation at 20°C for

2 hours. Broun, Selegny, Avrameas and Thomas "*® insolubilised glucose oxidase using

2.5%"/v, after incubation at 37°C for 12 hours. Quiocho and Richards insolubilised

carboxypeptidase-A using 1% /v glutaraldehyde, after incubation at 20°C for 12 hours “®.

No papers were found describing the glutaraldehyde insolubilisation of B-galactosidase,
isolated from Aspergillus oryzae. Experiments were performed to determine the optimal

reaction conditions to produce glutaraldehyde insolubilisation of (-galactosidase, whilst
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of 79 860S would have a molecular weight equivalent to ~20 x 107, which is about 2 000
times larger than that of soluble B-galactosidase. Figure 5.21 shows that the enzyme
sediments in a broad band and this is due to the wide particle size distribution of the

insolubilised enzyme, as shown in Figure 5.19.

5.3.5.3 Reproducibility of the glutaraldehyde insolubilisation process, the weight
equivalent and the storage stability of insolubilised $-galactosidase

The reproducibility of the glutaraldehyde insolubilisation process was monitored by

comparing the activities of different batches of the cross-linked B-galactosidase. The activity

could be varied by altering the final re-dispersion volume. The reproducibility of the cross-

linked B-galactosidase re-dispersed in buffered water (10 cm®, pH 5.2) is shown in Table 5.3.

Cross-linked [-galactosidase activity (U cm'3)
(re-dispersion volume = 10 cm’®)

28.1

29.8

27.8

28.5

29.7

31.3

314

28.8

30.9

30.3

33.6  Average =29.9
28.6 c=1.66

Table 5.3. Reproducibility of the 3-galactosidase insolubilisation process.

The results presented in Table 5.3 shows that the insolubilisation process was capable of
producing insolubilised P-galactosidase of reproducible activity. The activity values

obtained were compared to the activity of soluble free B-galactosidase (1.25 mg cm™, 4 U
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cm™) and this gave an equivalent concentration of 7 mg cm™ (22.4 U cm™). Solutions of the
insolubilised B-galactosidase were dried to constant weight at room temperature. Known
equivalent concentrations of the soluble free P-galactosidase (based on activity) were

similarly dried. The dry weights were compared and it was found that:

1 mg of soluble free B-galactosidase = 3.14 mg of insolubilised pB-galactosidase

Insolubilised B-galactosidase solution stored at ~20°C for 7 days showed a 12.7% loss of
activity, compared to a 17.4% loss of activity for soluble free -galactosidase stored under
the same conditions. The higher retained activity was probably due to the increased
resistance to denaturation and microbial degradation afforded to the insolubilised enzyme

particles.

5.3.6 Rate-zonal centrifugation studies wusing glutaraldehyde insolubilised
B-galactosidase
Rate-zonal centrifugation studies were performed using the insolubilised B-galactosidase.
All of the insolubilised [(-galactosidase concentrations stated in these rate-zonal centrifugal
studies are the soluble free enzyme equivalent, based on enzymatic activity. This was used
to allow comparison of these results with the stirred-batch reaction data presented in Chapter
2. To calculate the actual concentration of the insolubilised (-galactosidase (enzyme +
cross-linking agent) the values must be multiplied by 3.14, for example 1.25 mg cm™ soluble
free P-galactosidase equivalent corresponds to an actual insolubilised [-galactosidase
concentration of 3.93 mg cm™. Firstly, experiments were performed to confirm the findings
presented in Figure 5.21, that the insolubilised B-galactosidase, top-layered on a lactose
monohydrate density gradient (10-40%"/v), is fully sedimented when centrifuged at 9 000
r.p.m. for 30 minutes, at 40°C. A rotation speed of 9 000 r.p.m. was the minimum speed
used to perform centrifugal experiments, as this is the lowest speed at which the centrifuge
can maintain a reaction temperature of 40°C. Achieving complete sedimentation of the
insolubilised material at this speed removes the requirement to chemically quench the

gradient fractions taken and validates the term bioreaction and separation in a single
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Lactose monohydrate density gradients (10-40%"/v, 36 cm’) were prepared and these were
top-layered with varying concentrations of insolubilised [-galactosidase, equivalent in
activity to that of the soluble free 3-galactosidase concentrations of 1.25, 6, (2x) 6 (pulsing),
and 12 mg em” (4, 19.2, (2x) 19.2 and 38.4 U cm” respectively). The top-layered gradients
were centrifuged at 9-, 11- and 13 000 r.p.m. (12 520, 18 703 and 26 122 g max respectively)
for 30 minutes, at 40°C. At the end of a run, the centrifuge tube was removed and fractions
were recovered. These were chemically quenched, as for all previous experiments and
analysed by HPLC. The HPLC results were used to determine both the galacto-
oligosaccharide distribution within each gradient and the corresponding % lactose

monohydrate conversion distribution profile.

The pulsing experiment consisted of top-layering insoluble B-galactosidase (6 mg em>, 19.2
U cm?, 1 cm®) on to the gradients and centrifuging as described above. At the termination of
a run a further solution of insolubilised -galactosidase (6 mg em>,19.2 U em™, 1 em’) was

top-layered on to the gradient and re-centrifuged for a further 30 minutes.

Figure 5.23a shows a comparison of the galacto-oligosaccharide distribution profiles for
varying insolubilised (-galactosidase concentrations centrifuged at 9 000 r.p.m. for 30
minutes, at 40°C. Figure 5.23b shows a comparison of the corresponding % lactose
monohydrate conversion distribution profiles, obtained using the same reaction conditions.
Figures 5.24a and 5.24b show the results obtained at 11 000 r.p.m. and Figures 5.25a and
5.25b show the results obtained at 13 000 r.p.m.. A comparison of both the galacto-
oligosaccharide distribution profiles and the % lactose conversion profiles obtained for
1.25 mg em® (4 U cm”) insolubilised P-galactosidase, top-layered on to a lactose
monohydrate density gradient (10-40%"/v) and centrifuged at 9-, 11- and 13 000 r.p.m. for
30 minutes at 40°C, is shown in Figure 5.26. Similarly, the data obtained for 6, (2x) 6 -
pulsing and 12 mg cm® (19.2, (2x) 19.2 and 38.4 U cm> respectively) are presented in
Figures 5.27, 5.28 and 5.29 respectively.

5.3.6.1 Reproducibility of insolubilised [3-galactosidase rate-zonal centrifugation
experiments

The insolubilised -galactosidase rate-zonal centrifugation experiments were performed in

duplicate and the mean of the results was plotted. The reproducibility of the results can be
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illustrated by comparison of data obtained for a set of duplicate experiments. Figure 5.30
shows a comparison of the galacto-oligosaccharide distribution profile results obtained for
insolubilised B-galactosidase (6 mg cm>, 192 U em?, 1 em®), for reactions performed at
9 000, 11 000 and 13 000 r.p.m. using a lactose monohydrate density gradient (10-40%"/v)
centrifuged for 30 minutes at 40°C. Figure 5.30 shows that although the experimental
protocols for preparing the insolubilised P-galactosidase and the subsequent rate-zonal

centrifugation are complicated, the reproducibility of results is good.

5.3.6.2. Rate-zonal centrifugation experiments using (a) higher lactose monohydrate
concentration density gradients and (b) performing reactions at 25°C.
Rate-zonal centrifugation experiments were performed at 40°C using higher lactose
monohydrate concentration density gradients (40-70%"/v) in an attempt to decrease the high
sedimentation rate of the insolubilised -galactosidase. In this way, the contact time between
the enzyme and substrate should be increased and both the % lactose monohydrate
conversion and the galacto-oligosaccharide yields within the gradient should be improved.
Using higher lactose monohydrate concentration range produces an increase in both the
density and viscosity profiles of the gradient and, according to Equation (3.14), reduces the
particle sedimentation rate. In fact, experiments showed that the lactose monohydrate
density gradient was extremely unstable due to the rapid precipitation of the lactose
monohydrate as it fell out of solution; this was caused by the maximum solubility of the
lactose monohydrate in water at 40°C being exceeded. Consequently, increasing the lactose
monohydrate density gradient concentration range was found to be an unsuitable method for

increasing substrate conversion and product yields.

Rate-zonal centrifugation experiments were performed using lactose monohydrate density
gradients (10-40%"/v) at 25°C. At 25°C the density and viscosity profiles of the gradient are
increased, but the lactose monohydrate stays in solution long enough for reactions to be
performed. Also, reducing the reaction temperature allowed the centrifuge to be operated at
lower rotation speeds (range 2 000 to 13 000 r.p.m. (618 and 26 122 g max respectively )),
whilst maintaining a reaction temperature of 25°C. This approach produced both lower

galacto-oligosaccharide yields and % lactose monohydrate conversions because of a marked
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oligosaccharide yield. Similar trends to those presented in Figure 5.31 were obtained for the

% Lactose monohydrate conversion results.

5.3.6.3 Discussion of results

The results presented in Figures 5.23a, 5.23b, 5.24a, 5.24b, 5.25a and 5.25b show that the
% lactose conversions and the galacto-oligosaccharide yields were controlled by varying both
the applied centrifugal fields (rotation speed) and the concentration of insolubilised
B-galactosidase top-layered onto the lactose monohydrate density gradient. The highest %
lactose conversions and galacto-oligosaccharide yields were obtained using a rotation speed
of 9 000 r.p.m. (12 520 g max) and by pulsing the insolubilised -galactosidase through a
lactose monohydrate gradient, at a reaction temperature of 40°C. Of the rotation speeds used
9 000 r.p.m. was the lowest and this would have allowed the longest ‘contact time’ between
the enzyme/substrate at any given point along the lactose monohydrate gradient. This
increased ‘contact time’ would allow for higher lactose conversion and greater yield of
galacto-oligosaccharide. Table 5.4 shows a comparison of the results obtained for %
galacto-oligosaccharide yield at various rotation speeds and using different insolubilised

enzyme loadings.

Galacto-oligosaccharide of Total Sugar (%" /v) results taken at a Radial Distance of 10.3 cm

Rotation Speed (r.p.m.) Insolubilised Enzyme Loading (mg cm™)
1.25 6 12 12 (2 x 6)
9000 1.2 2.6 4.5 5.5
11 000 0.6 1.3 23 4.5
13 000 0.5 0.8 2.0 3.4

Table 5.4. Comparison of the results obtained for Galacto-oligosaccharide of Total
Sugar (%" /v) at various rotation speeds and using different insolubilised
enzyme loadings. The reactions were performed using a 10-40% " /v lactose
monohydrate gradient centrifuged for 30 minutes at 40°C.
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Table 5.5 shows a comparison of the results obtained for % Lactose Monohydrate

Conversion at various rotation speeds and using different insolubilised enzyme loadings.

% Lactose Monohvdrate Conversion results taken at a Radial Distance of 10.3 cm

Insolubilised Enzyme Loading (mg cm™)
Rotation Speed (r.p.m.)
1.25 6 12 12 (2x6)
9000 2.1 5.0 6.2 8.3
11 000 1.7 2.5 3.0 5.5
13 000 1.0 1.5 3.0 3.9

Table 5.5. Comparison of the results obtained for % Lactose Monohydrate
Conversion at various rotation speeds and using different insolubilised

enzyme loadings. The reactions were performed using a 10-40%" /v lactose
monohydrate gradient centrifuged for 30 minutes at 40°C.

Reducing the reaction temperature from 40°C to 25°C in an attempt to increase the ‘contact
time’ produced lower galacto-oligosaccharide yields and decreased % lactose monohydrate

conversion due to the reduction in the enzyme’s activity.

Pulsing the insolubilised p-galactosidase (2 x 6 mg cm™ (2 x 19.2 U cm™)), as opposed to a
single high concentration loading (12 mg cm™ (38.4 U cm™)), probably produced higher
galacto-oligosaccharide yields because the gradient was effectively ‘pre-seeded’ with
galactose and galacto-oligosaccharides ready for trans-galactosylation. West performed
stirred fed-batch reactions and found that higher lactose conversion and greater galacto-
oligosaccharide yields were produced when the enzyme was added incrementally. Tables 5.4
and 5.5 show a comparison of results obtained for a single 12 mg cm™ insolubilised enzyme

loading and two 6 mg cm™ pulses.
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The slope in the profiles is produced by the decreasing contact time between the enzyme and
the substrate as the applied centrifugal field increases. The increase towards the bottom of
the gradients was probably caused by back-diffusion of galacto-oligosaccharides, formed by
the action of the pelleted insolubilised P-galactosidase on localised lactose monohydrate.
Data presented in Figure 5.21 indicates that the insolubilised P-galactosidase had been

pelleted for ~15 minutes before the reactions were terminated.

The composition of the lactose monohydrate gradient was determined by the limit of

solubility of the sugar at 40°C. Experiments showed that gradients prepared using lactose
monohydrate above 40% /v were unstable and rapidly degraded due to the precipitation of
the sugar. Decreasing the lactose monohydrate gradient range from 10-40%"/v to
20-40%" /v was found to reduce the stability because of the reduction in the dynamic density

range of the gradient.
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6.0 CONCLUSIONS, INTEGRATING DISCUSSION AND RECOMMENDATIONS
FOR FURTHER WORK

In this Chapter, the main conclusions from this project are summarised. An integrating
discussion includes (a) a comparison of stirred-batch and centrifugation reactions using
soluble and insolubilised B-galactosidase, (b) a discussion of the novel immobilised and
insolubilised enzyme centrifugation reaction system developed, (¢) the use of a novel
insolubilised enzyme pulsing technique developed in this project, and (d) the applicability of
the centrifugal reaction system used to industry. This Chapter concludes with a list of

recommendations for further work.

6.1 Conclusions

In this section, the main conclusions from this research project are summarised.

6.1.1 Stirred-batch reactions performed using soluble free and glutaraldehyde
insolubilised $-galactosidase from Aspergillus oryzae

The results obtained from the stirred-batch reactions performed using soluble free

B-galactosidase, performed at 25°C, 40°C and 55°C can be summarised as follows:

1. Maximum galacto-oligosaccharide yields are achieved at lactose monohydrate
conversions between 40-55%.

2. The higher the initial lactose monohydrate concentration the greater the yield of
galacto-oligosaccharide.

3. Similar maximum galacto-oligosaccharide yields were obtained at 25°C, 40°C and
55°C (see Table 2.3).

4. The galacto-oligosaccharides formed consist predominantly of galactose.
5. The highest galacto-oligosaccharide detected was a tetrasaccharide.
6. The higher the degree of polymerisation of the galacto-oligosaccharide the lower the

yield (tri- > tetra-).

A comparison of both the % Galacto-oligosaccharides of Total Sugar and the % Lactose
Monohydrate Conversion for soluble B-galactosidase and glutaraldehyde insolubilised

B-galactosidase, for stirred-batch reactions performed at 40°C shows:
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1. The rate of lactose monohydrate conversion is slower for the insolubilised
B-galactosidase.

2. For a given % Lactose Monohydrate Conversion the % Galacto-oligosaccharides
of Total Sugar is slightly lower for the insolubilised (3-galactosidase.

3. The insolubilisation process does not greatly affect the hydrolytic and trans-
galactosyl activity of B-galactosidase from Aspergillus oryzae (Biolactase F).

A preliminary mathematical model for estimating lactose monohydrate conversion, based on
Michaelis-Menten kinetics with competitive inhibition, was found to show divergence
between theoretical and experimental results. This was due to the omission of certain factors
which include (a) the trans-galactosyl activity of B-galactosidase, (b) the mutarotation of
galactose, (c) the increased formation of galacto-oligosccharides at higher initial lactose
monohydrate concentrations, (d) competition for the enzyme’s active site between lactose
monohydrate and the galacto-oligosaccharides formed and (e) the effects of diffusion and

partition on the kinetic parameters of insolubilised (-galactosidase.

Particles of glutaraldehyde insolubilised B-galactosidase were found to have no obvious
porous structure and were comparatively spherical in shape. The high water content of the
particles would indicate that they may exist in the form of an hydrogel, which is a water-rich

colloidal system where the particle structure consists of chemically-linked colloidal particles.

6.1.2 Normal -Rate centrifugation studies using soluble [3-galactosidase

Experiments performed with soluble free [-galactosidase using a modified normal-rate
centrifugation technique produced the following findings: (a) the normal-rate centrifugation
system is too unstable for performing enzyme sedimentation experiments, (b) the centrifuge
used was unable to generate sufficiently high centrifugal fields to effect sedimentation of the

enzyme, and (c) performing the reactions at 40°C increased the system’s instability.
6.1.3 Rate-Zonal centrifugation studies using soluble -galactosidase

Experiments performed with soluble free B-galactosidase using a rate-zonal centrifugation

technique produced the following findings: (a) the use of a lactose monohydrate density
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gradient stabilised the reaction system, and (b) the centrifuge used was unable to generate
sufficiently high centrifugal fields to effect sedimentation of the enzyme through the

substrate gradient medium.

6.1.4 Rate-Zonal centrifugation studies wusing  immobilised and insolubilised
B-galactosidase
Various methods were used to immobilise and insolubilise -galactosidase. This led to an
increase in the apparent sedimentation rate of the enzyme, allowing the enzyme to sediment
through a 10-40%"/v lactose monohydrate gradient using the range of centrifugal fields
attainable. Dextran entrapment of the enzyme allowed the dextran/enzyme conjugate to fully
sediment through the gradient, although the % Lactose Monohydrate Conversion and %
Galacto-oligosaccharide formed was low. Covalent bonding of B-galactosidase to dextran
particles produced low enzyme loadings, and consequently low values of % Lactose
Monohydrate Conversion and % Galacto-oligosaccharide of Total Sugar were obtained from

centrifugation experiments.

Methods for insolubilisation of B-galactosidase using glutaraldehyde were developed that
produced particles which retained high enzymatic activity. Suspensions of the insolubilised
particles were fully sedimented through the lactose monohydrate gradient and produced
higher values for % Lactose Monohydrate Conversion and % Galacto-oligosaccharide of
Total Sugar than had been previously achieved. It was found that by pulsing the
insolubilised enzyme through the substrate higher values for % Lactose Monohydrate
Conversion and % Galacto-oligosaccharide of Total Sugar could be achieved, compared to

that obtained using a single enzyme loading equivalent in activity.

It was found that by varying the applied centrifugal fields and the concentration of the
insolubilised enzyme used the formation of galacto-oligosaccharide could be controlled. The
higher the applied centrifugal fields the lower the yield of galacto-oligosaccharide. The

highest galacto-oligosaccharide yield was obtained using two insolubilised enzyme pulses,
each equivalent to 6 mg cm™ (19.2 U cm™), sedimented through a 10-40%"/v lactose

monohydrate gradient centrifuged at 9 000 r.p.m. (12 520 g max) for 30 minutes, at 40°C.
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6.2 Integrating discussion

This section compares the stirred-batch and centrifugation reactions performed. A
discussion of the novel immobilised and insolubilised enzyme centrifugation reaction system
developed in this research and the use of a novel insolubilised enzyme pulsing technique.

Also, the applicability of this centrifugal reaction system to industry is commented upon.

6.2.1. A comparison of stirred-batch and centrifugation reactions performed

The high sedimentation rate of the insolubilised B-galactosidase produced short ‘contact
times’ between the enzyme and the substrate as it sedimented through the lactose
monohydrate gradient. Also, as the insolubilised B-galactosidase sediments through the
gradient the substrate concentration that it encounters is constantly changing. This makes it
difficult to compare directly the stirred-batch and centrifugation results. However, using
gradient profile data a specific lactose monohydrate concentration can be assigned to a
position within the profile; the % Lactose Monohydrate Conversion and % Galacto-
oligosaccharide of Total Sugar obtained at this position can thus be determined.
Comparative figures can be obtained for the stirred-batch system using data obtained for the
equivalent lactose monohydrate concentration and % lactose conversion. The % Galacto-
oligosaccharide of Total Sugar values can then be compared for any significant differences
that may have been produced by the different reaction methods. The only comparison
possible is for an enzyme concentration of 1.25 mg cm™ (4 U cm™), as this was the
concentration used for the stirred-batch reactions.  The results obtained are shown in Table

6.1. Centrifugation data used was taken from reactions performed at 9 000 r.p.m at 40°C.

The results presented in Table 6.1 show that for an equivalent % Lactose Monohydrate
Conversion the corresponding % Galacto-oligosaccharide of Total Sugar values for
soluble/insoluble stirred-batch and centrifugation reactions are similar. Due the very high
sedimentation rate of the insolubilised [(-galactosidase only low % Lactose Monohydrate
Conversion values can be compared and the results obtained may not be mirrored at higher
lactose monohydrate conversion. However, the results indicate that the insolubilisation
process and the application of centrifugal fields does not adversely affect the enzyme’s trans-

galactosyl activity.
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% Galacto-oligosaccharide of Total Sugar
% Lactose monohydrate concentration| % Lactose monohydrate | Stirred-batch | Stirred-batch | Centrifuge
gradient and stirred-batch) conversion value (soluble) (insoluble) | (insoluble)

15 3.0 1.0 1.0 1.8

20 2.0 0.8 0.6 1.0

25 1.5 0.7 0.4 0.9

Table 6.1. Comparison of equivalent % Galacto-oligosaccharide of Total Sugar values
for stirred-batch and centrifugation reactions performed using a
soluble/insolubilised enzyme concentration of 1.25 mg cm™ 44U cm'3)’ at
40°C. Centrifuge data was taken from reactions performed at 9 000 r.p.m.

(12 520 g max) for 30 minutes, at 40°C using a 10-40%" /v lactose
monohydrate gradient.

6.2.2 A novel immobilised and insolubilised enzyme centrifugation reaction system

This research has produced a novel immobilised and insolubilised centrifugation reaction
system which has not previously been reported in the literature. However, researchers have
reported increased enzyme sedimentation rates due to substrate/enzyme complexes being

formed during a centrifugal reaction @3,

Centrifugation reactions performed using
glutaraldehyde insolubilised [-galactosidase were found to produce the highest yields of
galacto-oligosaccharides. The size and density of the insolubilised particles resulted in a
very high sedimentation rate and consequently short enzyme/substrate ‘contact time’. The
sedimentation rate could be reduced by reducing the particle size or by immobilising the
enzyme onto a material of lower density and smaller particle size, and this would increase the

enzyme/substrate ‘contact time’. Using nylon microspheres or liposomes as a ‘carrier’ for

the enzyme may significantly reduce the sedimentation rate.

The stirred-batch reactions performed using both soluble and insolubilised B-galactosidase
required chemical quenching of the reaction to eliminate enzyme activity. During the
centrifugation reaction the insolubilised enzyme is fully sedimented and is effectively
separated from the reaction products. Quenching of the centrifuge samples was only
performed to allow comparison with the stirred-batch results. Separation of the active

enzyme allows for recovery and re-use of the enzyme and removes the requirement for the
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enzyme to be removed during downstream processing. Immobilisation/insolubilisation

allows visualisation of the enzyme and this aids in the removal of the enzyme.

6.2.3 Pulsing of insolubilised $-galactosidase

Centrifugation experiments performed using pulses of insolubilised [-galactosidase
produced higher yields of galacto-oligosaccharide compared to a single enzyme loading of
equivalent activity. Pulsing of the enzyme may be continued until the desired product profile
is achieved or until the gradient degenerates. The development of a continuous system
would allow the recovery and recycling of each enzyme pulse. This novel approach could be

applied to multi-enzyme sequential synthesis products.

6.2.4 The applicability of the centrifugal reaction system used to industry

Currently, the use of the centrifuge in industry is mainly limited to product recovery in the
downstream process. Also, the industrial centrifuges described in Chapter 3 are not suitable
for performing the type of reaction employed in this research. The rate-zonal system used in
this research can be applied to zonal rotors (see Figure 3.12) which have a capacity of
~ 2 litres. These rotors are designed to be used at rotation speeds in excess of 20 000 r.p.m.
and so are constructed from titanium to withstand the dynamic forces. Using an
immobilised/insolubilised enzyme reduces the rotation speeds required to sediment the
enzyme and this would reduce the dynamic forces, and allow cheaper materials (such as
aluminium) to be used to construct larger capacity zonal rotors. This type of reaction system
would only be cost effective for high value/low volume products, prepared using high cost

enzymes.

6.3 Recommendations for further work

The following are recommendations for further work:

1. Immobilisation of B-galactosidase onto a lower density material with a smaller particle
size to reduce the sedimentation rate. Possible materials may be sub-micron nylon

spheres or liposomes (see Chapter 5).

2. Perform enzyme pulsing experiments to determined if the use of more pulses of lower

activity will increase yields further.
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. Scale-up of the process using a zonal rotor to confirm the results obtained using the

centrifuge tube batch system used in this research.

Introduce a suitable organic solvent to the gradient to determine if this enhances the trans-

galactosyl activity of B-galactosidase and improves galacto-oligosaccharide yields.

. Identify other suitable enzymatic reaction systems suitable for immobilisation and

investigation using the centrifuge as a bioreactor. Polymer forming reactions would be
most suitable as the density gradient could be used to separate products of differing

sedimentation rates and density.

Controlled hydrolysis of polysaccharides, such as the hydrolysis of dextran by dextranase.

Produce a dextran density gradient and sediment immobilised or insolubilised dextranase

through the gradient using different applied centrifugal fields (109)

. Pulsing of different enzymes to produce sequential multi-enzyme products.

. Perform a more detailed study of galacto-oligosaccharide formation and use this data to

derive a mathematical model for their production.
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7.0 MATERIALS AND EXPERIMENTAL METHODS
In this Chapter, the materials used during this research are listed and the experimental

methods performed are described in detail.

7.1 Materials

The materials used in this research project are listed in Table 7.1.

Product

Specification/Grade

Supplier

Amberlite resin CG-400 (Cl form)
(cross-linked polystyrene)

Chromatographic grade,
100-200 mesh (75-125um)

Merck,
Poole, Dorset, UK.

Bio-Rad protein assay reagent

Standard assay

Bio-Rad Limited,
Hemel Hempstead, Herts, UK.

Blue dextran 2000 Mwt ~ 2 000 000 Amersham PharmaciaBiotech,
Little Chalfont, Bucks, UK.
Bovine serum albumin (BSA) Fraction V Sigma-Aldrich,
(96%) Poole, Dorset, UK.
Buffer powders pH4 and pH7 Merck,

Poole, Dorset, UK.

Calcium nitrate

Standard laboratory
reagent (SLR)

Fisher Scientific,
Loughborough, Leics, UK.

Cesium chloride

Purum

Fluka,
Gillingham, Dorset, UK.

Dextran Industrial-grade, Sigma-Aldrich,
(from Leuconostoc mesenteriodes B-512) Mwt 5x10° to 40x10° Poole, Dorset, UK.
Galactose Standard laboratory Fisher Scientific,
reagent (SLR) Loughborough, Leics, UK.

B-Galactosidase from Aspergillus oryzae

Biolactase I
(Food-grade)

Biocon Biochemicals Limited,
Cork, Ireland.

Glucose General purpose reagent Merck,

(GPR) Poole, Dorset, UK.
Glutaraldehyde (50%" ) Standard laboratory Fisher Scientific,
reagent (SLR) Loughborough, Leics, UK.

Hydrochloric acid General purpose reagent Merck,
(GPR) Poole, Dorset, UK

Lactose monohydrate ‘Analar’ grade Merck,
Poole, Dorset, UK

Procion blue MX-R Standard grade Fluka,

Gillingham, Dorset, UK.

Sodium acetate, anhydrous

Standard laboratory

Fisher Scientific,

reagent (SLR) Loughborough, Leics, UK.

Sodium carbonate Standard laboratory Fisher Scientific,
reagent (SLR) Loughborough, Leics, UK.

Sodium chloride Standard laboratory Fisher Scientific,
reagent (SLR) Loughborough, Leics, UK.

Sodium hydroxide Standard laboratory Fisher Scientific,
reagent (SLR) Loughborough, Leics, UK.

Urea Microselect Fluka,
Gillingham, Dorset, UK.
Water HPLC-grade Fisher Scientific,

Loughborough, Leics, UK.

Table 7.1. The materials used in this research project.
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7.2 Experimental methods
In this Section, the experimental methods and analytical techniques used during this research

are described in detail.

7.2.1 Stirred-batch reactions using soluble B-galactosidase from Aspergillus oryzae
(Biolactase F)
Stirred-batch reactions were performed using soluble B-galactosidase from Aspergillus

oryzae (Biolactase F) and the results obtained are presented in Chapter 2.

7.2.1.1 Preparation of soluble -galactosidase from Aspergillus oryzae (Biolactase F)
solutions

A bulk solution of the B-galactosidase from Aspergillus oryzae (Biocon Biochemicals
Limited, Cork, Ireland) was prepared by grinding 1.565g of the enzyme in 20 cm’ of
degassed HPLC-grade water (Fisher Scientific, Leics, UK) in a 100 cm® glass beaker, using a
glass stirring rod. The grinding was continued until a thin paste was formed. A further 60
cm® of degassed HPLC-grade water was added in three 20 cm’ aliquots and after each
addition the solution was mixed using a magnetic stirrer and stirrer bar. This solution was
transferred to a 100 cm” glass volumetric flask (grade A) and the volume adjusted to 100 cm’
using degassed HPLC-grade water. This solution was placed in a clean 100 cm?® glass beaker
and the pH of the solution was adjusted to 5.2 (+/- 0.1) using 5% /v hydrochloric acid. The
hydrochloric acid solution was prepared from concentrated hydrochloric acid (Merck,
Dorset, UK) diluted using degassed HPLC-grade water. To the pH adjusted enzyme solution
1 cm® of 0.05M sodium acetate buffer (Fisher Scientific, Leics. UK) was added.

The solution was then decanted into two 50 cm’ polycarbonate centrifuge tubes and
centrifuged at 3 500 r.p.m. for 20 minutes at 20°C, using a Beckman J2-MC centrifuge fitted
with a JSI3.1 swing-out rotor (Beckman Instruments, High Wycombe, UK). After
centrifugation, the slightly coloured but clear solution was decanted into a clean 100 ¢cm’
glass beaker, whilst leaving the insoluble material pelleted at the bottom of the centrifuge
tube. The bulk enzyme solution was then assayed to determine the B-galactosidase activity,

which allowed the activities of successive bulk solutions to be monitored.
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7.2.1.2 The measurement of B-galactosidase activity

The activity of B-galactosidase from Aspergillus oryzae was determined by incubating the
enzyme with lactose monohydrate and measuring the rate of lactose monohydrate
conversion. B-Galactosidase activity was calculated in terms of units per cm’® (U cm™) and
1 unit (U) is defined as the amount of enzyme which converts 1 umole of lactose

monohydrate in 1 minute at the stated conditions of pH and temperature.

A solution of 1% /v lactose monohydrate (Merck, Dorset, UK) was prepared using degassed
HPLC-grade water and 2 cm’® was pipetted into a glass test tube. The test tube was then
placed into a waterbath and attemperated at the stated reaction temperature. A 1 cm’ aliquot
of enzyme solution to be tested was diluted with 9 cm’ of degassed HPLC-grade water,
giving a dilution factor of 10x. This solution was then attemperated at the same temperature
as the lactose monohydrate solution. A 2 cm’ aliquot of the attemperated diluted enzyme
solution was added to the test tube containing the 1%"/v lactose monohydrate solution
(2 cm®). The solutions were mixed using a vortex mixer, whilst simultaneously starting a
timer and incubated at the desired reaction temperature for exactly 5 minutes. After 5
minutes, the reaction was quenched using 2 cm® of 0.05M sodium hydroxide solution and
1 ecm® of degassed HPLC-grade water was then added. The resulting solution was analysed

by HPLC (see 3.2.1.7) and the pmoles of lactose monohydrate converted calculated by
reference to a 1%" /v lactose monohydrate standard. The B-galactosidase activity was then

calculated in terms of U em™, taking dilution factors into account.

7.2.1.3 Preparation of lactose monohydrate solutions

The stirred-batch reactions performed used a total reaction volume of 250 cm’®, which
initially consisted of a mixture of; 200 cm® of a lactose monohydrate solution, 30 cm® of
degassed HPLC-grade water and 20 cm’ of the bulk B-galactosidase solution (see 7.2.1.1).
Based on a lactose monohydrate solution volume of 200 cm”, sufficient lactose monohydrate
was dissolved and made up to 200 cm’® to give the desired initial substrate concentration
when diluted to 250 cm®. For example, 25g of lactose monohydrate was dissolved in, and
made up to 200 cm’ in a glass volumetric flask (grade A). This gave a 12.5%"/v lactose
monohydrate solution, which when diluted to 250 cm® at the start of a stirred-batch reaction

experiment produced a substrate concentration of 10% /v. When preparing lactose
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monohydrate solutions >15%" /v heating was required to completely dissolve the sugar and

these solutions were allowed to cool before being made up to 200 cm® in a volumetric flask.

7.2.1.4 Preparation of degassed HPLC-grade water
Degassed water used in this research was prepared by heating HPLC-grade water (Fisher
Scientific, Leics, UK) in a glass beaker to 100°C and cooling to 20°C before being used to

prepare solutions in volumetric glassware.

7.2.1.5 Stirred-batch reactions using soluble B-galactosidase from Aspergillus oryzae

Stirred-batch reactions were performed using various initial lactose monohydrate
concentrations (5, 10, 15, 20, 25, 30 and 40%W/V) and incubated with B-galactosidase from

Aspergillus oryzae at a concentration of 1.25 mg cm®, at 25°C, 40°C and 55°C. The
apparatus used to perform the reactions is shown in Figure 7.1. The total reaction volume
was 250 cm’ and this consisted initially of; 200 cm® of lactose monohydrate solution at a
suitable concentration (see 7.2.1.3), 20 cm® of bulk p-galactosidase solution (see 7.2.1.1),

and 30 cm’® of degassed HPLC-grade water (see 7.2.1.4).

The lactose monohydrate solution and the degassed HPLC-grade water were placed in a glass
three-necked round bottomed flask (500 crn3) and incubated in a Grant W14 waterbath
(Grant Instruments, Royston, Herts, UK) at the desired reaction temperature. A glass
volumetric flask (20 cm®) containing the bulk B-galactosidase was placed in the same
waterbath and allowed to attemperate. Through the centre socket a polypropylene 2-blade
swivel impellor (Fisher Scientific, Leics, UK) was inserted. The impellor had a length of
350mm and a shaft diameter of 8mm, with a minimum blade diameter of 25mm and a
maximum diameter of 60mm. The stirrer was attached to a Citenco variable control
overhead stirrer (Citenco Limited, Boreham Wood, Herts, UK). A digital optical tachometer
(R.S Components Limited, Saltley, West Midlands) was used to set the rotation speed of the

impellor to 200 r.p.m., the speed used for all the reactions performed.

At the start of a stirred-batch reaction the bulk p-galactosidase solution was poured into the

reaction flask through one of the side sockets, which gave an enzyme concentration of 1.25
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mg cm® (4 U cm™) within the reaction volume. Simultaneously with the addition of the
enzyme solution a timer was started and a 2 cm’® sample was taken using a Gilson Pipetman
P5000 variable volume pipette (Anachem Limited, Luton, Beds, UK), fitted with a 2.5 cm’
polypropylene pipette tip (Fisher Scientific, Leics, UK). The sample was expelled into a test
tube containing 2 cm® of 0.05M sodium hydroxide and this was mixed using a vortex mixer.
The sodium hydroxide was used to instantaneously quench the reaction (see 7.2.1.6) and
prevent any further enzymatic activity. At 1 minute intervals further samples were taken up
to a total of 30 minutes and similarly quenched. Stirred-batch reactions performed at 40°C
were also run for a total of 330 minutes, with samples taken every 10 minutes. Stirred-batch
reactions were performed in duplicate. Each sample generated was analysed by HPLC (see

7.2.1.7) and the sugar profile determined.

7.2.1.6 Reaction quenching efficiency

To prevent samples taken during stirred-batch reactions from undergoing further enzymatic
reaction prior to analysis, it was necessary to instantaneously quench the reaction. Shieh “3)
and Taddei ®¥ working with p-galactosidase from Aspergillus oryzae used boiling as a
means of quenching samples taken from chromatographic columns. Their samples were
placed in a boiling waterbath for 3 minutes to eliminate all enzymatic activity. However,
boiling the samples would not have instantaneously quenched the reaction due to the period
of time required to heat the samples to >85°C to denature the enzyme. In this research,
samples were taken every 1 minute and required instantaneous reaction quenching, so that an
accurate reaction sugar profile against time could be determined. For this reason, an alkali

t " was preferred.

quenching method previously used by Wes
West 7 evaluated the use of 0.05M sodium hydroxide to quench reaction samples
containing B-galactosidase from Aspergillus oryzae. West found that equivolumes of sample
and 0.05M sodium hydroxide produced a mixture with a pH between 12-13, far outside the
pH range for enzymatic activity. It was also found that alkali quenched samples frozen,
thawed, and left at room temperature for 16 hours prior to analysis, gave identical degrees of
lactose conversion as found for duplicate quenched samples analysed immediately after
collection. This showed that the alkali quenching had eliminated all enzymatic activity and
that storage of samples containing alkali did not affect the sugar profiles. An additional

advantage to this method was that the total sample volume was increased, which provided
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Each sample to be analysed was transferred to a 10 cm? sterile polypropylene Plastpal(® luer
slip syringe (Fisher Scientific, Leics, UK) fitted with a 13mm 0.45um PVDF syringe filter
(Whatman International Limited, Maidstone , Kent, UK) and the sample was filtered into a
1.5 cm’ capacity glass autosampler vial (Fisher Scientific, Leics, UK). The vials containing
the filtered samples were placed on the autosampler carousel (60 vial capacity) along with
1%"/v standards of lactose monohydrate, glucose and galactose, which were diluted with
0.05M sodium hydroxide (1:1) as for the samples. In the absence of an oligosaccharide
standard, the lactose monohydrate standard was used to quantify oligosaccharides detected in
the product mixture, which is common practice in the literature (7.23.3043.51) " The HPLC was

operated using the following conditions:

column temperature - 85°C
mobile phase - water

mobile phase flowrate - 0.5 cm® min™

A typical chromatogram obtained for a reaction sample is shown in Figure 7.3.

Trisaccharides Lactose

tals

Glucose

Penta-, Tetra-, Galactose

oligosaccharides

Figure 7.3. A typical chromatogram obtained of products formed during
hydrolysis of lactose monohydrate by B-galactosidase from
Aspergillus oryzae.
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The chromatographic data obtained for each stirred-batch reaction performed was entered
into an Excel spreadsheet and the sugar profile for each sample was calculated. Examples of

the type of spreadsheets produced are shown in Appendix A-1.

7.2.2 Stirred-batch reactions using glutaraldehyde insolubilised f-galactosidase from
Aspergillus oryzae (Biolactase F)
Stirred-batch reactions were performed using glutaraldehyde insolubilised B-galactosidase

from Aspergillus oryzae (Biolactase F) and the results obtained are presented in Chapter 2.

7.2.2.1 Preparation of gutaraldehyde insolubilised pB-galactosidase from Aspergillus
oryzae (Biolactase F)
A diagrammatic representation of the insolubilisation procedure is presented in Appendix

A-3. The procedure used was divided into three stages and these were:

1.) Soluble enzyme preparation.
2.) Glutaraldehyde cross-linking of enzyme.

3.) Final solution preparation.

The soluble enzyme preparation involved the removal of insoluble material and temperature
labile contaminating enzymes from the soluble PB-galactosidase solution, which produced a

‘clean’ enzyme solution for glutaraldehyde cross-linking.

Experiments were performed that optimised the reaction conditions required to cross-link the
enzyme. These experiments were based on the work performed by other researchers
(L1219 although no methods were found in the literature specifically for the
glutaraldehyde insolubilisation of B-galactosidase from Aspergillus oryzae. The experiments
showed that the insolubilisation process was dependent on; the concentration of the ‘clean’
enzyme concentration, the concentration of the glutaraldehyde used, the pH, the incubation
temperature, and the duration of the incubation. After suitable incubation of the ‘clean’

B-galactosidase with glutaraldehyde, insolubilisation of the enzyme was produced and this is

shown in Figure 7.4.
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Figure 7.5. The effect of settling time on the narrowing of insolubilised
B-galactosidase particle size distribution.
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7.2.3 Rate-zonal batch centrifugation reactions

Rate-zonal centrifugation reactions were performed using soluble and insolubilised
B-galactosidase from Aspergillus oryzae (Biolactase F) and the results obtained are presented

in Chapter 4 and 5.

7.2.3.1 Preparation of linear lactose monohydrate density gradients
Linear lactose monohydrate density gradients were prepared using the under-layering
gradient technique described in 4.2.2 and Figure 4.4. The gradients were hand-formed rather

than by using an automatic continuous gradient former, such as that shown in Figure 4.5. To

produce a linear density gradient ranging from 10%"/v to 40%" /v lactose monohydrate the
following solutions were required; 10, 15, 20, 25, 30 and 40%" /v lactose monohydrate. The

main experiments presented in Chapters 4 and 5 were performed at 40°C and so the

formation of a gradient at this temperature will be described.

Solutions of lactose monohydrate (100 cm®) at the concentrations described above were
prepared using degassed HPLC-grade water (see 7.2.1.4). Degassed water was essential to
prevent bubble formation within the gradient during a reaction. The solutions were
incubated in a waterbath at 40°C, for at least 15 minutes to allow the solutions to
attemperate. The batch centrifuge reactions were performed in duplicate and so two 50 cm’
polycarbonate centrifuge tubes (Beckman Instruments, High Wycombe, UK) were placed in
a waterbath at 40°C, with the tubes submerged to within 1 cm of the top of the tube. An

example of the centrifuge tubes used is shown in Figure 7.7.

The tubes were allowed to attemperate, so that expansion or contraction did not occur during
the under-layering process. Using a 10 cm?® sterile polypropylene Plastpak® luer slip syringe
fitted with a 18 gauge stainless steel needle (12 cm) 8cm® of 10%"/v lactose monohydrate
solution was withdrawn from its volumetric flask (100 cm®). The syringe needle had been
purpose made by cutting a 18 gauge needle with a length of 20 cm (Fisher Scientific, Leics,
UK) to 12 cm and grinding a flat profile on the needle tip. This was done to allow the needle
to locate flush with the tube bottom and to reduce the turbulence produced during loading.
Air was expelled from the syringe by expelling 2 cm® of the lactose monohydrate solution
and the tip of the needle was then placed at the bottom of the tube. The solution was

expelled over a period of ~30 seconds (12 cm’ min") and the needle was removed with
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At the end of a run, the centrifuge tubes were removed and using a Class A Bibby E-Mil®
borosilicate blow-out type glass pipette (Fisher Scientific, Leics, UK) 2 cm® fractions were
removed by maintaining the pipette tip just below the meniscus surface, as the gradient level
drops (see Figure 4.6, method B). Each fraction taken was immediately quenched with 2 cm®
of 0.05M sodium hydroxide and the fractions were analysed by HPLC, as described in
7.2.1.7. The HPLC data was entered into an Excel spreadsheet to determine the sugar profile

of each sample.

7.2.3.3 Further experimental methods

The concentration profile of lactose monohydrate density gradients was determined by
measuring the refractive index of sequential samples taken against the values obtained for
standard lactose monohydrate solutions. The refractive index measurements were made
using an Index Instruments Model GPX-37 Automatic Refractometer (Index Instruments,
Huntingdon, Cambs, UK). The density of lactose monohydrate solutions was measured
using a Parr Model DMA 60 Density Meter (Parr Scientific, Raynes Park, London) and using
a 10cm3 glass density bottle (Fisher Scientific, Leics, UK). Viscosity was measured using a

Cannon-Fenske No 50 and No 100 U-tube glass viscometer (Fisher Scientific, Leics, UK).

Protein assays were performed using the Bio-Rad protein assay reagent (Bio-Rad, Herts,
UK), which consists of an acidic solution containing Coomassie Brilliant Blue G-250 dye.
The assay involved mixing 0.1 cm’ of test sample with 5 cm’ of diluted assay reagent (1:4)
and incubating at ambient temperature for 10 minutes. The absorbance of each sample was
measured at 595nm using a Perkin Elmer Model Lamda 12 UV/Visible Spectrophotometer
(Perkin-Elmer, Cambs, UK) using polystyrene cuvettes with a pathlength of 10mm and a
volume of 1.6 cm® (Fisher Scientific, Leics, UK). The protein concentration (mg cm”) was
determined by comparison to the absorbance values obtained from standard solutions of

Bovine Serum Albumin Fraction V (Sigma-Aldrich, Dorset, UK).

The particle size distributions presented in 5.12 and 7.5 were obtained using a Malvern
Instruments Model 2600c Droplet and Particle Sizer (Malvern Instruments, Worcester, UK).
Approximately 0.5 cm’ of the insolubilised B-galactosidase suspension was placed in an
stirred optical cell located on the instruments optical bed. The laser beam passing through
the cell is diffracted by the particles and the diffraction pattern produced is used to calculate

the particle size distribution.
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Appendix A-1

(Examples of soluble and insolubilised stirred-batch reaction Excel spreadsheets)

All the key experimental data 1s available on disk.
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Soluble B-galactosidase stirred-batch reaction Excel spreadsheets
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Appendix A-2

(Kinetic model Excel spreadsheet calculations)
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Soluble B-galactosidase from Aspergillus oryzae
(Biolactase F) spreadsheets
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Insolubilised B-galactosidase from Aspergillus oryzae
(Biolactase F) spreadsheets
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Appendix A-3

(Preparation of glutaraldehyde insolubilised B-galactosidase)
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Preparation of insoluble B-galactosidase from Aspergillus oryzae (Biolactase F) using
glutaraldehyde as a cross-linking Agent

Enzyme Preparation

1g of Biolactase F dissolved in 100 cm® of
degassed HPLC-grade water (10 mg cm™),
pH adjusted to 5.2

centrifuged at 3 500 r.p.m. for 20 mins at 20 °C

Insoluble material
removal

supernatant decanted to clean
centrifuge tubes

Removal of temperature
labile contaminating

/ enzymes

incubate at 55°C for 30 mins, to precipitate
temperature sensitive enzymes

v

centrifuged at 3 500 r.p.m. for 10 mins at 20°C

v

supernatant decanted and the
precipitate discarded

‘clean’ enzyme solution
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Glutaraldehyde Cross-linking

20 cm’ of ‘clean’ enzyme placed in
a 100 cm® medicine flat bottle and
10 cm® of 4%"/v glutaraldehyde added,
and well mixed by shaking the bottle

/ See Figure 7.4

incubated at 25 °C for 18 hours

precipitated material re-dispersed
by shaking bottle and placed in a
centrifuge tube

centrifuged at 3 500 r.p.m. for 10 mins
at 20 °C

Unreacted glutaraldehyde

/ and free-enzyme removal
v

supernatant decanted and discarded

pelleted material re-suspended in
20 cm® of degassed HPLC-grade water
pH 5.2 and mixed thoroughly using a
stirring rod

solution centrifuged at 3 500 r.p.m.
for 10 mins at 20°C
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Unreacted glutaraldehyde

/ and free-enzyme removal
v

supernatant decanted and discarded

v

pelleted material re-suspended in 20 cm’
HPLC-grade water (pH 5.2) and mixed using a
stirring rod

solution placed in a centrifuge tube
and centrifuged at 3 500 rpm for
10 mins at 20 °C

I,Um‘eacted glutaraldehyde ‘
and free-enzyme removal

v

supernatant decanted and discarded

v

pelleted material ground to a paste
and solution made up to 10 cm” using
pH 5.2 HPLC-grade water

Final Solution Preparation

re-suspended pelleted material

whirly-mixed for 1 min and left -
for 30 mins to allow largest
particulate material to settle to
bottom of tube
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|

supernatant decanted and
sedimented material discarded

insoluble, cross-linked enzyme suspension

activity assay performed as described in 7.2.1.2,
and suspension diluted to the desired stirred-batch
or top-layering solution concentration
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Appendix A-4

A - Published in the proceedings of the International Conference on Process Innovation and
Intensification, IChemE Research Event, 21-22 October 1999 held at the G-Mex Centre,
Manchester, UK.

B - Published in The Transactions of the Institution of Chemical Engineers, Part C, 2000,
Number C1, Volume 78: 35. Special Topic Issue - Biochemical Engineering at

Research 2000.
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