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Abstract The success of mainstream computing is largely due to the widespread
availability of general-purpose architectures and of generic approaches that can be
used to solve real-world problems cost-effectively and across a broad range of ap-
plication domains. In this chapter, we propose that a similar generic framework is
used to make the development of autonomic solutions cost effective, and to estab-
lish autonomic computing as a major approach to managing the complexity of to-
day’s large-scale systems and systems of systems. To demonstrate the feasibility of
general-purpose autonomic computing, we introduce a generic autonomic comput-
ing framework comprising a policy-based autonomic architecture and a novel four-
step method for the effective development of self-managing systems. A prototype
implementation of the reconfigurable policy engine at the core of our architecture is
then used to develop autonomic solutions for case studies from several application
domains. Looking into the future, we describe a methodology for the engineering
of self-managing systems that extends and generalises our autonomic computing
framework further.

1 Introduction

The last decade has brought revolutionary transformations to the way in which In-
formation and Communication Technologies (ICT) are used to conduct business
and research and to provide services in all sectors of the society [26]. The ability
to accomplish more, faster and on a broader scale through expert use of ever more
complex ICT systems is at the core of today’s scientific discoveries, newly emerged
services and everyday life. Autonomic computing represents an effective approach
to managing the spiralling complexity of these systems by delegating their configu-
ration, optimisation, repair and protection to the systems themselves [15, 21].
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The research efforts of the past few years have generated a wealth of knowl-
edge on what autonomic systems should look like [9, 13, 21, 31, 34] and what
best practices to follow in building them [4, 16, 41, 43]. This progress is to a great
extent a by-product of the effort that went into the development of successful au-
tonomic solutions addressing specific management tasks in real-world applications
[8, 25, 27, 40, 42]. While these developments demonstrate the feasibility of the auto-
nomic computing approach to complexity management, the current use of bespoke
and domain-specific architectures, and of dedicated models and policies limits sig-
nificantly the cost-effectiveness and reusability of today’s autonomic solutions.

These limitations resemble the problems encountered in the early days of main-
stream computing, and overcome successfully through the use of general-purpose
architectures and generic approaches for the development of real-world applications
across multiple application domains. We therefore propose that an equally generic
framework is used to make the development of self-managing systems cost effec-
tive, and to drive standardisation, component reuse and user adoption in the realm of
autonomic computing. Given that policy-based autonomic computing represents the
most advanced approach to developing self-managing systems of practical utility,
we describe below the criteria that a policy-based autonomic computing framework
needs to satisfy in order to qualify as “general purpose”:
C1 Support for the whole range of software, hardware and data components

encountered in real-world ICT systems. To enable the development of ef-
fective autonomic systems for real-world applications, the framework should
support the organisation of heterogeneous collections of existing and future
ICT components into self-managing systems. Both components specifically de-
signed for inclusion into a self-managing system (i.e., autonomic-enabled ICT
resources) and components not originally intended for this purpose (i.e., legacy
ICT resources) should be catered for.1

C2 Support for a broad spectrum of self-* functional areas and autonomic
computing policies. The framework should aid the development of self-manage-
ment capabilities spawning a rich spectrum of self-* functional areas, e.g., self-
configuration, self-healing, self-optimisation and self-protection [21, 31, 34].
This must be achieved through supporting all types of autonomic computing
policies, including action, goal and utility-function policies [44, 45].

C3 Support for the cost-effective development of self-managing systems for a
large variety of application domains and use cases. The framework must re-
duce the effort and costs incurred in the development of today’s autonomic sys-
tems significantly through enabling the extensive reuse of components and the
sharing of autonomic computing models and policies. It should drive the stan-
dardisation of interfaces, policies, models and components for autonomic com-
puting, and should allow and encourage the modular development of complex
self-managing systems and systems of systems. Last but not least, the frame-
work must provide a generic method for developing autonomic systems from
any combination of legacy and/or autonomic-enabled ICT resources.

1 The ICT components to be integrated into an autonomic system will be termed (ICT) resources.
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To demonstrate the feasibility of general-purpose autonomic computing, we in-
troduce a novel policy-based autonomic computing framework comprising an auto-
nomic architecture designed around a reconfigurable policy engine, and a four-step
method for the effective development of self-managing systems. This framework
builds on recent advances in autonomic computing [9, 13, 17, 34], and extends
the author’s previous work in this area [4, 5, 6, 7] in several new directions. Thus,
we describe for the first time how multiple instances of the same general-purpose
autonomic architecture can be organised into self-managing systems of systems
by means of a new type of autonomic policy termed a resource-definition policy.
Also, we present the first-ever integration of quantitative model checking techniques
[23, 24] into autonomic policy engines, and show how the use of this new capability
enables the specification of powerful utility-function policies. Finally, we present a
new four-step method for the development of self-managing systems starting from a
model of their ICT resources, and we illustrate its application to several case studies
that spawn different application domains and employ a wide range of policy types.

The remainder of the chapter is organised as follows. In Sect. 2, we contrast
our framework with other approaches to autonomic solution development. We then
describe the general-purpose autonomic architecture and the reconfigurable policy
engine at its core in Sect. 3 and 4, respectively. A prototype implementation of the
policy engine is presented in Sect. 5, followed by the description of our generic
method for the development of self-managing systems in Sect. 6, and by several
case studies that illustrate its use in a number of different real-world applications
in Sect. 7. Sect. 8 analysis the extent to which our candidate general-purpose au-
tonomic framework satisfies the criteria stated at the beginning of the chapter, and
suggests ways for extending our current results.

2 Related Work

The autonomic infrastructure proposed in [35] is retrofitting autonomic function-
ality onto legacy systems by using sensors to collect resource data, gauges to in-
terpret these data and controllers to decide the “adaptations” to be enforced on the
managed systems through effectors. This infrastructure was successfully used to
monitor, analyse and control legacy systems in applications such as spam detection,
instant messaging quality-of-service management and load balancing for geograph-
ical information systems [19]. Our framework is building on the powerful approach
in [19, 35], and has the added capability to handle heterogeneous types of resources
unknown until runtime, and to support the development of autonomic systems of
systems through the use of resource-definition policies.

In [20], the authors define an autonomic architecture meta-model that extends
IBM’s autonomic computing blueprint [16], and use a model-driven process to
partly automate the generation of instances of this meta-model. Each instance is
a special-purpose organic computing system that can handle the use cases defined
by the model used for its generation. Our general-purpose autonomic architecture
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eliminates the need for the 19-activity generation process described in [20] by us-
ing a universal policy engine that can be dynamically redeployed to handle any use
cases encoded within its resource model and policy set.

Several research projects propose the use of Model-Driven Architecture (MDA)
techniques to develop autonomic computing policies and self-managing systems
starting from high-level behavioural models of the system or of its components
[10, 36, 39]. Two of these approaches [10, 36] are targeted at bespoke systems whose
components already exhibit sophisticated autonomic behaviour, and thus cannot be
readily extended to handle generic legacy resources. In contrast, our framework can
accommodate any type of ICT resource whose characteristics can be modelled as
described in Sect. 6. The preliminary work described in [39] is closer to our ap-
proach in that it advocates the importance of using MDA techniques in the devel-
opment of generic self-managing systems, however the authors do not substantiate
their proposal with any concrete solution, but rather qualify it as an open challenge.

A number of other projects have investigated isolated aspects related to the de-
velopment of autonomic systems out of non-autonomic components. Some of these
projects addressed the standardisation of the policy information model, with the
Policy Core Information Model [30] representing the most prominent outcome of
this work. Recent efforts such as Oasis’ Web Services Distributed Management
(WSDM) project were directed at the standardisation of the interfaces through
which the manageability of a resource is made available to other applications
[32]. An integrated development environment for the implementation of WSDM-
compliant interfaces is currently available from IBM [17].

In [12], the authors take a view similar to ours by introducing a paradigm termed
model-driven autonomic computing, and explaining that the model-based validation
of self-management decisions represents a more reliable and flexible approach than
the use of pre-set policies. A powerful hierarchical model of NASA’s Autonomous
Nano-Technology Swarm missions is successfully used in [12] to achieve the self-
managing functionality that these missions depend on, and thus to illustrate the ben-
efits of the approach. Our work complements the results in [12] with a new model-
based approach to developing self-management functionality and a generic method
that uses existing tools and standards for the implementation of autonomic systems.

Finally, we build on recent advances in component-based programming, by using
an approach to ICT resource composition and dynamic configuration that resembles
the one supported by reflective component models such as FRACTAL [3]. In addi-
tional to the FRACTAL functionality, our framework automates the generation of
most component interfaces and the management of the targeted system.

3 General-Purpose Autonomic Architecture

Fig. 1 depicts our general-purpose autonomic architecture, a preliminary version of
which was introduced in [5, 6]. The core component of the architecture is a universal
policy engine that organises a heterogeneous collection of legacy ICT resources
and autonomic-enabled resources into a self-managing system. To reduce the effort
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required to develop autonomic solutions, the policy engine can handle resources
whose types are unknown during its implementation and deployment. This unique
capability is achieved through runtime configuration: a model of the system to be
managed is supplied to the policy engine for this purpose. As a result, the engine
can implement the high-level goals described by a set of user-specified policies that
make reference to the resources defined in the system model.

As recommended by IBM’s architectural blueprint for autonomic computing
[16], standardised adaptors are used to expose the manageability of all types of
legacy ICT resources in a uniform way, through sensor and effector interfaces. The
autonomic-enabled resources in the self-managing system are either typical ICT re-
sources designed to expose sensor and effector interfaces allowing their direct inter-
operation with the policy engine, or other instances of the architecture. The latter
option is possible because the policy engine exposes the entire system as an atomic
ICT resource through high-level sensors and high-level effectors. A detailed descrip-
tion of the architecture and an overview of existing standards and technologies that
can be used to implement it in practice are available in [5, 6].

Fig. 1 UML component diagram of the autonomic architecture. The architecture supports the de-
velopment of two types of autonomic systems-of-systems: a hierarchical topology that allows an
instance of the policy engine to manage other instances of the architecture (i.e., the managed re-
sources n+1 to n+m in the diagram); and a federation of collaborating instances of the architecture
that use each others’ high-level sensors and effectors, as shown by the dashed lines in the diagram.
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4 Reconfigurable Policy Engine

The internal architecture of our policy engine (Fig. 2) is influenced by the types of
policies it implements and by its ability to handle resources whose characteristics
are supplied to the engine at runtime. A “coordinator” module is employing the
following components to implement the closed control loop of an autonomic system:
• The runtime code generator produces the necessary interfaces when the policy

engine is configured to manage new types of resources or supplied with new
resource-definition policies. When a new system model is used to configure the
policy engine, manageability adaptor proxies are generated that allow the engine
to interoperate with the manageability adaptors for the resource types specified
in the system model. Likewise, when resource-definition policies are set up that
specify new ways in which the policy engine should expose the ICT resources it
manages, high-level manageability adaptors are generated.

• The manageability adaptor proxies are thin interfaces allowing the policy engine
to communicate with the autonomic-enabled resources and the manageability
adaptors for the legacy resources in the system.

• The high-level manageability adaptors expose the system state and configura-
tion in a format that allows its integration within other instances of the architec-
ture. The way in which these interfaces are dynamically specified by means of
resource-definition policies is described later in the chapter.

Fig. 2 Architecture of the
reconfigurable policy engine.
The shaded components are
implemented by the proto-
type described in Section 5.
A standards-based database
driver will be added in a future
version of the prototype. The
machine learning modules
represent the focus of ongoing
research efforts by the auto-
nomic computing community,
and will be included in a ref-
erence implementation of the
engine when the results of this
research start to crystallise.



General-Purpose Autonomic Computing 7

• The scheduler is used to support the scheduling operators appearing in policy
actions for the goal and utility-function policies handled by the policy engine.

• The resource discovery component is used to locate the resources to be managed
by the policy engine.

• The database driver is used to maintain policy engine data such as historical
resource property values in an external persistent storage.

• The machine learning modules use machine learning techniques [2] to derive
and/or refine a behavioural model of the managed resources based on sensor data
and inside policy engine information. This enables the engine to support goal
and utility-function policies for systems for which in-depth knowledge about
the behavioural characteristics of the managed resources cannot be supplied by
system administrator. The usefulness of a Modeler component for the imple-
mentation of utility-function policies is mentioned in [44], although the authors
are not specific about the learning algorithms that such a component might use.

• The probabilistic model checker enables the policy engine to take full advan-
tage of the behavioural model supplied by the system administrator or built by
its machine learning modules. This is done by using probabilistic model check-
ing to establish quantitative properties of the system [24] and thus to implement
the user-specified policies. As will be illustrated by a couple of the case stud-
ies in Sect. 7, the integration of these quantitative verification techniques into
the policy engine enables system administrators to specify powerful goal and
utility-function policies that would have been extremely complicated or even
impossible to express otherwise. Another use envisaged for the model checker
is to help verify the policies implemented by the engine as suggested in [22].

5 Prototype Implementation

In this section we overview a prototype implementation of our autonomic architec-
ture that was originally introduced in [7], and we describe for the first time two of
its new features: the integration of a probabilistic model checker with the policy
engine, and the implementation of resource-definition policies.

Two major choices influence the realisation of an instance of the architecture:
the technology used to represent the system model; and the technology chosen for
the implementation of the policy engine components. We chose to represent system
models as plain XML documents that are instances of a pre-defined meta-model en-
coded as an XML schema. This choice was motivated by the availability of numer-
ous off-the-shelf tools for the manipulation of XML documents and XML schemas
that are largely lacking for the other technologies we considered (e.g., [1, 29, 32]).
In particular, by using existing XSLT engines and XML-based code generators we
shortened the prototype development time and avoided the need to implement be-
spoke components for this functionality.
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Fig. 3 Meta-model of an ICT system

As shown in Fig. 3, an ICT system is a named set of resources (resource in
the UML diagram), each comprising a unique identifier ID and a set of resource
properties with their characteristics. A resource property is associated a unique ID,
and has a data type (i.e., propertyDataType). Several other property characteristics
are defined in the meta-model:
• mutability—the WS-RMD MutabilityType [33] specifies if the property is “con-

stant”, “mutable” or “appendable”;
• modifiability—tells if the property is “read-only”, “read-write”, “write-only” or

“derived” from other properties and the behavioural model of the system;
• subscribeability—specifies whether a client such as the policy engine can sub-

scribe to receive notifications when the value of this property changes;
• primaryKey—indicates whether the property is part of the property set used to

identify a resource instance among all resource instances of the same type.
Our prototype policy engine and the manageability adaptors enabling its interoper-
ation with legacy resources were implemented as web services in order to leverage
the platform independence, loose coupling and security features of this technology
[46]. The runtime configuration of the engine required the extensive use of tech-
niques available only in an object-oriented environment, e.g., runtime generation
of data types and manageability adaptor proxies, reflection and generics. Based on
these requirements, J2EE and .NET were selected as candidate development plat-
forms for the prototype engine, with .NET being eventually preferred due to its bet-
ter handling of dynamic proxy generation and slightly easier-to-use implementation
of reflection. The components included in the prototype are shown in Fig. 2.

The free, open-source probabilistic model checker PRISM [14] developed by the
Quantitative Analysis and Verification Group at the University of Oxford was cho-
sen for integration with the original version of the policy engine described in [7].
This choice was based on an extensive performance analysis of a range of model
checkers [18] that ranked PRISM as the best option for analysing large behavioural
models such as the ones encountered in autonomic computing systems. Further-
more, PRISM comes with a command-line interface that made possible its direct
integration into the existing version of the policy engine, and the runtime execution
of quantitative analysis experiments [23, 24] that self-managing systems can use to
realise powerful goal and utility-function policies as illustrated in Sect. 7.3–7.4.
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Another novel feature of the policy engine that we describe for the first time is
its ability to handle resource-definition policies, i.e., policies of the form

RESDEF(newResourceId,propertyDef1, . . . ,propertyDefm), (1)

where newResourceId is a string corresponding to the ID element of a resource
definition from the meta-model in Fig. 3 and

propertyDefi = (propertyIdi,expri,subscribeabilityi,primaryKeyi), 1≤ i≤ m (2)

define the properties of the new resource type. The expri component in (2) tells the
policy engine how to calculate the value of the i-th resource property as a function
of the resources in the policy scope, or is one of INTEGER, DOUBLE or STRING
to indicate that property i is a “read-write” property with one of these primitive
types. The other components of propertyDefi correspond to the property charac-
teristics from the system meta-model in Fig. 3 that cannot be inferred from expri.
To implement a resource-definition policy, the policy engine generates dynamically
the data type for the new resource and its manageability adaptor (i.e., a new web
service whose URL is built by replacing the suffix PolicyEngine.asmx from
the policy engine URL with newResourceIdManageabilityAdaptor.asmx).
This manageability adaptor exposes objects of the new data type that are created and
whose fields are set in accordance with the property definitions (2). The case study
presented in Sect. 7.5 illustrates the use of resource-definition policies.

6 A Generic Method for the Development of Autonomic Systems

Our method for the development of autonomic systems comprises four steps:

1. development of a model of the system to which autonomic capabilities are added;
2. generation of manageability adaptors for the legacy resources in the system;
3. reconfiguration of the policy engine by means of the system model from step 1;
4. development of autonomic computing policies that handle the required use cases.

To illustrate these steps, we will apply them to a system comprising a set of services
of different priorities, subjected to different workloads, and sharing the CPU capac-
ity of the same server. The aim of the case study is to develop an autonomic solution
for managing the allocation of CPU to services such that high-priority services are
treated preferentially, subject to each service getting a minimum amount of CPU.

Several policy types are typically used in autonomic systems [44, 45]: action
policies provide a low-level specification of how the system configuration should
be changed to match its state; goal policies specify precise constraints that should
be met by varying the system configuration; and utility-function policies supply a
“measure of success” that the self-managing system should optimise by appropri-
ately varying its configuration. In our running example we will use a utility-function
policy, which is the most flexible of these policy types.
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To implement utility-function policies, the policy engine needs an understanding
of the behaviour of the system and its resources. Given a resource, we define its state
s as the vector whose elements are the read-only properties of the resource, and its
configuration c as the vector comprising its modifiable (i.e., read-write) properties.
Let S and C be the value domains for s and c, respectively.2 A behavioural model of
the resource is a function

behaviouralModel : S×C → S, (3)

such that for any current resource state s ∈ S and for any resource configuration
c ∈ C, behaviouralModel(s,c) represents the future state of the resource if its con-
figuration is set to c.

Our policy engine works both with an approximation of the behavioural model
that consists of a set of discrete values of the behaviouralModel in (3) and with
a continuous-time Markov chain (CTMC) [23] representation of (3). For our run-
ning example, we will use the former type of behavioural model; the use of CTMC
behavioural models is described in Sect. 7. As the current version of the policy
engine does not include the machine learning modules described in Sect. 4, it ac-
quires these behavioural models from the manageability adaptors for the managed
resources. With the future addition of machine learning modules (Fig. 2), the pol-
icy engine will gain the ability to use learning techniques to refine and, eventually,
to derive these behavioural models automatically based on its observation of the
managed resources.

Step 1: Model Development Let System be the set of all instances of the meta-
model in Fig. 3; the purpose of this step is to find a system model

M ∈ System (4)

that can be used to implement the desired autonomic solution. To achieve this goal,
we identify the system resources involved in the autonomic solution and their rel-
evant properties. Given the ability to reconfigure the policy engine at any time, it
makes sense to keep this model as simple as possible: additional resources and/or
resource properties can be specified in new versions of the model, and conveyed
to the policy engine as and when necessary. For instance, the single resource type
for our example system is service, and its properties are: name, a unique identi-
fier used to distinguish between different services; priority, an integer value;
cpuAllocation, the percentage of the server CPU allocated to the service;
responseTime, the service response time, averaged over the past one-second
time interval; interArrivalTime, the request inter-arrival time, averaged over
the past one-second time interval; and behaviouralModel, an approximation
of the service behaviour that provides information on how the service response time
varies with its CPU allocation and the request inter-arrival time.

Each resource property is then analysed in order to identify its value domain,
mutability, modifiability and all of the other characteristics specified by the meta-

2 Note that S and C are fully specified in the system model.
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model in Fig. 3. This information is encoded as an instance of the system meta-
model, ready to be used in the subsequent steps of the method. By analysing these
resource properties for our running example and representing the analysis results as
an instance of the system meta-model, we produced with the system model in Fig. 4.

Step 2: Manageability Adaptor Generation Given a system model M, this step
generates manageability adaptors for each type of legacy resource. Off-the-shelf
tools can be used to automate most of this generation. First, an XSLT transformation

schemaGen : System→ XmlSchema (5)

is applied to the system model in order to obtain an XML schema for the resource
types in the system. The XML schema generated when this transformation is applied
to our sample system model is depicted as UML in Fig. 5a. A standard data type
generator such as Microsoft’s XML Schema Definition tool [28] is then used to
automatically generate the data type set associated with this schema:

<system xmlns=“...”>

<name>server</name>

<!-- Services running within a server -->
<resource>
<ID>service</ID>

<property>
<ID>name</ID>
<propertyDataType>
<xs:simpleType name=“serviceName”>
<xs:restriction base=“xs:string”/>

</xs:simpleType>
</propertyDataType>
<mutability>constant</mutability>
<modifiability>read-only</modifiability>
<subscribeability>false</subscribeability>
<primaryKey>true</primaryKey>

</property>

<property>
<ID>priority</ID>
. . .

</property>

<property>
<ID>cpuAllocation</ID>
<propertyDataType>
<xs:simpleType name=“serviceCpuAllocation”>
<xs:restriction base=“xs:int”>
<xs:minInclusive value=“0”/>
<xs:maxInclusive value=“100”/>

</xs:restriction>
</xs:simpleType>

</propertyDataType>
<mutability>mutable</mutability>
<modifiability>read-write</modifiability>
<subscribeability>false</subscribeability>
<primaryKey>false</primaryKey>

</property>

<property>
<ID>responseTime</ID>
. . .

</property>

<property>
<ID>interArrivalTime</ID>
. . .

</property>

<property>
<ID>behaviouralModel</ID>
<propertyDataType>
<xs:complexType

name=“serviceBehaviouralModel”>
<xs:sequence>
<xs:element name=“modelElement”

type=“serviceModelElement”
maxOccurs=“unbounded”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=“serviceModelElement”>
<xs:sequence>
<xs:element name=“responseTime”

type=“serviceResponseTime”/>
<xs:element name=“interArrivalTime”

type=“serviceInterArrivalTime”/>
<xs:element name=“cpuAllocation”

type=“serviceCpuAllocation”/>
</xs:sequence>

</xs:complexType>
</propertyDataType>
<mutability>constant</mutability>
<modifiability>read-only</modifiability>
<subscribeability>false</subscribeability>
<primaryKey>false</primaryKey>

</property>

</resource>
</system>

Fig. 4 System model for the running example
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Fig. 5 Generated XML schema (a) and manageability adaptor (b) for the sample system

dataTypeGen : XmlSchema→ PDataType. (6)

Finally, a simple transformation was implemented to automate the generation of
manageability adaptor stubs for the legacy resources in the system:

adaptorGen : XmlSchema→ PManageabilityAdaptor. (7)

As shown in Fig. 5b, which depicts the data type (i.e., service) and the manage-
ability adaptor (i.e., ServiceManageabilityAdaptor) for the system in our running
example, all manageability adaptors are subclassing the generic abstract web ser-
vice ManagedResource<T>. The bulk of the sensor and effector functionality as-
sociated with a manageability adaptor is implemented in this base abstract class,
and only a small number of simple, resource-specific methods that are declared
abstract in ManagedResource<T> need to be implemented manually in each man-
ageability adaptor. Note that the policy engine is itself implemented as a subclass
of ManagedResource<T>, so that an instance of the architecture can be readily in-
cluded as a managed resource into a larger autonomic system as described in Sect. 3.

To complete this step, the manageability adaptor produced by the generator
in (7) and depicted in Fig. 5b was manually extended, and then connected to a
server discrete-event simulator running a high-priority ‘premium’ service and a
low-priority ‘standard’ service. These services handled simulated requests with
normally-distributed CPU utilisation and exponentially-distributed inter-arrival time.

Step 3: Engine Configuration This step consists in supplying the system model
to the instance of the policy engine used in the autonomic solution. As stated before,
the policy engine was realised as a web service, so we implemented a web interface
for its simple configuration. Fig. 6 shows a snapshot of this interface after the sys-
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Fig. 6 Policy engine configuration

tem model from our running example, and the utility-function policy that will be
presented in step 4 were supplied to the engine.

Step 4: Policy Development In this step, autonomic computing policies are de-
signed that support the use cases of the envisaged autonomic solution. The scope,
priority, condition and action components of these policies make reference to the
resources and resource properties defined in the system model used to configure the
policy engine. Each of these policy components can be specified using a rich set of
operators and functions [6] that allow the definition of action, goal, utility-function
and, in the latest version of the engine, of resource-definition policies.

The policy set is applied to all resources whose locations are known to the policy
engine,3 and which are in the scope of the policies. Policy development is generally
a complex, error-prone and iterative process [4], and our framework improves the
effectiveness of this process significantly by: (a) enabling and encouraging the reuse
of system models and policies; and (b) simplifying the iterative development and
testing of policies for new types of resources and of policies that explore the use of
new properties of existing resources in novel ways.

For our autonomic solution, we defined a utility function that models the business
gain associated with running a set of service resources R with different levels of
service:

utility(R) = ∑
r∈R

r.priority∗min(1000, max(0,2000− r.responseTime)).

3 The policy engine employs a resource discovery service (Fig. 2) to obtain the URLs of the re-
sources to be managed.
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Table 1 The arguments of the MAXIMIZE(R, utility, property, capacity, min, max, model) policy
action for the running example of an autonomic system

R service
utility SUM(service.priority∗MIN(1000,MAX(0,2000− service.responseTime)))
property service.cpuAllocation
capacity 100
min 15
max 100
model service.responseTime(service.interArrivalTime,service.cpuAllocation) =

service.behaviouralModel.responseTime(service.behaviouralModel.interArrivalTime,
service.behaviouralModel.cpuAllocation)

Fig. 7a depicts the utility function for a server running a “premium” service with
priority 100 and a “standard” service with priority 10. The policy action imple-
mented by the autonomic system (Fig. 6 and Table 1) was defined by means of the
MAXIMIZE(R, utility, property, capacity, min, max, model) operator that uses the
information about the system behaviour encoded in model to set the value of the
specified resource property for all resources in R such as to: (a) maximize the value
of the utility function; and (b) ensure that the value of property stays between min
and max, and that the sum of the property values across all resources in R does not
exceed the available capacity.

This policy provides the definition of the utility function, and the link between
the responseTime, interArrivalTime and cpuAllocation properties
of a service resource and the components of its behaviouralModel property.
Each time it evaluates the utility-function policy, the policy engine uses this infor-
mation to select the elements from the behavioural model that are in the proximity
of the current state of the system; the Euclidean metric is used for this calculation.
The new configuration for the system is then chosen as the one associated with the
selected element that maximizes the value of the utility function. The experimental
results of applying this policy to our example system are presented in Sect. 7.1.

Fig. 7 Utility function (a) and service behavioural model (b) for the running example
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7 Case Studies

7.1 Utility-Driven Allocation of CPU Capacity

We start our presentation of case studies with the experimental results for the run-
ning example of an autonomic system from the previous section. Variants of this
system were used to validate autonomic computing frameworks in the past (e.g.,
[44]), hence this well-understood use case provides a good basis for a first assess-
ment of the framework. To evaluate our autonomic solution, the behavioural model
for a service was obtained from 100 runs of the server simulator in which the av-
erage service response time was recorded for 920 equidistant points covering the
entire (interArrivalTime, cpuAllocation) value domain (Fig. 7b). Fig. 8
shows a typical experiment in which the utility-function policy in Table 1 was used
to manage the allocation of CPU to our ‘premium’ and ‘standard’ services, when
their request inter-arrival times were varied to simulate different workloads. The

Fig. 8 Experimental results
for Sect. 7.1. The CPU allo-
cations for the services are
initially decreased to match
their light workload (5ms re-
quest inter-arrival time during
time interval a). As the ser-
vice workloads increase, so
do the CPU allocations, until
the CPU required to satisfy
the demand from the premium
service leaves insufficient
CPU capacity for the standard
service to make any contri-
bution to the utility function
(time interval d), hence it
is allocated the minimum
amount of CPU specified in
the policy (i.e., 15%). As soon
as less CPU capacity is re-
quired to satisfy the needs of
the premium service (time in-
terval e), the standard service
is swiftly allocated sufficient
CPU to bring it back into a
region of operation in which
it contributes to the utility
function. Subsequently, the
CPU allocations are varied
to accommodate more grad-
ual changes in the workloads
(time intervals f-g).



16 Radu Calinescu

Fig. 9 Policy engine param-
eters for the case study in
Sect. 7.2. The policy engine
is configured to monitor the
service cpuUtilisation
(i.e., the amount of CPU
utilised by the service, ex-
pressed as a percentage of its
CPU allocation) and to realise
a goal policy requiring that
the cpuUtilisation is
maintained between 55% and
80% of the allocated CPU.

policy evaluation period was set to 3 seconds for this experiment, so that the sys-
tem could self-adapt to the rapid variation in the workload of the two services. This
allowed us to measure the CPU overhead of the policy engine, which was under
1% with the engine service running on a 1.8 GHz Windows XP machine. In a real
scenario, such variations in the request inter-arrival time are likely to happen over
longer intervals of time, and the system would successfully self-optimise with far
less frequent policy evaluations.

7.2 Goal-Based Scheduling of CPU Capacity

In the absence of knowledge about the behaviour of the legacy ICT resources that
need to be organised into a self-managing system, goal policies can often be used in
conjunction with scheduling heuristics. In this section, we consider the same system
as in Sect. 7.1, but assume that a behavioural model describing the variation of the
service response time with its allocated CPU and request inter-arrival rate is not
available. Fig. 9 depicts a concise representation of the system model and a goal
policy that can be used in this scenario. The action of this goal policy is specified by
means of an expression that uses the SCHEDULE(R, ordering, property, capacity,
min, max, optimal) operator that: (a) sorts the resources in R in non-increasing order
of the comparable expressions in ordering; (b) in the sorted order, sets the specified
resource property to a value never smaller than min or larger than max, and as close
to optimal as possible; and (c) ensures that the overall sum of all property values
does not exceed the available capacity. Accordingly, the policy action in Fig. 9 will
set the cpuAllocation property of all services to a value between 15% and 100%,
subject to the overall CPU allocation staying within the 100% available capacity.
Optimally, the cpuAllocation should be left unchanged if the 55≤ cpuUtilisation≤
85, decrease by 5% if cpuUtilisation < 55 and increase by 5% if cpuUtilisation >



General-Purpose Autonomic Computing 17

85.4 The experimental results for the resulting autonomic solution (available in [7])
resemble those corresponding to the use of a utility-function policy in Sect. 7.1, but
are less effective in two important circumstances:
• several successive policy evaluations are required to handle significant changes

in the service workloads because the CPU capacity allocated to services can be
modified by only ±5% at a time;

• when insufficient CPU is available to ensure that a low-priority service runs in
an operation area that is useful for the business and the utility-function policy in
Sect. 7.1 would restrict the CPU allocated to the service to a minimum, the goal
policy gives it all available CPU, thus wasting CPU capacity unnecessarily.

7.3 Dynamic Power Management of Disk Drives

When formal methods are used in the development and/or verification of legacy
ICT resources, the behavioural models employed by these methods can often be
exploited by our framework to augment the legacy ICT resources with autonomic
capabilities. Starting from the continuous-time Markov chain (CTMC) model of a
Fujitsu disk drive in [38] and its encoding as a PRISM CTMC model [37], we built
(Fig. 10) a system model of the disk drive that can be used for the configuration of
our policy engine. We then used this system model to add self-optimisation capabil-
ities to the disk drive so that it dynamically adapted its probability of transitioning

Fig. 10 PRISM CTMC model
of a three-state Fujitsu disk
drive taken from [37], and
used to devise the system
model for the configuration of
the policy engine. The unini-
tialised PRISM constants
correspond to “read-only”
and “read-write” proper-
ties of a disk drive resource
(i.e., interArrivalTime
and switchToSleep-
Probability, respec-
tively). PRISM reward
structures (i.e., power and
queueLength) correspond
to “derived” disk drive prop-
erties.

4 The HYSTERESIS(val, lower,upper) operator used to achieve this behaviour (Fig. 9) returns -1,
0 or 1 if val < lower, lower ≤ val≤ upper or upper < val, respectively.
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Fig. 11 The utility func-
tion (8) (depicted here for
w1 = w2 = 100) was used to
achieve a user-customisable
trade-off between the disk
drive responsiveness (which
is provably proportional to
its average queueLength
[38]) and its power consump-
tion (i.e., power).

from the idle state to the low-power sleep state to changes in (a) the request inter-
arrival time; and (b) the user-specified utility function:

utility = w1 min
(

1,max
(

0,
11−queueLength)

2

))
+w2 max(0,1.2−power),

(8)
where the weights w1 and w2 are chosen depending on the circumstances in which
the disk drive is used (Fig. 11). Given this policy, the policy engine ran PRISM
experiments [24] to establish the optimal switchToSleepProbability for
the disk drive at regular, 10-second time intervals. For our simple CTMC model,
each of the these experiments took subsecond time, yielding the results in Fig. 12.

7.4 Adaptive Control of Cluster Availability

The case study presented in this section involves the adaptive control of cluster
availability within a data centre. The aim of the autonomic solution is to control
the number of servers allocated to the N ≥ 1 clusters of a data centre in order to
maximize the utility function

utility =
N

∑
i=1

priorityi ·GOAL(availabilityi ≥ target availabilityi)− ε

N

∑
i=1

serversi

(9)
subject to N

∑
i=1

serversi ≤ Total servers and requiredi ≤ serversi, (10)

where priorityi > 0, availabilityi ∈ [0,1], target availabilityi ∈ [0,1], requiredi ≥ 1
and serversi ≥ 1 represent the priority, (actual) availability, target availability, num-
ber of required servers, and number of (allocated) servers for cluster i, 1≤ i≤N, re-
spectively. The GOAL operator yields 1 when its argument is true and 0 otherwise,
Total servers≥ 1 is the total number of servers in the data centre, and 0 < ε � 1 is a
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Fig. 12 Discrete-event sim-
ulation results contrasting
our autonomic approach to
disk drive dynamic power
management (DPM) with
two standard DPM methods
[38]: the timeout method that
moves the disk drive into the
sleep state after a period of
idleness t and “awakens” it
immediately after a request
has arrived; and the N method
that moves the disk drive into
the sleep state as soon as it
becomes idle, and “awakens”
it after N requests accumulate
in its queue. The autonomic
DPM approach achieved a
better utility than the two
standard DPM methods for
most of the time, and similar
utility to the better of the two
for the rest of the time. This
is due to the good trade-off
that the autonomic approach
realised between power con-
sumption and request queue
length across a wide work-
load range, while the other
approaches are effective for
specific workloads.

constant.5 The availability of cluster i, availabilityi, is the fraction of a one-year time
period during which at least requiredi servers are usable (i.e., they are operational
and connected to an operational switch and backbone).

Like in the previous case study, we extracted the system model for the configu-
ration of our policy engine from an existing behavioural model of the targeted ICT
resource, namely from the CTMC model of a dependable cluster of workstations
introduced in [11]. This model takes into account the failure and repair rates of all
components from our targeted cluster architecture (Fig. 13a). Consequently, the pol-
icy engine can use PRISM to calculate the cluster availabilities for the data-centre
configurations satisfying (10), and to decide the number of servers that each clus-
ter should get so that the value of the utility function (9) is maximised. Given the
complexity of the CTMC behavioural model, we implemented a cluster manage-
ability adaptor that uses notifications to inform the policy engine about changes in
the number of required servers for the clusters. Hence, the policy engine recalcu-
lates the server allocations only when there is a change in the state of the autonomic

5 The second term of the utility function (9) ensures that when multiple configurations maximise
the first term, the configuration that uses the fewest servers is preferred.
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Fig. 13 Architecture of an n-server dependable cluster, taken from [11] (a), and simulation results
for a three-cluster data centre over a four-week time period (b)

system. In our simulations, this calculation took up to 30 seconds. This response
time is acceptable for the considered use case because, based on our previous ex-
perience with policy-based data centre management [4], half a minute represents a
small delay compared to the time required to provision a server when it is allocated
to a new cluster.6 The experimental results are shown in Fig. 13b.

7.5 Dynamic Web Content Generation

The last case study is extending the autonomic solution from the previous section
by incorporating the autonomic system for controlling cluster availability into an
autonomic system of systems (Fig. 14). The resource-definition policy action below
was supplied to policy engine instances within the autonomic data-centre systems:

RESDEF(businessValue,(id,CONCAT(cluster.id), false, true),
(max,SUM(cluster.priority), true, false),(actual,SUM(cluster.priority∗
GOAL(cluster.availability >= cluster.targetAvailability)), true, false)).

(11)

6 Sect. 8 suggests techniques for working around the time taken by runtime model checking when
such delays are not acceptable.
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Fig. 14 Autonomic system of
systems comprising several
instances of the data-centre
system from Sect. 7.4, and
an autonomic-enabled web
page implementing a business
dashboard. The data-centre
systems were each configured
to expose their actual and
ideal utility by means of a
resource-definition policy, and
the top-level policy engine
implements an action policy
that updates the properties of
the autonomic-enabled web
page with a summary of these
utilities.

As described in Sect. 5, this resulted in each of these policy engines dynamically
creating a new ICT resource named businessValue and comprising three “read-
only” properties: id—the concatenated identifiers of its clusters; max—its ideal
utility, i.e., the maximum possible value of the first term in (9); and actual—
the actual value of this term. A model of this synthesised ICT resource and of an
autonomic-enabled web page was then used to configure the top-level policy engine
in Fig. 14, and an action policy was used to ensure that this policy engine updates
the web page periodically with a summary based on the businessValue of each
autonomic data-centre system it knows about (Fig. 15).

Fig. 15 An autonomic-
enabled web page exposes
effectors that the top-level
policy engine uses to supply
it with summary information
about the maximum utility
and actual utility of a set of
autonomic data-centre sys-
tems (a single data-centre
system was used in the exper-
iment shown here). The web
page presents the dynamically
acquired information using a
graphical representation that
is generated at runtime using
Matlab. Thus, the informa-
tion about potential loss of
business value is conveyed in
a concise format that can be
used directly by a data-centre
manager.
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8 Summary and Future Work

The success of mainstream computing is largely due to the availability of a sys-
tem development methodology that enables and encourages standardisation, com-
ponent reuse and user adoption. Building on recent advances in autonomic comput-
ing and on our previous work on policy-based autonomic systems, we proposed a
general-purpose framework that brings similar benefits to the realm of autonomic
computing. We introduced a set of criteria for assessing the generality of autonomic
computing frameworks, and a new method for the development of self-managing
systems starting from a model of their ICT resources. Also, we presented the inte-
gration of a probabilistic model checker into an autonomic computing policy engine,
and we described how a new policy type termed a resource-definition policy can be
used to build autonomic systems of systems.

To validate our framework, we employed it to build autonomic solutions spawn-
ing a range of application domains and using a variety of autonomic computing
policies. Table 2 uses these case studies to analyse the extent to which the proposed
framework satisfies the generality criteria C1–C3 introduced in Sect. 1:
C1 In terms of supported ICT resources, our case studies demonstrate that the

framework can handle the whole range of envisaged ICT resources.
C2 The framework has been used to develop autonomic solutions in several areas of

self-* functionality, and to support all types of autonomic computing policies. To
further confirm its generality, new applications are being currently investigated
that address additional areas of self-* functionality.

C3 The autonomic systems developed for the presented case studies cover a range
of application domains, including the development of a hierarchical system of
systems. This is a good first step towards establishing that the framework sat-
isfies this criterion. More work is required to assess the feasibility of using the
framework in other use cases, and in particular in the development of federations
of collaborating autonomic systems with no centralised management.

Table 2 Summary of the case studies presented in the paper
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Fig. 16 Proposed autonomic
system development method-
ology. The autonomic archi-
tecture, policy engine and
system meta-model described
in this paper are used at the
domain-independent level,
alongside a proposed ICT on-
tology and a proposed tool for
designing the meta-model in-
stances used to configure the
policy engine. Repositories
of ICT resource definitions
and autonomic policies, and
domain-specific ICT ontolo-
gies should be available at
the level of an application
domain, while our generic
method for autonomic system
development is employed for
the cost-effective develop-
ment of autonomic systems at
the application-specific level.

Based on past experience in using a domain-specific autonomic framework [4]
to develop systems similar to those in Sect. 7.1-7.2, we estimate that the use of the
generic framework to build these systems reduced the development effort by roughly
an order of magnitude, and we expect the same to hold true for other applications.

A key feature of our autonomic computing framework is its use of runtime prob-
abilistic model checking. As shown in Sect. 7.4, model checking large systems can
incur significant overheads, and the use of the subscription-notification mechanism
supported by the framework (instead of periodical policy evaluation) is one way to
accommodate this constraint. Other approaches to be investigated include the use
of caching and pre-evaluation techniques to bypass the model checking step dur-
ing policy evaluation, and the use of a hybrid approach in which a smaller model
checking experiment is carried out to produce a close-to-optimal configuration for
the autonomic system and a faster technique is then used to refine this configuration.

In addition to reusing components and techniques across a broad range of ap-
plications, our approach to autonomic system development allows and encourages
the reuse of system models and autonomic computing policies. To take reusability
further, these models and policies should draw their elements from domain-specific
repositories of resource definitions and autonomic computing policies, respectively.
Furthermore, to maximise the sharing of models, policies, manageability adaptors
and autonomic-enabled resources, these repositories need to be built around con-
trolled ICT ontologies, as required by the methodology for the cost-effective devel-
opment of autonomic systems that we are proposing in Fig. 16. This methodology
that we are working towards is in line with the excellent principles stated in [43] and
successfully applied in the context of autonomic networking by [42].
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