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Summary

The Fibre Distributed Data Interface (FDDI) represents the new generation of local area
networks (LAN). These high speed LANs are capable of supporting up to 500 users over
a 100 km distance. User traffic is expected to be as diverse as file transfers, packet voice
and video. As the proliferation of FDDI LANs continues, the need to interconnect these
LANSs arises.

FDDI LAN interconnection can be achieved in a variety of different ways. Some of the
most commonly used today are public data networks, dial up lines and private circuits. For
applications that can potentially generate large quantities of traffic, such as an FDDI LAN,
it is cost effective to use a private circuit leased from the public carrier.

In order to send traffic from one LAN to another across the leased line, a routing algorithm
is required. Much research has been done on the Bellman-Ford algorithm and many
implementations of it exist in computer networks. However, due to its instability and
problems with routing table loops it is an unsatisfactory algorithm for interconnected FDDI
LANSs. A new algorithm, termed ISIS which is being standardized by the ISO provides a
far better solution.

ISIS will be implemented in many manufacturers routing devices. In order to make the
work as practical as possible, this algorithm will be used as the basis for all the new
algorithms presented.

The ISIS algorithm can be improved by exploiting information that is dropped by that
algorithm during the calculation process. A new algorithm, called Down Stream Path
Splits (DSPS), uses this information and requires only minor modification to some of the
ISIS routing procedures. DSPS provides a higher network performance, with very little
additional processing and storage requirements.

A second algorithm, also based on the ISIS algorithm, generates a massive increase in
network performance. This is achieved by selecting alternative paths through the network
in times of heavy congestion. This algorithm may select the alternative path at either the
originating node, or any node along the path. It requires more processing and memory
storage than DSPS, but generates a higher network power.

The final algorithm combines the DSPS algorithm with the alternative path algorithm. This
is the most flexible and powerful of the algorithms developed. However, it is somewhat
complex and requires a fairly large storage area at each node.

The performance of the new routing algorithms is tested in a comprehensive model of
interconnected LANs. This model incorporates the transport through physical layers and
generates random topologies for routing algorithm performance comparisons. Using this
model it is possible to determine which algorithm provides the best performance without
introducing significant complexity and storage requirements.
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Chapter 1 - Introduction

Chapter 1

Introduction

1.0 Introduction

The use of local area networks has grown rapidly over the last ten years. One of the main
reasons for this tremendous growth is due to the increased processing power and reduced
cost of personal computers. This has produced a movement away from large mainframe
centres where users brought information to be processed to bringing the computer to the
user via local area networks. Stallings defines a local area network as "a communication
network that provides interconnection of a variety of data communicating devices within a
small area” [2]. The variety of data devices includes any device that communicates over a
transmission medium. This encompasses such devices as terminals, peripheral devices,

sensors, telephones, facsimile, television transmitters and receivers to name but a few.

The local area network has become in a relatively short time since its conception the
backbone of both the university and corporate networking environments. In some
organizations the cost of having a local area network failing can cost thousands of pounds
in lost earnings within a short time period.

Local area networks in common use today include the 10 Mbps CSMA/CD (carrier sense,
multiple access with collision detection) and the 16 Mbps Token Ring. Both of these
technologies have been standardized by the IEEE 802 committee (referred to as 802.3 and
802.5 respectively) and are designed for use with a copper medium.

As the cost of computer processing power has dropped so too has the cost of lasers and
fibre optic cable. This has led to increased interest in using fibre optics in local area
networks. The advantages of fibre optics over the copper media are many; improved
security, increased bandwidth, less interference to name but a few. Fibre optic LANS are
capable of providing speeds up to 2 Gbps and beyond.

At present the Fibre Distributed Data Interface (FDDI) is the only fibre optic LAN going
through the standardization procedure. Expectations for this LAN are high. Already many
companies have built the required hardware to be incorporated in the LAN. This LAN
runs at 100 Mbps and can support up to 500 users over a 100 km distance. Initial usage
of FDDI LANS is expected to be as a backbone connecting CSMA/CD and Token Ring
LANSs together around a single site.

14



Chapter 1 - Introduction

As the use of FDDI LANS increases, so to will the desire to interconnect geographically
remote FDDI installations. This is the problem of corporate networks, where each
individual office around the country, or even world, has its own LAN. Interconnecting
these LANS to enable the sharing of information and facilities presents a multitude of
problems.

One of the problems of interconnecting remote LANS together is how to send traffic from
one LAN to another. Routing is the set of algorithms which attempt to find the best path
from the source LAN to the destination LAN. A special microcomputer on each LAN,
called a gateway, is in charge of selecting the best path to be used to forward data from
one LAN to another. This is achieved by exchanging information about the networks
between gateway devices. Routing algorithms are essential for the smooth operation of an
interconnected LAN environment.

The first implementation of a routing algorithm in a computer communications network
was in the ARPANET sponsored by the U.S Department of Defence. This work inspired
much research and many routing algorithms have been developed as a result. Many of
these algorithms have been designed for networks where the amount of traffic generated
is relatively low. These algorithms are unsatisfactory for an FDDI LAN internetwork
which is capable of generating a vast quantity of traffic within a very short time interval.

The objective of this work, therefore, is to develop a practical routing algorithm for
interconnected FDDI LANs. Although the routing algorithm will be developed for an
FDDI internetwork they are suitable for use with any LAN or packet switching network.

Chapter 2 provides an overview of the FDDI LAN and the various methods that can be
used to interconnect remote LANSs. The chapter also discusses routers and bridges and
suggests which technology is more suitable for interconnected LANGs.

Chapter 3 begins by giving an overview of routing algorithms, their function and one
common classification method. It goes on to discuss the four algorithms which operate
independently but interact to perform the routing function. Since the choice of routing
algorithm is highly dependent on the type of network under consideration, a section of
this chapter is devoted to examining the type of network to be considered. This chapter
provides a framework for the type of algorithm that may prove satisfactory for an
interconnected FDDI LAN environment.

Chapter 4 concentrates on one particular type of algorithm - the so-called Bellman-Ford
algorithm. The characteristics of this algorithm are discussed and the relative merits and
demerits of the algorithm are presented.

15




Chapter 1 - Introduction

Chapter 5 presents an algorithm that was originally produced by Dijkstra. A modified
form of this algorithm has been adopted by the standards bodies for use in interconnected
LANs. A new algorithm which exploits information discarded by the standard algorithm
is presented.

Chapter 6 introduces alternative path algorithms. These algorithms allow the use of higher
cost paths to be used during times of congestion on the main paths. Three new algorithms
which are based on the standard algorithm are presented and analysed

Chapter 7 combines the algorithms of chapter 5 with those of chapter 6. These are
referred to as combination algorithms.

Chapter 8 presents the simulation model used to derive the results for the previous routing
algorithms. This simulation model is fairly comprehensive and the various protocols used

in the simulation are discussed.

The thesis is then concluded in chapter 9
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Chapter 2

LAN Interconnection

2.0 Introduction

In the 70's and early 80's many different computer manufacturers had different
methods of communicating with their proprietary product. This meant that if a user
purchased IBM equipment he was then tied to that manufacturer for all subsequent
purchases of network equipment. Large companies such as General Motors and Boeing
Aircraft Corporation, which utilized a vast number of computers throughout their
organizations, felt it was not in their best interest to be tied to one manufacturer. As
such, pressure from these companies was put on to the International Standards
Organization to come up with some standards to which the computer companies would
abide to allow machines from one company to communicate with those of another
company. Needless to say, such an idea was met with considerable resistance from the

computer manufacturers.

Nevertheless, the ISO came up with the Open Systems Interconnection (OSI) reference
model. The theory being that if manufacturers were in agreement as to what each layer
of the model did, then communications between different machines could easily take
place. Systems were then said to be 'open’. Computer manufacturers are slowly
moving toward the OSI model in their products. However, with literally thousands of
IBM and Digital networks already in existence it is unlikely such a transition will occur
overnight, if ever [1].

Due to the complexity of interconnecting computers to allow them to communicate,
network functions are always divided into a series of layers, each with a specific task to
perform [3]. The OSI reference model consists of seven layers as shown in figure 2.1.
The application through session layers of the model are of no interest in this theses
since they have no bearing on the interconnection of LANs or the subsequent simulation
model.
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Chapter 2 - LAN Interconnection

Layer 7 Application
Layer 6 | Presentation

Layer 5 Session

Layer 4 Transport
Layer 3 Network
Layer 2 Data link
Layer 1 Physical

Figure 2.1 The seven layer OSI model.

21 LAN Standards
The OSI model has adopted the standards developed by the IEEE 802 committee for

local area networks, they are the 8803, 8804 and the 8805 which correspond to the
CSMA/CD (802.3), token bus (802.4) and token ring (802.5) respectively. The IEEE
standards fit into the data link layer of the OSI model as shown in figure 2.2. The data
link layer is further split into the medium access control sublayer (MAC) and the logical
link control sublayer (LLC).

Upper layers

E_atli; 802.2 LLC 802.2 LLC 802.2 LLC 802.2 LLC
in

Layer 802.3 MAC 802.4 MAC 802.5 MAC FDDI
Physical - _ :
Layer Coax Coax Twisted Pair Fibre

Figure 2.2 The data link and physical layers of the four standard networks.

2.2 The Fibre Distributed Data Interf

The Fibre Distributed Data Interface (FDDI) is the most recently standardized of the
four local area network technologies. FDDI has been standardized by the ANSI X3T9.5
committee and uses the logical link control defined by the IEEE. The four LAN
standards and how they relate to the OSI model are shown in figure 2.2. FDDI is a fibre

optic token ring network which operates at a data rate of 100 Mbps and can support up
to 500 stations over a 100 km distance. The FDDI protocol has used the IEEE 802.5 16
Mbps token-ring protocol as a starting point and modified it where necessary to to cope
with the higher speed. The advantages of fibre optics over conventional copper are
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many and include greater bandwidth, lower attenuation, less noise, greater security and
lower cost [4,7].

2.2.1 FDDI Operation
Access to the fibre optic medium of FDDI is by way of a token which circulates around

the ring. Stations on the ring remove the token and are then permitted to transmit any
data which they may have until their token timer expires. Upon expiration of this timer a
station must release the token allowing other stations on the ring to transmit. The
medium access technique of token passing works well under heavy traffic loading and
often outperforms contention based techniques such as CSMA/CD [28].

The FDDI ring is a combination of two independent counter rotating rings, each
running at 100 Mbps. Both rings have their own tokens which they are responsible for.
If both rings operate simultaneously the effective throughput is 200 Mbps. The
advantage of having two rings is that if one fails, the network can reconfigure using the
other ring and still keep operating. This ring reconfiguration occurs as shown in figure
2.3. When a link failure occurs, the stations on either side of the fault make use of the
opposite direction ring in order to isolate the failed link. Following ring reconfiguration,

only one token remains in circulation.

Normal
B
<
Reconfigured
< é ,
—>

Figure 2.3 Reconfiguration of an FDDI LAN following link failure.

The nodes connecting to the rings are divided into two categories: class A and class B.
Class A stations connect to both rings simultaneously, whereas class B stations only
connect to one ring. Class B stations can therefore be implemented at a lower cost than
the class A stations. The disadvantage of this is that a class B station may become
isolated if its link fails. Class A stations on the other hand, require additional hardware
to connect them to both rings but are protected against failure. Normally those stations
that require an element of fault tolerance are configured as class A stations. Less critical

stations can be configured as class B.
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Chapter 2 - LAN Interconnection

2.2.2 Usage of FDDI

Originally, FDDI was proposed by ANSI as a back-end network between mainframe
computers and their peripherals. Later the committee expanded the scope of FDDI to
emphasize application as a backbone network between lower speed LAN's such as the
IEEE 802 networks. Finally, use as a front-end, next generation LAN between

powerful workstations is expected. Such connections to every desk will probably not
take place until the cost per connection drops sufficiently. Figure 2.4 shows FDDI as
both a back end network and a backbone to lower speed LANs [5,6].

m G: Gateway WC: Wiring concentrator
v P: Printer DC: Disk controller
T: Terminal TC: Tape controller
FDDI DA EWS: Engineering workstation

— o
A
CPU ™ =

CPU G
IEEE 802.4
IEEE 802.5 FDDI
(Front-end) (Backbone) PBX
T N6
} v \ o
P T W >
IEEE 802.3

\P/ EWS EWS =

Figure 2.4 FDDI as both a backbone and back end LAN

s

Many users demanding high performance networking will install FDDI at different sites
and then want to connect these installations while sacrificing as little performance as
possible between the sites [8,9].

FDDI at remote sites can be interconnected in a variety of ways. The choice of which
method to use is based on many factors which include inter-site traffic volume, cost of
the links and the distance between the sites. All three issues are intertwined and it is not
possible to consider one without the other. This section will look at various ways of
interconnecting FDDI LANES.

Methods of interconnecting FDDI LANs which are readily available today include
single-mode fibre, dial-up lines, public data networks and leased lines. Other methods,
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Chapter 2 - LAN Interconnection

such as metropolitan area networks, frame relay and SDH links are not yet widely
available. Each technology has its supporters and detractors. In a real internetworking
environment it is highly likely that a variety of the above methods would be used.

2.3.1 Interconnection by Single Mode Fibre

The FDDI standard defines two different physical layers that can be used with the
technology. These are the use of multi-mode fibre and single mode fibre. Multi-mode
fibre is a cheaper technology which uses low cost LED's for signalling whereas single-
mode fibre requires lasers for signalling. However, single-mode fibre allows the signal
to traverse distances of up to 50 km before repeaters are needed as compared to 2 km
for multi-mode fibre [9].

The distance between two, or more, FDDI LANs can be increased by using single
mode fibre between sites. This is achieved by breaking the FDDI multi-mode fibre
LANs open and inserting the single mode fibre between the sites as shown in figure
2.5. Interconnecting LANS in this way can extend the distance between LANSs to that of
a metropolitan area. However, it is not without its problems.

This method is not bandwidth efficient. A station waiting for the token must wait for it
to circulate around the entire extended ring before being allowed to transmit. This is
referred to as token latency. If the ring is large this may lead to unacceptable delays for
a station. Additionally if one of the rings fails and wraps, this problem is exacerbated
and the delay experienced will provide an unsatisfactory service.

Even if an organization has a right-of-way agreement, (such as power companies,
waterways, railways etc) acquiring, installing and maintaining single mode fibre is an
expensive undertaking. It is possible that public carriers could supply such fibre,

however, it would still remain a very costly exercise.

Two pairs of
/ single-mode fibre

Figure 2.5 FDDI LLANs interconnected via single-mode fibre.
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The above physical layer interconnection method sends all data, regardless of
destination, over the entire ring. This means that local traffic will experience the same
delay as traffic destined for some remote LAN. In order to overcome this problem,
devices can be inserted between the LANs which only forward traffic which is destined
for a remote LAN. In this way, lower speed links can be used to interconnect the
remote LANs. Using these filtering devices each LAN remains autonomous, and the
bandwidth inefficiency problem is relieved. Additionally, it produces an overall increase
in network performance when most of the traffic is local.

There are several different wide area networking technologies which can be coupled to
filtering devices to allow inter-site LAN connection.

2.3.2 Interconnection by Public Data Networks
Public data networks (PDNs) are very commonly used for interconnecting todays

CSMA/CD and token ring LANs. They are almost always based on the connection
oriented X.25 set of standards. British Telecoms Packet Switched Stream (PSS) is an
example of such a PDN. Charging for PDNs is based on the number of packets that a
user sends over the network [89]. The use of PDN's for interconnecting FDDI LANs
may be justified if the amount of traffic emanating from the LAN is small.

2.3.3 Interconnection by Circuit Switched Links

Circuit switched, or dial-up-lines are simply telephone lines coupled to a modem. These
lines can be called up when required such as during periods of congestion on the main
links. The charging for the use of these lines follows the standard .:iephone system.
These lines are cost effective for transmissions that have a large number of bits per call
[89].

2.3.4 Interconnection by Leased Lines

Dedicated lines leased from the public telephone company can offer a variety of speeds
for LAN interconnection. The most commonly used speeds for such interconnection are
the 64 kbps (Kilostream) and the 2.048 Mbps (Megastream) links available from British
Telecom. Charging for such networks is on a per link basis and will be constant
regardless of the number of packets sent down the line. Leased lines are the most
common method for interconnecting LANs. They allow almost unlimited distance
between remote LANs and give the organization using them tremendous freedom in

designing the network [89].
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Figure 2.6 Tariff vs volume and volume vs bits/call for various wide area networks.

The choice between the three WAN technologies is based on the following
considerations; tariff, traffic volume and bits per call. The relationships between these
parameters and the three technologies are shown in figure 2.6. The technologies are
shown pictorially in figure 2.7 interconnecting FDDI LANS.

Dial-up Leased lines
links

Figure 2.7 PDN, dial-up links and leased lines interconnecting FDDI LAN:S.

FDDI is capable of generating a great deal of inter-LAN traffic. Additionally, a large
network may have LANs spread over hundreds or even thousands of miles. For the
above reasons it is justifiable to utilize leased lines from the public telephone
companies. Using leased lines has become the de facto standard for interconnecting
todays corporate LANs.

2.3.5 B-ISDN

The above methods of LAN interconnection (with the exception of the single mode fibre
approach) are considered the traditional methods of remote LAN interconnection.
Indeed, many large networks may employ all three methods of interconnection.
However, the public carriers are looking towards implementation of the Broadband
Integrated Services Digital Network (B-ISDN). This is a cell based fast packet
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switching technology which can support services as diverse as real time telephony and
video transmission on the same high speed link.

The transition to full B-ISDN will not take place overnight, an evolutionary process is
expected [10]. This process will generate solutions to the LAN internetworking
problem which may rival those presented in the previous section. A brief overview of

these intermediate technologies is in order.

2.3.6 Interconnection by MANs
The IEEE 802 committee has standardized the Distributed Queue, Dual Bus (DQDB)
technology as 802.6 for use as a metropolitan area network [11,12]. Metropolitan area

networks (MANSs) are larger than local area networks but smaller than wide area
networks. They use the same medium access control schemes as LANs and cover the
area of a large city. MANSs are operated by the public telephone carrier and allow
subscribers to the service to communicate with one another. The disadvantage of such a
system is that it is limited in geographical coverage. Charging for the system is likely to
be on a per packet basis as it is with the PSS.

2.3.7 Interconnection by Frame Relay

Frame relay is a new ISDN packet mode bearer service provided by the public carriers.
It is a data link layer technology which provides connection-oriented service to the user
at speeds up to 768 kbps [13,14]. This is simply the carriers' answer to updating the
PDN's that are in common use. However, frame relay provides much higher speeds
and since it operates at the data link layer (as opposed to X.25's network layer) the
amount of processing required at each switching node is much lower. Frame relay

offers a far better solution to the internetworking problem than todays PDNGs.

2.3.8 Interconnection by SDH
To overcome the expense of single mode fibre, the new 155.52 Mbps synchronous

digital hierarchy (SDH) links can be used. The entire FDDI symbol stream is mapped
directly into the SDH synchronous payload envelope [9]. The carrier is then responsible
for regenerating the FDDI signal which will allow an almost unlimited distance between
FDDI LANs. This is shown in figure 2.8. The SDH links are bidirectional, so each
one replaces two unidirectional single-mode fibres. However, although the distance
between LANs can be greater, the problem of token latency remains. Links slower than
SDH lines such as the Kilostream and Megastream links can not be used in this physical
layer configuration since they would reduce the performance down to an unacceptable

level.
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Figure 2.8 FDDI LANS interconnected via SDH links.

Even when the full B-ISDN has been implemented, it is anticipated that many users will
still require leased lines for some applications. Frame relay and DQDB are seen by
many as simply stop-gap solutions before full B-ISDN implementation. It is for this
reason that some users are embracing the new technologies with something less than

enthusiasm.

It is therefore assumed in this thesis that the remote FDDI LANSs are interconnected
using leased lines.

The above interconnection methods are summarized in table 2.1.

o | B, [ [
Single-mode fibre metropolitan area | per link high
SDH lines (physical layer) | unlimited per link high
Circuit-switched lines unlimited per call low
Public data networks unlimited per packet | medium

Metropolitan area networks | metropolitan area | per packet | medium

Frame relay unlimited per packet | medium

Leased lines unlimited per link high

Table 2.1 Summary of various wide area networking technologies.
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2.4 LAN I ion - Devi
In order to connect FDDI LANS to the wide area network technology, relays which
forward packets from one LAN to another are needed. These devices can operate at any
layer of the OSI model. A few of the more common device names and the layer that
they relate to are shown below [19].

repeater : physical layer
bridge : data link layer

router : network layer

The above terminology is not universally accepted. Routers are often termed Interface
Message Processors (IMP), intermediate systems or even gateways. However, in this
theses the term router will be used to indicate a layer three device.

In general the more layers of the OSI model that are used to achieve interconnection, the
greater the complexity of the device. However, with the increased complexity comes the
ability to cope with a greater number of differences between connecting networks.

Repeaters are the simplest devices that can be used for interconnecting networks. They
take in all bits from the input port and simply copy them, regardless of destination to the
output port at a higher signal level. Since there is no processing to be done on packets
as they pass through the repeater, packet delay through the device is very low.
Repeaters can be used for interconnecting FDDI LANSs by single-mode fibre and SDH
links as discussed in the previous section. This method was shown to suffer problems

with token latency.

Instead of forwarding all traffic regardless of destination as repeaters do, bridges and
routers can be used to filter out intra-LAN traffic from inter-LAN traffic and forward
only the latter. There is great debate over which technology offers a better solution for
interconnecting LANs [15,16,17,18,20]. This section will briefly examine the issues
and suggest which technology is better for use in a network of FDDI LANs
interconnected with leased lines.

2.4.1 Bridges
The IEEE 802 committee has standardized two types of bridge. The spanning tree

bridge and the source routing bridge. Most bridges on the market today, if not all,
correspond to one of these two standards. Bridges by definition, operate at either the
Logical Link Control (LLC) sublayer or the Medium Access Control (MAC) sublayer of
the data link layer (figure 2.9). Both of the IEEE 802 bridges operate at the MAC layer.
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Figure 2 Il f
2.4.1.1 Spanning Tree Bridge

The spanning tree bridge or transparent bridge accepts every frame on all the LANSs to
which it is attached [1,22]. When a frame arrives, a fairly simple routing algorithm is
performed to determine which LAN a frame should be retransmitted on. The routing
procedure is as follows:

1. If the destination and source LANSs are the same, discard the frame.
2. If the destination and source LANs are different, forward the frame.
3. If the destination LAN is unknown, use flooding.

(If a frame is 'flooded’ it is sent out on all the available links accept for the one on
which it was received. Flooding will be discussed further in the next chapter.)

This routing procedure does have its' disadvantages. If two bridges are used from one
LAN to another, to improve reliability, loops can occur. This can be seen in figure
2.10. If each bridge receives a frame, with an unknown destination, from LAN 1 it is
flooded onto LAN 2. Bridge 1 and 2 will then forward each others frames back onto

LAN 1 and the cycle begins again.

Bridge 1

LAN 1

Bridge 2

- A

Figure 2.10 Looping of packets in a spanning tree bridge.

LAN 2
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The solution to this problem is for each bridge to communicate with each other and
overlay the actual topology with a spanning tree that reaches every LAN. Since a unique
path exists from each source to destination, loops are avoided. Bridges which are not
in use are 'blocked' and are not used to transmit traffic. These bridges can become
'unblocked' if a link or bridge failure occurs and a new spanning tree of the network is
then calculated. Following this procedure, operation of the network can then continue
using the new topology (figure 2.11).

LAN:
Blocked Path: -----
Bridge: [

igure 2.11 nnin ri n I

Installation of transparent bridges requires no hardware or software changes, no setting
of address switches and no downloading of routing tables. It is an excellent technology
for the interconnection of local area networks around a campus. However, more
relevant to this section is how these devices perform when connected to a series of

leased lines.

Spanning tree bridge technology can be used in the wide area network environment
with a slight modification. Instead of having a single bridge between two LANs, each
network has what is termed a 'half bridge' or remote bridge (figure 2.12) [21]. These
operate very much as described above. However the shortcomings of the spanning tree
bridge become quite acute in a wide area network.

Application Application
Presentation Presentation
dession REMOTE Session
Transport BRIDGE ‘Transport
Network Network
Data Link Data Link Data Link Data Link
Physical Physical Phﬁsical thsicai
Leased Line

Figure 2.12 OSI layers of a remote bridge.
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One of the biggest problems with the device is its' inability to cope with multiple routes
between destinations. If the links between the LANs in figure 2.11 are now considered
to be wide area network leased lines the problem begins to emerge. As discussed
previously, leased lines cost money whether they are carrying any traffic or not.
Therefore, using spanning tree bridges with certain links in blocked mode is
uneconomical and does not allow for the optimal use of links.

2.4.1.2 Source Routing Bridge
As discussed above, spanning tree bridges do not make optimal use of the bandwidth,

since they only use a subset of the topology. It is for this explicit reason that the 802
committee produced its second bridging standard for the source routing bridge (figure
2.13).

Very simply, source routing requires that the sender of each frame knows whether or
not the destination is on its own LAN. If the frame is destined for a different LAN, the
source machine must set the high order bit of the destination address to a '1' otherwise
it must be left as a '0'. In addition, it includes in the frame header the exact path that the
frame is to follow [23,24].

To find the route that the frame must follow is an integral part of the source routing
algorithm. If a particular destination is unknown, the source transmits a broadcast frame
asking where it is. This so called 'discovery frame' is copied by every bridge so that is
reaches every LAN on the network. When the destination is found it sends a reply back
to the source via every bridge that was used to construct the initial path. The sending
station is then presented with a multitude of paths with the result being that the sender

|  §
— f

LAN:
Bridge: [H

chooses the best route.

—1

Figure 2.13 Source routing bridged network.
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The use of source routing bridges in interconnected leased line WAN certainly looks
appealing particularly with it 'best route' mechanism. Unfortunately, even with this
technique there is an underlying problem. This difficulty stems from the use of the
discovery frames.

For each bridge on the network one discovery frame is produced. If a network exists
with LANs all interconnected by three bridges (not an unusual situation) then the
following situation will result: The three brid ges will each forward the discovery frame
to the next LAN producing three more discovery frames. The next bridge will produce
nine frames and so on up until the final LAN is reached. By the time it reaches the Nth
LAN, 3N frames will be circulating. If 10 sets of bridges are crossed, almost sixty
thousand frames will be injected into the final LAN causing tremendous congestion.
This situation also develops with the spanning tree bridge, but since only one route is
available the frames increase on a linear basis, not on an exponential one [1].

For LANS interconnected around a campus site, the spanning tree bridge is probably a
better performer than the source routing bridge. The ability of the bridge to only use a
subset of the topology is not a problem in such a network since redundant links cost
nothing following installation.

Although the spanning tree bridge may be better than the source routing bridge in a local
setting, neither is truly satisfactory in an environment of interconnected LANs over
leased lines [25,26].

2.4.2 Routers
Routers operate at the network layer of the OSI model (figure 2.14). This means that
they must utilize a protocol above the basic 802.2 LLC protocol. Some of the most
commonly used network layer protocols are listed below:

1. ARPA IP

2. DNA network layer

3. XNS network layer

4. ISO 8473
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Application Application
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Physical Physical Phisical ‘ thsical

Figure 2,14 QST layers of a router.

One of the biggest problems encountered in an extended LAN is that of addressing. In a
bridged network, addressing must be common across all links or some simple mapping
must exist. This in turn means there is a practical limit on the total network size that can
be supported. This problem does not occur in a router network since all stations have
agreed on a common network layer address space. Addressing can, therefore, be done
hierarchically which means an almost limitless size network can be supported [17,18].

Two problems with a bridged network were discussed in the previous section. These
are the problems of inefficient use of links (spanning tree bridge) and the flooding of
discovery frames to unknown destinations (source routing). The router overcomes
these problems by utilizing network layer protocols which provide an active
handshaking protocol between routers and end stations. This protocol allows routers to
determine with greater precision, the location of a station. It is for this reason that
routers can use an arbitrary network topology and can select routes based on a variety
of metrics.

In a bridged network, packets which are larger than a link permits will not be delivered
to a station on that link. This is because data link layer protocols do not contain
sufficient information to do packet reassembly. A solution to this problem is to specify
a maximum packet size for the entire network. In contrast, most network layer
protocols provide a fragmentation and reassembly mechanism which rules out the need
for any network wide packet size limitation.

For interconnecting LANs across leased lines to another distant LAN routing
technology is very appealing. It is very efficient at using bandwidth, implements
congestion and flow control, allows variable packet sizes and can be used in large
networks. Unfortunately, due to the extra processing requirements, the router can only
handle about one third the frame throughput rate of a bridge and is sometimes the cause
of the bottle-neck between connecting LANs. However, router technology is rapidly
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advancing and the higher throughput of the new breed of routers 1s making them more
attractive all the time [15]. Bridges and router devices are summarized in table 2.2.

Router Spanning-Tree| Source Routing
Bridge Bridge

SI Layers 1,2,3 1,2 1,2
Protocol Dependent yes no no
Different Frame
Size support yes no no
[Load Balancing yes no no
Multiple Routes yes no no
Address Change yes no no
Transparent no yes no
Fault Tolerant yes yes yes
Error Checking good poor poor
Throughput low high high
Flow Control good poor poor
Routing complex simple simple
Type of Service yes no no
Suitable for
Large WAN yes no no

Table 2.2 Internetworking devices compared.

It is likely that in an actual network using FDDI as a backbone LAN that ail three
relaying devices will be used. The most common uses for these devices are shown in
figure 2.15. Repeaters are shown connecting some CSMA/CD segments which are in
turn connected via a bridge to the backbone. A token ring LAN and a bridged
CSMA/CD network are also bridged to the FDDI. Finally, routers are used to connect
the FDDI LANS to remote sites via leased lines [27].
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Figure 2.15 Repeaters, bridges and routers in an FDDI network.
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2.5 Conclusion

FDDI represents the next generation of hi gh speed local area networks which has been
designed to meet the needs of several different networking environments. Even with the
100 km distance that FDDI can support, users will want to connect remote FDDI sites
together.

Interconnection can be achieved in a variety of different ways, the selection of which
depends on many factors. Leased lines offer one of the most cost effective and flexible
solutions to the FDDI internetworking problem. Leased lines are expected to be in use
even after implementation of the B-ISDN.

In order to connect FDDI LANS to leased lines, bridges or routers can be used. Bridges
are an excellent technology for interconnecting LANSs around a sin gle campus site. For
a large internetwork with multiple links they are less satisfactory; routers offer the best

solution for such a network.

The remainder of this thesis will examine routers in a network composed of
interconnected FDDI LANSs using leased lines.
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Chapter 3

Overview of Routing Algorithms

3.0 Introduction

A router, as its name suggests, requires a routing algorithm of some description in order
to forward packets from one LAN to another. This routing functon is one of the principle
tasks of the OSI network layer. In a single LAN, this network layer is minimal since the
routing problem is trivial. Packets are simply placed onto the medium, no routing is
required. Routing algorithms become important when there is a choice of paths available
from a source to a destination.

Routing algorithms are mainly used in the traditional wide area network, however they
become applicable to LANs when they are interconnected via routers across leased lines.
In this context there is little difference between a wide area network and a local area
network. Therefore, it is necessary to look at the switching mechanisms used in wide area
networks to see which are suitable for implementation in a LAN internetwork.

There are many algorithms in existence both in the literature and in actual network
operation [32]. In order to reduce the selection of potential algorithms it is necessary to
examine the type of environment that the algorithm is expected to operate in. This will
involve, among other things, looking at characteristics of the LAN being interconnected,
the four routing procedures that make up an algorithm and finally how adaptive the
algorithm should be. From this examination it is possible to specify some of the attributes
that a routing algorithm should possess for an interconnected FDDI LAN environment.
Only after this framework specification is it possible to begin designing a suitable

algorithm.

3.1 The Ideal Routing Algorit

Bell and Jabour define the attributes of an ideal routing algorithm as follows [31]:

-Correctness: The algorithm must work.

-Computational simplicity: The algorithm must use a minimum amount of processing

capacity at each router so as not to unduly increase packet delay.
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-Adaptiveness to changing traffic and topologies or robustness: The algorithm must be
able to adapt to changing levels of traffic flow through the network and to find alternative
routes when routers and/or lines fail or come back into service.

-Stability: The algorithm must be able to converge to an acceptable solution without
excessive oscillation while adapting to changing traffic and topology.

-Fairness: The algorithm must be equitable to all users.

-Optimality: The routing algorithm should be able to provide the 'best' route that
minimizes mean packet delay and maximizes throughput.

The attributes of faimess and optimality are often contradictory goals as can be seen in
figure 3.1. Suppose that there is enough traffic between A and A’, between B and B' and
between C and C' to saturate the horizontal links. To maximize the total flow, the X to X'
traffic should be shut off altogether. Unfortunately, this is somewhat unfair to X and X'.
Some compromise between global efficiency and fairness to individual connections is
needed [1].

A B C

Al BT Cl

Figure 3.1 The trade off between fairness and optimality

The effects of good and poor routing strategies on average packet delay (quality of
service) and throughput (quantity of service) are shown in figure 3.2 [30].

*

Poor
Delay Routing
Good
Routing
—p
Throughput

Figure 3.2 The effects of poor and good routing on delay and throughput.
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It is obvious that it is not possible to produce an ideal algorithm. There are many trade
offs that the network designer can make in order to optimize one thing or another. As
such, they can only be used as points to keep in mind during the design process.

3.2 Inter-Net kK _Cl . .
The choice of routing algorithm is highly dependent on the type of inter-network that the
algorithm is expected to operate in [29]. To emphasize this, a routing algorithm for a
mobile network in a hostile environment where nodes and links can at any moment be
destroyed is very different from a routing algorithm for a computer communications
network interconnected by reliable links.

A network comprised of interconnected FDDI LANS usin g leased lines would exhibit the
following characteristics:

-Connection-oriented transport layer, connectionless network layer.
Most local area networks in use today utilize a connection-oriented transport layer and a
connection-less network layer in the end system. Connection-oriented service is very
similar to what happens in a public telephone network. The customer first dials a number
to set up a connection. The connection is accepted and the two parties exchange data by
talking. Finally the connection is broken. The two users are presented with the illusion of
a dedicated, point to point channel that always delivers information in the order it was sent

[1].

Connectionless service, on the other hand, is like the postal system. Each letter carriers
the full destination address, and is totally independent of any letters that were sent before
it. For this reason letters don't always arrive in the order that they were sent. If the
postman accidently drops a letter, the postal system does not time out and send a
duplicate. It is up to the users to sort the letters in order and re-send a letter if it doesn't

arrive.

On a LAN, the transport layer in a host (say host A) sets up a connection with its peer
process in the destination host (host B). Packets from host A travel down the transport
layer to the physical medium gaining additional headers as it traverses each layer of the
OSI model. This is sent across the medium to host B where the opposite occurs. Each
layer in host B strips off the appropriate header as the packet passes up through the
layers. If the packet is lost anywhere along the route, the transport layer times out and
sends a duplicate. Likewise, if the packets don't arrive in order it is up to the transport
layer to sort them out. This service ensures that packets which are passed up to the
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session layer are in order, error free without any duplications. One of the best examples
of a connection-oriented transport layer and a connection-less network layer service is the
well known TCP/IP (Transmission Control Protocol / Internet Protocol) protocol suite.

The type of service used by the transport and network layer often dictate the types of

service used above and below these layers. Figure 3.3 shows the services commonly
used by the other layers.

Connection-oriented

Application

P Application

Connection-oriented

Connection-oriented

Connection-oriented

Connectionless

Connectionless

Physical Physical

LAN Medium

Figure 3.3 Commonly used LAN service types.

There are basically two different ways of arranging the link between remote LAN S, one
using connections the other operating connectionless. These methods are referred to as
virtual circuits and datagrams respectively. It must be stressed that this is relevant to the
internal operation of the subnet and is an independent issue to the type of service provided
by the network layer. For example, it is possible to use a connectionless network layer
coupled with virtual circuits. This may be used when very high reliability of the link is
required. There is great debate over whether the network layer should provide a
connection-oriented or connectionless service and whether datagrams or virtual circuits
should be used within the subnet. However, the most common and simplest method for
interconnecting LANS that use a connectionless network layer is to use datagrams within
the subnet. Using datagrams means that the intermediate system can route successive
packets independently. The transport layer responsibility has now transferred from coping
with a single LAN to having to cope with an entire network. This can be seen in figure

3.4.

38



Chapter 3 - Overview of Routing Algorithms

CLNS: Connectionless Network Service
LLC(1): Logical Link Control (type 1)

— Connection-oriented
Application m
Presentation Connection-oriented Pntalion
m Connection—oriemcd -
'

Connection-oriented T
—rans rt
CLNS Datas i

[ Retwork ] [ Neivor| - Deamans CLRS
ﬂ"m_ -
Physical ] [ Physical ]

LAN Leased Line LAN

Figure 3.4 Service classes commonly used across a LAN internetwork.

- Links: In this study the links connecting the FDDI LANS are assumed to be lines
leased from the public telephone company. These lines are usually very reliable and the
failure rate is extremely low. The 2.048 Mbps Megastream links and the 64 kbps
Kilostream links from British Telecom run at speeds approximately 50 and 1560 times
slower respectively than an FDDI LAN. A Megastream link is the equivalent of 32
Kilostream links but only costs ten times as much.

-Topology: The topology of a LAN internetwork very often develops randomly.
Links are invariably added between LANs with no global structure in mind [38). The
topologies also tend to be very stable in that links and routers are added and taken away
from the network quite infrequently. Due to fairly high cost of the leased lines, the
number of links used is normally kept to a minimum. For this reason, the resulting

topologies are generally sparsely connected.

-Traffic loading: A rule of thumb for interconnected LAN is that, on average,
10% of the traffic is inter-LAN and the remaining 90% is destined for local stations [15].
If the number and speed of the links are chosen to minimize the cost and still provide a
satisfactory throughput for this average load, then there is very strong possibility that
periodically more inter-LAN traffic will arrive at the router than the network is able to
handle. It is therefore extremely important that the routing algorithm is able to cope during

times of heavy traffic loading.

- LAN rraffic characteristics: FDDI can support a wide variety of traffic types,
ranging from file transfers to packet voice and video transmissions, each one having
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different delay requirements [4]. File transfers would consider accurate delivery more
important than a timely delivery. This is in contrast to packet voice and video where delay
is critical and accuracy is less important. Traffic of this nature tends to arrive at a station in
bursts. This means that during the course of a call several packets may arrive all at once
followed by no arrivals followed by another burst of traffic.

- Routers: The routers in use today are far more reliable and have a lower failure
rate than those used in the past. In addition, with the tremendous drop in cost, router

memory is no longer the scarce resource that it once was. Router throughput, due to faster
processor speeds, is also rapidly increasing.

Having defined the type of environment that the algorithm is expected to operate in, it is
necessary to examine routing algorithm characteristics.

lgori har risti
Routing algorithms have many characteristics which are often used for classification
purposes. There are many different methods of classifying routin g algorithm; a partial list

is shown below.

Centralized vs distributed control: In a centralized network, a control centre is responsible
for gathering information about the entire network and constructing the routing tables.
These tables are then downloaded to every switching node which are then used for packet
forwarding. Centralized networks tend to be used when there is a single mainframe
computer which many users wish to communicate with via dial-up links. The major
difficulty with such schemes is the reliance on a single control centre to handle the
network. If the control centre fails, the entire network may go down. This is not a
problem in distributed networks where every switching node is responsible for making its
own decisions. A router failure can be isolated and network operation can continue.
Distributed networks are, therefore, far more robust than their centralized counterparts
[1,39]. Since LANS are by their very nature distributed systems, there is little to be gained
by employing a centralized routing algorithm.

Non-adaptive vs adaptive: A routing scheme may be non-adaptive in that packets always
take the same route from source to destination regardless of the prevailing network
conditions. These routing decisions are made at the network set-up time and not changed
thereafter. Adaptive routing schemes allow the decisions about packet forwarding to
change with time. Adaptive algorithms can be further differentiated on the basis of 1)
frequency of adaptation, (ie by packet, by message, by session or by duration of network
configuration and 2) type of adaptation (ie to topological changes to average network
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delays or to local queue lengths) [32,39]. Algorithm adaptivity is a very big issue that will
be covered in depth later in this chapter.

Global vs local information: The information that is used to make a routing decision can
be local, global or a combination of both. Local information consists of the status of the
outgoing links the associated queue sizes or the number of virtual circuits running through
a router. Global information consists of network topology and the network status such as
average link delays and nodal congestion. The choice between global and local
information will be discussed in the adaptive routing algorithm section.

Topological Dependence: Some routing algorithms have been designed for a particular
topology [40,90,91,92,93,94]. Such regular structures are common in virtual circuit wide
area networks, less so in datagram WANSs. In keeping with the assumption that most
LAN internetworks grow randomly, only algorithms that are not topology dependent will
be examined.

Therefore algorithms that are distributed, adaptive in some way and do not require a
specific network topology will be considered. Before lookin g at the adaptive algorithms,
it is necessary to discuss the four procedures that make up a routing algorithm.

r
Most distributed routing algorithms require that a database is maintained at every router in
the network which lists each destination, the distance to that destination and the next
router to forward the packets toward. This can be seen in figure 3.5.

Routing Table for Node A
destination | distance | next node
B 2 B
C 6 B
D 2 D
E 3 B

Figure 3.5 Routing table for a simple network.

Maintenance of routing table databases involves four algorithms that work more or less
independently and yet support each other by exchanging services or information [31].
These four algorithms form a feedback loop as shown in figure 3.6. The diagram appears
to suggest that the different procedures are well defined and discrete, however, like the
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OSImodel, in a real routing algorithm functions of one procedure very often blend into
those of another.

INFORMATION COLLECTION DECISION MAKING
/\ /\.
/ 4 N
Information Route Packet ‘
—@easurement DisseminatMomputation
——
Figure 3.6 The four procedures that m routing algorithm.

The distance measurement procedure monitors and collects certain network parameters
according to the routing metric used. This collected information is then distributed over

the entire network by the information dissemination procedure. In each router, the route

computation procedure then constructs the routing table based on the received

information. The packet forwarding procedure actually routes the traffic to the next router
based on the routing table. Papers dedicated to each of the independent procedures have
appeared in the literature [36,41,59].

3.4.1 Measurement

There are many metrics or costs that can be used by the measurement procedure in order
to define a path from a source to a destination. These include such things as the number of
hops, link speed, link security, link reliability, link expense, link error rate and link delay
to name but a few. The number of hops metric refers to the number of routers that must
be traversed when forwarding a packet from a source to a destination. In some networks
minimizing the hop count results in a lower packet delay. The numbers next to the links in
figure 3.5 represent the cost of using those links. The metric in this network is undefined
and could be any one of the above (with the exception of the number of hops metric).

Link costs can either be defined by the network manager, or the router itself may be
responsible for determining the cost of the link. The latter is often true in the case of using
network delay as the routing metric. In order to determine the link delay, a high priority
packet is sent out from a router across a link to an adjacent router with the time it was sent
stamped on it (time A). When the neighbouring node receives the packet it sends it back
immediately to the initiating router with the time received within the packet (time B). The

delay for that particular link is simply time B - time A.
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3.42 Dissemination

Having measured the cost of the link according to the metric, it is necessary to inform all
other nodes of this information. This can be carried out using either a co-ordinated update
procedure (CUP) or an independent update procedure (IUP) [58]. Using a CUP nodes
update their routing tables in a strictly controlled manner. This is used to reduce a few of
the negative affects that some Toute computation procedures can produce. An IUP is a
complete free-for-all, nodes may update their tables whenever they so desire. The use of a
CUP or an IUP is highly dependent on the route computation procedure, both of which
will be covered fully in subsequent chapters.

3.4.3 Route Computation

Route computation is probably the most important of the four procedures that make up a
routing algorithm. Very often this procedure is specified first and the remaining three
procedures are thrown in as an after thought.

The route computation process can be accomplished in a variety of ways. Two of the
most popular methods are bifurcation and shortest path algorithms [29].

Bifurcated routing is used when the network-wide average time delay is to be minimized.
It is a highly complex technique which utilizes traffic flow models and uses methods such
as gradient projection and flow deviation to calculate the traffic flow [42,43,44]. These
algorithms are best used in networks where the traffic flows correspond to some well
known pattern. These algorithms have been implemented in only a very few

communication networks [30].

Shortest path algorithms on the other hand are widely used in computer communications
networks. They are much simpler and have much more modest goals. They are used in a
wide variety of networks regardless of whether they are centralized, distributed, adaptive,
non-adaptive etc. [32,33,34,52].

Routers can be configured in a LAN internetwork in a variety of different ways. Some

routers are capable of handling only a single low speed link, whilst other more complex
routers may be able to support several high speed links. This can be seen in figure 3.7.
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AB,C,.D: FDDI LANs
[R] : Router

Figure 3.7 Possible router arrangements on a LAN,

However, regardless of how the routers are set up, it is possible (within the context of
graph theory) to ignore the actual physical implementation of the routers on the LAN and
treat them as a single packet switching device. This can be seen in fi gure 3.8, which could
represent any one of the networks shown in figure 3.7.

LANB

LAN A @

LANC LAND

Figure 3.8 The combined router representing all routers on a single LAN.

The network then becomes a directed graph as shown in figure 3.9. The vertices of the
graph represent the 'combined router' on the LAN and the arcs represent the links
connecting the LANs. From a graph theory point of view, the LANs can be completely

ignored.
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Figure 3.9 Directed eraph representing a LAN internetwork.

If each arc has a weighting (the metric) associated with it then it is often desirable to find
the minimum length path from one vertex to another. This is termed the shortest path
problem and has been the subject of much research. Two of the most common techniques
to find the shortest path in a network are the Bellman-Ford and the Dijkstra algorithms
[45,46,47]. Regardless of what algorithm is used, all shortest path algorithms converge
to the same solution for a given network [48,49,50,51]. The difference lies in the iterative
process used to converge to the final solution. This can be seen in figure 3.10, which
shows the Bellman-Ford algorithm and the Dijkstra algorithm converging to the shortest
paths using different methods.
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Bellman-Ford

D‘j’ 4
Dijkstra
D2)=1 D@) =4 D(Q2)=1D@)=3 D2)=1 D@4)=3

' D(6) =5
D=3

DB3)=4 D(5)=2 D3)=3 D@5)=2 D3)=3 D(@5)=2

Figure 3.10 Bellman-Ford and Dijkstra's shortest path algorithms shown
converging in a simple network.

The Bellman-Ford algorithm is often termed a distance-vector algorithm. Networks that
use distance vector algorithms require routers to have knowledge of their neighbouring
nodes only. Dijkstra's algorithm, on the other hand is a link-state algorithm which
necessitates that all routers store the entire topology database. Distance vector and link
state algorithm will be the subject of subsequent chapters.

3.4.4 Packet Forwarding

Most networks that run one of the above algorithms simply forward the packets along the
shortest path towards the destination [37]. The forwarding database is the 'Next Node'
column in figure 3.5. For a packet from node A destined for node C the next node to send
a packet towards is node B. This is one area in particular where very little research has

been done.

46



Chapter 3 - Overview of Routing Algorithms

A distance-vector or link-state shortest path algorithm will be used to carry out the route
calculation procedure. The three remaining procedures will remain undefined until further
consideration of the shortest path algorithm in subsequent chapters.

3.5 Algorithm Adaotisi

Routing algorithms can either be non-adaptive or adaptive. Non-adaptive algorithms
constrain packets to follow the same route from source to destination regardless of the
prevailing network conditions, Adaptive algorithms, on the other hand, can adjust the
route taken based on gathered information concerning packet delays, link utilizations,
node and link operational status etc. Adaptive algorithms are far more robust and can
provide a higher network performance than their non-adaptive counterparts. These can be
differentiated on the basis of how frequently new routes are selected (ie by packet, by
session, by message, by topology ) and by what they adapt to (ie local queue lengths,
average network delay, topology).

The degree of routing algorithm adaptation varies greatly and is a very important design
issue. Some algorithms adapt only when a topological change occurs, whilst others
attempt to adapt to changing network delays. These obviously represent the two extremes
of what an adaptive algorithm is capable of providing. Each time that an algorithm decides
that it is time to adapt (to topology, delay etc) the four procedures in the previous section
must be carried out. In designing an adaptive routing algorithm it is necessary to strike
some balance between the completely adaptive algorithm and one that adapts very
infrequently.

Routing has changed considerably since the first algorithms suggested by Baran in 1962
[35]. In current WANs and LANSs interconnected by leased lines, the transmission
facilities are expensive relative to computer processing. Complex routing and flow control
algorithms have evolved to efficiently use the transmission facilities. In earlier networks
processing was more expensive and much simpler mechanisms were used [37]. Many of
these early algorithms didn't include all four of the procedures discussed in the previous
section. However, there are characteristics of these algorithms which make them relevant
to todays networks. A brief overview of some of these well known early algorithms

follows.

The simplest routing mechanism ever developed was random routing. In this algorithm
packets that arrive at a router are sent out on any outgoing link chosen at random. This
selection is made with complete disregard as to the packets final destination. It is a simple,

but inefficient, algorithm since packets take unnecessarily long paths.
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Another simple routing mechanism is the so-called flooding algorithm. Using flooding, a
router would send a received packet out on =11 the links that it was connected to. This was
very wasteful of bandwidth but it made the algorithms very simple indeed. Since all

possible paths were taken, it ensured that packets always took the shortest route to the
destination.

In hot-potato routing, when the shortest path link to the destination was busy, any one of
the available links is selected at random. This technique can adapt rapidly to changes in

load or topology and is only dependent on the local information available at each router
[1,39].

A more advanced algorithm than the above three was the shortest-queue plus bias
algorithm. This algorithm required that each router calculate the shortest path to each
destination in terms of number of hops. Packets were then forwarded based on the local
queue lengths of the outgoing links. This algorithm used global information for changes
in topology and local information for adapting to traffic fluctuations [53].

All through the 70's many networks were attempting to become more and more adaptive
taking advantage of the increasing cost reduction of computer processing. This is best
illustrated by the original ARPANET routing algorithm which represents the ultimate in
adaptive routing algorithms The algorithm measured the delay on each of its links every
2/3 of a second and sent this information to its adjacent routers. The shortest delay paths
were calculated from this information and packets forwarded towards the destination

based on these routes [37].

The frequency with which a routing algorithm adjusts its routes to network delay is
reflected in the amount of control information transmitted by the routers in order to keep
the routing tables up to date. This information may be transmitted on a per packet, per
message, per session or per topology basis. In addition it may be sent periodically or
aperiodically based on some threshold value, such as the number of packets processed by
the node. Figure 3.11 shows the additional control information transmitted by the various
techniques. The original ARPANET algorithm adapted by packet on a periodic basis and
generated the most control information. The shortest-queue plus bias and the hot-potato
algorithms only require control information when there is a topology change. Flooding
and random routing require no control information at any time, regardless of topological

changes. For this reason they are not shown in the figure.

The adaptive by message and the adaptive by session algorithms for virtual circuit
networks are also shown for comparison. The latter are used to show that as the
frequency of updates decreases so too does the amount of control information. It is
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important to point out that a datagram network has no concept of what a session is or
what constitutes a message. In a datagram network, only the transport layer has any
notion of what these terms mean. For this reason, it is only possible to have a datagram
network adapt on a per packet basis or when there is a topology change.

periodic ;
>Adaptive by packet

aperiodic

periodic
>Adaplive by message
X

aperiodic

periodic i . ‘
aperiodic >AdaPUV6 by session

X — Adaptive by topology

K 11 The in ing number of control m required for vari

routin hem

The data packets transmitted by the various routing mechanism use the links with a
varying amount of efficiency. The least efficient is the flooding mechanism that sends
packets out on all links. Random routing is slightly more efficient since only a single
outgoing link is used. Hot-potato is more efficient again since, during times of low
congestion, the shortest route is taken. The most efficient of the algorithms is the shortest-
queue plus bias and the adaptive by packet algorithms, which always attempt to take the
shortest path from source to destination. The five schemes relative to each other are

shown in figure 3.12.
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Hot-potato

Shrt. Q+bias Adaptive by packet

Figure 3.12 Increasing amount of data bits sent by various adaptive routing algorithms.

One of the main constraints to throughput in a network is the amount of processing
performed by the routers. For this reason it is necessary to look at the processing burden
imposed by the five routing algorithms. Processing can be done either at the edge of the
network (hosts) or within the network itself (routers). The source rate is defined as the
speed at which the hosts must perform their processing function in order to keep up with
the packet arrival rate. In a datagram network this refers to the function performed by the
transport layer to sort packets, send acknowledgements etc. The network rate is the
processing speed required by the intermediate routers on the path between the source and
destination. At the network rate, routing mechanisms must maintain queues, select the
best route, perform measurements on the network and change the route in adaptive
schemes. In order to reduce the delay imposed by the routers it is desirable to restrict the
network rate to a low value [39]. The various routing schemes are shown in figure 3.13.
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Figure 3.13 Source rate vs network rate processing requirements.

A broadcast LAN is shown at the origin of the figure for comparison. LANs require the
least amount of processing since there is no route selection to make and packets never
arrive out of order. Adaptive by packet algorithms require the most amount of processing
at the network rate in order to maintain queues and make routing decision at each node.
Algorithms that adapt to network delay by message and by session also maintain these
queues but the frequency of adaptation is much lower. For datagram networks, flooding
requires the highest source processing rate in order for the transport layer to sort out the
duplicate packets that have arrived. Random, hot-potato, shortest-queue plus bias and
algorithms that adapt only when a topology change occur require the least amount of

network rate processing.

By combining the graphs for control information from figure 3.11, the amount of extra
data packets from figure 3.12 and the source rate vs network rate graph of figure 3.13 a
bandwidth inefficiency vs network rate graph can be produced (figure 3.14). This sums
up all the above discussion in one graph. It may appear that those schemes that are closest
to the origin such as adaptive by topology algorithms will provide the best algorithm.
However, this graph does not give any indication of how well the algorithm will perform
in terms of delay and throughput. It merely serves to indicate what schemes use the

bandwidth efficiently and require the lowest amount of processing at the network rate.
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X Broadcast
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Figure 3.14 Bandwidth inefficiency vs network rate processing.

The most promising schemes appears to be adaptive routing algorithms that use global
information for long term adaptivity to topology and local information re garding queue
lengths for traffic fluctuations. This suggests the use of algorithms such as hot-potato and
shortest-queue plus bias for use in a datagram network.
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3.6 Conclusion

There are many different routin g algorithms available for the network designer to choose
from. The selection of which is dependent on a variety of factors which this chapter has
outlined for one particular type of network. For a network of interconnected FDDI LANs
over leased lines the following goals for a routing algorithm are desirable:

-distributed

-able to route datagrams

-independent of topology

-adapts to topology changes on a global basis
-adapts to traffic fluctuations on a local basis

-uses a shortest path algorithm for route computation
-able to cope with heavy traffic loading

-able to handle bursty traffic sources

It must be remembered that the above are in addition to the goals of the ideal routing

algorithm discussed in section 3.2.

The above goals provide a framework for examining routing algorithms within the
literature. This does not mean, however, that routing algorithms will be rejected if they do
not meet all of the above criterion. Algorithms can usually be modified in some way to

cope with different network environments.

The next chapter will examine the Bellman-Ford, distance vector algorithm for use in an

interconnected FDDI environment.
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Chapter 4

Distance-Vector Routing Algorithms

4.0 Introduction

The distance-vector algorithms discussed in this chapter are all based on the work of three
people, R. Bellman, L.R Ford and D.R Fulkerson [45,46,47]. These researchers
developed and modified the basic algorithm back in the late 1950's and early 60's. For
this reason, the modified algorithm is referred to in the literature as ‘Bellman-Ford',
'Ford-Fulkerson' or just simply 'Ford'. These are all effectively the same algorithm. In
this thesis the algorithm is referred to as the Bellman-Ford algorithm.

The first implementation of a Bellman-Ford algorithm in a communications network was
by the Advanced Research Projects Agency division of the U.S Department of Defence in
1969 (the so-called ARPANET) [37]. Many of the algorithms developed for the
ARPANET were subsequently used in other computer communication networks. The
ARPANET algorithm has gone through many changes in its 20 year history. This chapter
will discuss the original ARPANET algorithm and various approaches used to improve
upon the convergence of the Bellman-Ford algorithm.

.1 Overview of the Bellman-Ford SI Path Alzori

The basic Bellman-Ford algorithm first implemented in the ARPANET (circa 1969)

operates as follows [53]:

Each node holds two tables, a distance table and a route table. The distance table of a
given node (say node A) contains a list of all the other nodes in the network and the
distances to those nodes via A's neighbouring nodes. The routing table stores the value of
the minimum cost to each destination along with the corresponding next node. The
distance and routing tables for a sample network are shown in figure 4.1. Note that these

two tables would be stored at node A.
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Distance table Routing table

B| C
Al - |- -
B3| 4 3B
ClSt2 2C
D716 6C
Ef8 15 5C

Figure 4.1 A simple five node communications network and the associated distance

nd routin les forn A

When a change in link cost occurs, the two nodes next to the link recalculate their distance
tables (route computation procedure). If there is a new minimum cost from source to
destination (ie the route table has changed) then this information is immediately sent to all
adjoining nodes (route dissemination procedure). This is then repeated throughout the
network until the algorithm converges to the new minimum cost paths. A complete
example of the ARPANET algorithm converging to shortest paths after a link failure is
shown in appendix A.

There are several advantages to the basic Bellman-Ford al gorithm. First of all the
algorithm is incredibly simple. It does not require global information in order to converge
the algorithm, it only needs to know who its neighbours are and the cost of the adjoining
link connecting them. From this information it is possible to work out the shortest paths
to all nodes. This means that the nodal storage requirement in terms of memory needed at

each node is very low.

Secondly, the algorithm is truly distributed in that each node benefits from the
computation done by the neighbours preceding it. This reduces the amount of processing
that needs to be done on the routing information that arrives at each node.

The disadvantages of the basic Bellman-Ford algorithm are extremely unpleasant. It

suffers terribly from two problems when cost increases occur; routing table looping and
what is known as the 'bouncing effect'. The bouncing effect is also known in the

literature as 'counting', 'ping-ponging' and 'reverberation'[37,60,62,63].
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These two concepts are best understood by a network example. Consider figure 4.2.
Under static conditions, the routing tables point to the shortest paths between source and
destination. However, consider what happens when link AB fails. Node B immediately
assumes the second best path to A is 3 hops away via node C. Node B does not know

that the path from C to A actually loops back via B. As such a so called routing table
loop' is formed.

Looping is wasteful of network resources and causes excessive delay for the data packets.

Node A Node C
b ¢ a_ ¢ a_ b
af- - |- all1 3[1a al100 21/ 2a
b1 101)fib] b|- | - bl1o1 1]] 1b
cl2 100)(2b] <3 1{1¢c cl - -] -

Figure 4.2 The problems of looping and vector bouncing,

The second problem with these algorithms is the bouncing effect. Assume again that link
AB fails. B sets its routing table for destination A to 3. Since this has changed the route
table, B sends this information to all its neighbours, namely node C. Node C takes this
value and adds the link cost between node B and C which results in a count of 4. Node C
detects a change in its route table and sends this information to nodes A and B. Node B
then repeats this procedure again. This is an example of the bouncing effect. This problem
will not cease until the value exceeds 100, whereupon the nodes realize the best path from
C to A is actually via node A [65].

Now consider what happens if during this counting procedure between nodes B and C
link AC fails. It becomes obvious that this counting will never cease since there 1S no
upper bound on the value to count to. In the previous example the nodes only had to
count up to 100 before realizing that a better path was available. In this example no other
paths exist, the nodes will count forever. This is the so-called counting to infinity
problem. The counting to infinity problem is a special case of the bouncing effect.

The above problems were particularly acute in the ARPANET which attempted to adapt to
network delays every 2/3 of a second. This required update vectors to be passed back and
forth between nodes. During times of link cost increases, it become apparent that a large

amount of packet looping was taking place.
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Recall that in this study, to reduce nodal processing at the network rate, an algorithm will

be designed that adapts to traffic fluctuations based on local information only. However,

if a link or node failure occurs, then it is essential that the algorithm converges as quickly
as possible to the shortest paths.

It should be noted at this point that loop freedom means no data packet looping during the
algorithm convergence interval. Looping of data can never be completely avoided as
demonstrated by figure 4.3. In that figure a packet is shown on its way to destination 5
via node 4. Just as it reaches 4, link 4-5 fails. Obviously the packet must either be
returned to node 3 or dropped at node 4. Here we take an algorithm to be loop free if it
does not have routing table loops [61].

-0 0O =

(A) (B)

Figure 4.3. Packet looping during link failure (A) before failure (B) after failure.

The problems of looping, vector bouncing and the counting to infinity problem have been
known for some time. The remainder of this chapter will examine the various approaches
suggested in the literature for dealing with these problems. These approaches involve
modifications to the standard information dissemination procedure and the route
computation procedure; the reason being that the above problems are related to the way in
which the routing tables are updated. The measurement procedure and packet forwarding
procedure are of little interest since they are not involved in the routing table updates.
Some of the methods discussed have been implemented in computer communications

networks whilst others are discussed in research papers.

1l -
One of the first attempts to reduce the looping problem was by the ARPANET community
[37]. They realized that routing table loops occurred when nodes were using stale
information about the network. In order to alleviate this problem they introduced the idea
of hold-downs. Using this method, a node would continue to use the best route to a given
destination for some time period after a cost increase had occurred. This time period was
approximately two seconds which allowed surrounding nodes the chance to purge any
out-of-date information before allowing them to accept new information. This method
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was found to respond quickly to cost decreases (‘good news') but less satisfactory to
cost increases ('bad news').

Cegrell [55] presented a very simple solution to the two node looping problem, termed
split-horizon. Using this method, a node sends only relevant information to adjoining
nodes. It does not send the minimum cost information to a node if that node is the one to

be used for routing packets. It instead sends the next best path information. This can be
seen in figure 4.4,

a o Distance table at node 3
1 2 4
9 1{ 571010
21 20|5 (15
310010
Q 41 15{ 15| 5

Figure 4.4 Distance table for sample network.

Using split horizon, node 3 sends (10,5,0,5) to node 1. This allows node 1 to get some
idea of what the network looks like beyond node 3. The original ARPANET algorithm
sent all adjoining nodes the minimum values in its tables (ie 5,5,0,5) regardless of which
nodes they referred to. The split-horizon mechanism was first implemented in the TIDAS
network of the Swedish power system. It has subsequently been used in many networks
and by manufacturers of routers for interconnected LANS.

Naylor [54] uses the split horizon method to reduce the chances of local loops and a loop-
checking mechanism in order to reduce the incidence of multi-node loops. This involves
sending a control packet along the new updated route. If the control packet is
acknowledged by the receiver then the new route is permitted. If, however, the packet is
not acknowledged or it returns to the sender then the route is ignored.

The routing algorithm developed for the MERIT computer network by Tajibnapis [56]
uses a hop count metric to differentiate between potential paths. Hop count refers to the
number of links that must be traversed from a source to destination. The MERIT network
only adapts to changes in topology and does not try to route traffic based on a delay
metric. By using a minimum hop metric, it is possible to reduce the counting to infinity
problem since every node knows how many nodes are in the total network. If a path is
specified which has a greater value than the total number of nodes in the network then the
path must contain a loop and is ignored. Therefore the counting problem is still present

but it ceases after a certain value.
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One of the main reasons that the previous algorithms develop routing table loops is the
method in which updates are processed. A node, upon detecting a cost change, updates its
table, selects a new node and then forwards a cost increase message to its neighbours.
These algorithms are termed independent update procedures (IUP). Merlin and Segall
[57] introduced the concept of a co-ordinated update procedure (CUP) in order to reduce
the looping problem. This algorithm guarantees routing table loop freedom at all times by
restricting the manner in which tables are updated. This is accomplished by defining each
node as the SINK to a tree comprised of all the other nodes. The SINK trees for figure
4.1 are shown in figure 4.5. A node detecting a change in the cost directed towards a
destination would send this information to the SINK concerned. When the SINK receives
this information it sends out a freeze message up the tree until the end of the tree is
reached. A freeze message informs nodes that a change in link cost has occurred and they
are not permitted to modify their routing tables in any way. The final node of the SINK
tree is frozen and permitted to select a new next node to the destination, following this
selection it is then unfrozen. This process continues back down the tree towards the
SINK. It is a very complex protocol which requires large numbers of control messages
and computation. It does, however, guarantee loop freedom even during topological
changes.

(A) 1

Figure 4.5. The SINK trees of figure 4.1,

Jaffe and Moss [58] extended this idea of the CUP. Instead of requiring the SINK to
perform the calculation every time a link change occurred, Jaffe and Moss found that
looping only occurred with Bellman-Ford algorithms during a link cost increase. They
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therefore used a standard Bellman-Ford algorithm for link cost decreases (IUP) and a
CUP for link cost increases. This made the algorithm much simpler than the previous
Merlin algorithm. This algorithm was designed for virtual circuit networks where loop-
freedom is much more essential than with datagram networks.

In Hagouel's [61] PhD thesis he introduced two algorithms to cope with the looping
problem. Algorithm A is similar to the Tajibnapis algorithm but allows for link cost values
greater than one. He reduced the looping problem by using two flags Set and Reset. If a
cost increase occurs then the flag is changed to Set and sent to all neighbours. The
purpose of the flag is to trigger alternative messages from the nodes receiving that
message. This avoids an endless loop that will result if D's message does not affect C's
route table.

Hagouel's algorithm B [61] used an TUP method but introduced the idea of maintaining at
each node a source tree. These trees are exactly analogous to Merlin's SINK trees. Using
this method the entire route from source to destination can be defined. The nodes in this
method not only store the next node to the destination they also store the identification of
the node just before the destination. This can be seen from the table that would be stored
at node A from figure 4.6 below.

Dest| Cost| Next| Final
A - - -
B 3 B A
C 2 C A
D 6 C E
E S C C

Figure 4.6 Data structures used for source trees.

By tracing back from the destination using the final node column it is possible to build up
the entire path from the source. For example to get from node A to node D the path
D.E,C,A can be used. This method helps reduce the problem of looping since the entire
path is known from source to destination. Hagouel's method requires a known upper
bound on the length of the shortest paths, however, which is somewhat restricting.

The work of Cegrell, Tajibnapis, Merlin and Hagouel form the basis for many of the
other algorithms left in this section. The remaining algorithms will therefore not be
discussed in depth. An example of each of these algorithms shown converging following

a link failure is shown in Appendix A.
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Sloman and Andriopoulos [60] used a Tajibnapis type algorithm and modified it to try and
cope with the problem of looping and bouncing. The method suggested is basically a
concatenation of split horizon, hold downs and the broadcasting of a failure message to all
nodes. The algorithm is designed specifically for interconnected LANs and utilizes a

minimum hop metric. The algorithm only adapts to topology changes and no attempt is
made at link delay measurements.

Schwartz [29] introduced the predecessor algorithm for coping with the problem of two
node looping. It is similar to the split horizon method and can only reduce the chances of

two node looping. It cannot guarantee loop freedom during a topology change.

Garcia [66,97] used Hagouel's source tree mechanism to calculate the shortest paths to
each destination. These shortest paths are then broadcast to neighbouring nodes. Using
this algorithm the bouncing effect is somewhat reduced.

Shin and Chen [67,69] used a similar method to Garcia [66] whereby the sequence of
nodes making up the shortest paths were broadcast to all nodes. In addition, this was
coupled to the Cegrell split horizon method. Like the Garcia [66] approach, it is
somewhat inefficient.

Chen [67] used the source trees coupled with the idea of searching for new paths only
from a set of paths which were 'simple’. Simple paths by definition do not contain loops,

be they two node or multi-node loops.

Rajagopalan and Faiman [65] used source trees and the optimality principle in order to
ensure that only optimal shortest path routes were used. Obviously paths with loops in
them were considered sub-optimal. This is not too dissimilar to Chen [67].

Garcia [72] used a co-ordinated update scheme in order to reduce the problems of
bouncing and packet looping. In addition to a CUP, nodes are only permitted to choose a
new neighbour if the path presented offers an equal cost or lower cost than what the table

contained prior to the update.

Awerbuch [68] introduced a method which employs a dynamic synchronizer. This is
similar to using a global clock which is distributed in each of the nodes. This is claimed to

be the fastest implementation of the Bellman-Ford algorithm.

Humblet [70] used Hagouel's source trees to reduce the looping problem. The method
presented does not guarantee routing table loop freedom during topology changes.
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The various mechanisms used to reduce the occurrence of routing table loops are
summarized in table 4.1.

Algorithm Basic method used to reduce routing table loops.
McQu[37] Hold downs

Cegr[55] Split horizon

Nayl[54] Loop checking packet

Taji[56] Maximum number of hops

Merl[57] Internodal co-ordination

Jaff[58] Internodal co-ordination

Hagoa[61] Set and reset flags

Hagob[61] Source trees

Slom[60] Hold downs, split horizon and broadcast of failure reports
Schw[29] Split horizon

Garc[66] Broadcast of shortest path trees to neighbors
Shin[63] Broadcast of shortest path trees to neighbors
Garc[97] Include next node information in updates

Raja[65] Source trees and optimality principle

Chen[67] Source trees and simple paths

Garc[72] Internodal co-ordination

Awer[68] Global clock (dynamic synchroniser)

Humb([70] Source trees

Table 4.1 Summary of methods used to reduce routing table loops in
Bellman-Ford algorithms.

Table 4.2 summarizes the information distribution and the distance measurement
procedures of the various routing algorithms. The route computation procedure for every
algorithm is, of course, the Bellman-Ford and packets are forwarded along the shortest

paths.
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. Information Distribution Mgalssut?:x%zm
Algorithm Updates Link Cost
IUP|CUP |Event |Periodic Unity | Any

McQu[37]| e o ¢
Cegr[55] ° . .
Nayl[54] | e . .
Taji[56] . . .

Merl[57] ° - - ¢
Jaff[58] . - - ¢
Hago[61]] e - - o
Slom[60] | e * ¢

Schw[29]] e - - .
Garc[66] | e o .

Shin[63] | e - - bt
Garc[97] | . h
Raja[65] . - - ot
Chen[67]] - - ht
Garc[72] o - - h
Awer[68] . - - ¢
Humb[70] e - - 2

Table 4.2 Information disseminati n
Bellman-Ford algorithm

4.3 Algorithm Discussion

A variety of different methods have been presented in the literature to cope with the
problem of routing table loops in the Bellman-Ford algorithm. These vary in complexity
and how well they cope with the looping problem. The simplest algorithm is the ITUP,
minimum hop algorithm of Tajibnapis which can halt the counting to infinity problem. By
far the most complex is the Merlin-Segall co-ordinated update scheme which guarantees

loop freedom even during times of topological changes.

The algorithms that show the most promise are those based on Hagouel's source trees.
These represent the middle ground, in terms of complexity, between the Cegrell and
Merlin-Segall algorithms. However, it has been shown by Garcia [72] that these

algorithms do not stop the counting problem, but simply reduce it.

Some researchers have, after presenting a new Bellman-Ford algorithm, even suggested

that the Dijkstra algorithm is preferable if enough memory is available at each node. For a
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LAN internetwork this will certainly be the case. Bellman-Ford algorithms provide

satisfactory performance for networks where only minimal memory is available at each
node.

In this way the Bellman-Ford algorithm has degenerated into nothing more than an
interesting puzzle. Humblet states " ..we prefer the topology broadcast algorithm if
enough memory is available" [70] and Garcia says " If enough memory is available at
each node then the Dijkstra algorithm offers a better solution to the routing problem" [71].
Humblet also says "many modern networks avoid much of the problem by broadcasting
the whole topology to all nodes. It is still interesting to try to modify the basic Bellman-
Ford algorithm to prevent looping". The purpose of this work is not to find some
interesting solution, but to develop a better algorithm for interconnected LANS.
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4.4 Conclusion

An overview of the ubiquitous Bellman-Ford routing algorithm has been presented. This
is a very simple algorithm which suffers severely from the cost dependent looping
problem. Many researchers have attempted to address this problem with varying degrees
of success. The problems can be eliminated completely with some techniques but the
algorithm complexity makes these prohibitive for actual network implementation. Many
researchers have come to the conclusion that if enough memory is available at each node,
and the time between routing table updates is long, then the topology broadcast algorithm
(Dijkstra) offers a far superior solution to the traditional Bellman-Ford algorithm. For this
reason, this thesis will not consider the use of Bellman-Ford algorithms for use in an
interconnected FDDI LAN environment.

In the next chapter, link-state algorithms will be discussed and a new routing algorithm
presented.

65




Chapter 5 - Link-State Routing Algorithms

Chapter 5§

Link-State Routing Algorithms

2.0 Introduction

Many of the problems associated with the Bellman-Ford algorithm can be alleviated to a
large extent by using a link-state algorithm. As the name suggests, these algorithms
require knowledge about the state, or cost, of all links in the network. One of the most
efficient link-state algorithms is Dijkstra's shortest path algorithm. A modified form of
Dijkstra's algorithm has been used successfully in the ARPANET to replace the original
Bellman-Ford routing algorithm.

Far less work has been done on Dijkstra routing algorithms for computer networks than
on the Bellman-Ford algorithms. The reason for this is that the algorithm has far fewer
"interesting" side effects than the Bellman-Ford. Most research on the Bellman-Ford
algorithms has involved reducing the oscillation and looping problems and paid little
attention to the actual performance of the algorithm in terms of network throughput and
packet delay. Since these problems are less severe in the Dijkstra algorithm, it is possible
to ignore them and concentrate on improving the network delay and throughput

performance.

The problem of routing table looping is still present during times of link failure in
networks that use a Dijkstra algorithm. In order to combat this problem, Garcia has
proposed a co-ordinated update scheme in order reduce the looping problem [72].
However, this method does produce a very complex algorithm. McQuillans experience
with the ARPANET has shown that the amount of looping produced by the Dijkstra
algorithm is so minimal as not to be important [73]. Loop freedom may be essential in a
virtual circuit network where the first packet sets up the call for all remaining packets, but

less so in a datagram network.

This chapter will give a brief overview of the operation of the Dijkstra algorithm, the
ARPANET algorithm and discuss the ISIS routing protocol developed by the ISO OSI
committee. A new algorithm, termed DSPS (down stream path splits), which exploits
information discarded by the ISIS routing algorithm is presented along with a

performance comparison.

Dijkstra's shortest path algorithm forms the basis of many link-state algorithms used in
computer communications networks. It is computationally the most efficient shortest path
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algorithm known today [48]. Its worst case computational requirements are considerably
less than those of the Bellman-Ford algorithm,

This algorithm requires that all arc lengths are positive. Fortunately this is the case for
computer communications networks. The Dijkstra algorithm finds the shortest paths from
a source to all other nodes. In order to do this it requires status information about the
entire network topology, hence the name link-state algorithm. The objective is to find the
shortest paths from one node to all other nodes. The algorithm does this in a step by step
fashion starting at the source and finishing when the furthermost node is reached. By the
Kth step the shortest paths to the k nodes closest to the source have been calculated.
These are then defined to be within the set N. A simple flow chart shows the operation of
this algorithm (figure 5.1).

Mark all nodes
not on list

v

Put root (self)
on list

v

Remove node closest None

——— i toroot from list — ®»  Done
put node on tree

Y

For all neighbours of node:
if on tree, do nothing
if on list, update distance
else put on list

Figure 5.1 Simple flow chart for Dijkstra's algorithm.

More formally the algorithm can be described thus.

Let D(v) be the distance (sum of the link weights along a given path) from source A to
node v. Let 1(i,j) be the cost between node i and node j. There are then two parts to the
algorithm: an initialization step and a step to be repeated until the algorithm terminates.

1. Initialization. Set N= {1}. For each node v not in n set D(v) = 1(A,v). Infinity (eo) is

used to represent nodes not connected to A.

2. At each subsequent step. Find a node w not in N for which D(w) is a minimum, and
add w to N. Update D(v) for all nodes remaining that are not in N by computing:
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D(v) <- Min[D(v), D(w) + 1(w,v)]
Step 2 is repeated until all nodes are in the set N.

An example of the Dijkstra algorithm in operation for the network shown in figure 5.2 is
shown in figure 5.3. In this diagram the algorithm is calculating the shortest path trees for
node A to all other nodes. The number of iterations required to converge the algorithm is
equal to the number of nodes in the network.

Figure 5.2 Simple six node network with multi-cost links.

Table 5.1 shows the various steps in the calculation. The distances that are circled
represent the point at which the shortest path to a particular node has been found.

Step N D(B) D(C) DD) DE D
Tnitial A) 1 w4 e
1 (A,B) O 4+ 4 2 =
2 (A,B,E) 13 3 (@ s
3 (A,B,CE) 1 ® 3 2 s
4 @aBcbE 1 3 (3 2 5
5 (ABCDEF) 1 3 3 2 @

Table 5.1 The iterations required to build up the shortest paths,

This building up of the shortest path tree from node A can be seen graphically in figure
5.3.
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Initial Step 1 S ;
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D(3)=4 D3)=4 D(5)=2 D3)=3 D)=
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D©) = D(6) = 5 D(6) =5
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Figure 5.3 Graphical representation of Dijkstra's algorithm for 6 node network.

The Dijkstra algorithm can easily be implemented in a network with a central node having
knowledge about the entire network. This node then calculates the shortest path trees for
all nodes to every other node. Having done the calculation the central node then informs
all network switching nodes of the routes they should use to forward packets. The
ARPANET has implemented a modified form of the Dijkstra algorithm for operation in a

distributed network environment.

5.2 The ARPANET Routi \lgoritt
The original ARPANET routing algorithm was based on the Bellman-Ford routing
algorithm. However, after ten years of operation and many different attempts at
controlling the problems associated with that algorithm it was eventually scrapped
completely in 1979 in favour of a modified form of Dijkstra's algorithm [73].

In order for Dijkstra's algorithm, which is inherently centralized, to operate in a
distributed network, each node must have global topology information. Only then can the
algorithm correctly calculate the shortest paths. This can be seen in figure 5.4, which
shows an arbitrary network, the topology database and the forwarding table for node A.
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Séc;te)gl;?gsé?%gg?base Routing table for node A
A B C D E Dest. Dist. Next
AlO 3 2 0 O A 0 -
B 1|3 0 2 4 0 B 3 B
Cl2 2 0 O 3 C 2 C
DO 4 0 0 1 D 6 C
E|O 0 3 1 0 E 5 C

Figure 5.4 Topology database and routing table for ARPANET node.

The discussion of the ARPANET will cover the four routing procedures that make up the
routing algorithm.

5.2.1 Route Computation Procedure.
The shortest path first (SPF) routing algorithm of the ARPANET was so-called because

of the way in which the shortest path trees are built up at each node. Based on Dijkstra's
algorithm each node of the network maintains the entire network topology database in
order to calculate the shortest paths. In this way Dijkstra's algorithm can be operated in a
distributed environment. It is not truly distributed in the sense that each node benefits
from the calculation made by its predecessors. Each node runs the calculation completely
independently of all other nodes. In the literature it is sometimes referred to as a
centralized/distributed algorithm.

The SPF algorithm is slightly different from the original Dijkstra algorithm in that changes
in network link weights can be handled without recalculating the entire shortest path tree.
This modification allows changes to the tree to be computed incrementally, without
having to recalculate those parts of the tree that do not change. This is an important
consideration since the algorithm attempted to adapt to traffic delay and would have
required large amounts of processing in order to run the algorithm each time a new delay

packet arrived.

5.2.2 Measurement Procedure
The goal of the ARPANET community has always been to send packets on the least delay

routes. The new algorithm was no exception. Each node measures the actual delay of each
packet flowing over each of its outgoing lines and calculates the average delay every 10
seconds. If this delay is significantly different from the previous delay it is reported to all
the other node. The 10 second measurement time is a far cry from the original Bellman-
Ford algorithm's 128 ms measurement time. It was found that 128 ms was too short an

interval to obtain an accurate estimate of link delay.
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In order to measure the delay on a link, a node sends packets to its neighbours with the
arrival time stamped on it. When the first bit of the packet is transmitted to the next node,
the packet is stamped with its 'sent time'. When the acknowledgement for the packet is
received, the arrival time is subtracted from the sent time. To this difference are added the

propagation delay of the line and the packet's transmission delay. The result is the total
delay for that link.

5.2.3 Information Dissemination Procedure.

The updating procedure for networks that use Dijkstra's algorithm must be very reliable to
ensure that all nodes have identical databases. If the databases at each node are different
from one another then routing table loops may form. In order to ensure that all nodes have
the same database, the cost changes are flooded to all nodes. When a node receives an
update, it first checks to see if it has processed that update before. If so, the update is
discarded. If not, it is immediately forwarded to all adjacent nodes. In this way the update
flows quickly throughout the network.

Appendix B shows the control messages required for the ARPANET routing algorithm
following a link failure. Note how few messages are required compared to the Bellman-
Ford type algorithms of Appendix B.

S5.2.4 Packet Forwarding Procedure
The packet forwarding procedure of the ARPANET algorithm is very straight forward.

Packets that arrive at a node are simply sent out on the least delay path towards the

destination.

5.3 Perf { the ARPANET Routing Algorit}
Although the new ARPANET algorithm offers many advantages over the original
Bellman-Ford algorithm, it has been shown to possess some unsatisfactory
characteristics. The algorithm works very well during times of low traffic loading and
slowly varying traffic levels. However, with the increase in the amount of traffic and its
burstiness the quality of the routes often deteriorates. Under such circumstances the
algorithm tends to become unstable and often results in oscillation of routes [77,78].
These problems are related to the attempt by the algorithm to adapt continually to changes
in network traffic levels. Algorithms which are this adaptive place place a large processing
burden on the nodes and produce excessive control packet overhead. These points were
discussed in chapter 2. Therefore, great potential exists for a modified form of the SPF
algorithm which does not attempt to adapt to global traffic fluctuations. Such an algorithm

does exist.
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2.4 Overview of the ISIS Intra-Domain Routing Protocol

The ISO is in the process of standardizing the Intermediate System to Intermediate System
Intra-Domain Routing Protocol (ISIS) [75]. ISIS is used for connectionless network layer
services and is therefore relevant to this study. An intermediate system (IS) is another
name for a router and an end system (ES), in OSI-speak, is a host on a LAN. The ISIS
routing algorithm is designed explicitly for routing traffic in interconnected LANS.

The ISIS routing algorithm has built on the experience of the ARPANET research
network. It has taken the best components from that work and combined them into a
comprehensive routing strategy. The standards bodies are often criticized for
standardizing things which have become obsolete or are of little use. The ISIS algorithm
does not fall into this category and is being enthusiastically supported by all the major
networking manufacturers [74].

The intra-domain ISIS routing protocol is intended to support large routing domains
consisting of combinations of many types of subnetworks. This includes point to point
links, multi point links, X.25 subnetworks and broadcast subnetworks. Some of the
goals of the routing algorithm as detailed in the standards document are :

Adaptability. It adapts to topological changes within the routing domain, but not to
global traffic changes, except potentially as indicated by local queue lengths. It
splits traffic on multiple equivalent paths.

Efficiency. It is both processing and memory efficient. It does not create excessive

routing traffic overhead.

Stability. It stabilizes in finite time to good routes, provided no continuous

topological changes or continuous database corruptions occur.

ISIS is best examined by looking at the four routing procedures that make up the routing

algorithm. The names in brackets are those used in the ISIS document.

5.4.1 Route Computation Procedure (Decision Process)
The route computation procedure is a standard SPF algorithm as used in the ARPANET.

However it is different in two ways. First of all the algorithm in the standard is defined
for complete recalculation only and is not defined for incremental changes to the shortest
path tree. This is reasonable since the number of times that the algorithm has to run in

comparison to the ARPANET is very low.
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The second significant point about the algorithm is that it allows the use of equal cost

paths between a source and destination. The ARPANET algorithm only permits a single
cost path to be calculated between a source/destination pair.

5.4.2 Measurement Procedure

Link costs are not actually measured as they are in the ARPANET but are defined by
system management. Therefore the measurement procedure is effectively moot. The ISIS
protocol allows the use of four different metrics that can be used for routing traffic. These
are link speed, monetary cost, security and delay. The link speed metric is the default
metric which all ISIS routers must support, the remaining three metrics are optional.

3.4.3 Information Dissemination Procedure (Update Process)
The information distribution procedure is exactly like that of the ARPANET. It uses
flooding to ensure that all nodes have the same databases throughout the network. The

time between information updates is a variable which is set by the network designer. A
recommended value in the standard is specified as 15 minutes. Note that the purpose of
forwarding updates is to ensure that no corruption of any of the intermediate systems
databases has occurred, it's function is not to adapt to global traffic loadings.

5.4.4 Packet Forwarding Procedure (Forwarding Process)

Packets are forwarded along the shortest path trees. In the case of more than one equal
cost path, the local queue lengths of the outgoing links are examined and the one with the
shortest length is used as the link to forward the packet on. In this way, the algorithm
adapts to traffic fluctuations on a local basis only.

The ISIS routing algorithm is a very well thought out algorithm. It encompasses most of
the features required for interconnecting FDDI LLANs as discussed in chapter 3. It is an
SPF algorithm which routes packets based on local information only and uses global
topology information for long term topology changes. It is independent of topology and
can cope with the bursty traffic sources that are often found in LANs. Although it copes
with high traffic loading better than the ARPANET, this is an area where the algorithm

could benefit from some improvement.

5.4.5 Operation of ISIS

In order for the ISIS routing algorithm to operate two databases must be maintained.
These are PATHS and TENT [75].

PATHS is an acyclic directed graph of shortest paths from the system performing the
calculation. It is stored as a set of triples of the form <N,d(N),{Adj(N)}> where :
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N is a system identifier

d(N) is N's distance from S (ie the total metric value from N to S)
{Adj(N)} is a set of valid adjacencies that S may use for forwarding to N.

When a system is placed on PATHS, the path(s) designated by its position in the graph is
guaranteed to be a shortest path.

TENT - This is a list of triples of the form <N,d(N),{Adj(N)}>, where N, d(N) and
{Adj(N)} are as defined above for PATHS.

TENT can be thought of a as a tentative placement of a system in PATHS. In other
words, the triple <N,x,{A}> in TENT means that if N were placed in PATHS, d(N)
would be x, but N cannot be placed on PATHS until it is guaranteed that no path shorter
than x exists.

5.4.6 Algorithm Steps
The basic algorithm, which builds PATHS from scratch, starts out by putting the system

doing the computation on PATHS (no shorter path to SELF can possibly exist). TENT is
then pre-loaded with the systems adjacencies. Note that a system is not placed in PATHS
unless no shorter path to that system exists. When a system is placed in PATHS, the path
to each neighbour M of N through N is examined as the path to N plus the link from N to
M. If <M,* *> is in PATHS this new path must be longer and thus ignored.

If <M,* *> is in TENT and the new path is shorter the old entry is removed from TENT
and the new path is placed in TENT. If the new path is the same length as the one in
TENT, N is added as a potential parent in the triple tent. If M is not in TENT, then the

path is added to TENT.
Next the algorithm finds the triple <N,x,{Adj(N)}>in TENT with minimal x.

N is placed in PATHS. It is known that no path to N can be shorter than x at this point
because all paths through systems already in PATHS have already been considered and

paths through systems in TENT will have to be greater than x because x is minimal in
TENT

When TENT is empty, PATHS is complete. The steps used in the ISIS calculation are

shown below.
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Step 0: Initialize TENT and PATHS to 0
a. add (self,0,0) to PATHS
b. Pre-load TENT with the local adjacency database
C. got to step 2

Step 1: With reference to the system just placed in PATHS
a. compute dist(P,N) = d(P) + metric(P,N) for each neighbour
N of the system P.
b. If dist(P,N) > MaxPathMetric, do nothing
c. If <N,d(N),{Adj(N)}> is in PATHS, do nothing
d. If a triple <N,x,{Adj(N)}> is in TENT, then
1. if x=dist(P,N) then Adj(N) <= {Adj(N)} U Adj(P)
ii. if x < dist(P,N), do nothing
iii. if x > dist(P,N), remove <N,x,{Adj(N)}> from TENT
and add <N,dist(P,N),{Adj(P)}>
e. if no triple is in TENT, then add <N,dist(P,N),{P}> to TENT

Step 2: If TENT is empty, stop, else
a. find the element <P,x,{ Adj(P)}>, with minimal x.
b Remove <P,tentlength,{ Adj(P)}> from TENT
c. Add <P,d(P),{Adj(P)}> to PATHS
d. Go to step 1

For node A of the network shown in figure 5.5 the algorithm would generate the

following steps.

Figure 5.5 Simple six node network with equal cost links.

STEP 0: TENT and PATHS are set to O
STEP Qa;: PATHS contains (A,0,0)
STEP 0b: TENT contains (B,1,B) and (C,1,C)
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Minimum of TENT is (B,1,B)
(B,1,B) is removed. TENT contains (C,1,0
PATHS contains (A,0,0) and (B,1,B)

dist(B,D) = d(B) + metric(B,D) = 3
TENT (C,1,C) and (D,2,B)

TENT minimum is (C,1,C)
TENT becomes (D,2,B)
PATHS becomes (A,0,0), (B,1,B) and (C,1,C)

dist(C,D) = d(C) + metric(C,D) =2
TENT becomes (D,2,B,0C)

dist(C,E) = d(C) + metric(C.E) =2
TENT becomes (D,2,B,C) and (E,2,C)

TENT minimum is (D,2,B,C)
TENT contains (E,2,C)
PATHS contains (A,0,0), (B,1,B), (C,1,C) and (D,2,B,C)

dist(D,F) = d(D) + metric(D,F) =3
TENT contains (E,2,C) and (F,3,B,C)

TENT minimum is (E,2,C)
TENT contains (F,3,B,C)
PATHS contains (A,0,0), (B,1,B), (C,1,0), (D,2,B,C) and (E,2,C)

dist(E,F) = d(E) + metric(E,F) =3
TENT contains (F,3,B,C,C)

TENT minimum is (F,3,B,C,C)

TENT is empty.

PATHS contains (A,0,0), (B,1,B) (C,1,0), (D,2,B,C), (E,2,C) and
(F,3,B,C,C)

The algorithm is effectively finished.
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At the end of the computation the basic ISIS algorithm, as detailed in the standards

document, will contain the following set of triples in PATHS for routing packets from
source A (figure 5.6).

PATHS DATABASE

Dest. Dist. Ad;.

HMYO W >
LWNON= =D

Figure 5.6 PATHS database produced for node A by ISIS standard.

Therefore if traffic arrived at node A destined for, say, node D (figure S5.5) two different
paths could be used to get there, one via adjacency B and one via adjacency C. Both
adjacencies offer equidistant paths. What is extremely interesting about the basic
algorithm is the fact that to get to node F the adjacency C has appeared twice in the
calculation. Obviously in a real implementation of the ISIS algorithm there would be a
checking mechanism in step la in order to stop duplicate adjacencies being placed in
TENT. However, in the basic algorithm there is no such check and the duplicate

adjacency appears finally in the PATH database.

An actual ISIS implementation would have at some stage discarded this duplicate, since
there appears to be little point in keeping it. This would most likely be done during step 1.
The resulting ISIS PATHS database would then contain the following (figure 5.7):

PATHS DATABASE
Dest. Dist. Adj.
A 0 0
B 1 B
C 1 C
D 2 B,C
E 2 C
F 3 B,C

Figure 5.7 PATHS database after removing duplicate adjacencies.
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However, this duplicate represents some extremely useful information which should not
be discarded so easily. A duplicate adjacency in the PATHS database means that after
having gone through that adjacency another equal cost path is available to get to a
destination. In other words a split occurs down tree (or down stream) from the node
doing the calculation. So although the adjacencies C and B offer equal cost paths from A
to F, routing traffic via C is probably a better path to take since having gone through node
C, a choice of routes is again made available to the packet. Node C has the choice of
sending the packet to F via node E or node D. If the packet was initially sent via node B,
no such choice would be permitted further down the tree.

lits Routing Algorith
In this thesis, the duplicate adjacencies will be referred to as down stream path splits
(DSPS). A new algorithm which exploits these down stream path splits is discussed in
this section. The DSPS algorithm requires modification to the route computation and
packet forwarding procedures of the ISIS algorithm, it uses the same distance
measurement and information distribution procedure that the ISIS algorithm uses.

J.5.1. Route Computation Procedure

In order to calculate the number of DSPS for each adjacency the following modification

can be made to step 1d of the ISIS route computation procedure

11if x=dist(P,N) and Adj(P) E {Adj(N)} then increment
DSPS.COUNT(N,Adj(P))

ii. if x=dist(P,N) then Adj(N) <= {Adj(N)} U Adj(P)

iii. if x < dist(P,N), do nothing

iv. if x > dist(P,N), remove <N,x,{Adj(N)}> from TENT
and add <N,dist(P,N),{Adj(P)}>

The DSPS of a particular adjacency for a given destination can be stored next to the

adjacency information in the routing table. This can be seen in figure 5.8.

The pseudo-code for the DSPS route computation procedure is shown in appendix C.

78



Chapter 5 - Link-State Routing Algorithms

Routing table stored at node A
Destination  Distance  Adjacency DSPS

A 0 - -
B 1 B 0
C 1 C 0
D 2 B,C 0,0
E 2 C 0
F 3 B,C 0,1

Figure 5.8 Routing table with DSPS for simple six node network,

5.5.2 Packet Forwarding Procedure

The forwarding of packets towards nodes which offer down stream path splits results in

the following advantages:

1. Packets can adapt more easily to traffic fluctuations.
2. The chances of the packet being dropped by the network are much reduced.

The effects of dropping a packet at a node due to a full buffer may cause the transport
layer to time out and retransmit the packet. This not only increases the average network

packet delay but also wastes resources in retransmitting a packet.

Although sending packets towards adjacencies that offer DSPS is a good idea it should
not be used with the complete exclusion of all other equal cost paths. To do so would
cause unnecessary congestion. It is therefore necessary to modify the ISIS forwarding
algorithm to allow the DSPS of an adjacency to be taken into account whilst not

neglecting other equal cost paths.

If two equal cost paths are available to a node, the ISIS forwarding algorithm chooses
between the two based on the outgoing queue lengths. Whichever offers the shortest
queue is then used for forwarding the packet. In order to bias the packets towards nodes
which have DSPS it is necessary to modify the basic ISIS forwarding algorithm. The

pseudo-code for the DSPS forwarding procedure is shown in appendix C.
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If an adjacent node offers a single DSPS, then the forwarding algorithm considers the
queue to that adjacency as having one less packet in its outgoing queue than if it offered
no DSPS. Likewise, if two DSPS were offered by an adjacency, two less packets would
be considered in the queue. In this way a sort of credit system is in operation which
allows equal cost adjacencies to be considered even if they do not provide the shortest
outgoing queue length. It allows the forwarding algorithm to send packets towards nodes
which give the packet maximum flexibility. The following simple equation shows how
queue lengths and down stream path splits are compared.

[Queue.length(Adj;) - DSPS(Adj;)] cf. [Queue.length(Adjj) - DSPS(Adjj)]
cf. [Queue.length(Adjpp) - DSPS(Adj(N)]
where N is MaxPathSplits

If this equation results in equal values for each adjacency then the router chooses the first
adjacency listed in the forwarding table. This is a fairly minor point, and the algorithm
could easily be modified to break ties by selecting nodes based on which adjacency offers
more DSPS's, in a round-robin fashion or perhaps even randomly.

The following discussion of the forwarding procedure is with respect to the network
shown in figure 5.8. It is assumed throughout the discussion that the packet under
consideration begins at node A and is destined for node F.

When the output queues to nodes B and C are 5 and 6 respectively the DSPS algorithm
still chooses C as the next node. This is due to the one down stream path split offered by
that node, effectively considering the queue lengths as equal. In this situation the
forwarding algorithm would choose node C since it offers a DSPS.

If the length of any of the outgoing queues is equal to the maximum buffer size allowable
then the DSPS algorithm must select the next best path. This effectively suspends the
credit system of DSPS when queues become equal to the maximum buffer length. For
example, if the maximum buffer size is limited to 10 packets and queue lengths for nodes
B and C are 9 and 10 packets respectively, then node B must be selected as the next node.
If node C is selected (using DSPS credits) then the packet will be instantly dropped by the
buffer, since it is at maximum length. This would drop the packet needlessly since node B
offers a queue length less than the maximum. This example is shown in table 5.2.
Therefore, the forwarding algorithm must take into account the maximum buffer size of

the outgoing queues.
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Table 5.2 lists the next nodes that the ISIS and DSPS algorithms would choose with

various queue lengths for nodes B and C. The next node selection assumes that the packet
starts at node A and is destined for node F.

Queue length  Queue length | DSPS for [DSPS for | Next node Next node
for node B for node C | node B node C (ISIS) (DSPS)
2 4 0 1 B B
4 3 0 1 C C
5 5 0 1 B C
5 6 0 1 B C
9 10 0 1 B B
Table 5.2 Next n hosen by ISIS and DSPS for differen length

This completes the introduction to the DSPS algorithm. The performance of the DSPS
algorithm relative to that of ISIS is the subject of the next section.

5.6 Perf £ ISIS | DSPS Routi \loorit]
In order to ascertain the performance of the new DSPS routing algorithm over the ISIS it
1S necessary to resort to computer simulation since mathematical evaluation would be far
too complex. Mathematics can only be used on the very simplest networks, even then the
complexity is somewhat prohibitive. The DSPS algorithm and the ISIS algorithm were
simulated using the SIMSCRIPT IL.5 simulation language. The complete simulation

model will be described fully in chapter 8.

One of the best parameters for comparing routing algorithms is network power. Power is
defined as throughput divided by average network delay [78]. Since throughput and delay
are often in contention, power is a good measure of performance. Power is plotted against
the arrival rate at each of the nodes. If for example the arrival rate is shown as 20 packets
per second, then each node in the entire network will be generating 20 packets every

second.

The first network to be simulated was the six node network which has appeared
throughout this chapter. In this network there are a total of four down stream path splits.
These are shown in figure 5.9 below. The simulated network assumes 64 kbps links
throughout, however, the results are just as valid if 2.048 Mbps Megastream links, or
indeed any link speed was used. By defining all links as equal, the weight assigned to
each link is effectively one. This will be true of all the networks simulated in this chapter.
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Source | Dest. | Next | DSPS
Node A C,B 0,1
Node B| E AD 0,1
NodeE| B C,F 1,0
NodeF| A D.,E 1,0

Figure 5.9 Nodes that offer DSPS in the six node network.

The power generated by the ISIS and the DSPS algorithm are shown in figure 5.10.
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Figure 5.10 Power against arrival rate for ISIS and DSPS (6 nodes, 7 links)

The performance improvement of the DSPS algorithm over the standard ISIS algorithm
may not be fully appreciated from the graph in figure 5.10! In order to illustrate the gain
made by DSPS, figure 5.11 shows a graph of the percentage improvement of the DSPS

algorithm over the ISIS plotted against arrival rate.
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B % improvement

Percentage

0 10 20 30 40 50
Arrival Rate (packets/sec)

Figure 5.11 Percentage improvement of DSPS over ISIS (6 nodes, 7 links).

The next three power graphs are for 10 and 15 nodes respectively. In these graphs the
total number of different DSPS's in all of the nodes’ routing tables are shown. It is very
important to have different values of down stream path splits in a network. For example,
if a node has two adjacencies X and Y with down stream path splits of 3 and 3
respectively then the DSPS values effectively cancel each other out and the choice
between the two reverts to examining queue lengths only. A network may offer many
down stream path splits, but if they all cancel each other out then the performance of the
network degrades to that produced by the ISIS algorithm.

Both of the remaining networks have been built up from a spanning tree (number of
nodes - 1 links) with links added at random (recall from chapter 3 that most datagram
networks grow randomly). Tables 5.3 and 5.4 shows the number of different DSPS's
that were produced for a 10 and 15 node randomly generated network respectively.
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Number of Number of links

differentDSPS | 10 11 12 13 14 15 16 17 18 19
1 0O 0 5 2 0 4 5 2 2 2
2 0 2 2 5 3 5 3 2 2 2
3 0O 5 2 0 0 1 2 2 3 4

Random 2 0 5 10 3 10 9 11 9 7 7

number 3 O 0 0 2 3 5 6 3 2 2

seed 6 0O 0 0 O 1 3 4 4 3 4
7 O 0 0 2 5 6 6 4 4 5
8 0 4 2 2 2 5 4 6 6 4
9 0O 0 5 0 0 2 2 3 0 0
(0 0 0 0 3 6 6 9 9 7

Table 5.3 Number of different DSPS for randomly generated 10 node network.

Number of Number of links
DSPS | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
11000047 89 20126 121011 12
21000000 3 0 111517 16 18 23 21
310 0 5 14 18 18 20 28 27 34 26 22 20 18 14
Random4 | 0 0 9 7 0 0 121717149 13 14 14 12
number 5 {0 0 0 0 3 2 8 3 2 5 13121312 14
seed 1o 0 1 1 5 1512211312 13 10 10 12 13
710 0 106 6 6 107 9 9 14121316 17
81000000 2 6 2025141210 14 12
9olo 4 6 6 9 8 9 2520191821222322
1010 8 9 4 4 4 8 131218 16 22 22 27 25

Table 5.4 Number of different DSPS for randomly generated 15 node network.

The simulation results for the ten node network shown in figure 5.12 are shown in figure
5.13. This network has 12 links and 10 different DSPS (random number seed 4).
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Source | Dest. | Dist. | Next DSPS
Node 1 7 4 2,3 0,1

8 4 2,3 0,1
Node 2 4 4 1,9 0,2

6 5 1,9 0,2
Node 4 2 4 5,7.8 1,0,0
Node 5 10 3 3,4 0,1
Node 7 1 4 4,10 0,1
Node § 1 4 4,10 0,1
Node 9 4 3 3,10 0,1

6 4 3,10 0,1

Figure 5,12 N hat offer different DSPS in the 10 n network

The power against arrival rate graph for the above 10 node network is shown in figure
5.13.
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Figure S.13 Power against arrival rate for ISIS and DSPS (10 nodes, 12 links)

85



Chapter S - Link-State Routing Algorithms

The percentage improvement graph for the 10 node network is shown in figure 5.14.
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Figure 5,14 F _— ¢ DSPS over ISIS (10 nodes. 12 lial

The power against arrival rate graph for a 15 node network is shown in figure 5.15.
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Figure 5.15 Power against arrival rate for ISIS and DSPS (15 nodes, 22 links)
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The percentage improvement graph for the 15 node network is shown in figure 5.16.
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Figure 5.16 Percentage improvement of DSPS over ISIS (15 nodes, 22 links)

Further simulation results are shown in appendix D.

5.7 Di .
There are four different regions of the power/arrival rate graphs which can be identified.
These regions are shown in figure 5.17.
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Region 1, Region 2 Region 3 Region 4
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Figure 5.17 The four regions of power against arrival rate graphs.

The first region represents low traffic loading on the network. In this region the average
queue lengths are very low and the effect of sending a packet toward a node that offers
DSPS and one that doesn't is negligible. There is almost no performance gain made by
the DSPS algorithm over the ISIS in this region. As an aside, simulation results have
shown that even the ARPANET which operates most effectively in this area, provides no
significant gain over DSPS or ISIS [96].

In the second region queue lengths at each node are increasing and the effects of the
DSPS algorithm can be seen. The maximum value that the power graph attains in this
region represents the optimal arrival rate for that network. In this region, almost no

packets are dropped due to insufficient buffer space.

The third region of the graph represents the reduction in power that an increasing arrival
rate has on the network. More packets are being dropped due to buffer overflow. The
DSPS algorithm provides the maximum amount of performance gain in this region.
Region three represents the upper bound for packet arrival rate that a network should be

operated within.

The fourth and final region is the convergence of the two plots. This occurs because the
arrival rate at each node is so high that queues are becoming saturated. In this case, (recall
from the example given in section 5.5.2) the DSPS algorithm is effectively suspended and
the shortest outgoing queue is selected. In this region there is no difference between the
two algorithms. It is most unlikely that a network would be operated continuously in this
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region since the performance degradation is so very high due to the large number of
transport layer retransmissions.

A complete discussion of power graphs will be included in chapter 8.

The performance of the DSPS algorithm is directly related to the number of different
down stream path splits that exist in the network. This depends on two factors, link
weighting and topology.

If link weights are all set to the same value, then the only factor to be concerned with is
the topology. The effects of topology on the number of different down stream path splits
can be quite drastic. This can be seen by examining table 5.3 for a ten node network.
Using a random number seed of four and 12 links results in 10 different DSPS's. If a
single link 1s added between nodes 1 and 5 the number of different DSPS in the network
drops from 10 down to 3. If, in addition to the added link between 1 and 5, a link is also
added between nodes 2 and 8 the number of DSPS increases back to 10.

It must be remembered that all of the topologies generated in this study are completely
random. There has been no attempt to define a topology with a large number of different
down stream path splits. This is in keeping with chapter 3, which states that most
datagram networks grow randomly. However, of the randomly generated networks,
those that offered the largest number of DSPS were chosen for the simulation runs.

There are certain types of network topology where usage of the DSPS algorithm will not
produce any increase in network performance. In addition to a network that offers no
different DSPS's there are three types of network where absolutely no performance gains
can be made by implementing the DSPS algorithm. In all of these topologies, no down

stream path splits exist.

-The network cannot be a spanning tree. More links than the number of nodes
minus one must exist in the topology in order for different DSPS's to be present.

-The network cannot be fully connected. If every node in a network has links to
every other node in the network then it is described as being fully connected. In
such a topology, there are no equal cost paths, hence no possibility of DSPS.

-Six node minimum. In order for down stream paths to exist, there must be at least
six nodes in the network. This has been found to be the minimum number that will

generate different down stream path splits.
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It is very unlikely that in a corporate network a tree topology would exist, since a single
link would disconnect the network. Invariably other links are included for reliability. On
the other extreme, fully connected nodes are very robust, but they are prohibitively
expensive for anything other than the smallest of networks. Most practical networks are in
between these two extremes. The most constraining topology problem is the requirement
that more than six nodes are present in the network. However, this is not a severe
problem since many corporate networks have tens and even hundred of nodes.

In all the simulation runs, with various topologies, the DSPS algorithm provided either a
better performance than the ISIS or an equal performance. At no time was the DSPS
algorithm outperformed by the ISIS.

It is simply not possible to exhaustively simulate every topology with X number of links
and determine how often the DSPS algorithm outperforms the ISIS algorithm. What the
simulation does provide, however, is the ability to make the following generalization:

If different down stream path splits exist in a network then the performance provided by
the DSPS algorithm will be greater than that produced by the ISIS algorithm.

Although all the networks in this chapter had equal link weights, this does not mean that
the algorithm cannot work in an environment where link costs are different. It simply
means that the chances of having down stream path splits in the network are somewhat
reduced.

One of the most appealing aspects of running the DSPS algorithm in a router is that it
does not require other nodes in the network to understand the concept of down stream
path splits. In addition, it sends and receives the exact same link-state information that the
standard ISIS uses. What this means, of course, is that DSPS routers can work quite
happily alongside ISIS routers in the same network. However, those network where
DSPS routers are installed can attain a higher performance than their ISIS counterparts!

The ISIS standard specifies that any SPF algorithm can be used so long as the router still
conforms to the PICs (protocol information characteristics) proforma in the document.

The DSPS algorithm unquestionably corresponds to this standard.

A summary of the advantages that the down stream path splits algorithm offers are listed
below:
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- Very simple.
- Uses information discarded by ISIS.

- Improves network performance.

- Only needs small modifications to the route
computation and forwarding procedures.

- Can be used with any router running ISIS.

- No additional control packet overhead.

The DSPS algorithm operates best in the following environment.

- Topology is neither fully connected, nor a spanning tree.
- All links have the same weighting.

- More than 5 nodes in the network.

The disadvantages of DSPS are:

- Requires up to one third more storage space.

- Tiny amount of additional processing.

There is little doubt that the if different down stream path splits exist in a network then the
performance of that network is improved by implementing the new algorithm. In general,
the greater the number of different DSPS's the greater the performance improvement.
This performance gain has been shown to be as high as 50% in some of the simulated

networks.
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2.8 Improvements and Other Uses for DSPS

All of the simulated networks assume that for each DSPS offered by an adjacency, a
single credit is given for the queue length. Although not simulated here, it may prove
worthwhile to increase the size of the DSPS credit from one up to some value depending
on the size of the network. For example, an adjacency with two DSPS could be given
four credits to be used against the queue length. This however, is very much dependent
on the buffer sizes and packet lengths.

Another use of the down stream path splits concept which does not involve modification
to the ISIS forwarding procedure or require permanent storage of the DSPS values is in
the selection of equal cost paths.

The ISIS algorithm allows a maximum of 32 equal cost paths for each destination to be
stored in the forwarding database [75]. The default value for the variable
MaximumPathSplits is two. If the SPF algorithm is run and more equal cost routes
appear in the calculation than MaximumPathSplits, ISIS must prune the selection
by removing these excess adjacencies. The choice between adjacencies is based on the
identification number of the particular adjacency. Whichever ID is lowest, will be retained

in the forwarding database.

This is a very arbitrary selection process, which does not take into account the quality of
the routes provided. A far better method of pruning would be to store those adjacencies
that offer the greatest number of down stream path splits. This will ensure that the best of
the equal cost routes is maintained in the forwarding database. Implementing this
modification to a standard ISIS router would be an extremely simple operation.

92




Chapter 5 - Link-State Routing Algorithms

5.9 Conclusiop

Dijkstra's shortest path algorithm represents one of the most efficient shortest path
algorithms known today. This algorithm in its distributed form has been successfully
implemented in the ARPANET. The ARPANET's new SPF algorithm is far better than
the original Bellman-Ford algorithm which suffered badly during times of link and node
failure. The new ARPANET algorithm has been found to operate very well under lightly
loaded traffic conditions but less well under heavy traffic loading. It is also prone to
traffic oscillation during periods of high loading. These problems with the ARPANET are
attributed to the constant updating required by the algorithm in order to adapt to traffic
fluctuations throughout the network.

The OSI ISIS intra-domain routing protocol is based on the ARPANET's SPF algorithm.
ISIS alleviates many of the flaws associated with the SPF algorithm by not requiring
nodes to adapt to traffic on a global basis. The only traffic adaptation that does occur is
made locally based on outgoing queue lengths. Most computer network manufacturers' in
their move towards open systems will implement the ISIS protocol.

The down stream path split algorithm is a very simple extension of the ISIS algorithm that
utilizes information which is completely disregarded by that algorithm. This algorithm
requires additional storage for the DSPS values and introduces a minimal amount of
additional processing. However, the algorithm provides an increase in network power
which can be as high as 50% over that produced by the ISIS algorithm. A manufacturer
of ISIS routers can easily implement the DSPS algorithm and provide it as one of the

options available to the end user.

The next chapter presents several new algorithms which allow alternative paths to be used

during times of network congestion.
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Chapter 6

Alternative Path Routing Algorithms

6.0 Introduction

The ISIS algorithm and the ARPANET's SPF algorithm are fundamentally single path
routing algorithms. This means that a single cost path is available for sending packets
from a source to destination. During times of heavy traffic loading on the network, these
single paths can become heavily congested. It is desirable to examine algorithms that can
increase the performance at these levels of traffic.

Alternative path algorithms allow the use of higher cost paths when the main shortest path
is blocked or congested. These algorithms are more complex and require larger nodal
memory stores than the basic shortest path algorithms, but have the potential to produce

sizable performance increases.

This chapter presents three new alternative path algorithms which use the ISIS intra-
domain routing protocol as a basis. The algorithms are completely independent of the
DSPS algorithm discussed in the previous chapter. The new algorithms use the same link
state information that a standard ISIS router would use. In addition, they require
modification only to the packet forwarding and route computation procedures of the ISIS

algorithm.

6.1 O . N ive Path Algorith
The maximum flow between two points in a network represents the dynamic range of
traffic that the network is able to handle. According to the max-flow min-cut theorem, the
maximum flow between any two arbitrary nodes in a network is equal to the capacity of
the minimum cut separating those two nodes. This well known theorem can be used to

highlight the differences between a shortest path algorithm and an alternative path
algorithm [76,77].

In the network below (figure 6.1), the arc weights represent the carrying capacity of the
links in units of traffic. Therefore the higher the value of the weight, the greater the
capacity of the link. Using the max flow min cut theorem, the maximum flow that can be
attained from node A to node G can be found by cutting links BD and CE. The sum of

these two minimum cuts gives a maximum flow of four units..
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Figure 6.1 Simple network with maximum flow as link cost.

Therefore it is theoretically possible for the network to handle an arrival rate of four units
of traffic at node A destined for node G. Two of these units can be sent via nodes
ABDFG and the other two units can be sent via nodes ACEG (figure 6.2).

4 units of 2
traffic

—

Figure 6.2 Simple network with distribution of 4 units of traffic.

In order for an algorithm to calculate the shortest path trees in a network, the carrying
capacities are inverted and normalized against the highest speed link. In this way lower
cost values represent higher speed links. The link weights of figure 6.1 are shown
normalized in figure 6.3.

Figure 6.3 Simple network with link costs in form suitable for shortest path calculation.

A shortest path algorithm will calculate a cost of eight as the minimum path length
between nodes A and G. Data packets that arrive at node A destined for node G will be
routed along the path ABDFG. This path has a maximum carrying capacity of 2 units of
traffic due to link BD. An alternative path algorithm, on the other hand, calculates not
only the shortest path ABDFG but also a second path ACEG at a cost of nine. Using this
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alternative path during times of congestion will allow the flow rate between nodes A and
G to approach that of the theoretical value.

The use of alternative paths may be particularly important for time insensitive traffic such
as file transfers. It may be far better to send these packets down sub-optimal links than to
cause a transport layer retransmission if they are dropped.

In general, alternative path algorithms tend to be more complex than their single path
counterparts. Additionally they require more memory at the switching node in order to
store the alternative paths. On the other hand algorithms that provide alternative paths can
generate a higher network performance in the face of congestion than algorithms that are
restricted to using only the shortest paths.

The idea of providing alternative paths in the face of congestion is not particularly new.
However, this chapter is concerned with designing an improvement on current alternative
path routing algorithms which can be implemented in an ISIS router.

rnative Path Algorith
Tanenbaum discusses one very simple method for providing multiple routes from a
source to a destination [1]. Each router maintains a table with one row for each possible
destination. A row gives the best, second best, third best etc. outgoing line for that
destination, together with a relative weight. Before forwarding a packet, a router
generates a random number and then chooses among alternatives, using the weights as
probabilities. The tables are worked out manually by the network operators, loaded into

the routers and not changed thereafter. This is shown in figure 6.4.

96



Chapter 6 - Alternative Path Routing Algorithms

Destination  First Second Third
choice choice choice

Ajl A 0631 0.21| H | 0.16

B} A| 046 H| 031] 1 0.23

A C{l A| 034 1 0.33| H | 0.33
DI H] 050 A | 0.25] 1 0.25

Elf AJ] 040} 1 0.40f1 H | 0.20

Fil A1 034 H] 0.33] I 0.33

E G| H| 046 A | 031 K| 0.23
® Hil H| 0.63] K| 021 A | 0.16
I I I 0.65]| A | 0.22| H | 0.13
K|l K| 067} H]| 022 A | 0.11

LI K 042 H| 042] A | 0.16

Figure 6.4 Network and associated table for Tanenbaum routing procedure.

This method, although simple, does not permit adaptation to traffic changes. If traffic
levels are very low, the algorithm may choose to send a packet on a sub-optimal path to
the destination. In addition caution must be exercised in setting up the routing tables to
avoid routing table loops. For example, if node J forwards a packet to destination A via
H, node H must guarantee that the packet does not get returned to J. Various extensions

to the basic algorithm exist to take care of these problems.

All of the remaining algorithms in this section are designed to operate in a network which

allows packets to adapt to global traffic changes.

Nelson developed the NELHNET routing strategy [78]. This has been shown to provide
a higher network performance than the ARPANET's SPF algorithm [77]. The algorithm
was designed to operate in a tactical network in which both the topology and traffic

patterns change within relatively short periods of time.

The NELHNET algorithm requires global topological information in order for the
minimum hop paths to be calculated. The algorithm used to calculate the minimum hop
and minimum hop plus one paths is not Dijkstra's algorithm but a more efficient
mechanism which is only suitable for networks with equal cost links. The choice between
using the minimum hop path or the minimum hop plus one path is based on the network
traffic delays. In order to find the delays in the network it uses a similar technique to the
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ARPANET algorithm to calculate the nodal delays. Although the delay calculation may be
similar, the information distribution procedure is very different. In the ARPANET, the
packet delays are averaged over a ten second period and this information is then flooded
to all other nodes. The NELHNET strategy requires that the data packets include the latest
delay information in the packet header. Nodes then recalculate the least delay path and are
permitted to select either the minimum hop or minimum hop plus one route. This method
distributes over time the intensive calculation procedure of the ARPANET.

The paper presents three algorithms. The first (NELHNET A) only selects paths from the
minimum hop set. The second (NELHNET B) selects routes from the minimum hop and
minimum hop plus one sets at the input node only. The third algorithm (NELHNET C)
permits selection from both sets at any node. The final algorithm requires an extra bit of
overhead in order to guarantee that the selection from the alternative path set is only
performed once. If selection from the alternative path set occurs more than once, packet
looping will be produced. Figure 6.5 shows the routing table required for the NELHNET
routing strategies.

Minimum | Min. + 1

DestiDist.| Next{Dist.]Next
AlO 0 0 0

N = = =
w o N w

B
C
D
E

W N
0 0o

Ficure 6.5 Network and associated routing table for NELHNET algorithm.

NELHNET algorithm A would not be used since NELHNET B offers better performance
with no increase in packet overhead. An example of the NELHNET's algorithm B
operating in the network of figure 6.5 is as follows. If a packet is destined from node A to
node D and the delay on that path is greater than the delay experienced on the path ACD
then the latter path can be used. NELHNET C is an extension of NELHNET B and
operates as follows. A packet from node B destined for node C would take the shortest
path via node A. If the link AC is experiencing congestion, then the alternative path AD
can be used to get the packet to node C. This route takes only one hop more than the
minimum. A one bit flag in the packet header is then set to ensure that future nodes only
route the packet using the minimum hop set. If this header bit is not set, then node D
could possibly route the packet back up link DA, if link DC was experiencing congestion.
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Wang has developed the algorithm he terms Shortest Path First with Emergency Exits
(SPF-EE) which has been designed to provide an improvement to the ARPANET's SPF

algorithm. This algorithm is not restricted to the use of unity cost links as the NELHNET
algorithms are.

Using this algorithm, packets are sent down the shortest path routes during low
congestion and are allowed to take alternative paths, or emergency exits, during times of
heavy congestion. The algorithm uses the same distance measurement procedure and
information updating procedure as the ARPANET algorithm. In this way the algorithm
attempts to adapt to traffic fluctuation on a global basis. The SPF-EE algorithm requires
modification to both the route computation and the packet forwarding procedures. The
other procedures are the same as the ARPANET.

The algorithm that is used to calculate the alternative paths (AP) is very simple. After
having calculated the shortest paths, it then derives the routing trees for each of its
neighbouring nodes. The paths for each destination via these neighbours is then stored in
the alternative path database. The computation complexity of this algorithm is O(Dn2),
where O means on the order of, D is the average degree of the network and n is the
number of nodes in the network. The simplicity of the AP algorithm means that it is
incapable of finding all the available alternative paths (figure 6.6) from the node doing the
calculation. Note that node F can be reached from node A via node D with a cost of 7, the
SPF-EE alternative path algorithm is unable to find this path.

Shortest | Alternativ

Dist. Next{Dist. Next
Al1O0O 010 O
F B|2 B|4 D
cCl4 B|S5 D
2 D{2 DJ|4 B
E|l]4 F |5 D
E F|l2 F|- -

Figure 6.6 Network and associated routing table for Wang algorithm

In order to find all of the alternative paths in a network the SPF-EE algorithm must resort
to what Wang terms reverse alternative paths (RAP). In order to find a RAP during times
of congestion, an initiating node sends a query message concerning a particular
destination to each of its neighbouring nodes. The neighbours check their routing tables
for this destination to see if they can provide a suitable alternative path (exit) for the
packet. If an exit is found then the initiating node is informed, otherwise the neighbouring
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nodes send query messages to their neighbours. This process repeats until an exit is

found or the number of neighbours to be checked reaches a defined limit. The RAP for
the network of figure 6.6 is shown in figure 6.7.

Source | Destination | Intermediate Hops | Exit
A F D E

Figure 6,7 RAP table required for Wang alsorithm.

Although this method will eventually find all the alternative paths if they exist, it is a very
inefficient and cumbersome method. While nodes are attempting to establish RAPs the
data packet has to sit at the initiating node and wait. Even for time insensitive traffic such
as file transfers this is totally unacceptable.

In addition this method may lead to packet looping. To quote Wang "It is interesting to
note that in some cases the packet may be sent backwards to the nodes it just came from
and then take a different path". From this statement it can be concluded that the use of the
SPF-EE algorithm does not provide a feasible solution to the alternative path problem for
interconnected FDDI LANs.

In order to calculate all routes from a source to a destination, regardless of cost, a k
shortest path algorithm can be used. These algorithms generally require global topological
information in order to find the k best paths. If the number of alternative paths required is
large (ie large k) then the amount of processing required by the algorithm is quite

extensive.

The French DATAPAC network [33,79] utilizes such an algorithm. In this network a
dedicated central controller collects information about the delays on all links and calculates
the k shortest paths for every source/destination pair. The routes to be used are then
forwarded to all of the nodes of the network. This algorithm is also distributed in that the
individual nodes may select which of the k paths to send a packet down based on the
outgoing queue lengths. The routers can choose one of the alternative paths if congestion
occurs on the shortest path. The central controller must run the k shortest path algorithm
quite frequently in order to keep track of the network wide delays.

The routing table required for this algorithm is shown in figure 6.8 below.
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Shortest | 1st Alt. 2nd Alt.

Dest{Dist. Next|Dist. Next|Dist. Next
Al O 0 0 0 0 0

B|3 B|1l D}j12 C
C|3 C}|6 D}|12 B
Di4 D5 C|10 B
Ef6é D|7 C|8 B

Figure 6.8 Network and associated routing table for DATAPAC algorithm.

6.3 Kk Shortest Path Algorithms

Of the above methods for calculating alternative paths, the k shortest path algorithms
appear to be the most flexible. These algorithms can calculate the best, second best, third
best etc paths in a network without any restrictions on link costs. There are basically three
different versions of this algorithm. In the first version, no k shortest path is allowed to

contain repeated nodes. A second version of the problem allows the k shortest paths to
contain repeated nodes. Much research has been done on versions one and two of this
algorithm [80,81,82,83]. A newer implementation, version three, proposed by Topkis
requires only that the initial links of the alternative paths are distinct from those of the
shortest paths [79].

These three versions of the k shortest path and how they relate to a simple network are
shown in figure 6.9. In this figure the shortest paths and the alternative paths from node

A to node F are shown.

Shortest path | Cost | Alternative path| Cost
Version 1 | ABEF 5 ACF 11
Version 2 | ABEF 5 ABDEF 7
Version 3 | ABEF 5 ACBEF 10

Figure 6.9 Shortest and alternative paths for three versions of the k shortest path problem.

Algorithms that find completely disjoint paths are satisfactory when there are a large
number of links in the network to choose from. However, this severely limits the number
of permitted alternative paths if the network is sparsely connected. If a router has global
information on a network's delays, then it is in a suitable position to specify that one path
is superior to another path. Version one of this algorithm may be satisfactory for such a
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network. If, however, only local information on the outgoing queue lengths is available to
the router, then it is not really in a position to completely disregard one entire path over
another. A router with only local information is only able to claim that one outgoing link
offers better performance than some other outgoing link. Finally, algorithms that attempt

to find the k shortest disjoint paths in a network require a large amount of computational
effort.

The second type of algorithm which allows repetition of nodes is also not completely
satisfactory. It is possible that when using this algorithm the alternative path contains the
same initial link as that of the shortest paths. If the queue for a link exceeds some
threshold, then the router may select a path from the alternative routing set. If the initial
link of the alternative path set is the same as that from the shortest path set then no gain is
made and the packet may become rejected, depending on the threshold value.

The simplest of the three versions of k shortest path algorithm is the third type. These
algorithms require only that the initial link is different from that of the shortest path. The
algorithm is unconcerned with whether or not succeeding links are disjoint from the
shortest path set or not. This algorithm is ideally suited for a routing algorithm which only
adapts to traffic changes on a local basis. The computational time for this type of
algorithm can be far lower than both version one and two. This type of k shortest path
algorithm will be used as the basis for the new algorithms.

i h_Algorithm
The ISIS routing algorithm is fundamentally a single path algorithm and requires
modification if it is to be used to calculate an alternative path set. Two new routing
algorithms based on a modified ISIS are presented in this chapter. Algorithms A and B
allow the alternative routing set to contain minimum cost plus one paths. Algorithm A
only permits selection of these paths at the initial node, whereas algorithm B allows
selection at either the initial node or somewhere along the path. Algorithm C allows the
alternative path set to take any value greater than the shortest path set. Selection from this

set is only permitted at the initial node.

All three algorithms allow selection from the alternative path set based on the outgoing
queue lengths of the adjoining links. No attempt is made to adjust routes according to the
global traffic conditions in the network. This is the same traffic adaptation policy that the
standard ISIS algorithm permits when choosing between two equal cost paths.

The route computation procedures for the three new algorithms are very similar and are

discussed below.
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6.4.1 Route Computation Procedure - Algorithms A.B and C

It is possible to build a k shortest path algorithm out of the standard ISIS shortest path
algorithm. This can be achieved by using multiple runs of the standard algorithm. Using
this method it is possible to calculate all three versions of the k shortest path problem.
However, in this chapter only version three of the algorithm will be discussed.

In order to calculate alternative paths with disjoint initial links, the cost to each adjacency
of the source node is temporarily set to zero. Figure 6.10 shows a simple network and the
topology database with all links included.

m o aw»

S W N W o Y
w o OO W
O - 0o o A
N O = O W
S N O W O

Figure 6.10 Simple network and topology table with all links present.

By temporarily masking out all but one of a node's adjacencies in the topology database
and running the algorithm, the shortest paths via that adjacency can be found. After
having found the shortest paths via that link, the link is reinstated into the topology
database and the next link is removed. This is done for each adjacency of the source.
Figure 6.11 shows the shortest path trees rooted at node A (from network of figure 6.10)

for each of its three adjacencies.
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Dest{Dist.|Next
Al 0O O
B| 8| D
C} 41 D
D} 3| D
E| 51 D

Links AC, AD setto 0

Dest{Dist.|Next
Al 0} O
B| 3 B
Cl 9 B
D| 8 B
E| 6| B

Figure 6.11 Resulting shortest path tables after masking adjacencies.

The shortest paths that are generated by each of these runs can then be sorted to find the
shortest path, the 2nd best, third best etc. paths to each destination. Since the algorithm is
basically Dijkstra's algorithm with masked links, the alternative path set is guaranteed to
be loop free. The final routing table is shown in figure 6.12. In this diagram only one of

the alternative paths is shown.

Shortest Path Alternative Path
Dest.| Dist. Next Dist. Next
A 0 0 0 0
B 3 B 8 CD
C 2 C 4 D
D 3 C,D 8 B
E 5 C,D 6 B

Figure 6.12 Final routing table showing shortest and alternative paths.

The route computation procedures of the three algorithms are slightly different when it
comes to storing the alternative paths. Algorithms A and B must only store alternative
paths if they offer a cost to the destination which is one greater than that offered by the
shortest path. Algorithm C can store any value in the alternative path set. Therefore, in the

above example, the alternative path routing set is shown for algorithm C. For algorithms
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A and B the routing table is shown in figure 6.13. In order to reduce the amount of nodal
storage space required, the three algorithms only permit one alternative path to be stored.

Shortest Path Alternative Path
Dest.| Dist. Next Dist. Next
A 0 0 0 0
B 3 B - -
C 2 C - -
D 3 C,D - -
E S C,D 6 B

Figure 6.13 Routing table for algorithms A and B.

The route computation procedure pseudo-code for the three algorithms is shown in
appendix E.

The initial link disjoint algorithm developed by Topkis [79] is somewhat more efficient
than the above route computation procedure. In his algorithm each shortest path
calculation exploits information generated by the previous iteration. In this way the
computational complexity is only O(knZ2), where k is the number of shortest paths
required. When k is one, the complexity is equal to that of the Dijkstra shortest path
algorithm, namely O(n2). The worst case computational complexity of algorithm A and B
is 0(dn2), where d is the number of adjacencies of the node doing the calculation.

Therefore if the number of paths required (k) from a source is less than the number of
adjacencies of that source (d) then the Topkis algorithm, in terms of efficiency, will
outperform the route computation procedure of algorithms A and B. However, when k=d
the computational complexity of the algorithms is the same. For example, if a node has
three neighbours and three paths were required, then the computation complexity of the
algorithms will be exactly the same. However, if a node has three neighbours and only

two paths are required, the Topkis algorithm is more efficient.

This may suggest that the above algorithm should be used for calculating the alternative
paths in the network. If it is used, the forwarding procedures for algorithms A and B

(discussed in the next section) will remain the same.

However, there is still a case for the route computation procedure discussed in this
section. Topkis's algorithm has been designed for use in the DATAPAC network where
the algorithm must be run each time a new network delay estimate arrives. This could

potentially be every couple of seconds. An environment such as this requires that the most
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efficient algorithm available is used in order to minimize the required processing time. The
ISIS algorithm makes absolutely no attempt to adjust to global traffic levels, and the only
time the algorithm is run is when a topology failure occurs. Since this is the case, the
speed that the Topkis algorithm provides may be unnecessary. In an interconnected LAN

environment, where links and nodes fail quite infrequently, the computation procedures
of algorithms A and B may be satisfactory.

Another argument in favour of the new algorithms over the Topkis algorithm is that the
former requires no modification to the standard ISIS routing procedure. The algorithm is
called by a subroutine which simply modifies the topology database before calling the
ISIS algorithm.

6.4.2 Packet Forwarding Procedure (Algorithm A)
The packet forwarding procedure of a routing algorithm is responsible for sending a

packet from one node to the next. In the case of a shortest path algorithm this is simply
the next node listed in the routing table. If the algorithm permits equal cost path splitting,
as ISIS does, then the forwarding procedure can make the selection based on the outgoing

queue lengths.

For an alternative path algorithm, the forwarding procedure can use the secondary paths
under a variety of conditions. Some of these include:

- queue lengths exceeding some threshold
- during link or node failure

- randomly

In this forwarding procedure, the alternative paths will be used when the queue length to
the preferred path exceeds some threshold. The effects of varying the threshold value will
be shown in the simulation results. In addition, the use of the alternative paths has been
limited to traffic which is not time sensitive. It is often better to drop time sensitive traffic,

such as real time packet voice, than to route it down alternative higher cost paths.

The forwarding procedure for algorithm A requires that the data packets contain a one bit
flag in the packet header. When set, this flag indicates that an alternative path has been
selected somewhere on the path. When a node receives a packet the forwarding procedure

checks this bit and, if set, the next node selection must only be made from the shortest

path group.
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If the threshold exceeds some value and multiple equal cost alternative paths exist, then
the algorithm chooses the alternative path with the lowest outgoing queue length. This is
the same technique used for selecting between two equal cost shortest paths. Algorithms
B and C also use this method to select between equal cost alternative paths.

6.4.3 Packet Forwarding Procedure (Algorithm B)

The forwarding procedure of algorithm B is similar to that of al gorithm A. However, the
choice of the alternative paths is limited to selection at the initiating node only. This
reduces the overhead required by the algorithm.

6.4.4 Packet Forwarding Procedure (Algorithm C)
The forwarding procedure of algorithm C is similar to that of algorithms A and B in that

alternative paths are used when the number of packets in the queue for the primary path
exceeds some threshold. The selection of these paths is restricted to the initial node only.

If the alternative paths for algorithm C are allowed to take any value greater than those of
the shortest paths, then it is not possible to allow selection from the alternative path set to
occur arbitrarily in the network. This selection can only be made at the initial node, even if
a one bit flag is included in the packet header as in algorithm A. This can be seen from the

example below.

G
(A) Tz
NS

Ficure 6.14 Possible packet looping in algorithm C.

Assume that a packet begins at node A (figure 6.14) and is destined for node C. The
shortest path from A to C is a cost of 5 via node B. If, when the packet arrives at B,
congestion is encountered on link CB and assuming selection is permitted from the
alternative paths, node B will send the packet back to node A on link BA. Having set the
bit to a one in the packet header (alternative path chosen flag), the selection at node A
must be from the shortest path set. This packet is then sent back to node B where the
selection of the next node must also be made from the shortest path set. Only after the

loop AB, BA, AB does the packet arrive at the destination node C.

The forwarding procedure pseudo-code for algorithms A, B and C is shown in appendix
E.
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6.5 Summary - Algorithms A and B

Algorithms A and B are both based on the NELHNET routing strategy. However, there
are some important differences between the two.

The route computation procedure of NELHNET has been designed to operate in a
network where link costs are all the same. Algorithms A and B allow the link costs to take
on any value. The alternative paths are then limited to the shortest path plus one routes.
This is achieved using multiple runs of the ISIS shortest path algorithm.

Shortest | Alternative
Dest}Dist.|Next|Dist.] Next
2.048 Mbps A0 OO0
cost =1 Bl 1] Bj - -
Cl 321 C| 331 B

64 Kbps
cost =32

64 Kbps
cost =32

Figure 6.15 Simple multi-cost network and associated routin
table for algorithms A and B.

In a network which supports links of multiple costs, the highest speed link can be defined
as having a cost of unity. All other lower speed links in the network can have their costs
related to the highest speed link by dividing the former by the latter. For a network with
2.048 Mbps and 64 kbps links this would result in costs of 1 and 32 respectively. This

can be seen in figure 6.15.

NELHNET also attempts to route packets based on the global traffic delay. This requires
precious nodal processing time in order to calculate paths and update neighbours.
Algorithms A and B are based on the ISIS protocol which only attempts to adapt to traffic
locally depending on the outgoing queue lengths.

6.6 Summary - Algorithm C

Algorithm C is capable of finding initial link disjoint alternative paths in the network if
they exist. This is in contrast to the SPF-EE algorithm developed by Wang which requires
the use of RAPs in order to find all the alternative paths. For the network shown in figure
6.16, the SPF-EE algorithm developed by Wang is incapable of finding the route to F via
node D without having to resort to RAPs. Multiple runnings of the ISIS routing algorithm
can easily find these paths. It is very wasteful of resources if the node must go searching
for an alternative path, particularly when global topological information is available to the

node.
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Shortest | Alternative;

Dist. Next|Dist. Next
2 ) Ao o]0 o0
3 O B|2 B|l4 D
cl4 B|ls b
z 2 D|2 DJ|4 B
E|l4 F|5 D
E 3 3 F|{2 F|7 D

Figure 6.16 Simple network and associated routing table for algorithm C,

The k shortest path algorithm developed for the DATAPAC network is a centralized
approach to finding alternative paths [33]. This network attempts to adapt to traffic
fluctuations on a global basis and requires large processing power at the central node.
Using multiple runs of the ISIS algorithm, the k shortest path problem can be used in a
distributed environment where traffic adjustments are made on a local basis.

Table 6.1 summarizes the differences between the three algorithms and those discussed in
the literature.

Strategy a;il‘rafﬁg: Link costs . Route cc:gputation Poti;t olf alt.
aptaion  |Shortest |Alternative procedure path selection
NELHNET | global hops {hops+1 | Min. hop algorithm any node
DATAPAC | global/local | any any K-Shortest algorithm| initial node
Algorithm A | local any | shortest+1| Multiple ISIS runs any node
Algorithm B| local any | shortest+1 Multiple ISIS runs initial node
Algorithm C{ local any |any Multiple ISIS runs initial node

Table 6.1 Comparison of literature algorithms with algorithms A, B and C,

6.7 Performance of ISIS and Alternative Path Algorithms

In order to compare the new algorithms with the ISIS protocol it is again necessary to
resort to simulation. The effect of topology on the routing algorithms will be seen to be a
critical parameter which must be considered when selecting an algorithm. It is not
possible to examine every different topology possible for a given network size. All of the
networks in this chapter have been randomly generated and those topologies which

produced large numbers of alternative paths have been used for the simulation runs.
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It must be emphasized that although many of the networks in this chapter are shown with
equal cost links, the three algorithms can work with any network regardless of link costs.

6.7.1 Algorithms A and B

For each network, two different forwarding procedures are simulated. The first allows
the alternative paths to be used only when the outgoing queue length to the preferred path
exceeds the maximum buffer size. The threshold in this case is defined as the maximum
buffer length. Therefore, alternative paths are only used when a packet is in imminent
danger of being dropped by the network. The second forwarding procedure takes the
other extreme and forwards the packets along either the shortest path or the alternative
path depending on which offers the shortest queue length. If the preferred path has a

queue length of five and the alternative has a queue length of four, then the alternative
path will be chosen. This forwarding procedure will be termed low threshold. A real
implementation of an alternative path algorithm would probably be within these two

extremes.

The first network to be simulated is the five node network shown below (figure 6.17).
This network offers a total of 18 alternative paths with a cost one greater than the
minimum. For this network, algorithm C also produced the exact same 18 alternative

paths.

Figure 6.17 Simulated five node network.

The power produced by algorithms A and B for the different types of forwarding
procedure are shown in figure 6.18. A high threshold setting is denoted by HT and a low

setting by LT.
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Figure 6.18 Power against arrival rate (5 nodes, 7 links)

The percentage gain of these algorithms over the ISIS are shown in figure 6.19.

200 4 O Algo. A (HT)
s Algo. B (HT)
O Algo. A(LT)
® Algo. B (LT)

100 -

Percentage

Arrival Rate (packets/sec)

Figure 6.19 Percentage gain of algorithms A and B over ISIS (5 nodes, 7 links)
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For a 10 node network the following power graph was produced (figure 6.20).

Network Power (bits/sec/sec)

300

200 A

100 4

ISIS

Algo. A (HT)
Algo. B (HT)
Algo. A(LT)

Algo. B (LT)

Arrival Rate (packets/sec)

Figure 6.20 Power against arrival rate (10 nodes, 14 links)

The percentage improvement offered by Algorithms A and B over the standard ISIS

protocol are shown in figure 6.21.

Percentage

400 =

300

200 A

a  Algo. A (HT)
® Algo. B (HT)
O Algo. A(LT)
A Algo.B(LT)

Arrival Rate (packets/sec)

Figure 6.21 Percentage gain of algorithms A and B over ISIS (10 nodes, 14 links)
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Figure 6.22 shows the simulation results for a 15 node network.

Chapter 6 - Alternative Path Routing Algorithms

SIS

Algo. A (HT)
Algo. B (HT)
Algo. A (LT)
Algo. B (LT)

500 5

8 400 +

g

9]

L

[72]

2

F 300+

b

[ L

2

& 200 A

%

o

3

> 100 -
0
0

Figure 6.22 Power against arrival rat
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15 nodes, 22 links

The percentage improvement of algorithms A and B over the ISIS are shown in figure

6.23 below.
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Figure 6.23 Percentage gain of algorithms A and B over ISIS (15 nodes, 22 links)

6.7.2 Algorithm C
The simulation results for algorithm C are shown in this section. The threshold value for

all the simulations is set to the maximum buffer length. This means that selection of the
alternative paths occurs only when the buffer to the preferred link is at the point of
overflowing. It would be unwise to choose between the shortest pat.. and the aiternative
path based on which offered the shortest outgoing queue length as in the previous
simulations for algorithms A and B; the reason being that the value of the alternative path
set may be much greater than the shortest paths since they are not limited to a cost of one
greater than the minimum as they are in algorithms A and B. If these paths were selected
based on shortest queue length, it is inevitable that the performance of the network would

deteriorate.

The six node network in figure 6.24 is used for the first simulation run. In this network,
algorithm C finds a total of 26 alternative paths. Note that the alternative path routing set

for algorithms A and B would be empty for this network.
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Figure 6.24 Six node network used for simulation.

The amount of power generated by the ISIS algorithm and algorithm C for this network is
shown in figure 6.25.
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Figure 6.25 Power against arrival rate (6 nodes, 7 links).

Figure 6.26 shows the percentage gain that algorithm C provides over the ISIS algorithm.
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Figure 6.26 Percentage gain of algorithm C over ISIS (6 nodes, 7 links)

For a ten node network, the following simulation results were produced (figure 6.27).
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The percentage gain provided by algorithm C for this network is shown below (6.28).
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Figure 6.28 Percentage gain of algorithm C over ISIS (10 nodes. 12 links).

The simulation results for a fifteen node network are shown below in figure 6.29.
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The percentage gain generated by the new algorithm is shown in figure 6.30.
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Figure 6.30 Percentage gain of algorithm C over ISIS (15 nodes. 22 links).

Additional simulation results for all three algorithms are shown in appendix F.

5.8 Di .
The purpose of all three algorithms is to improve the network performance in regions
three and four of the power graphs. Recall from chapter 5 that region three represents the
rolling off of the power graph from the optimal arrival rate. Region four is the area where
packets are being dropped and transport layer retransmissions become more apparent.

All three of the algorithms are capable of providing some sort of performance gain in the
desired regions. The amount of gain is highly dependent on the topology and the
forwarding procedure. Due to the topology dependence it is unnecessary to compare the
performance of algorithms A and B with that of algorithm C. For some topologies
algorithm A and B generated alternative paths which were exactly the same as algorithm
C. In such a case, no gain difference would be seen between algorithm B, with a high
threshold value and algorithm C. In addition, some of the topologies generated resulted
in no alternative paths for algorithm A and B, whereas algorithm C would generate many

alternative paths.

The alternative path algorithms discussed in this chapter can operate with any topology
with more than two nodes. This differs from the DSPS algorithm which must have at

least six nodes before any different down stream path splits exist.

118



Chapter 6 - Alternative Path Routing Algorithms

The packet forwarding procedure for algorithms A and B can be optimized, or tuned, for
each network to allow the alternative paths to be taken during times of congestion.
Congestion is a relative term and can be defined in the forwarding procedure by setting
the threshold value. Since the alternative paths for algorithms A and B are only one
greater than the minimum, it is possible to set the threshold value very low and improve
network performance. This is not possible for algorithm C.

The simulation results show the effects of setting the threshold level to a high and low
value. Setting a high threshold level improves performance in the top end of region three
and all of region four. A low threshold value can improve the performance across all of
region three and some of region four. However, for the low threshold setting, the
simulation results show that a degradation of performance occurs under very heavy
loading. In addition, setting a low threshold value will increase the amount of processing
required for each packet. The reason for this is that queue lengths for both the shortest
path and the alternative paths must be checked to ascertain which offers the shortest
queue. For high value threshold setting, the queue lengths for the alternative paths are
only checked when the outgoing queue to the shortest path reaches the maximum buffer
length. It is therefore necessary to strike a balance between performance and router
processing when setting the threshold value in the packet forwarding procedure.

It is interesting to note that in the simulation results for five nodes, algorithm A actually
performed less well than algorithm B for low threshold settings. However, under high
threshold values, algorithm A outperformed algorithm B.

Algorithm C is permitted to use any alternative path if it exists. In the simulation runs, no
upper bound was placed on the value that the alternative paths could take. If the shortest
path offered a cost of 10 to a destination, it is feasible that the alternative path could offer
a cost many times this value. In an actual implementation it would be wise to limit the
values permitted for these alternative paths. This is particularly true in small networks. If
large value alternative paths are used, the increased average delay caused by using these

paths may actually be greater than retransmitting the packet.

All three algorithms require up to one third additional memory storage space for the
alternative paths. Algorithm A also requires that one bit of overhead is included in the
packet header to indicate when an alternative path has been selected. The actual overhead
of one bit is quite trivial, but it does require that all nodes in the network understand what
is meant by this bit. If this routing algorithm is run in a network with a large number of
ISIS routers, then in order for algorithm A to work properly, not only must the ISIS
routers store alternative paths but they must also recognize what the one bit flag in the
packet header signifies. Algorithms B and C make no such demand on the other routers.
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Apart from the complexity and the additional storage space required by the algorithms the

following table (table 6.2) lists some of the advantages and disadvantages of the three
algorithms.

Advantage Disadvantage

Algorithm A| -Selection of alt. path - 1 bit overhead for flag.
anywhere in network.

- Threshold tuning. - Requires other routers
to understand flag.

- Alt. paths are limited

in cost.
Algorithm B | - Threshold tuning. - Alt. paths are limited
in cost.
Algorithm C| - Alt. paths can have - Performance improvement
any cost. limited to high traffic load.

Table 6.2 Advantages and disadvantages of algorithms A.B and C.

The selection of a particular algorithm is highly dependent on the network topology. If
there are a large number of minimum cost plus one paths in a network, then algorithm A
will provide the best performance. Algorithm B will perform quite satisfactorily in the
same network without the one bit of overhead. Finally, algorithm C is ideally suited for
networks which have very few minimum cost plus one paths.
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6.9 Conclusion

The ISIS routing algorithm is essentially a single path algorithm which generates a
performance far below that of the theoretical potential. Alternative path algorithms, whilst
being more complex, are capable of approaching this potential. The new algorithms
require approximately one third more storage space than the standard ISIS algorithm. This
increase in storage is common for all alternative path algorithms. There is also a small

amount of additional processing required during times of congestion to select the
alternative paths.

Previous work on alternative path algorithms has centred around schemes designed to
react to network-wide traffic delays. The three new algorithms presented in this chapter
are all based on the ISIS routing protocol and, like that algorithm, only attempt to adapt to
traffic on a local basis.

Multiple runs of the ISIS shortest path algorithm are used to calculate a selection of
alternative paths. This is perhaps not the most efficient method of calculating the k
shortest paths, it is however, the most flexible. It is capable of generating the shortest
path and alternative paths regardless of cost. It can produce initial link disjoint alternative
paths or even path disjoint alternative routes if required. The latter can be controlled by
defining the initial conditions before running the ISIS routing algorithm. Finally, it
reqaires no modification to the actual ISIS route calculation procedure, only a short

subroutine to call this procedure.

It is possible to tune the algorithms for a particular network implementation by adjusting
the threshold value in the packet forwarding procedure. Even without tuning the
algorithms for each network, power gains as high as 150% over the ISIS algorithm have

been achieved.

The three algorithms presented are far simpler than the alternative path algorithms
proposed in the literature. They can all be used with an ISIS router without significant

modification to the existing routing procedures.

The next chapter will examine the performance improvement provided by an algorithm

that allows both down stream path splits and alternative paths.
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Chapter 7

Combination Routing Algorithms

2.0 Introduction

The Down Stream Path Splits algorithm offers an improvement on the performance of the
ISIS algorithm during times of medium to high congestion levels. Under high traffic
loading the down stream path splits credit system is effectively suspended and
performance of the algorithm is equivalent to that of the ISIS.

The alternative path algorithms A, B and C are most effective during times of high to very
high traffic levels. During low to medium levels of traffic, the alternative path algorithms
only select the shortest paths to a destination and no improvement is made over the ISIS.

In order to develop an algorithm which provides an increase in performance across a wide
spectrum of traffic arrival rates, it is possible to combine the DSPS algorithm with the
alternative path algorithms. This will allow the resulting algorithm to use the DSPS credit
system during times of medium/high loading and the alternative path sets during high/very
high traffic loading.

This invariably results in a more complex algorithm than those presented in the previous
chapters. In addition, more router memory is required in order to store the two sets of
information. However, the performance gain achieved by these algorithms may justify the
complexity and memory increases. Even after combining these two types of algorithm
they are still far simpler than many of the routing algorithms proposed in the literature
[30,42,72].

The combined algorithms in this chapter will have the same names as those in chapter 6,

but with the extension of + DSPS.

B+DSPS and C+DSPS

The route computation procedures for the three combination algorithms are all very
similar. They are all based on a concatenation of the DSPS algorithm and the alternative

path computation algorithm.

The route computation procedure for the down stream path splits algorithm is embedded
in the standard ISIS calculation. When the ISIS shortest path algorithm is performed the
down stream path splits for the shortest paths to each destination are produced. Therefore,
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when the algorithm is run multiple times in order to find the alternative paths, the down
stream path splits for each link are simply a by-product of the calculation. For every
alternative path produced by the algorithm, there will be an associated DSPS value. These
down stream path splits are then stored next to each of the shortest paths generated. The

complexity required for calculation of the algorithm is no greater than that for the
alternative path algorithms, namely O(dn2).

Algorithms A+DSPS and B+DSPS again allow the storage of alternative paths, if they
offer a cost one greater than the minimum. Algorithm C+DSPS allows the storage of
alternative paths regardless of cost. A routing table for a six node network running
algorithm C+DSPS is shown in figure 7.1.

Routing table stored at node A

Shortest Alternative
Dist.| Adj. |[DSPS| Dist.| Adj. |DSPS
0 - - 0 - -

1 B 0 3 C 0
1 C 0 3 B -
2 B,C| 0,0 - - -
2 C 0 4 B 1
3 B,C| 0,1 - - -

Figure 7.1 Simple network and routing table for algorithm C + DSPS.

Note that the alternative path and alternative DSPS tables would be empty if the network
was running algorithm A+DSPS or B+DSPS.

The pseudo-code for the route calculation procedures for the three algorithms is shown in
appendix G.

L2 Forwarding Procedures

The forwarding procedures of the three algorithms are all very similar to their uncombined

counterparts of chapter 5 and 6.

The number of down stream path splits offered by a path is taken into account when
selecting two equal cost routes to a destination. This credit system effectively biases
packets towards nodes which offer a choice of routes further down the tree. The credit

system is suspended when queues to a link exceed the maximum buffer length.
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At the point of suspension of down stream path splits, the alternative paths can be
considered.

1.2.1 Packet Forwarding - Algorithm A+DSPS

Algorithm A+DSPS allows the selection of an alternative path to take place once
anywhere in the network. To inform other nodes in the network that an alternative path
has been chosen, a one bit flag in the packet header is required.

1.2.2 Packet Forwarding - Algorithm B+DSPS

Algorithm B+DSPS permits selection from the alternative path set only at the initiating
node. It therefore requires no additional packet overhead. Algorithm A+DSPS and
algorithm B+DSPS can be tuned to the network environment by allowing two different

forwarding procedures. The first only uses alternative paths when the outgoing queue to
the shortest path reaches the maximum buffer length. The second procedure compares the
length of the queue for shortest path with that of the alternative path and whichever is the
shorter is selected for packet forwarding. Only the first method of packet forwarding will
be discussed in this chapter.

1.2.3 Packet Forwarding - Algorithm C+DSPS
Algorithm C+DSPS is similar to algorithm B+DSPS in that alternative paths are only used
at the source node. Alternative paths are used when the shortest path queue is equal to the

maximum buffer length and the packet is in imminent danger of being dropped.

An example of the forwarding procedure for several queue lengths is shown in table 7.1.
This table could relate to any one of the three algorithms (assuming that the flag for
algorithm A+DSPS has not been set). In this example, the node running the algorithm has
three neighbours, A, B and C. The adjacencies A and B offer equal cost shortest paths
with down stream path splits and an alternative path is offered by adjacency C. For queue
lengths below the maximum, the down stream path splits credit system is in operation.
When the queue length hits the maximum value of ten, the node is permitted to utilize the
alternative path. When the alternative path queue length also hits the maximum buffer
size, then the selection of the next node is irrelevant since the packet will inevitably be

dropped by the router.

124



Chapter 7 - Combination Routing Algorithms

Shortest Path Alternative Path
Queue lengths DSPS Queue length Next
A B A B C Node
6 7 0 2 X B
10 10 0 2 5 C
10 10 0 2 10 X
X = dont care

max. buffer length = 10
threshold = max. buffer length

Table 7.1 Next node selection for various queue lengths.

The pseudo-code for the three forwarding procedures is shown in appendix G.

n mbination Al
In the simulation results for this section the number of alternative paths that can be stored
have been limited to one. In addition, the down stream path splits for the alternative paths
have been neglected. This saves on a large amount of storage space for the simulation
runs. If nodal storage space is not at a premium then the alternative path down stream path
splits can be stored and taken into account if required. This may result in an increase in

performance if many alternative paths are available.

The networks used in the simulation results are the same as those used in chapter 5 for the
down stream path splits algorithm. These were chosen for the large number of DSPS that

are generated for those topologies.

Simulation results are shown for the combined algorithms and the ISIS algorithm. They
are not shown compared with the simulation runs of DSPS from chapter 5 nor with the
alternative path algorithms of chapter 6. The reason for this is that the combined
algorithms are coincident with the DSPS plot for part of the graph and the alternative path
plot for another part of the graph. Percentage improvement graphs are also not shown for

the same reason.

The first network simulated is the same six node network that appeared in chapter 6. This
network was simulated for algorithm C+DSPS and offers a total of 4 DSPS and 22
alternative cost paths (figure 7.2). The simulation is not performed for algorithms
A+DSPS and B+DSPS for this network because these algorithms have an empty
alternative path routing set. The five node network of chapter 6 was not simulated in this

125



Chapter 7 - Combination Routing Algorithms

chapter for algorithm A+DSPS or B+DSPS because no down stream path splits exist in
that network.
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Figure 7.2 Power against arrival rate for algorithm C+DSPS and ISIS

(6 nodes, 7 links)

For the larger networks with ten or more nodes, all three combination algorithms are
plotted on one graph. The reason for this is that the larger networks are capable of
producing a quantity of DSPS and alternative path sets which suit all three types of
alternative path algorithm. For smaller topologies, it is somewhat rare for all three criteria
to exist in one network. This combining of plots was not done in chapter six, because
topologies were chosen to provide the maximum number of alternative paths for each type
of routing algorithm. This led to topologies where all the alternative paths generated had a
cost one greater than the minimum (for algorithms A and B) or topologies where
alternative paths costs were unlimited (algorithm C). In this chapter this goal is relaxed.

The simulation results for the 10 node network is shown in figure 7.3 below. This

topology produced 10 DSPS, 55 alternative paths with a cost one greater than the
minimum and 71 unlimited cost alternative paths. The threshold value for Algorithms

A+DSPS and B+DSPS are set equal to the maximum buffer length.
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Figure 7.3 Power against arrival rate (10 nodes, 14 links)

The simulation results for the 15 node network are shown in figure 7.4 below. This
topology produced 36 DSPS, 79 alternative paths with a cost one greater than the

minimum and 169 unlimited cost alternative paths.
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Figure 7.4 Power against arrival rate (15 nodes, 22 links)

Additional simulation results are shown in appendix H.

7.4_Di .
Combining the alternative path algorithms with DSPS produces a very flexible algorithm.
These algorithms are capable of providing a performance gain over a wide range of traffic
loadings. In addition, since they can use both down stream path splits and alternative

paths they are not as topology dependent as the other algorithms presented in chapters 5
and 6.

Of 450 randomly generated topologies, 94 contained no down stream path splits, 26
contained no alternative paths with a cost of one greater than the minimum and 26
contained no alternative paths whatsoever. Of these only 11 contained no DSPS or
alternative paths at any cost. Therefore of the 450 topologies, only 11 would not benefit
from the combination algorithms. The topologies produced for the simulations ranged
from very sparsely connected (one link more than a spanning tree) to highly connected

networks.

Algorithm C, which is limited to performance increases during high traffic arrival rates,
benefits tremendously by adding the DSPS algorithm. Algorithms A and B also show an

‘ increased performance with the addition of down stream path splits.
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7.5 Conclusion
The down stream path splits algorithm provides an increase in performance over the ISIS
algorithm during medium to high traffic levels. The alternative path algorithms are able to

produce an increase in performance over the standard algorithm during high to very high
traffic levels.

A combination of these two independent techniques results in an algorithm which
provides an increase in performance over a wide range of traffic levels. In addition, the
algorithm is less topology sensitive than the previous approaches since it exploits two
different types of network information.

The disadvantage of the algorithms is the extra storage space required for both the
alternative path routing set and the down stream path splits. The processing burden on the
router is constant throughout all the possible traffic arrival rates. At low to high load,
down stream paths splits are being considered for every packet and at high to very high
loads the alternative path sets come in to play. However, even this processing burden
dwindles into insignificance compared to algorithms which attempt to track global packet
delays.

The next chapter discusses the simulation model and provides a comment on the shape of

the power graphs.
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Chapter 8

Simulation Model

8.0 Introduction
In order to ascertain the benefits of various routing schemes it is necessary to resort to

computer simulation. Mathematical analysis soon becomes intractable for anything but the
simplest of models.

The main components of the simulation model are the transport layer running in the end
systems, the network layer in the intermediate system and the physical link connecting the
remote LANs together. These three layers have the most effect on the end to end packet
delay. The various protocols required for the operation of these layers are included in the
discussion.

This chapter gives an overview of the simulation model built to test the various routing
algorithms. In addition, this chapter provides a short discussion on the power graphs that
have been used throughout this thesis.

8.1 Queuing Theory

The performance of packet switched networks can be analysed using queuing theory.
Queuing arises very naturally in the study of such networks; packets that arrive at a node
must wait in a buffer before being transmitted on the appropriate outgoing links. This
section will only give a very brief comment on the queuing theory principles relevant to
this chapter. These are standard principles that can be found in any book on queuing
theory [29].

The packets arrive at a node randomly, at an average rate of A packets/second (figure
8.1). They queue up for service in the buffer and are then served, following some
specified service discipline, at an average rate of p packets/second. The server in this case
is the transmission medium connecting the nodes together. A transmission link handling
1000-bit packets and transmitting at a rate of 2400 bps would be capable of transmitting at

a rate of p=2.4 packets/second.
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B
Packets arriving uffer Server

A —> Il —Q—-} Packets departing

M

Figure 8.1 Model of simple single server queue.

One of the most commonly used statistics for customers arriving at a queue is the Poisson
arrival process. This in turn, suggests the use of an exponential service time. These two
disciplines form the basis of one of the simplest queues, the so-called M/M/1 queue. This
is a single server queue, with Poisson arrivals, exponential server-time statistics, and
first-in-first-out service. The symbol M is used to denote the Poisson process or the
equivalent exponential distribution. The final integer represents the number of servers
available to the queue.

There are many equations which can be derived from the basic M/M/1 queuing model.
These include average packet delay through the queue, throughput and link utilization to
name but a few. These equations can be applied to a network of interconnected queues as
found in a packet switching network. Various theoretical values of average network delay
and throughput can then be calculated. Unfortunately, the complexity and simplifying
assumptions required for these calculations increase to such a level as to make
mathematical analysis impractical. Therefore, for large networks it becomes necessary to

resort to computer simulation.

Although queuing theory is not used to analyse the networks, some of its concepts will be

drawn upon later in this chapter.

8.2 Simulati Model
The simulation model uses the SIMSCRIPT II.5 simulation language and was run on

SUN workstations [88]. Even with these very fast machines, some of the simulation runs

took several days to complete.

Simulation can provide a better insight into a model's performance than mathematical
analysis will permit [84,85]. With its many simplifying assumptions mathematical
analysis becomes far too theoretical and moves away from a practical implementation of
the problem. The simulation model in this study is very flexible and permits not only the
analysis of routing algorithms but also the effects of changes in topology, congestion

control and transport layer protocols.
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There are two different types of computer simulation that can be used, "continuous
simulation" and "discrete-event simulation". Continuous simulation describes systems by
sets of equations to be solved numerically. These may be algebraic or differential
equations, usually with time as the independent variable. This type of simulation is
commonly used for the modelling of fluid-flow and hydraulics problems.

Discrete-event simulation assumes that events occur at discrete points in time rather than
continuously over time. Customers arrive and change the state of the system
instantaneously. Most queuing models are analysed using discrete event simulation.

8.2.1 Model Qverview

The simulation model uses a connection oriented transport layer and connection-less
network and data link layers. The layers above the transport layer have no bearing on the
packet delay and are therefore ignored. The simulation model allows a 'birds eye' view of
the network under consideration. Packets from any source to any destination can be traced
as they make their way through the various queues of the network. This ensures that the
algorithms and simulation model are working correctly.

No attempt is made to model the physical layer of the FDDI LANs in terms of token
rotation times, token holding times etc. FDDI is only used as a source of packets, and the
delay between the host and the router on the LAN is unimportant. Router processing
speed is also neglected since this is dependent on the type of router employed. Links are
assumed to have no propagation delay. The number of end systems on the LAN is not
modeled as such, but is represented by an increased packet arrival rate at the router.

An FDDI LAN may have several routers on a ring in a variety of different configurations.
These routers may be supporting only a single link or a variety of links depending on the
processing speed of the router. For this reason it is assumed that only one router is on
each LAN. Figure 8.2 shows an FDDI LAN coupled to a single router serving three

outgoing leased lines.
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Host

Figure 8.2 FDDI LAN connected to leased lines via single router,

The simulation model is not very different from that of a highly bureaucratic organization.
This analogy assumes that a customer must pick up a series of forms from a number of
different offices within a building. The comments contained within the brackets relate to
interconnected LANs and will be discussed in the relevant sections of this chapter.

Upon arriving at the first office (router on source LAN) an assistant must be informed of
a customers requirements. The assistant consults a list and is able to tell the customer
which queue within the office to join in order to get the correct form (routing algorithm).
If the desired queue is too long, then the assistant may reject the customer altogether
(buffer overflow). However, it may be possible for the customer to bribe the assistant to
allow him into the queue (contains acknowledgement). Having gained access to the
queue, the customer must then wait to be served by the person behind the desk. The
server gives him the required form and the customer then makes his way to the next office
where he confronts yet another assistant. This assistant carries out the same operation as
the first assistant. This procedure continues until the customer has all the forms in his
possession (router on destination LAN). If at any time during the proceedings the
customer is thrown out of the offices due to lengthy queues he is permitted to come back
and try again the next day (packet retransmission). If the customer is dropped often
enough, however, he will eventually give up completely (maximum number of

retransmissions).

For the small network shown below (figure 8.3), a packet from node A to node E takes
the path ABCE. The simulation model allows every step along this path to be closely

monitored.
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Figure 8.3 Simple five node network with associated link weights

These steps are as follows:

1. packet arrives at node A destined for node E.

2. routing table is checked and packet placed in queue for link AB.

3. packet is serviced by link and arrives at node B.

4. routing table is checked and packet placed in shortest queue for link BC.
5. packet is serviced by link and arrives at node C.

6. routing table is checked and packet placed in queue for link CE.

7. packet is serviced by link and arrives at node E.

8. routing table is checked and no forwarding is needed.

The various queues and routing tables at each node for this network are shown in figure
8.4.

Node B
dest. dist. next
E 5 CpD
Node A
dest. dist. next
E 7 B

Packets from Queue=6 Node E
LANA > dest. dist. next
E 0 -
Packets to
LANE

@ >
Node C
dest. dist. next U
E 4 E

Figcure 8.4 Routing tables and queues for a packet from node A to node E.
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8.2.2 End Systems
The end systems (ES, or hosts) on a LAN contain all seven layers of the OSI model.

However, only the lower four layers of the model are really relevant to end to end packet
transmission (figure 8.5) [1].

End System
Intermediate System
Transport
Network Network
Data Link Data Link
Physical LAN Physical

Figure 8.5 End system and intermediate system lavers

relevant to end-to-end transmission.

The transport layer is responsible for setting up packet transmission from one end system
to another end system. It also takes care of any dropped packets and sends
acknowledgements. The network layer in an end system is often quite thin. One of the
basic functions of the network layer is to route packets. However, routing on a single
LAN is a trivial operation since no choice in routes is available to the packet. The data link
layer in an end system allows stations to gain access to the medium and ensures that
packets arrive at the destination uncorrupted. Finally the physical layer actually moves the

bits around the local area network.

The delay a packet experiences in the end system to intermediate system connection on the
LAN is negligible compared to the delay experienced across a leased line. For example a
1000 bit packet on a 100 Mbps FDDI ring may take 10 microseconds to traverse. On a
leased line running at 2.048 Mbps the delay increases to 488 microseconds. Therefore,
the simulation model does not attempt to model the network layer through physical layer
of the end systems on the LAN. The only layer of the end system that is of importance is

the transport layer.

8.2.2.1 Traffic Characteristics
The type of traffic that is simulated is taken from an actual FDDI LAN implementation

[95]. This assumes that there are only two different packet sizes; one is 512 bytes and the
other is 100 bytes. The longer packets represent file transfers and other traffic intensive
applications. The shorter ones can represent voice packets. Only 35 % of the traffic uses
the long packets and these are assumed to require transport layer retransmissions if no
acknowledgement is received by the sending station. No retransmissions are required for

the remaining 65 % of the traffic.
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The traffic statistics are 'bursty Poisson’; each burst consisting of up to five packets.

However, this traffic pattern is only valid during times of low traffic loading. During high

levels of traffic, the pattern is no longer strictly Poisson since transport layer
retransmissions become more prevalent.

Using the bursty Poisson arrival process and the packet lengths discussed earlier, the
average packet length in the network turns out to be 1953 bits. This is again only valid for
low loading. The transport layer acknowledgements are limited to 136 bits.

The random number generator in the simulation model produces a source/destination pair
each time a new packet is required. Each source/destination pair in the network is
assumed to be equally likely. The rate of production of these pairs is essentially the arrival
rate of packets to the system. The arrival rate is defined as the number of new packets per
second arriving at every router in the network, it does not take into account packeis that
have been retransmitted by the transport layer.

8.2.2.2 Transport Layer (End System)

The transport layer runs in the hosts and is responsible for retransmitting dropped packets
and sending acknowledgements for packets received. It is also responsible for end-to-end
flow control and setting up and tearing down connections. These final two concepts are
not used in the simulation model.

Use of transport layer retransmissions are very important if the simulation is to accurately
reflect routing algorithm performance. This is particularly true at the higher traffic
loadings. If retransmission of dropped packets is not provided, then a routing algorithm
has little incentive to find better routes for the packet. The packets are simply dropped
somewhere in the network and the packet is not counted in the delay statistics. This
effectively reduces the average global packet delay of the network. The routing algorithm
is basically being rewarded for dropping packets. It would be possible to draw a series of
graphs showing how many packets were dropped, how many arrived etc. This method

has been used in a variety of simulations.

A far more elegant solution is to use transport layer retransmissions in order to take into
account the dropped packets without having to resort to multiple graphs for the same
topology and algorithm. In a real network, transport layer retransmissions are used
anyway so there is little point in ignoring them. It is assumed in the simulation model that
the transport layer is willing to retransmit a dropped packet up to five times before giving
up completely. This is referred to as the maximum number of retransmissions.
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The transport layer protocol devised for the OSI model has five different variations, each
one caters for a different type of network. The simplest is TP class 0 which basically
handles the call set-up and tear down procedures and nothing more. This type of service
is usually implemented in very reliable virtual circuit networks. However, it may be
useful for packet voice conversations over a datagram network, in this case no
retransmissions or acknowledgements are required. The most complex of the five OSI
transport layers is TP class 4. This is for networks which use an unreliable datagram
service, but still require a reliable transport level service [1]. Therefore, the simulation

model is essentially using TP class 0 for the 100 byte voice packets and TP class 4 for the
512 byte file transfer packets.

The packet delay across a network is measured as the time a packet arrives at the starting
node (Creation Time) and ends at the destination node (Finish Time). The delay is then
simply Finish Time-Creation Time. If the packet is dropped and retransmitted some time
later, Creation Time remains the same, it does not take on a new value. In this way the

transport layer retransmissions are included in the delay average for the network.

A satisfactory value for the transport layer retransmission time can be calculated by
examining a simple network. In the network shown below (figure 8.6), the maximum
delay experienced by a packet is a function of the the link speeds, buffer lengths, packet
sizes and the maximum number of links between two points.

64 kbps N\ 64 kbps A\ 64 kbps
@ ® © ©

—o— A [o—[}-o——

Figure 8.6 A four node network and its associated queues.

Assume that the links speeds are 64 kbps, buffers can hold 50 packets and each packet is
1000 bits long. The maximum delay that a packet could experience at each individual hop
is simply (50 x 1000)/64000. This assumes that every buffer in the network is full.
Therefore the total maximum delay from node A to node D is simply the number of links
in the path multiplied by the hop delay (figure 8.6). This comes out to 2.3 seconds from
node A to D. For a packet to go in both directions the time is 4.7 seconds. Therefore the
transport layer at node A must not time out and send a retransmission in under 4.7

seconds. The equation below generates a suitable transport layer timeout value for the

WOrSst case scenario.
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Maximum buffer length X A i i
g ver.age packet size (bits) X Maximum number y
Link speed (bits/sec) of hops

This equation does not take into account the router processing delay or the link
propagation delay. It also assumes that all routers have the same buffer lengths.

Acknowledgements for packets received by a host are piggybacked onto outgoing data
packets. This reduces both the number of packets in the network and the overhead
required. However, the transport layer is not permitted to wait indefinitely for a data
packet going in the opposite direction to piggyback the ACK on. If it does so, the sending
station will obviously assume that the packet has been lost and retransmit the packet,
negating any positive benefit. An acknowledgement timeout is required. If this ACK
timeout is set to one second, then the transport layer timeouts must be increased by the
same amount (5.7 seconds in the above example). This method can cope with the worst
case packet delay. If a packet takes 2.3 seconds to arrive at the destination, then the
receiving station is permitted to wait for up to one second for a packet going in the
opposite direction. If no packet is forthcoming then after one second an explicit ACK
must be sent. If this ACK takes 2.3 seconds to arrive at the destination, then the total
round trip delay is only 5.6 seconds. This stops the transport layer from timing out and

sending a retransmission.

The simulation model only uses retransmissions and acknowledgements for the long
packets which make up 35 % of the traffic. Therefore, in order to send a retransmission if
an ACK is not received by a node, a copy of all unacknowledged packets must be
maintained by the simulation model. For a 15 node network under heavy traffic loading
using 2.048 Mbps links the simulation model had to store 45000 packets.

The timeouts used in the simulation for retransmission and acknowledgements were as

follows.

5, 6 nodes : retransmission - 9 seconds
acknowledgement - 1.8 seconds
10 nodes : retransmission - 15 seconds
acknowledgement - 3 seconds
15 nodes : retransmission - 30 seconds
acknowledgement - 6 seconds
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8.2.3 Intermediate Systems

The intermediate systems, or routers, are modeled as a set of buffers used to store the
incoming packets. Packets wait in these buffers until being serviced by the transmission
medium. Every outgoing link has a scparate queue feeding it. Figure 8.7 shows the
internal workings of an intermediate system with two outgoing links.

Incoming packets
(transit)

l Outgoing packets

Output
Packets from queucs
FDDI LAN (input)
Outgoing packets
Packets to LAN

Incoming packets
(transit)

Packet forwarding

procedure Router
Fi Internal workin f an intermedi
Network Laver (Intermedi m

A network layer operating connectionless is responsible for both the routing algorithm
and congestion control algorithm. The routing algorithms require that a table is maintained
for each node in the network. For the simulation model this is an N x N x 12 matrix,
where N is the number of nodes in the network. This matrix is consulted each time a
packet arrives at the node in order to determine which queue the packet should be placed

in; the selection of which is dependent on the routing algorithm under test.

The congestion control algorithm used in the simulation is termed input buffer limiting. In
this algorithm, transit packets through the router are given access to more of the available
buffer space than are input packets; the theory being that transit packets have used up
more of the networks resources than input packets and to drop them would more wasteful

than dropping input packets.

Before being dropped by a full buffer all packets are checked to see if they contain an
acknowledgement. If the packet does contain an ACK additional buffer spaces can be
allocated to the packet. Some congestion control schemes will still drop the data portion of
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the packet and retain the acknowledgement. Other schemes reward the data packet for
containing an ACK and allow the entire packet to be stored and forwarded. The latter
congestion control scheme is used in this simulation model [29,86,87]. The buffer sizes

for the simulation runs were as follows. Note that these buffer lengths are defined for
each outgoing link of the node.

5,6 and 10 node networks: Input packets 20 ( +2 if packet contains an ACK)
Transit packets 22 ( +2 if packet contains an ACK)

15 node networks: Input packets 30 ( +3 if packet contains an ACK)
Transit packets 40 ( +3 if packet contains an ACK)

These are extremely small values for buffer lengths. In an actual router, the buffer may be
able to hold as many as 1000 packets. However, increasing the buffer sizes means that
the transport layer retransmission time must also be increased. This in turn requires that
more packets must be stored for possible retransmission by the transport layer. It was
found that the computers running the simulation programs were unable to store the vast
number of packets required if buffer lengths were increased.

The congestion control algorithm was not tuned to the various networks topologies under
consideration. If it had been, the power graphs would probably achieve a far greater
performance level. The effects of changing the input packet/transit packet ratios are
discussed in Schwartz [29].

8.2.3.2 Data Link Layer (Intermediate System)
The data link layer has a much more modest goal than that of the network layer. It's task
is to ensure delivery of a frame from one node to its adjoining node. It is not capable of

ensuring uncorrupted transmission across an entire network. The OSI has standardized
three different types of logical link control (LLC) sublayer. This sublayer can provide
either connectionless (called type 1) or connection-oriented (type 2) service to the network
layer. It also provides acknowledged connection-less service (type 3) [1].

When connectionless (type 1) service is used, the LLC sublayer accepts a packet from the
network layer and uses a best efforts attempt to send it to the destination.There is no
acknowledgement and no guarantee of delivery. This level of service is very basic and
assumes higher layers will deal with acknowledgements and retransmitting dropped
packets. It is ideally suited for use with connection-oriented transport layer and a

connectionless network layer. LLC type 1 is used in the simulation model.

140




Chapter 8 - Simulation Model

8.2.3.3 Physical Layer (Intermediate System)

The intermediate system actually has two physical layer protocols. One which connects

the router to the LAN the other connects the router to the leased line. This discussion will
only deal with the latter.

The physical layer takes into account the link speeds and the topology of the network. The
link speed has been set to 64 kbps which is the speed offered by British Telecoms
Kilostream leased line service. The higher speed links of 2.048 Mbps were not used for
the simple reason that more packets would be circulating within the network. This would
increase the amount of time taken for the simulations to finish running. Even with the
fairly low speed links many of the simulations took several days to complete.

All the topologies used in the simulation were built up from a spanning tree. After running
the simulation for a set time an additional link was randomly added to the tree. The new
link was not attached to any node that already had more than five links emanating from it.
This ensures that links are evenly spread throughout the network. Routing tables were
then recalculated and the simulation continued. This occurred until the number of links
was equal to twice the number of nodes in the network. The topologies generated by this
algorithm ranged from the very sparsely connected to well connected graphs.

8.3 Model Verificati
The question inevitably arises of how to ensure that the model is correct. The most
complex component of the simulation model is the concept of time and maintaining
customers in the queues. This is handled by the SIMSCRIPT II.5 simulation language.
The remainder of the simulation is effectively divorced from these two concepts.

The routing tables are produced by running a shortest path algorithm and it is a simple
matter to ensure that they are correct for the topology under consideration. The concept of
retransmissions and acknowledgements are easily monitored by tracing packets as they
arrive and depart from any node in the network. These algorithms are either correct or
incorrect, there is no middle ground between the two. The actual operation of the network
is very straightforward and cannot be faulted. It is, therefore, highly unlikely that the

operation of the model is incorrect.

What is open to scrutiny, however, are the parameters that effect the performance of the
model. These parameters include the traffic characteristics, the retransmission timeout
values, ACK timeout values, packet lengths, buffer sizes and link speeds to name but a
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few. For a real network these parameters take on a wide range of different values and it is
simply not possible, or worthwhile, to simulate all the possible combinations.

It must be stressed that simulation is not necessary to prove the correctness of the
algorithms. The purpose is simply to prove that some performance gain is possible when
the algorithms are implemented. The simple concept of sending packets towards nodes
where they are less likely to be dropped, as in DSPS, is a common sense idea and does
not require rigorous mathematical proofs and/or simulation to prove it. The same is true
for the alternative path algorithms. Simulation is only used to measure the performance
gain offered by the algorithms, not prove them correct. Therefore, even if the simulation

model is completely wrong, it does not necessarily mean that the algorithms are incorrect.

h he Simulati
The power graphs that have appeared in chapters 5,6 and 7 can now be discussed in
relation to the simulation model.

Power is made up of two components, network throughput and average network delay.
Power is a very good measure of a network performance since these two values are often
in contention [78]. Each one of these two components will be examined individually for a

single queue.

The simulated networks are simply a large number of interconnected single server queues.
Recall that for every link emanating from a router, a single queue is provided for the
incoming packets. Therefore, it is possible to examine the basic M/M/1 queue model to

gain some understanding as to why power graphs take on the shape that they do.
In a single M/M/1 finite queue, the normalized throughput is given by the equation [29]:

Normalized throughput = p(1-pN)/(1-pN+1)
where p is the normalized load and N is the buffer length

A sketch of normalized throughput against normalized load is shown in figure 8.8. The
throughput of the queue eventually levels off and approaches the throughput capacity as p
increases. This occurs beyond the point where the normalized load, p, equals one. At the

point p equals one the normalized throughput is equal to N/(N+1).
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Figure 8.8 Throughput vs normalized load for M/M/1 queue,

In an M/M/1 queue, the average delay experienced by customers waiting for attention by
the server rises rapidly as the arrival rate increases. For an infinite queue the average
delay, E(T), that a customer must wait is given by the following equation [29]:

E(T) = 1w/(1-p)

This equation is shown plotted in figure 8.9.

12 1

0.0 0.2 0.4 0.6 0.8 1.0
p=Ap

Figure 8.9 Average delay against arrival rate M/M/1 queue
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In a real network, buffers do not have infinite length so the delay experienced by a packet
waiting for service will always be finite. It is possible to calculate the maximum delay that
a packet will experience in a network by multiplying the transport layer retransmission
timeout by the maximum number of retransmissions. If the retransmission interval is 10
seconds and the transport layer tries § times before giving up, the maximum delay that a
packet could possibly suffer is simply 50 seconds.

Therefore the average delay against arrival rate graph for a network will not approach

infinity with increasing arrival rate but will level off to some value as shown in the sketch
of figure 8.10.
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The power graph is simply a combination of the throughput and delay graphs. Both of
which reach a steady state value with an increasing packet arrival rate. It follows from this
that the power graph will also reach a steady state value. The graph should rise, hit some
maximum and then roll off to this steady state value. Power graphs will always take this
shape regardless of the routing algorithm used.

The simulation model uses finite buffer lengths and does not use exponential packet sizes
as in the above theory. However, the simulation results still produce graphs which are not
dissimilar to those discussed previously. A simulation was performed on the four node
network shown below (figure 8.11) and graphs of average network delay and throughput
were plotted. The ISIS routing algorithm was used in this network.
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64 kbps

Figure 8.11 Simple four node network.

The delay and throughput graphs for this network are shown in figure 8.12 below.
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Figure 8.12 Throughput and delay curves for four node network,

If it is assumed that each link is capable of providing the full 64 kbps then the theoretical
maximum carrying capacity of this network is 512 kbps (ie 8 links each at 64 kbps). The
simulation produces a maximum throughput of 390 kbps which represents an efficiency
of 76%. This efficiency can be increased if the transport layer and the congestion control

protocols are tuned for this particular network.

The delay graph does not flatten out as it does in the theoretical graph because the number
of retransmissions is limited to only 35% of the traffic. If 100 % of the traffic required

acknowledgements then the graph would flatten out to a steady state value.
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Dividing throughput by delay for the four node network results in the characteristic power
graphs that have appeared in chapters 5,6 and 7 (figure 8.13)
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Figure 8.13 Resulting power graph for four node netwo.k.

8.5 Simulation Variabl
The simulation model can be used as a tool to test not only routing algorithms, but a

variety of other protocols and topologies.

Varying the transport layer retransmission policy results in changes in the power graphs
under high traffic loading. Three values of timeout were used, 6, 10 and 15 seconds. This
can be seen in the graph shown below (figure 8.14). These results were taken from the

four node network of figure 8.11.
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Figure 8.14 Effects of transport layer timeouts on power graphs.

Adjusting a routers buffer length also has an effect on the power graph (figure 8.15). In
the same network with a retransmission timeout of 9 seconds and buffer lengths of 5,10

and 20 packets the following results were obtained.
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Figcure 8.15 Effects of buffer lengths on power graphs.

Note that using a buffer length of 5 packets results in a very fast roll off of the power
graph. Recall that this occurred when the 15 node networks in chapters 5, 6 and 7 were
simulated. This suggests that the buffer lengths for those networks were far too small for
the size of network being modeled, nonetheless the simulation results for the algorithms

are still valid. It was not possible to simulate increased buffer sizes for the larger
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networks. If larger buffer sizes are used then the transport layer retransmission time must
be increased accordingly. If this timeout is increased then the number of packets which
must be retained by the simulation program also increases. This puts excessive strain on
the computers that are running the simulations. As an example, a simulation run of a 30
node network executed on the SUN server took so much processing time and memory

that no other users could gain access to the system. Following this, simulation of large
networks was abandoned

In addition to adjusting the transport layer retransmission timeout and the buffer sizes,
there are many other values in the simulation model which can be varied. Some of these
include:

- congestion control algorithm input/transit packet ratio

- packet sizes

- traffic characteristics (includes source/destination pairs, burstiness etc)
- link speeds

- acknowledgement timeout

- topology

This work has fixed many of the above values in order to limit the number of different

combinations and permutations that are produced.
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8.6 Conclusion
Due to the complexity associated with mathematical analysis it is often necessary to resort
to computer simulation for the modelling of packet networks. The simulation model

assumes that events occur at discrete points in time. This is a common method used for
modelling queuing networks.

The model gives a 'bird's eye' view of the network and allows all packets from any
source to any destination to be monitored as they make their way through the network. All

forwarding decisions made by routing algorithms can also checked to ensure that the
model is working correctly.

The simulation model is fairly comprehensive and incorporates the transport layer of the
end systems and the network through physical layers of the intermediate systems.
Simplifying assumptions about router processing speed, intra-LAN routing protocols and
link propagation delay have been made in order to reduce the complexity of the model.
These assumptions are all implementation specific and can be ignored without the loss of
generality.

The power graphs produced by the simulation model are not dissimilar to those produced
in theory. The graphs have a characteristic shape which is common to all routing
algorithms. All power graphs, regardless of the routing algorithm implementation, will

eventually converge to a common value with increasing traffic arrival rates.

The simulation program involves a large number of different variables and protocols
which can all be modified for the network under consideration. In this way the model can
be used as a testbed to allow different topologies to be randomly generated or user
defined, buffers can be lengthened and shortened to test various congestion control
schemes, packet lengths, arrival rates and link speeds can all be adjusted, routing
algorithms can be changed, retransmission and acknowledgment timeouts varied. Due to
the large number of variations, the routing algorithms were tested with many of the above

variables fixed for the duration of the simulation.
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Chapter 9

Conclusion

2.0 Introduction

The Fibre Distributed Data Interface is a new high speed local area network capable of
supporting a large number of users over a 100 km distance. Traffic on this LAN is
expected to be as diverse as file transfers, packet voice and video. FDDI is being
embraced as the next generation of local area network and is the only fibre optic LAN
going through the standardization process.

As FDDI LANS proliferate, the desire to interconnect remote FDDI installations arises.
These LANs can be connected together in a variety of different ways. One of the most
cost effective technologies which is widely available today is the leased line. The most
commonly used line speeds are the 64 kbps Kilostream and the 2.048 Mbps Megastream
links available from British Telecom. The number and speed of these links used for the
internetwork depends on the anticipated quantity of inter-LAN traffic.

In order to connect an FDDI LAN to a leased line a gateway device is required. These
devices can operate at any layer of the OSI model. Two of the most common devices for
connecting LANs to leased lines are the layer 2 bridge and the router which operates at
layer 3. There is much discussion over which provides a better service to the LAN.
Bridges offer higher throughput than the router but there are topology restrictions.
Routers, on the other hand, can cope with any network regardless of size and topology. It
is widely felt that routers are better for large networks with many links, whereas bridges

are more suitable for connecting LANs around a single campus.

A router, as its name suggests, requires a routing algorithm of some description in order
to send packets from one LAN to another. There are many different routing algorithms
both in the literature and in actual network operation. The selection of a suitable routing
algorithm is highly dependent on the network environment that the algorithm is expected

to operate in.

An FDDI LAN will provide bursty and potentially large amounts of inter-LLAN traffic. A
rule of thumb for the ratio of intra-LAN traffic to inter-LAN traffic is 90/10. If the links

connecting the LAN’s together are chosen with this figure in mind the potential for

generating a very large burst of traffic is extremely high.
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It is undesirable for a routing algorithm to adapt to traffic changes on a global basis. This
is particularly true if the traffic is expected to be bursty or at times very high. The
ARPANET's experience with such algorithms has shown that they work well under
lightly loaded conditions but tend to oscillate when the traffic loading gets high.
Algorithms therefore should adapt to traffic fluctuations on a local basis only.

One of the most common routing algorithms in use today is the shortest path algorithm
developed by Bellman-Ford. This is an extremely simply distance-vector algorithm which
only requires next node information in order to make routing decisions. It also requires a
minimal amount of storage space. Many computer networks which require a routing
algorithm have been based on the Bellman-Ford algorithm. However, its simplicity is also
its downfall. When links and nodes fail in the network, the routing tables take a long time
to converge. During this interval, routing table loops may form and cause packets to
return to a node that they have originally visited. This is very unsatisfactory for LANs
where the traffic loading may be very high. Many different techniques have been
proposed which attempt to curtail this routing table looping problem. However, they
begin to detract from the main advantage of the algorithm, namely simplicity. Therefore
the Bellman-Ford algorithm is unacceptable for an interconnected FDDI network.

A shortest path algorithm developed by Dijkstra requires that knowledge about the entire
network is known before the calculation proceeds. This link-state al gorithm has been used
successfully in the distributed ARPANET routing scheme and converges much faster than
the Bellman-Ford type algorithms. The ARPANET's SPF algorithm still suffers from
routing table loops but to a much lesser degree than the Bellman-Ford. The ARPANET
experience has shown that the amount of packet looping associated with the SPF

algorithm is almost negligible.

The OSI is in the process of standardizing a version of the SPF algorithm which is
detailed in the ISIS standards document. This is a well thought out algorithm which
adapts to traffic fluctuations on a local basis and does not require vast amounts of
processing. It is likely that this algorithm will be implemented by many computer

manufacturers due to its simplicity.

The new algorithms in this thesis are all based on the ISIS standard. They use exactly the
same link state information as the ISIS algorithm and adapt to traffic fluctuations based on
local information only. The algorithms only require modification to the route calculation

and packet forwarding procedures of the ISIS algorithm.
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9.1 Review of the New Routing Aleorithms

The ISIS algorithm discards some very valuable information during the route calculation
procedure. This information is in the form of duplicate adjacencies which indicate that
further down stream from the node doing the calculation, a choice of equal cost routes is
permitted. This information is exploited by the Down Stream Path Splits (DSPS) routing
algorithm. The number of down stream path splits for a particular destination are used as
credits against the outgoing queue length. In this way, packets are biased towards nodes
which offer a choice of equal cost paths to the destination. During times of very high
traffic loading, the DSPS credit system is effectively suspended.

Multiple runs of the ISIS algorithm can be used to generate the k-shortest paths in a
network by masking and unmasking a node's adjacencies. Algorithms A, B and C use
this method to generate both the shortest paths and a set of alternative paths which can be
used during times of network congestion. Algorithms A and B only store alternative patks
if they offer a cost one greater than the shortest path. Algorithm C is permitted to store
alternative paths of any cost. Algorithm A can select an alternative path at any node in the
network. Once selection is made from the alternative path group a 1-bit flag is set in the
packet header. This informs subsequent nodes that selection must be made from the
shortest path set. Algorithms B and C are only permitted to select an alternative path at the
initial node. The alternative paths are used when the queue lengths to the primary path
exceed some threshold defined in the packet forwarding procedure.

The DSPS algorithm is coupled with algorithms A,B and C to form the combination
algorithms. These are termed algorithm A+DSPS, B+DSPS and C+DSPS respectively.
These algorithms use the down stream path splits credit system during times of medium to
high traffic levels and the alternative path set during times of congestion.

All seven of the algorithms presented in this thesis are capable of providing a performance
increase over the standard ISIS algorithm. The amount of gain, as has been stressed
repeatedly, is highly dependent on the network environment that the algorithm is expected
to operate in. For this reason it is not possible to compare the algorithms to determine

which one of them is 'best', but some generalizations can be made.

The DSPS algorithm is extremely simple and requires only minor modifications to the
route calculation and packet forwarding procedures. The complexity of the algorithm is no
more than that of the ISIS algorithm, namely O(n2). The algorithm does require a tiny
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In addition, up to one third extra router memory is required in order to store the DSPS
values. The algorithm is suitable for all but the very smallest of networks where the
number of DSPS is limited. In networks which do possess DSPS, simulation results have

shown gains as high as 50% over the basic ISIS algorithm can be achieved. For such a
simple algorithm this is quite astounding,

Even if the DSPS algorithm is not implemented in its entirety, the concept should still be
used in deciding which adjacencies to keep if the ISIS router has a limit on the number
that it may store (MaxPathSplits). Those adjacencies which offer the largest number of
down stream path splits should be retained over those which offer very few.

The three alternative path algorithms all require one third more router storage space than
the ISIS algorithm. Algorithm A is the most flexible in that it can adapt to congestion in
the network more easily than the other two. The one bit of overhead required for this
algorithm is trivial in terms of introducing packet delay into the network. However, what
is not trivial is the requirement that all other routers in the network understand the
significance of this flag. Algorithms A and B can both set low threshold values which
allow the alternative paths to be used with a greater frequency. This effectively increases
the performance of these algorithms between the medium to high traffic ranges. Algorithm
C is similar to algorithm B, but should not use low threshold values. The reason for this
is the potentially large cost difference between the shortest paths and the alternative paths.
Therefore this algorithm is restricted to providing performance gains during times of

heavy traffic loading only.

The combination algorithms all require up to 2/3 more storage space than the ISIS
algorithm. These algorithms provide a performance gain over a wide range of traffic
loadings. They are also less susceptible to the effects of topology since they exploit two
types of topology information. Algorithm A+DSPS is the most flexible and powerful of
the seven algorithms developed, but unfortunately it still requires the 1-bit of overhead.
The amount of gain provided by algorithm B+DSPS is no better than algorithm B with a
low threshold setting. The latter requires less storage space and is less complex.

Algorithm C+DSPS outperforms the basic algorithm C since it uses the DSPS credit

system during medium to high load.

In general, for networks with many equal cost links, a tuned version of algorithm B
appears to be the most promising. For networks with many different cost links, algorithm
C+DSPS should be used. Both of these algorithms can operate independently from the
other routers in the network. In addition, they can both cope with a wide range of

different traffic arrival rates. Table 9.1 summarizes the seven algorithms.
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algorithm is the efficient use of links. Not only is it possible to approach some theoretical
value for throughput and delay, but the number of links required for a particular
implementation may be fewer. For example a network running ISIS may require 10 links
in order to guarantee a certain performance value, the same performance may be achieved
using one of the new algorithms coupled with say nine or even eight links. This is not
only more efficient, but it also saves large amounts of money on leased lines.

Although leased lines are used in the simulation study, this does not mean that the
algorithms are suitable for this type of installation only. The algorithms will work in any
type of network that the ISIS protocol can be used in. This includes X.25 networks,
point-to-point links, broadcast networks etc. The algorithms can be used in virtual circuit
networks by only permitting the call set-up packets to take the DSPS routes or alternative
paths. Packets in a virtual circuit network are then constrained to follow this route. This
differs from datagram network in which all packets are routed independently.

Algorithm Traffic range Add.mem.| Additional requirements
required

DSPS med. -> high 1/3 Topology must have more than
six nodes but less than fully
connected.

Algorithm A high -> v.high 1/3 Other routers in network must
recognise 1-bit flag.

Algorithm B high -> v.high 1/3 None.

Algorithm C high -> v.high 1/3 None.

Algorithm A+DSPS| med. -> v.high 2/3 Other routers in network must
recognise 1-bit flag.

Algorithm B+DSPS| med. -> v.high 2/3 None.

Algorithm C+DSPS| med. -> v.high 2/3 None.

Table 9.1 Comparison of the seven new routing algorithms
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9.3 Conclusion
The objective of this work has been to develop practical routing algorithms for
interconnected FDDI LANs. The new algorithms are all based on the ISIS routing

algorithm which is being developed by the ISO standards body. This standard is being
implemented by many manufacturers of network routin g equipment.

The new algorithms require modification to the ISIS packet forwarding and the route
computation procedures. All other procedures remain unaltered. They are designed for
implementation within an ISIS internetwork with the minimum amount of modification.
They send and receive exactly the same link state information as a standard ISIS router
and adapt to traffic fluctuations on a local basis only. All of the algorithms are fairly
simple and do not require a large amount of router processing in order to operate. Some
of the new algorithms offer a performance increase as high as 350 percent over the ISIS
algorithm.

The algorithms developed are simple, highly practical and can provide an increased
performance over the ISIS standard with a minimum amount of additional processing.
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Appendix A

Appendix A

Control messages required for the original ARPANET
(Assuming that each step occurs synchronously)

Before link fail

routing algorithm after a link failure.

ABC R ECD R
AO0OO0O O
Alll4 11A
B 416 4B
B 1510 10D
Cldao 6C C517 5C
D716 7B D157 D
E 1411 11 EQOO0 0
Assume that link BD fails. B and D both set column vectors to high values.
ABC R|BAD R|CADE RIDBCE RIECD R
AOO O]A 499 4A|A 61716 6A]A991618 16d A 1114 11A
B 416 4B|B 00O 0|B101315 10A|B992017 17E/ B 1510 10D
Cl46 6C[C1099 10ACO 00 0[C91012 10dC 517 5C
D 716 7B|D 1199 11ADI131012 10DD 0 00 O(D157 7D
E 1411 11JE 1499 14AE 17175 SE{E99157 7E{E0 0 0
Node B sends (BD,11) and (BE,14) to A.
Node D sends (DA, 16) and (DB,17) to C and E.
ABC RIBAD R|CADE RIDBCE RIECD R
AOO0O O]A 499 4AlA 62616 6A[A991618 16(QA 1123 11A
B 416 4B|B 00 0]|B102715 10AAB992017 17El B 1524 15C
Cl46 6C|C1099 1I0ACO 00 0(C91012 10dC 517 5C
D1516 158D 1199 11AD131012 100D 0 00 O (D157 7D
E 1811 11QE1499 I4AE 17175 SE|E99157 T7E{E0 0 O
Node A sends (AD,15) to B and C. Node E sends (EB,15) to C and D.
AB RIBAD RICADE RIDBCE RIECD R
A0 8 0lA 499 4A[A 62616 6A|A991618 160 A 1123 11A
B 416 4B{B 0 0 0B 102720 10A/B992022 20( B 1524 15C
Cl46 6CIC1099 10ACO 00 0(C91012 10dC 517 5C
D1516 15BD 1999 19A/D191012 100D 0 0 0 O D15(7) 7(1))
E 1811 11QE 1499 14NE 17175 SE{E99157 7E|E O
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Node B sends (BD,19) to A. Node D sends (DB,20) to C and E.
ABC R|IBAD R CADE R DBCE RI|ECD
R
AO0OO O|A 499 gA A 62616 6A A991618 16dA 1123 11A
B 416 4B|B OO 0 B 103020 10A B 992022 200 B 1527 15C
Cl14 6 6C|C 1099 IOACO0 00 o C991012 10 C 5 17 sC
D 2316 16 D 1999 194D 191012 100D @ 00 0|D157 D
E 1811 11 E 1499 14AE 17175 SE E9157 7E/E0 0 0
Node A sends (AD,16) to B and C
ABC RIBAD R|CADE RIDBCE RIECD R
AOO OfA 499 4A A 62616 6A[A991618 16A 1123 11A
B 416 4B[B 0O 0(|B103020 10A B 992022 2040 B 1527 15C
C146 6CIC 1099 10AC 0 0 0 0[C991012 10dC 5 17 5C
D 2316 16B D 2099 20A|D221012 100DO0 00 O0[D157 7D
E 1811 11QE 1499 14AE 1717 5 SEIE99157 7E|IE0 0 0
Node B sends (BD,20) to A
ABC RIBAD R|CADE R DBCE RIECD R
AOO O[A 499 4A[A 62616 6A[A991618 16A1123 11A
B 416 4B[B 0 0 0[B103020 10A B 992022 200 B 1527 15C
Cl46 6CIC1099 10ACO0 00 0]/C91012 10GC 517 5C
D2416 168 D 2099 20A|D221012 100D 0 00 0|D15 7 7D
E 1811 11JE 1499 14A/E 17175 S5SE|E99157 7E|E 0 0 0
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C DR

C E RIE

99,99,99) to C.

b

4
0

y

Control messages required for Cegrell's routing algorithm after a link failure

Assume link BD fails. B and D set the column vector to 99.

Before link failure

A B CRI|BADRI|CADERIDB

Node D sends (18,17,12,0,7) to C and (16,20,10,0,15) to E.
A B CR|BADQRI|CADERIDBCERIECDTR

Node B sends (99,0,99,99,99) to A.
Node A sends (0,16,6,16,11) to B and (0

,5) to D and (6,10,0,10,17) to E

12

y

Node C sends (16,15,0,10,5) to A, (6,10

15,0) to D.

y

Node E sends (23,27,17,7,0) to C and (11,15,5
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A B CRI|BADRI|ICADERIDB CERIECDTR

Node A sends (0,21,6,16,11) to B and (0,4,99,99,99) to C.



Appendix A

6,10,0,10,17) to E.

(

,12,5) to D and
,20,10,0,15) to E.

10,0
(16

b

y

6

,7) to C and

b

99,99,99) to A,
,10,5) to A

0
12,0

b

27

Node B sends (99,0,
Node C sends (28
Node D sends (18,22

D _R

R

0,12,5) to D and (6,10,0,10,17) to E

(0,33,6,16,11) to B

,99,99,99) to C and
,32,0,10,5) to A, (6,10

Node A sends (0,4
Node C sends (28

168

Node A sends (0,4,99,99,99) to C and (0,38,6,16,11) to B.



Appendix A

Qq98 .
O —
NN — N

<rrO0AmMm

MmO |, m

N v vt —

NN AN

AN — 1 N

SR
COANNN — 1

AN~

<ROAMm

QOO , m

AN N — —

NN 1 —
N — 1N
Ny N
<nO0Am

3 2C
4 3C
2 1C

1 1D

AN — N

<mOAmMm

Control messages required for Tajibnapis's algorithm after a link failure

Before link failure.
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AN N — —
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AN — N
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<mOAm

<g . owm
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ge message: [BD,3] and [BE,3] to A.

Link BD goes down.

< 58S
v N wnn
— T NN

<mOAm

sends a Netchange message: [DB,3] to C and E.

ROV

e — AN N

| —on <t <t

A B CRIBADRICADERIDBC CETRIECTDR

B sends a Netchan

D

<mOAMm

E sends a Netchange message: [EB,3] to C and D

CADERIDBCEURIECDR
S5
5
5
5
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Control messages required for the

Before link failure.

Appendix A

Merlin-Segall Touting algorithm after a link failure.

A B C BADPnDCADEPnDDBCEPnDE D PnD
AOOOOAI3A1A133A1A223B2Ag3C2
B13B1BOOOOB223A2B133BIB32D2
C31C1C22A2COOOOOC312C1C12C1
D22C2D31D1D312D1DOOOOOD21D1
E32C2E32D2E321E1E321E1E0000
Assume link BD fails
T1: B begins update procedure. B sends B=0 to A.
D sends DB=99 to C and E.
T1:  Bsends REQto Ato begin update cycle.
D sends DA=99 to C and E.
T1: D begins update procedure. D sends D=0 to C and E.
B sends BD=99 to A.
T1: D sends REQ to E to begin update cycle.
B sends BE=99 to A.
A B CPnJB A DPnDC A D EPiDD B C EPnE C DPuD
A 0 0 O00JA 1 99AI{A 1 99 3 Al]lA 99 2 3 99[A 2 99 2
B 1 3 BI[B O 0 00/B 299 3 A2|B 99 3 3 99|B 3 99 99
C 3 1 CI{C 2 99A2|]C 0 0 000|C99 1 2Cllc 1 2 1
D99 2 C2{D 3 999D 3 1 2DI{D 0 0 0 0O|[D 2 1 DI
E 99 2 C2/E 3 9999|E 3 2 1 EI|E 99 2 1 EI{E 0 0 00
T2: A sends AB=1 to C.
T2: A begins update procedure. A sends A=0 to C and B.
T2:  Csends CD=1to A and E.
E sends ED=1to C.
T2:  E begins update procedure. E sends E=0 to C and D.

A D EPnDD B C EPnDJE C DPnD
288%2?%??%1993A1A992399A299C2
B 1 3 BI|B 0 0 00(B 2 99 3 A2{B 99 3 3 99{B 3 99 99
C 3 1 Cl{C 2 9A2IC 0 0 000IC 99 1 2C11C 1 2 CI
D99 2 C2{D 3 9999(D 3 1 2DI1}{D 0 0 OO(I)ED(Z) (1)185
E 99 2 C2[E 3 9999|E 3 2 1 EI|E 99 2 1 E

T3:  Csends CB=2to D and E. .

T3: B selects A as the preferred neighbor to A and informs A.
C sends CA=1to E and D.

T3: A sends AD=2to B.

T3:  Csends CE=1toD and A.

D sends DE=1 to C.

170




Appendix A

D PnD

ﬁ}?%”&?ﬁ?g CADEPND B C EPiE C DPub

9 Al|lA 1 99 3 A1lA 99 3 3 9[A 2 99 C2
B 1 3BIIB 0900B 299 3 a2l 09 3 3 99|B 3 99 99
C 3 1CIfC 2 99 A2|c 0 o 000(C9%9 1 2ci|lc 1 2cl
D 99 2 C2|D 3 99 99|p 3 1 2DIID 0 0 0 o|lD 2 1 DI
E 99 2 C2|E 3 99 99({E 3 2 1 EI|E 9 2 1 EI|E 0 0 00

T4 D sends DB=3 t0 E,

T4 E sends EA=2 to D.

T4: B selects A as its preferred neighbor to D and informs A.

T4 A sends AE=2 to B.
ABCPnDBADPnDCADEPnDDBCEPnDECDPnD
AOOOOA199A1A1993A1A992399A299C2
Bl3B1B0000B2993A2B993399B3499
C31C1C299A2COOOOOC9912C1C12C1
D 99 2 C2(D 3 99 A3(D 3 1 2DIID O 0 0 00/D 2 1 DI
E 99 2 C2[E 3 9999|E 3 2 1 EI|E 99 2 1 EIJE 0 0 00
: Echooses C as the preferred neighbor to B and informs C and D.

TS: D selects C as its preferred neighbor to A and informs C and E.

T5: A selects C as its preferred neighbor to D and informs C.

T5: B selects A as its preferred neighbor to E and informs A.

A B CPoB A DPnDC A D EPaD B C EPnDE C DPuD
A 0 0 00JA 1 99 AI[A 1 99 3 AIlA 99 2 3 C2[A 2 99 C2
B 1 3 BIIB O 0 00[B 2 99 3 A2[B 99 3 3 99|B 3 4 (3
C 3 1CLHC 299A21C 00 000(C9 1 2cCl|lCc 1 2CI
D99 2 C2|D 3 9A3|D 3 1 2DI{D 0 0 0 00/D 2 1 DI
E 99 2 C2|E 3 99 A3]E 3 1 El 2 1 EI|JE 0 0 00

T6: D chooses C as the preferred neighbor to B and informs C.

T6:  E selects C as its preferred neighbor to A and informs C.

T6:  Cselects D as its preferred neighbor to D and informs D and E.

T6: A selects C as its preferred neighbor to E and informs C.

D
A B CPnOB A DPnJC A D EPhDOD B C EPnDE C DPn
A 0 0 0[A 1 9AIlA 1 99 3 AI|A 9 2 3 C2|A 2 99 C2
Bl3B1BOOOOB2993A2B9933C3B34(C?’i’»
C31C1C299A2COO000C99(1)(2)gég‘%fl’-D1
D 99 2 C2|ID 3 99 A3|D 3 1 2D1D9()92 U EE 6 0 00
E 99 2 C2|E 3 99 A3|E 3 2 1 EI|E

i d informs A.

T7:  Cchooses A as the preferred neighbor to B an

T7:  Cselects A as its preferred neighbor to A anéi 'mfformss S

T7:  Eselects D as its preferred neighbor to D an q ’mfomlsEandD

T7:  C selects E as its preferred neighbor to E and inform: '

DE C DPnD
ABCPnDBADPnDCAg)EPX?Eg%g%szAzggcz
AOOOOA(I)g()gé(%g%éggAZB%B’3C3B34C3
B 1 3 BI{B HC 1 2 Cl1
C 3 1CIC 29A2C 00 000CH 1 2CHE ] 2

A3|D 3 1 2 DI1|D
D 99 2 C2{D 3 99 L E1lE 99 2 1 EI|lE 0 0 00
E 99 2 C2|E 3 99 A3|E 3 2
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: A chooses Bas the preferred neighbor to B and ing
T8: A terminates the cycle, & Informs B.

T8: D terminates the cycle,
T8: D selects E as its preferred neighbor to E and informs E.

B_CPn} A_DPnD

A B CADEPDD B C_EPnE C DPuD
A O OOOA199A1A1993A1A992 3 C2lA 2 99 C2
Bl3B1BOOOOB2993A2B9933C3B34C3
C31C1C299A2C00000C9912C1C12C1
D992C2D399A3D312D1D00000D21D1
E992C2E399A3E321E1E9921E1E0000

T9:  E terminates the cycle.
T9: B terminates the cycle.
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Control messages required for the Jaffe-Moss
failure.

Before link failure.

ANnD C

Appendix A

Z
S

algorithm routing algorithm after a link

A

B B
CCl1
D B2 2
E C2 2

W

sl wX@lecle g iee

Z
SE&: 2
WWN T =
N =N WD

B
1
3
2
3

Assume that link BD fails:

T1:

T1:

TI:

TI;

TI:

ANnDC B|[BNnDA D

D sets C(D,A,B)=99

D sets C*(D,A)=99

D sends MSG(A,99,1) to C and E
D enters freeze state for des A

B sets C(B,A,D)=99

D sets C(D,B,B)=99

D sets C*(D,B)=99

D sends MSG(B,99,1) to Cand E
D enters freeze state for B

B sets C(B,C,D)=99

D sets C(D,C,B)=99

B sets C(B,D,D)=99

B sets C*(B,D)=99

B sends MSG(D,99,1) to A

B enters freeze state for D

B sets C(B,E,D)=99

B sets C*(B,E)=99

B sends MSG(E,99,1) to A

B goes into freeze state

D sets C(D,E,B)=99

= W

— N W W

DNnD B

S e 1 Sl

— N W Wt
lesBwi @Y=l ool

T agn
—— NN

] [\)»—IUJNO

o= NN WD

A

B Bl 3
CcCl1
D B2 2
E C2 2

- A Al 1 99
B_ - -
C A2 2 99
DD99 3 99
E D99 3 99

s lwielein e
mo.gg%

—
WW =

W)W —

C receives MSG(A,99,1) from D
C sets C(C,A,D)=99

C sends ACK(A) toD

E receives MSG(A,99,1) from D
E sets C(E,A,D)=99

N — 0 N WD
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A B9999
B B9999
C C1 99

D -
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T4:

}é sends ACK(A) to D

receives MSG B,99,1

C sets C(C,B,D)(=99 ) fromD
C sends ACK(B) to D

E receives MSG(B,99, 1) from D
E sets C*(E,B)=99

E sends MSG(B,99,1) to Cand D
E enters freeze state for B

A receives MSG(D,99,1) from B
A sets C*(A,D)=99

A sends MSG(D,99,1) to B and C
A enters freeze state

A receives MSG(E,99,1) from B
A sets C(A,E,B)=99

A sends ACK(E) to B

ANnDC B

BNnDA D|CN

=
»)

DNnDB C E

Z
S

Appendix A

A -
B Bl 3 1
CCi1 3
DB9 2 2

A Al 1 99
B - - .
C A2 2 99
D D99 3 99

1 99
99

AB9999 2 3
BB9%99 3 3
CCl9 1 2
D -

— N 1 L Wt

moQw>n
mo . B

(USRS B )

EE19-9é1

N =—

E C2 2 9|ED9% 3 99

D receives ACK(A) from C and E
D updates Nn(D,A)=C

D updates C*(D,A)=2

D sends MSG(A,2,0) to Cand E
D receives ACK(B) from C

C receives MSG(B,99,1) from E
C sets C(C,B,E) to 99

Csends ACK(B) to E

D receives MSG(B,99,1) from E
D sets C(D,B,E) to 99

D sends ACK(B) to E

B receives MSG(D,99,1) from A
B sets C(B,D,A) =99

B sends ACK(D) to A

C receives MSG(D,99,1) from A
C sets C(C,D,A)=99

C sends ACK(D) to A

B receives ACK(E) from A

B updates Nn(B,E)=A

B updates C*(B,E)=3

B sends MSG(E,3,0) to A

DNnD B

=
»,

ANnDC B|BNnDA D

Mg O w >

Z
S

o
-3¢

—_—
I SEFU VY S
Co— o Bl

OO

A C299
B B9999
C C199

E El1 99

A Al 1 99
B - -
C A2 2 99
D D9999 99

A - -
B Bl 3 1
cCi1 3
DB99 2 2

mo QW >N
=Y. B2
W o=
S
— 0 Bl
CISTRINY o}
— N8 wfm
eslwR @Yol o5

E C22 9|E A3 3 99

C receives MSG(A,2,0) from D
C updates C(C,A,D) to 3
E receives MSG(A,2,0) from D
E updates C(E,A,D) to 3
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T4:

T4:

T4:

T5:

TS:

T6:

T6:;

E sends ACK(B) to D
E updates Nn(E,B) =C
E updates C*(E,B)=3
E sends MSG(B,3,0) to Cand D

A sends ACK(D) to B
A updates Nn(A,D)=C
A updates C*(A D)=2
A sends MSG(D,2,0) to B and C

A receives MSG(E,3,0)

A updates C(A,E,B)=4

ANnDC B

BNnDA D

E receives ACK(B) from C and D

A receives ACK(D) from B and C

DNnD B

Z
S

Appendix A

A -
B B
C Ci
D C2
E C2

AW —

3
1
2
2

A Al 1 99
B - . .
C A2 2 9
D D9999 99
E A3 3 99

D updates Nn(D,B)=C
D updates C*(D,B)=3
D sends MSG(B,3,0) to C and E
C receives MSG(B,3,0) from E
C updates C(C,B,E)=4
D receives MSG(B,3,0)
D updates C(D,B,E) to 4

B receives ACK(D)

lwielvih g @
=Y B2
W =
= Bwig

D receives ACK(B) from E

B receives MSG(D,2,0) from A
B updates Nn(B,D)=A
B updates C*(B,D) =3
B sends MSG(D,3,0) to A
C receives MSG(D,2,0) from A
C updates C(C,D,A) to 3

ANnDC B

BNnDA D

—_ N \\gwm

A C299
B B9999
C C1 99
D

E EI 99

DNnD B

N = WO

— Ngwm
[esRwi@Yole Y (o9

Neiolele!
—— WO NI

2
&

N = NN

= NN WD

A -
B B
C C1
D C2
E C2

FEN S RS I

3
1
2
2

A Al 1 99
B -
C A2
D A3

E A3

99
99
99

W W

C updates C(C,B,D)=4
E receives MSG(B,3,0) from D
E updates C(E,B,D)=4

A updates C(A,D,B) to 4

ANnDC B

BNnDA D

Z,
B2
WWt N —=>

moOw>n
g
BN — 8U~)U

1
1

C receives MSG(B,3,0) from D

A receives MSG(D,3,0) from B

ol

e \®

A C299
B C3 99
C C1 99
D - -
E EI 99

DNnD B

N = NN

LS P Y e s
v lwi@Yveie~y os)

W<lelele

Z
S

N = WO

o= NN WD

A -
B B
C C1
D C2
E C2

BB W=

3
1
2
2

A Al 1 99
B__-
C A2 2 99
D A3 3 99
E A3 3 99

moOw>n
Y BRE
WW N>
(SR N v
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<m0 AMm

ovooAQ
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<MmOAm

S

ooovAQ

AN —

<O AMm

S |E

MMM v m
N — (N o

<mOAm

MMM o m
N — N 1| —

<mOAm

[aaffaalyaaluiNea

NN — N 1w

<mOAm

<A 'Mmm
— _2m

<mOOAmMm

<M ' Mmm
— —t .zm

<mOAm

< ' 0AV

— e — N

<POAmMm

< 0AQ0

(@
1_111

<mOAmMm

<m 'Mmm
—— .zm

<mOAm

AR SIBRS|CRSI|DR

Assume link CE fails

Before link failure.

rmOMmMO

I —— NN

<ROAMm

rmOMO
_1120

ARSIBRS|CRSIDRSIERS

E sends (set,E,A,10), (set,E,B,10), (set,E,C,10) to D

C sends (set,C,E,10) to A and B

<ROAMm

< 0AQ0

— o — N

<POAmMm

rmOmoO
_1120

AR S|IBRS|CRSIDRSIJERS

A sends (set,A,E,10) to B. B sends (set,B,E,10) to A and D
AR SIBRSI|CRSIDRSIER

D sends (reset,D,A,2), (reset,D,B,1), (reset,.D,C,2) to E

D sends (reset,D,E,1) to B

<mOAMm
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< 0AQQ
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<mAMm

B sends (reset,B,E,2) to A and C

OO

= — NN

<mAMm

AR SI[B R S|C

~
~
—

,E,3) to C
;CEJ3)to A

Algorithm converges.

A sends (reset,A
C sends (reset




Appendix B

Control .messagcs required for the new ARPANET routing algorithm after a link failure.
(Assuming that each step occurs synchronously)

Before link failure
A R IB R |C R |ID RIE R
A 0 A 4A A G6A A 7BlA liC
B 4B[B 0 (B 10A|B 3B|B 10D
C 6C | C I0A|C 0 C 10C] C 5C
D 7B | D 3D | D 1I0D{D 0 D 7D
E 11C| E 10D} E SE |E 7E | E 0

A R B R |C R |ID R IE R
A 0 A 4A |A 6A (A 16CIA 11C
B 4B | B 0 B 10A{B 20C{ B 10D
C 6C | C I0A]C O C 10CIC 5C
D 7B | D 20A|D I0D[D O D 7D
E 11C| E 15A| E SE|E 7EJE O

Node B sends BD=99 to A.

Node D sends DB=99 to C and E.
A R B R |C R ID R JE R
A 0 A 4A|A 6A |A 16ClA 11C
B 4B | B 0 B 10A|B 20C| B 25C
C 6C | C 10A|C O C 10¢Cc sC
D 11C| D 20A|D 10D|D O D 7D
E 11C| E ISAIE SE|E 7E|E O

Node A sends BD=99 to C.
Node C sends BD=99 to A and E.
Node E sends BD=99 to C.

Algorithm converges.
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Appendix C

algorithm.

PROCEDURE SHORTEST PATHS (DSPS)
BEGIN
TENT :=[0]; PATHS :=[0]
place (SELF,0,0) in PATHS
FOR each Adj of SELF DO
place <P,x,{Adj(P)}> in TENT
END;
WHILE TENT is nonempty DO
get <P,x,{Adj(P)}> from TENT with x = minimum
remove <P,x,{Adj(P)} from TENT
add <P,x,{Adj(P)} to PATHS
FOR each P, P e Adj(P), DO
FOR each N of P DO
dist(P,N) = d(P) + metric(P,N)
IF <N,d(N),Adj(N)> ¢ PATHS THEN
IF <N,x,Adj(N)> € TENT THEN

IF x = dist(P,N) THEN

IF Adj(P) € Adj(N) THEN

dsps(P) = dsps(P) + 1

place dsps(P) in <N,x,{dsps(N)}>
ELSE

place Adj(P) in Adj(N)
END;

ELSE IF x > dist(P,N) THEN
remove <N,x,{Adj(N)}> from TENT
remove <N,x,{dsps(N)}> from TENT
put <N,dist(P,N),{Adj(P)}> in TENT

END;

ELSE
place <N,dist(P,N),{P}>in TENT
END;
END;
END;

179



END;
END;
END; Shortest Paths (DSPS)

PROCEDURE FORWARD (DSPS)
(given Dest, yielding adj)
BEGIN
IF NextNodeTable[Dest.Adj].count > 1 THEN
minQueue := MaxUnsigned;
FOR each Adj of NextNodeTable[Dest] DO
IF QueueSize(NextNodeTable[Dest.Adj]) < MaxBufferSize THEN
dspsCount := DspsTable[Dest. Adj];

IF minQueue > QueueSize(NextNodeTable[Dest.Adj]) - dspsCount THEN
minQueue ;= QueueSize(NextNodeTable[Dest.Adj]) - dspsCount;
adj := NextNodeTable[Dest. Adj];

END;

END;
END;
ELSE
adj := NextNodeTable[Dest. Adj];
END;
END; Forward (DSPS)
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Appendix D

Additional simulation results for the ISIS and DSPS routing algorithms
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Appendix D
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Appendix E

Appendix E

2}.10rtest path, alternative path and forwarding procedures for routin g algorithms A, B and
PROCEDURE SHORTEST PATHS (Algorithms AB and C)
BEGIN
TENT :=[0]; PATHS :=[0]
place (SELF,0,0) in PATHS
FOR each Adj of SELF DO
place <Px,{Adj(P)}> in TENT
END;
WHILE TENT is nonempty DO
get <P.x,{Adj(P)}> from TENT with x = minimum
remove <P x,{Adj(P)} from TENT
add <P,x,{Adj(P)} to PATHS
FOR each P, P € Adj(P), DO
FOR each N of PDQ
dist(P,N) = d(P) + metric(P,N)
IF <N,d(N),Adj(N)> ¢ PATHS THEN
IF <N,x,Adj(N)> € TENT THEN

IF x = dist(P,N) THEN
place Adj(P) in Adj(N)

ELSE IF x > dist(P,N) THEN
remove <N,x,{Adj(N)}> from TENT
put <N,dist(P,N),{Adj(P)}> in TENT

END;

ELSE
place <N,dist(P,N),{P}> in TENT
END;
END;
END;
END;
END;
END Shortest Paths (Algorithms A,B and C)
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Appendix E

PROCEDURE ALTERNATIVE PATHS
BEGIN
IF Adj.count > 1 THEN

PATHS[index] := [0);

index :=1;

FOR each Adj of SELE DO
temp := Adj[index];
Adj[index] :=0;
SHORTEST PATHS
PATHS[index] := PATHS;
Adj[index] := temp;

(Algorithms A,B and &)

index :=index+1;
END;
FOR each destination DO
FOR each k DO (* algorithm C only *)
FOR each index DO
IF PATHS[index] = min, THEN

temp := index

place triple in SP[1] (* algos A and B only *)
ELSE IF PATHS[index] = min + 1 THEN (* algos A and B only *)
place triple in SP[2] (* algos A and B only *)
END;
END;
place triple in SP[k] (* algorithm C only *)
set triple in PATHS[temp] to MaxUnsigned
END; (* algorithm C only *)
END:
ELSE
SHORTEST PATHS
END;

END; Alternative Paths (Algorithms A,B and C)
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Appendix E

PROCEDURE FORWARD (Algorithms A B
(given Dest, yielding adj)
BEGIN
IF NextNodeTable[Dest.Adj].count >1THEN
minQueue := MaxUnsigned;
FOR each Adj of NextNodeTable[Dest] DO
IF minQueue > QueueSize(N extNodeTable[Dest.Adj]) THEN
minQueue := QueueSizc(NextNodeTable[Dest.Adj]);
SPadj := NextN odeTable[Dest. Adj];
END;
END;
ELSE
SPadj := NextNodeTable[Dest.Adj];
END;
IF Flag= False THEN (* Algorithm A only *)
IF input packet THEN (* Algorithms B and C only*)
IF QueueSize(SPadj) > Threshold
IF AltNextNodeTable[Dest.Adj].count > 1 THEN
minQueue := MaxUnsigned;
FOR each Adj of AltNextNodeTable[Dest] DO
IF minQueue > QueueSize(AltNextNodeTable[Dest.Adj]) THEN
minQueue := QueueSize(AltNextNodeTable[Dest.Adj]);
Altadj := AltNextNodeTable[Dest.Adj];
END;
END;
END;
IF QueueSize(Altadj) < QueueSize(SPadj) THEN
adj := Altadj
ELSE
adj := SPadj
END;
END;
ELSE
adj := SPadj
END: (*Algorithms B and C only *)
END; (*Algorithm A only *)
END; Forward (Algorithms A,B and C)

and C)
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Appendix F

Appendix F

Additonal simulation results for ISIS and algorithms A,B and C
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Appendix G

PROCEDURE SHORTEST PATHS (Al
BEGIN

TENT :=[0]; PATHS := [0]

place (SELF,0,0) in PATHS

FOR each Adj of SELF DO
place <P x,{Adj(P)}> in TENT

END;

WHILE TENT is nonempty DO
get <P.x,{Adj(P)}> from TENT with X = minimum
remove <P x,{Adj(P)} from TENT
add <P,x,{Adj(P)} to PATHS
FOR each P, P e Adj(P), DO

FOR each N of PDO
dist(P,N) =d(P) + metric(P,N)
IF <N,d(N),Adj(N)> ¢ PATHS THEN
IF <N,x,Adj(N)> € TENT THEN

IF x = dist(P,N) THEN

IF Adj(P) € Adj(N) THEN

dsps(P) = dsps(P) + 1

place dsps(P) in <N,x,{dsps(N)}>
ELSE

place Adj(P) in Adj(N)
END;

ELSE IF x > dist(P,N) THEN
remove <N,x,{Adj(N)}> from TENT
remove <N,x,{dsps(N)}> from TENT
put <N,dist(P,N),{Adj(P)}> in TENT

END;

ELSE
place <N,dist(P,N),(P}>in TENT
END;
END;
END;

gorithms A B and C + DSPS)
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Appendix G

END;
END;
END; Shortest paths (Algorithmg A,Band C +DSPS)

PROCEDURE ALTERNATIVE PATHS
BEGIN
IF Adj.count > 1 THEN

PATHS[index] := [0];

index := 1;

FOR each Adj of SELF DO
temp := Adj[index];
Adj[index] :=0;
SHORTEST PATHS
PATHS[index] := PATHS;
Adj[index] := temp;

(Algorithms ABand C plus DSPS)

index := index+1;

END;
FOR each destination DQ
FOR each k DO (* algorithm C only *)
FOR each index DO '
IF PATHS[index] = min, THEN
temp := index
place triple in SP[1] (* algos A and B only *)
ELSE IF PATHS[index] = min + 1 THEN (* algos A and B only *)
place triple in SP[2] (* algos A and B only *)
END;
END;
place triple in SP[K] (* algorithm C only *)
set triple in PATHS[temp] to MaxUnsigned
END: ( * algorithm C only * )
END;
ELSE
SHORTEST PATHS
END;

END; Alternative Paths (Algorithms A,B and C + DSPS)

191



Appendix G

PROCEDURE FORWARD (Algorithms AB
(given Dest, yielding adj)
BEGIN
IF NextNodeTable[Dest.Adj].count >1THEN
minQueue ;= MaxUnsigned;
FOR each Adj of NextN odeTable[Dest] DO

IF QueueSize(NextN odeTable[Dest.Adj]) < MaxBufferSize THEN
dspsCount := DspsTable[Dest.Adj];

IF minQueue > QueueSize(N extNodeTable[Dest.Adj]) - dspsCount THEN

minQueue := QueueSize(NextNodeTable[Dest.Adj]) - dspsCount;
SPadj := NextNodeTable[DesLAdj];
END;

END;
END;
ELSE
SPadj := NextNodeTable[Dest.Adj]
END:;
IF Flag= False THEN (* Algorithm A only *)
IF input packet THEN (* Algorithms B and C only*)
IF QueueSize(SPadj) > Threshold
IF AltNextNodeTable[Dest.Adj].count > 1 THEN
minQueue := MaxUnsigned;
FOR each Adj of AltNextNodeTable[Dest] DO
IF minQueue > QueueSize(AltNextNodeTable[Dest.Adj]) THEN
minQueue := QueueSize(AltNextNode Table[Dest. Adj]);
Altadj := AltNextNodeTable[Dest.Adj];
END;
END;
END:
IF QueueSize(Altadj) < QueueSize(SPadj) THEN
adj := Altadj
ELSE
adj := SPadj
END:;
END:;
ELSE
adj := SPadj
END; (*Algorithms B and C only *)

and C + DSPS)

.
b4
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END; (*Algorithm A only *)
END; Forward (Algorithms A B ang C +DSPS)
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Network Power (bits/sec/sec)
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Power against arrival rate for ISIS and algorithms A+DSPS. B+DSPS and C+DSPS

(8 nodes, 11 links).
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Appendix H
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Power against arrival rate for ISIS and algorithms A+DSPS. B+DSPS and C+DSPS
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