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The thesis investigated progression of the central 10° visual field with structural 
changes at the macula in a cross-section of patients with varying degrees of age-
related macular degeneration (AMD).  The relationships between structure and function 
were investigated for both standard and short-wavelength automated perimetry 
(SWAP). 

Factors known to influence the measure of visual field progression were considered, 
including the accuracy of the refractive correction on SWAP thresholds and the 
learning effect.  Techniques of assessing the structure to function relationships 
between fundus images and the visual field were developed with computer 
programming and evaluated for repeatability.  Drusen quantification of fundus 
photographs and retro-mode scanning laser ophthalmoscopic images was performed.  
Visual field progression was related to structural changes derived from both manual 
and automated methods.   

Principal Findings: 

• Visual field sensitivity declined with advancing stage of AMD.  SWAP showed 
greater sensitivity to progressive changes than standard perimetry. 

• Defects were confined to the central 5°.  SWAP defects occurred at similar 
locations but were deeper and wider than corresponding standard perimetry 
defects. 

• The central field became less uniform as severity of AMD increased.  SWAP 
visual field indices of focal loss were of more importance when detecting early 
change in AMD, than indices of diffuse loss.   

• The decline in visual field sensitivity over stage of severity of AMD was not 
uniform, whereas a linear relationship was found between the automated 
measure of drusen area and visual field parameters. 

• Perimetry exhibited a stronger relationship with drusen area than other measures 
of visual function. 

• Overcorrection of the refraction for the working distance in SWAP should be 
avoided in subjects with insufficient accommodative facility. 

• The perimetric learning effect in the 10° field did not differ significantly between 
normal subjects and AMD patients. 

• Subretinal deposits appeared more numerous in retro-mode imaging than in 
fundus photography.  
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1. Introduction 

1.1 Interpretation of the Visual Field   

1.1.1 Standard Perimetric Indices and Probability Analysis 

Global indices are summary measures which describe the visual field as a single value.  

Normal databases have been established from large populations, so that indices could 

be calculated, using the STATPAC software incorporated into the perimeter for the 

Humphrey Field Analyser (HFA; Carl Zeiss Ltd., Welwyn Garden City, Hertfordshire, 

UK) (Heijl et al. 1987b) and Program J0 on the Octopus (Jenni et al. 1983).  Analysis of 

visual fields without a normal database is vulnerable erroneous confusion of subtle 

abnormalities with normal physiological variations.    Table 1-1 shows a description of 

indices of the HFA and Octopus perimeters. 

Visual field loss may be characterised by diffuse and focal components.  Diffuse loss is 

a generalised depression of the hill of vision, and may be caused by media opacities, 

miosis or defocus.  Diffuse loss is represented by the global index, MD.  Focal loss is 

sensitivity loss in a localised area of the visual field, and is represented by the PSD.  

Focal loss in glaucoma is caused by loss in the nerve fibre layer.   

STATPAC software allows for probability analysis and displays this on the standard 

HFA printout (Figure 1-1).  Probability analyses indicate the statistical likelihood of a 

measured threshold value occurring, based on a normal database of age-corrected 

values (Heijl et al. 1987b).  The Total Deviation analysis represents the threshold 

differences between the measured field and the age appropriate normal value, for each 

point in the field.  Pattern Deviation indicates the sensitivity differences from normal 

and is adjusted for overall differences in height of the hill of vision.  The probability plots 

are presented both as a numeric map and as a probability plot on the HFA printout.  

The values which have a probability of occurring in 5%, 2%, 1% or 0.5% of the age-

matched population are mapped (Figure 1-1).  Pattern deviation represents focal loss 
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which may be hidden by a general depression of the hill of vision.  The total and pattern 

probability plots separate the diffuse from the focal loss.   

A measure of fixation is made by the gaze tracking system of the HFA (HFA II – i 

series: user’s manual).  Infrared lights situated in the perimeter bowl allow a measure 

of the distance between the first corneal reflex (Purkinje 1) and the pupil centre.  Real-

time image analysis is performed and displayed at the bottom of the HFA printout in the 

form of a gaze graph (Figure 1-1).  The graph denotes eye movements as upward 

markings, whereby the magnitude up to 10° is illustrated by the size of the mark but 

directional information is not given.  Downward markings indicate the system was 

unable to detect the gaze direction, which occurs during blinks. 

Clinical screening procedures frequently test the visual field out to 30° or 24° from 

fixation, with a stimulus separation of 6°.  However, stimulus configurations with a 

spatial resolution of 1.4° and 0.7° were shown to be advantageous in the detection of 

macular disease since the high resolution allows detection of small scotomata (Kaiser 

et al. 1994).  

Any automated visual field examination is exacerbated by several factors including 

patient performance factors, response errors, pupil size, correction of refractive error 

and age effects such as cataract.  The principal problems with measuring the 

progression of visual field loss are physiological variability (short-term fluctuation and 

long-term fluctuation), effects of learning and fatigue, ageing effects and threshold 

estimating errors.  It is necessary to identify changes due to these confounding factors 

for an individual, before actual field changes can be discovered.  True visual field loss 

should be repeatable on retesting.  
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Figure 1-1. HFA printout using the 10-2 program 

10 degree visual field, with a stimulus separation of 2°, in a normal subject  
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Figure 1-2. Location of the ten points of double determination used to calculate 
the short-term fluctuation in the ten degree field, on the HFA 
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Figure 1-3. Frequency of seeing curve. 
Threshold sensitivity is the luminance at which stimuli are detected with a probability of 
50%. 
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1.1.2 Short-term Fluctuation and Long-term Fluctuation 

Variability is the difference in threshold which occurs on repeated testing due to 

random fluctuations, and reflects reproducibility, or confidence in detection of change.  

Short-term fluctuation (SF) and long-term fluctuation (LF) are the components of 

variability in automated static perimetry (Bebie et al. 1976).  The psychophysical 

measurement of the differential light threshold is the ratio of the light stimulus from its 

background that has a probability of being seen 50% of the time (Flammer et al. 1984b; 

Figure 1-3).  Due to the abbreviated staircases used in perimetry inevitably, there is 

always scatter around this measurement.  SF defines that scatter which occurs during 

a single examination.  It is necessary to know the magnitude of the SF in order to 

detect localised defects (Flammer et al. 1984b).  LF is defined as the measure of 

variability between two or more visual field examinations, after the effect of SF has 

been removed (Flammer et al. 1984a).  In order to quantitatively compare visual fields 

the value of LF should be known (Flammer et al. 1984a).  Calculation of the LF is not 

included in routine clinical practice.  

The HFA determines the threshold twice at ten fixed stimulus locations (Figure 1-2), 

which are used in the calculation of the SF.  Double determinations may be performed 

at more points where values fall outside of expected values compared to adjacent 

points (Heijl et al. 1987b), but these are not used in the calculation of the SF.  The SF 

defines the within-test variability and is calculated by taking the root mean square of 

the difference between the double determinations of threshold.  The main factor which 

influences the SF is the value of the global mean sensitivity (Flammer et al. 1984c).  SF 

is also affected by the threshold estimating algorithm.  SF was noted to be greater in 

the mid-periphery than centrally (Heijl et al. 1987a), while another study found no 

variation in SF with eccentricity in normal subjects, and a greater value in the superior 

field in glaucomatous patients (Flammer et al. 1984c).  Global SF is not influenced by 

the number of threshold determinations at a given stimulus location (Chauhan et al. 

1991).  Variability indices depend on the perimeter, as SF and heterogenous LF were 
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found to be greater when using the Octopus perimeter than the HFA (Brenton & Argus 

1987).  The Octopus perimeter assesses the SF from double determinations at all 

stimulus locations rather than the ten locations used in the HFA. 

SF and LF have a significantly greater magnitude in glaucoma patients than in normal 

subjects (Flammer et al. 1984a).  Increased SF is thought to be a sign of future 

glaucomatous visual field loss (Rabineau et al. 1985; Werner & Drance 1977).  LF 

varies between individuals and therefore affects interpretation of progression by 

different amounts.  In order for detection of progression, field loss must to be greater 

than LF, which unfortunately tends to be greater in patients with advanced field defects.  

Despite helping to overcome some problems of interpretation due to variability, 

repeated testing is demanding for the patient and resource consuming.  

There are two components of LF; the homogeneous component, LF(Ho) which 

influences all locations equally, and the heterogeneous component LF(He), which is 

the variation between locations (Flammer et al. 1984b).  A two-factor analysis of 

variance (ANOVA) with replications has been used to calculate LF(Ho) and LF(He) 

(Flammer et al. 1983).  This technique of calculating LF between two examinations has 

been applied to the ten points of double determination for calculation of SF using the 

HFA (Hutchings et al. 2000).  LF(Ho) was calculated as the difference in average 

overall sensitivity between two examinations; and LF(He) as the variation in sensitivity 

between locations (Flammer et al. 1983).  LF(Ho) was found to be larger than LF(He) in 

normal subjects and glaucoma patients (Flammer et al. 1983, 1984a).  Using a HFA, in 

normal patients LF(He) and LF(Ho) were reported to be 0.2dB and 0.5dB, respectively; 

and in glaucoma patients, 0.5dB and 1.2dB (Hutchings et al. 2000).  LF(Ho) is 

significantly correlated with SF, however the relationship is not strong enough to allow 

the prediction of the LF from the SF (Flammer et al. 1984b).     

A multitude of other calculations have been used to describe LF, including other types 

of AVOVA, standard deviation of the variance at each point in the field indicating the 
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total between-examination variability at all locations (Katz & Sommer 1987; Werner et 

al. 1989) and measures of between-examination variability for individual locations in 

the field (Heijl et al. 1987a; Rutishauser et al. 1989; Werner et al. 1989). 

1.1.3 The Learning Effect in Standard Perimetry 

In perimetry, the learning effect occurs whereby performance improves as patient 

experience increases.  The learning effect manifests as an increase in sensitivity and 

reduction in variability.  SF decreases with experience (Heijl et al. 1989; Wood et al. 

1987).  The learning effect occurs during the first examination and is transferred 

between eyes (Searle et al. 1991; Wild et al. 1989).  With respect to visual field 

progression, the learning effect diminishes the reliability of assessment of a series of 

fields and when selecting a baseline field. 

In normal subjects, the greatest sensitivity increase occurs over the first few tests, 

where on average, a sensitivity increase of 1-2dB is seen (Autzen & Work 1990; Heijl 

et al. 1989).  In most patients, the learning effect is rapid and plateaus after the first 

exam of the first eye (Wild et al. 1989).  The learning effect was also shown to persist 

over successive examinations.  Eight out of ten young normal subjects displayed an 

increase in sensitivity over five sessions on the Octopus perimeter, each spaced one 

day apart (Wood et al. 1987).  Three different patterns of learning were noted.  The first 

was a large increase in sensitivity at the 2nd session, and then a plateau until the last 

session; secondly, a gradual increase in sensitivity over 5 sessions; and lastly no 

evident sensitivity increase (Wood et al. 1987).  It was deemed appropriate to discard 

only the first perimetric exam when inspecting a series of fields, in patients who show a 

large increase in sensitivity at the second examination (Wood et al. 1987).  

The learning effect in suspected glaucoma patients was found to be similar to normals 

using the HFA (Wild et al. 1989).  Learning effects largely occur between the first two 

exams in glaucoma patients (Heijl & Bengtsson 1996; Marchini et al. 1991), and in 

glaucoma suspect patients (Werner et al. 1990).  At the second examination, the mean 
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deviation  was significantly lower than the first in glaucoma patients (Kulze et al. 1990).   

In the longer term, learning effects in glaucoma patients were observed to be 

insignificant after follow-up visits of 5-15 months (Hudson et al. 1994; Wild et al. 1991), 

however the learning effect may last for several years in patients who are infrequently 

tested, once a year (Gardiner et al. 2008). 

The learning effect tends to be greater in the periphery compared to the central field 

(Heijl et al. 1989; Searle et al. 1991; Werner et al. 1990).  When examining the 

Octopus Program 21 field, which tests 76 points with a separation of 15°, a greater 

learning effect was demonstrated in the superior field, which was thought to be due to 

the patient learning to keep the upper lid raised (Wood et al. 1987).  Conversely, a 

significant learning effect was demonstrated in all but the superior temporal quadrant, 

which also exhibited the greatest variablility, in 33 normal subjects tested on the 

Octopus perimeter (Autzen & Work 1990).  A decline in MD was found in all areas of 

glaucomatous fields, except for the superior periphery, between two visits with a 

separation of 4 months (Kulze et al. 1990).  In glaucoma patients the learning effect 

manifests especially in areas of moderate field loss rather than areas of mild or severe 

loss (Heijl & Bengtsson 1996).   

Large amounts of variability attributed to learning effects were found between normal 

individuals of all ages, using the HFA in a study which comprised 74 subjects (Heijl et 

al. 1989).  It was concluded that most normal patients give a reliable perimetric result at 

their first examination, but a minority of patients are profoundly affected by the learning 

effect (Heijl et al. 1989; Werner et al. 1990).  Variability between individuals was 

however noted to decline with experience (Heijl et al. 1989).  In patients who are 

significantly affected by the learning effect, the characteristics seen are concentric 

narrowing of the field and the successive tests then become normal (Heijl et al. 1989).  

Indeed, a learner’s index was calculated in order to identify those who require greater 

perimetric experience to produce reliable fields (Olsson et al. 1997).  This is a linear 
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discriminant function devised from the variability across concentric zones from fields 

typical of “learners”.  However the complex statistical methodology is not explicitly 

stated and the technique has not gained widespread use. 

There is an inverse relationship between the learning effect and the magnitude of 

sensitivity at the initial examination (Heijl et al. 1989; Wild et al. 1989).  Due to the 

learning effect, factors which affect automated perimetry are the order in which eyes 

are examined and the interval between sessions (Wild et al. 1989).  In normal subjects, 

the dependence of learning on age has been noted to exist (Autzen & Work 1990) and 

also not to be present (Heijl et al. 1989).  Neither age, race nor gender were 

demonstrated to vary with the learning effect in a study where examinations were 

separated by months in glaucoma patients (Kulze et al. 1990).  In addition, the 

threshold estimating algorithm and perimeter used may cause variability in the learning 

effect (Capris et al. 2008; Yenice & Temel 2005).  Full Threshold strategy on the HFA 

may produce a greater learning effect than SITA standard (Yenice & Temel 2005).  

1.1.4 The Fatigue Effect 

The fatigue effect interacts in opposition to the learning effect and can also be 

detrimental to patient performance in perimetry, causing a progressive decline in light 

sensitivity as the examination proceeds, particularly at peripheral stimulus locations 

(Heijl & Drance 1983; Hudson et al. 1994).  It can occur during a single examination or 

transfer to the second eye tested (Hudson et al. 1994; Searle et al. 1991).  

Investigation of the fatigue effect is normally carried out in experienced patients in 

order to control for the learning effect.    

Various studies have investigated the fatigue effect in normal subjects (Johnson et al. 

1988b; Searle et al. 1991), ocular hypertensives (Hudson et al. 1994; Wild et al. 1991), 

glaucoma patients (Fujimoto & Adachiusami 1993; Heijl & Drance 1983; Johnson et al. 

1988b; Wild et al. 1991) and in neuro-ophthalmic disorders (Keltner & Johnson 1995; 

Reitner et al. 1996).  Fatigue effects caused around 1-1.5dB sensitivity loss in normal 
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subjects (Heijl 1977; Heijl & Drance 1983).  In contrast, an earlier study reported no 

fatigue effect during 1 hour of field testing on an Octopus perimeter using Program 31 

in a group of 8 patients (Rabineau et al. 1985). 

The fatigue effect has a greater magnitude in glaucoma and suspected glaucoma 

patients than in normal subjects (Heijl 1977).  Fatigue effects in the central 10° were 

demonstrated in glaucoma patients, who had reduced mean sensitivity (MS) at the third 

determination of stimulus locations in the field, but not in normal and optic neuritis 

patients (Fujimoto & Adachiusami 1993).  Hudson et al. (1994) reported almost no 

difference in performance between normals and ocular hypertensives, who exhibited 

fatigue over examinations lasting approximately 15 minutes.  After a long-term follow-

up of 5-15 months, inter-eye fatigue was still present in the second eye tested in 

glaucoma and ocular hypertension patients  (Hudson et al. 1994; Wild et al. 1991). 

Using the Octopus perimeter, the fatigue effect was seen to cause a progressive 

generalised depression of the hill of vision and focal loss, greater in the peripheral field 

between 17° and 30° (Hudson et al. 1994).  The effect increases at greater 

eccentricities away from fixation (Cubbidge 1997; Hudson et al. 1994; Johnson et al. 

1988b; Wild et al. 1991).  Areas of glaucomatous defect and areas close to the defects, 

showed greater deterioration than normal areas (Heijl 1977; Heijl & Drance 1983).  

Furthermore, the presence of field defects due to glaucoma and optic neuritis, was 

reported to be weakly associated with the fatigue effect (Johnson et al. 1988b). 

The design of studies involving automated perimetry may allow for some compensation 

of the fatigue effect by introducing rest periods between tests or by randomising the 

order of eyes tested (Artes et al. 2002).  Rest periods within examinations lessen the 

impact of the fatigue effect, especially at greater eccentricities (Johnson et al. 1988b).  

Hudson et al. (1994) concluded that a rest period of 3 minutes between eyes was not 

long enough to be rid of the effects of fatigue from the previous eye.  It was 

recommended that the optimum examination duration should be less than 8-10 



 30

minutes, since maximum sensitivity loss due to fatigue occurs after this time interval 

(Johnson et al. 1988b).  The effect of the order of eyes tested was investigated using 

the SITA standard 24-2 test in glaucoma and suspect glaucoma patients experienced 

in perimetry (Barkana et al. 2006).  It was reported that neither the MD nor the test 

reliability were affected by the order of eyes tested and inter-eye fatigue was suggested 

not to be clinically significant when using the SITA algorithm (Barkana et al. 2006).  

Diminished fatigue with shortened test duration has been reported in patients with 

neuro-ophthalmic disorders (Reitner et al. 1996).   

It has been suggested that the cause of fatigue may be associated with reduced 

concentration and lack of attention during the monotonous task of perimetry (Barkana 

et al. 2006).  Furthermore the Ganzfeld blankout or Troxler phenomenon, whereby the 

patient perceives a transient darkening of the field during perimetry is thought to 

contribute to the fatigue effect (Fuhr et al. 1990; Hudson et al. 1994; Searle et al. 

1991).  The use of a translucent occluder was found to prevent Ganzfeld blankout and 

increase threshold sensitivity during standard perimetry (Fuhr et al. 1990). 

Patient vigilance may be another source contributing to fatigue.  Pupil diameters of 12 

glaucoma patients were monitored using an eye tracker, whilst performing a similar 

task to perimetry, displayed at the monitor of the eye tracker (Henson & Emuh 2009).  

Signs of sleepiness were observed as pupillary constriction, as well as “pupillary 

fatigue”, observed as oscillations in pupil size.  A Pupillary Fatigue Index (PFI) was 

derived to describe changes in pupil size and unrest.  Reduced sensitivity was found to 

be associated with loss of vigilance which in turn influences visual field variability 

(Henson & Emuh 2009). 

1.1.5 Threshold Estimating Algorithms 

Threshold sensitivity is determined by a staircase algorithm, which is a psychophysical 

technique.  A compromise between the test duration, accuracy and reproducibility is 

made when estimating the threshold sensitivity.  Variability occurs depending on the 
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accuracy of the threshold estimation algorithm used.  Scatter in the data is present, due 

to the measurement of differential light threshold (Flammer et al. 1984b).   

Supra-threshold and threshold are the two static examination strategies which may be 

used in perimetry.  The supra-threshold strategy presents stimuli at an intensity above 

threshold and is used for rapid screening purposes in the determination of normality, to 

give an approximation of the visual field.  Threshold strategies determine the threshold 

for each point in the visual field and are used for more accurately determining visual 

field loss.  The most common threshold estimating algorithms for threshold strategies 

are described here.   

The Full Threshold strategy on the HFA employs a 4-2 double reversal staircase 

procedure to determine the threshold sensitivity at each test location.  The initial step 

size is 4dB, which is reduced to 2dB after initially crossing the threshold (reversal).  

The threshold is recorded as the last seen stimulus after the 2dB step size has crossed 

the threshold again.  Such an algorithm is sometimes referred to as a double reversal 

algorithm.  The Full Threshold strategy measures the central 30° field in around 12 

minutes in normal subjects and may take as long as 20 minutes in glaucoma patients 

(Anderson & Patella 1992).  This older algorithm employs a greater number of 

reversals, which produces longer testing staircase sequences.  Consequently the 

examinations are longer, leading to fatigue to the detriment of the test reliability.   

The FASTPAC program was developed with the aim of decreasing test duration.  This 

strategy of threshold estimation uses 3dB steps and crosses the threshold only once 

(Flanagan et al. 1993a).  FASTPAC was demonstrated to reduce test duration by 36-

40% compared to the Full Threshold strategy (Flanagan et al. 1993b; Mills et al. 1994) 

but yielded an increased SF (Flanagan et al. 1993a,b; Mills et al. 1994).  Contradictory 

findings have been reported regarding the ability of FASTPAC to detect visual field 

defects.  Erroneous underestimation (Flanagan et al. 1993b) and overestimation 

(O’Brien et al. 1994) of defect severity by the FASTPAC algorithm have been 
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observed.  No significant difference of FASTPAC from Full Threshold strategy, in 

criteria based defect detection has also been noted (Mills et al. 1994).  Nevertheless, 

the FASTPAC algorithm increases the number of patients capable of performing 

reliable threshold perimetry (O’Brien et al. 1994).  

 

 

 

Figure 1-4. Full Threshold and FASTPAC algorithms 
 
 

The next generation of algorithms, Swedish Interactive Threshold Algorithms (SITA), 

were created with the intent of minimising test duration whilst maintaining the quality of 

data comparable to the Full Threshold strategy (Bengtsson et al. 1997b).  SITA 

operates using a probability model of the threshold value constructed from databases 

of known normal and glaucomatous visual fields.  Prior to the start of visual field 

testing, models of normal and glaucomatous visual fields are constructed.  These 

include information about the age-corrected normal values at each stimulus location 

(Heijl et al. 1987a), the frequency-of-seeing curves and the correlations between 

threshold values at different stimulus locations (Bengtsson et al. 1997b).  A higher 

correlation exists between adjacent test points than stimuli situated further apart and 

points depressed due to glaucomatous field loss mostly occur in clusters corresponding 
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to the shape of the retinal nerve fibre layer (Bengtsson et al. 1997b).  Initially, 

thresholds are determined at four seed locations by the standard 4-2dB staircase 

sequence with two reversals.  The seed locations are then used to calculate the 

starting threshold estimates at adjacent points.  Patient responses to stimuli and the 

known distribution models are used to calculate posterior probability distributions, an 

approach used in Bayesian statistics (Bengtsson et al. 1997b).  The posterior 

probability of a threshold occurring is the conditional probability that is assigned after 

previous responses and information from the models are taken into account.  Posterior 

probability functions are recalculated following each stimulus presentation and 

continuously change shape with more responses, facilitating new threshold estimates 

and continuation of the staircase.  The values from the known models gradually exert 

less influence on the threshold estimates with more response data added to the 

models.  Testing is stopped once the measurement error estimates reach a 

predetermined limit of accuracy, the error related factor (ERF).  ERF values were 

established based on computer simulation of visual field assessment (Bengtsson et al. 

1997b).  If the estimated value is greater than 12dB from the initial predicted value, 

SITA repeats the staircase, as opposed to the Full Threshold strategy, which repeats 

the staircase if the estimated value is greater than 4dB from the initial value (Bengtsson 

& Heijl 1998a; Turpin et al. 2003).  As well as the advent of a new threshold estimating 

algorithm, SITA incorporated novel processes for timing and the estimation of false 

answers.  The timing algorithm is repeatedly adjusted based on each response 

throughout testing.  Like older threshold estimating algorithms, false negatives are 

measured using catch trials, however false positive answers are detected during 

periods when no responses are expected, rather than performing separate catch trials.  

A post processing step is implemented in SITA, which recalculates all threshold values 

taking into account the influence of the patient reaction times and the frequencies of 

false answers on the probability curves used in threshold estimation (Bengtsson et al. 

1997b).  As a result of the more efficient threshold estimating algorithm, the elimination 
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of catch trials for false positives and the more effective timing algorithm, SITA reduced 

the examination duration of older algorithms, whilst maintaining reproducibility 

comparable to Full Threshold strategy (Bengtsson et al. 1998; Bengtsson & Heijl 

1998b).  SITA Standard was reported to take approximately half the time of the Full 

Threshold strategy and 84-85% of the time of FASTPAC, in normal subjects 

(Bengtsson et al. 1998) and glaucoma patients (Bengtsson & Heijl 1998b).  

Furthermore, the number of stimuli presented was decreased by 29% in normals and 

26% in glaucoma patients (Bengtsson et al. 1997b).   

SITA Standard and SITA Fast are the two algorithms available on the HFA, which 

correspond to Full Threshold and FASTPAC algorithms, respectively.  The threshold 

estimation in SITA Fast interrupts the stimulus sequence earlier than in SITA Standard, 

by increasing the limit of the ERF, such that a diminished accuracy of test results is 

accepted and thus fewer stimuli are presented (Bengtsson & Heijl 1998a).  SITA Fast 

was reported to present 30-34% fewer stimuli than FASTPAC in normal and 

glaucomatous visual field tests (Bengtsson & Heijl 1998a).  SITA algorithms have 

reduced between-subject variability, compared to Full Threshold and FASTPAC 

algorithms, therefore narrowing confidence limits for definition of normality (Bengtsson 

& Heijl 1999a; Wild et al. 1999).  In normal subjects, SITA MS values have been 

reported to be around 1dB higher when compared to Full Threshold values (Artes et al. 

2002; Shirato et al. 1999; Wild et al. 1999).  Moreover, the normal hill of vision was 

noted to be slightly higher and flatter than the Full Threshold algorithm (Bengtsson & 

Heijl 1999a).  This bias between algorithms has been hypothesised to be caused by a 

reduced fatigue effect when using the briefer SITA examinations (Bengtsson & Heijl 

1999b), however it has been argued that factors other than fatigue are responsible for 

the difference (Artes et al. 2002; Shirato et al. 1999; Turpin et al. 2003).  It has been 

suggested that the magnitude of the bias is related to the size of the ERF (Artes et al. 

2002).  The difference in threshold values between the Full Threshold and SITA 
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strategies were found to vary in a nonlinear pattern with sensitivity in glaucoma patients 

(Artes et al. 2002).  In glaucomatous visual fields, the SITA algorithms detected a 

greater number of pattern deviation defects than the Full Threshold algorithm despite 

producing similar MD values (Bengtsson & Heijl 1999b).  Normal individuals naïve to 

perimetry were also observed to have more significantly depressed pattern deviation 

points when tested with SITA standard compared to Full Threshold strategies (Schimiti 

et al. 2002).  A limitation in the performance of SITA was recognised in a study using 

computer simulations of visual field testing (Turpin et al. 2003).  When response errors 

were made by simulated patients, the accuracy and precision of sensitivity estimates 

were poor when the initial estimate of threshold was not close to the true threshold 

(Turpin et al. 2003).   

1.1.6 Age 

Advancing age causes changes which confound the interpretation of visual field 

progression.  In the standard visual field, sensitivity in the normal eye declines with 

increase in age such that a depression and steepening of the hill of vision occurs (Heijl 

et al. 1987a; Jaffe et al. 1986).  Mean sensitivity has been reported to decline at rate 

between 0.07 to 0.10dB per year for standard perimetry (Heijl et al. 1987a; Johnson et 

al. 1989; Jaffe et al. 1986; Wild et al. 1998) and at more rapid rates of 0.15 to 0.20dB in 

short-wavelength automated perimetry (SWAP) (Johnson et al. 1988a; Wild et al. 

1998).  The age-related decline in visual field sensitivity is thought to correspond to an 

age-related decline in the photoreceptor population, cells in the ganglion cell layer and 

retinal pigment epithelium (Curcio et al. 1993; Gao & Hollyfield 1992; Panda-Jonas et 

al. 1995).  Cataract and senile miosis also contribute to the generalised depression of 

the hill of vision with age.   

The age-corrected normal threshold values employed by commercially available 

perimeters follow the models for decline in the visual field sensitivity with age.  The 

Octopus perimeter uses a linear decline of 0.1dB per year, across the entire visual field 
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(Cubbidge 1997).  The model applied by the HFA is based on empirical data, in which 

the threshold variability between normal individuals, between tests and within a single 

test was observed to increase with eccentricity (Heijl et al. 1987a).  Subsequently, the 

model allows the hill of vision to change in height and shape with age.    

1.1.7 Visual Field Progression in Standard Perimetry 

Visual field progression describes the perimetric changes over time, as they chart the 

course of disease.  Progression may occur as deepening or enlargement of a defect, 

an appearance of a new defect, or a combination of these.  In automated static 

perimetry, methods for defining visual field progression have largely been developed to 

investigate glaucomatous visual field loss.  A variety of techniques exist including 

subjective assessment of serial field plots, statistical methods, statistical analysis by 

software and clinical trial criteria, however there is no standardised method for defining 

progression. 

A change analysis printout is available on the HFA, which presents change 

represented as boxplot summaries of visual field data over time (Figure 1-5).  The 

boxplot is a modified histogram and represents a five number summary of a sample 

distribution.  In change analysis, the sample indicates the pointwise differences 

between the measured field and normal field.  The box limits represent the 15th and 85th 

percentiles, the centre line represents the median and the tails represent the 0 and 

100th percentiles (Heijl et al. 1987b).  
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Figure 1-5. Boxplot representation of visual field change   
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Mikelberg et al. (1986) calculated regression of “scotoma mass” with time in 

glaucomatous defects.  Course of change over time was defined as linear, curvilinear, 

or step-wise in pattern.  It was found that eyes with a greater scotoma mass showed a 

more rapid rate of visual loss.  A visual field defect scoring system was devised and 

analysed over time in progression measurement (Gaasterland et al. 1994).  Several 

large clinical trials have created criteria for glaucomatous progression, such as the 

Early Manifest Glaucoma Treatment Study (EMGT) (Heijl et al. 2003), the AGIS 

(Gaasterland et al. 1994), and the Ocular Hypertension Treatment Study (OHTS) 

(Gordon & Kass 1999).  Progression was defined in terms of minimum number of 

clusters of abnormal points to signify change due to disease.  Cluster analyses over 

time have been criticised as being insensitive to glaucomatous change (Chauhan et al. 

1990). 

Event-based analysis identifies where visual field change exceeds test-retest 

variability, as quantified by repeated measurement of stable glaucomatous fields over a 

short period of time.  Software programs such as Glaucoma Change Probability (GCP) 

and Delta were created to analyse progression based on the probability that threshold 

sensitivity at a specific point in the visual field has changed, greater than predicted.  

GCP assesses field change in the total deviation plot over time and compares depths 

and patterns of loss, to baseline measurements and a database of stable 

glaucomatous fields.  Changes which are greater than the stable fields are more likely 

to represent true change.  GCP can sufficiently distinguish between stable and 

deteriorating fields (Morgan et al. 1991).  Using pattern deviation rather than total 

deviation analysis on GCP maps has been advocated as a highly sensitive method of 

early glaucomatous progression detection (Heijl et al. 2002).  Pattern deviation values 

compensate for changes in the general height of the visual field, thought to be 

principally caused by cataract (Bengtsson et al. 1997a).  More recently, Glaucoma 

Progression Analysis (GPA) software was introduced to the Humphrey Field Analyser.  
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This software performs event-based analyses using pattern deviation values and was 

found to detect progression with a sensitivity and specificity of 93% and 95%, 

respectively (Arnalich-Montiel et al. 2008).  However, a lower incidence of progression 

with GPA was found when compared with GCP (Katz 2000).  Correspondingly, pattern 

deviation analysis was found to classify progression in approximately 15% fewer eyes 

than total deviation analyses (Artes et al. 2005).  This was explained by the presence 

of both focal and diffuse components in glaucomatous visual field progression (Artes et 

al. 2005).  

Trend analysis refers to the model of the pattern of change in sequential visual fields 

over time.  Pointwise linear regression (PLR) considers the sensitivity of each point in 

the field against time, which gives the rate of loss in decibels per year.  The statistical 

significance of change over the entire series of examinations is established.  PLR has 

been demonstrated as a sensitive method to detect glaucomatous progression (Katz et 

al. 1997; Smith et al. 1996; Viswanathan et al. 1997).  PROGRESSOR is a software 

program which implements PLR and identifies change with respect to LF (Fitzke et al. 

1996).  Clinical agreement of progression detection was superior when using 

PROGRESSOR compared to inspection of a series of Humphrey printouts 

(Viswanathan et al. 2003).  It has been demonstrated that PLR gives a similar 

performance to GCP (McNaught et al. 1996) and has detected progression sooner than 

GCP analysis (Viswanathan et al. 1997).  Although, PLR was shown to be less 

effective in progression detection in early follow-up of glaucoma patients, when 

compared with GCP and the Advanced Glaucoma Intervention Study (AGIS) algorithm 

(Nouri-Mahdavi et al. 2007).  Univariate linear regression analysis has also been used 

to detect change for individual test points, in hemifields, and applied to clusters of 

points defined by the Glaucoma Hemifield Test (GHT) (Katz et al. 1997; Smith et 

al.1996).  Pointwise analysis of stimulus locations showed the greatest declines in 

sensitivity and offered the advantage of highlighting the exact locations of change (Katz 
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et al. 1997; Smith et al. 1996).  Yet the higher variability of individual locations relative 

to clusters or global indices meant greater loss was necessitated before it was detected 

statistically (Katz et al. 1997; Smith et al. 1996).  Supplementary to this, it is known that 

adjacent locations are not statistically independent of each other (de la Rosa et al. 

2002).  Regression of clusters was surmised as a sufficient compromise between 

variability and spatial information (Katz et al. 1997; Smith et al. 1996).  Other programs 

using regression analysis include graphical analysis of topographical trends (GATT) 

and Threshold Noiseless Trend (TNT).  GATT is included in Peridata and displays 

serial topographic changes in sensitivity, derived by superimposing greyscales (Weber 

& Krieglstein 1989).  Horizontal stripes are used to represent visual field deteriorations 

and vertical stripes indicate improvement and chequerboard pattern illustrates highly 

variable regions.  TNT employs spatial filtering procedures (see Chapter 1.2.4) to 

reduce threshold fluctuation.  The filter is based on the relations of interdependence of 

stimulus locations analysed in glaucomatous visual fields (de la Rosa et al. 2002).  TNT 

also provides regression analysis in relation to the Cumulative Defect Curve (de la 

Rosa 2008).  The Cumulative Defect Curve is constructed by ranking the thresholds at 

each location from best to worst.  TNT showed better agreement with expert observers 

and higher sensitivity but lower specificity in comparison to GPA (Diaz-Aleman et al. 

2009).  Mathematically, there are a number of different methods of PLR which include 

criteria such as the slope significance level and addition of confirmation points 

(Gardiner & Crabb 2002).  Unfortunately, there is no universally agreed value for 

regression slope or significance value for progression.  Wilkins et al. (2006) found that 

optimum detection of glaucomatous progression was achieved where criterion required 

change in two points in a nerve fibre bundle sector using a slope of 1dB/year and the 

choice of significance value depended on the data characteristics.  Linear trends were 

reported to best fit the glaucomatous visual field changes (Katz et al. 1997; Nouri-

Mahdavi et al. 2007) and linear regression had been observed to best predict future 

risk of progression (Heijl et al. 2003). 
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An index of the rate of glaucoma progression, the glaucoma progression index (GPI), 

was derived for the HFA 30-2 and 24-2 stimulus patterns (Bengtsson & Heijl 2008).  

The calculation of the GPI involved the pattern deviation probability maps, whereby 

defects were scored according to a weighted function which emphasised the central 

points.  When examining glaucoma progression rates by linear regression of indices 

over five years, the GPI was reported to be less affected by cataract than the MD 

(Bengtsson & Heijl 2008).  Unlike the MD, the centre weighting of the GPI is based on 

cortical magnification and consequently more closely reflects retinal ganglion cell loss 

and visual function (Bengtsson & Heijl 2008).  However, since the GPI primarily depicts 

focal loss, the diffuse loss due to glaucoma progression may be underestimated by this 

index.  The pattern deviation values are influenced by the general height index, or the 

85th percentile of the distribution of TD values, which represents diffuse loss.  It was 

noted that overestimation of the general height index could occur in the presence of 

localised glaucomatous loss (Åsman et al. 2004).  This would lead to an 

underestimation in the significance displayed by the pattern deviation values, giving an 

underestimation of focal loss.  It was concluded that a better method of examining the 

diffuse component of loss was required and this was thought to apply to the 10-2 field 

and to SWAP (Åsman et al. 2004).  PLR of the total deviation plot was found to be a 

better predictor of true visual field progression than PLR of the pattern deviation plot, 

especially in moderately advanced glaucoma (Manassakorn et al. 2006).  It was 

suggested that pattern deviation analyses of progression underestimates the full extent 

of progression in glaucoma (Artes et al. 2005).   

1.1.8 Summary 

An ideal visual field progression algorithm should be reproducible and sensitive to 

change, such that it is able to detect small amounts of progression.  It is necessary to 

consider potential confounding effects, by calculation, for example measurement of the 

learning effect.  Separating true field deterioration from the noise arising from 
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physiological and psychological factors which influence visual field measurement is of 

paramount importance when determining progression.  The number of confirmatory 

tests needed should be minimal.  Pointwise or sector analysis may be preferable as it 

is essential to measure location of visual field progression, particularly in relation to the 

fovea and threat to fixation.  Determination of the rate of field loss allows visual field 

change to be conveyed in terms of severity of disease, such that prediction of loss can 

be made.  Subsequently this may assist treatment decisions and anticipate visual 

disability and quality of life. 

1.2 The Interpretation of SWAP     

SWAP presents Goldmann size V (1.72°) blue stimuli, with a peak transmission of 

440nm, similar to the maximum response of the short-wavelength sensitive (blue) 

cones in the retina.  The narrow band blue light therefore stimulates the short-

wavelength sensitive pathway and is presented with the standard stimulus duration of 

200ms.  The high luminance yellow background, with intensity 100cd/m2, transmits 

wavelengths greater than approximately 530nm.  This saturates the long- and medium- 

wavelength sensitive (red and green) cones and suppresses rod activity, which gives 

isolation of the short-wavelength sensitive pathway (Cubbidge & Wild 2001; Sample et 

al. 1996).  SWAP is mediated by the small bistratified ganglion cells, which contribute 

approximately 9% of the total population of retinal ganglion cells (Dacey & Lee 1994).   

SWAP can be performed on the HFA and the Octopus, amongst other perimeters.  The 

dynamic range is the measurement range of possible stimulus luminances of the 

perimeter.  The HFA permits a maximum stimulus brightness (assigned as 0dB) of 65 

apostilbs for SWAP, and 10,000 apostilbs for standard perimetry.  The maximum 

stimulus brightness of the Octopus perimeter is 16 apostilbs and 1000 apostilbs for 

SWAP and standard perimetry, respectively.  The dynamic range is narrower in SWAP 

due to the brighter yellow background luminance.  As a result, the decibel scales are 
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not directly comparable between the two types of perimetry and SWAP is implicated as 

less capable in the detection of very advanced defects.   

The magnitude of isolation for the HFA was measured to be 15dB and to decrease 

linearly with greater eccentricity away from fixation (Cubbidge & Wild 2001).  Another 

group found the approximate short-wavelength-sensitive pathway isolation to be 13dB 

at the fovea and 9dB at an eccentricity of 20°, on the HFA (Sample et al. 1996).  This 

amount of isolation was thought to be appropriate for the investigation of patients with 

paracentral defect depths up to 12-14dB in standard perimetry (Demirel & Johnson 

2000).  Greater defect depths which exceed the amount of isolation alter detection of 

the blue stimulus such that it is no longer be mediated purely by the short-wavelength 

sensitive pathway (Demirel & Johnson 2000; Felius et al. 1995).  In such 

circumstances, stimulus detection is mediated by the medium- and long-wavelength 

sensitive mechanisms, which are the mechanisms underlying detection in standard 

perimetry (Demirel & Johnson 2000; Felius et al. 1995; Lewis et al. 1993).  Thus there 

is no benefit in examination by SWAP over standard perimetry in the presence of a 

large defect (Hart et al. 1990, Wild 2001).  Use of a 450nm narrowband stimulus has 

been advocated in SWAP, since this would improve the dynamic range and diminish 

between-subject variability (Cubbidge & Wild 2001).    

The optimal conditions for SWAP depend on the background and stimulus parameters 

providing the maximum isolation of the short-wavelength sensitive pathway, the 

dynamic range, pupil size, optical defocus and pre-retinal absorption.  Adequate 

saturation of the rod pathway was thought to be achieved by yellow backgrounds with 

intensities of 300cd/m2 (Yeh et al. 1989) and 330cd/m2 (Hudson et al. 1993).  The 

bright backgrounds generated more light scatter and backgrounds greater than 

80.9cd/m2 were deemed only to increase thresholds rather than increase the 

magnitude of isolation (Sample & Weinreb 1990).  Two types of stimuli were used in 

the modified versions; a narrowband with a peak at 440nm or a broadband with a peak 
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at 460nm.  The broadband stimulus achieved a greater dynamic range (Moss et al. 

1995) but stimulated the medium-wavelength sensitive pathway in the presence of a 

large defect (Sample & Weinreb 1990).  The narrowband stimulus was less influenced 

by ocular media absorption (Sample et al. 1996). 

SWAP exhibits a larger between-subject and within test variability than standard 

perimetry (Blumenthal et al. 2000; Hutchings et al. 2001; Kwon et al. 1998; Wild et al. 

1995; Wild 2001).  Indeed, the frequency-of-seeing curve was significantly flatter in 

SWAP than in standard perimetry, which explains the greater measurement variability 

(Gilmore et al. 2005).  The sensitivity decline with increased age is greater in SWAP 

than in standard perimetry, especially at eccentricities of greater than 10°, after 

correction for ocular media absorption (Johnson et al. 1988a; Wild et al. 1998).  Within-

subject variability of short-wavelength sensitivity becomes greater with advancing age 

(Remky et al. 2001a).    

The principal confounding factors in the interpretation of SWAP are pre-receptoral 

absorption of the stimulus, due to lenticular and macular pigment absorption; and 

additionally learning and fatigue effects are greater for SWAP than for standard 

perimetry.  SWAP data can be manipulated statistically to enhance interpretation.  

Additionally knowledge of the LF in SWAP will improve understanding of progression of 

sensitivity loss. 

1.2.1 Pre-receptoral Absorption    

1.2.1.1 Macular Pigment 

Macular pigment is composed of two xanthophyll carotenoids, lutein and zeaxanthin 

(Bone et al. 1985).  It has a peak density at the centre of the fovea, which reduces to 

an eccentricity of 5°, where it is optically undetectable (Snodderly et al. 1984).  There 

are several psychophysical and optical techniques of measuring macular pigment 

optical density including heterochromic flicker frequency, minimum motion photometry, 

raman spectrometry, imaging reflectometry, autofluorescence spectrophotometry and 
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imaging (Wolf 2006).  There is a large between-subject (Hammond et al. 1997; Pease 

et al. 1987) and within-subject (Hammond & Fuld 1992; Wild & Hudson 1995) variation 

in macular pigment measures in normal observers.  

Macular pigment is thought to be protective against age-related macular degeneration 

(AMD) (Beatty et al. 1999) and has been measured in relation to known risk factors of 

AMD.  In a large sample study (n = 800), of healthy subjects aged 20-60 years, 

macular pigment optical density was significantly reduced with advancing age, current 

or past smoking, and family history of AMD, but not female gender (Nolan et al. 2007).  

In the same study, no significant interocular difference was found.  Other groups have 

measured an age-related decline in macular pigment (Beatty et al. 2001; Neelam et al. 

2005).  Fellow eyes of neovascular AMD were also found to have significantly reduced 

macular pigment (Beatty et al. 2001).  In a small sample, smokers were found to have 

less macular pigment than non-smokers (Hammond et al. 1996c).  Males were found to 

have more macular pigment than females (Hammond et al. 1996a).  Eyes with lighter 

iris colour were reported to have a significantly lower macular pigment density 

(Hammond et al. 1996b).  Studies have shown that lutein and zeaxanthin in the diet 

have a protective effect against exudative AMD (Seddon et al. 1994).  Examples of 

food sources rich in these carotenoids are spinach and sweetcorn. 

Macular pigment absorbs short-wavelength light.  The absorption spectrum of macular 

pigment has a peak at 460nm, thereby decreasing macular sensitivity to short-

wavelength light (Pease et al. 1987) and it does not absorb wavelengths greater than 

560nm (Bone et al. 1985).  The influence of macular pigment on SWAP is limited to the 

fovea, where it may cause a depression in the hill of vision and an increase in the SF in 

the foveal region (Wild & Hudson 1995).  Macular pigment absorption, measured using 

a HFA with modifications, was found to be negligible at 5.5° (Wild & Hudson 1995).  

The combined effects of absorption due to ocular media and macular pigment on 
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SWAP were measured to be 0.8 log units at the fovea and around 0.4 log units at other 

eccentricities (Wild & Hudson 1995).   

1.2.1.2 Ocular Media  

The interpretation of SWAP is also confounded by the ocular media, which absorbs 

short-wavelength light (Sample et al. 1988, 1989).   Short-wavelength light is also 

scattered by the ocular media (Moss et al. 1995).  There are two components of 

scatter, forward scatter and back scatter.  Forward scatter or veiling glare, is that which 

is directed towards the retina.  It is increased by cataract, particularly posterior 

subcapsular cataract and preferentially affects the short-wavelength sensitive cone 

pathway, by reducing the height of the hill of vision in SWAP (Moss et al. 1995).  Back 

scatter is that which is directed in the opposite direction, away from the lens.  Only a 

limited correlation between forward and backward scatter exists (de Waard et al. 1992).  

Scatter is considered to have less impact than absorption, since it is less dependent 

upon wavelength.   

Ocular media absorption increases with age (Sample et al. 1988; Wild et al. 1998).  

This was discovered to be a linear relationship (Wild et al. 1998).  With the exception of 

the lens, the ocular media absorption is independent of wavelength and exhibits little 

variation in transmittance with age (Wyszecki & Stiles 1982).  Lens density increases 

gradually with age, the greatest increase being between the ages of 60 and 70 yrs 

(Sample et al. 1988).  Older patients gave rise to larger between-individual variations.  

As expected, pseudophakic eyes had lower lens density index values compared to 

eyes with cataract, when controlled for age (Sample et al. 1988).   

A method of measuring the lens density index was derived, using modifications to a 

perimeter in which scotopic thresholds were determined for 560nm & 410nm stimuli 

presented at an eccentricity of 15°, following 30 mins of dark adaptation (Sample et al. 

1989).  The selected wavelengths have equal sensitivity to rhodopsin, therefore the 

differences in threshold are due to wavelength dependent absorption by the ocular 
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media, and can be used as an index of lens density (Sample et al. 1989).  Another 

group used a fluorometer to measure lens autofluorescence and found significant 

correlation of the lens transmission index with SWAP sensitivities (Teesalu et al. 1997). 

Cataracts, which are related to increased lens density, profoundly affect perimetry, 

such that a general reduction in sensitivity occurs (Moss et al. 1995).  Increase in lens 

density was found to cause diffuse reduction in the short-wavelength visual field 

(Sample et al. 1994).  The relationship between lens density and short-wavelength 

threshold was linear (Sample et al. 1994).  Posterior subcapsular cataract had a 

greater effect than other types of cataract on SWAP mean deviation (Moss et al. 1995).  

The increase in ocular media absorption for short wavelengths with age, was measured 

to be 0.03-0.06 log units per decade and the ocular media was asserted to account for 

30-40% of the SWAP sensitivity decline with age (Johnson et al. 1988a).  

The influence of applying a correction to SWAP thresholds for the influence for 

lenticular absorption is ambiguous.  Methods implementing the correction of SWAP 

sensitivity involved the addition of the ocular media absorption value to each point in 

the visual field (Moss et al. 1995).  The age decline in SWAP sensitivity was noted to 

increase with greater eccentricities, especially in the superior field at eccentricities 

greater than 9°, after correction for ocular media absorption (Wild et al. 1998).  

Correction for ocular media in SWAP had the effect of increasing the MS at each point, 

however the standard deviation remained unchanged (Wild et al. 1995).  The reduction 

in the general height of the hill of vision due to ocular media absorption, increases with 

a decrease of stimulus wavelength.  Before correction for ocular media, the distribution 

of sensitivities for SWAP on the HFA was found to have an overall Gaussian 

distribution.  However after correction for ocular media, it was entirely Gaussian (Wild 

et al. 1998).     

Some investigators noted that correcting for ocular media decreased the between-

individual variability found in SWAP, and also improved the confidence limits predictive 
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of change (Wild et al. 1998).  Ocular media correction was also found not to have any 

significant effect on between subject variability of SWAP sensitivities (Wild et al. 1995).  

Conversely, other investigators have shown that correcting for absorption increases 

between-subject variability, thereby hindering interpretation (Johnson et al. 1988a).  It 

was suggested that this increase may be due to the correction factor for ocular media 

absorption having a relationship to the SWAP sensitivities.  Eyes with greater ocular 

media correction factors were found to have the highest SWAP sensitivities.  Thus 

increased lens yellowing was suggested to have a protective effect against damage 

from light, on SWAP sensitivities (Johnson et al. 1988a).  Another reason for the finding 

of increased variability after correction for absorption could be due to the assumptions 

made about the retinal threshold, when making the correction measurements.  In many 

cases the retina is abnormal and has altered threshold properties, when the correction 

measurements are made.  Prior to the commercial availability of perimeter hardware to 

implement SWAP, instrumentation for early research involving SWAP was a modified 

HFA.  This employed differing parameters to the currently commercially available 

SWAP, which may also explain some differences in the results regarding variability.   

It has previously been advocated that correction for lenticular absorption is 

unnecessary in SWAP, due to the diffuse nature of the change in the visual field with 

increasing lens density (Sample et al. 1994).  Glaucoma diagnosis in SWAP was 

similar from fields with and without lens density testing, based on results of the 

Glaucoma Hemifield Test (Sample et al. 1994).  Despite the difficulty in differentiating 

lens effects from glaucomatous diffuse loss, diffuse loss due to glaucoma alone is 

uncommon, occurring in 4.4% of subjects (n=113) (Chauhan et al. 1997).  There is no 

significant difference between the lens density index of normal and glaucoma patients 

(Sample et al. 1988).  The duration of lens density testing at the perimeter is 40 

minutes, which is clinically impractical due to the effects of fatigue.  
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Although macular pigment absorption may attenuate central threshold values of the 10° 

SWAP visual field, any correction for pre-receptoral absorption would artificially 

increase the perimetric sensitivity.  There are several other factors which confound the 

correction of SWAP thresholds for macular pigment absorption.  The large between-

subject (Pease et al. 1987; Hammond et al. 1997) and within-subject (Hammond & 

Fuld 1992; Wild & Hudson 1995) variability in the measurement of macular pigment 

absorption would introduce a further source of fluctuation to the data.  How the 

correction of SWAP for macular pigment absorption affects the normal prediction limits 

is currently unknown.  Correction for pre-receptoral absorption does not take into 

account the difficulty in stimulus detection caused by reduced stimulus contrast nor the 

effects of light scatter.  Additionally, commercially available measures of macular 

pigment absorption generate a single figure, rather than a range of measures for each 

eccentricity.  The measurement of the complete distribution of the profile of macular 

pigment optical density, which peaks at the fovea and declines with increasing 

eccentricity, is very time consuming and is difficult for some subjects, especially those 

with impaired vision (Bone & Landrum 2004).  Thus any potential correction for macular 

pigment absorption cannot easily take this distribution into account.  Furthermore, 

methods that employ retinal adaptation to measure macular pigment and ocular media 

absorption assume normal retinal function (Sample et al. 1988; Wild et al. 1995; Wild et 

al. 1998; Wild & Hudson 1995) which is incorrect in the presence of retinal disease. 

The effects of pre-retinal absorption on the SWAP visual field are symmetrical and 

characterised by diffuse loss, therefore the use of a statistical approach has been 

recommended to separate focal loss by analysis of change to the shape of the hill of 

vision and hemifield comparisons (Wild & Hudson 1995; Sample et al. 1994).  

Furthermore, the psychophysical measures of ocular media and macula pigment 

absorption are time consuming and arduous for the patient and thus are not clinically 

viable. 
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1.2.1.3 The Lens Opacities Classification System 

The Lens Opacities Classification System (LOCS) is a classification system, in which 

cataract severity is graded, in terms of nuclear colour (NC), nuclear opalescence (NO), 

cortical cataract (C) and posterior subcapsular cataract (P) (Chylack et al. 1993).  

LOCS is a measure of back scatter (Moss et al. 1995).  LOCS III, which was updated 

from a more basic version, LOCS II (Chylack et al. 1989), has a six step scale for NO 

and NC, and five grades of C and P.  More precise grading may be made by 

decimalising ten intervals between steps, although this reduces agreement between 

graders (Chylack et al. 1993). 

Grading is carried out by comparison to standardised photographs, originally with slit-

lamp photographs of cataract.  When carried out at the slit-lamp, grading was found to 

be only slightly less accurate than photographic grading (Karbassi et al. 1993).  The 

classification, NO, is assessed by the average opalescence of the entire nucleus.  To 

grade NC, the nucleus is viewed in cross-section to evaluate nuclear brunescence 

quality of brunescent colour from the posterior reflex.  The combined area of C 

opacities, graded by retro-illumination, is measured in comparison to the standard 

photographs.  Posteriorly focused retro-illumination images are used to grade P 

opacities, which should be located centrally, rather than peripherally (Chylack et al. 

1993). 

The influence of ocular media on SWAP is to limit the dynamic range and increase 

between-subject variability.  Consequently several studies involving SWAP, have 

excluded patients with lens changes greater than NCIII (nuclear colour III), NOIII 

(nuclear opalescence III), CI (cortical I), or PI (posterior subcapsular I), according to 

LOCS III (Cubbidge et al. 2002; Remky et al. 2001b; Wild et al. 1998).  

1.2.2 The Learning Effect in SWAP 

SWAP is a more physically difficult task than standard perimetry, as the examination 

duration is longer and the resolution of the short-wavelength sensitive pathway is poor 
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(Green 1968; Kelly 1973; Rabin & Adams 1990; Swanson 1989).  The between- and 

within-examination variability and the between-subject variability is greater in SWAP 

than in standard perimetry (Wild et al. 1998).  The greater between-subject variability in 

SWAP increases with greater eccentricity away from fixation (Kwon et al. 1998; Wild et 

al. 1998).  Therefore, confidence intervals for normality in SWAP are larger than in 

standard perimetry (Wild et al. 1998) and it would be expected that learning effects 

have a greater magnitude in SWAP compared to standard perimetry (Gardiner et al. 

2008).   

Previous experience of standard perimetry does not influence the learning effect in 

SWAP (Wild & Moss 1996; Zhong et al. 2008).  In explanation, standard perimetry 

involves the detection of a difference in luminance, whereas SWAP requires detection 

of the chromatic difference of the blue stimulus on the yellow background (Wild et al. 

2006).  The learning effect involving the luminance detection mechanism cannot 

transfer directly to the mechanism governing detection of chromatic difference. 

Unlike in standard perimetry where the greatest learning effect takes place between the 

first two examinations (Heijl & Bengtsson 1996), the learning effect in SWAP was noted 

to remain present until the 4th examination in normal subjects (Wild & Moss 1996) and 

in ocular hypertensives (Rossetti et al. 2006).  Additionally, the learning effect in SWAP 

was found to be present over 5 examinations in patients with ocular hypertension and 

open-angle glaucoma, with the greatest improvements in performance seen in the first 

3 visits (Wild et al. 2006).  In contrast, the learning effect was reported to have no 

significant effect on global indices by the third visit, leading to a recommendation of one 

training session for SWAP examinations (Zhong et al. 2008).  The learning effect in 

SWAP was measured to be an 8.2% improvement in global MS, in the first eye 

examined, at the fourth examination (Wild & Moss 1996).  In a study spanning 8 years 

the learning effect in SWAP was seen to be in effect until the 6th year in early and 

suspect glaucoma patients, who were tested infrequently as experienced in a clinical 
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situation (Gardiner et al. 2008).  Mean deviation was the visual field parameter which 

was most sensitive to change, in the detection of a learning effect in glaucoma patients 

(Rossetti et al. 2006).  The learning effect in SWAP in the 24-2 field varied greatly 

between individuals, using a HFA 750 (Wild et al. 2006).   

Learning and fatigue effects work in opposition to each other (Hudson et al. 1994).  In 

the second eye tested, the fatigue effect would appear to diminish the learning effect 

(Wild et al. 2006).  In order for the learning effect to be detected, it must have a greater 

magnitude than the fatigue effect (Wild & Moss 1996).  The effect of fatigue has not 

been widely investigated in SWAP.  When investigating standard fields and SWAP 

fields in patients with neuro-ophthalmic disorders, fatigue effects were discovered 

(Keltner & Johnson 1995).  Performance was seen to be worsened in the field carried 

out last in the order of examinations, for both SWAP and standard fields.  The use of a 

translucent occluder was found to reduce the sensitivity decline due to fatigue in SWAP 

and fatigue effects in normal subjects were found to be greater for SWAP than 

standard perimetry (Cubbidge 1997). 

1.2.3 Statistical Interpretation of SWAP  

Interpretation in SWAP has more variability than in standard perimetry when detecting 

progression and detecting abnormality.  Optimisation of the parameters of SWAP and 

improvement of threshold estimating algorithms increases accuracy for interpretation. 

Glaucomatous visual field loss was found to be significantly larger in SWAP than in 

standard perimetry (Hart et al. 1990; Sample & Weinreb 1990) and progression was 

noted to be detected earlier (Johnson et al. 1993b,c; Sample & Weinreb 1992).  

Despite this, SWAP did not gain widespread clinical use due to the increased variability 

in the 30° visual field.  In order for a defect to achieve statistical significance, it must be 

deeper, due to the greater between-subject variability.  The increased between-subject 

variability of SWAP reduces confidence limits when interpreting loss (Wild et al. 1995).  

SWAP also exhibits a greater short-term fluctuation (SF) than standard perimetry 
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(Kwon et al. 1998; Wild et al. 1995; Wild et al. 1998).  In normal subjects the SF was 

1.89dB and 1.61dB in SWAP and standard perimetry, respectively, using the 

FASTPAC strategy (Wild et al. 1998).  Furthermore, the sensitivity decline with 

advancing age in the normal eye is greater for SWAP than standard perimetry.  After 

correction for ocular media absorption, 1.43dB of loss per decade was found for 

SWAP, compared to 0.72dB loss per decade in standard perimetry, in the 30-2 field 

(Wild et al. 1998).  In the 10° field, the average loss per decade was 0.89dB and 

0.45dB for SWAP and standard perimetry, respectively (Conway 2003).       

Adapting the threshold estimating algorithm can improve on the intrinsic variability in 

SWAP.  Previously the FASTPAC strategy has been recommended in SWAP, over the 

Full Threshold strategy as it offered a reduced examination duration with no 

deterioration in staircase efficiency (Wild et al. 1998).  FASTPAC was also quoted to be 

appropriate for long-term follow-up in SWAP (Cubbidge et al. 2002).  More recently, 

SITA has been applied to SWAP and reduced the examination duration by 70% 

compared to the Full Threshold strategy (Bengtsson & Heijl 2003).  In normal subjects, 

SITA SWAP yielded higher sensitivities and diminished between-subject variability 

(Bengtsson & Heijl 2003).  SITA SWAP and the Full Threshold algorithm were found to 

identify glaucomatous visual field loss comparably (Bengtsson & Heijl 2006).  However, 

SITA SWAP has only been applied to the 30-2 and 24-2 visual field patterns and is not 

yet available for the 10-2 pattern.  

Focal loss in glaucoma was demonstrated to be wider and deeper in SWAP, than in 

standard perimetry (Wild et al. 1995).  Statistically raising or lowering the height of the 

hill of vision can greatly influence the depth of focal loss seen in the pattern deviation 

plot.  Despite the potentially obscured interpretation of diffuse loss by pre-receptoral 

absorption, in central retinal conditions such as AMD, focal rather than diffuse loss is of 

more importance. 
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1.2.4 Spatial Filtering 

Spatial filtering is an image processing technique for the enhancement of digital 

information.  In standard perimetry, a Gaussian filter has been applied to threshold 

sensitivity values (Crabb et al. 1995; Fitzke et al. 1995).  The filter is calculated using a 

3 x 3 grid.  The central point is replaced by a weighted average of the points in the grid, 

according to their proximity to the centre.  The filter is passed over each location in the 

field, with the exception of the most peripheral locations.  This “smoothing” process 

decreased between examination variability and noise (Crabb et al. 1997) and improved 

repeatability (Fitzke et al. 1995).   Using an alternative approach to spatial filtering, a 

median filter was applied to perimetric thresholds (Crabb et al. 1995; Fitzke et al. 

1995).  Similar to the 3 x 3 grid in the Gaussian filter, the new filtered value simply 

becomes the median or middle value of the nine points in the grid (Figure 1-6).  

A global index was derived from the median filter, the local spatial variability (LSV), in 

which the level of variability removed by the process was quantified (Crabb et al. 1995).  

The pointwise sensitivity difference, between the raw field and the filtered field, gives 

the residuals.  The root mean square of the residuals is a summary measure which 

describes the LSV.  If the LSV is large, this indicates an irregular field.  LSV was shown 

to be significantly correlated with global indices, SF and pattern standard deviation 

(PSD) (Crabb et al. 1995).  LSV is a relatively unmanipulated index since it is 

determined without reference data from normal subjects or replicate threshold 

measurements.  It is a measure of focal loss which does not incorporate the 

measurement of the height of the hill of vision. 

The spatial processing technique was used in the determination of glaucomatous 

progression (Crabb et al. 1997).  Hemifields were processed separately due to their 

physiologic independence, which excluded further points from the filter at edges, 

corners and along the horizontal meridian.  Pointwise linear regression was used to 

model change in sensitivity over time.  Analysis of the difference between predicted 
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change and actual change at 1- and 2-year follow up fields was determined for 

comparison with and without spatial filtering.  Spatial filtering improved the predictive 

performance, to a greater extent at the 2-year follow up (Crabb et al. 1997).   

The reduced variability achieved by spatial processing acts to reduce the LF.  This 

decreases the necessity for repeat testing to detect change and thus lessens the 

burden on resources.  In contrast, the Gaussian filter may be less efficient at detecting 

small amounts of loss, whereby diminished sensitivity in a minimal number of locations 

may be averaged out in the filter.  This disadvantage has more impact in the 30° field 

than the 10° field, which is the principal area of interest in AMD.   

The Gaussian filter does not take into account the anatomical structure of the retinal 

nerve fibre layer.  Gardiner et al. (2004) designed a new spatial filter to take into 

account the structure of the nerve fibre layer, using a database of the visual fields of 

14,675 suspected glaucomatous patients.  The correlations and covariances between 

sensitivities of glaucomatous visual field points were analysed to develop the filter 

(Gardiner et al. 2004; Strouthidis et al. 2006).  Computer simulated visual fields tested 

the novel filter which was found to diminish noise in glaucoma (Gardiner et al. 2004).  

Detection of glaucomatous progression using the novel filter resulted in similar 

specificity to the use of PLR with confirmatory testing, but had a greater rate of 

progression detection, in ocular hypertensive patients (Strouthidis et al. 2007). 
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Figure 1-6. Spatial filtering: a median filter 
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1.2.5 Long-term Fluctuation in SWAP 

Long-term fluctuation (LF) is the measure of variability, aside from the SF, between two 

or more visual field examinations, in the absence of pathologic changes.  Identification 

of the LF and SF facilitates detection of significant change due to disease progression.  

The global index of LF has not been calculated for previous visual field studies with 

AMD patients.   

LF has been reported to be correlated with eccentricity, differential light sensitivity, 

mean visual field defect, age, IOP and SF (Kwon et al. 1998).  Both SF and LF have a 

greater magnitude in SWAP than in standard perimetry, in normal patients (Kwon et al. 

1998).  In glaucoma patients LF was also illustrated as being greater for SWAP than 

standard perimetry (Blumenthal et al. 2000; Hutchings et al. 2001). 

Various different statistical methods have been adopted to measure LF in SWAP, not 

all of which have measured LF(He) and LF(Ho) components separately.  Kwon et al 

(1998) determined the LF for normal subjects, by calculating the statistical variance (in 

dB2) of threshold sensitivities from four sequential SWAP exams.  LF was found to 

increase with eccentricity.  Other investigators defined an index of long-term variability, 

which incorporates LF as well as SF.  Long-term variability was calculated as the 

average SD of three fields for each point in the field (Blumenthal et al. 2000).  For 

stable primary open-angle glaucoma patients, long-term variability was 0.55dB greater 

in SWAP than in standard perimetry (Blumenthal et al. 2000).  The explanation given 

for favouring the calculation of long-term variability over LF in this study, was due to the 

relatively few locations used to determine SF in the HFA Program 24-2.  It was 

suggested that since SF is location dependent, it was not appropriate to use the global 

SF, calculated from only 10 locations, for each point in the entire field (Blumenthal et al. 

2000).  A method which did determine separately the LF(He), LF(Ho) and error 

components of LF, in glaucoma suspects and stable primary open-angle glaucoma 

patients, in SWAP, incorporated a two-factor ANOVA with replications (Hutchings et al. 
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2001).  As part of a progression study, long-term variability was calculated using the 

99th percentile of the standard deviations of thresholds over three examinations, in 

patients with stable glaucoma (Kono et al. 2000).  Two types of variability were defined.  

The variability of fixed location analysed pointwise change over time and the variability 

of ranked location examined the variability of the Cumulative Defect or Bebié Curve.  

The variability was found to increase with decreasing sensitivity (Kono et al. 2000).     

1.2.6 Visual Field Progression in SWAP 

Various investigators have identified glaucomatous visual field progression in SWAP 

which precedes the progression in standard perimetry (Johnson 1993b,c; Sample & 

Weinreb 1992, Sample et al. 1993, Demirel & Johnson 2001).  These studies have 

employed differing analytical methods in order to define visual field abnormalities and 

detect progression.    

In a pair of longitudinal studies which examined patients annually over 5 years, SWAP 

defects were found to occur three to four years earlier than defects in standard 

perimetry in 38 patients with ocular hypertension (Johnson et al. 1993b) and 16 

patients with early glaucoma (Johnson et al. 1993c).  Progression was defined in terms 

of abnormal stimulus locations, which were considered abnormal if they fell outside of 

the confidence intervals of a normal database.  The normal database was collected 

during the same study and consisted of SWAP data derived from 62 subjects (Johnson 

et al. 1993b,c). 

Another longitudinal study in which progressive loss in SWAP was noted sooner than 

loss in standard perimetry, assessed 21 patients with primary open-angle glaucoma 

over two visits separated by 6 to 26 months (Sample & Weinreb 1992).  Thresholds 

were considered abnormal if they deviated by predefined absolute values from 

thresholds of 21 age-matched normal subjects.  Progression was determined by the 

number of abnormal thresholds increasing globally, pointwise and in quadrants 

(Sample & Weinreb 1992).    
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The prevalence and incidence of SWAP abnormalities was inspected in a prospective 

study of 250 ocular hypertensive patients, who were examined annually over a period 

of 5 years (Demirel & Johnson 2001).  In the patient group, there was a greater 

prevalence of SWAP field defects occurring; 9.4% in SWAP and 1.2% in standard 

perimetry.  However the incidence of new defects occurred at a similar rate of approx 

1.2% per year for both perimetry types (Demirel & Johnson 2001).  Visual field deficits 

were defined according to whether the average sensitivity values in ten zones of the 

Glaucoma Hemifield Test (Åsman & Heijl 1992) fell within the calculated confidence 

intervals from 60 normal subjects tested in the same study.  It was discovered that 

newly developed SWAP defects were more prominent and more persistent than new 

defects in standard perimetry (Demirel & Johnson 2001). 

Sample et al. (1993) demonstrated the predictive ability of SWAP in 25 ocular 

hypertensive patients followed over 12 to 37 months (Sample et al. 1993).  The risk of 

developing glaucoma was assessed and the subsequent development of glaucoma 

occurred in five eyes.  These five eyes had previously been classified as high or 

medium risk, due to significantly higher MD and number of defects than the other eyes.  

Other researchers have investigated the predictive power of SWAP in 152 patients with 

primary open-angle glaucoma over 30 months (Bayer & Erb 2002).  Progression was 

defined when the appearance of a new defect occurred, which had to be a cluster of 

three or more points depressed by a specified decline of absolute values in dB, from a 

previously normal region of the visual field.  SWAP was found to predict future 

progression of standard visual field defects in nearly 80% of glaucomatous eyes, within 

6 to 24 months (Bayer & Erb 2002).  In another study, which examined 160 eyes of 83 

subjects, good predictive ability of SWAP and structural assessment of the retinal 

nerve fibre layer were found, in detecting perimetric loss in suspect glaucoma patients 

(Polo et al. 2002).  Initial SWAP abnormalities and nerve fibre layer losses predicted 
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standard perimetry loss after three years with a sensitivity of 93% and 73%, 

respectively (Polo et al. 2002).     

Other methods of quantifying progressive visual field loss in SWAP have been 

described.  Progressive loss was presented based on the Cumulative Defect Curve 

and pointwise analysis in a study of 85 glaucoma patients followed over 52 months 

(Kono et al. 2000).  The long-term variability was subtracted from the baseline curve, 

which was compared to a follow-up curve, in order to detect progression.  Pointwise 

deterioration was identified if the decline between follow-up and baseline exceeded the 

long-term variability at each stimulus location.  A significant correlation was noted 

between the curve and pointwise progression for the number of locations exhibiting 

progression.  It was argued that the ranking of Cumulative Defect Curves is insensitive 

to spatial information and does not account for the regional dependent physiological 

threshold variation, thus has limited ability in separating diffuse and focal loss (Åsman 

& Olsson 1995).   

Several study designs incorporated both SWAP and frequency doubling technology 

(FDT; see Chapter 1.4.3.6.) to investigate glaucomatous progression (Bayer & Erb 

2002; Horn et al. 2007; Landers et al. 2003b; Leeprechanon et al. 2007).  It was 

determined that FDT could predict glaucomatous change in standard perimetry in the 

same way as SWAP (Bayer & Erb; Landers et al. 2003b).  SWAP and FDT showed 

similar abilities in the detection of glaucomatous loss (Bayer & Erb 2002; 

Leeprechanon et al. 2007) and the combination of both types of perimetry yielded 

better diagnostic results than each test performed separately (Horn et al. 2007). 

1.2.7 SWAP and Diabetes 

The comparison between SWAP and standard perimetry in diabetic patients has been 

made in numerous studies (Afrashi et al. 2003; Agardh et al. 2006; Bengtsson et al. 

2005; Bengtsson et al. 2008; Hudson et al. 1998; Remky et al. 2000; Remky et al. 

2003).  The 10° SWAP visual field was implicated as a useful measure in defining 
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functional loss in patients with early ischaemic damage to the macula (Agardh et al. 

2006; Remky et al. 2000).  The relationship between perimetry and damage of the 

perifoveal capillary network due to diabetes was evaluated and a stronger relationship 

was discerned in SWAP than in standard perimetry (Remky et al. 2000).  In SWAP, 

eyes with macular oedema displayed a greater number of depressed points compared 

to eyes without macular oedema, whereas no difference between groups was observed 

in standard perimetry (Agardh et al. 2006).  Clinically significant macular oedema was 

detected using an analysis of asymmetry between the hemifields of the 10° field, which 

was designed to negate pre-receptoral absorption effects (Hudson et al. 1998).  SWAP 

detected macular oedema with greater sensitivity than standard perimetry (Hudson et 

al. 1998).  In the 30° field, more severe SWAP MD values were reported in diabetic 

patients with no retinopathy when compared to control subjects, however the indices of 

focal loss were not different between groups (Afrashi et al. 2003).  In contrast, focal 

loss was better detected by SWAP than by standard perimetry in diabetic retinopathy 

(Bengtsson et al. 2005).  This was observed in the correlation of structural retinal 

measures on fundus photographs to the number of depressed points within a 6° radius 

of the visual field (Bengtsson et al. 2005).  Standard perimetry and SWAP performed 

similarly when monitoring visual function in the 24-2 visual field in patients with various 

degrees of diabetic retinopathy (Bengtsson et al. 2008) 

1.2.8 Summary 

The greater variability of the SWAP visual field in comparison to standard perimetry 

requires greater change to occur before progression can be reliably discerned (Wild 

2001).  However, other factors should be considered when evaluating the effectiveness 

of SWAP.  SWAP has demonstrated an increased sensitivity in progression detection.  

Newer threshold estimating algorithms such as SITA SWAP have reduced threshold 

variability in SWAP but they have not been applied to the 10-2 spatial grid.  

Additionally, the application of statistical procedures such as spatial filtering and the 
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separation of focal from diffuse loss act to improve the usefulness of SWAP in the 

measurement of visual field loss.  

1.3 Structural Changes in Age-Related Macular Degeneration (AMD) 

1.3.1 Introduction 

AMD is a disease affecting the central vision of individuals over the age of 45.  Late 

stage AMD causes severe visual loss and is one of the most common reasons for 

visual impairment leading to blindness in western industrialised countries.  In the UK, 

3.7% of the population aged 75 years or older and 14.4% aged over 90 years have 

visual impairment due to AMD (Evans et al. 2004).  Pooled data from several 

population based studies indicates that in the US, the prevalence of late stage AMD is 

1.47% of the population over the age of 40, or 1.75 million individuals; and in Western 

Europe, there are 3.35 million cases of AMD (Friedman et al. 2004).  In the future, it is 

expected that these figures will increase due to the expanding elderly population.     

Initial signs of AMD seen in the fundus are drusen.  Derived from the German word 

druse, meaning a crust of crystals lining a rock cavity, the plural, drusen refer to small 

yellow-white deposits of extracellular material between the basement membrane of the 

retinal pigment epithelium (RPE) and the inner collagenous zone of Bruch’s membrane.  

Many types of drusen have been identified including hard and soft drusen.  Drusen 

change in number, size, colour & distribution gradually (Gass et al. 1973).  Hard drusen 

are yellow, punctuate deposits smaller than 63µm and if seen in large numbers, may 

predispose to soft indistinct drusen and pigmentary changes (Klein et al. 2007).  As 

drusen increase in size, their borders merge to become confluent.  Histologically, 

drusen larger than 63µm have a lobulated appearance on light microscopy which 

suggests they are formed by confluence of a group of drusen (Sarks et al. 1999).  Soft 

drusen are subcategorised into distinct and indistinct.  Distinct drusen have uniform 

density, sharp edges and a solid appearance and indistinct drusen have decreasing 

density from centre to periphery and fuzzy borders (Klein et al. 1991).  Incidence data 
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collected in the Rotterdam study confirmed the natural course of AMD as the 

progression of hard drusen to soft distinct drusen to soft indistinct drusen (van 

Leeuwen et al. 2003b).  Reticular pseudodrusen refer to a yellowish indistinct 

interlacing network, 125µm to 250µm in diameter (Arnold et al. 1995).  They are 

typically distributed along the arcades, especially the superior arcade.  Pigmentary 

changes may occur as hyperpigmentation or hypopigmentation of the RPE.  The 

presence of pigmentary changes poses a greater risk to the development of atrophic or 

neovascular AMD (van Leeuwen et al. 2003b).  Geographic atrophy (GA) is later seen 

as areas of circumscribed atrophy of the RPE, beneath which choroidal vessels are 

more visible, and may occur with regression of soft drusen (Fine et al. 1999).  GA 

progresses slowly and often spares the foveal avascular zone until later in the course 

of the disease (Sunness 1999).  Late stage exudative disease occurs when the RPE 

separates from Bruch’s membrane and a pigment epithelial detachment (PED) occurs.  

The confluence of several soft drusen may result in a drusenoid pigmentary epithelial 

detachment (Fine et al. 1999; Hartnett et al. 1992).  The PED may be further 

complicated by choroidal neovascularisation, whereby abnormal new vessels from the 

choriocapillaris breach Bruch’s membrane and invade in the direction of the RPE (Fine 

et al. 1999).  The new vessels are compromised and leak serous fluid and blood.  

Finally, a disciform scar is left, in which the structure of the retina is disrupted and lacks 

perfusion.  The amount of scar tissue formed depends on the duration and extent of 

haemorrhage and exudation.    

The pathogenesis of AMD is unknown.  Several theories have been proposed, 

including oxidative stress, Bruch’s membrane abnormalities, ocular blood flow changes 

and inflammatory processes (Ambati et al. 2003; Holz et al. 2004; Zarbin 2004).  The 

retina is particularly susceptible to oxidative damage caused by reactive oxygen 

intermediates (ROI).  Examples of ROI include free radicals, hydrogen peroxide and 

singlet oxygen.  The RPE phagocytosis of photoreceptor outer segments generates 
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ROI.  Lipofuscin is a group of autofluorescent lipid and protein aggregates.  The 

formation of lipofuscin has been linked to oxidatively damaged photoreceptor outer 

segments.  Lipofuscin accumulates in RPE cells, causing a mechanical disruption to 

RPE function.  The role of macular pigment in absorbing blue light and quenching ROI 

is thought to limit retinal oxidative damage (Beatty et al. 2000).  One of the 

mechanisms which generates ROI in the retina is light exposure (Beatty et al. 2000).  

Blue light, which carries more energy than longer wavelength light, has been found to 

cause photoreceptor cell death by apoptosis in the rat retina (Wu et al. 1999) and has 

been linked to neovascular AMD in patients with low plasma antioxidant levels in the 

European Eye study (Fletcher et al. 2008).  Bruch’s membrane lies between the 

choriocapillaris and the RPE, and maintains photoreceptor homeostasis.  Extracellular 

material containing lipid accumulates in Bruch’s membrane, which may disturb its 

integrity and thus may affect the development of AMD (Ambati et al. 2003).  The 

abnormal material manifests as drusen, and is likely to originate in the RPE.  Impaired 

choroidal blood flow has been suggested to be related to the pathogenesis of AMD, in 

which lack of perfusion could lead to loss or dysfunction of RPE cells, however the 

evidence does not directly indicate that vascular abnormalities precede the 

development of AMD (Erlich et al. 2008).  Evidence for the role of inflammation in the 

pathogenesis of AMD has been determined in the molecular composition of drusen and 

neovascular complexes (Zarbin et al. 2004).  The involvement of growth factors in the 

mechanism of neovascularisation in AMD, have been postulated, including vascular 

endothelial growth factor (VEGF) (Das & McGuire 2003; Holtz et al. 2004).  VEGF 

inhibitors are routinely used in the treatment of exudative AMD. 

1.3.2 Risk Factors of AMD 

The known risks factors of AMD include age, smoking, hypertension, female gender, 

social background, diet and genetic factors.  Other risk factors involving signs of 

disease in the eye have been considered.  
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Age has been identified as a principal risk factor of AMD.  Analysis of pooled data from 

several population studies illustrates a strong age-related increase in the prevalence of 

large drusen, GA, neovascular AMD, and any AMD (Friedman et al. 2004).  In the UK, 

smokers aged over 75 were twice as likely to have AMD as non-smokers (Evans et al. 

2005).  Increased chance of development of neovascular AMD was discovered in 

smokers (Yanuzzi et al. 1992).  Indeed, smoking was found to be a major risk factor in 

thirteen studies (Thornton et al. 2005).  Men who were current smokers of more than 

20 cigarettes a day were found to have an increased risk compared to those who 

smoked less (Christen et al. 1996).  In women the risk of AMD increased with an 

increasing number of pack-years (Seddon et al. 1996).  Association of atherosclerosis 

with AMD has been reported (Friedman 2000).  Inconsistency exists regarding 

hypertension as a risk factor, since it has been found to be associated with neovascular 

AMD (Hyman et al. 2000) and was also found to have no association with early AMD 

(Klein et al. 2003).  Diabetes is not thought to be related to increased risk of AMD 

(Klein et al. 2003).  Women were found to be at a greater risk of developing 

neovascular disease than men (Mitchell et al. 2002).  Despite the consistent agreement 

between population based studies that women have a slightly increased risk, it has 

been speculated that age effects may not have been completely excluded from this 

estimate (Evans 2001).  The use of hormone replacement therapy has been shown to 

reduce the likelihood of large drusen and women who have had a greater number of 

births were found to have more large drusen (Freeman et al. 2005).  The prevalence of 

AMD was less widespread in black than in white patients for neovascular AMD in the 

AREDS study (Milton et al. 2005) and for any AMD in another study (Klein et al. 2003).  

Social class and years of education have also been suggested to have an impact on 

AMD, although these factors are difficult to control for.  In a study of South-East Asian 

patients, a lower level of education was significantly associated with early AMD 

(Cackett et al. 2008).  Dietary fat intake, especially in processed baked goods was 

associated with increased risk of AMD progression and fish intake due to omega-3 fatty 
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acids was observed to have a protective effect (Seddon et al. 2003b).  Antioxidant 

micronutrient intake has been shown to reduce risk of disease (AREDS 2001a).  A 

greater body mass index, above 25, was demonstrated to increase the risk of 

progression of the disease (Seddon et al. 2003a).  A weak association between 

hyperopia and AMD has been suggested (Wang et al. 2004), and the risk of AMD has 

been reported to be lower in highly myopic eyes in a Chinese population (Xu et al. 

2007).  Genetic factors have been investigated, as family history is an established risk 

factor of AMD (Klein et al. 1994) and several genetic variants have been strongly 

associated with AMD (Haddad et al. 2006).  Variation in geographic location has 

different incidences of AMD, although this could be attributed to differences in 

environment or genetic factors (Klein et al. 2004b).  There have been inconsistencies in 

findings of association of iris colour and sunlight exposure with AMD.  In Australian 

populations, light coloured irides (Mitchell et al. 1998; Nicolas et al. 2003), light 

exposure (Darzins et al. 1997) and abnormal skin sensitivity to sunlight (Mitchell et al. 

1998) were associated with increased disease progression rates, whereas no such 

associations were reported in a British study (Khan et al. 2006).  

Small numbers of hard drusen, less than 63µm in diameter are not considered to be a 

risk factor of AMD, however large numbers of hard drusen are likely to indicate 

pathological accumulations (Sarks et al. 1999).  In the Beaver Dam Eye Study, after 15 

years, the presence of 8 to 144 hard drusen was shown to predict the incidence of 

large, soft drusen and pigmentary changes, when compared to the presence of smaller 

numbers of hard drusen (Klein et al. 2007).  Large drusen and focal hyperpigmentation 

are considered risk factors for the development of neovascular AMD (Bressler et al. 

1990).  A stronger risk factor for the progression to advanced AMD was present when 

there were large drusen in both eyes than in one eye alone (AREDS 2001a).  Drusen 

larger than 50µm were highly associated with confluence of drusen and greater number 

of drusen in fellow eyes of neovascular AMD (Bressler et al. 1990).  Although, in some 
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cases large soft drusen are seen to fade and disappear, which was found to be 

accompanied by degenerative changes of the RPE (Sarks et al. 1999).  In a large 

epidemiologic study over 6.5 years, van Leeuwen et al. (2003b) discovered that the risk 

of progression of disease from hard or soft drusen, in the presence of pigmentary 

abnormalities, was three times greater than drusen without pigmentary abnormalities.  

Reticular pseudodrusen have been indicated as a strong risk factor for the 

development of GA and CNV (Klein et al. 2008a).  In the Beaver Dam Eye Study, the 

enlargement of GA was 6.4mm2, over a five year period in 95 patients, where 

computerised-assisted tracing of the area of GA on digitised colour fundus slides was 

performed (Klein et al. 2008b).  Eyes with multiple areas of GA were more likely to 

have the GA lesions increase in size and extend to foveal involvement than eyes with 

single GA areas (Klein et al. 2008b). 

It is known that there is a greater chance of developing exudative AMD if the fellow eye 

has an existing exudative lesion.  A yearly rate of developing a neovascular membrane 

in the fellow eye of patients with neovascular AMD in one eye was 8.8% in a 

prospective study over 4.5 years (Sandberg et al. 1998).  Investigation has been 

carried out to discover whether decreased visual function occurs in an eye, whose 

fellow eye has exudative disease.  Some researchers have not demonstrated a 

decrease in functional vision in eyes with this risk factor, when measuring central visual 

field sensitivity, contrast sensitivity, macular recovery function (Midena et al. 1997) and 

short-wavelength sensitive acuity (Beirne et al. 2006).  However, others have found 

reduced sensitivity in fellow eyes of exudative AMD, for SWAP thresholds in the 10° 

visual field (Remky et al. 2001b).  Similarly in a small sample (n = 3), decreased short-

wavelength sensitivity, was detected in the fellow eye of disciform scars and GA, 

measured under conditions similar to SWAP (Sunness et al. 1989).  The relationships 

between short wavelength sensitivity and AMD are discussed in more detail in sections 

1.4.2.2 and 1.4.2.3.  
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1.3.3 Classification of AMD  

1.3.3.1 Grading & Staging systems 

A number of grading systems exist in order to define and classify the signs of AMD 

from fundus photographs.  The most widely used systems are the Wisconsin Age-

related Maculopathy Grading System (Klein et al. 1991), the International Classification 

and Grading System (Bird et al. 1995) and the Age-Related Eye Disease (AREDS) 

classification system (AREDS 2001b).  Some grading systems use the term age-

related maculopathy (ARM) to indicate the presence of drusen and pigmentary 

changes and AMD, to refer to later changes such as GA and CNV (Bird et al. 1995; 

Klein et al. 1991).  Other systems refer to all forms of the condition as AMD (AREDS 

2001b) and is the convention followed throughout this thesis.    

The Wisconsin ARM Grading System standardised a circular grid (Figure 1-7), to be 

centred on the fovea of stereoscopic fundus photographs (Klein et al. 1991).  The grid 

is divided into subfields, consisting of three concentric circles of diameters 500, 1500, 

and 3000µm, also centred at the macula.  Standard circle sizes are used for estimation 

of lesion area.  The grid and photographs are mounted in clear plastic sheets and 

graded upon a light box with a colour temperature of 6200K, such that the wavelength 

has a less yellow hue to facilitate identification of subtle drusen.  Three main divisions 

of the grading system are drusen, other AMD lesions and other abnormalities.  Both 

extent and location of lesions are quantified.  Assessment of the Wisconsin ARM 

Grading System revealed good inter-observer agreement, from independent grading of 

857 eyes.  Weighted kappa values ranged from 0.48 to 0.87 for characteristics of AMD 

(Klein et al. 1991).  The kappa statistic ranges from -1 indicating exact disagreement to 

+1, representing exact agreement (Landis & Koch, 1977).  The following interpretation 

of kappa values was proposed as 0.41 to 0.60 indicating moderate agreement, 0.61 to 

0.80 substantial agreement, and 0.81 to 0.99 almost perfect agreement (Landis & 

Koch, 1977).      
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Figure 1-7. Standard grading grid 
 

The International Classification and Grading System defines lesions according to 

features, predominant type, number, size, and estimation of area occupied within the 

standard grid (Bird et al. 1995).  The subfield circle diameters of the grid are 1000, 

3000 and 6000µm.  Predominant drusen type is graded by the categories, hard, soft 

intermediate, soft distinct and soft indistinct; most common within the outer circle.  Only 

drusen larger than 63µm are counted separately.  Estimation of area within the 

subfields, predominant size of drusen and estimation of the percentage of confluence 

of drusen is noted.  Hyperpigmentation or hypopigmentation are classified by presence 

and main location.  GA and neovascular AMD are recorded by presence, most central 

location and area covered.  Percentage agreement of assessment of fundus 

photographs of 50 eyes ranged from 59 to 99% between three observers and from 62 

to 100% within observers (Scholl et al. 2003). 

AREDS was a major clinical trial designed to investigate the natural history and risk 

factors of AMD and cataract; and to evaluate the effect of nutrition on the progression 

of AMD.  A grading system, in extension of the Wisconsin ARM Grading System, was 

developed to define AMD abnormalities in fundus photographs.  The same grading grid 
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and light box method was used (AREDS 2001b).  Weighted kappa values ranged from 

0.51 to 0.88 for the grading of abnormalities (AREDS 2001b).    

No universal agreed classification exists as to the exact progression of disease in early 

AMD.  In order to measure progression of the disease, some groups have developed 

staging systems based on risk factors as measured in epidemiologic studies. 

The Rotterdam Study defined progression stages of disease, after grading signs 

according to the International Classification System (Klaver et al. 2001).  Subsequently, 

van Leeuwen et al. (2003b) found that the risk of developing late-stage disease was 

three times greater, when both hard and soft drusen were present with RPE 

abnormalities, compared to the presence of drusen alone.  The staging used in this 

study, based on definitions from a longitudinal epidemiologic study, categorises by 

drusen type and pigmentary abnormalities, and accounts for the increased risk of 

drusen with pigment abnormalities (Table 1-2).  This system of staging has been used 

in other studies (Augood et al. 2006; Beirne et al. 2006; Hamada et al. 2006).  Beirne et 

al (2006) studied the relationship between short-wavelength sensitive acuity and 

stages of early AMD.  Fundus photographs were graded using the Wisconsin ARM 

Grading System and staging was defined by the system used by van Leeuwen et al. 

(2003b). 

Stage Clinical Features 

0a No signs of ARM at all 

0b Hard drusen (<63µm) only 

1a Soft distinct drusen (≥ 63µm) only 

1b Pigmentary abnormalities only, no soft drusen (≥ 63µm) 

2a Soft indistinct drusen (≥ 125µm) or reticular drusen only 

2b Soft distinct drusen (≥ 63µm) with pigmentary abnormalities 

3 Soft indistinct drusen (≥ 125µm) or reticular drusen with pigmentary 
abnormalities 

4 Atrophic or neovascular AMD 

Table 1-2. Classification of Mutually Exclusive Stages of ARM (van Leeuwen et al. 
2003b) 
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Yet some controversy exists regarding the correlation of this staging system with 

functional changes.  Only weak relationships were observed between short-wavelength 

sensitive resolution acuity and the stages 1a to 2b (Beirne et al. 2006) and between 

scotopic interferometric acuity (SIA) and the stages 0 to 3 (Hogg et al. 2007).  Revised 

staging systems were suggested: to stage 0, stages 1a to 2b combined and stage 3 

(Beirne et al. 2006); and to the four stages, no ARM features or drusen smaller than 

63µm, drusen only but >63µm, hyperpigmentation only, and drusen plus 

hyperpigmentation (Hogg et al. 2007).  The revised systems produced significant 

relationships between functional measures and increasing severity of disease (Beirne 

et al. 2006; Hogg et al. 2007). 

The AREDS severity scale summarised AMD features into a four point severity scale.  

The stages involved a large range of features and in the late disease stages, included 

visual acuity in the criteria (AREDS 2001a,b).   

Other investigators graded macula photographs according to the International 

Classification and Grading System for AMD to describe six stages (Tikellis et al. 2006).  

Increased level of stage was associated with increased risk of developing late AMD.  

This system of staging differentiated between hyperpigmentation and 

hypopigmentation, as it is suggested that hyperpigmentation is more easily detected 

and thus noticed earlier.  Importantly, photographs in this study were re-graded and re-

staged according to systems proposed by the Rotterdam Study and AREDS.  It was 

discovered when comparing the different re-evaluated progression rates, that they only 

differed by a few percent.   
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Stage Clinical Features 

1 No drusen or <10 small drusen without pigment abnormalities 

2 Approximately ≥10 small drusen or <15 intermediate drusen, or pigment 
abnormalities associated with ARM 
a. Drusen 
b. RPE changes (hyperpigmentation and hypopigmentation) 
c. Both drusen and RPE changes 

3 Approximately ≥15 intermediate drusen or any large drusen 
a. No drusenoid RPED 
b. Drusenoid RPED 

4 Geographic atrophy with involvement of the macular centre, or noncentral 
geographic atrophy at least 350 µm in size 

5 Exudative AMD, including nondrusenoid pigment epithelial detachments, 
serous or hemorrhagic retinal detachments, CNVM with subretinal or sub-RPE 
haemorrhages or fibrosis, or scars consistent with treatment of AMD 
a. Serous RPED, without CNVM 
b. CNVM or disciform scar 

 
Table 1-3. The Clinical Age-Related Maculopathy Staging System (CARMS) 
(Seddon et al. 2006) 

 

Modified from the AREDS system, the Clinical Age-Related Maculopathy Staging 

System (CARMS) was developed for simplicity and greater ease of use by an 

inexperienced grader (Seddon et al. 2006).  The classes are estimated according to 

presence, size and approximate number of drusen; presence of RPE abnormalities, GA 

or CNV (Table 1-3).  The system shows good levels of reliability for inter-observer 

agreement (Seddon et al. 2006), however drusen in association with pigmentary 

changes are grouped together in an early stage. 

1.3.3.2 Computerised Drusen Measurement 

Methods have been developed to accurately measure the area of drusen by semi-

automated or automated computerised techniques (Smith et al. 2005a,b).  A normal 

fundus background has very variable reflectance.  The least reflectance is found at the 

macula, due to luteal pigment.  Background levelling is carried out using a 

mathematical model of quadratic polynomials.  In the fully automated method, this is 

followed by automated threshold selection and segmentation, to quantify the area of 
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drusen.  The automated technique was found to be comparable to the manual method 

of estimation of drusen area (Smith et al. 2005b) and drusen quantification is more 

precise than the traditional methods (Smith et al. 2005a).  Computerised drusen 

measurement is reviewed in more detail in Chapter 5. 

1.3.4 Non-invasive Imaging in AMD 

Traditional imaging methods such as fluorescein angiography, which is considered 

clinically necessary in the diagnosis of exudative AMD and allows for classification of 

neovascular lesions, involves intravenous injection of fluorescein dye and the 

associated risks to the patient.  Therefore this review will concentrate on non-invasive 

techniques of imaging in AMD, which pose minimal risk to the patient and infer greater 

ease for clinical use. 

1.3.4.1 Fundus Photography  

Sequential stereo fundus photography is a widely used technique in ophthalmology and 

involves one image taken after the other or two images taken simultaneously.  Once 

the area of interest is selected, the first image is taken near the left edge of the pupil.  A 

lateral shift with the joystick or camera base is made to take the second image, near 

the right edge of the pupil.  Greater horizontal separation of the images increases the 

stereo base of the photographs, but is limited by pupil size and lens opacity.   

The main advantage of stereophotography in grading AMD is for differentiation of 

edges of large drusen and RPE depigmentation.  The additional depth perception is 

more likely to distinguish pigment epithelial detachments from large areas of 

hypopigmentation, and aid viewing of other raised lesions.  The limitations of this 

technique involve the separation between the images, which may differ between 

subjects, giving rise to an inconsistent 3D effect between patients.  Therefore, no 

measures of absolute depth can be taken (Saine & Tyler 1997).   

The original standard for grading involved stereoscopic photographic 35mm film slides, 

mounted in clear plastic sheets, graded at a fluorescent light box with a colour 
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temperature of 6200K, through a stereoscopic viewer.  Following the widespread use of 

digital photograph, several studies have graded AMD from digital images (Beirne et al. 

2006; Bjornsson et al. 2006; Scholl et al. 2004).  When compared to film images, digital 

images have been shown to yield no significant difference in grading AMD (Klein et al. 

2004a; van Leeuwen et al. 2003a).  Good agreement in AMD grading between fundus 

photography and slit-lamp biomicroscopy has been found for digital images graded 

according to the Wisconsin ARM Grading System (Neelam et al. 2009a) and for colour 

slides graded using the International Classification System (Tikellis et al. 2000).  In 

fundus photography for grading of AMD, the variables affecting visualisation of the 

image need to be specified.  These include the distance and angle of viewing, monitor 

resolution, magnification and also methods of image manipulation.  

Digital stereo photography is limited by the number of pixels of the system.  The 

amount of light falling on a specific pixel is number between 0 and 255 for an 8-bit 

camera (since 28=256).  To indicate colour each pixel location has a red (R), green (G) 

or blue (B) value.  The pixel count shows the resolution of the system e.g. 1035 x 1370 

pixels, or for higher resolution 2036 x 3060.  If the pixel is smaller, the resolution is 

finer.  Although the monitor resolution in pixels is a limitation, zooming the image can 

help to overcome this.  The recommended standards for grading diabetic retinopathy 

are a monitor of at least 19”, with a pixel resolution of 1600 x 1200 (UK National 

Screening Committee, 2009), which fulfils the image resolution requirement of at least 

20 pixels per degree.  

The traditional stereoscopic viewer employed prisms to view stereoscopic pairs of 

images.  The LCD (liquid crystal display) technique is a computer display of images 

making up the stereo pair.  The images are alternately viewed through computer 

controlled LCD shutter glasses.  The PC controls an infrared signal to the glasses, 

which controls the opacity of the lenses, flickering at a rate of more than 30 images per 

second, between the two stereo images (Saine & Tyler 1997).  
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1.3.4.2 Fundus Autofluorescence  

Fundus autofluorescence (FAF) non-invasively images the retina using a confocal 

scanning laser ophthalmoscopy to topographically map lipofuscin distribution at the 

level of the RPE.  Lipofuscin accumulates in the RPE with age, which is believed to be 

a by-product of the constant phagocytosis of shed photoreceptor outer segment discs.  

A more detailed description of confocal scanning laser ophthalmoscopy can be found in 

Chapter 6.1.  Briefly, the confocal optics collect reflectance and fluorescence from the 

same plane, avoiding autofluorescence from the lens and cornea.  A blue excitation 

laser of wavelength 488nm is used in FAF imaging in commercially available 

instruments.  One such instrument, the Heidelberg Retinal Angiograph 2 (HRA 2; 

Heidelberg Engineering, Germany) detects emitted light above 500nm.  The image 

quality degrades in the presence of lenticular opacities. 

The monochromatic FAF image of a normal fundus shows a diffuse grey area at the 

posterior pole with gradual decrease or darkening towards the macula, due to macular 

pigment.  Retinal vessels appear dark due to absorption and the optic disc appears 

dark due to lack of autofluorescent material.  In AMD patients areas of increased or 

decreased FAF are seen on the fundus in comparison to the homogenous surrounding 

areas, due to areas of increased or decreased lipofuscin accumulation.  The eight 

phenotypic patterns of FAF in early AMD were classified as normal, minimal change, 

focal increased, patchy, linear, lacelike, reticular, and speckled (Bindewald et al. 

2005a).  Hyperpigmentation may appear as dark or light areas.  It was found that FAF 

intensities over hard and soft drusen were not different from the normal background 

and the age-matched controls (von Rückmann et al. 1997).  Localised areas of high 

FAF were seen which did not correspond to drusen and in some cases matched 

pigmentary changes (von Rückmann et al. 1997).  Large soft drusen and 

hyperpigmentation were significantly associated with focally increased 

autofluorescence in a study which examined automated drusen segmentation with 
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computerised FAF image analysis (Smith et al. 2006).  GA has the appearance of a 

marked dark patch on FAF images, which corresponds to RPE cell death and 

accompanying absence of lipofuscin.  Increased FAF is seen adjacent to GA (Smith et 

al. 2006).  A classification system has been derived of FAF patterns in the junctional 

zone of atrophy in GA, involving four main phenotypic patterns; focal, banded, patchy 

and diffuse (Bindewald et al. 2005b).  CNV presents irregular FAF patterns, which may 

be increased or decreased.  

1.3.4.3 Infrared Imaging  

Infrared imaging of the fundus using a scanning laser ophthalmoscope (SLO) provides 

better visibility of sub-retinal features such as drusen than visible light (Elsner et al. 

1996).  Scanning laser ophthalmoscopy and infrared imaging is reviewed in more detail 

in Chapter 6. 

1.3.4.4 Optical Coherence Tomography  

Optical coherence tomography (OCT) is a non-invasive retinal imaging technique which 

produces cross-sectional images of the retinal structures.  It was first described in 1991 

(Huang et al. 1991) and the most recent commercially available instrumentation is the 

spectral or Fourier domain OCT.   

OCT is analogous to B-scan ultrasonography, where light rather than sound 

measurements are made from tissue boundaries.  OCT imaging is based on the 

principle of Michelson interferometry, whereby light passing through the eye creates 

different reflections by the different cell layers.  The echo delay and intensity of the 

reflected light is measured to produce cross-sectional tomographic images.  Fourier 

domain OCT allows for high speed acquisition of higher resolution images, in which 

further distinction between the retinal layers is possible.  One such instrument is the 

Cirrus HD-OCT (Carl Zeiss Meditec, CA, USA) which has an axial and transverse 

resolution of 5µm and 25µm, respectively.  The combination of OCT with a SLO has 

allowed for three-dimensional fundus mapping and further improved resolution, for 
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example the Spectal OCT SLO (OPKO Instruments, FL, USA), whose axial and 

transverse resolution is 5-6µm and 15 µm, respectively, and incorporates 

microperimetry. 

The use of OCT in AMD is evident in the detection of drusen and RPE atrophy (Pieroni 

et al. 2006), intraretinal fluid, pigment epithelial detachment and neovascular 

membranes (Ahlers et al. 2006), in which quantitative measures may be made.  OCT 

has been used in the monitoring of retinal thickness in patients following treatment with 

the anti-VEGF drug, Avastin (Avery et al. 2006).  A spectral OCT SLO (Spectralis HRA 

+ OCT, Heidelberg Engineering, Heidelberg, Germany) was used to assess 

simultaneous fundus autofluorescence and high-resolution OCT images in patients with 

GA (Wolf-Schnurrbusch et al. 2008).  The principal outcome was structural alterations 

to retinal layers, seen as partial loss of defined boundaries between layers.  Alterations 

were observed in junctional zones surrounding the GA as well as in the GA areas 

(Wolf-Schnurrbusch et al. 2008).  Outer retinal layers were altered where inner retinal 

layers were not, especially at the external limiting membrane in junctional zones.  It 

was speculated this may be due to swelling of damaged RPE cells resulting from 

increased accumulation of lipofuscin at junctional zones (Wolf-Schnurrbusch et al. 

2008).  Six different commercially available OCT instruments, including one 

conventional time-domain OCT and five Fourier domain instruments were found to 

produce significantly differing measures of retinal thickness, due to different retinal 

segmentation algorithms.  Consequently, the instruments cannot be used 

interchangeably (Wolf-Schnurrbusch et al. 2009). 

1.3.5 Topographical Changes at the Macula in AMD  

AMD affects the photoreceptors secondarily to the RPE, Bruch’s membrane and the 

choriocapillaris, which results in the impairment of visual function (Jackson et al. 2005).  

The anatomy of the macula at the fovea contains a peak population of cones with a 

sharp decline to an eccentricity of 3.5° (Curcio et al. 1990).  Surrounding this, the rods 
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dominate the photoreceptor population of the parafovea (Figure 1-8).  The total rod to 

cone ratio is 20:1 (Curcio et al. 1990).  The eccentricity decline in cone density 

immediately surrounding the fovea is slightly faster along the vertical than the 

horizontal meridian, such that half the maximum cone density is achieved at 120µm 

(inferior) and 150µm (temporal) from the fovea.  This generates an elliptical pattern of 

cone isodensity contour maps.  The rods are absent from the centre of the fovea and 

first appear at 100-200µm (0.4-0.7°) from the foveal centre and increase rapidly to form 

a horizontal elliptical rod ring of maximum density at approximately the same 

eccentricity as the optic disc centre.  The most rapid increase in rod density occurs 

along the superior vertical meridian and least rapidly along the nasal horizontal 

meridian.  From the rod ring crest, rod density falls gradually into the far periphery 

(Curcio et al. 1990).  Foveal cone density does not show age-related changes, 

whereas a progressive loss of 30% of rods occurs over an adult lifetime (Curcio et al. 

1993).  The greatest rod loss with age occurs at 1 to 3 mm (3.5-10°) from the fovea 

(Jackson et al. 2002).   

Short-wavelength sensitive cones represent 6.8% of the total cone population within 

4mm of the foveal centre (Curcio et al. 1991).  Their distribution in the retina shows an 

absence at the foveal centre and a peak density at a distance of 100-300µm from the 

fovea, which is consistent with psychophysical findings of foveal tritanopia (Curcio et al. 

1991).  The profile of blue cone density resembles that of the rods, rather than the 

overall distribution of cones.  It is unknown whether the radial asymmetry of the rods is 

mirrored by the blue cone topography, due the sparse nature of the data for short-

wavelength sensitive cones (Curcio et al. 1991).   
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Figure 1-8. Photoreceptor distribution across the horizontal meridian.  
 
Displayed as a left eye, replotted from Curcio et al. 1990, data downloaded from 
http://cvision.ucsd.edu/index.htm. 
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The selective vulnerability of rod loss over cone loss in AMD has been suggested in 

histopathologic studies.  Photoreceptor loss was determined in a study of donor eyes, 

divided into three groups; normal, non-exudative and exudative AMD (Curcio et al. 

1996).  The non-exudative AMD group consisted of five eyes with drusen, pigmentary 

changes with and without GA.  The exudative AMD group included eight eyes with 

extensive GA, pigment clumping with and without neovascular changes.  There were 

two eyes in the normal control group.  In non-exudative eyes, foveal cones were 

spared and loss of parafoveal rods and cones occurred (Curcio et al. 1996).  The 

mosaic of inner segments was irregular at 2mm in the parafovea in non-exudative 

AMD, unlike the regular arrangement seen in the control eyes (Curcio et al. 1996).  In 

eyes with exudative AMD, the presence of mostly cones remained along the margins of 

and overlying disciform scars (Curcio et al. 1996). 

Changes to the ganglion cell layer were examined in six donor eyes with non-exudative 

AMD, five eyes with exudative AMD and 15 control eyes of patient ages over 60 years 

(Medeiros & Curcio 2001).  Contour maps showed the greatest density of ganglion cell 

layer neurons occurred in a horizontal ellipse 0.5 to 2mm from the foveal centre in all 

eyes.  It was found that even where large photoreceptor loss was present in exudative 

AMD eyes, proportionally large amounts of ganglion cell layer neurons survived 

(Medeiros & Curcio 2001).  Exudative AMD eyes had 47% less ganglion cell layer 

neurons than control eyes, however ganglion cell layer neurons in non-exudative eyes 

were not significantly different from the number in control eyes (Medeiros & Curcio 

2001).      

1.4 Functional Changes in AMD 

Changes in visual function in AMD have been investigated by various means.  This 

review includes standard clinical measures and also non-standard research methods, 

which have been studied in AMD, and which are relevant to the studies included in this 

thesis. 
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1.4.1 Standard Clinical Measures 

1.4.1.1 Visual Acuity and Contrast Sensitivity  

Visual acuity (VA) is the standard measure of visual function in clinical practice, where 

it is normally expressed as a Snellen fraction.  For research purposes, a LogMAR chart 

is favoured due to the geometric progression in size of optotypes between lines.  Unlike 

VA which is a measurement at 100% contrast, contrast sensitivity (CS) is a clinical 

measure of the contrast threshold required to visualise a target, which may be an 

optotype or a sinusoidal grating.  Letter target measures of CS are often used in clinical 

studies supplementary to VA, and are briefly reviewed here. 

In a population based study as part of the Beaver Dam Eye Study, early AMD features 

were associated with loss of two or less letters on the ETDRS LogMAR chart and late 

stage features were associated with a loss of seven lines (Klein et al. 1995).  Although 

the loss in early AMD was significant, this finding was disputed as a loss of two letters 

is less than the measurement variability of the LogMAR chart (Neelam et al. 2009b).  

Other studies have found large variations in VA results in patients with GA and CNV, 

due to extent of foveal involvement and tissue composition of the macular lesion (Hogg 

et al. 2003; Sunness et al. 1999).  In a longitudinal study, it was found that forty eyes 

with GA lost three to six lines of LogMAR acuity over two years, whereas nine eyes 

with drusen and pigmentary changes did not exhibit any significant loss (Sunness et al. 

1997).  The strongest risk factors for prediction of VA loss from developing GA were 

found to be reduced low luminance VA, measured with a neutral density filter before 

the eye on an ETDRS chart, and reduced reading speed (Sunness et al. 2008). 

CS was found to be significantly impaired in patients at various stages of AMD (Abadi 

& Pantazidou 1996; Feigl et al. 2005; Kleiner et al. 1988; Stangos et al. 1995; Sunness 

et al. 1997), although these studies did not appear to have excluded subjects with 

lenticular opacities.  Significant CS loss at high and middle spatial frequencies was 

found in eyes with drusen and normal visual acuity, compared to control eyes, however 
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it was concluded that CS loss was not predictive of CNV (Stangos et al. 1995).  A 

longitudinal study determined moderate correlation between ETDRS VA and Pelli-

Robson CS in eyes with neovascular disease, at baseline and after 2 years (Bellmann 

et al. 2003).  Contradictory findings were made in a study using low contrast letter 

Regan acuity measurement in early AMD and normal subjects.  Regan letter charts are 

similar to LogMAR charts, except that the letters vary in contrast levels.  Better 

performance in the normal group was found at all contrast levels, suggesting that the 

low contrast letter measurement provided no further useful information (Abadi & 

Pantazidou 1996).  However, there was a relatively limited number of patients (n = 6) 

and normal subjects (n = 12) in this study.  Poorer performance using Regan charts 

was found in patients with drusen and Snellen VA of 6/6 when compared with age-

matched normal subjects (Kleiner et al. 1988).  The difference between the two groups 

increased with decrease in letter contrast and categories of drusen severity correlated 

with CS loss (Kleiner et al. 1988).  VA and CS are limited to foveal measures of visual 

function and therefore are relatively insensitive to changes due to AMD. 

1.4.1.2 Reading Speed  

Another measure of visual function is reading speed.  This is a more complex task, as it 

involves visual resolution as well as eye movement control and cortical processes.  

Several studies have demonstrated diminished performance in reading speed in AMD 

(Bullimore & Bailey 1995; Elliott et al. 2001; Legge et al. 1985; Legge et al. 1992; 

Sunness et al. 1997).  There are many reasons for this, including the use of eccentric 

viewing (Timberlake et al. 1986), the size of scotoma and associated impaired eye 

movement control (McMahon et al. 1991; White & Bedell 1990; Whittaker et al. 1991), 

reduced perceptual span (Bullimore & Bailey 1995; Crossland & Rubin 2006) and 

impaired fixation stability (Crossland et al. 2004). 

Lack of fixation stability has been associated with slow reading speed by a linear 

relationship, however fixation stability was not related to VA, scotoma size or CS 
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(Crossland et al. 2004).  Fixation patterns were examined in patients with macular 

scotomata using a SLO, where three patients fixated with a single preferred retinal 

locus adjacent to the scotoma and fixation stability was also not related to VA in this 

study (Timberlake et al. 1986).   

Using an eye tracker and the MNREAD acuity charts, binocular viewing was not 

significantly advantageous over monocular reading speed (Kabanarou & Rubin 2006).  

The reading speed of patients with AMD, who underwent training exercises to practise 

control of eye positions and movements, significantly increased after training (Seiple et 

al. 2005).  As an everyday task, the measure of reading speed is of value and loss of 

reading performance is highly correlated with vision-related quality of life score (Hazel 

et al. 2000). 

1.4.1.3 Colour Vision    

Colour vision function in AMD has been assessed in many studies, where 

abnormalities tended to be tritan defects (Applegate et al. 1987; Arden & Wolf 2004; 

Cheng & Vingrys 1993; Collins 1986; Eisner et al. 1991; Eisner et al. 1992; Feigl et al. 

2005; Frennesson et al. 1995).  There exists relatively fewer studies which did not find 

defective colour vision in AMD patients (Atchison et al. 1990, Midena et al. 1997).  

Various colour vision tests were used to reach these findings.   

D-15 and desaturated D-15 testing was significantly worse in patients with drusen with 

or without pigmentary changes compared to control subjects, but no significant change 

in colour vision was seen after a year (Feigl et al. 2005).  D-15 and Rayleigh colour 

matching tests were administered in fellow eyes of eyes with exudative AMD in 41 

patients (Eisner et al. 1991).  High risk eyes, which had large confluent drusen with or 

without hyperpigmentation, failed the D-15 test and exhibited abnormal colour matching 

(Eisner et al. 1991).  The same tests were measured longitudinally over 18 months in 

fellow eyes of exudative AMD in 47 patients and it was found that colour matching in 

combination with dark adaptation was the most effective method in determining the 
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development of CNV (Eisner et al. 1992).  Farnsworth-Munsell 100-hue and D-15 tests 

were administered in four eyes of three AMD patients and demonstrated development 

of a prominent tritan defect following a small pigment epithelial detachment in one 

patient and after diagnosis of a subretinal neovascular membrane in another patient 

(Applegate et al. 1987).  Conversely, the Farnsworth-Munsell 100-hue detected no 

abnormalities in patients with drusen with or without pigmentary changes (Midena et al. 

1997).  Contrasting findings are present in two studies of patients with drusen and 

pigmentary abnormalities, tested using the desaturated D-15 test; no difference was 

exhibited between patients and control subjects in one study (Atchison et al. 1990), and 

tritan defects significantly different from the control group, were found in patients in an 

earlier study (Collins et al. 1986) 

Detection of colour contrast sensitivity using optotypes displayed by means of a 

computer graphics system has been implemented (Arden & Wolf 2004, Frennesson et 

al. 1995).  Colour contrast sensitivity was significantly lower in patients with drusen, 

with and without pigment changes for the protan and deutan and especially the tritan 

axes (Frennesson et al. 1995).  Greater tritan defects were related to increasing 

severity of fundus changes (Arden & Wolf 2004). 

1.4.1.4 Dark Adaptation Function    

Dark adaptation tests measure the slow recovery of visual sensitivity in the dark, after 

brief exposure to a field of high luminance which bleaches the visual pigment in the 

photoreceptors.  The typical dark adaptation function consists of two portions.  The 

early portion is a rapid reduction in threshold to a plateau and is exclusively mediated 

by the cones.  A transition to rod function occurs at around 10 minutes, where there is 

a sudden change in the slope of the curve, known as the rod-cone break.  Following 

this, a slow reduction in threshold occurs over approximately 35 minutes, exclusively 

mediated by the rods (Schwartz 2004).  The rod-mediated portion of dark adaptation 

was noted to be significantly slower in older adults than younger adults (Jackson et al. 
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1999).  This has been linked to symptoms of difficulty in seeing under low illumination 

and at night experienced by healthy older adults.  In patients with early AMD, who had 

normal visual acuity, the rod-mediated dark adaptation was approximately 13 minutes 

slower than control subjects (Owsley et al. 2001).  The delay in rod-mediated dark 

adaptation is greater than that for cone-mediated dark adaptation in early AMD 

(Jackson et al. 2002).   

Scotopic retinal sensitivity is mediated by the rods.  It is measured away from the fovea 

using a short-wavelength stimulus (450-550nm) after 30 to 45 minutes of dark 

adaptation.  Several psychophysical studies have observed reduced scotopic 

sensitivity in AMD patients using a HFA modified for scotopic conditions (Owsley et al. 

2000, 2001; Scholl et al. 2004; Steinmetz et al. 1993) and a dark adaptometer (Brown 

et al. 1986).  This corresponds to the histopathological findings of selective vulnerability 

for rod loss in AMD.  Another study using an adapted HFA did not find reduced 

scotopic sensitivities, although the suggestion was made that less advanced age-

related changes were present in the patient group compared to previous studies 

(Haimovici et al. 2002).  A commercial instrument, the Scotopic Sensitivity Tester-1 did 

not find any significant dark adaptation abnormalities in patients with early AMD when 

compared with normal subjects (Jackson et al. 2006).  No correlation between the 

scotopic sensitivity and structural measures of drusen on fundus photography was 

observed (Owsley et al. 2000; Steinmetz et al. 1993), although functional loss did 

correlate with areas of increased fundus autofluorescence (Scholl et al. 2004). 

1.4.2 Perimetry and  AMD 

1.4.2.1 Standard Perimetry and AMD 

Several studies have examined the central visual field in AMD using a Humphrey Field 

Analyser (Atchison et al. 1990; Cheng & Vingrys 1993; Feigl et al. 2005; Frennesson et 

al. 1995; Midena et al. 1994,1997; Tolentino et al. 1994).  All of these studies analysed 

as the main outcome, global mean sensitivity (MS) and in some cases, its standard 
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deviation. Other global indices, such as the mean deviation (MD) and probability 

analyses were not calculated, even when a large range of ages among the sample was 

present.  One exception to this was a study which used number of defects from normal 

in a 16 point 6° by 4° stimulus grid (Tolentino et al. 1994). 

Midena et al. (1994, 1997) found reduced sensitivity in the HFA 10-2 field in patients 

with early AMD, when fundi were graded using the International Classification System, 

in groups comprising approximately 30 patients.  In eyes with drusen, MS was 

significantly lower in eyes with soft drusen compared to eyes without soft drusen, and 

in eyes with drusen larger than 63µm compared to eyes with drusen smaller than 63µm 

(Midena et al. 1994).  A later study by the same group found significantly lower MS in 

patients, compared to age-matched controls (Midena et al. 1997).  MS showed no 

significant differences with number of drusen (Midena et al. 1994, 1997).  A 

progressive decrease in sensitivity was noticed with increased confluence of drusen, 

however, MS was unaffected by neither the presence of focal hyperpigmentation, nor 

RPE atrophy (Midena et al. 1997).  The findings of these two studies has less impact 

when it is considered that where significant differences in MS were found, they were of 

very small magnitudes, of 1 to 2dB.     

Cheng & Vingrys (1993) also discovered that patients with early AMD exhibited 

reduced mean sensitivities on the HFA 10-2 test compared to age-matched normal 

subjects, although this was not statistically significant.  Most of the defects detected 

were in the parafovea, at 5° to 10°.  In contrast to this, Atchison et al. (1990) compared 

HFA 10-2 and 24-2 fields in 15 subjects with drusen and pigmentary changes to 15 

age-matched normals and reported no significant difference between the two groups.  

Similarly, Frenesson et al. (1995) discovered normal 10-2 central visual fields in 27 

subjects with pigmentary changes and soft drusen, some of which were confluent.  

Feigl et al. (2005) reported that 10-2 MS was within normal limits in thirteen patients 

with early AMD, graded using the AREDS grading system.  This was not significantly 
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different from thirteen age-matched normal subjects, at baseline and one year after 

baseline (Feigl et al. 2005).  Tolentino et al. (1994) detected that reduced sensitivity 

and drusen area were not significantly correlated, but sensitivity was reduced 

significantly with increased RPE atrophy. 

Earlier studies involving a Friedmann Visual Field Analyser, an autoplot tangent screen 

(Swann & Lovie-Kitchin 1991) and a Goldmann perimeter using the static mode in the 

central 10° (Hart et al. 1983) have shown paracentral scotomata and preservation of 

central vision.  Scanning laser ophthalmoscope (SLO) perimetry has been utilised to 

measure visual fields in AMD.  The accuracy of fixation monitoring is improved over 

standard perimetry as correction can be made for loss of fixation.  This advantage is 

evident as central visual field loss due to AMD is known to be associated with poorer 

fixation (Fujii et al. 2003).  SLO perimetry is reviewed in section 1.4.3.1.   

1.4.2.2 SWAP and AMD  

Short-wavelength automated perimetry (SWAP) has been well documented in the early 

detection of glaucoma (Johnson et al. 1993b,c; Sample & Weinreb 1992).  

Glaucomatous progression was detected three to four years earlier in SWAP than in 

standard perimetry (Johnson et al. 1993b,c).  SWAP also offered improved detection of 

focal defects in diabetic macular oedema, than standard perimetry (Hudson et al. 1998, 

Remky et al. 2000).  Clinically, the use of SWAP did not become widespread following 

these findings, due to its greater variability in the 30° field, compared to standard 

perimetry (Wild et al. 1998).  However in the central 10°, SWAP has a flatter hill of 

vision and the between-subject variability of SWAP is significantly less than in the 30° 

field (Kwon et al. 1998; Wild et al. 1998).  This allows for a more accurate statistical 

interpretation using standard perimetric methodology and greater capability in the 

detection of focal loss (Cubbidge et al. 2002).  It is known that patients with AMD have 

a diminished short-wavelength sensitive cone mechanism sensitivity (Chapter 1.4.2.3).  
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The number of studies documenting the measurement of SWAP in AMD is scarce 

(Remky et al. 2001b; Remky & Elsner 2005).   

In 126 patients with early AMD, 75 of which had late AMD in the fellow eye, central 10° 

field SWAP was performed, using a HFA (Remky et al. 2001b).  A decline in MS with 

age was found.  In eyes of equal age and LogMAR acuity, those with soft drusen had 

significantly decreased MS compared to eyes without.  Fellow eyes of eyes with 

exudative AMD had lower sensitivities compared to patients without exudative disease.  

Focal pigmentation was found to be related to an eccentricity effect.  Eyes with 

hyperpigmentation had reduced sensitivity centrally compared to peripherally and the 

opposite was true for eyes without hyperpigmentation.  The authors quoted SWAP 

sensitivity loss as a risk factor of AMD, although standard visual field data was not 

collected in their study (Remky et al. 2001b). 

Another blue-on-yellow perimetry technique, using a scanning laser ophthalmoscope, 

has been employed to study early AMD (Remky & Elsner 2005).  Reduced sensitivity in 

a 10° rectangular stimulus configuration consisting of 16 stimuli was recorded in 24 

early AMD patients and age-matched controls.  Patients with soft drusen were found to 

have lower MS values and higher between-subject variation than those with hard 

drusen.  Areas of drusen, atrophic patches, and hyperpigmentation had lower 

sensitivity than areas without, thus showing focal loss in addition to the diffuse loss 

(Remky & Elsner 2005). 

1.4.2.3 Short-Wavelength Sensitive Cone Pathway Sensitivity  

The decline in sensitivity with age in SWAP is approximately 15dB per decade 

(Johnson et al. 1988a).  Other psychophysical tests have determined an age-related 

loss of the short-wavelength sensitive cone pathway sensitivity at the fovea (Eisner et 

al. 1987a; Werner & Steele 1988).   

Investigators have observed diminished short-wavelength sensitive cone pathway 

sensitivity in patients with AMD (Eisner et al. 1987b; Haegerstrom-Portnoy et al. 1989). 
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Eisner et al. (1987a,b, 1991, 1992) employed a two-channel Maxwellian view testing 

device, where isolation of the short-wavelength sensitive pathway was achieved using 

small stimuli, 3° and 1° in diameter of wavelength 440nm upon a 6° chromatic 

background of wavelength 580nm.  A 20Hz square wave flickering stimulus was used 

to determine threshold sensitivity (Eisner et al. 1987a,b, 1991, 1992).  A significantly 

lower sensitivity was ascertained in fellow eyes of patients with CNV, which had 

drusen, with and without hyperpigmentation, compared to an age-matched normal 

group (Eisner et al. 1987b).  Using similar instrumentation, but differing stimulus 

conditions (440nm and 480nm, 2° stimulus on a 20° field, which flickered at 25Hz), 

patients with drusen and pigmentary changes had significant sensitivity loss and 

greater variability around the measure compared to control subjects (Haegerstrom-

Portnoy et al. 1989).  By contrast, within the same study, sensitivity in another patient 

group, who had less extensive retinal changes and good visual acuities, did not 

significantly differ from control subjects.   

Low foveal short-wavelength sensitive cone pathway sensitivities were found to predict 

the development of exudative changes in fellow eyes of exudative disease followed 

over 18 months (Eisner et al. 1992).  In fellow eyes of exudative disease with good 

acuity, eyes with any of the high risk features, focal hyperpigmentation, more than 

minimal confluence of drusen and large drusen; had significantly lower short-

wavelength sensitive cone pathway sensitivity than low risk eyes without these features 

(Eisner et al. 1991).  A modified Tübinger perimeter was employed to measure foveal 

short-wavelength sensitive cone pathway sensitivity using a flickering 2° blue stimulus, 

450nm on a yellow chromatic background of 578nm, and a correction for lens density 

and macular pigment was included (Sunness et al. 1989).  A weak correlation between 

high risk drusen, defined as soft drusen, confluence of drusen or hyperpigmentation 

and decreased sensitivity was illustrated (Sunness et al. 1989).  In this study, Sunness 

et al. (1989) highlighted a predictive ability of reduced short-wavelength sensitive cone 
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pathway sensitivity based on its appearance in advance of clinical detection.  Another 

two-channel Maxwellian view system using a 1° flickering stimulus on 9° circular 

chromatic background isolated short, medium and long wavelength sensitive cones 

using various filters, revealed loss of sensitivity in the short-wavelength cones alone, in 

both exudative and non-exudative disease, in a small sample of three subjects 

(Applegate et al. 1987).   

Beirne et al. (2006) investigated the relationship between short-wavelength sensitive 

grating acuity and severity of stage of early AMD.  Fundus photographs were graded 

by the Wisconsin grading system and staged according to the definitions used in the 

Rotterdam Eye Study.  Resolution acuity was found to be reduced in eyes with AMD, 

however there was no direct relationship with increased disease stage.  

It has been reported that normal elderly subjects who had high macular pigment 

density also had higher short-wavelength cone sensitivity than subjects with lower 

macular pigment density (Hammond et al. 1998).  The study implied a protective role of 

macular pigment over visual sensitivity. 

1.4.3 Other Non-standard Perimetric Techniques and AMD 

1.4.3.1 Microperimetry  

Microperimetry allows for simultaneous real-time fundus imaging and computerised 

threshold perimetry, which gives exact correlation between retinal lesions and 

corresponding functional defects.  Previously, the SLO was adapted to perform 

microperimetry, whereby the fundus was illuminated with an infrared laser.  The SLO 

101 (Rodenstock, Germany), which is no longer available, projected a stimulus Helium-

Neon laser beam (632.8nm) and an infrared laser (780nm) through a slightly confocal 

aperture onto the fundus (Rohrschneider et al. 2008).  The exact location of individual 

fixation locus and the increment threshold could be quantified, however the SLO did 

not incorporate real-time fundus tracking, had a limited field of view of 33° by 21°, and 

was not fully automatic.   
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A commercially available microperimeter, the MP1 (Nidek Instruments Inc, Padova, 

Italy), has a 45° field of view and allows for automated full threshold perimetry.  This 

instrument is not a SLO, it uses an infrared fundus camera to view the fundus and a 

liquid crystal display background to perform perimetry.  Initial selection of retinal 

landmarks serves the automated tracking system which enables automatic 

compensation for eye movements during perimetric examination.  Fixation 

characteristics, location and stability are also quantified.  Perimetry is implemented by 

means of infrared projection onto the retina and a range of stimulus sizes are available 

from Goldmann size I to V.  Background luminance is 1.27cd/m2 and can be white or 

red.  Central field testing can extend to 10° and pre-defined stimulus configurations are 

arranged in concentric rings (Figure 1-9), however custom configurations may also be 

defined.  The perimetric results are displayed as numeric, symbolic or interpolated 

thresholds overlaid onto the fundus image. 

Normal values of threshold sensitivity have been collected from 349 eyes of 176 

normal subjects aged between 20 and 75 years (Midena et al. 2006) and this database 

has been incorporated into the instrument software (Rohrschneider et al. 2008).  

Although the statistical information essential in the interpretation of standard perimetry, 

such as the global indices of repeatability, use of visual field modelling, and the newer 

generation of threshold estimating algorithms does not yet appear to have been 

employed.  It has been ascertained that there is an age-related linear decline in MP1 

mean sensitivities (Midena et al. 2006; Shah & Chalan 2009).  The normal MS of the 

MP1 at age 20 years was found to be 19.7dB (Midena et al. 2006), which divulges the 

limitation of the narrow dynamic range of the MP1 of 20dB and implies underestimation 

of high MS values.  Test-retest variability in fifty patients with a variety of macular 

diseases was 2.56dB for the central 10°, using the 10-2 stimulus configuration, which 

was the coefficient of repeatability for the mean defect (Chen et al. 2009). 
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Figure 1-9.  MP1: 5° stimulus configuration for central screening, 61 stimuli, 
Goldman size III, with a 1° cross fixation target.  
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Other functions of the MP1 include kinetic perimetry and other functional tasks such as 

contrast sensitivity, reading and fixation tasks.  The Spectral OCT SLO (OPKO 

Instruments, FL, USA) is an instrument which combines microperimetry with spectral 

domain OCT imaging, allowing for retinal thickness and volumetric analysis in direct 

relation to functional sensitivity. 

Due to differing instrumentation, setups and software, comparison of results between 

SLO and MP1 microperimetry, and also to standard perimetry cannot be made directly.  

In patients with macular disease, it was found that the MP1 tended find deeper defects 

than the SLO 101, which had superior quality fundus images, especially useful in early 

pathology (Rohrschneider et al. 2005).  Sensitivity values on the MP1 were comparable 

to Octopus values, with greater differences in the inferior field (Springer et al. 2005). 

Microperimetry has been used to detect functional loss over large drusen (Midena et al. 

2007; Takamine et al. 1998).  Reduced retinal sensitivity of greater than 5dB in areas 

of large drusen with a distinct border, compared to non-drusen areas was found in 9 

out of 23 eyes, using SLO microperimetry, although no relationship between sensitivity 

loss and size of drusen was noticed (Takamine et al. 1998).  Soft drusen with indistinct 

borders did not have reduced overlying sensitivities (Takamine et al. 1998).  In a study 

involving thirteen patients with drusen, pigmentary changes and RPE atrophy less than 

125µm, fundus autofluorescence and MP1 microperimetry was carried out (Midena et 

al. 2007).  Sensitivity loss was noted over drusen larger than 125µm, but no significant 

loss was noted over drusen smaller than 125µm in diameter.  Pigmentary changes 

were also significantly associated with loss of sensitivity, and the sensitivity loss was 

even greater when there were pigmentary changes in the presence of large drusen 

(Midena et al. 2007).  The magnitude of difference in sensitivity between large drusen 

with and without pigment was approximately 2dB.  However the ANOVA analysis in this 

study appears to have employed absolute sensitivity values overlying each feature, 
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summed together across all patients.  This method did not appear to take into account 

the between-subject variability or the age difference between patients.  

A wide variety in number of scotoma points was found in patients with GA, using SLO 

microperimetry (Sunness et al. 1997).  In patients with CNV, SLO microperimetry was 

performed using a single staircase threshold estimating algorithm, to find areas of 

absolute and relative scotoma (Ergun et al. 2003).  A significant correlation was found 

between reading speed and size of absolute scotoma, but not with size of relative 

scotoma (Ergun et al. 2003).  Comparison between SLO perimetry and indocyanine 

green angiography was made in the detection of CNV (Schneider et al. 1996).  

Agreement was found such that well-defined CNV produced significantly deeper 

scotomata than eyes with occult CNV (Schneider et al. 1996). 

175 patients with subfoveal CNV were examined with SLO microperimetry and it was 

found that 75% of eyes had predominantly central fixation and 28% of eyes had a 

dense central scotoma which was associated with longer time since onset of symptoms 

(Fujii et al. 2003).  A subset 15 untreated eyes of this patient group was then followed 

over 18 months to investigate the sequence of visual loss (Fujii et al. 2003).  An initial a 

mild decrease in central retinal sensitivity and VA was followed by a gradual decrease 

in fixation stability.  Finally, visual function progressed to absolute central scotoma and 

eccentric fixation.  Increased duration of disease was associated with sensitivity 

deterioration (Fujii et al. 2003).  It was stated that some eyes with subfoveal CNV had 

parafoveal scotoma with a preserved central island and conversely, other eyes had 

absolute foveal scotoma with good parafoveal sensitivity (Fujii et al. 2003).  However, 

the differences between lesion characteristics were not precisely quantified with regard 

to sensitivity loss or prevalence in this study. 

SWAP has been applied to SLO microperimetry in AMD patients (Remky & Elsner 

2005).  These findings are discussed in section 1.4.2.2.   
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Microperimetry represents a useful and accurate tool in the measurement of the visual 

field in AMD and other macular diseases.  The main advantage compared to standard 

perimetry is enhanced fixation monitoring, however most patients with early AMD and 

even with late stage disease have central fixation.  The MP1 makes assumptions of 

retinal distance based on vessel width, by measuring the diameter of the superior 

temporal vein as it leaves the optic disc, rather than the standard assumptions such as 

optic disc diameter or papillomacular distance.  Moreover, microperimetry currently 

does not incorporate statistical software for visual field interpretation, has a limited 

dynamic range and a restricted capability of threshold estimating algorithms.  

1.4.3.2 Flicker Perimetry 

Flicker perimetry has been reported to correlate well with SWAP in glaucoma patients 

(Landers et al. 2003a).  There are two types of flicker used in flicker perimetry; mean-

modulated flicker and pedestal flicker.  Mean-modulated flicker varies luminance about 

a background level.  Pedestal flicker modulates a luminance increment over time, 

resulting in both a flickering component and a change in the time-averaged luminance 

(Anderson & Vingrys 2000).  

Flicker perimetry, using pedestal flicker, was investigated in 25 patients with early AMD 

and 34 age-matched normals (Phipps et al. 2004).  Larger and deeper field defects 

were discovered for flickering targets compared to static targets in the diseased group 

and flicker thresholds were more affected in the AMD group compared to the normal 

group.  In explanation, it was suggested that the increased metabolic demand and 

retinal blood flow required to detect flicker was less available from the AMD fundus. 

Foveal flicker sensitivity was suggested to be predictive of exudative AMD (Mayer et al. 

1994).  In 16 fellow eyes of patients with exudative AMD in their other eye, signs of 

AMD were graded from nonstereoscopic photographs using the Wisconsin ARM 

Grading System.  Mean-modulated flicker sensitivities for low and mid-temporal 
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frequencies were significantly lower in 7 patients, who subsequently developed 

exudative disease. 

1.4.3.3 Amsler Grid 

The Amsler grid is a clinical test for the rapid detection of metamorphopsia and 

scotoma in the central field.  It consists of a 10° grid of lines spaced at intervals of 1°.  

A computerised adaptation of the Amsler grid was developed, using a touch sensitive 

monitor (Fink & Sadun 2004).  This presents the grid at different contrasts, to produce 

a three-dimensional model of the hill of vision.  The computerised version of the Amsler 

grid allows for more precise definition of a central field defect, however it is not widely 

used.  

1.4.3.4 Preferential Hyperacuity Perimetry 

The disadvantages of the Amsler grid are unreliable fixation, cortical image completion 

or filling in of scotoma, and the visual “crowding” effect (Loewenstein et al. 2003).  The 

preferential hyperacuity perimeter (PHP) was created to overcome these 

disadvantages.  It is based on the visual phenomenon of hyperacuity or Vernier acuity, 

which is the ability to perceive a very small difference in the relative spatial localisation 

of stimuli (Loewenstein et al. 2003).  The PHP tests 500 points within the central 14° of 

the visual field with a resolution of 0.75°.  The stimulus is a line of white dots on a black 

background.  The subject responds to distortion by a touch-sensitive screen.  Artificial 

distortions of different magnitudes are then generated to quantify the depth of the 

defect, determined by preferential looking analysis (Alster et al. 2005).  The PHP has 

improved sensitivity compared to the Amsler grid in detecting defects, however it has a 

higher rate of false-positives (Goldstein et al. 2005).  The PHP can detect most cases 

of CNV of recent onset with few false-positive results (Alster et al. 2005). 

1.4.3.5 Multifocal ERG 

The multifocal electroretinogram (mfERG) is an electrophysiological technique, which 

measures simultaneously the electrical responses to hexagonal stimuli, from multiple 
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areas of the retina.  The waveform response from the mfERG typically has a positive 

and negative kernel.  The latency and amplitudes of the waveforms are used in 

analysis. 

A VERIS-System (visual evoked response imaging system) was used to record mfERG 

in patients with early AMD and an age matched normal group (Li et al. 2001).  

Significant abnormality was discovered in the foveal amplitude and the foveal latency of 

mfERG in the AMD group, in both the diseased eyes and in the asymptomatic 

contralateral eyes.  mfERG in a small number of patients with CNV (n = 4) was noted 

to be well correlated with visual acuity measures, although not with lesion size (Jurklies 

et al. 2002).  In fact, when compared to stereoscopic fundus photographs and 

fluorescein angiograms, mfERG did not display a significant relationship to retinal 

appearance (Gerth et al. 2003). 

Rod-mediated mfERG was measured, by adapting the parameters of the mfERG, using 

dark adaptation and a blue filter in front of the stimulus array (Chen et al. 2004).  

Evidence of decreased rod function greater than that for cone function, was found in 

early AMD.  Other investigators have found that rod-mediated responses were delayed 

in early AMD patients, whereas cone-mediated responses were not (Feigl et al. 2005).   

1.4.3.6 Other Techniques 

Frequency doubling technology (FDT) presents a grating of low spatial frequency that 

is flickered in counterphase at a high frequency.  This causes a frequency doubling 

illusion, whereby the grating appears to have double the number of bars actually 

present (White et al. 2002).  The frequency doubling illusion is thought to be caused by 

reduced cortical sensitivity to the temporal phase of achromatic counterphased gratings 

(White et al. 2002).  FDT perimetry has demonstrated good sensitivity and specificity in 

the detection of glaucomatous field loss (Cello et al. 2000).  However in early AMD, it 

was determined that the instrument was not sensitive enough to identify small macular 

lesions within the central 3° and modifications were necessary to detect small lesions 
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(Sheu et al. 2002).  More recently, the Humphrey Matrix FDT perimeter has 

incorporated test patterns containing 2° wide stimuli, for assessing the central 10° 

visual field (Anderson et al. 2005), which has not yet been measured in patients with 

AMD. 

Scanning laser entoptic perimetry is a technique whereby a patient views a 

monochromatic field of random particle motion.  If field loss is present, the particle 

motion appears qualitatively different or even disappears to be replaced with grey if 

there is a dense scotoma.  The patient traces the outline of the area of disturbance with 

a digital pen in a 30° field.  The results from entoptic perimetry in AMD patients were 

compared with ophthalmologically graded fundus photographs.  Good specificity and 

sensitivity was found for detecting all stages of AMD (Freeman et al. 2004). 
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2. Rationale and Logistics 

2.1 Rationale 

Late stage age-related macular degeneration (AMD) causes severe visual loss and is 

one of the most common reasons for visual impairment leading to blindness in western 

industrialised countries.  In the future, it is expected that the morbidity of AMD will 

increase due to the expanding elderly population.  Knowledge of the rate of functional 

loss is fundamental to the comprehension of the natural progression of disease in 

terms of visual function and the development of macular lesions.  Detailed information 

about the progression of early AMD in relation to visual function may help to identify 

earlier, those who may benefit from treatment and facilitate clinical decisions regarding 

treatment.  With the development of new treatment options for the earlier non-

exudative form of AMD, which accounts for the majority of cases, it is increasingly more 

important to detect early changes due to AMD.  The earlier identification of patients 

where treatment is necessary may help to improve visual prognosis and therefore 

diminish the social and financial burden of partial sight and blind registration.  The 

identification of both structural and functional change at all stages of AMD aids the 

detection of the early disease changes. 

The quantification of structural changes in AMD have previously been standardised by 

grading and staging systems relating to fundus photographs (Bird et al. 1995; Klein et 

al. 1991; van Leeuwen et al. 2003b; AREDS 2001; Seddon et al. 2006).  The value of 

digital image analysis is in providing objective measures to help reduce the variability 

between graders in manual grading.  The increasingly aged population will amplify the 

strain on medical resources and thus will benefit from widespread screening of 

individuals for diseases such as AMD and telemedicine.  The development of digital 

image analysis will facilitate such clinical strategies.  

Numerous tests of functional change have been examined in AMD, however 

psychophysical testing relates more to visual experience than any other test of visual 
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function (McClure et al. 2000).  Perimetry is a psychophysical test which measures the 

functional vision of the eye across the visual field by measuring the differential light 

sensitivity.  It has long been considered essential in the diagnosis and management of 

eye diseases such as glaucoma.  The visual field is traditionally represented as the “hill 

of vision” in which sensitivity peaks at fixation and gradually declines towards the 

periphery.  A perimeter familiar to most clinicians is the Humphrey Field Analyser 

(HFA) and is considered to be the gold standard in glaucoma diagnosis and monitoring.  

The findings in this thesis, using the HFA are therefore representative of an instrument 

which is already widely used and is immediately available.  Despite poor fixation being 

associated with AMD, it has been reported that 75% of eyes with choroidal 

neovascularisation had predominantly central fixation (Fujii et al. 2003).  Visual field 

progression has been widely investigated in glaucoma, but the progression of severity 

of AMD has received little attention.  No attempt has yet been made to quantify the rate 

of visual field loss across stage of severity of AMD, using perimetry.   

Previous research has suggested the suitability of measuring short-wavelength 

automated perimetry (SWAP) in AMD (Remky et al. 2001b; Remky & Elsner 2005).  

Despite the failure of SWAP to gain wide spread clinical use due to greater threshold 

measurement variability, the central 10 degrees of the visual field is known to  present 

less variability (Cubbidge et al. 2002), and is primarily the area of interest in AMD.  

Using a previously collected normal empirical SWAP 10-2 database (Conway 2003), it 

was possible to calculate visual field indices and generate probability analyses in order 

to quantify the status of the visual field.  No previous study has yet compared SWAP 

and standard perimetry using empirically derived visual field parameters for the SWAP 

10° visual field in patients with AMD. 

2.2 Aims 

The aims of this research were to measure the visual field in patients with AMD, 

examine the structure to function relationships in AMD and quantify the progression of 
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visual field loss.  In order to implement these aims, it was necessary to evaluate 

several factors influencing the methodology and any errors which might occur in the 

assessment of visual field progression.  These included the accuracy of the refractive 

correction on SWAP, the learning effect in the 10° field, techniques of assessing the 

structure to function relationships between fundus imaging types and the visual field 

and the variability of structural measures between imaging types.  The detailed aims 

were to: 

• Investigate the effect of spherical defocus on SWAP.  The blue stimulus and yellow 

background in SWAP cause a chromatic difference of refraction at the eye and an 

attempt was made to correct this using spherical defocus.  The aims were to 

determine the effect of defocus on threshold sensitivity, with a view to finding the 

optimum refractive correction to be used in SWAP. 

• Evaluate the learning effect in subjects with and without AMD in standard perimetry 

and SWAP, in the 10° visual field.  It is known that in a series of standard visual 

field examinations using a white stimulus presented against a white background, 

the largest learning effect occurs between the first two visits (Heijl et al. 1989; Heijl 

& Bengtsson 1996).  Knowledge of the greatest magnitude of any learning effect 

present is useful in determining the amount of progression of true visual field loss. 

• Write computer programs to perform imaging analyses, in order to facilitate the 

grading of features of AMD from fundus photographs and to map the visual field 

onto the fundus image.  It was necessary to develop techniques to relate structural 

and functional changes and to determine the accuracy with which this could be 

performed.  Additionally, the variation in clinical judgement between graders when 

grading images using the custom written program, was of importance since the 

determination of progression of visual field loss in Chapter 7 was based on the 

assigned stage of AMD. 
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• Compare the appearance of drusen in colour fundus photography and retro-mode 

scanning laser imaging by quantifying drusen in both imaging types.  The 

difference in appearance between the two imaging types bears differing structural 

measures, thus influencing the determination of severity of disease and the 

relationships to functional measures.     

• Measure the visual field progression in AMD in a cross-section of patients at 

various stages of disease, using standard perimetry and SWAP.  The aims were to 

compare the relationship between the stage of disease to the functional loss in 

standard perimetry and in SWAP.  Supplementary to this, the purpose was to 

assess the position of visual field defects and the ability of visual field parameters 

to detect visual field loss.   

• Examine the relationships between functional change in the visual field and 

structural changes at the macula, as measured by automated drusen segmentation 

software.  The structural measures were evaluated on a continuous scale of 

severity as opposed to the ordinal scale of stage of disease, which offered further 

statistical manipulation.   

2.3 Logistics 

The research was conducted at the Aston University Day Hospital within the 

Ophthalmic Research Group at Aston University, Birmingham.  The study investigating 

defocus in SWAP (Chapter 3) gained ethical approval from Aston University Human 

Science Ethical Committee and undergraduate optometry students were recruited.  

Approval from the Aston University Human Science Ethical Committee and the NHS 

West Midlands Research Ethics Committee was obtained for the investigation of 

structural and functional measures on patients with and without AMD.  Patients with 

AMD were recruited from the Birmingham and Midland Eye Centre, City Hospital, 

Birmingham and the Aston University Eye Clinic.  Normal subjects were recruited as 

spouses of the patient group, from the Aston University Eye Clinic and from the general 
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public.  The patients were diagnosed with AMD in the hospital clinic, where access to 

the hospital notes was available, or they had previously been diagnosed in another 

hospital clinic or were diagnosed from fundus imaging by an ophthalmologist, Professor 

Jonathan Gibson, who also confirmed diagnoses of all patients.   

The main reasons for exclusion of subjects from the study either during recruitment or 

afterwards were diabetes, treatment of AMD, large refractive error, other retinal 

disease, family history of glaucoma and high number of fixation errors.  Pseudophakic 

subjects were included in the recruitment, however they comprised a small minority of 

three subjects and ultimately their data was removed from the analyses.  Data 

collected from each participant was included according to the study criteria and the 

inclusion details for each participant is shown in Table 2-1.       

Detailed written and verbal explanations of the study were given to each subject before 

partaking in any of the studies.  Before being formally enrolled, written informed 

consent was obtained and the opportunity to ask questions was given.  Subjects were 

informed that they were free to withdraw from the studies at any time. 

Imaging instrumentation was borrowed with permission from Birmingham Optical 

Group, who permitted use of the F-10 scanning laser ophthalmoscope and the RS-

3000 OCT (Nidek, Japan).  Limited time in which to use these instruments narrowed 

the time in which to collect data and limited the number of patients. 

Expert graders from Heart of England NHS Foundation Trust, Solihull, UK performed 

drusen quantification on anonymised images using the custom written software, for the 

study in Chapter 6.  The programs developed in Chapter 5 were written in Liberty 

BASIC (Shoptalk Systems, Massachusetts, USA) under the guidance of Dr Mark 

Dunne.  Permission to use the drusen segmentation software, RIALAB, was given by 

Dr R. Theodore Smith and Noah Lee from the University of Columbia, USA, who sent a 

version of the software.  
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Data management was carried out by entry of all data into a database.  Statistical 

analysis was performed using SPSS (version 15.0).   

 

AMD 
Patients 

Stage 
of AMD 
RE / LE 

Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8  Normal 
Subjects Ch. 4 Ch. 7 

1 0 / -  x  x x  1 x x 
2 1 / 1 x x x x x  2 x x 
3 - / 1 x x x x x  3 x x 
4 1 / 1 x x x x x  4 x x 
5 2 / 1 x x x x x  5 x x 
6 - / 0 x x x x x  6 x x 
7 2 / 2 x x x x x  7 x x 
8 - / 2 x x  x x  8 x x 
9 1 / 1 x x     9 x x 

10 4 / 4 x x x x x  10 x x 
11 4 / 4 x x  x x  11 x x 
12 1 / - x x x x x  12 x x 
13 - / 4 x x  x x  13 x x 
14 2 / 4  x     14 x x 
15 1 / - x x x x x  15 x x 
16 3 / 3 x x x x x  16 x x 
17 4 / 4  x  x x  17 x x 
18 4 / 4 x x x x x  18 x x 
19 4 / 2 x x  x x  19 x x 
20 0 / 0 x x x x x  20 x x 
21 0 / 0 x x  x x  21 x x 
22 0 / 0 x x x x x  22 x x 
23 2 / - x x x x x     
24 1 / 3 x x x x x     
25 - / -  x        
26 0 / 0 x x x x x     
27 1 / -  x x x x     
28 4 / 1 x x  x x     
29 0 / 0 x x x x x     
30 0 / 4 x x x x x     
31 0 / 0  x x       

 
 
Table 2-1. Participants included in each study throughout the thesis. 
x indicates subjects who took part in each study, stage of each eye is shown in the 
format right eye AMD stage/left eye AMD stage, - indicates an excluded eye or an eye 
for which it was not possible to assign a stage. 
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3. Investigation of Longitudinal Chromatic Aberration on Short-
Wavelength Automated Perimetry (SWAP) Using Spherical Defocus 

 
Summary 
 

In short-wavelength automated perimetry (SWAP) a 440nm blue stimulus is presented 

against a high luminance broadband yellow background.  Since the eye focuses on the 

yellow background, longitudinal chromatic aberration will cause the blue stimulus to be 

defocused by approximately -1.00D.  The aim of the study was to examine the 

influence of the chromatic interval on short-wavelength sensitivity as a function of 

positive and negative defocus and of visual field eccentricity.  Twenty-eight 

emmetropes (mean age 21.8; SD 2.81) were examined under cycloplegia.  Short-

wavelength visual field sensitivity was obtained at six locations for eleven levels of 

spherical defocus ranging from +2.00D to -2.00D.  The overall effect of spherical 

defocus on mean sensitivity (MS) was significant (p < 0.001).  Positive defocus caused 

a significant decline in MS (Spearman’s correlation coefficient: rho = -0.114, p < 0.001).  

Negative defocus had no significant effect on MS (rho = 0.014, p = 0.661), due to a 

slope of 0.066dB per dioptre.  Eccentricity had a significant effect on MS (p < 0.001), 

exhibiting a peak at 7.2°, and a decline towards the periphery, due to the normal 

physiological profile of the hill of vision.  These results suggest that SWAP is robust to 

defocus, when using low powered negative spherical lenses. 
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3.1 Introduction 

SWAP presents a narrowband 440nm blue Goldmann size V (1.72°) stimulus against a 

high luminance broadband yellow background, of intensity 100cd/m2.  These 

parameters provide approximately 1.5 log units of short-wavelength sensitive pathway 

isolation, by suppressing neural activity in the rod, medium- and long- wavelength 

sensitive pathways (Cubbidge & Wild 2001; Sample et al. 1996).   

Chromatic aberration is the dispersion of white light into component colours, by an 

optical system.  Like other optical systems, the eye exhibits chromatic aberration, 

which leads to different wavelengths of light focusing at different lateral and axial points 

of the retina (Howarth & Bradley 1986).  Longitudinal chromatic aberration (LCA) 

represents an axial difference in focus between wavelengths and transverse chromatic 

aberration (TCA), is a lateral shift of focus between wavelengths.  Although TCA has 

much greater variation between individuals than LCA, the mean foveal TCA is zero 

(Rynders et al. 1995), and therefore TCA can be considered to have a negligible 

impact on measured thresholds in SWAP.  Similarly, there is a negligible effect of the 

chromatic difference in magnification (CDM) between different wavelengths, which has 

a very small effect of less than 1 % between 400 and 700 nm (Zhang et al. 1993).  For 

the human eye, the peak spectral sensitivities of the medium- and long-wavelength 

sensitive cones are 530 and 560 nm respectively (Schnapf et al. 1987).  

Under the adapting conditions of SWAP, the eye is focused on the yellow background.  

When the blue stimulus is presented in the field for 200 ms, it will be defocused due to 

the LCA of the eye.  Thus the difference in wavelength between the background and 

stimulus luminance, yields a chromatic difference of refraction at the eye.  LCA can be 

expressed as the magnitude of the chromatic difference of refraction of the human eye, 

which has been determined experimentally in vivo, by numerous investigators (Howarth 

& Bradley 1986; Rabbetts 1998; Thibos et al. 1992; Williams et al. 1983).  When the 

human eye is in focus for medium wavelengths, the point of focus for the short 
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wavelengths to which the blue cones are most sensitive, falls in front of the retina, 

creating a chromatic aberration of about -1.00 D (Williams et al. 1991).  

The spectral distribution of the yellow background in SWAP on the Humphrey Field 

Analyser (HFA) 750, as measured by a spectroradiometer, shows a peak at 624nm 

(Figure 3-1; Cubbidge 1997).  A four-term Cauchy equation of chromatic dispersion, 

shows the variation in refractive index of optical materials with wavelength (Cauchy 

1895).  Empirical data obtained by Atchison & Smith (2005) was reported to accurately 

conform to the Cauchy equation for the chromatic difference of refraction at a given 

wavelength, Rx(λ).  Where, 

Rx(λ) = 1.60911 – 6.70941 x 105 + 5.55334 x 1010 – 5.59998 x 1015 

 
  λ2  λ4  λ6 

gives the chromatic difference of refraction between a wavelength, λ, and the reference 

wavelength of 590nm.  This equation takes into account the refractive indices of the 

ocular media of the human eye, from the Gullstrand number 1 schematic eye with a 

gradient refractive index lens.  The chromatic difference of refraction between the 

wavelengths of the stimulus and background parameters used in SWAP (440nm and 

624nm, respectively), is given by the difference between Rx(624) and Rx(440).   

   Rx(440) = -1.147 D   

   Rx(624) = 0.157 D   

 Therefore,  Rx(624-440) = 1.30 D   

Thus the difference between the two values gives the chromatic difference of refraction 

in SWAP to be -1.30D (Figure 3-2).   
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Figure 3-1. The spectral distribution of SWAP.  The yellow background exhibits a 
peak at 624nm and the blue stimulus shows a peak at 440nm (Cubbidge 1997). 
 
 
 

 
 
 

Figure 3-2. Longitudinal Chromatic Aberration   
The emmetropic eye focuses on the yellow background, which dominates the visual 
field.  Consequently, the blue stimulus is focused in front of the retina.  When defocus 
is applied, there is a shift of focus in opposing directions for positive and negative 
defocus.   
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In standard perimetry, defocus causes a reduction in threshold sensitivity especially for 

small sized stimuli (Anderson et al. 2001; Atchison 1987; Sloan 1961).  The effect of 

defocus declines at greater eccentricities away from fixation (Anderson et al. 2001; 

Benedetto & Cyrlin 1985; Fankhauser & Enoch 1962; Maguire 1971; Sloan 1961).  This 

function has less impact on larger stimulus sizes (Atchison 1987; Sloan 1961).  The 

effect of optical defocus on SWAP has not previously been investigated using lenses of 

negative dioptric power.  Positive spherical lenses have been used to simulate 

uncorrected refractive error in SWAP (Adams et al. 1987; Johnson et al. 1993a).  

Defocus up to +5.00D was found to have minimal effect on SWAP sensitivity (Adams et 

al. 1987; Johnson et al. 1993a).  Little difference between foveal and peripheral 

sensitivities in SWAP has been documented (Johnson et al. 1993a).    

The aim of this study was to examine the influence of LCA, expressed as the chromatic 

dioptric difference, on short-wavelength sensitivity as a function of both positive and 

negative defocus and visual field eccentricity. 

3.2 Methods 

The sample consisted of twenty-eight normal observers (mean age 21.8, SD 2.81, 

range 19-31 years), including 12 males and 16 females.  Inclusion criteria were Snellen 

visual acuity in the dominant eye of 6/6 or better, no colour vision abnormalities, clear 

ocular media, intra-ocular pressure less than 21mmHg (Pulsair EasyEye, Keeler Ltd., 

Windsor, UK), normal optic nerve appearance, open angles, no systemic medication 

known to affect the visual field, no previous ocular surgery or trauma, no history of 

diabetes mellitus and no family history of glaucoma or diabetes mellitus.  Only 

emmetropic subjects, with refractive errors within ± 0.50 dioptres, were included in the 

study.  Ethical approval was obtained for all procedures from the Aston University 

Human Sciences Ethical Committee and written informed consent was acquired for 

each patient.   

Subjects underwent three visits consisting of SWAP examinations, on the HFA 750, 
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using their dominant eye.  The first visit was a central 24-2 examination using the 

FASTPAC algorithm, which was discarded to reduce the learning effect (Autzen & 

Work 1990; Heijl et al. 1989; Searle et al. 1991; Wild et al. 1989; Wild & Moss 1996; 

Wood et al. 1987).  At the second examination each subject underwent cycloplegia 

using 1 drop of tropicamide 1% (Minims, Bausch & Lomb).  At full cycloplegia the pupil 

was fixed and dilated with a mean diameter of 8.3mm (SD 0.99).  Pupil size remained 

constant throughout perimetric testing, as observed by the video monitor of the HFA.  

The custom stimulus configuration consisted of an array of six stimulus locations 

situated in the inferior temporal quadrant, at eccentricities between 2 and 20° from 

fixation.  The inferior field in SWAP yields greater sensitivity than the superior field 

(Sample et al. 1997).  Indeed, the inferior temporal quadrant of the visual field is the 

most sensitive to short-wavelength stimuli (Cubbidge 1997), therefore giving rise to the 

lowest between-subject variability in this area, since greater sensitivity generates 

smaller confidence intervals.  The 4-2dB double reversal Full Threshold staircase 

strategy was used to estimate the threshold for the selected stimulus locations.  

Although FASTPAC strategy is recommended in SWAP (Wild et al. 1998), using the 4-

2dB strategy did not give rise to a significantly different test duration, due to the 

minimal number of stimulus locations in the custom test pattern.   

A +3.00D lens was placed in front of the eye during perimetry to correct for the 

distance of the perimeter cupola in the absence of accommodation.  The desired level 

of defocus was added to the correcting lens.  In addition to the zero defocus 

measurement, thresholds were measured at the six stimulus locations for five levels of 

negative defocus; -0.50D, -0.75D, -1.00D, -1.50D and -2.00D.  The third visit employed 

five levels of positive defocus; +0.50D, +0.75D, +1.00D, +1.50D and +2.00D.  All 

lenses were presented in a random order for each subject in order to avoid order 

effects.  Prior to perimetry, each subject underwent three minutes of adaptation to the 

yellow background, to enable saturation of the rods and the medium- and long-
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wavelength sensitive cone pathways.  Each individual visual field test lasted 

approximately 90 seconds.  Five minute rest breaks were given between each test.  

Identical instructions were given to each subject.  Throughout visual field testing, 

fixation was monitored continuously via the video monitor of the HFA, the gaze tracker 

and the Heijl-Krakau blind spot monitor.  Visual fields were repeated where it was 

noted that fixation was lost.  The accommodative state of each subject was measured 

between examinations to ensure that cycloplegia was maintained throughout the 

duration of examination.  The back vertex distance of the trial lens was maintained at 

12 mm.  

All subjects had experience of standard perimetry, but were naïve to the procedure of 

SWAP.  Previous experience of standard perimetry does not influence the learning 

effect in SWAP (Wild & Moss 1996). 

3.3 Analysis 

Whenever double determinations of threshold were made during a visual field testing 

session, the average of the two thresholds was used in the analysis.  Mean sensitivity 

(MS) values were not normally distributed (Kolmogorov-Smirnov: p < 0.001).  

Friedman’s two-way non-parametric analysis of variance was used to find the effects of 

defocus and eccentricity on MS.  For defocus, the global index MS was calculated from 

the six stimuli.  For eccentricity, the group threshold sensitivity values without defocus 

conditions were used.  Post-hoc comparisons were made using the Wilcoxon signed-

rank test.  Correlations between MS and defocus level were examined using 

Spearman’s correlation coefficient, and at each level of eccentricity. 
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Figure 3-3. The effect of spherical defocus on short-wavelength sensitivity 
Graph showing the correlation for short-wavelength sensitivity with positive and 
negative defocus, error bars indicate one standard error of the group mean. 
 

3.4 Results 

3.4.1 The Influence of Defocus on Short-Wavelength Sensitivity 
The overall influence of defocus on MS was significant (Friedman test: Chi-square = 

34.058, p < 0.001).  The group MS for optical defocus between +2.00D and -2.00D, is 

shown in Figure 3-3.  The correlation between defocus and short-wavelength sensitivity 

was investigated for positive defocus and negative defocus.  There was a weak but 

significant decline in MS with positive defocus (Spearman’s correlation coefficient: rho 

= -0.114, p < 0.001).  Conversely, there was no significant correlation between short-

wavelength sensitivity and negative defocus (rho = 0.014, p = 0.661) indicating that 

SWAP is resistant to negative defocus.  This finding was further supported by analysis 

of positive and negative defocus as separate groups, using the Friedman test.  The 

effect of positive defocus had a significant effect on MS (Chi-square = 23.180, p < 

0.001), whereas the effect of negative defocus did not reach significance (Chi-square = 

9.950, p = 0.077).  Post hoc comparisons between defocus levels indicated significant 
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differences between MS, between the pairs plano and +2.00 (Wilcoxon signed-rank 

test: Z = -2.602, p = 0.009), +0.50 and +1.00 (Z = -2.041, p = 0.041), +0.50 and +2.00 

(Z = -3.631, p < 0.001), +0.75 and +1.50 (Z = -2.199, p = 0.028), +0.75 and +2.00 (Z = 

-2.907, p = 0.004), +1.00 and +2.00 (Z = -2.132, p = 0.033).  

3.4.2 The Influence of Eccentricity on Short-Wavelength Sensitivity 
When the effect of defocus was removed, the main influence of stimulus eccentricity on 

the group MS was significant (Friedman test: Chi-Square = 57.118, p < 0.001).  The 

graph in Figure 3-5 exhibits peak short-wavelength sensitivity at 7.2° with a decline 

towards the fovea and towards the periphery.  A similar trend was seen for each level 

of defocus.  Post hoc comparisons using the Wilcoxon signed-rank test indicated 

significant differences between MS at all eccentricities, except for 2 and 5° (Z = -0.924, 

p = 0.355), 2 and 10° (Z = -0.082, 0.935), 2 and 15° (-1.570, p = 0.061), 5 and 10° (Z = 

-1.072, p = 0.284) and 15 and 20° (Z = -1.820, p = 0.069). 

The effect of defocus on MS for each level of eccentricity is shown in Figure 3-4 and 

the correlation between positive defocus and MS for each level of eccentricity is shown 

in Table 3-1.  For positive defocus, the correlation with MS at each eccentricity, showed 

the steepest slope at 15°, with a decline in MS by 0.72dB per dioptre of defocus (Figure 

3-4).  Of all eccentricities measured, the correlation coefficients at 2.2, 5 and 15° 

achieved statistical significance for a weak negative correlation with sensitivity (Table 

3-1).  For negative defocus, there were no significant correlations at any level of 

eccentricity.  
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Eccentricity (°) Slope (dB/D) Spearman’s correlation 
coefficient, rho 

p-value 

2.2 -0.496 -0.153 0.048* 

5 -0.580 -0.169 0.028* 

7.2 -0.488 -0.108 0.163 

10 -0.391 -0.084 0.276 

15 -0.720 -0.188 0.015* 

20 -0.108 -0.064 0.412 

      * significant 
 
Table 3-1. Correlation coefficients for positive spherical defocus, for each level 
of eccentricity  
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Figure 3-4. The effect of spherical defocus on MS for each level of eccentricity. 
Error bars indicate one standard error of the group mean.  
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Figure 3-5. The effect of eccentricity on short-wavelength sensitivity, with no 
induced defocus 
Error bars indicate one standard error of the group mean.  
 

3.5 Discussion 

The accommodation response is slower for short-wavelength sensitive cones alone 

compared to long- and medium-wavelength sensitive cones (Rucker & Kruger 2004) 

and varies greatly between individuals (Rucker & Kruger 2001).  In SWAP, under 

normal accommodation, when short-wavelength sensitive cones are isolated, the eye 

focuses the yellow component of the retinal image on the retina.  This leaves the blue 

component in front of the retina due to the longitudinal chromatic aberration of the eye 

(Figure 3-2), despite the resulting blur from defocus (Seidemann & Schaeffel 2002).  

Isolating the short-wavelength sensitive cone pathway causes the eye to over-

accommodate to deliberately allow the blue image to be myopic.  Due to longitudinal 

chromatic aberration, the habitual focus condition for the blue component of an image, 

when viewed in white light also lies in front of the retina.  In explanation, this occurs 

due to the relative paucity of short-wavelength sensitive cones in the retina, which 
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make up 5-10% of the entire cone population (Curcio et al. 1991).  LCA does not allow 

the high spatial frequencies of the blue component to reach the smaller number of 

short-wavelength sensitive cones in the retinal mosaic, in order to prevent aliasing 

(Williams et al. 1983).  Aliasing is a distortion or misperception, which occurs due to 

undersampling, where detail in the retinal image is too fine to be resolved.  

These results present evidence that SWAP is more robust to negative defocus than 

positive defocus between ±2.00D.  In SWAP, the chromatic difference of refraction 

which occurs between the blue and yellow wavelengths, causes the chromatic focus for 

blue to lie in front of the retina.  The addition of negative defocus, which brings the blue 

stimuli into sharper focus, neither caused sensitivities to increase nor decrease, for a 

target of low spatial frequency.  However, the addition of positive defocus acts to shift 

the focus in the opposite direction, making the stimuli more blurred, which causes 

greater decline in sensitivity, than for negative defocus (Figure 3-2).  These results 

have an impact on subjects who lack in accommodative facility for the working distance 

of the perimeter.  The longitudinal chromatic aberration of the eye increases with 

accommodation (Rabbetts 1998).  Under conditions of short-wavelength pathway 

isolation, defocus of less than 1.50D had no significant effect on letter acuity in pre-

presbyopic subjects with normal accommodative facility (Rabin & Adams 1990).  

However, in a minority of subjects with large accommodative errors, significantly 

reduced acuity of the short-wavelength sensitive pathway was achieved.  Swanson 

(1989) measured the resolution acuity of the short-wavelength sensitive pathway using 

square wave grating stimuli, through negative corrective lenses (Swanson 1989).  The 

acuity was highly dependent upon accommodative state, and the younger subjects 

used a wide range of accommodative states, which was suggested to be caused by the 

weak accommodative cues of the blue-on-yellow stimuli.  Under cycloplegia, acuity 

decreased with increasing power of negative lens.     
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Although the results for positive defocus appear to conflict with previous studies of 

defocus and SWAP (Adams et al. 1987; Johnson et al. 1993a), direct comparisons 

cannot be made.  These earlier studies generated SWAP with a modified HFA 

(Johnson et al. 1993a) and a Berkeley Colour Threshold Test (Adams et al. 1987).  The 

instrumentation parameters had higher luminance yellow backgrounds of 200cd/m2 

(Johnson et al. 1993a) and 500cd/m2 (Adams et al. 1987) and broadband blue stimuli 

and did not employ cycloplegia to control for pupil diameter.  The higher luminance 

yellow background caused pupillary miosis and therefore greater resistance to defocus.  

The broadband blue stimulus allowed for less isolation of the short-wavelength 

sensitive cones and different adaptation levels.  The effect of negative defocus has not 

previously been investigated in SWAP and thus the comparison between positive and 

negative defocus has not been made.  In a study which simulated conditions similar to 

standard perimetry, foveal threshold sensitivity declined with both positive and negative 

defocus (Anderson et al. 2001), whereas the decline in short-wavelength sensitivity 

only occurred with positive defocus in the present study.  The rate of sensitivity decline 

with positive defocus in standard perimetry within a 5° field was reported to be              

-1.84dB/D (Herse 1992).  The corresponding results in the present study were              

-0.50dB/D and -0.58dB/D, at 2.2 and 5°, respectively.  A diminished effect of defocus 

on SWAP compared to standard perimetry is to be expected as a result of the differing 

stimulus sizes employed.  The high spatial frequencies contained within the small 

achromatic stimulus (0.43°) are more degraded by defocus than the low spatial 

frequency components of the SWAP stimulus (1.72°).  Indeed, the decline in foveal 

threshold sensitivity with defocus has been found to occur at a greater rate for smaller 

stimuli (Anderson et al. 2001).  SWAP is therefore relatively unaffected by defocus in 

comparison to standard perimetry.  The greatest group mean difference in MS between 

defocus levels was 1.26dB, which occurred between +2.00D and -1.50D.  Previous 

measurement of the magnitude of the average short-term fluctuation (SF) in SWAP 

ranges between 0.46 and 2.02dB (Kwon et al. 1998; Takahashi et al. 1999; Wild et al. 
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1998).  Thus the effect of defocus on SWAP in the present study could be regarded as 

insignificant, as it is within the magnitude of the SF.  The relative insensitivity of SWAP 

to defocus may be somewhat accounted for by the poor resolution of the short-

wavelength sensitive pathway (Green 1968; Kelly 1973; Rabin & Adams 1990; 

Swanson 1989), since lower acuity yields a greater tolerance to defocus (Legge et al. 

1987).  

An additional explanation for the robustness of SWAP threshold to defocus may have a 

neurological basis.  At the fovea, acuity for achromatic stimuli is optically limited, 

whereby the optics of the eye do not pass spatial frequencies greater than the spatial 

sampling limit of the neural array.  Foveal acuity for short-wavelength sensitive stimuli 

however, was found to be sampling limited as evidenced psychophysically by aliasing 

(Anderson et al. 2002).  The resolution limit of the short-wavelength sensitive pathway 

is therefore much lower than the limit defined by the optics of the eye and is relatively 

less affected by lower optical quality due to defocus than other pathways. 

The variation in MS with eccentricity is steeper in SWAP than in standard perimetry 

(Landers et al. 2006).  The results show that MS varied with eccentricity, whereby a 

peak was noted at 7°, and a decline towards the fovea and towards more peripheral 

eccentricities.  The decline from 7° to 20° can be attributed to the profile of the normal 

hill of vision.  This was confirmed by the normal database for SWAP on the HFA, for a 

22 year old, using the 24-2 program and the full threshold algorithm, which showed the 

decline of 2dB between 4 and 21° (31dB to 29dB).  A similar magnitude and decline in 

sensitivity was observed in this study (Figure 3-5).  The decline in MS at eccentricities 

of  5° and less may accounted for by the presence of macular pigment, which is known 

to cause a depression at the fovea and parafovea in the SWAP hill of vision (Wild 

2001).  Indeed, the peak density of macular pigment occurs at the centre of the fovea 

and declines to an eccentricity of 5° (Snodderly et al. 1984).  Furthermore, the foveal 

threshold exhibits larger between-subject variability than immediately surrounding 
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stimulus locations in SWAP, due to physiological foveal tritanopia and peak density of 

macular pigment (Wild et al. 1998).  For this reason, the foveal threshold was not 

assessed in this study.   

Positive defocus caused a decline on MS at all eccentricities, although this failed to 

achieve statistical significance for correlations at 7, 10 and 20°.  The mean density 

profile of blue cones in the inferior and temporal retina peaks at around 2000 

cones/mm2 at an eccentricity of less than 1°, before tapering off to an asymptote of 

500–600 cones/mm2 beyond 12–15° (Curcio et al. 1991).  If beyond 15° there is not a 

large short-wavelength sensitive response, due to the relatively small number of short-

wavelength sensitive cones, different mechanisms may influence the defocus effect, 

thereby lending less credence to the data at 20° and relatively greater importance to 

the data at 2 and 5°.   

In conclusion, when compared to the effects of defocus on standard perimetry in 

previous studies, SWAP appears to be more resistant to defocus than standard 

perimetry.  SWAP is more robust to negative defocus than positive defocus.  The 

clinical implications relate to the correcting lens used in SWAP, for presbyopic patients 

and subjects with insufficient accommodative facility for the working distance of the 

perimeter.  The near vision addition used to correct for working distance must not be 

overcorrected, but a slight undercorrection is of less clinical importance.  
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4. The Learning Effect in the Central Standard and Short-Wavelength 
Visual Fields 

Purpose: To document the magnitude of any learning effect for standard perimetry and 

short-wavelength automated perimetry (SWAP) in the ten degree visual field in patients 

with age-related macular degeneration (AMD) and normal control subjects. 

Methods: Twenty-five patients with AMD and 22 normal subjects underwent standard 

and SWAP field examinations with the Humphrey Field Analyser (HFA) on two 

occasions, separated by one week.  At each visit, both eyes were tested using 

Program 10-2 of the HFA.  Between visit and inter-eye changes in global indices and 

pointwise evaluation of probability analyses were documented.  

Results: Significant improvements were observed between visits in the mean 

sensitivity (MS) (p = 0.042), mean deviation (MD) (p = 0.036) and examination duration 

(p = 0.047) for standard perimetry; and the MS (p = 0.012) and MD (p = 0.005) in 

SWAP, in the patient group.  In the normal control group, the standard MS (p = 0.001), 

standard MD (p = 0.001), SWAP MS (p = 0.004), SWAP MD (p = 0.004) and number of 

total deviation defects for SWAP (p = 0.044) significantly improved.  The mean 

improvement in the MD at the second visit was 0.38dB in standard perimetry and 

0.90dB in SWAP, in the patient group.  The mean improvement in the MD at the 

second visit was 0.55dB in standard perimetry and 0.72dB in SWAP, in the normal 

group.  The second eye examined exhibited a more severe MD than the first eye in all 

groups.  A reduced learning effect in the second eye examined compared to the first 

eye was evident for all groups except for the patient group performing SWAP, where 

there was no significant difference.  The magnitude of the difference in MD between 

visits was not significantly different between patients and normal subjects.  Stage of 

AMD did not have a significant effect on the magnitude of change in MD between visits.   

Conclusions: A learning effect was demonstrated between the first two visits for the 

standard and SWAP central visual field, for the global indices MS and MD.  The 

magnitude of learning was not significantly different between the patient group and the 

normal group and was not influenced by stage of AMD.  Deterioration between eyes 

during visits could be attributed to the fatigue effect.   
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4.1 Introduction 

The learning effect in standard perimetry and SWAP has been described by several 

researchers (see review in Chapter 1.1.3 and 1.2.2).  Aspects of learning have been 

widely examined in healthy and glaucomatous subjects, but the learning effect in 

patients with age-related macular degeneration (AMD) is unknown.  The learning effect 

is greater in the peripheral regions of the 24° and 30° field, in standard perimetry (Heijl 

et al. 1989; Heijl & Bengtsson 1996) and in SWAP (Rossetti et al. 2006; Wild et al. 

2006).  However the learning effect has not been examined for the ten degree visual 

field in either standard perimetry or in SWAP. 

It has been noted that the greatest learning effect occurs between the first two 

examinations in standard perimetry (Heijl et al. 1989; Heijl & Bengtsson 1996).  

Knowledge of the greatest magnitude of any learning effect present enables insight into 

possible errors involved in assessment of visual field progression from serial and cross-

sectional analysis.  Therefore, the aim of this study was to evaluate the presence of a 

learning effect on visual field parameters in the 10° field in standard perimetry and 

SWAP in normal subjects and AMD patients. 

4.2 Methods 

4.2.1 Sample 

Based on the SF and an estimation of the standard deviation of the MD in SWAP using 

the FASTPAC threshold estimating algorithm (1.89dB and 5dB, respectively), a sample 

of 19 would give a 90% confidence level and a sample of 27 would give 95% 

confidence of detecting change. 

Patients and their spouses were recruited from Birmingham and Midland Eye Centre 

and the Aston University Eye Clinic.  The sample comprised 25 patients (mean age 

70.0 years, SD 8.6, range 46-88 years, 6 males, 19 females) at various stages of AMD 

and 22 normal subjects (mean age 67.5 years, SD 7.5, range 49-78 years, 13 males, 9 

females).  The normal subjects were age-matched to the AMD patients as closely as 
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possible.  All patients had experience of at least one visual field screening examination, 

as part of routine optometric care, however all patients were naïve to SWAP and to the 

10° field examination.  Participating subjects conformed to the inclusion criteria of 

distance refractive error of less than ±5.00D sphere and ±2.00D cylinder in each eye, 

clear ocular media as defined by Lens Opacity Classification System LOCS III (Chylack 

et al. 1993) graded at a slit lamp, no greater than NC3, NO3, C1, P1, no pseudophakia, 

intraocular pressures less than 21mmHg using non-contact tonometry (Pulsair), normal 

optic nerve head appearance, no family history of glaucoma, no history of ocular 

disease other than untreated AMD, no ocular trauma, no neurological history or 

systemic disease, no systemic medication known to influence the visual field and no 

congenital colour vision defect using the Farnsworth-Munsell 100 Hue test.   The 

distribution of visual acuities is shown in Figure 4-1.  Corrected visual acuity was at 

least 0.1 logMAR in each eye, in the normal group.  Informed consent was obtained 

from each subject and the study had approval from the Aston University Human 

Sciences Ethical Committee and the NHS West Midlands Research Ethics Committee.  

Characteristics of the sample are given in Appendix 1. 
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Figure 4-1. Frequency histogram showing the distribution of visual acuity (VA) in 
the patient and normal groups 
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4.2.2 AMD Grading 

Fundus photography was performed on patients with dilated pupils, in order to optimise 

image quality.  A non-mydriatic camera (Canon EOS 10D camera, 6.3 megapixels) was 

used to acquire stereoscopic pairs of 30° field digital images centred at the macula.  

Images were stored as high quality JPEG files (large/fine, ~2.4MB, 3072 x 2048) and 

graded in a random order for the retinal features according to the International 

Classification and Grading System (Bird et al. 1995).  Stage of disease was determined 

according to the stages of severity defined by an epidemiologic study, based on 

progression rates of features over a 6.5-year period (van Leeuwen et al. 2003b).  

Grading and stage determination was carried out by two independent, masked graders 

(JMG & JHA).  For the purposes of this thesis, the subjects who had gradable features 

using this classification were defined as belonging to the AMD patient group.    

4.2.3 Perimetry 

Each subject underwent standard perimetry and SWAP using the HFA 750 on two 

separate occasions using Program 10-2.  The 10-2 program is a 10° field, with a 

stimulus separation of 2°.  For standard perimetry, the stimulus size was Goldmann 

size III (0.43°) and background illumination was 31.5 apostilbs.  The projected stimuli 

may be varied in intensity over a range of more than 51 decibels (between 0.08 and 

10,000 apostilbs) and were presented with a duration of 200ms.  Background and 

stimulus conditions for SWAP are described in Chapter 1.2.  SITA Standard and 

FASTPAC algorithms were employed for the standard and SWAP fields, respectively, 

in order to mimic clinical practice as closely as possible.  Each visit was separated by 

eleven days (range 7-15 days).  A short interval such as this to study learning effects in 

perimetry has been advocated due to the shorter time period emphasising the visual 

field improvement and its ability to estimate learning over longer periods (Wild & Moss 

1992).  Furthermore, two baseline fields performed within a short period are 

recommended in the detection of visual field change (Hoskins et al. 1988). 



 124 

Both eyes were examined at each visit and the data was discarded from 8 patients.  

Six patients had one treated eye (PDT or laser), one patient had a macular hole and 

one patient was pseudophakic in one eye.  In the normal group visual field data was 

discarded from 3 patients due to poor fixation.  The age-matched normal database 

from which the global indices are calculated in SWAP was collected on subjects with 

normal lens yellowing in older adults.  The normal sinking of the hill of vision due to 

lens changes is not present in subjects with pseudophakia, who achieve abnormally 

high indices.  Thus, it was necessary to exclude pseudophakic eyes.  Consequently, 42 

eyes and 41 eyes were included in the analysis for the patient and normal groups, 

respectively.  The right eye was always examined first with the exception of subjects in 

the patient group where there was a large difference in visual acuity between the two 

eyes, in which case the better eye was examined first.  One researcher (JHA) 

conducted all testing and issued identical instructions to each patient.  The non-

examined eye was occluded with an opaque patch and the refractive correction 

appropriate to the bowl distance was placed before the test eye with full aperture trial 

lenses.  The order in which the visual fields were examined was standard perimetry 

first and then SWAP.  Fatigue effects are known to be greater in SWAP than in 

standard perimetry (Cubbidge 1997).  As a result a greater recovery period would have 

been necessary had the SWAP fields been performed first, in a randomised order 

design. 

Before each examination, subjects underwent three minutes of adaptation to the bowl 

luminance and its chromatic properties.  Fixation losses were less than 20% in 256 

field examinations.  In the remaining 76 fields, 10 were discarded due to high fixation 

losses and 60 fields had less than 33% fixation losses.  Although 20% fixation losses 

were previously advocated (Katz & Sommer 1988) evidence from reliability trials has 

increased the recommended value to 33% (Johnson & Nelson-Quigg 1993).  6 fields 

had less than 47% fixation losses and the decision to include these fields in the 
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analysis was made based on all the parameters of fixation monitoring.  The gaze 

tracker continually monitors fixation and the perimetrist constantly observed fixation via 

the video monitor of the HFA in order to judge the quality of fixation, whereas the catch 

trials sample the fixation at an inconsistent frequency.  Fixation is inherently more 

difficult for patients with central scotomata, which was the case for the fields with 

fixation losses.  False negative and false positive responses were less than 33%, which 

is the standard recommendation (Sanabria et al. 1991).  Rest periods were enforced, 

each lasting one minute and introduced at four minute intervals during the examination.  

A five minute rest period was given between eyes, and ten minutes between standard 

perimetry and SWAP examinations. 

4.2.4 Analysis 

The weighted global indices mean deviation (MD) and pattern standard deviation 

(PSD) were obtained from the HFA printout.  For SWAP the indices, MD, PSD, short-

term fluctuation (SF) and corrected pattern standard deviation (CPSD) were 

unweighted and calculated from a previously collected normal database (Conway 

2003).  The weighting of indices has been evaluated in past studies.  It was reported 

that the weighted mean deviation index was not significantly advantageous over the 

unweighted mean defect in the evaluation of the 30° glaucomatous field (Funkhauser & 

Fankhauser 1991).  This was disputed with the argument that perimetric threshold 

variability is eccentricity dependent and weighted indices represent the visual field with 

greater accuracy (Heijl et al. 1992).  Nevertheless, the weighting of the indices between 

stimulus locations allows for the increasing variation found at the more peripheral 

locations of the 24-2 and 30-2 fields (Hejl et al. 1987), and therefore is unlikely to affect 

validity of the global indices and probability analyses of the central 10° field (Cubbidge 

et al. 2002).  The SITA algorithms do not perform double determinations because 

variability in the threshold is incorporated into the threshold modelling procedure.  

Hence the indices SF and CPSD are not calculated for standard perimetry.  
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Additionally for both perimetry types the examination duration and number of defects 

on pattern deviation and total deviation analyses were determined.  It was not possible 

to make direct comparisons of thresholds between the differing decibel scales of 

standard perimetry and SWAP, since the scales are referenced to the maximum 

stimulus luminance of the perimeter.  The dynamic range in standard perimetry is 0 to 

10,000 apostilbs (5 log units) whereas in SWAP it is 0 to 65 apostilbs (1.5 log units).   

Between visit changes were identified for all eyes examined using the global indices 

and other visual field parameters.  Consideration of the effect of the order in which 

eyes were tested and the analysis for between-eye differences in visual field 

parameters included only subjects where data was available for both eyes, and in the 

patient group, only eyes which were at the same stage of AMD.  This included 17 

patients and 19 normal subjects.  

The magnitude of the learning effect was assessed by examining the change in the MD 

between visits, since the MD was the principal global index which exhibited a learning 

effect with the greatest significance.  Analysis of the effect of order of eye tested 

included only patients where data was available for both eyes.  The effects of stage of 

disease and age were considered.  Pointwise analysis of the change in probability level 

at each stimulus location on pattern deviation probability maps was performed. 

4.3 Results 

In the patient group, the field parameters examined mostly did not exhibit a normal 

distribution (Kolmogorov-Smirnov test), with the exception of the parameters: number 

of SWAP TD defects (p = 0.200) and change in standard (p = 0.200) and SWAP (p = 

0.200) MD between visits (p = 0.200) in the patient group.  In the normal group, the 

visual field parameters with a normal distribution were the standard (p = 0.200) and 

SWAP (p = 0.200) MS, the standard (p = 0.200) and SWAP MD (p = 0.092), the 

standard PSD (p = 0.200), SF (p = 0.200) and change in SWAP MD between visits (p = 

0.200).  Consequently, parametric and non-parametric tests were used where 
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appropriate.  The use of boxplot representations of the data in this chapter is discussed 

in Appendix 3.  The group mean (SD) and median (IQR) of the global indices and 

examination duration are shown in Table 4-1. 

Patients 
Visit 1 Visit 2 

Mean (S.D) Median (IQR) Mean (S.D) Median (IQR) 

SAP 

MS 28.55 (6.62) 31.11 (4.53) 28.95 (6.63) 31.90 (6.28) 
MD -3.35 (6.52) -0.99 (4.66) -2.97 (6.54) -0.32 (5.75) 
PSD 2.98 (3.03) 1.59 (2.20) 3.03 (3.34) 1.39 (1.32) 
Duration 06:36 (01:30) 06:11 (01:49) 06:20 (01:13) 06:08 (02:07) 

SWAP 

MS 17.19 (7.19) 19.86 (9.75) 17.93 (7.32) 20.02 (10.25) 
MD -8.66 (6.79) -6.00 (9.57) -7.75 (6.85) -5.54 (10.59) 
PSD 3.76 (2.10) 2.99 (1.61) 3.64 (2.25) 2.69 (1.63) 
SF 2.68 (0.88) 2.42 (1.16) 2.58 (0.97) 2.55 (1.20) 
CPSD 2.03 (2.73) 1.00 (3.02) 2.31 (2.77) 1.42 (3.24) 
Duration 08:54 (01:16) 08:45 (01:44) 08:56 (01:33) 08:32 (01:49) 

Normals 
Visit 1 Visit 2 

Mean (S.D) Median (IQR) Mean (S.D) Median (IQR) 

SAP 

MS 31.91 (1.25) 32.04 (1.44) 32.43 (1.16) 32.44 (1.54) 
MD -0.19 (1.23) -0.15 (1.37) 0.37 (1.04) 0.38 (1.55) 
PSD 1.29 (0.27) 1.25 (0.34) 1.19 (0.21) 1.18 (0.26) 
Duration 05:27 (00:35) 05:17 (00:32) 05:17 (00:36) 05:10 (00:45) 

SWAP 

MS 23.13 (3.28) 23.75 (3.88) 23.85 (3.15) 24.31 (3.91) 
MD -2.92 (3.03) -2.33 (3.14) -2.20 (2.86) -1.79 (3.87) 
PSD 2.43 (0.79) 2.27 (0.58) 2.28 (0.43) 2.20 (0.64) 
SF 2.41 (0.66) 2.32 (1.03) 2.23 (0.69) 2.22 (0.88) 
CPSD 0.58 (1.08) 0 (0.94) 0.69 (0.77) 0.36 (1.23) 
Duration 08:05 (01:13) 07:54 (00:52) 07:44 (00:52) 07:33 (00:43) 

Table 4-1. Summary table of visual field parameters for all eyes in the patient 
group 
 

4.3.1 Mean Sensitivity (MS) 

4.3.1.1 Between Visit Change in MS: Overall Differences between All Eyes Examined 

The group MS values at both visits in both patient groups for standard perimetry and 

SWAP are shown in Figure 4-2.  In the AMD patient group, statistically significant 

improvements at visit 2 were found for the standard MS (Wilcoxon signed-rank test, Z = 

-2.032, p = 0.042) and the SWAP MS (Z = -2.527, p = 0.012).  Similarly, in the normal 

group, significant improvements at visit 2 were found for the standard MS (paired t test: 
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t = -3.543, p = 0.001) and SWAP MS (t = -3.019, p = 0.004).  The patient group 

exhibited a greater spread of MS values in comparison to the normal group, as shown 

by the longer boxplots in Figure 4-2.   
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Figure 4-2. Mean sensitivity (MS) values at each visit for all eyes examined for 
standard perimetry and SWAP 
Boxplots limits indicate the 15th, 25th, 50th, 75th and 85th percentiles along the abscissa. 
 
 

4.3.2 Mean Deviation (MD) 

4.3.2.1 Between visit change in MD: Overall Differences between All Eyes Examined 

The group MD for each subject group for standard perimetry and SWAP is shown in 

Figure 4-3.  In the AMD patient group, statistically significant improvements at visit 2 

were found for the standard MD (Wilcoxon signed-rank test: Z = -2.097, p = 0.036) and 

SWAP MD (p = 0.005).  Similarly, in the normal group, significant improvements at visit 

2 were found for the standard MD (paired t test: t = -3.556, p = 0.001) and SWAP MD (t 

= -3.027, p = 0.004).  The patient group exhibited a greater spread of values.  
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Figure 4-3. Mean deviation (MD) values at each visit for all eyes examined for 
standard perimetry and SWAP 
Boxplots limits indicate the 15th, 25th, 50th, 75th and 85th percentiles along the abscissa. 
 

4.3.2.2 Between Visit Change in MD: Effect of Order of Eyes Examined 

For all first and second eyes examined, the group MD for each subject group for 

standard perimetry and SWAP are shown in Figure 4-4 and the statistical significance 

of between visit changes for each eye tested is shown in Table 4-2.  For standard 

perimetry, statistically significant improvements at visit 2 were found for the MD in the 

first eye of the patient group (p = 0.041) and in both eyes in normal patients (1st eye: p 

= 0.021, 2nd eye: p = .0027).  For SWAP, a significant improvement in the MD was 

found for the second eye of the patient group (p = 0.008) and the first eye of the normal 

group (p = 0.007). 
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Figure 4-4. MD values as a function of visit and order of eye examined.   
Boxplots limits indicate the 15th, 25th, 50th, 75th and 85th percentiles. 
 

4.3.2.3 Inter-Eye Changes in MD 

In the patient group, comparisons between eyes were made only where both eyes 

were graded at an equal stage of AMD.  Unlike the between visit changes, the MD was 

more severe in the second eye compared to the first, which achieved significance only 

for the SWAP MD (Wilcoxon signed-rank test: Z = -2.667, p = 0.008) at the first visit in 
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the patient group.  In the normal group, the deterioration between eyes was significant 

for the standard MD at the second visit (paired t test: t = 4.409, p < 0.001). 

Between visit differences Standard MD SWAP MD 

A
M

D
 

P
at

ie
nt

s 

1st  Eye Z -2.040 -1.511 

p 0.041* 0.131 

2nd Eye Z -0.471 -2.667 

p 0.638 0.008* 

N
or

m
al

s 

1st  Eye t -2.528 -3.044 

p 0.021* 0.007* 

2nd Eye t -2.403 -0.933 

p 0.027* 0.364 

    * significant difference 
 

Table 4-2. Difference in MD between visits (Wilcoxon signed-rank test and paired 
t test), for order of eye examined 
 

4.3.2.4 Magnitude of Learning Between Visits   

The amount of learning between visits is shown in Figure 4-5 for all eyes examined, 

and Figure 4-6 for first and second eyes tested.  There was no significant difference in 

the magnitude of learning between AMD patients and normal subjects for standard 

perimetry (Mann-Whitney U test: Z = -0.578, p = 0.563) and SWAP (unpaired t test: t = 

0.517, p = 0.607).   

For standard perimetry and SWAP the mean change in MD between visits was 0.38 

and 0.90dB in the patient group; and 0.56 and 0.72dB in the normal group, respectively.  

The corresponding change in MS between visits was 0.49 and 0.77dB in the patient 

group and 0.53 and 0.72dB in the normal group.  The magnitude of learning differed 

slightly between MD and MS since the unmanipulated raw thresholds used to calculate 

the MS were whole numbers in dB, whereas the corresponding subtraction for MD 

involved decimalised values.  Furthermore, the MD calculation in standard perimetry 

MD incorporated an unknown weighting function. 
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Significant differences were revealed for the change in MD between visits for standard 

perimetry for AMD patients between the first and second eyes examined (paired t test: t 

= 2.286, p = 0.043), where learning was exhibited for the first eyes examined but not 

for the second eyes.  In SWAP, learning in the second eye was significantly greater 

than that in the first eye (paired t test: t = -3.668, p = 0.004).  In the normal group the 

magnitude of learning between first and second eyes was not significantly different for 

standard perimetry (Wilcoxon signed-rank test: Z = -0.101, p = 0.920) and was 

significantly different for SWAP (paired t test: t = 2.155, p = 0.046). 
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Figure 4-5. Change in MD (Visit 2 – Visit 1) indicating the magnitude of learning in 
the patient group and normal group for standard perimetry and SWAP.   
Error bars represent 1 standard error 
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Figure 4-6. Change in MD (Visit 2 – Visit 1) indicating the magnitude of learning in 
the patient group and normal group for standard perimetry and SWAP for first 
and second eyes examined.  Error bars represent 1 standard error 
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4.3.2.5 The Effect of Stage of AMD and Age on the Magnitude of Learning 

The effect of stage of AMD on change in MD was investigated using the Kruskal-Wallis 

test for standard perimetry data and a one-way analysis of variance (ANOVA) for 

SWAP data.  No statistically significant effect of stage of disease was found for 

standard perimetry (Chi-square = 9.193, p = 0.102) or SWAP (One-way ANOVA: F = 

0.198, p = 0.962).  Post hoc analysis (Tukey HSD) revealed no differences between 

SWAP learning at individual stages.  No significant correlation (Pearson’s correlation 

for parametric data and Spearman’s rho for non-parametric data) existed between age 

and change in MD between visits (p > 0.300 for all groups).  

4.3.3 Pattern Standard Deviation (PSD) 

4.3.3.1 Between Visit Change in PSD: Overall Differences between All Eyes 
Examined 

The group PSD for each subject group for standard perimetry and SWAP is shown in 

Figure 4-7 and the PSD mean and median values for each visit are shown in Table 4-1.  

No significant differences were found between visits for the standard perimetry PSD 

the AMD patient group (Wilcoxon signed-rank test: Z = -0.965, p = 0.335).  However, in 

the normal group there was a significant improvement at the second visit (paired t test: 

t = 2.205, p = 0.033).  Between visits, no significant difference between the SWAP PSD 

was found for both the patient group (Wilcoxon signed-rank test: Z = -1.035, p = 0.301) 

and the normal group (Wilcoxon signed-rank test: Z = -1.048, p = 0.294).  The patient 

group exhibited a greater spread of values.  

4.3.3.2 Between Visit Change in PSD: Effect of Order of Eyes Examined 

For all first and second eyes examined, the group PSD for each subject group for 

standard perimetry and SWAP are shown in Figure 4-8.  No statistically significant 

between visit changes in PSD were found for either of the subject groups for either 

perimetry type (Table 4-3). 

4.3.3.3 Inter-Eye Changes in PSD 

No significant changes between eyes were found for the PSD for either subject group. 
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Figure 4-7. PSD values at each visit for all eyes examined for standard perimetry 
and SWAP 
Boxplots represent the 15th, 25th, 50th, 75th and 85th percentiles 
 

4.3.4 Other Visual Field Parameters: SF, CPSD, Examination Duration and 
Number of Defects 

4.3.4.1 Between Visit Change Visual Field Parameters: Overall Differences between 
All Eyes Examined 

The group examination duration for each subject group for standard perimetry and 

SWAP is shown in Figure 4-9 and the corresponding changes for the number of pattern 

deviation (PD) and total deviation (TD) defects are shown in Figure 4-10.  The 

statistical significance of the between visit changes were tested for using the Wilcoxon 

signed-rank test and are shown in Table 4-4.  A significant improvement at visit 2 was 

found for the standard examination duration (p = 0.047) in the patient group and the 

number of TD defects in both the patient group (p = 0.034) and the normal group (p = 

0.038). 

4.3.4.2 Between Visit Change in Visual Field Parameters: Effect of Order of Eyes 
Examined 

For each eye tested, the only statistically significant between visit changes were in the 

normal group for the SWAP examination duration in the first eye examined (Wilcoxon 
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signed-rank test: Z = -2.296, p = 0.022) and the number of SWAP TD defects (Z =        

-2.238, p = 0.025). 
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Figure 4-8. PSD values as a function of visit and order of eye examined. 
Boxplot limits show the 15th, 25th, 50th, 75th and 85th percentiles  
 
 
 
 
 
 
 
 
 



 136 

Between visit differences Standard PSD SWAP PSD 

A
M

D
 

P
at

ie
nt

s 

1st  Eye Z -1.023  -1.689 

p 0.306  0.091 

2nd Eye Z -1.216  -0.711 

p 0.224  0.477 

N
or

m
al

s 
1st  Eye t 1.465 Z -1.154 

p 0.160 p 0.248 

2nd Eye t 1.664 Z -0.065 

p 0.113 p 0.948 

      
Table 4-3. Difference between PSD between visits (Wilcoxon signed-rank test and 
paired t test), for order of eye examined 
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Figure 4-9. Examination duration values for all eyes examined 
Boxplot limits show the 15th, 25th, 50th, 75th and 85th percentiles  
 
 
 
 
 
 
 
 



 137 

Standard Perimetry

0

10

20

30

40

50

60

visit 1 visit 2 visit 1 visit 2 visit 1 visit 2 visit 1 visit 2

PD TD PD TD

Patients Normals

N
um
be
r 
of
 d
ef
ec
ts

 
SWAP

0
10
20
30
40
50
60
70
80

visit 1 visit 2 visit 1 visit 2 visit 1 visit 2 visit 1 visit 2

PD TD PD TD

Patients Normals

N
um
be
r 
of
 d
ef
ec
ts

 
Figure 4-10. Number of defects identified by pattern deviation (PD) and total 
deviation (TD) as a function of visit number, for all eyes examined 
Boxplots limits indicate the 15th, 25th, 50th, 75th and 85th percentiles along the abscissa. 
 
 

Standard Perimetry 

Between visit 
differences 

Exam Duration No. PD Defects No. TD Defects 

AMD Patients Z -1.990 -1.344 -1.498 

p 0.047* 0.179 0.134 

Normals Z -1.445 -1.186 -1.780 

p 0.148 0.236 0.075 

SWAP 

Between visit 
differences 

SF CPSD Exam Duration No. PD 
Defects 

No. TD 
Defects 

AMD Patients Z -0.674 -0.823 -0.255 -1.015 -1.395 

p 0.500 0.411 0.798 0.310 0.163 

Normals Z -1.022 -1.438 -1.943 -1.053 -2.018 

p 0.307 0.150 0.052 0.292 0.044* 
 * significant difference 
 
Table 4-4. Differences between visual field parameters between visits (Wilcoxon 
signed-rank test) 
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4.3.5 Pointwise Pattern Deviation Probability Analysis 

Pointwise analysis of the pattern deviation probability maps was considered in 

preference to the total deviation because it is less affected by possible lens yellowing in 

SWAP.  The change in the number of probability levels between visits at each stimulus 

location was calculated.  The change in the number of levels of probability between 

visits was defined as negative if deteriorating, such that the probability level changed 

so that it had a smaller chance of occurring in the normal database; and positive if 

improving.  For example a probability level of p<5% at visit 1 and p<1% at visit 2, was 

interpreted as a change of -2 levels of probability.  The mean change in number of 

probability levels of the pattern deviation probability analysis between visits 1 & 2, at 

each stimulus location, for AMD patients and normal subjects is shown in Figure 4-11 

for standard perimetry and Figure 4-12 for SWAP.  The maps are displayed as a right 

eye.  Lighter shading in Figure 4-11 and Figure 4-12 represent improvement in the field 

at visit 2 and deterioration is indicated by darker shading.  In standard perimetry, the 

improvement in the visual field at visit 2 occurred in the central field within an 

approximate eccentricity of 6 degrees and deterioration tended to occur at the more 

peripheral regions of the field in both subject groups (Figure 4-11).  In SWAP, areas of 

improvement were interspersed with areas of deterioration and the areas of greatest 

improvement occurred most frequently in the paracentral regions of the 10-2 field.  

There were slightly fewer stimulus locations exhibiting improvement in the SWAP field 

compared to the standard field for both subject groups. 
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4.4 Discussion 

In summary, the results demonstrated a significant learning effect between two visits 

separated by eleven days in patients with AMD and in normal subjects for standard and 

SWAP 10° visual fields, for the global indices, mean sensitivity and mean deviation.  

The overall magnitude of learning was not significantly different between the patient 

group and the normal group, and was not influenced by stage of AMD.  Evidence of 

fatigue was observed where the MD showed deterioration between eyes.   

The average change in MS between visits was 0.4-0.5dB for standard perimetry for 

both subject groups.  By comparison to existing research in standard perimetry applied 

to the 30° field, this magnitude is rather less than the average learning effect of 1-2dB 

(Autzen & Work 1990; Heijl et al. 1989), which suggests a diminished magnitude of 

learning in the 10° field relative to the 30° field.  In SWAP the average change in MS 

was 0.7dB for both subject groups, which is similar to the learning effect calculated in 

the 10° region of the 30-2 field, where the MS was found to increase by 0.6dB in SWAP, 

in a group of ocular hypertensives (Rossetti et al. 2006).  The SWAP MD in the 24-2 

field in patients with ocular hypertension and open-angle glaucoma was found to 

improve by 0.6-1.2dB between the first two visits (Wild et al. 2006), which is consistent 

with these results, where the SWAP MD improved by 0.7-0.9dB.  Current evidence 

suggests that a learning effect in the 10° field would be smaller than that for a 30 or 24° 

field, since greater learning effects were seen in peripheral concentric rings of a 30-2 

field, where learning was found to increase linearly with eccentricity (Heijl & Bengtsson 

1996).  For SWAP, the learning effect was noted to be greater in the peripheral 20 to 

30° as opposed to the central 10° (Rossetti et al. 2006).  Moreover, the between 

subject variability is reduced in the central visual field (Bengtsson et al. 2008; Cubbidge 

et al. 2002), leading to greater accuracy of the threshold measurement in the central 

10° explains the smaller learning effect in this area.  
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The overall magnitude of learning was not different between the patient and normal 

groups.  The magnitude of the learning effect was independent of stage of AMD in this 

study.  In standard perimetry, the pointwise change in probability level of PD defects 

indicated a similar pattern in both patient and normal groups.  The greatest 

improvements at the second visit occurred in the central field within an approximate 

eccentricity of 6 degrees in standard perimetry (Figure 4-11).  This apparent 

improvement in the central region of visual field was not consistent across all subjects 

in the AMD patient group and may be attributed to normal variability.  In SWAP, the 

areas of greatest improvement occurred most frequently in the paracentral regions of 

the 10° field.  These areas in Figure 4-12 correspond to the areas of highest threshold 

sensitivity illustrated in Figure 7.6 which indicates a consistency with previous findings 

that locations of high sensitivity exhibit a greater learning effect than more depressed 

points (Heijl & Bengtsson 1996).       

In SWAP, the mean deviation index was quoted as being the most sensitive parameter 

to learning (Rossetti et al. 2006), which is concordant with these results where the 

mean deviation was also the principally affected parameter by learning.  This indicates 

a diffuse component to the learning effect, which is further supported by the results 

indicating no significant changes in the PSD, which represents focal loss.  Pointwise 

differences between stimulus locations were however observed in the pattern deviation 

analyses.  In standard perimetry, deteriorations tended to occur in the periphery of the 

field.  The peripheral stimuli are the last thresholds determined in the visual field 

examination where stimuli are presented in a pseudo-random manner.  It would be 

expected that the observed deterioration in peripheral sensitivity is likely to have been 

caused by fatigue. 

In standard perimetry, no significant inter-eye difference in MD was noted in the patient 

group, which is consistent with the findings of Barkana et al. (2006), who did not find 

any effect of the order of eyes tested on the MD using the SITA standard algorithm and 



 143 

the 24-2 test pattern in glaucomatous patients.  Paradoxically, in the normal group, 

there was a significant decline in the MD between eyes at the second visit, in standard 

perimetry, in which the magnitude of decline was 0.6dB.  The corresponding decline at 

the first visit was 0.5dB, which did not achieve statistical significance.  It is possible 

these findings were adversely affected by a type 1 error and a more stringent alpha 

level could have protected against this.  Wild et al. (2006) attributed worsened MD 

values in the second eye examined to the fatigue effect in SWAP.  This reasoning is 

applicable to the present study where more severe MD values were also found in the 

second eye for all patients and for both standard perimetry and SWAP, despite 

frequent rest periods.  Indeed the extreme values of the SWAP MD for the second eye 

tested in the normal group were marginally more severe than the least severe MD 

values in the patient group (Figure 4-4).  In addition to the effect of fatigue, this can 

also be explained by the wider confidence intervals in SWAP and the normal 

appearance of fields of the patients at stage 0 AMD, who were acute observers.  The 

magnitude of learning in the second eye of the patient group for SWAP was 

significantly greater than the learning exhibited by the first eye (Figure 4-6).  Parallel 

findings are evident in the learning study in SWAP (Wild et al. 2006), in which the 

second eyes of the subgroup of glaucoma patients showed a larger improvement in 

MD at the second visit compared to the first eyes, as well as markedly more severe MD 

values with larger standard deviations in the second eyes. 

Whilst learning in standard perimetry is not thought to affect learning in SWAP due to 

the different mechanisms involved in detection (Wild & Moss 1996), there is the 

likelihood that fatigue due to the standard fields was transferred to the SWAP fields, 

which were performed second in this study.  However, it is not possible to separate the 

magnitude of any transferred fatigue effect between perimetry types, due to the 

inherently increased confidence limits of normality in SWAP compared to standard 

perimetry (Wild et al. 1998; Wild 2001) and difference in dynamic range, such that 
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absolute value decibel comparisons cannot be made.  Had the study design 

randomised the order of perimetry type, or separated the sessions by perimetry type, a 

transferred fatigue effect may have been negated.  The magnitude of the fatigue effect 

is greater in SWAP (Cubbidge 1997), so it is likely that the transferred fatigue effect 

would be greater if SWAP had been performed first.  Alternatively, had the study been 

designed such that standard perimetry and SWAP were carried out on different days, 

this would have less reflected clinical practice and would have introduced greater 

variation in the time between visits.   

The experimental designs employed in comparative studies adopted a greater number 

of visits, such as examination at weekly intervals over five consecutive weeks (Heijl & 

Bengtsson 1996; Rossetti et al. 2006; Wild et al. 2006).  This study design could not be 

implemented in the present study for logistical reasons and clinical viability.  In 

standard perimetry, the greatest learning effect was observed between the first two 

visits (Heijl et al. 1989; Heijl & Bengtsson 1996).  In SWAP, the greatest learning effect 

has been found to occur over the first three visits in the 24° field, where in fact the 

largest increase in MD occurred at the second visit (Wild et al. 2006); and over the first 

two visits in the 30° field (Zhong et al. 2008).  Consequently, the design of the present 

study was optimised to detect the greatest learning effect present.  This is of value in 

the estimation of any further learning effects which may occur at subsequent visits in a 

longitudinal study, since they are likely to have a smaller magnitude.  When examining 

visual field data cross-sectionally, across stages of disease, ideally data analysed 

would be from the 5th visit of five consecutive weekly fields.  In the present study, the 

magnitude of the learning effect detected between the first two visits is minimal relative 

to measures of variability such as the SF.  Although the cross-sectional analysis of data 

from visit two may incur greater error than analysis of potential data from visit five, the 

difference is not likely to exceed the other variability measures.  Additionally in a clinical 

situation it is not viable to assess a patient five times at weekly intervals.  There are 
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often long periods of time in between clinical visits, the interpretation of visual fields in 

this circumstance would also benefit from information about the learning effect.  

The results in this study present a small magnitude of learning in the 10° field which 

improves confidence in the accurate detection of change attributable to disease from 

errors due to opposing effects of learning and fatigue.  MD is the index most sensitive 

to learning, which is of importance when examining AMD patients, where change in 

focal loss and variability is of more interest, rather than diffuse changes.  Thus, the 

suitability and reliability of 10° visual field assessment of functional change in AMD is 

reinforced.  The magnitude of learning was not significantly different between the 

patient group and the normal group, and was not influenced by stage of AMD.   
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5. Programming in Ophthalmic Imaging Analyses: Mapping the visual 
field and the standard grading grid onto fundus photographs 

 
Summary 

Computer programming was used to map spatial information onto digital fundus 

images, with the purpose of reducing the error of performing such tasks manually.  The 

first program mapped perimetric data to the fundus image and the second positioned 

the standard age-related macular degeneration (AMD) grading grid onto the fundus 

image.  Description and evaluation of the programs are given.  The application of the 

program to the grading of AMD features was implemented.   

The spatial repeatability associated with the mapping processes was investigated using 

the coefficient of repeatability, and was approximately 80µm and 65µm for the 

perimetric fundus map and fundus grading grid programs, respectively.  The greatest 

contribution to this error was the position of the user-defined macula.  Accuracy of the 

Perimetric Fundus Map program in terms of drusen size indicates that isolated drusen, 

larger than 80µm can be associated with coinciding visual field defects at individual 

stimulus locations, but it is not possible to make the same interpretations with smaller 

drusen 

Application of the program for the grading of features of AMD was carried out by two 

independent observers.  The inter-observer agreement ranged from weighted kappa 

values of 0.42 to 1, indicating moderate and perfect agreement, respectively.  When 

grading AMD using the custom program, graders should consider the spatial variability 

which might occur in grading hard drusen or other small features at the edge of 

subfields of the grading grid.   

The advantages of the semi-automated programs over the corresponding manual 

methods are that of speed, convenience and known accuracy levels.  The programs 

provide useful tools for the analysis of digital fundus photographs.   
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5.1 Introduction 

In order to examine the structure to function relationships in AMD, the central visual 

loss must be related to the retinal manifestations of the disease.  Measures of visual 

function are not easily transposed to their structural correlates on the retina because of 

the optical properties of the eye and magnification factors.  The projection of the retinal 

image is not linear due to the multiple aspheric surfaces of the eye, which have 

differing refractive indices.  The assumptions made are based on models involving a 

schematic eye, which represents a simplification of true optics.  Although sophisticated 

models may account for a gradient-index lens and optical aberrations (Navarro et al. 

2006), the commonly used model for retinal projection does not allow for such features.  

In optics, the linear magnification of an image is the image height divided by the object 

height.  The amount of magnification in fundus photography depends several factors 

including the degree of eccentricity of the measured object from the optical axis 

(Bennet et al. 1994), the distance of the camera from the eye examined (Bengtsson & 

Krakau 1977, 1992), the magnification due to the camera (camera factor) and the 

magnification due to the eye (ocular factor) (Garway-Heath et al. 1998).  In fundus 

photography, the magnification of an image is defined by the equation 

t = pqs 

where, t is the true retinal size, p is a camera factor, q is an ocular factor and s is the 

image size (Bennet et al. 1994; Patton et al. 2006).  The magnification due to the 

camera is constant for a given camera (Garway-Heath et al. 1998).  Ocular 

magnification can be calculated by obtaining biometric data for the eye, or it may be 

estimated from other measures such as the refraction of the eye, corneal curvature or 

axial length (Bengtsson & Krakau 1992; Bennet et al. 1994).  Calculating the true size 

of retinal features from fundus photographs may be avoided by the use of ratio 

measures. 
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The original manual grading of AMD was performed with slides at a light box and clear 

plastic overlays (Bird et al. 1995; Klein et al. 1991).  Ratio measures were employed to 

measure features, which made reference to the optic disc diameter.  However, the 

positioning of the standard grading grid onto the fundus photograph may lead to spatial 

errors especially when performed by multiple graders.  With the increasingly ubiquitous 

use of digital fundus photography, methods which avoid the use of plastic overlays 

have been developed.  The grading grid has been digitally reproduced and resized in 

Adobe Photoshop (Adobe Systems Inc, San Jose, USA) to match the fundus image 

(Scholl et al. 2004).  Other methods of digital grading in AMD have involved the use of 

a graphics tablet to manually mark digital fundus images (Smith et al. 2005b).  

The aim was to use computer programming to map spatial information onto digital 

fundus images in order to reduce the error associated with incorrect manual grid 

positioning.  Secondary aims were to evaluate the programs using the repeatability of 

positional measures.  Thirdly, subsequent to evaluation of the programs, application of 

the program to the grading of AMD features was described as well as the associated 

inter-observer agreement. 

Two programs were proposed.  Firstly, a program was written to map visual field data 

onto digital fundus images, thus facilitating the analysis of structure to function 

relationships in perimetry.  The second program was designed to place the standard 

AMD grading grid onto the fundus image, for ease and improved accuracy of digital 

image grading.  Both programs were written using Liberty BASIC (Shoptalk Systems, 

Massachusetts, USA), a form of BASIC language capable of Windows programming.  

Digital fundus images and perimetric data from patients with AMD were acquired in a 

previous study (see Chapter 4).  The fundus photography was performed on dilated 

pupils, using a non-mydriatic camera (Canon EOS 10D camera, 6.3 megapixels).  

Stereoscopic pairs of images were captured whereby the first image was taken near 

the left edge of the pupil and following a lateral shift of the camera base, the second 
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image was taken near the right pupil edge.  Images were stored as high quality jpeg 

files (large/fine, ~2.4MB, 3072 x 2048) and converted to bitmap files in order for 

compatibility with Liberty BASIC.   

The standard assumption of the projection of the visual field on to the retina is based 

on research using trigonometrical ray tracing in a schematic eye with an aspheric 

cornea, where the retinal distance within an eccentricity of 10° from the fovea was 

found to be 1° = 270-275µm (Drasdo & Fowler 1974).  This assumption of distance 

declines with eccentricity, such that at approximately 30°, 1° is equivalent to 260µm. 

The longstanding clinical assumption of the average vertical optic disc diameter is 

1500µm.  This figure was applied to the AMD grading systems (AREDS 2001b; Bird et 

al. 1995; Klein et al. 1991) in the development of the standard grading grid, such that 

the circular dimensions could be expressed in terms of ratios of disc diameters.  These 

grading systems (AREDS 2001b; Klein et al. 1991) quoted a preference for the 

longstanding assumption, even in the knowledge that a more accurate in vivo measure 

of disc diameter indicated a value of 1800-1900 µm (Jonas et al. 1988; Mansour et al. 

1990).  Therefore the assumption used for the grading program follows this convention. 

The following description relates to the programs stored on the disc accompanying 

Appendix 2.  Instructions for running the programs are given in Appendix 2. 

5.2 PROGRAM 1: Perimetric Fundus Map 

A series of windows were programmed to map the visual field upon the digital fundus 

photograph.  The program runs as follows: 

1. The first dialogue box allows the user to open a bitmap fundus image.   

2. The initial user input is the macula to disc distance.  The visual angle between 

the macula and the centre of the optic disc eye is 15° (Rabbetts 1998), or it is 

possible to determine this distance perimetrically using a custom stimulus 

configuration.  In this case, the known distance may be entered at this point.   
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3. The user is then instructed to mark the optic disc margins and macula with 

mouse clicks, which allows the distance between the centre of the optic disc 

and the macula to be calculated in pixels.   

4. A pixel to degree conversion factor is calculated by the program and the points 

corresponding to the 10-2 stimulus configuration are generated onto the fundus 

(Figure 5-1).  

5. The following windows allow the perimetric data to be entered in two ways 

(Figure 5-2).  Threshold sensitivities, probability deviation values or any 

numerals may be entered directly as numeric values (Figure 5-3A).  Defects 

can be entered by their probability values for example where p<1%, “**1” should 

be entered for a probability symbol to be displayed (Figure 5-3B).  The data 

may be copied and pasted from a spreadsheet directly into the textbox in Figure 

5-2A.  Alternatively, the value can be entered once into the textbox in Figure 5-

2B and placed in numerous places on the map using the positional buttons, 

which may be more convenient where defects occur in a minimal number of 

locations.  Threshold sensitivity values can be exported from the perimeter 

using software such as PeriData Software (GmbH, Huerth, Germany), which 

allows a Microsoft Office feature, to export the data to an Excel file. 

6. The threshold values displayed on the map are colour coded according to a 

scale to represent severity.  The colour contrast may be adjusted depending on 

the visibility over the background colour of the fundus. 

7. Further display options are available including right or left eye indicator and the 

vertical downward displacement of the macula from the centre of the disc in 

degrees.  
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Figure 5-1. Fundus image with visual field stimulus locations superimposed 
 

 
Figure 5-2. The entry of perimetric data in to the program:  
(A) Numerals pasted from a spreadsheet or manually typed, or (B) the typed 
value can be entered to numerous positions by clicking the corresponding 
button arranged in the stimulus grid. 

A B 
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Figure 5-3. Perimetric fundus maps displaying (A) threshold sensitivities and (B) 
defects 
 
 
 

 
 
Figure 5-4. Grading grid mapped upon fundus image 
 
 

5.3 PROGRAM 2: Fundus Grading Grid 

In order to map the circular grading grid onto the fundus image, the program runs as 

follows: 

1. The first dialogue box allows the user to open a bitmap fundus image.   

A B 
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2. The user is instructed to mark superior and inferior disc margins and macula 

with mouse clicks, which gives the vertical disc diameter in pixels and the pixel 

to µm conversion factor is calculated. 

3. The circular grading grid is generated onto the fundus image (Figure 5-4). 

4. The following window allows marking on the image with mouse clicks for 

counting features, and a measuring tool.  The user may mark the diameter of a 

circular feature on the image and a circle will be drawn around the feature 

(Figure 5-5).  The diameter and area of the marked circle in µm are returned to 

the textboxes in the window, as well as the nearest standard circle size as 

defined by the International Grading System (Bird et al. 1995).  Another feature 

allows the diameter to be added to a list and the total areas of the features in 

the list are expressed as a percentage of the central, middle or outer circle.  

The list may be copied and pasted out of the program.   

 

 

 
 
Figure 5-5. Fundus Grading Grid. Marking drusen gives diameter and area 
measures 
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5.4 Evaluation 

An evaluation of the repeatability of positional measures of the programs was 

performed.  The programs described rely on the accurate marking of the fundus 

landmarks by the user.  In images where disc margins are blurred and the macula is ill-

defined, identification of retinal landmarks is more difficult.  It was therefore necessary 

to quantify the user error associated with the accurate positioning of the firstly the 

perimetric map and secondly the grading grid onto the fundus image in Programs 1 and 

2, respectively.   

Positional error was defined as the repeatability of two measures of a point on each 

grid.  Possible between measure differences in the user-defined papillomacular 

distance or optic disc diameter indicates that the repeatability will vary with retinal 

eccentricity.  For Program 1, two points were chosen, at stimulus locations 40 and 44 

(of a right eye) which constitute a central and a peripheral location.  For Program 2, the 

inferior right intersection of the central circle of the grid was chosen (Figure 5-6).  

Additional features were written into each program, such that the vertical disc diameter 

in pixels and the pixel coordinates of the chosen points were displayed.  The variable 

was then calculated as the distance of the chosen point from a reference point (0,0). 

Based on the estimate of the SD (8.5 pixels) from within-subject variability from 

repeated measures in Program 1, on one image with particularly blurry disc margins 

and poorly defined macula, the number of images required to detect repeatability 

between measures to within 3 pixels with 95% power is 31.  31 images were opened 

twice in each program and the image repeatability parameters were recorded.  The 

repeatability between the two measures for each program was calculated as the 

coefficient of repeatability (COR = 1.96 x SD of the differences between measure 1 and 

2).  The COR represents the 95% limits of agreement between the two measures, or 

the limit within which 95% of the differences lie and gives an indication of variability.  
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Pixel distances were converted into µm using the standard disc diameter assumption of 

1500µm.    

 
 
Figure 5-6. Spatial position of repeatability parameters indicated by circles.   
Grey circles indicate central stimulus location 40 on visual field and intersection on 
central circle of grading grid.  Black circle shows peripheral stimulus location 44 on 
visual field.  
 

A summary of differences between first and second measures of grid positions is 

presented in Table 5-1.  The peripheral stimulus location had a slightly greater mean 

difference and COR value than the central stimulus location.  The repeatability 

difference between the central and peripheral stimulus locations were not considered to 

be clinically significant. 

 Program 1 Program 2 
 Central 

point    
Peripheral 

point 
Mean  0.31 12.66 0.37 
SD  39.62 42.52 33.28 
COR  77.66 83.36 65.24 

 
Table 5-1. The difference in distance between first and second measures of grid 
positions, in µm 
 

5.5 Application of Program 2 to the Grading of Images 

The difference between two graders in making clinical judgements whilst using 

Program 2 was assessed.  Grading was performed using the bitmap image in 
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conjunction with the Fundus Grading Grid program with reference made to the 

stereoscopic pair stored in the original JPEG format, where necessary.  The graders, 

an optometrist (JA) and consultant ophthalmologist (JMG) performed all grading 

independently.  The graders were masked to the identity of the patients and images 

were graded in a random order to reduce observer bias.   

49 images from patients with AMD were viewed on a 20.1” screen.  A prismatic 

stereoviewer was used to facilitate differentiation of large drusen from areas of 

hypopigmentation and to aid viewing of any raised lesions, such as a pigment epithelial 

detachment.  Visualisation factors such as the distance and angle of viewing, monitor 

resolution and magnification were kept constant.  Images were graded according to the 

International Classification and Grading System (Bird et al. 1995).  Stage of disease 

was determined according to the stages of severity defined by an epidemiologic study, 

based on progression rates of features over a 6.5-year period (van Leeuwen et al. 

2003b).  Stage of disease was then redefined based on an alternative staging system 

the CARMS system (Seddon et al. 2006).  Modified from the AREDS staging system 

and originally designed to be used by graders with minimal training, the CARMS stages 

could be easily identified from the features already graded.   

The inter-observer agreement was determined using the weighted kappa statistic (κ) 

for each feature graded and is shown in Table 5-2.  The κ statistic can be used with 

categorical data and can range from -1 indicating exact disagreement to +1, 

representing exact agreement (Landis & Koch 1977).  The following interpretation of κ 

values was proposed as 0.41 to 0.60 indicating moderate agreement, 0.61 to 0.80 

substantial agreement, and 0.81 to 0.99 almost perfect agreement (Landis & Koch 

1977).  The agreement between graders ranged from 0.42 to 1.  All characteristics 

showed substantial agreement except for area covered by drusen, main location of 

hyper/hypopigmentation and main location of neovascular AMD, which showed 
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moderate agreement.  Agreement between graders of identification of stage was 

excellent. 

The difference between two staging systems is shown in Figure 5-7.  The line of best fit 

has a gradient of 0.73.  Were the two stages to agree exactly, this value would be 1 

(illustrated by dotted line).  

  Weighted 
κ 

Standard 
error 

Drusen  Type 0.91 0.03 

Number 0.90 0.05 

Size 0.90 0.04 

Main location 0.80 0.07 

Area covered 0.56 0.10 

Pigmentary 
Changes 

Hyperpigmentation 0.76 0.08 

Hypopigmentation 0.94 0.05 

Main location  0.42 0.16 

Geographic 
Atrophy 

Presence 1 0 

Location 0.73 0.16 

Area covered 0.82 0.18 

Neovascular AMD Presence 1 0 

Typifying features 0.84 0.17 

Location 0.57 0.35 

Area covered 1 0 

Stage of AMD 0.90 0.05 

     
Table 5-2. Inter-observer agreement for grading characteristics of AMD 
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Figure 5-7. Comparison of two systems for staging of severity of AMD 
Two staging systems for AMD were used to grade the same fundus images.  A converted scale 
for the CARMS staging system (Seddon et al. 2006) is plotted against the Rotterdam Study 
staging system (van Leeuwen et al. 2003b).  The solid line shows the line of best fit which has a 
gradient of 0.73.  The dotted line shows the line of exact agreement which has a gradient of 1. 

 

5.6 Discussion 

Two separate applications of the programming were to map visual field data and the 

standard AMD grading grid onto the fundus image.  The programs were evaluated for 

accuracy of the spatial mapping in terms of retinal distances.  Once the grading 

program was developed and evaluated, it was then applied in order to assess the inter-

observer agreement in grading of AMD.  The evaluation results present evidence of 

accurate mapping to within approximately 80µm for Program 1: Perimetric Fundus Map 

and approximately 65µm for Program 2: Fundus Grading Grid.  Interpretation of 

Program 1 in relating drusen or other features with coinciding visual field defects at 

individual stimulus locations is therefore limited to drusen larger than 80µm, since it is 

not possible to make the same interpretations with smaller features.  Overall inter-

observer agreement of the grading of AMD features when using the program was good.  

It is not surprising that the repeatability of Program 2 yielded greater accuracy than 

Program 1, since less user defined measures are made in Program 2.  The accuracy of 

the Perimetric Fundus Map program to detect whether visual field defects lie over 
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retinal signs should be limited to features larger than 80µm, therefore hard drusen or 

other small features in isolation cannot be confidently associated with defects on the 

output map.  Factors influencing the grid positioning were the degree of definition of the 

optic disc margins and the macula, which affected the ease for the user of mouse click 

placement.  A more magnified image, in cases where very small drusen were present 

in the central subfield, was less likely to give positional errors, than a less magnified 

image.  This was due to better visibility of the retinal landmarks despite a greater 

number of pixels contained within the same area. 

In photography, compression algorithms reduce the size of image.  TIFF (tagged image 

file format) and bitmap files use lossless compression, in which the algorithms search 

for redundancy of information in the image to recode more efficiently.  Lossless 

compression permits the original image data to be retrieved, whereas lossy image files 

do not.  JPEG (Joint Photographic Experts Group) files are lossy files and were 

designed to reduce the file size without causing a significant visible difference to the 

image.  It is possible to vary the compression ratio to suit the image quality versus file 

size requirements.  The camera used in this evaluation was a 6.3 megapixel camera 

with a pixel resolution of 3072 x 2048 and is a camera recommended by the National 

Screening Committee guidelines for diabetic retinopathy (UK National Screening 

Committee, 2009).  The monitor resolution used for all grading was a 20.1” display with 

a pixel resolution of 1600 x 1200 in accordance with the standards for grading diabetic 

retinopathy (UK National Screening Committee, 2009), which fulfils the image 

resolution requirement of at least 20 pixels per degree.  A limitation of the camera was 

that the best possible image quality output was a high quality JPEG, as opposed to a 

lossless file such as a TIFF.  However, since the maximum quality JPEG image 

reduces the file size by 90.2% compared with a TIFF image, it was considered that the 

visible difference in image quality was negligible.  The only image file format which 

could be programmed and manipulated in Liberty BASIC software was the bitmap.  
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This necessitated conversion from the original JPEGs to bitmaps.  The bitmap 

conversion of these files therefore, represents a lossless compression of the original 

JPEG files, where there was no observable degradation to small features such as hard 

drusen.  Notably, the automated drusen segmentation program (Smith et al. 2005a,b) 

converts all imported images to bitmaps before performing segmentation, which 

validates the programming methods in the present evaluation.   

The standard assumption of retinal distance used in AMD grading is in itself a major 

source of error relevant to the grid positioning in the programs.  The COR values in the 

above results recalculated using 1850µm as the disc diameter gave values of 100µm 

and 78µm for Programs 1 and 2, respectively.  Further caution regarding the 

interpretation of the COR values is necessary based on the parametric nature of their 

calculation, in this case being applied to non-Gaussian data.  Unfortunately no non-

parametric equivalent exists and transformation of the variables rendered the COR 

values clinically meaningless.  The International classification system quotes diameters 

of hard drusen as <125µm and soft intermediate drusen as >63µm and <125µm (Bird 

et al. 1995), therefore the ranges of repeatability still fall within the same range of 

drusen type.   

The MP1 microperimeter allows for superimposition of the retinal differential light 

thresholds onto the fundus image.  This is achieved by a calculation of the true size of 

the retinal image, involving the camera and ocular factors.  Based on the Gullstrand 

schematic eye, a camera factor of 0.438 is used.  The ocular magnification is 

calculated according to the ametropia of the eye.  This is measured by correcting for 

any size difference in the diameter of the superior temporal vein as it leaves the optic 

disc.  It is assumed that this vessel diameter is constant for all eyes.  This technique of 

superimposition appears to rely on a greater number of assumptions than the methods 

described in this evaluation. 
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The worst agreement between graders for features of AMD related to location of 

pigmentary and neovascular changes and the percentage area covered by the drusen.  

The greatest error in grading thus involved spatial aspects rather than the identification 

of the features.  This highlights the importance of the initial accurate positioning of the 

grading grid.  Spatial inter-observer error could also be reduced by agreement on 

precise counting or measuring of drusen at the subfield margins prior to grading.  Less 

variability surrounded the assignation of images to stage of severity of AMD, since this 

relied primarily on feature identification.  Comparison of two staging systems 

determined from the same images showed close agreement of severity of disease.  

Both staging systems distinguished five stages of AMD (Tables 1-2 and 1-3), the main 

differences between the systems involved the observation of pigmentary changes and 

drusen together.  The CARMS system (Seddon et al. 2006) classified the presence of 

pigmentary changes and drusen at an earlier stage, whereas this was considered to 

carry higher risk based on incidence data from the Rotterdam Study (van Leeuwen et 

al. 2003b).  Furthermore the CARMS system included approximate counts of drusen 

number, however the system after van Leeuwen et al. (2003b) did not.  Parallel 

findings in a previous study were reported, where little difference was observed 

between grading of images using the systems proposed by the Rotterdam Study and 

AREDS (Tikellis et al. 2006).  Although definitions of features differ between staging 

systems, this evidence suggests the determination of functional progression of disease 

may yield similar results between systems.  

Program 1: Perimetric Fundus Map was written to relate visual function to structural 

changes at the macula (see Chapter 8).  The clinical application may be to aid the 

detection and monitoring of central retinal diseases, where visual field defects can be 

easily mapped to fundus photographs or other images such as infra-red SLO images.  

Retinal photography and perimetry are routinely carried out in Optometric practice, 

therefore the program could be a useful tool integrated into everyday patient care. 
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Program 2: Fundus Grading Grid represents a rapid and convenient method of grading 

AMD for research purposes, which avoids the traditional method of plastic overlays.  

These programs provide useful tools for the analysis of digital fundus images.   
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6. Drusen Detection in Retro-Mode Imaging by a Scanning Laser 

Ophthalmoscope 

 

Purpose: The F-10 (Nidek, Japan) is a new scanning laser ophthalmoscope that is 

capable of a novel fundus imaging technique, retro-mode.  The conventional imaging of 

drusen in age-related macular degeneration (AMD) is by fundus photography.  The 

aims of the study were to assess drusen quantification using retro-mode imaging. 

Methods: Stereoscopic fundus photographs and retro-mode images were captured in 

31 eyes of 20 patients with varying stages of AMD.  Two experienced masked graders 

independently graded images for the number and size of drusen, using custom 

software. 

Results: Drusen observed by fundus photography were significantly fewer in number 

(p < 0.001) than subretinal deposits seen in retro-mode, using the F-10.  The 

predominant deposit diameter was on average 5µm smaller in retro-mode imaging than 

in fundus photography (p = 0.004).  Agreement between graders was substantial for 

number of drusen (weighted κ = 0.69) and moderate for size of drusen (weighted κ = 

0.42).   

Conclusion: The results demonstrate significantly more subretinal deposits detected in 

retro-mode imaging than in conventional fundus photography, thus this technique is 

capable of providing additional subtle spatial information extra to that which is available 

in photography.  The large subretinal deposits in retro-mode imaging were consistent 

with the appearance of drusen on OCT imaging.  Retro-mode imaging provides a rapid 

non-invasive technique, useful in monitoring subtle changes and progression of AMD. 
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6.1 Introduction 

Drusen are early fundus changes characteristic of AMD and early detection is likely to 

be increasingly important in view of future possible interventions.  Conventional fundus 

photography is widely used in imaging and detecting drusen and although non-

mydriatic cameras exist, pupillary dilation is often necessary in elderly patients with 

small pupils and lenticular opacities. 

The use of scanning laser ophthalmoscopy in fundus imaging is well documented and 

has a wide variety of clinical applications.  Briefly, a scanning laser ophthalmoscope 

(SLO) images the retina, whereby the optics of the eye serve as the objective lens.  A 

narrow laser beam is scanned through the pupil onto the retina in a raster pattern, and 

is focused by the optics of the eye to illuminate a spot on to the retina.  Reflected light 

returns through the optics of the eye to a detector, which serially produces a two-

dimensional image of the retina.  Reflected light is predominantly used in confocal 

imaging and the fundus reflectance is greater at near infrared wavelengths than shorter 

wavelengths (Elsner et al. 1996).  Confocal imaging employs an aperture before the 

detector, which is in a plane conjugate to the retina, reducing the amount of light 

reaching the detector (Elsner & Multer 2008; Webb et al. 1987).  This design allows 

better control of the light returning from the retina and generates high contrast images.  

Scattered light and reflections from planes which are not in focus are blocked by the 

aperture, so that only light from the illuminated focal plane is detected (Wormington 

2003). 

The F-10 is a confocal SLO (Figure 6-1), which non-invasively scans the fundus with a 

Class 1 laser.  Different modes of imaging include reflectance modes for various 

wavelengths (490nm, 532nm, 660nm and 790nm), fluorescein angiography, 

indocyanine green angiography and a novel technique, retro-mode.  It captures images 

with a field of view of 40° or 60°, an optical resolution of 16-20µm and image size of up 

to 1024 x 720 pixels.     
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Figure 6-1. Optical diagram of a confocal scanning laser ophthalmoscope 
 

 

Retro-mode imaging uses an infrared laser (wavelength 790nm) and employs an 

aperture with a modified central stop, which is deviated laterally from the confocal light 

path, and may be positioned to the left or right side of the fundus (Figure 6-2).  The 

scattered light passing through the deviated aperture gives a shadow to features such 

as subretinal deposits thus enhancing the contrast and delineation of the features 

(Figure 6-3).  Retro-mode images from a recent case study of two patients with cystoid 

macular oedema secondary to polypoidal choroidal vasculopathy, revealed cystoid 

spaces detected by OCT imaging, but not visible on fundus photography (Yamamoto et 

al. 2008).   
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Figure 6-2. SLO apertures 
The confocal aperture width can be varied from 1.5mm to 7mm.  The smallest aperture 
is pinhole-like, and produces a high contrast image, whereas the wider aperture 
collects light from a larger area, but produces a lower contrast image.  Scattered light is 
collected by the annular aperture, and reflected light is blocked by the central stop.  
The aperture in retro-mode incorporates the central stop in indirect mode, but also 
blocks light from either the left or right side, which creates the shadow to one side of 
the abnormal feature, such as drusen. 
 
 

 

Figure 6-3. Fundus photograph and F-10 retro-mode image 
Differing appearance of drusen from the same patient captured by colour fundus 
photography (top) and retro-mode image (bottom). 
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The use of infrared imaging is advantageous in elderly patients with lens opacities, 

since light is minimally scattered in the presence of media opacities (Elsner et al. 

1996).  The deeper penetration of infrared light compared to visible wavelengths allows 

for easier observation of subretinal structures such as drusen and choroidal 

neovascularisation (Hartnett & Elsner 1996).   

Retro-mode imaging has a similarity to indirect imaging of a SLO, since scattered light 

is collected in both.  Both imaging methods employ an aperture with a central stop, 

where indirect mode uses a large annular aperture and retro-mode only uses part of 

the annular aperture (Figure 6-2).  Directly reflected light from the fundus is blocked by 

the central stop and only the scattered light passes through the aperture (Webb et al. 

1987).  In this way, more laterally scattered light is sampled than in the direct mode 

(Elsner et al. 1996).  Only retinal structures which scatter incident light laterally are 

detected, thus this technique highlights features such as drusen which act as an 

efficient source of light scatter (Wormington 2003).  Indirect mode has demonstrated 

enhanced imaging of macular drusen in a small number of patients (Hartnett & Elsner 

1996; Manivannan et al. 1994), an area of elevation in choroidal neovascularisation 

(Hartnett & Elsner 1996), easy detection of detachment of the neuroretina in central 

serous retinopathy (Remky et al. 1998), and the emphasised appearance of borders in 

cystoid macular oedema (Remky et al. 1999).  Retro-mode only allows laterally 

scattered light from one direction, depending on the position of the aperture (Figure 6-

4).  

The aims of this study were to compare images captured using the F-10 scanning laser 

ophthalmoscope in retro-mode with standard fundus photography to quantify macular 

drusen.  The nature of the retro-mode images was demonstrated previously in a small 

pilot study (Gibson et al. 2009). 
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Figure 6-4. Retro-mode imaging 
Directly reflected light and scattered light from one side of the drusen are blocked. The 
right side of the drusen appears lighter in the image, when the aperture is in this 
position. 

 

6.2 Methods 

6.2.1 Sample 

Patients over the age of 45 years were recruited at various stages of AMD.  Exclusions 

were made where there was any history of other ocular disease or diabetes.  Eyes with 

ocular trauma or eyes which had been treated for AMD were excluded.   

Ethical approval was obtained from the Aston University, Human Sciences Ethical 

Committee.  Informed consent was obtained from each patient including detailed 

explanations of all procedures before participation.  31 eyes of 20 patients were eligible 

for the study and ranged in age from 48 to 79 years (mean 67, SD 6.7), 16 patients 

were female and 4 were male.   

A subset of the patient group, 13 eyes of 8 patients, attended 6 months (mean 185.8 

days, SD 37.4) later for further images, using the F-10 and RS-3000 OCT (Nidek, 

Japan).  
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6.2.2 Imaging 

In order to optimise image quality, all imaging was performed on patients with dilated 

pupils, with tropicamide 0.5% (Minims, Bausch & Lomb).  Fundus photography was 

carried out with a non-mydriatic camera (Canon EOS 10D camera, 6.3 megapixels) to 

acquire stereoscopic pairs of digital images.  30° field images centred at the macula 

were stored as high quality JPEG files (large/fine, ~2.4MB, 3072 x 2048).  20° 

(horizontal dimension, or 40° field of view) images were captured in retro-mode using 

the F-10, and stored as high quality JPEG files (1280 x 960 or 800 x 600 pixels). 

Images were acquired using the RS-3000 OCT.  This is a spectral domain OCT and 

SLO infrared imaging system, whose axial and transverse resolution is 7µm and 20µm, 

respectively.  The fundus was imaged with the “macular map” scan, in which the 

appropriate field was selected.   

The images were manipulated using commercially available software (Adobe 

Photoshop 8.0) such that the retinal positions of the OCT scans as shown by the 

infrared images were matched to the retro-mode images using the flicker on and off 

and transparency features.  

6.2.3 Grading 

Fundus photography images were graded in a random order for the retinal features 

according to the International Classification and Grading System (Bird et al. 1995).  

Stage of disease was determined according to the stages of severity defined by an 

epidemiologic study, based on progression rates of features over a 6.5-year period 

(van Leeuwen et al. 2003b).  Grading and stage determination was carried out by two 

independent, masked graders (JMG & JA).  

Further grading of the fundus photographs was then performed using custom software 

(Program 2, Chapter 5) for number of drusen and predominant drusen diameter within 

the central 3000µm circle, by two masked graders (HK & PG), experienced in grading 

AMD and diabetic retinopathy.  The software allows for mapping of the circular grading 
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grid onto the fundus image, manual marking of drusen and a measurement tool.  The 

subretinal deposits visible on the retro-mode images were assessed in the same way. 

6.2.4 Data Analysis 

Normality was achieved by transforming the variables number of drusen (square root 

transformation) and size of drusen (logarithmic transformation), by the Kolmogorov-

Smirnov test, p = 0.555 and p = 0.663, respectively.  Between stages of AMD, the 

variance of the transformed data was homogeneous for number of drusen (Levene’s 

statistic = 0.663, p = 0.619) but not for size of drusen (Levene’s statistic = 4.437, p = 

0.002).  Paired t tests were performed to assess the differences between imaging 

methods.  Drusen size and drusen number data was converted to ordinal data 

according to the definitions specified in the International Classification and Grading 

System (Bird et al. 1995) in order to calculate a weighted κ statistic to measure 

agreement between graders.  Bland-Altman plots were constructed for comparisons 

between imaging methods and graders (Bland & Altman 1986).  A one-way ANOVA 

was performed to examine the effect of stage of AMD on the normalised dependent 

variables. 

6.3 Results 

Classification of stage of disease resulted in nine eyes at stage 0, 10 eyes at stage 1, 4 

eyes at stage 2, 2 eyes at stage 3 and 6 eyes at stage 4 of disease.  Drusen were 

present in all eyes, 25 eyes had drusen and pigmentary changes only, 4 eyes exhibited 

geographic atrophy and 2 eyes had signs of choroidal neovascularisation. 

6.3.1 Effect of Stage 

A significant (One-way ANOVA: F = 5.913, p < 0.001) variation of number of drusen 

(square root) was noted when comparing by stage of severity of AMD.  Post-hoc 

analysis (Tukey HSD) revealed significant differences between the following pairs of 

stages only; stage 0 and stage 1 (p = 0.006), stage 0 and stage 2 (p = 0.001), stage 0 

and stage 4 (p = 0.004).  A significant variation of size of drusen (log base 10) was 
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found when comparing by stage of severity of AMD (one-way ANOVA: F = 11.211, p < 

0.001).  Post-hoc analysis (Games/Howell) revealed significant differences between 

the following pairs of stages only; stage 0 and stage 1 (p < 0.001), stage 0 and stage 2 

(p = 0.009), stage 0 and stage 3 (p = 0.030), stage 0 and stage 4 (p = 0.001). 

 Mean SD Range Coefficient 
of 

Variation 
Number of drusen – 
Fundus Photography 33.55 39.1 0 – 230 1.17 

Number of subretinal 
deposits – Retro-Mode 81.63 72.8 0 – 318 0.89 

Size of drusen  - 
Fundus Photography 101.43 69.7 0 – 325.65 0.69 

Size of subretinal 
deposits – Retro-Mode 96.52 75.2 0 – 475.26 0.78 

 
Table 6-1. Number and size (µm) of drusen for colour fundus photography and 
retro-mode imaging 
 
 

Paired t test transformed data (sqrt no. 
drusen, log size drusen) 

t df p 

Difference between fundus photography 
& retro-mode: Number of drusen -9.314 61 <0.001* 

Difference between fundus photography 
& retro-mode: Size of drusen 3.009 53 0.004* 

  * indicates significance 
 
Table 6-2. Summary of differences between imaging methods for number and 
size of drusen and subretinal deposits 
 

6.3.2 Difference between Fundus Photography and Retro-Mode Imaging  

Table 6-1 shows the mean number and predominant drusen diameter graded for colour 

fundus photography and retro-mode imaging.  There were significant differences 

between imaging methods for number (p < 0.001) and size of drusen (p = 0.004; Table 

6-2).  A consistently greater number of deposits were detected by the retro-mode 

images and the mean difference was 48 deposits (Figure 6-5A).  Drusen were graded 

very slightly larger in fundus photography, by a mean difference of 5µm (Figure 6-5B).  

Greater levels of agreement were seen when fewer drusen were present, whereas 

there was no clear relationship between the magnitude of drusen diameter and 
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agreement between imaging modes (Figure 6-5A,B).  These relationships should be 

interpreted with some degree of caution due to this parametric analyses being applied 

to non-Gaussian data.  There is no non-parametric equivalent of a Bland-Altman plot 

and when applied to the transformed variables, rendered the analyses clinically 

meaningless.  

6.3.3 Inter-Grader Differences 

Although there was a significant difference between graders for number (p < 0.001) 

and size (p < 0.001) of drusen, the agreement between graders when applying the 

categories used in the International Classification and Grading System was substantial 

for number of drusen (weighted κ value 0.69) and moderate for size of drusen 

(weighted κ value 0.42; Table 6-3).  Grader 2 (PG) tended to grade fewer and larger 

drusen than grader 1 (HK).  For drusen number, the difference was greater when there 

were more than 100 drusen (Figure 6-5C), and there was no clear bias in the difference 

between graders for size of drusen (Figure 6-5D). 

6.3.4 OCT and Retro-Mode comparison 

Some drusen were identified as present on both fundus photography and retro-mode 

images manifested on OCT scans as displacement of the RPE.  When analysing larger 

retro-mode deposits not present on fundus photography, the same appearance was 

noted on the OCT scans (Figure 6-6).  Comparison between the second and first set of 

retro-mode images revealed appreciable change in four of 13 eyes where two of the 

images showed enlargement of deposits and two images showed confluence of 

deposits (Figure 6-7). 

 
Figure 6-5. Bland-Altman plots (overleaf) 
The black line indicates the mean difference and the grey lines represent the 95% 
limits of agreement.  A: The difference in drusen number counted on fundus 
photography and retro-mode images.  B: The difference in drusen size (µm) between 
imaging types.  C: The difference between drusen number counted by grader 1 and 
grader 2.  D: The difference between drusen size (µm) measured by grader 1 and 
grader 2. 
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Agreement 
between graders 

Weighted 
Κ 

Standard 
Error 

Number of drusen 0.69 0.09 
Size of drusen 0.42 0.08 

 
Table 6-3. Weighted kappa values of agreement between graders 
 

6.4 Discussion 

In this study, the comparison between drusen quantification on retro-mode images and 

digital fundus photographs was investigated.  The images taken using the F-10 in retro-

mode show a pseudo-three-dimensional appearance to drusen, which is consistent 

with the enhanced imaging of drusen using infrared SLO in indirect mode (Hartnett & 

Elsner 1996; Manivannan et al. 1994).   

Large subretinal deposits visible in the retro-mode images appear to be consistent with 

the appearance of retinal drusen on OCT imaging, however the smaller subretinal 

deposits less than approximately 40µm in diameter, which were present in large 

numbers were not apparent on OCT imaging.  The retro-mode deposits appeared in 

significantly greater numbers than the drusen in the same area in fundus photography.  

This is in agreement with observation of a single patient case study of macular drusen 

(Manivannan et al. 1994), and a study of ten patients with exudative AMD in which 

drusen were manually counted using acetate overlays (Hartnett & Elsner 1996).  

Conversely, no significant difference between drusen area in colour fundus slides and 

indirect SLO slides was noted when manually marking drusen onto an acetate sheet 

over slides of 5 eyes of 6 patients (Kirkpatrick et al. 1995).   

Drusen are deposits of extracellular material which lie between the RPE and Bruch’s 

membrane.  Histologically, drusen smaller than 25-30µm, the diameter of two RPE 

cells, are not clinically detectable (Sarks et al. 1999).  Various types of pre-clinical 

drusen, less than 25µm in diameter, have been identified histologically, which occur in 

the formation of clinically detectable drusen.  In eyes which have small numbers of 

drusen, these may be the entrapment of coated membrane bodies between the RPE 
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and Bruch’s membrane.  In eyes with many hard drusen, pre-clinical drusen are small 

focal plaques of thickened hyalinised Bruch’s membrane or microdrusen, 1-2µm in 

diameter, composed of dense amorphous material (Sarks et al. 1999).  Microdrusen 

occur discretely or in rows and were noted to be a frequent occurrence in eyes with 

many drusen and may have a role in soft drusen formation (Sarks et al. 1999).  It has 

been suggested that the subretinal deposits seen in indirect SLO mode, which do not 

correspond to drusen in images derived by colour fundus photography are either 

identical to drusen or material under the RPE or within Bruch’s membrane (Hartnett & 

Elsner 1996).  Since the resolution of the F-10 is 16-20µm, drusen smaller than 25µm 

were not graded in this study.  For all image pairs, of retro-mode and colour fundus 

images, subretinal deposit number was greater than drusen number, with the exception 

of two image pairs graded by grader 1(HK), where there was a difference of less than 

7.  In all images where subretinal deposits in retro-mode were more numerous, the 

subretinal deposits which did not corresponded to drusen in the colour fundus 

photographs did not have a different appearance to the deposits which did correspond 

to drusen. 

The most commonly used grading scales for AMD (AREDS 2001b; Bird et al. 1995; 

Klein et al. 1991) use the circle C0 which has a diameter of 63µm, as the smallest 

increment for grading drusen size.  Comparison between grading of drusen size for the 

imaging methods shows good agreement since 87% of diameter differences in grading 

was less than 63µm and the 95% limits of agreement was 95.9µm (Figure 6-5).  Inter-

grader agreement was clinically acceptable, 74% of diameter differences in grading 

between graders were less than 63µm, despite only moderate level of agreement 

calculated between graders for predominant drusen size (weighted κ value 0.42).  

Graders showed substantial agreement for number of drusen (weighted κ value 0.69).   

The shadow effect to drusen imaged in retro-mode was observed to create light or dark 

drusen edges.  This differed between images captured by the apertures in opposite 
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positions, where a high contrast edge was seen on a particular drusen edge, a low 

contrast border would be seen at the same edge when imaged with the opposite 

aperture.  In this way, the retro-mode imaging provides directional information and 

would be expected to better enhance subtle features such as low lying drusen than 

infrared SLO indirect imaging.  Furthermore, since drusen tend to be circular and 

uniformly elevated, the directional effect does not influence the detection capability, but 

may provide useful spatial information about the nature of deposits which are not 

uniformly shaped.   

Supplementary observations regarding the nature of the subretinal deposits were the 

variations in edge sharpness, which combined with the variations in edge contrast, may 

affect automated drusen segmentation of retro-mode images.  A previous study 

attempted computerised automated quantification of drusen area, of indirect SLO 

images, but this technique was found to have a low sensitivity of 35% (Kirkpatrick et al. 

1995).  Automated drusen detection was confounded in the study by Kirkpatrick et al. 

(1995), since it was deemed inappropriate to apply a simple thresholding image 

processing technique to both light and dark edges, and the edge-detection method 

lacked specificity due to the large variability of the sharpness of the drusen edges 

(Kirkpatrick et al. 1995).   

For images where there were many small subretinal deposits at the image edge, it was 

noted that the image quality in retro-mode was not uniform across the entire image, 

even after careful focusing of the instrument.  The subretinal deposits appeared to fade 

or blur at the periphery of the retro-mode images, which was outside of the grading 

area used in this study.  This was further investigated by the capture of images at 

different fundus areas, using different points of fixation.  It was noted that the 

corresponding drusen which appeared faded in the periphery of one image, were 

clearly imaged when central in another image.  Increased subretinal deposits in the 

area temporal to the optic disc were also observed in two patients.  The peripheral 
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image degradation could be explained by the retinal curvature and increased distance 

from the light source causing the brightness profile of the image to be reduced.  

Peripheral image degradation to subretinal deposits in the 20° images in this study 

occurred on average in the peripheral 3° outside an approximately horizontal elliptical 

area of good image quality.  Therefore the peripheral features of a retro-mode image, 

in this area, should be ignored since useful clinical information can only be obtained 

from the central 17° of a 20° image.  It is recommended that further or multiple images 

be captured where the features of interest lie central to the image. 

The results demonstrate that significantly more subretinal deposits, consistent with the 

OCT appearance of drusen, are detected in retro-mode imaging than in standard 

fundus photography.  Comparison of retro-mode images over time revealed the 

enlargement and confluence of the deposits in a small number of patients (Figure 6-7).  

Alteration to the appearance of drusen has not previously been observed over such a 

short period.  A larger scale longitudinal follow-up of patients is required to confirm 

whether these subretinal deposits are sub-clinical drusen which will eventually manifest 

as clinically visible drusen or other features of disease.  

Retro-mode imaging provides a rapid non-invasive technique which is useful in the 

monitoring of subtle changes and progression of AMD.  Early detection of retinal 

drusen in asymptomatic younger patients will become increasingly important in the 

future so that persons at risk of AMD can be identified and future preventative 

treatments can be targeted effectively. 
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7. Quantification of Visual Field Progression in Age-Related Macular 
Degeneration 

Purpose: To investigate the visual field progression in the central ten degree field in 

age-related macular degeneration (AMD). 

Methods: Central 10° standard and short-wavelength automated perimetry (SWAP) 

visual fields were acquired using a Humphrey Field Analyser.  44 eyes of 27 patients 

(mean age 68.8 years, SD 7.8, range 46-84 years) with AMD and 41 eyes of 22 normal 

subjects (mean age 67.2 years, SD 7.5, range 49-78 years) were examined.  

Stereoscopic fundus photographs were graded (Bird et al. 1995) by two independent 

observers and the stage of disease determined (van Leeuwen et al. 2003b).   

Results: Visual field parameters worsened significantly with stage of disease.  Data 

exhibited a non-Gaussian distribution.  The standard perimetry median mean deviation 

(MD) and pattern standard deviation (PSD) was 0.39dB (IQR 1.45) and 1.20dB (IQR 

0.16) for patients at stage 0; and -8.62dB (IQR 6.12) and 8.14dB (IQR 4.43) for 

patients at stage 4.  The SWAP median MD and PSD was -3.52dB (IQR 5.00) and 

2.14dB (IQR 0.38) for patients at stage 0; and -17.73dB (IQR 6.23) and 5.96dB (IQR 

3.49) for patients at stage 4.  MD and PSD varied significantly with stage of disease in 

standard perimetry (both: p < 0.001) and SWAP (both: p < 0.001), however post hoc 

analysis revealed overlap of functional values between stages.  SWAP defects were 

consistently greater in depth and area than defects in standard perimetry.  Global 

indices of focal loss, PSD and local spatial variability (LSV) were the most sensitive to 

detecting differences between normal subjects and early stage AMD patients, in 

standard perimetry and SWAP, respectively.  Threshold variability was considerably 

increased in late stage AMD eyes.  On average, defects were confined to the central 5°.  

The most vulnerable region of the 10° field to sensitivity loss with increasing stage of 

AMD was the central 1°, in which the sensitivity decline was -4.8dB per stage in 

standard perimetry and -4.9dB per stage in SWAP.  Based on the pattern deviation 

defect maps, a severity index of AMD visual field loss was derived. 

Conclusions: Sensitivity was significantly reduced at late stage AMD compared to 

early stage AMD, with a greater effect demonstrated in SWAP than in standard 

perimetry, although the trend was not strong across all stages of disease.  The central 

field became less uniform and yielded greater threshold variability as stage increased.  

In SWAP, defects occurred at similar locations to those found with standard perimetry 

but were deeper and wider.  Central visual field loss in SWAP is a sensitive marker of 

functional progression in AMD.  
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7.1 Introduction 

The functional loss of central vision due to AMD is well documented by a variety of 

measures such as visual acuity and contrast sensitivity (Abadi & Pantazidou 1996; 

Bellman et al. 2003; Feigl et al. 2005; Hogg et al. 2003; Klein et al. 1995; Kleiner et al. 

1988; Stangos et al. 1995; Sunness et al. 1997, 1999, 2008; see review in Chapter 

1.4.1.1).  A number of studies have investigated perimetric loss in AMD (Atchison et al. 

1990; Cheng & Vingrys 1993; Feigl et al. 2005; Frennesson et al. 1995; Midena et al. 

1994, 1997; Remky et al. 2001b; Remky & Elsner 2005; Tolentino et al. 1994; see 

Chapter 1.4.2).  Contradictory results exist such that some studies have reported 

reduced perimetric thresholds in AMD whilst others have not.  Comparison of findings 

between past studies are complicated by the methods used to grade the retinal signs of 

AMD and the limited statistical examination of visual field loss which confounds the 

clinical interpretation of these findings.  No attempt has yet been made to quantify the 

rate of visual loss across stage of severity of AMD, using perimetry.  Knowledge of the 

rate of functional loss is fundamental to the comprehension of the natural progression 

of disease in terms of visual function and the development of macular lesions.  This 

information may facilitate clinical decisions regarding treatment.  The earlier 

identification of patients where treatment is necessary may help to improve visual 

prognosis, thereby diminishing the social and financial burden of partial sight and blind 

registration. 

Previous research in other ocular diseases has shown that the use of short-wavelength 

automated perimetry (SWAP) may be of value in the investigation of AMD (see Chapter 

1.4.2.2).  Detection of glaucomatous visual field progression using SWAP was noted 

three to four years earlier than standard perimetry (Johnson et al. 1993a,b).  However, 

the use of SWAP failed to become clinically ubiquitous since SWAP has greater 

variability in the 30° field (Wild et al. 1998).  Nevertheless, in the 10° field the profile of 

the hill of vision is flatter and therefore allows for more accurate statistical interpretation 

and greater capability in the detection of focal loss (Cubbidge et al. 2002), which is of 
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paramount importance in AMD.  It is known that AMD patients have a reduced short-

wavelength sensitive pathway sensitivity (Applegate et al. 1987; Eisner et al. 1987b; 

Haegerstrom-Portnoy et al. 1989).  Investigation of the 10-2 visual field in SWAP has 

revealed significantly diminished mean sensitivity (MS) in eyes with soft drusen 

compared to eyes without drusen (Remky et al. 2001b). 

The aims of the study were to quantify the rate of central visual loss in AMD patients at 

various stages of disease in standard perimetry and SWAP using a cross-sectional 

design.  Secondary aims were to evaluate the position of visual field loss in AMD and 

the appropriateness of statistical measures which describe the visual field, in the 

detection of progression.   

7.2 Methods 

7.2.1 Sample 

Based on the SF and the standard deviation for MS in SWAP using the FASTPAC 

threshold estimating algorithm (1.89dB and 5.20dB, respectively; Wild et al. 1998), a 

sample of 20 patients would give a 90% confidence level and a sample of 29 patients 

would give 95% confidence of detecting change.  Recalculation of these values using 

the SF and maximum standard deviation for MS in the normal 10° SWAP field (2.84dB 

and 4.28dB, respectively; Conway 2003), a sample of 7 or 9 would give 90% or 95% 

confidence.  SWAP was used to calculate the sample size because it exhibits greater 

variability than standard perimetry. 

Patients were recruited from Birmingham and Midland Eye Centre and the Aston 

University Eye Clinic and normal subjects were recruited from the general public.  The 

sample consisted of 27 patients (mean age 68.8 years, SD 7.8, range 46-84 years, 8 

males, 19 females) at various stages of AMD and 22 normal control subjects (mean 

age 67.2 years, SD 7.5, range 49-78 years, 13 males, 9 females).  The normal control 

subjects were age-matched to the AMD patients as closely as possible.  All patients 

had experience of at least one visual field screening examination, as part of routine 
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Optometric care, but all patients were naïve to SWAP and to the 10-2 visual field 

examination.  At least one eye of participating subjects conformed to the inclusion 

criteria of distance refractive error of less than ±5.00D sphere and ±2.00D cylinder in 

each eye, clear ocular media as defined by Lens Opacity Classification System LOCS 

III (Chylack et al. 1993) graded at a slit lamp, no greater than NC3, NO3, C1, P1, no 

pseudophakia, intraocular pressures less than 21mmHg measured by non-contact 

tonometry (Pulsair), normal optic nerve head appearance, no family history of 

glaucoma, no history of ocular disease other than untreated AMD, no ocular trauma, no 

neurological history or systemic disease, no systemic medication known to influence 

the visual field and no congenital colour vision defect.   Corrected visual acuity was at 

least 0.1 logMAR in each eye, in the normal group.  Informed consent was obtained 

from each subject and the study had approval from the Aston University Human 

Sciences Ethical Committee and the NHS West Midlands Research Ethics Committee.   

7.2.2 AMD Grading 

Fundus photography was performed on patients with pupils dilated with 0.5% 

tropicamide (Minims, Bausch & Lomb), in order to optimise image quality.  Pupils were 

dilated in normal subjects only where small pupils limited image quality.  A non-

mydriatic camera (Canon EOS 10D camera, 6.3 megapixels) was used to acquire 30° 

field digital images centred at the macula.  Stereoscopic pairs of images were captured 

whereby the first image was taken near the left edge of the pupil and following a lateral 

shift of the camera base, the second image was taken near the right pupil edge.  

Images were stored as high quality JPEG files (large/fine, ~2.4MB, 3072 x 2048) and 

graded in a random order for the retinal features according to the International 

Classification and Grading System (Bird et al. 1995).  For the purposes of this thesis, 

the subjects who had gradable features using this classification were defined as 

belonging to the AMD patient group.  Images were viewed on a 20.1” 4:3 monitor (1200 

x 1600 pixel resolution), using a prismatic stereoviewer.  Stage of disease was 
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determined according to the stages of severity defined by an epidemiologic study, 

based on progression rates of features over a 6.5 year period (van Leeuwen et al. 

2003b).  Grading and stage determination was carried out by two independent, masked 

graders (JMG & JHA), using custom software (Program 2, Chapter 5).  

7.2.3 Perimetry 

Subjects where only one eye was within the study criteria, underwent all visual field 

testing on both eyes, however perimetric data from the excluded eye was discarded.  

Each subject underwent standard and SWAP visual field examinations with the 

Humphrey Field Analyser 750 on two occasions.  Program 10-2 was used which is a 

10° field, with a stimulus separation of 2°.  For standard perimetry, the stimulus size 

was Goldmann size III (0.43°) and background illumination was 31.5 apostilbs.  The 

projected stimuli may be varied in intensity over a range of more than 51 decibels (0 to 

10,000 apostilbs) and were presented with a duration of 200ms.  Background and 

stimulus conditions for SWAP are described in Chapter 1.2.  SITA Standard and 

FASTPAC algorithms were employed for the standard and SWAP fields, respectively, 

in order to mimic clinical practice as closely as possible.  Visits were separated by 11 

days, and the results from the first visit were discarded to account for the learning 

effect.  

The right eye was always examined first with the exception of subjects in the patient 

group where there was a large difference in visual acuity between the two eyes, in 

which case the better eye was examined first.  Standard perimetry examinations were 

performed before SWAP examinations.  Fatigue effects are known to be greater in 

SWAP than in standard perimetry (Cubbidge 1997).  As a result a greater recovery 

period would have been necessary had the SWAP fields been performed first.  One 

researcher (JHA) conducted all testing and issued identical instructions to each patient.  

The non-examined eye was occluded with an opaque patch and the refractive 
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correction appropriate to the bowl distance was placed before the test eye with full 

aperture trial lenses.   

Before each examination, patients underwent three minutes of adaptation to the bowl 

luminance and its chromatic properties.  If fixation losses were greater than the 

recommended 33%, subjects returned for repetition of those fields and if fixation was 

still judged as inadequate, the data was discarded.  Fixation losses were less than 33% 

in 159 field examinations, in which 143 fields had fixation losses less than 20%.  The 

remaining 10 fields had losses less than 41% errors but were included as they were 

judged as having good fixation based on the gaze tracker which continually assesses 

fixation in real time, video monitor observation and other parameters of fixation 

monitoring.  False negative and false positive responses were less than 33%.  Rest 

periods were enforced, lasting one minute at four minute intervals during examination, 

five minutes between eyes, and then ten minutes between standard perimetry and 

SWAP examinations. 

7.2.4 Analysis 

Visual field results from 44 eyes of 26 patients and 41 eyes of 22 normal subjects, were 

included in the analysis.  There were 12 eyes graded at stage 0, 11 eyes graded at 

stage 1, 6 eyes at stage 2, 3 eyes at stage 3 and 12 eyes at stage 4.  Progression of 

the visual field change with stage of AMD was calculated in terms of the visual field 

indices mean deviation (MD), pattern standard deviation (PSD) and the number of 

defects on pattern deviation and total deviation analyses.  The MD and PSD in 

standard perimetry were the weighted indices obtained from the HFA printout.  The 

unweighted SWAP indices were calculated from a normal database previously 

collected (Conway 2003).  Additionally for SWAP, the short-term fluctuation (SF) and 

corrected pattern standard deviation (CPSD) indices were calculated.  Spatial filtering 

was applied to the visual fields and the less common index of local spatial variability 

(LSV) was calculated, using the median filter (Crabb et al. 1995; see Chapter 1.2.4).  



 186

The change in LSV with stage of disease was investigated.  Variation between groups 

was displayed as the percentage coefficient of variation, for each of the 68 stimulus 

locations for both standard perimetry and SWAP.  Maps of frequency of defects were 

constructed from the pattern deviation (PD) and total deviation (TD) analyses, which 

enabled the eccentricities of defects to be examined.  

Sectorisation of the 10° field into concentric regions, based on the frequency of PD 

defects, was employed in the analysis in order to evaluate visual field indices in relation 

to eccentricity.  The unweighted MD and slope of change of MD with stage were 

calculated for each sector.  Regression analyses were performed in each sector, which 

offers the advantage of incorporating spatial information whilst avoiding the variability 

associated with a pointwise regression analysis (Katz et al. 1997; Smith et al. 1996).   

A severity index was derived in order to quantify the nature of visual field loss on a 

continuous scale.  The sector analysis of defect frequency was used to weight sectors 

of the 10° field according to spatial location.  A scoring system of defect depths was 

employed.  The product of the spatial location weight and the defect depth score was 

obtained and summed for each stimulus location.  Normalisation of this result 

according to the ceiling defect severity score produced the AMD severity index, which 

ranged between 0 and 1, where 0 indicates no field loss and 1 indicates a maximum 

probability defect at all stimulus locations.  

7.3 Results 

7.3.1 Statistical Normality Evaluation 

In the patient group visual field parameters did not exhibit a normal distribution 

(Kolmogorov-Smirnov test), except for the SWAP SF (p = 0.148).  The control group 

had normal distributions for the MD and PSD for both standard perimetry (p = 0.200 

and p = 0.200, respectively) and SWAP (p = 0.200 and p = 0.200), the SWAP SF (p = 

0.200) and the number of PD (p = 0.052) defects in standard perimetry.  Therefore for 

comparative purposes, non-parametric tests were employed throughout the analyses.    
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A summary of global indices as a function of stage is shown in Table 7-1.  The use of 

boxplot representations of the data in this chapter is discussed in more detail in 

Appendix 3.   

7.3.2 Change in Visual Field Parameters with Stage: MD 

The distribution of MD values for normal subjects and for patients at each stage of 

severity of AMD is shown in Figure 7-1, for standard perimetry and SWAP.  The 

standard perimetry median MD and PSD was 0.39dB (IQR 1.45) and 1.20dB (IQR 

0.16) for patients at stage 0; and -8.62dB (IQR 6.12) and 8.14dB (IQR 4.43) for 

patients at stage 4.  The SWAP median MD and PSD was -3.52dB (IQR 5.00) and 

2.14dB (IQR 0.38) for patients at stage 0; and -17.73dB (IQR 6.23) and 5.96dB (IQR 

3.49) for patients at stage 4.  A significant decline in MD with increasing severity of 

stage was evident for both standard perimetry (Kruskal-Wallis test: Chi-square = 

25.993, p < 0.001) and SWAP (Kruskal-Wallis test: Chi-square = 20.156, p < 0.001).  

Post hoc analysis (Mann-Whitney U test) did not reveal significant differences between 

normal subjects and AMD patients until disease stage 3 for standard perimetry and 

SWAP (p = 0.006, p = 0.021, respectively).  For standard perimetry, the MD at stages 3 

and 4 was significantly statistically different (Mann-Whitney U test) from stage 0 (p = 

0.009, p < 0.001, respectively), stage 1 (p = 0.024, p < 0.001) and stage 2 (p = 0.020, p 

= 0.001).  In SWAP, the MD at stage 4 was significantly different from stage 0 (p < 

0.001), stage 1 (p < 0.001) and 2 (p = 0.003).  All other post hoc comparisons were not 

significant.   
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Figure 7-1.  Boxplots representing the change in MD (dB) as a function of stage 
of severity of disease, for standard perimetry and SWAP 
Boxplot limits represent the 15th, 25th, 50th, 75th and 85th percentiles. 
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Figure 7-2. Boxplots representing change in PSD (dB) as a function of stage of 
AMD, for standard perimetry and SWAP 
Boxplot limits represent the 15th, 25th, 50th, 75th and 85th percentiles. 
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   Standard Perimetry 

PSD 0 1 2 3 4 Stage 
 0.975 0.267 0.048 0.834 <0.001 Normal 
  0.388 0.101 0.828 <0.001 0 
   0.145 0.533 <0.001 1 
    0.606 0.001 2 
     0.139 3 

              SWAP 

PSD 0 1 2 3 4 Stage 
 0.702 0.330 0.001 0.019 <0.001 Normal 
  0.424 0.001 0.030 <0.001 0 
   0.035 0.052 <0.001 1 
    0.439 0.001 2 
     0.484 3 

 
Table 7-2.  Post hoc analysis (Mann-Whitney U test) for differences in PSD values 
between stages.   
Significant differences are shaded in grey. 
 

7.3.3 Change in Visual Field Parameters with Stage: PSD and Other Indices 

The distribution of PSD values for normal subjects and for patients at each stage of 

severity of AMD is shown in Figure 7-2, for standard perimetry and SWAP.  Patients at 

stage 3 and 4 showed a greater spread of values of PSD than early stage patients and 

normal controls.  The variation in PSD with change in severity of stage was statistically 

significant for both standard perimetry (Kruskal-Wallis test: Chi-square = 25.146, p < 

0.001) and SWAP (Kruskal-Wallis test: Chi-square = 28.426, p < 0.001).  Post hoc 

analysis (Mann-Whitney U test; Table 7-2) revealed significant differences between 

normal subjects and AMD patients at stage 2 (p = 0.048) and stage 4 (p < 0.001) for 

standard perimetry; and between normal subjects and AMD patients at stages 2, 3 and 

4 for SWAP (p = 0.001, p = 0.019, p < 0.001, respectively).  A greater number of post 

hoc differences were noted between stages in SWAP, than in standard perimetry 

(shaded areas in Table 7-2).   

For global indices unique to SWAP in this study, SF did not vary significantly with stage 

of disease (p = 0.355) and in the patient groups, was not significantly different from the 

normal subjects.  CPSD did vary significantly with stage of disease (p = 0.003).  
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7.3.4 Change in Visual Field Parameters with Stage: Local Spatial Variability 
(LSV)  

The distribution of LSV values for normal subjects and for patients at each stage of 

severity of AMD is shown in Figure 7-3, for standard perimetry and SWAP.  There was 

a smaller range of values for SWAP than for standard perimetry, across stages of 

severity of disease.  Local Spatial Variability (LSV) which did not exhibit a Gaussian 

distribution varied significantly with stage of disease for standard perimetry (Kruskal-

Wallis test: Chi-square = 24.644, p < 0.001) and SWAP (Chi-square = 21.538, p < 

0.001).  Post hoc analysis (Mann-Whitney U test; Table 7-3) did not reveal significant 

differences between normal subjects and AMD patients until stage 3 (p = 0.045) in 

standard perimetry, however in SWAP stage 0 patients exhibited a significantly higher 

LSV than normal subjects (p = 0.046).  For both standard perimetry and SWAP, the 

LSV at stage 4 was significantly statistically different (Mann-Whitney U test) from stage 

0 (both: p < 0.001), stage 1 (both: p < 0.001) and stage 2 (p = 0.001, p = 0.016, 

respectively).  All other post hoc comparisons were not significant.  Significant 

correlations were noted between LSV and PSD for standard perimetry (Spearman 

correlation coefficient: rho = 0.586, p < 0.001) and SWAP (Spearman correlation 

coefficient: rho = 0.754, p < 0.001).  
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Figure 7-3. Local Spatial Variability (LSV) as a function of stage of AMD, for 
standard perimetry and SWAP.  
Boxplot limits represent the 15th, 25th, 50th, 75th and 85th percentiles. 
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   Standard Perimetry 

LSV 0 1 2 3 4 Stage 
 0.463 0.364 0.077 0.045 <0.001 Normal 
  0.853 0.223 0.112 <0.001 0 
   0.450 0.073 <0.001 1 
    0.197 0.001 2 
     0.470 3 

              SWAP 

LSV 0 1 2 3 4 Stage 
 0.046 0.670 0.009 0.015 <0.001 Normal 
  0.389 0.399 0.083 <0.001 0 
   0.132 0.073 <0.001 1 
    0.302 0.016 2 
     0.392 3 

 
 
Table 7-3. Post hoc analysis (Mann-Whitney U test) for differences in LSV values 
between stages.  
Significant differences are shaded in grey. 
  

7.3.5 Change in Visual Field Parameters with Stage: Number of Defects 

Stimulus locations were recorded as a defect if they occurred with a significance of less 

than 5% of the perimetric normal database.  The distribution of the number of defects 

on total deviation (TD) and pattern deviation (PD) for normal subjects and for patients 

at each stage of severity of AMD is shown in Figure 7-4, for standard perimetry and 

SWAP.  The number of TD and PD defects increased significantly with stage of 

disease for standard perimetry (Kruskal-Wallis test: Chi-square = 28.403, p < 0.001; 

Chi-square = 25.627, p < 0.001) and SWAP (Kruskal-Wallis test: Chi-square = 19.225, 

p = 0.001; Chi-square = 25.145, p < 0.001).  Post hoc analysis (Mann-Whitney U test; 

Table 7-4) of TD defects exhibited significant differences from the normal controls at 

stage 1 in SWAP and stage 3 in standard perimetry.  Similarly, the PD defects revealed 

significant differences between normal subjects and patients at stage 2 and worse for 

SWAP, whereas standard perimetry did not manifest significant differences from the 

normal controls until stage 4.  TD values were more variable than PD values (Figure 7-

4). 
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Figure 7-4. Boxplots representing change in number of PD and TD defects as a 
function of stage of AMD, for standard perimetry and SWAP 
Boxplot limits represent the 15th, 25th, 50th, 75th and 85th percentiles. 
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  Standard Perimetry 
       
No. TD  0 1 2 3 4 Stage 
defects 0.655 0.262 0.648 0.008 <0.001 Normal 
  0.613 0.428 0.022 <0.001 0 
   0.248 0.033 <0.001 1 
    0.028 0.001 2 
     0.392 3 
       
No. PD  0 1 2 3 4 Stage 
defects 0.600 0.380 0.063 0.052 <0.001 Normal 
  0.664 0.132 0.146 <0.001 0 
   0.287 0.136 <0.001 1 
    0.197 0.001 2 
     0.755 3 
   SWAP   
       
No. TD  0 1 2 3 4 Stage 
defects 0.227 0.044 0.037 0.028 <0.001 Normal 
  0.423 0.373 0.070 <0.001 0 
   0.650 0.186 0.002 1 
    0.302 0.005 2 
     0.134 3 
       
No. PD  0 1 2 3 4 Stage 
defects 0.806 0.075 <0.001 0.015 <0.001 Normal 
  0.387 0.009 0.030 <0.001 0 
   0.049 0.072 <0.001 1 
    0.439 0.007 2 
     0.815 3 

 
Table 7-4. Post hoc analysis (Mann-Whitney U test) for differences in number of 
PD and TD defects between stages, for standard perimetry and SWAP.   
Significant differences are shaded in grey. 

 

7.3.6 Coefficient of Variation 

The group mean pointwise threshold sensitivities and one standard deviation for 

standard perimetry and SWAP are shown in Figure 7-5 and Figure 7-6.  All maps are 

displayed as a right eye.  As expected, the AMD patient group yielded lower 

sensitivities and considerably greater standard deviations than the normal group for 

both types of perimetry.  For both perimetry types, lower sensitivities occurred at the 

centre of the visual field in the patient group.  In the normal group, the opposite was 

true, where lower sensitivities relative to the field occurred in the periphery.  It is not 



 195

possible to make direct comparisons of sensitivity values between standard perimetry 

and SWAP, due to the difference between the decibel scales which are referenced to 

the maximum stimulus luminance of the perimeter.  The dynamic range in standard 

perimetry is 0 to 10,000 apostilbs (5 log units) whereas in swap it is 0 to 65 apostilbs 

(1.5 log units).  Therefore variability may be compared using the coefficient of variation 

statistic, which is calculated as the standard deviation divided by the mean and 

expressed as a percentage at each stimulus location.  The coefficient of variation 

represents a normalised measure of dispersion such that distributions which differ in 

the magnitude of their measurement scales may be compared. 

SWAP consistently revealed greater coefficients of variation across the entire visual 

field when compared to standard perimetry and the AMD patient group had higher 

values than the normal group (Figure 7-7 and Figure 7-8).  In fact, the coefficient of 

variation values did not differ from the normal values in the early stages of AMD, 

however eyes at stage 3 and 4 exhibited large coefficients of variation (Table 7-5). 
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Stage Standard SWAP 
Normal  5.67 16.65 

0 4.55 14.34 
1 5.47 22.23 
2 4.57 21.42 
3 27.08 105.69 
4 56.52 115.47 

 
Table 7-5. Group mean coefficient of variation (%) for patients at each stage of 
disease 
 

7.3.7 Frequency of Defect 

The frequency of defect maps representing the percentage of eyes at each stimulus 

location which have significant defects on TD and PD analysis for standard perimetry 

and SWAP as a function of stage of disease is shown in Figure 7-9 and Figure 7-10.  

The corresponding maps for normal subjects are shown in Figure 7-11.  Defects were 

significant if thresholds occurred in less than 5% of the normal population.  All maps 

are displayed as a right eye, where the left eye data was inflected to the right eye for 

analysis.  Defects worsened with stage and SWAP defects tended to occur more 

frequently than defects in standard perimetry.  An enlargement of a central scotoma 

was noted with progressing stage of disease.  The appearance of the maps in the 

patient group at stage 0 did not significantly differ from the maps in the normal group.  

The increase in frequency of defects with worsening severity of disease appeared to 

occur at an earlier stage in SWAP than in standard perimetry.  
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Figure 7-9. Frequency of defect maps, % of eyes at each stimulus location which 
have significant defects on TD analysis for standard perimetry and SWAP as a 
function of stage of disease 
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Figure 7-10. Frequency of defect maps, % of eyes at each stimulus location 
which have significant defects on PD analysis for standard perimetry and SWAP 
as a function of stage of disease 
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Figure 7-11. Frequency of defect maps, in normal subjects. % of eyes at each 
stimulus location which have significant defects on probability analyses for 
standard perimetry and SWAP 
 
 
 
 

              

                 

                

              
              

      +        
               

              
              

             

              

            
Figure 7-12. Sectorisation of the 10° field based on the frequency of PD defects.   
The centre and middle sectors are represented by dark and light grey shading, and the 
periphery is not shaded. 
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Figure 7-13. The group mean MD in each sector for standard perimetry and 
SWAP 
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Figure 7-14. The slope of univariate linear regression of MD as a function of 
severity of AMD, in dB per stage, in each sector 

 

7.3.8 Sector Analysis  

The 10° field was divided into three sectors based on the frequency of PD defects, 

representing the centre, middle and periphery of the field (Figure 7-12).  The PD 

frequency maps were used in preference to the TD maps as they are less affected by 

possible lens yellowing in SWAP.  The unweighted MD values in each sector for 

standard perimetry and SWAP were calculated.  In the patient group, it was found that 

the central sector contained the most severe MD values and the peripheral sector 
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contained the least severe values, for standard perimetry and SWAP (Figure 7-13).  

For the normal control group, the MD values remained stable across all sectors.  The 

slope of change in MD with stage of AMD, for each sector with stage of AMD showed 

the most rapid sensitivity loss to occur in the central sector and the least rapid loss 

occurred in the periphery for both types of perimetry (Figure 7-14). 

7.3.9 AMD Severity Index of Field Defect Score  

The sector analysis was used to weight the sectors of the 10° field and is applicable for 

both standard perimetry and SWAP.  Weights of 3, 2 and 1 were assigned to the centre, 

middle and periphery, respectively.  The weight was multiplied by the assigned depth 

defect score according to the Pattern Deviation probability analysis of the field (where 0 

= not significant, 1 = p < 5%, 2 = p < 2%, 3 = p < 1%, 4 = p < 0.5%).  The sum of this 

for each stimulus location was divided by the maximum possible score to give the AMD 

severity index which ranged between 0 and 1, where 0 indicates no field loss and 1 

indicates significant defects across the entire field.       

Severity scores were not normally distributed and varied significantly with stage of 

disease for standard perimetry (Chi-square = 27.067, p < 0.001) and SWAP (Chi-

square = 29.735, p < 0.001).  Post hoc analysis (Mann-Whitney U test) revealed 

significant differences between normal subjects and AMD patients at stage 2 and 

worse in standard perimetry, whereas in SWAP stage 1 and worse patients exhibited a 

significantly higher scores than normal subjects.   

 



 206

Standard Perimetry

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or
m
al
s

St
ag

e 
0

St
ag

e 
1

St
ag

e 
2

St
ag

e 
3

St
ag

e 
4

S
ev

er
it

y 
In

d
ex

  
  

 

 

SWAP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or
m
al
s

St
ag

e 
0

St
ag

e 
1

St
ag

e 
2

St
ag

e 
3

St
ag

e 
4

S
ev

er
it

y 
In

d
ex

  
  

 

 

Figure 7-15. Boxplots representing the change in Severity Index as a function of 
stage of severity of disease, for standard perimetry and SWAP 
Boxplot limits represent the 15th, 25th, 50th, 75th and 85th percentiles. 
 
 
 

   Standard Perimetry 

Severity Index 0 1 2 3 4 Stage 
 0.431 0.230 0.048 0.021 <0.001 Normal 
  0.712 0.122 0.070 <0.001 0 
   0.226 0.073 <0.001 1 
    0.197 0.001 2 
     0.564 3 

              SWAP 

Severity Index 0 1 2 3 4 Stage 
 0.924 0.031 <0.001 0.008 <0.001 Normal 
  0.175 0.001 0.014 <0.001 0 
   0.044 0.051 <0.001 1 
    0.364 0.001 2 
     0.697 3 

 
Table 7-6. Post hoc analysis (Mann-Whitney U test) for differences in AMD 
Severity Index values between stages, for standard perimetry and SWAP.   
Significant differences are shaded in grey. 
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7.4 Discussion 

The findings presented indicate sensitivity loss in the central 10° standard and SWAP 

visual field with increased severity of AMD in a cross-sectional population.  The 

reduced MS and greater standard deviation around the MS in the AMD patient group 

compared to the normal group is consistent with previous research (Cheng & Vingrys 

1993; Midena et al. 1994, 1997; Remky et al. 2001b; Remky & Elsner 2005).  MS 

values and coefficients of variation in the normal group are similar to those found 

previously for standard perimetry and SWAP in the 10° field and further agreement 

exists where sensitivity in the superior field is greater than in the inferior field (Conway 

2003; Sample et al. 1997).  It has been suggested that lower thresholds in the superior 

field were attributed to blinking, since stimuli positioned superiorly have a greater 

chance of being missed (Katz & Sommer 1986).  The relationship between ganglion 

cell density and perimetric thresholds is equivocal.  It was proposed that the asymmetry 

in SWAP thresholds can be explained by an asymmetry in ganglion cell density, 

predicted by measuring short-wavelength sensitive resolution acuity, using sinusoidal 

gratings (Demirel & Robinson 2003).  In contrast, grating resolution thresholds bear a 

stronger relationship to ganglion cell density than perimetric thresholds (Beirne et al. 

2005). 

The visual field in the AMD patient groups was examined for departure from the 

empirical normal visual field, with attention to delineation of the early AMD visual field 

from the normal field.  SWAP had greater capability in the detection of early stage AMD 

compared to standard perimetry, since more significant differences between early 

stage AMD patients and normal subjects were found for SWAP than for standard visual 

field parameters.  Past studies in diabetic patients have reported the advantage of 

SWAP over standard perimetry in evaluating change in the 10° field (Agardh et al. 

2006; Bengtsson et al. 2005; Hudson et al. 1998; Remky et al. 2000).  Of the SWAP 

visual field indices measured in the present study, the LSV and the AMD severity index 

were the most sensitive to the detection of differences between normal and early stage 
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AMD subjects.  The LSV index has the additional advantage that it is not influenced by 

the effects of pre-receptoral absorption.  The MD was the least sensitive parameter and 

did not detect a significant difference between the normal and patient groups until 

stage 3.  The implications of these findings on the pattern of SWAP visual field loss in 

AMD are firstly a focal component to visual field loss at early stages, and a subsequent 

diffuse loss affecting the field at the later disease stages 3 and 4.  This pattern of loss 

is further illustrated by changes in the PSD and MD between stages 3 and 4, although 

not significant, there was a slight decline in the PSD, whilst the MD continued to 

increase (Figure 7-1 and Figure 7-2).  In standard perimetry, the visual field parameters 

with the greatest sensitivity to detection of early stage AMD from normal were the PSD 

and the severity index, which did not detect a significant difference from normal, in the 

patient group, until stage 2.  The pattern of standard visual field loss demonstrated 

minimal change in the early stages of AMD, followed by large changes at stages 3 and 

4. 

Unlike PSD, the LSV is not a commonly used index of focal loss, however it is 

statistically less manipulated, and hence offers the advantage over PSD of greater 

accuracy in reflecting the raw threshold measures.  SWAP is limited by pre-receptoral 

absorption, whereby the stimulus may be absorbed by macular pigment and lenticular 

changes (see Chapter 1.2.1).  The amount of lenticular absorption was limited in this 

study by the exclusion criteria, however it is possible that a significant amount of 

absorption remained thus influencing the measures of diffuse loss, the MD and TD.  If 

this was the case, the measures of focal loss, the PSD and the PD, whose calculation 

involves the MD and TD respectively, could be affected by absorption.  LSV was 

significantly correlated with PSD and therefore may represent a more accurate index of 

focal loss than PSD in SWAP.  Any significant attenuation of SWAP thresholds by the 

presence of macular pigment was not evident from inspection of the defect maps in the 



 209

normal control group (Figure 7-11).  The presence of any defects in the normal group 

was uniform across the entire field rather than confined to the central stimulus locations.  

A central scotoma within an eccentricity of 5°, was demonstrated in late stage AMD, in 

the present study.  Past studies have described varying patterns of visual field loss in 

AMD.  Supportive of the present results, significantly lower short-wavelength sensitivity 

in the centre of the 10° field compared to the periphery was measured with a SLO, in 

patients with drusen and pigmentary changes (Remky & Elsner 2005).  However, 

another study involving SLO perimetry noted both central and parafoveal scotomata, 

when presenting monochromatic stimuli to eyes with subfoveal CNV (Fujii et al. 2003).  

Some studies have indicated paracentral scotoma and preservation of central vision in 

AMD patients using achromatic perimetry (Hart et al. 1983; Swann & Lovie-Kitchin 

1991).  Others have noted no difference in sensitivity between the central 5° and 

periphery of the 10° SWAP field (Remky et al. 2001b).  The general lack of agreement 

between studies appears to originate in differences in methodology.  Differences in 

instrumentation, sample sizes, classifications of the features of AMD and definitions of 

visual field loss could account for the varied results.   

In the present study, the most vulnerable region of the 10° field to sensitivity loss with 

increasing stage of AMD was the central 1°, in which the sensitivity decline was -4.8dB 

per stage in standard perimetry and -4.9dB per stage in SWAP.  Analysis of the 

frequency in which defects occurred at each stimulus location led to the assumption of 

a symmetrical defect, upon which the severity index was based.  The severity index 

may offer a useful method for monitoring progression of the visual field in AMD, as 

visual field loss is classified on a continuous scale.  From the sample used in this study, 

visual fields with a severity index above 0.1 would be considered abnormal, however 

this value and the scale would need to be developed further by quantification of the 

field loss in a larger population study.   
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The staging system for AMD, used in this study, describes the severity of the disease 

according to epidemiological progression rates of morphological features of AMD (van 

Leeuwen et al. 2003b).  Short-wavelength-sensitive resolution acuity was previously 

measured in patients assigned to the same staging system and it was found that the 

functional loss did not correlate well with the stages of severity of disease, due to 

significant overlap of short-wavelength-sensitive acuity between stages (Beirne et al. 

2006).  In the present study, despite none of the visual field parameters significantly 

discerning between all stages, some parameters did significantly differentiate between 

the majority of stages.  A greater number of significant differences between stages 

were found for SWAP than for standard perimetry.  In fact, for SWAP, the index of focal 

loss, PSD, showed the least functional overlap between stages, whilst the MD, 

indicating diffuse loss, showed relatively more overlap between stages.  This finding 

suggests SWAP as a more sensitive method of detecting focal loss in the early stages 

of AMD, in patients with minimal lenticular opacities.  Indeed, Bengtsson et al. (2005) 

observed that detection of focal loss by the number of defects on pattern deviation 

maps in SWAP, had a stronger relationship with diabetic retinopathy than standard 

perimetry.  The statistical analysis involving the stages of severity of disease is limited 

by the ordinal nature of the staging system.  Chapter 8 describes the interaction 

between visual field parameters and drusen area, which is measured on a continuous 

scale and is independent of the grading system. 

All visual field parameters showed significant variation with increasing stage of disease, 

with the exception of the SWAP SF, whose value of 2-3dB is consistent with previous 

estimates (Conway 2003).  Further agreement in existing research was indicated by 

the finding of no significant difference in the SF between patients with drusen and 

normal subjects, in the standard 10° visual field (Midena et al. 1994).  This implies a 

measurement error in the patient group which was not significantly different normal, 

and supports the reliability of the data in the determination of progression.  However, 
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the ten points of double threshold determination, which produce the SF index, are 

positioned in the mid-periphery and periphery of the 10° field (Figure 1-2).  Pointwise 

analysis of these stimulus locations showed them to be less vulnerable to sensitivity 

loss than the central field.  Further investigation into the positioning of the points of 

double determination in the calculation of SF in the 10° field is required.  There was an 

inconsistency in the PSD results, where the difference from the normal controls was 

significant for stage 2 eyes but not for stage 3 eyes in the standard field (Table 7-2).  

This may be erroneous and explained by the small number of eyes in the stage 3 group 

(n = 3) failing to achieve statistical significance.   

Larger coefficients of variation were found in SWAP visual fields than in standard 

perimetry, which is supported by earlier studies (Conway 2003; Wild et al. 1998).  The 

patient group as a whole displayed very large coefficient of variation values (Figure 7-7 

and Figure 7-8), however this was skewed by the large values at stages 3 and 4 (Table 

7-5).  It is to be expected that the variability is extreme in cases where sensitivities 

fluctuate between areas of absolute and relative scotomata within the same field, for 

some stage 4 eyes.  Coefficients of variation in eyes at stage 0 to 2 were similar to the 

normal group in both perimetry types.  The centre of the 10° field in the patient group 

displayed larger coefficients of variation than the periphery.  The central areas 

corresponded to the areas of defect, as indicated by reduced MS values.  Between-

subject variability was therefore larger in areas of defect.  In the normal group, the 

coefficient of variation was relatively uniform across the entire field, although the 

largest values tended to occur at the periphery of the field.  This finding is concordant 

with previous evidence of between-subject variability in the visual field (Conway 2003; 

Cubbidge et al. 2002; Kwon et al. 1998; Wild et al. 1998) and the magnitude of the 

coefficients of variation in the normal group were similar to those obtained in previously 

(Conway 2003; Cubbidge et al. 2002). 



 212

The results present evidence of a relationship between the SWAP visual field and 

stage of AMD, whereby sensitivity declined with advancing stage of AMD.  The 

relationship was weaker in standard perimetry.  SWAP had greater capability in the 

detection of early stage AMD as well as in the delineation of focal loss between stages, 

compared to standard perimetry.  The importance of early detection of functional 

change due to AMD leads to sooner identification of progression of disease, and 

possible earlier intervention or lifestyle changes.  Early loss in AMD was focal in nature 

and the central field became less uniform and more variable as stage increased.  

SWAP defects occurred at similar locations but were deeper and wider than 

corresponding defects in standard perimetry.  Overall the defects were confined to the 

central 5°.  Although not all patients are capable of examination using SWAP, it 

remains a valuable tool in evaluation of the vision loss in the disease. 

The cross-sectional design of the study limits the correlations which may be examined 

between structure and function.  A longitudinal study is warranted, in order to follow the 

visual field progression of the same group of patients over several years to obtain the 

exact rate of functional change due to AMD.  The severity index proposed in this study 

may be a useful index for this quantification, as well as correlation with other functional 

measures or risk factors of AMD. 
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8. Investigation of Structure to Function Relationships in AMD 
 

Purpose: To relate structural change to functional change in age-related macular 

degeneration (AMD) in a cross-sectional population using fundus imaging and the 

visual field status. 

Methods: Ten degree standard visual fields, SWAP visual fields and colour fundus 

photographs were acquired in 44 eyes of 27 patients with various stages of AMD.  

Retro-mode scanning laser ophthalmoscopic images were also captured in a subset of 

29 eyes of 19 of the patients.  A further subset of 9 patients performed visual fields at 

two further visits at three monthly intervals.  Drusen area was correlated with visual 

field data.  The position of visual field defects was compared to the position of drusen 

and deposits found with fundus photography and retro-mode imaging.  The longitudinal 

change of the visual field over 6 months was compared to fundus photographs over the 

same period. 

Results: The effect of AMD stage on drusen area within the 6000µm subfield was 

significant (One-way ANOVA: F = 17.231, p < 0.001), post hoc analysis revealed 

differences only between drusen areas at stage 0 and other stages.  The standard 

mean deviation (MD) declined by 3.00dB for each log % drusen area and the SWAP 

MD declined by 3.92dB for each log % drusen area.  The visual field parameters of 

focal loss displayed the strongest correlations with drusen area.  The number of pattern 

deviation (PD) defects increased by 9.30 and 9.68 defects per log % drusen area for 

standard perimetry and SWAP, respectively.  Medium strength significant linear 

relationships were found for all standard and SWAP visual field parameters with drusen 

area, except for the SWAP SF.  72.6% of standard PD defects and 65.2% of SWAP PD 

defects coincided with retinal signs of AMD on colour fundus images.  67.5% of 

standard PD defects and 69.7% of SWAP PD defects coincided with deposits on retro-

mode images.  Visual field indices did not change over the 6 month evaluation period.  

Perimetry exhibited a stronger relationship with drusen area than other measures of 

visual function. 

Conclusions: The structure to function relationship between visual field parameters 

and drusen area was linear.  A high coincidence proportion of visual field defects and 

retinal manifestations were observed.  There was no structural change to the colour 

fundus images nor was there a functional change in the visual fields over 6 months.  

Therefore, a longer period is required to examine the longitudinal variability of the 

visual field in patients with AMD. 
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8.1 Introduction 

Visual field loss in AMD has not previously been related to structural changes on the 

retina, in terms of the development of macular lesions.  Categorisation of structural 

changes on the fundus in AMD, by standardised grading and staging systems and the 

relation to visual field change was examined in Chapter 7.  The precise quantification of 

retinal change has been studied with increasingly sophisticated methods of fundus 

image analysis, such as the computerised automated measurement of drusen area 

from digital fundus photographs. 

In image processing, segmentation is the isolation of features of interest, such as 

drusen, from the image.  Thresholding is the process whereby features of interest are 

separated from their background using their pixel intensity.  An example of a 

thresholding algorithm is the separation of object pixels which have a certain range of 

intensity values from background pixels which have intensity values outside of this 

range, which is usually calculated from intensity distributions within a local region of 

interest (Shin & Berger 1999). 

Early methods of drusen segmentation of digitised colour slides involved adaptive 

thresholding, in which threshold selection was altered depending on the local 

properties in the image (Kirkpatrick et al. 1995; Peli & Lahav 1986).  Following 

thresholding, non-drusen areas which had been erroneously selected, had to be 

manually deleted before measurements were made from binary conversions of the 

images (Peli & Lahav 1986).  Kirkpatrick et al. (1995) pre-processed images to correct 

for variation in illumination and utilised a combination of both local and global 

thresholding.  Pre-processing was developed by Shin et al. (1999) in their software to 

quantify drusen area.  Green channel images underwent pre-processing to reduce 

noise, before drusen segmentation was carried out.  Pixel intensities of local subfields 

of the region of interest were analysed and it was specified that if drusen were present, 

the skewness of the intensities was greater than -0.5.  The user was then able to adjust 
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the sensitivity of the pixels identified as drusen, erase erroneously segmented drusen 

or add pixels.  Close agreement was found between the drusen segmentation software 

and manual grading by an expert observer.  The flaw in this method occurred when a 

large drusen dominated a local region, such that the distribution would not be skewed, 

and this would have to be manually corrected after segmentation. 

Segmentation techniques were developed with the aim of becoming fully automated 

with the histogram-based adaptive local thresholding (HALT) operator, which extracted 

useful information from an image without being affected by the presence of other 

structures (Rapantzikos et al. 2003).  Similar to the method employed by Shin et al. 

(1999), local histogram distributions of the green channel image were analysed.  In 

addition, contrast was enhanced taking into account global and local variations using 

equalisation of the histograms.  Equalisation (or EQ) is the process of using digital 

algorithms to alter or flatten the frequency response characteristics of a system.  This 

was done in order to accurately segment the drusen which appear to be hidden in their 

surrounding background.  This method however did not account for the inherent 

background variability of the retina. 

In a normal fundus, the macular reflectance increases from the centre to the periphery, 

partly due to luteal pigment at the fovea (Bone et al. 1992; Snodderly et al. 1984).  The 

normal fundus background reflectance was found to have a geometric pattern of 

concentric elliptical patterns in which the reflectance increased radially from the 

macular centre.  Based on these patterns, a method which levelled the background of 

images containing drusen was developed, which was independent of the reflectivity of 

the overlying drusen (Smith et al. 2003).  The intensity of user-defined regions of the 

green channel image was raised so that the background became more uniform and 

drusen were brightened, before user selection of threshold for drusen segmentation, 

thereby providing a semi-automated digital technique for global drusen quantification.  
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This method was found to have good correlation with standard fundus grading (Smith 

et al. 2003) and good inter-institutional reproducibility (Sivagnanaval et al. 2005). 

Continuation by the same group replaced the interactive process with a mathematical 

model, the “dots” method, which automatically reconstructed and levelled the macular 

background (Smith et al. 2005a).  In the “dots” method, a partial correction for luteal 

pigment was made to the green channel image, containing drusen.  Then a user 

selection of squares representing normal macular background was used to produce a 

geometric model of the background.  The model was displayed as an elliptical contour 

map of grey scale intensity levels and subtracted from the luteal corrected fundus 

image, which levelled the background and brightened drusen.  After global 

segmentation, drusen area was expressed as a percentage of the grading grid subfield.  

This method yielded good inter-observer reproducibility (Smith et al. 2005a). 

A fully automated drusen segmentation program was subsequently described by Smith 

et al. (2005b).  An automatic histogram-based thresholding technique was applied to 

the corrected green channel image and combined with the model for the macular 

background generating a completely automated measurement of drusen area.  

Sensitivity and specificity of the segmentation was high when compared to manually 

applied expert grading by stereo-viewing and drusen tracing using a graphics tablet 

(Smith et al. 2005b). 

The aims of this study were to relate visual field changes to the automated 

quantification of drusen area.  Secondary aims were to examine the longitudinal 

variation of the functional and structural measures over a six month period in a pilot 

study. 

8.2 Methods 

8.2.1 Visual Fields and Images  

Visual fields and retinal images were collected in a previous study (see Chapter 7).  

Briefly, the central 10° field was measured using Program 10-2 on the Humphrey Field 
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Analyser 750 using standard perimetry and SWAP, in a group of patients with AMD 

who had undergone a training set of visual fields one week earlier.  Fundus 

photography and retro-mode images using the Nidek F-10 were acquired in the same 

group of patients.  Pupils were dilated with one drop of tropicamide 0.5% for all images 

captured.  The colour fundus photographs were captured at the same visit as the visual 

fields or one week earlier, the retro-mode images were taken 5-6 months later. 

Digital colour fundus photographs and perimetric data from 44 eyes of 27 patients with 

AMD were initially investigated.  Six eyes were excluded on the basis of treatment for 

AMD, 3 eyes were excluded due to the presence of other pathology and one eye was 

excluded due to pseudophakia.  Retro-mode images were obtained in a subset of 29 

eyes of 19 patients.  Recall of all patients for retro-mode imaging was not possible due 

to limited instrument availability and eyes were excluded for the same reasons outlined 

above. 

A subset of 9 patients volunteered to attend a further part of the study.  Longitudinal 

visual field testing was performed at 3 months and 6 months.  Data from patients who 

did not complete all four visits was discarded, such that the visual field and image data 

from 13 eyes of 9 patients was analysed for longitudinal change.   

8.2.2 Other Functional Measures 

Distance visual acuity was determined using a Bailey-Lovie Test Chart.  Contrast 

sensitivity was measured using a Pelli-Robson Chart.  Colour vision testing was 

performed using the Farnsworth-Munsell 100 Hue colour vision test and the total error 

score was noted.  Reading speed was assessed with the MNRead test, in which the 

fastest reading speed at the critical print size was recorded in words per minute.    

8.2.3 Drusen Segmentation 

A version of the drusen segmentation program, RIALAB, which runs in MATLAB 

(version 7.8.0.347, Mathworks, Natick, Massachusetts, USA) was acquired.  The 
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software was developed in the Heffner Biomedical Imaging Lab by Noah Lee, in 

collaboration with R. Theodore Smith at Columbia University, New York City, USA.   

Digital colour fundus images were imported to RIALAB as high quality JPEG files, 

which was the maximum allowable quality of the camera.  The positions of the macula 

and temporal optic disc margin were manually marked using a mouse.  The images 

were then resized to 324 x 324 pixels which the program scaled as 6000µm, and 

centred at the fovea.  The images were converted to bitmaps at this point and 

background levelling in the green channel took place.  Drusen segmentation performed 

best when the user selected a region of interest, using a “paint” feature, which allowed 

exclusion of areas of peripapillary atrophy or other bright non-drusen areas.  The 

automated image analysis identified the outlines of drusen and segmentation output 

was drusen area in pixels and as a percentage of the three subfields.  It was not 

possible to use this program on the retro-mode images since the segmentation 

algorithm was not suitable for the edges of the lesions in the retro-mode images. 

The custom written program Perimetric Fundus Map (see Chapter 5) was used to 

analyse the retinal position of perimetric stimulus locations for the colour fundus 

photographs.  Some retro-mode images had more indistinct disc margins and maculae 

compared to their colour fundus image counterparts.  Due to the critical nature of the 

exact positioning of the perimetric stimulus points onto the fundus images and in order 

to gain the greatest positioning accuracy possible, the retro-mode images were not 

manipulated with the Perimetric Fundus Map program.  Instead, the retro-mode images 

were matched to the colour perimetric fundus map using commercially available 

software (Photoshop 8.0; Adobe Systems Inc, San Jose, Calif) such that the retinal 

landmarks were precisely aligned using the flicker on/off and transparency features.  In 

this way, the perimetric points were visible on the retro-mode images and it was 

possible to count the coincidence of deposits on the retro-mode images with perimetric 

defects. 
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8.3 Analysis 

The output of the segmentation program was drusen area within the three standard 

grading subfields centred at the macula, of diameter 1000, 3000 and 6000µm.  The 

effect of stage on drusen area was examined.  Correlations between visual field 

parameters and drusen area were calculated, as well as correlations between other 

functional measures and drusen area.   

Perimetric colour fundus images were produced and the stimulus locations which 

coincided with retinal features of AMD were entered onto a spreadsheet.  This was 

then compared to the spreadsheet of SWAP and standard visual field defects as 

defined by pattern and total deviation probability analyses, in order to find the number 

of defects coinciding with areas of damaged retina.  The number of associated defects 

to retinal manifestations of disease was expressed as a percentage of total number of 

defects and also as a percentage of the total number of stimulus locations coinciding 

with retinal features of AMD.   

Longitudinal stability of visual field indices was analysed using the Friedman test.  

Drusen area on colour fundus photographs was compared for change over time.   

8.4 Results 

8.4.1 Statistical Normality Evaluation 

The drusen area values did not exhibit a normal distribution (Kolmogorov-Smirnov test).  

Logarithmic (base 10) transformation of drusen area within 6000µm achieved normality 

(p = 0.200) and the variance was homogeneous across stages of AMD (Levene’s 

statistic = 1.263, p = 0.312).  Thus, parametric analyses were applied to the data. 

8.4.2 Effect of Stage on Drusen Area 

The bar chart in Figure 8-1 shows the change in drusen area with stage of AMD, for 

drusen area within all three subfields of the standard grading grid.  A similar function is 

evident for the drusen area within all three subfields, whereby the % area of drusen 

steadily increases until stage 3 and declines for eyes at stage 4.  A statistically 
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significant (Table 8-1; One-way ANOVA: F = 17.231, p < 0.001) variation of drusen 

area (transformed log10) arose when comparing different stages of AMD.  Post hoc 

analysis (Tukey HSD) revealed that the drusen areas of stages 1, 2, 3 and 4 were 

larger than at stage 0 (p = 0.001, p = 0.001, p < 0.001, p < 0.001, respectively), 

however drusen areas at pairs of stages between stages 1 to 4 were not significantly 

different from each other.  

It was not possible to achieve a normal distribution by transformation of the drusen 

areas within the other subfields.  Nevertheless, drusen area showed a significant 

variation with stage of AMD using the Kruskal-Wallis test, for drusen within the 3000µm 

(Chi-Square = 18.722, p < 0.001) and 1000µm (Chi-Square = 16.003, p = 0.001).  

Drusen area data from all three subfields therefore yielded corresponding results.  

Further analysis concentrated on drusen area within the 6000µm subfield since it 

accounted for the total grading area and encompassed the entire 10° visual field.  

Furthermore, the normally distributed variable made it possible to use parametric 

statistics thus yielding maximum power. 

0

5

10
15

20

25

30

35
40

45

50

0 1 2 3 4

Stage

M
ea

n
 d

ru
se

n
 a

re
a 

(%
 o

f 
su

b
fi

el
d

) 1000

3000

6000

 
Figure 8-1. Mean drusen area (% area of subfields 6000, 3000 and 1000µm in 
diameter) as a function of stage of AMD 
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 Sum of 
Squares 

df Mean 
Square 

F p 

Between Groups 14.906 4 3.726 17.231 <0.001 
Within Groups 8.002 37 0.216   

Total 22.908 41    
 
Table 8-1. One-way ANOVA table of the effect of stage of AMD on drusen area 
within the central 6000µm 
 

8.4.3 Correlations between Visual Field Parameters and Drusen Area 

The correlation between each defect defining visual field parameter and drusen area, 

for each perimetry type is shown in Table 8-2.  All correlations were found to be linear.  

The standard MD declined by 3.00dB for each % log drusen area and the SWAP MD 

declined by 3.92dB for each percentage log drusen area (Figure 8-2).  The coefficient 

of determination, r2, in this case indicates the proportion of variance in the visual field 

parameters attributable to drusen area and portrays the strength of the relationship.  

The correlations accounted for between 10 and 29% of the variance in the visual field 

parameters, except for the SWAP SF, which yielded a very weak negative correlation 

with drusen area and the relationship was not significantly linear.  

  r r2 slope F p 
Standard 
perimetry 

MD -0.439 0.193 -3.00 9.568 0.004* 
PSD 0.429 0.184 2.18 9.047 0.005* 

SWAP MD -0.416 0.173 -3.92 8.353 0.006* 
PSD 0.413 0.171 1.27 8.249 0.006* 
SF -0.091 0.008 -0.12 0.333 0.567 
CPSD 0.315 0.099 1.16 4.413 0.042* 

Standard 
perimetry 

No. PD defects 0.492 0.242 9.30 12.759 0.001* 
No. TD defects 0.468 0.219 14.09 11.243 0.002* 
LSV 0.458 0.210 1.10 10.595 0.002* 
Severity Score 0.497 0.247 0.16 13.142 0.001* 

SWAP No. PD defects 0.496 0.246 9.68 13.025 0.001* 
No. TD defects 0.355 0.126 11.50 5.785 0.021* 
LSV 0.510 0.260 0.44 14.086 0.001* 
Severity Score 0.537 0.288 0.17 16.208 <0.001* 

 * significant linear relationship 
 
Table 8-2. Correlation coefficients (r), coefficients of determination (r2), slope and 
significance (p) of linear relationship between visual field parameters and log 
drusen area within 6000µm subfield 
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8.4.4 Correlations between Other Functional Measures and Drusen Area 

In order to reflect clinical practice, visual acuity and contrast sensitivity were measured 

monocularly, whilst reading speed and colour vision were tested binocularly.  Reading 

speed and colour vision measures were correlated with drusen area in the eye with the 

best functional results.  The correlations of visual acuity and contrast sensitivity with 

drusen area were significantly linear, whereas reading speed and colour vision error 

score were not (Table 8-3).  Coefficients of determination were overall weaker than 

those between visual field parameters and drusen area.  Detailed results of the 

functional measures are given in Appendix 1.   
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Figure 8-2. Graphs illustrating MD as a function of log % drusen area within 
6000µm subfield, for standard perimetry and SWAP 
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  r r2 slope F p 
LogMAR 0.386 0.149 0.166 6.821 0.013* 
CS -0.362 0.131 -0.130 5.865 0.020* 
Reading Speed -0.211 0.045 -14.257 1.030 0.321 
100 Hue TES 0.386 0.149 47.080 4.031 0.057 

   * significant linear relationship 
 
Table 8-3. Correlation coefficients (r), coefficients of determination (r2), slope and 
significance (p) of linear relationships of visual acuity (LogMAR), contrast 
sensitivity (CS, log units), reading speed (words per minute) and colour vision 
total error score (TES) with log drusen area within 6000µm 
 
 
 
 
 
 

 
 
 
 
Figure 8-3.  Venn diagrams depicting the group mean number of stimulus 
locations where visual field defects coincide with drusen or other features of 
AMD, for both imaging types   
No. defects = total number of visual field defects.  No. Affected = total number of 
stimulus locations which have the same position with features of AMD.  The 
intersection represents the visual field defects which have the same position as 
features of AMD.  Pattern deviation defects (unshaded top) and total deviation defects 
(shaded bottom) are represented for standard perimetry and SWAP.    
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 Colour fundus photos F10 retro-mode images 
Standard 
Perimetry 

SWAP Standard 
Perimetry 

SWAP 

PD TD PD TD PD TD PD TD 
% of total 
defects 72.6 79.6 65.2 53.1 67.5 86.4 69.7 64.3 

% of total 
points 
overlying AMD 
features 

45.2 55.3 50.2 78.5 22.4 28.9 28.6 61.6 

 
Table 8-4.  Number of total deviation (TD) and pattern deviation (PD) defects 
associated with retinal manifestations of AMD expressed as a percentage of total 
number of defects, and total number of stimulus locations associated with AMD 
features 
 

8.4.5 Association of Visual Field Defects with Retinal Manifestations of AMD 

The number of visual field defects overlying retinal features of AMD is shown in Figure 

8-3 and Table 8-4, in relation to the total number of defects and in relation to the total 

number of stimulus locations in the visual field overlying retinal features of AMD.  

Overall, a proportionally greater number of total defects coincided with areas of 

damaged retina than the amount of points overlying damaged retina coincided with 

visual field defects.  One exception to this was observed for the SWAP total deviation 

defects on colour fundus photography, where the reverse was true.   

8.4.6 Longitudinal Stability of Visual Field Indices 

For 13 eyes of the 9 patients followed over 6 months, each visual field index was tested 

for stability over time using the Friedman test.  The results are shown in Table 8-5, 

where no significant variation over time was found for each index, therefore the visual 

fields showed no significant change over time. 

 

 Standard Perimetry SWAP 
MS MD PSD MS MD PSD SF CPSD 

Chi-
Square 

0.154 0.615 0.462 0.510 0.154 2.923 0.154 0.000 

p 0.926 0.735 0.794 0.775 0.926 0.232 0.926 1.000 
 
Table 8-5. Friedman test for effect of time on visual field indices 
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8.4.7 Longitudinal Colour Fundus Image Analysis 

In the same group of patients, drusen segmentation was performed on the first set of 

fundus photographs and on the final set of fundus photographs, approximately 6 

months later.  The Wilcoxon signed rank test demonstrated no significant difference in 

drusen area within the central 6000µm over a period of 6 months in 13 eyes (Z =          

-0.734, p = 0.463). 

8.5 Discussion 

A linear structure to function relationship exists between the automated quantification 

of drusen area from digital colour fundus photographs and standard and SWAP visual 

field parameters.  The parameters which yielded strongest correlations to drusen area 

were the local spatial variability in SWAP, and the AMD severity index and number of 

pattern deviation defects for both standard perimetry and SWAP.  These measures 

pertain to focal loss in the visual field, which corresponds to the findings in Chapter 7, 

where the global indices of focal loss were found to be the most sensitive to 

progression of loss in AMD.  Overall the correlations between drusen area and the 

indices of focal loss, were stronger for SWAP than for standard perimetry.  The AMD 

severity index accounts for pattern deviation defect severity and area, and in this way 

proves to be a sensitive measure to structural change. 

The results of this study show that of the functional measures, perimetry was the 

strongest indicator of structural change.  The correlations between drusen area and 

other standard clinical measures of visual function yielded weaker linear relationships, 

for several reasons.  Visual acuity, contrast sensitivity, reading speed and colour vision 

are principally foveal measures of visual function, whereas perimetry makes measures 

over a larger retinal area, which more closely matches the area of drusen segmentation.  

Less control over fixation was available for these functional measures compared to 

perimetry, therefore it is possible that patients with a greater severity of disease were 

using eccentric fixation, which introduces further variability around the measures.  More 
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complex processes are involved in the other functional measures compared to 

perimetry, although visual acuity and contrast sensitivity did decline significantly with 

drusen area.  Visual acuity is the highest spatial frequency that can be detected at 

100% contrast, whereas the contrast sensitivity measure used in this study is designed 

to detect the minimum contrast at which a letter can be identified.  The measure of 

visual acuity has been described as a three stage hierarchical sequence leading to 

letter recognition, involving the processes detection of contrast, resolution of elements 

and letter identification (Thibos & Bradley 1993).  Identification of a letter is influenced 

by cognitive factors such as attention and memory, as well as experience and number 

of letters in the test alphabet (Thibos & Bradley 1993).  As a complex task which 

includes a variety of processes, reading depends on letter and word resolution, stable 

retinal images (Bouma et al. 1974), saccadic accuracy (O’Regan 1980), lexical 

assessing (Just 1980) and cognitive processes required for comprehension and 

memory storage (Taft 1979; Thorndyke 1977).  Colour vision error scores were very 

variable between individuals, despite being within normal limits in all but three patients, 

who demonstrated tritan defects.  A past study involving structural and functional 

comparisons in patients with diabetes is in agreement with the present study, whereby 

visual field loss was a better correlate than visual acuity of the severity of diabetic 

retinopathy (Bengtsson et al. 2005)  

No structural to functional correlations have previously been reported in studies using 

automated measures of drusen area in AMD.  The closest comparisons which can be 

made with existing literature are with studies which have compared manual drusen 

measures to perimetry.  It is not surprising therefore, that past research conflicts with 

some results in the present study, due to differing methodologies and the lack of 

consistency in manual grading.  Indeed, considerable variability in manual drusen 

grading has been noted between even expert graders (Smith et al. 2005b).  Tolentino 

et al. (1994) reported no correlation between an estimation of drusen area with number 
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of defects in a custom 6° by 4° macular perimetric grid.  Lower mean sensitivities in 

standard perimetry were found with larger drusen size (Midena et al. 1994), which is 

supportive of the results in this study.  However the same group found no change in 

sensitivity with drusen number (Midena et al. 1994, 1997) and another group using 

SLO microperimetry discerned no relationship between sensitivity loss and size of 

drusen (Takamine et al. 1998).  In SLO perimetry, reduced sensitivity was 

demonstrated over large drusen compared to smaller drusen (Midena et al. 2007) and 

compared to non-drusen areas in some eyes (Takamine et al. 1998).  This evidence 

further supports the correlation between drusen area and visual field loss.  In general, a 

larger proportion of visual field defects were associated with retinal manifestations than 

retinal manifestations associated with defects.  This suggests that not all retinal 

manifestations of AMD produce abnormal function that is detectable by visual field 

parameters, which is further enforced by the finding that retinal sensitivity over small 

drusen was not reduced (Midena et al. 2007). 

The design of the study was to model functional change, by examining the visual fields 

of patients with varying stages of severity of AMD.  As a product of the cross-sectional 

comparisons between patients, it was not possible to derive a precise time scale of 

functional decline, since the length of duration of disease was mostly anecdotal and 

accuracy could not be confirmed.  An attempt was made to pilot a corresponding 

longitudinal design of the study, such that change over time could be investigated in a 

small number of patients with a view to a larger future study.  In these patients, there 

was no structural change to their colour fundus images nor was there a functional 

change in the visual fields over six months.  Thus, a longer period is required to 

examine the longitudinal progression of the visual field due to AMD.  Indeed, slow 

progression rates of drusen and pigmentary changes have been described in 

epidemiological studies (van Leeuwen et al. 2003b; Klein et al. 2002).  Longitudinal 

stability of the fields lends itself to the calculation of long-term fluctuation, which was 
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previously calculated in stable fields using a two-factor analysis of variance (ANOVA) 

with replications (Hutchings et al. 2000), however this method was not appropriate for 

this study, due to the non-Gaussian nature of the data and the small number of cases 

in the longitudinal group.  An appropriate examination of visual field progression over 

time in AMD would be regression analysis of the PSD, LSV and AMD severity index, as 

these indices describe focal loss.   

Automated drusen segmentation analysis represents a useful tool in the structural 

measure of progression in AMD.  A significant overall effect of stage of disease on 

drusen area was demonstrated, however the trend was not strong across all the stages.  

The greatest change in drusen area occurred between the early stages, since stages 

0-3 represent fundi which feature pigmentary changes and progressively larger drusen.  

At stage 4, fundi have atrophic or neovascular changes, which results in fewer drusen, 

therefore no change in drusen area was evident.  It is possible that more eyes at each 

stage may have achieved a greater number of between stage significant differences in 

drusen area.  Drusen area provides a useful structural measure for the purpose of 

comparison to functional data, since linear correlations may be made, which are not 

possible with the ordinal data of stage of AMD.  Automated segmentation of drusen 

area could improve the accuracy of grading the early features of AMD and facilitate the 

development of the staging systems.   

The advantage of automated segmentation over manual methods is that of 

convenience, consistency and repeatability.  Indeed, two experts making drawings from 

the same macula using stereo images and a graphics tablet were found to vary 

comparably to automated segmentation of non-stereo images (Smith et al. 2005b).  An 

important limitation of the program was described relating to the segmentation of highly 

reflective lesions, such as retinal pigment epithelial hypopigmentation, geographic 

atrophy, exudates, and scars as well as photographic dust spots, which may be 

mistaken for drusen; however the interactive selection feature to avoid these areas is a 
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simple solution to this problem (Smith et al. 2005b), and was employed in this study.  

The assumptions of retinal distance incorporated into the program assume the distance 

between the fovea and the temporal optic disc margin as 3000µm, or approximately 

two disc diameters, based on the longstanding clinical assumption of the optic disc 

diameter, as employed in standard AMD grading systems.  Although the same disc 

diameter assumption was used in creating the programs in Chapter 5, the retinal 

distance assumptions differed.  In terms of the visual field it was more appropriate to 

include the visual angle between the macula and the centre of the optic disc, 15° 

(Rabbetts 1998), as it was necessary to allow for the empirically determined measure 

between the macula and the optic disc centre.  The conversion of this retinal distance 

to µm using the standard assumptions based on trigonometrical ray tracing in a 

schematic eye (Drasdo & Fowler 1974) then differed to that used in the automated 

drusen segmentation program.  Therefore, percentage values were employed 

throughout so that the exact retinal distance value became arbitrary.  The main source 

of error in using the program was the process of marking the macula and optic disc by 

the user, which was performed in a small window, and affected the resized area of the 

image which ultimately determined the drusen area output.   

Chapter 5 showed the accuracy of the custom program Perimetric Fundus Map to be 

within approximately 80µm and these limits were observed in this study.  In the 

analysis of visual field locations associated with retinal manifestations of AMD, points 

were not counted if they only had small drusen in isolation lying within the area of the 

stimulus location.  The size of a small hard drusen is 63µm and subtends 

approximately 0.23° according to standard assumption of retinal distance (Drasdo & 

Fowler 1974).  This was smaller than the stimulus diameters used in standard 

perimetry and SWAP, which were 0.43° and 1.74° respectively.  Consequently a larger 

area around each point was measured for the SWAP perimetric fundus map analysis.   
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A high percentage of defects were associated with retinal manifestations on fundus 

photography.  A larger number of SWAP PD and TD defects were associated with 

retinal features in both imaging types than standard perimetry defects.  Conversely, 

when expressed as a percentage of the total number of defects, fewer SWAP defects 

were associated with colour retinal features of AMD than in standard perimetry.  

However this is because SWAP defects were more numerous than standard defects, 

and were present with no structural associations.  This could indicate that SWAP may 

be predictive of future structural change, but a larger scale longitudinal study would be 

required to evaluate this finding.   

As a percentage of the stimulus locations that were associated with retinal signs, the 

number of defects was relatively small for retro-mode images.  This could be explained 

by the greater number of deposits on retro-mode images, which had no functional 

associations.  It would appear that fundus photography gives a stronger indication of 

functional loss.  Nevertheless, the comparison between colour fundus photography and 

retro-mode imaging should be approached with caution since the time difference 

between the images captured differed by 5-6 months.  As a result, the quantification of 

retinal associations in retro-mode images with visual field defects (Figure 8-3 and Table 

8-4) are more subject to variability than the corresponding values for colour fundus 

photography and can only provide an estimate of the structure to function relationship.  

The results of the study in Chapter 6 indicated an observable change in retro-mode 

images over a six month period in four of 13 eyes (3 of 8 patients), which reinforces the 

use of retro-mode imaging in the detection of subtle change in AMD.  Although the 

retro-mode images were captured 5-6 months later than the initial visual field and 

colour fundus images, the lack of longitudinal change in the visual field over such a 

period allows the comparison between these images and the earlier functional data.  

Further investigation using accurate drusen segmentation of retro-mode images would 
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be necessary to fully compare the structure to function relationships with retro-mode 

images.   

In order to reduce the morbidity of AMD, it is necessary to scrutinise the natural history 

and response to treatment of both structural changes at the macula and early changes 

to functional vision.  Retro-mode imaging could represent a tool for monitoring fundus 

changes which may precede visual loss.  The linear nature of the structure to function 

relationship between visual field parameters and drusen area in fundus photography, 

and the high coincidence proportion of visual field defects and retinal manifestations; 

offers insight into the natural history of AMD, which may be further developed with a 

larger scale longitudinal study.   
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9. Summary of Results and Conclusions and Future Work 

9.1 Summary of Results and Conclusions 

9.1.1 Investigation of Longitudinal Chromatic Aberration on SWAP Using 
Spherical Defocus 

SWAP was more robust to negative defocus than positive defocus.  Spherical defocus 

up to +2.00D caused a small but significant decline in threshold sensitivity, however 

negative defocus up to -2.00D had no significant effect on sensitivity.  The lack of 

influence of negative defocus infers that when correcting for the bowl distance of the 

perimeter, slight undercorrection is not significant.  However overcorrection may cause 

an artefactual decrease in sensitivity and should be avoided in patients with presbyopia 

or insufficient accommodative facility for the working distance of the perimeter.   

The profile of threshold sensitivity with eccentricity peaked at 7.2° and declined towards 

the periphery with the physiological shape of the hill of vision.  In the sample, which 

consisted of young subjects, the slight depression in sensitivity towards the fovea may 

be accounted for by the presence of macular pigment.         

9.1.2 The Learning Effect in the Central Standard and Short-Wavelength Visual 
Fields 

A learning effect was demonstrated between two visits for standard perimetry and 

SWAP, which was not significantly different between the AMD patient group and the 

normal control group.  The global index MD increased by 0.4-0.6dB in standard 

perimetry and 0.7-0.9dB in SWAP, at the second visit.  The magnitude of the learning 

effect was not significantly different between the patient group and the normal group, 

and was not influenced by stage of AMD.  The deterioration in the threshold sensitivity 

between eyes during visits could be attributed to the fatigue effect.  MD was the index 

most sensitive to the influence of learning which is of importance when examining AMD 

patients, where change in focal loss and variability is of more interest, rather than 

diffuse changes.  Thus, the suitability and reliability of 10° visual field assessment of 

functional change in AMD is reinforced.   
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9.1.3 Programming in Ophthalmic Imaging Analyses 

Two programs were written to map spatial information onto digital fundus images, with 

the purpose of reducing the error of performing such tasks manually.  Program 1: 

Perimetric Fundus Map relates visual function to structural changes at the macula by 

mapping visual field data onto the fundus image.  Program 2: Fundus Grading Grid 

allows the standard AMD grading grid to be mapped to the fundus image and 

incorporates a measurement tool without the necessity for the traditional method of 

plastic overlays.  The repeatability associated with the mapping processes was 

approximately 80µm and 65µm for Programs 1 and 2, respectively.  This is clinically 

acceptable for relating large drusen to functional change and for grading the features of 

AMD.  Program 2 was implemented to grade the features of AMD and the inter-

observer agreement was moderate to perfect between two graders.  These programs 

provide useful tools for the analysis of digital fundus photographs.   

9.1.4 Drusen Detection in Retro-Mode Imaging by a Scanning Laser 
Ophthalmoscope 

Subretinal deposits manifested in greater numbers on retro-mode images compared to 

standard digital fundus images.  The large subretinal deposits on retro-mode images in 

patients with AMD appeared to be consistent with the appearance of drusen detected 

on OCT.  Deposits were significantly smaller in retro-mode images than in fundus 

photography, but the magnitude of the difference was marginal.  Moderate to 

substantial agreement between graders was found.  Comparison of retro-mode images 

over a period of six months revealed observable change to the deposits in a small 

number of images.  Retro-mode imaging provides a rapid non-invasive technique, 

useful in monitoring subtle changes and progression of AMD. 

9.1.5 Quantification of Visual Field Progression in AMD 

The decline in visual field sensitivity with advancing stage of AMD indicated a stronger 

relationship in SWAP than in standard perimetry.  SWAP had greater capability in the 

detection of early stage AMD as well as in the delineation of focal loss between stages 
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and represents a useful tool in the detection of early functional change in AMD in 

patients with minimal lenticular opacities.  Early loss in AMD was focal in nature and 

the central field became less uniform and more variable as stage increased.  Defects 

were on average confined to the central 5°.  SWAP defects were deeper and wider 

than corresponding standard perimetry defects.  The most vulnerable region of the 10° 

field to sensitivity loss with increasing stage of AMD was the central 1°, in which the 

sensitivity decline was -4.8dB per stage in standard perimetry and -4.9dB per stage in 

SWAP.  Global indices of focal loss, pattern standard deviation (PSD) and local spatial 

variability (LSV) were the most sensitive to detecting differences in the profile of the hill 

of vision between normal subjects and early stage AMD patients, in standard perimetry 

and SWAP, respectively.  LSV can be considered as a less statistically manipulated 

global index and consequently may represent a more accurate index of focal loss than 

PSD in SWAP.  Threshold variability was considerably increased in late stage AMD 

eyes.  A severity index was derived to define visual field defects attributed to AMD on a 

continuous scale. 

9.1.6 Investigation of Structure to Function Relationships in AMD 

The automated measurement of drusen area in digital fundus photographs was 

correlated with visual field parameters.  A linear relationship between visual field 

parameters and drusen area was found.  In standard perimetry, the MD declined by 

3.00dB for each log percentage drusen area and the SWAP MD declined by 3.92dB for 

each log percentage drusen area, however it was the visual field parameters that 

indicate focal loss which displayed the strongest correlations with drusen area.  The 

number of pattern deviation defects increased by 9.30 and 9.68 defects per log 

percentage drusen area for standard perimetry and SWAP, respectively.  Stronger 

relationships were evident for SWAP indices of focal loss than for standard perimetry.  

There was a high coincidence proportion of visual field defects with retinal 

manifestations.  In a subset of patients followed over 6 months, no structural change to 
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the colour fundus images was apparent nor was there a functional change in the visual 

fields.  It would be necessary to monitor patients over a longer period in order to 

examine the longitudinal variability of the visual field in patients with AMD.  Perimetry 

exhibited a stronger relationship with drusen area than other measures of visual 

function. 

9.2 Future Work 

9.2.1 Investigation of Longitudinal Chromatic Aberration on SWAP Using 
Spherical Defocus 

The influence of cylindrical defocus on perimetric thresholds is currently unknown.  The 

prismatic effect of incorrect positioning of the correcting lens has not been investigated. 

9.2.2 The Learning Effect in the Central Standard and Short-Wavelength Visual 
Fields 

Evaluation of the learning effect in the 10° field over five visits, each separated by one 

week has yet to be carried out to determine any residual learning effects following the 

first two visits and confirm that their magnitude is smaller than the initial effects.  The 

short-term fluctuation (SF) in the 10-2 pattern on the HFA has received little attention, 

in terms of the spatial location of the ten points of double determination.  In Chapter 7, 

the SF was found to be relatively insensitive to progression of disease.  It remains 

unknown as to whether alternative stimulus locations, situated in areas of greater 

vulnerability to loss, would be more sensitive to fluctuation and more influenced by later 

stages of AMD.  The corrected pattern standard deviation, whose calculation accounts 

for the SF, would also be affected.  Knowledge of the magnitude of the fatigue effect in 

the 10° field in AMD patients who are experienced in both standard perimetry and 

SWAP would be of use in examining progressive changes. 

9.2.3 Programming in Ophthalmic Imaging Analyses 

Within-observer agreement of the spatial accuracy of the programs would give 

additional information to assess the quality of the programs.  Future work to improve 

the programs described in Chapter 5 may include being rewritten in alternative 
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programming language such as Java, in which JPEG files or other file formats may be 

manipulated.  More complex features such as interactive zooming of the image may 

then be incorporated.  Program 1 has the potential to store the normal database for 

SWAP, such that perimetric indices and defects may be automatically calculated.  The 

potential online availability of the software would allow direct clinical application and 

referral support with digital image analysis, which presents an advantage with the 

increasing use of telemedicine. 

9.2.4 Drusen Detection in Retro-Mode Imaging by a Scanning Laser 
Ophthalmoscope 

Retro-mode imaging provides further opportunity to use digital image analysis for the 

objective measurements and quantitative grading of features, whilst offering 

supplementary information to standard imaging techniques.  The results in this thesis 

suggest retro-mode imaging is advantageous in the monitoring of subtle structural 

changes which may precede visual loss.  A larger scale longitudinal follow-up study of 

AMD patients and normal subjects would be required to confirm whether the subretinal 

deposits in retro-mode images are sub-clinical drusen which will eventually manifest as 

clinically visible drusen or other features of disease.  Histological examination of the 

subretinal deposits is also indicated.    

9.2.5 Quantification of Visual Field Progression in AMD 

Due to the time limitations of this PhD, a cross-sectional study design was chosen to 

quantify functional changes at different stages of AMD with a limited degree of 

longitudinal monitoring.  Unfortunately, such a methodology gives no information 

regarding the variation in the course of progression between patients.  An optimal 

model for quantifying functional change would collect longitudinal data from AMD 

patients, which requires a large sample to be followed over several years.  This would 

delineate stable and progressing functional and structural changes.  The data already 

collected in this PhD would facilitate the design of a longitudinal study in the 

assessment of limits for significant change and increment of time between visits.  
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Examination of the indices of focal loss, such as the less commonly used LSV, is of 

greater importance when defining visual field progression in AMD.  The AMD severity 

index measures visual field loss on a continuous scale.  This index may offer a single 

figure from which it would be possible to derive limits to stage the functional loss in 

AMD, and may be of value when defining treatment thresholds and clinical outcomes.  

The long-term fluctuation (LF) is of value in the detection of progression and is 

currently unknown for AMD.  It would be necessary to develop methods for the 

calculation of both homogeneous and heterogeneous components of LF, from visual 

fields generated using SITA algorithms.     

The correlation between numerous risk factors and visual field loss would gain insight 

into the risk of functional loss.  Such an investigation would require a large, unbiased 

sample as well as a control.  Risk factors such as light exposure (Darzins et al. 1997), 

abnormal skin sensitivity to sunlight (Mitchell et al. 1998) and diet (Seddon et al. 2003b, 

AREDS 2001a) require complex techniques of quantification and would require detailed 

information from a lengthy questionnaire or interview.  Other risk factors such as the 

effect of a fellow eye with neovascular disease would necessitate careful recruitment.      

9.2.6 Investigation of Structure-Function Relationships in AMD 

A longitudinal study would benefit from grading which involved the automated 

segmentation of drusen.  The potential segmentation of other features of AMD would 

provide better objective measures and further improve grading systems, by reducing 

the variability error associated with manual methods.  This may then be applied to a re-

evaluation of the staging systems, and subsequently their relationship to functional 

changes.  The segmentation of deposits on retro-mode images is confounded by the 

lack of edge definition and lack of uniformity in the pixel value of the deposits.  Further 

work would involve attention to the segmentation algorithms and pre-processing of 

images, for this purpose. 
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Appendix 1.  Sample characteristics 

The known risk factors of AMD and standard clinical functional measures in AMD were 

reviewed in Chapter 1.  Information about the risk factors of AMD was collected within 

the patient and normal groups who took part in the studies described in Chapters 4, 7 

and 8, in order to observe the within group frequency distributions of these risk factors 

(26 patients, 8 males and 18 females, mean age 68.8 years, SD 7.8, range 46-84 years, 

at various stages of AMD; and 22 normal subjects, 13 males and 9 females, mean age 

67.2 years, SD 7.5, range 49-78 years).  A summary of the standard clinical measures 

is shown in Table A1-1.  A medical history was taken and a self-administered non-

qualitative questionnaire was used to obtain routine demographic and epidemiological 

information from each study subject Table A1-2.  

 
 Test 

Visual acuity Bailey-Lovie logMAR Chart 
(monocular) 

Contrast 
sensitivity 

Pelli-Robson Chart (monocular) 

Colour vision 100 Hue Score (binocular) 

Reading Speed MNRead (binocular) 

Body Mass Index Height and weight 

Waist to hip ratio Tape measure 
 
Table A1-1. Standard clinical measures 
 
 

Personal 
Data 

Age 

Gender 

Iris Colour 

Family History of AMD 

Lifestyle Smoking 

Alcohol Intake 

General 
Health 

Hypertension 

Cholesterol 

No. of Births and HRT use 

Socio-
demographic 

Years of Education 

Occupation 

Postcode: Deprivation Index 

Ethnicity 
 
Table A1-2. Data collected by questionnaire and taking a medical history. 
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Frequency data was obtained for the measures in Tables A1-1 and A1-2, for analysis 

of differences between the subject groups.  Where normal distributions were present 

(Kolmogorov-Smirnov), parametric statistics were employed to test for statistical 

differences between groups.  Questionnaires were returned with 100% compliance and 

complete data was collected for all subjects, with the exception of reading speed for 

which there were 2 and 4 missing cases in the patient and normal subject groups, 

respectively, due to recording equipment failure.  Figures 1-7 show the frequency 

distributions of risk factors within the patient and normal groups.  Table 3 shows the 

number and average values of various risk factors in the patient and normal groups.   

The results presented here cannot be used to draw conclusions about the risk factors 

of AMD since the distributions displayed here are biased.  The sample was not 

selected randomly from the population and is far smaller than required for an 

epidemiological study.  It is not possible within a local scale to control for all risk factors 

in such a study, therefore there were factors in which differences existed between the 

normal and patient groups.  Nevertheless, it is of use to define the distributions of 

common risk factors within the patient and control groups, since the strongest of risk 

factors may be more prevalent in the patient group compared to the normal group, 

even in a small sample. 

A greater proportion of females to males were present in the patient group (Table A1-3), 

whereas the opposite was true in the normal group, which would appear to support the 

overall evidence from several population based studies that females have a slight 

increased risk of AMD (Evans 2001).  The percentage of the number of births amongst 

females in the patient group was double that of the normal group, however the number 

of births, which was the reported risk factor (Freeman et al. 2005) was similar to the 

normal group.  The majority of subjects had had their blood pressure measured within 

the past year, and a very small minority within the last 5 years.  There were more 

subjects with hypertension in the patient group, a risk factor which has been 

considered inconsistent (Evans 2001).   

Smoking, which is a major risk factor (Christen et al. 1996; Evans et al. 2005; Seddon 

et al. 1996), was not found to be greater in the patient group in this study, rather, the 

opposite was noted, where more control subjects smoked than patients (Table A1-3).  

Age was successfully controlled for between the subject groups.  Many other risk 

factors had similar distributions between the patient and normal groups, such as family 

history of AMD, alcohol intake, years of education ethnicity and obesity.  Normal 

subjects with a family history of AMD were especially motivated to take part in the 
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study.  Therefore it is likely that their proportion was greater than is representative of 

the population. 
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Figure A1-1. Frequency histogram showing the distribution of visual acuity (VA) 
in the patient and normal groups 
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Figure A1-2. Frequency histogram showing the distribution of contrast 
sensitivity (CS) in the patient and normal groups 
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Figure A1-3. Frequency histogram showing the distribution of reading speed in 
the patient and normal groups 
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Figure A1-4. Frequency histogram showing the distribution of 100 Hue total error 
scores in patient and normal groups 
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Figure A1-5. Frequency histogram showing the distribution of body mass index 
(kg/m2) in the patient and normal groups 
 

Standard clinical measures of visual function indicated worsened values in the patient 

group as expected.  The positively skewed distributions of visual acuity (VA) values 

showed good VAs in the normal group which were significantly better (Mann-Whitney U 

test:  Z = -5.445, p < 0.001) than the spread of VAs in the patient group (Figure A1-1).  

A similar pattern was observed in the results for contrast sensitivity (CS), where the 

normal group achieved significantly higher values (Mann-Whitney U test:  Z = -4.373, p 

< 0.001) than the spread of values in the patient group (Figure A1-2).  The reading 

speed of the normal group was greater than that of the patient group (Figure A1-3; 

unpaired t test: t = -4.298, p < 0.001).  Total error score of the Farnsworth-Munsell 100 

Hue test was within normal limits for all subjects except three who had atrophic or 

neovascular disease.  Consequently the normal group achieved a significantly lower 

error score than the patient group (Figure A1-4; unpaired t test: t = 2.372, p = 0.022). 

Although the normal group tended to exhibit greater measures of obesity than the 

patient group (Figure A1-5 and Figure A1-6), the differences did not achieve 

significance for body mass index (BMI) (unpaired t test: t = 0.593, p = 0.555) and waist 

to hip ratio (Mann-Whitney U test: Z = -1.930, p = 0.054).  Age had a significantly 

Gaussian distribution (Kolmogorov-Smirnov: p=0.200), in which the patient and normal 

group did not differ significantly (Figure A1-7; unpaired t test: t = 0.860, p = 0.394).  

Most subjects had blue eyes (Figure A1-8).  
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Figure A1-6. Frequency histogram showing the distribution of waist to hip ratio 
(waist/hip) in the patient and normal groups 
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Figure A1-7. Frequency histogram showing the distribution of age (years) in the 
patient and normal groups 
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Figure A1-8. Frequency histogram showing the distribution of iris colour in the 
patient and normal groups 

 
  AMD Patients 

(total 26) 
Normal Subjects 
(total 22) 

Gender Males 8 (30.8%) 13 (59.1%) 

Females 18 (69.2%) 9 (40.9%) 

Family history of AMD 8 (30.8%) 6 (27.3%) 

Smoking Never 15 (57.7%) 9 (40.9%) 

Current 0 1 (4.5%) 

Past 11 (42.3%) 12 (54.5%) 

Average pack 
years 20.9 (SD 15.5) 19.3 (SD 24.2) 

Alcohol intake Drinkers 19 (73.1%) 22 (100%) 

Average units 
per week 5.7 (SD 7.2) 6.4 (SD 4.8) 

Medication or 
elevated level 

Hypertension 15 (57.7%) 6 (27.3%) 

Cholesterol 8 (30.8%) 7 (31.8%) 

Females only Females who 
had given birth 16 (88.9%) 4 (44.4%) 

Average no. 
births 2.7 (SD 1.1) 2.8 (SD 1.0) 

HRT use 1 (5.6%) 1 (11.1%) 

Socio-
demographic 

Years of 
education 11.6 (SD 3.1) 13.0 (SD 5.0) 

Deprivation 
index 

20709.4 
(SD 9113.9) 

18074.9 
(SD 8688.2) 

Ethnicity - 
White 26 (100%) 22 (100%) 

 
Table A1-3. Risk factors of AMD in the patient and normal groups 
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Similar proportions between groups were present for family history of AMD, subjects 

taking medication for cholesterol and ethnicity (Table A1-3).  There were more females, 

number of women who had pregnancies and subjects taking blood pressure medication 

in the patient group.   

There were less alcohol drinkers in the patient group.  A greater number of subjects in 

the patient group had never smoked, although of the smokers the amount of smoking 

in terms of pack years was similar between groups.  A pack year represents twenty 

manufactured cigarettes, or 20g tobacco, smoked per day for a period of one year and 

is calculated by the following equation: 

Pack-years = (no. of cigarettes smoked per day/20) x no. of years been smoking 

Of the current and past smokers, this was calculated for both groups of subjects and 

similar measures were evident between the groups. 

The deprivation index is a measure which may be determined by postcode and the 

patient group overall came from less deprived areas.  All 32,482 neighbourhoods in 

England are ranked on a range of topics, including income, employment, health, 

education and crime, to give a 'Total Deprivation' ranking.  The most deprived 

neighbourhood in England ranks 1 of 32482 (Indices of Deprivation 2007 

http://neighbourhood.statistics.gov.uk/) 

The Standard Occupational Classification 2000 (SOC 2000) is a classification system 

of occupations, based on two concepts, the nature of the work performed and the skill 

level involved.  The ranking is a four digit number, the first digit of which is classified 

into the following nine groups: 

SOC 2000 Major groups (Office for National Statistics website: www.ons.gov.uk)  

1. Managers and senior officials 

2. Professional occupations 

3. Associate professional and technical occupations 

4. Administrative and secretarial occupations 

5. Skilled trades occupations 

6. Personal service occupations 

7. Sales and customer service occupations 

8. Process, plant and machine operatives 

9. Elementary occupation 

The SOC 2000 values were not significantly different between the patient and normal 

groups (unpaired t test: t = -0.284, p = 0.777). 
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Figure A1-9. Frequency histogram showing the distribution of SOC 2000 major 
occupation groups in the patient and normal groups 
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Appendix 2.  Program instructions 
 
System requirements 

The programs are standalone applications which can run in Windows 95, Windows 98, 

Windows Me, Windows NT, Windows 2000, or Windows XP and with some 

permissions, Windows Vista. 

 

Insert the accompanying disc and click on the main torch icon for either Perimetric 

Fundus Map or Fundus Grading Grid.   

Perimetric Fundus Map 

To generate the visual field locations on the fundus image: 

• In the first window open a bitmap fundus image.  An example image is provided 

on the disc.   

• Enter the macula to disc distance in degrees.  The standard assumption is 15°.  

Click Next.   

• LEFT click at the superior margin of the optic disc, then RIGHT click at the 

inferior margin.  Click OK.  Repeat along the horizontal, using a LEFT and a 

RIGHT click at the disc margins.    

• LEFT DOUBLE click at the macula.  Click Next.  

• The stimulus locations for the 10-2 Humphrey visual field will be displayed on the 

fundus image.  

• The perimetric data can be entered in two ways, as a list or by location.   

To enter perimetric data as a list: 

• Make sure the box “Enter values by location” is unticked. 

• A list of values may be typed or copied and pasted into the textbox. 

• For a numeric display, enter numerals.  For a symbolic display of probability 

values, enter “**1” to indicate p<1%, “**2” to indicate p<2% etc.  

• Click Enter.  The values will be displayed on the map.   

To enter perimetric data by location: 

• Make sure the box “Enter values by location” is ticked. 
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• Enter a value once into the textbox.  Do not press enter.  Click on the 

corresponding visual field locations in the schematic grid, to display the numeric 

or symbol on the map.    

Display options: 

• Select “Display RE/LE on fundus photo” and select RE or LE, to display RE or LE 

on the image. 

• To adjust the colour contrast of the numeric values on the map, make sure the 

box “Enter values by location” is unticked and that numeric values have been 

entered onto the map.  Select “Light” or “Dark” according to visibility over the 

background. 

• To display the vertical downward displacement of the macula from the centre of 

the disc in degrees, select “Display vertical displacement of macula”.  

To save the image:  

• Click Save.  Make sure the file name ends in “.bmp”.  The image will save as a 

bitmap.  

To exit the program: 

• Click Exit.  Answer Yes to “Have you saved your photo?”.   

 

Fundus Grading Grid 

To generate the circular grading grid on to the fundus image: 

• In the first window open a bitmap fundus image.  An example image is provided 

on the disc.     

• LEFT click at the superior disc margin and RIGHT click at the inferior disc margin.  

Click Next. 

Note: At this stage do not click Next without following the next step. 

• LEFT click at the macula.  Click the “Draw Grid” button.  The grading grid will be 

displayed on the image.  Click Next. 

Note: To access the following window without the circular grading grid in place, 

do not click the “Draw Grid” button, simply click Next after defining the macula. 

To measure features on the image:   

• Click OK to begin marking on the image. 
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• Choose a circular feature.  LEFT click and RIGHT click the edges of the feature 

to draw a circle around it.  The diameter, area and nearest circle size (according 

to the International Grading System) will be displayed.   

• Click Add to copy the diameter onto the list in the textbox. 

• Repeat the previous two steps for all features of interest. 

• Select subfield, to display the % area of the subfield covered by the features 

listed in the textbox. 
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Appendix 3.  Rationale for choosing boxplot limits 

The boxplot is a modified histogram and represents a five number summary of a 

sample distribution.  Heijl et al. (1987b) applied the boxplot to represent change over 

time of the pointwise differences between the measured field and the normal field.  The 

box limits used were the 15th and 85th percentiles, whilst the tail limits marked the 0 and 

100th percentiles. 

In Chapters 4 and 7 of this thesis, boxplot representation was used to show change 

over time and between groups of global indices, number of defects and examination 

duration.  It was therefore necessary to consider the nature of this data in determining 

the boxplot limits.  Of the boxplots represented in Chapters 4 and 7, the majority of 

distributions were non-Gaussian.  Kurtosis values were positive in 60% of the total 

distributions indicated by the boxplots.  Where kurtosis values were negative, the 

distributions were nearly mesokurtic. 

The peak of a leptokurtic distribution indicates a larger proportion of values over a 

narrower range.  Narrowing the limits of the boxplot appeared more appropriate to the 

data.  Furthermore, representation of the interquartile range is a standard measure of 

dispersion applied to non-Gaussian data.  An example of both boxplot representations 

is given in Figure A3-1, which shows frequency data from MD values in the patient 

group in Chapter 4. 

   

Figure A3-1. Frequency of standard perimetry MD values in the AMD patient 
group from visit 2 (Chapter 4).   
Two versions of a boxplot are shown indicating the box limits.  The boxplot above was 
applied to the data in this thesis, the boxplot below shows the conventional limits.  
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