Aston University

Some parts of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

A FORMAL METHODOLOGY FOR THE VERIFICATION OF CONCURRENT
SYSTEMS

Philip John Clarke
Doctor of Philosophy

THE UNIVERSITY OF ASTON IN BIRMINGHAM
SEPTEMBER 1993

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without proper

acknowledgement.

The University of Aston in Birmingham

A Formal Methodology for the Verification of Concurrent Systems

Philip John Clarke
Submitted for the degree of Doctor of Philosophy, 1993

Summary of Thesis

There is an increasing emphasis on the use of software to control safety critical plants
for a wide area of applications. The importance of ensuring the correct operation of
such potentially hazardous systems points to an emphasis on the verification of the
system relative to a suitably secure specification. However, the process of verification

is often made more complex by the concurrency and real-time considerations which are
inherent in many applications.

A response to this is the use of formal methods for the specification and verification of
safety critical control systems. These provide a mathematical representation of a system
which permits reasoning about its properties. This thesis investigates the use of the
formal method Communicating Sequential Processes (CSP) for the verification of a
safety critical control application. CSP is a discrete event based process algebra which
has a compositional axiomatic semantics that supports verification by formal proof.
The application is an industrial case study which concerns the concurrent control of a
real-time high speed mechanism.

It is seen from the case study that the axiomatic verification method employed is
complex. It requires the user to have a relatively comprehensive understanding of the
nature of the proof system and the application. By making a series of observations the
thesis notes that CSP possesses the scope to support a more procedural approach to
verification in the form of testing.

This thesis investigates the technique of testing and proposes the method of Ideal Test
Sets. By exploiting the underlying structure of the CSP semantic model it is shown
that for certain processes and specifications the obligation of verification can be reduced
to that of testing the specification over a finite subset of the behaviours of the process.

The scope of the method of Ideal Test Sets is clearly defined by a number of syntactic
rules for processes and specifications. In particular care is taken to ensure that the
method is compatible with existing proof techniques. The thesis then uses Ideal Test

Sets to verify the case study, and is thus able to draw conclusions on the suitability and
limitations of the method of Ideal Test Sets.

Key Words: Formal Methods, Test Sets, Communicating Sequential Processes,
Safety Critical Systems, Verification.

To Rebecca, for always

Acknowledgements

I would like to thank my supervisor David Holding for his support, encouragement and
guidance during my time at Aston University. In addition I would like to express
gratitude to my colleagues and the staff in the Department of Electronic Engineering for
the stimulating environment which is fostered there. Also to Rebecca for her love.

This research was carried out under a UK Science and Engineering Research Council
Studentship.

LIST OF CONTENTS

Page
/

CHAPTER ONE: INTRODUCTION

1.1 Introduction. 15
1.2 Motivations. 16
1.3 Approach. 17
1.4 Aims. 19
1.5 Summary of the Thesis. 19
1.6 Novelty of the Thesis. 22

CHAPTER TWO: FORMAL SPECIFICATION AND VERIFICATION

2.1 Introduction to Formal Methods. 23
2.2 Formal Specification Language. 24
2.2.1 Model-Oriented Specification Languages. 24
2.2.2 Property-Oriented Specification Languages. 25
2.2.3 Classification of Specifications. 25
2.3 Semantics of Formal Specification Languages. 25
2.3.1 Operational Semantics. 26
2.3.2 Denotational Semantics. 26
2.3.3 Axiomatic Semantics. 26
2.4 Concepts of Verification. 27
2.4.1 Motivations. 27
2.4.2 Compositionality. 28
2.4.3 Foundations. 28
2.4.4 Parallel Verification. 29
2.5 Methods of Verification. 30
2.5.1 Direct Proofs of Partial Correctness. 30
2.5.1.1 Operational Verification. 30
2.5.1.2 Denotational Verification. 31

2.5.2 Axiomatic Verification. 31
2.5.2.1 Inference Rules. 32
2.5.2.2 Soundness and Completeness of an Inference System. 32

2.6 Mathematical Logics. 33
2.6.1 Propositional Logic. 33
2.6.1.1 Expressing Propositions in Normal Form. 34

2.6.2 Predicate Logic. 35

2.6.2.1 Universal Quantifier. 35
2.6.2.2 Existential Quantifier. 35

2.6.3 Modal Logics and Temporal Logic. 36
2.7 Examples of Formal Methods. 36
2.7.1 VDM. 37
2.7.2 Z and the Refinement Calculus. 37
2.7.3 Concurrent Theories. 38
2.7.4 Petri Nets. 39
2.7.5 PAISLey. 40
2.7.6 Communicating Sequential Processes. 41
2.7.7 Calculus of Communicating Systems.)
2.8 The Rationale of Choosing CSP. 43
2.9 Summary. 44

CHAPTER THREE: COMMUNICATING SEQUENTIAL PROCESSES

3.1 Introduction. 46
3.2 CSP as a Programming Language. 47
3.2.1 Parallel Composition. 47
3.2.2 Communication. 48
3.2.3 Alternative and Guarded Commands. 48
3.2.4 Observations. 49
3.3 Implementations of the CSP programming language. 50
3.3.1 COSPOL. 51
3.3.2 csp/80. 51
3.3.3 The occam family of languages. 52
3.4 Proof Systems For Communicating Sequential Processes. 53
3.4.1 Precondition/Postcondition Proof Systems. 53
3.4.2 Proof Methods Based on Sequences of Communications. 55
3.5 An Introduction to the Notation of CSP. 55
3.5.1 Processes, Events and Traces. 56

3.5.2 Alphabets and Empty Traces.

3.5.3 Trace Operations.
3.5.3.1 Catenation.
3.5.3.2 Event Restriction.
3.5.3.3 First Event of a Trace.
3.5.3.4 Last Event of a Trace.
3.5.3.5 Event Inclusion.

3.6 Syntactic Operators.

233 B8LBELxI

3.6.1 STOP. _ 60
3.6.2 Prefix Operator. 61
3.6.3 Termination and the Sequential Operator. 61
3.6.4 Alphabetized Parallel Operator. 62

3.6.5 Deterministic choice. 63
3.6.6 Nondeterministic Choice 64
3.6.7 Interleaving. 64
3.6.8 Change of Symbol and Hiding. 65
3.6.9 Syntactic Rules in Backus-Naur Form. 66
3.7 The Traces Semantic Model. 66
3.8 Recursion and Fixed Point Treatment. 67

3.8.1 Divergence. 68
3.8.2 Metric Space Representation. 69
3.8.2.1 A Metric Space. 69
3.8.2.2 Contraction Mappings and Nonexpansions. 69

3.8.3 CSP as a Metric Space. 71
3.8.4 Syntactic Operators as Contractions and Nonexpansions. 72
3.8.5 The Uniqueness of Fixed Pointed CSP Equations. 73
3.9 Specifications. 73
3.9.1 Satisfiable and Continuous Specifications. 74
3.10 The Proof System For Mg. 74
3.10.1 General Rules. 74
3.10.2 Syntactic Rules. 75
3.10.3 The Recursive Inference Rule. 76
3.11 Summary. 76

CHAPTER FOUR: HIGHER SEMANTIC MODELS AND APPLYING
THEM

4.1 Introduction. 78
4.2 Failures Model. 79
4.2.1 Specifications in the Failures Model. 82
4.2.2 A Mertric Space for Mg 82
4.2.3 The Proof System for Mg 82
4.3 Timed CSP. 83
4.3.1 Extending The Syntax. 84
4.3.2 Timed Events, Traces and Refusals. 84
4.3.3 Specifications on TMg 84
4.3.4 TMg as a Complete Metric Space. 85

4.3.5 Proof System for TMg
4.4 Other Semantic Domains and their Hierarchy.
4.5 The Application.
4.5.1 The Application and its Appeal.
4.5.2 Specification.
4.5.3 Formalizing the Safety Specifications.
4.5.4 Formalizing Untimed Liveness Specifications.
4.5.5 Deriving Processes to Satisfy the Specification.
4.5.6 Limitations of the Untimed Process - a Timed Process.
4.5.7 Liveness in the Timed Model.
4.6 Summary. .
4.7 Proofs.
4.7.1 Proof of the Safety Properties of the Untimed Model.
4.7.2 Proof of the Liveness Properties for the Untimed Model.

4.7.3 Proof of the Timed Liveness Properties for the Timed Process.

CHAPTER FIVE: CATENARY FUNCTIONS
5.1 Introduction.
5.2 Verification and Ideal Tests.
5.2.1 Testing and Exhaustive Testing.
5.2.2 Formal Proof.
5.2.3 Comparison of Testing and Proof.
5.3 Automated Verification Techniques.
5.4 Motivations. '
5.5 Relating Recursion to Sequential Composition
and Catenation.
5.6 Dedicated Events and Catenary Functions.
5.7 Instances of Catenary Functions.
5.8 Parallel Composition.
5.9 Relating Catenary Functions to Traces.
5.10 Summary.

CHAPTER SIX: IDEAL TEST SETS
6.1 Introduction.
6.2 Extending Ideal Tests to CSP.
6.3 Treatment of Infinite Traces and Alphabets.
6.4 Categorizing Specifications.
6.4.1 Notation.

86
86
89
89
90
93
94
95
98
99
101
102
102
105
107

112
113
113
113
114
115
117

119
122
123
132
136
138

140
141
142
143
144

6.4.2 Categories.
6.5 General Properties of the Categories.
6.6 Using the Categories to Build Compound Predicates.
6.7 Closures.
6.8 Logical Disjunction across the Categories.
6.9 Using the General Category o™ to Construct

an Ideal Test Set.

6.10 Introducing Logical Conjunction.
6.11 Summary.

CHAPTER SEVEN: A SYNTAX OF RSPEC
7.1 Introduction.
7.2 Syntax and Semantics of CATEGS.
7.3 Syntactically Defining Predicates in Categories cand .
7.3.1 Category .
7.3.2 Category B.
7.4 Syntactically Defining Predicates in Categories yand §.
7.4.1 Category 9.
7.4.2 Category v.
7.5 A Well Defined Syntax RSPEC.
7.6 Testing for the Empty Trace.
7.7 Some Examples of Using RSPEC and RSPEC+.
7.8 The Expressibility of RSPEC and a Strategy
for Improving it.
7.9 Endomorphic Functions.
7.9.1 Definition of Endomorphisms.
7.9.2 The Role of Endomorphic Functions.
7.9.3 Instances of Endomorphisms.
7.9.3.1 Trace Restriction Function.
7.9.3.2 The Head Function.
7.9.3.3 The Tail Function.
7.9.4 Other Definitions of Head and Tail.
7.9.5 Developing a Syntax of Endomorphic Functions.
7.10 Properties of Trace Endomorphisms.
7.11 Extending the Syntax of RSPEC.
7.12 Closures of &, f, v, 6.
7.12.1 Closures of & and f under Logical Negation and Disjunction.
7.13 Ideal Test Sets for Predicates in Categories & and p.

145
146
149
151
156

166
168
172

173
174
176
176
177
178
178
179
180
182
183

186
188
188
188
189
189
190
190
191
191
193
196
201
202

AadS1 O A OTUETES

7.14 Generating Provisional Ideal Test Sets.
7.14.1 Theorems for Deriving Ideal Test Sets.
7.14.2 Including Category Y.

7.15 Generating Ideal Test Sets for ERSPEC.

7.16 Empty Trace Predicates in ERSPEC.
7.17 Some Final Considerations.
7.18 Summary.

CHAPTER EIGHT: CONCLUSIONS

8.1 Introduction.

8.2 The Syntactic Definition of ERSPEC.
8.3 Expressing Specifications in ERSPEC.
8.4 A Worked Example.

8.4.1 A Procedure for Generating Ideal Test Sets.

8.4.2 The Arbor Drum
8.4.3 Comparisons.
8.5 Conclusions.
8.6 Suggestions for Further Work.

8.6.1 Extending the Theory of Ideal Test Sets to the Failures Model.

8.6.2 A Timed Failures Extension.
8.6.3 Catenary Functions and Fixed Points.

REFERENCES

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

207
208
214
215
217
219
220

222
222
224
227
228
229
232
233
235
235
237
238

240

249

254

258

266

Figure 2.1
Figure 2.2
Figure 2.3

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

LIST OF FIGURES

Truth Table for Propositional Logic.
A Z Schema.
Graphical Syntax of Petri Nets.

Hierarchy of Semantic Domains.
Motion Profiles of Arbor Drum.
Decision Point of Arbor Drum.
Untimed CSP Model.

Timed CSP Model.

10

Page

34
38
40

88
91
91
97
100

Glossary of Notation

Throughout this thesis there is a consistent notation for certain variable data types.
For example a trace is always represented by one of the letters r, s, t, u, or v.
Although this usage is made explicit during the course of the text the following glossary
is intended as a guide to the reader.

Variable Labels Used,

Notation Usage Comments

Q.R,S, T, R Predicates

MNE Predicates Used in the conditional
statements for categories
& and .

s oI T O Trace variables

a,b, .. Events Expressions in bold
courier text represent
events.

A, B, C,D Sets of events Also used to represent
process alphabets, which
are themselves sets of
events.

A,B,C,D Sets of traces Note the different font
from the above sets of
events.

359 k1m0 Integers k is also used as a real
number in the definition of
metric spaces.

P, X Process variables

11

F,G,H

Obs

Process functions

Ideal Test Set

Behaviours of a process

All of the above notations may be indexed and still retain their respective
representations. E.g. R, represents a predicate.

New Notation Introduced.

Tails)

oV

L\

P(a)

Set catenation

Dedicated event

Dedicated process

Special subset of F(STOP)

Semantic categories

Semantic categories

Head of a trace s

Tail of a trace s

Prefix ordering

Suffix ordering

Powerset of set A

Natural numbers

12

Defined in Section 5.5

Defined in Section 5.6

Defined in Section 5.6

Defined in Section 5.6

Defined in Chapter 6

Defined in Section 7.11

Defined in Section 7.9.3.2

Defined in Section 7.9.3.3

Defined in Section 7.9.5

Defined in Section 7.9.5

<:s

©i5)

[

i

A Qi)

oy

-l

f(P)

WP.F(P)

STOP

SKIP

in

pln

Disjunction of indexed terms Q;

Conjunction of indexed terms Q

Parallel

Alphabetized parallel
Sequential composition
Deterministic choice
Nondeterministic choice
Interleaving

Prefix

Hiding

Change of symbol

Fixed point of function F
Deadlocking process
Skip process

Partial ordering on traces

Process P restricted to the first n events

13

#s

s"t
sfa
Last(s)

Firs(s)

s(1)

<>

ains

Length of s

Concatenation of s and t
Restriction of s to set A
Lasteventin s

First event in s

The 1P event in trace s
Termination event

Empty trace

The event a is in the trace s

The set of all events

14

CHAPTER ONE

INTRODUCTION

11 Introduction.

The general objective of this thesis is to investigate the use of formal methods in the
verification of concurrent systems, with a particular bias towards an application to
controllers for high speed machinery.

In this thesis, to provide a common basis for the work, it is useful to outline some of
the general terms which are used. The word concurrent is used to describe systems
which have the potential for parallel execution. This loosely describes those systems
which are able to perform more than one action at the same time. This is in contrast to
sequential systems which are required to perform their actions one after another.

A specification is a requirement which a particular system has to meet. It is usually a
statement about the execution of the system. Specifications can be expressed in many
ways. They are often expressed in terms of a verbal or written contract which dictates
what the system must and must not do. Such specifications which express the
system’s requirements in plain English (or other language) are called natural language
specifications. Alternatively a system’s requirements may be expressed in a more exact
manner, for example in terms of particular states the system can reach or particular
sequences of labelled actions it may perform. Requirements written in such a
mathematically precise manner are called formal specifications. From the human point
of view, natural language requirements are usually simpler to comprehend than formal
specifications, but they are often less precise and may obscure ambiguity.

Verification is the task of establishing that a system satisfies a particular requirement.
In this thesis verification will be discussed in terms of the truth of a particular

15

cl One: 1 . be Thesi

specification relative to a system. As with specification there are different approaches
to verification depending on how the system and specification are structured.

/

A safety critical system is one in which incorrect operation has the potential to cause
serious injury or loss of life [Anderson 81]. There are an increasing number of
concurrent applications in the medical, nuclear, aerospace and other industries which
can be labelled as safety critical [Leveson 93]. With respect to typical applications of
high speed mechanisms, such as packaging machines, hazard free operation has
conventionally been achieved by using centralized power trains which link all the
relevant actuators. However, it is recognized that there are benefits for the design and
flexibility of such systems if these conventional mechanisms are replaced by sets of
independent software-synchronized actuators. The advantages of using such
independent drives can only be realized if the drives are properly coordinated and
synchronized to ensure safety critical operation.

The need to achieve a high level of confidence in the underlying control logic of such
machinery points to an emphasis on verification and in particular on formal proof
methods of verification [Froome 88]. In the case of independent drive machinery any
proposed formal method must include the concept of concurrency and the notion of
real-time.

There are a number of possible formal proof methods currently available. Chapter 2
provides a discussion of the underlying principles and some specific examples of
contemporary techniques. However for the purposes of the work presented in this
thesis the particular formal method adopted is Communicating Sequential Processes, or
CSP [Hoare 85]. The reasons for this choice are given in more detail in Chapter 2 but
essentially they can be summed up as follows

 CSP allows a formal description of concurrency by utilising an approach based on
the communication between a number of interacting sequential processes.

It possesses a range of process interpretations to cope with different system
properties such as nondeterminism and time.

It has a mature approach to verification based on an axiomatic proof system.
Moreover, this system has the quality that the obligation to verify a large process

16

Cl T he Thesi

relative to a specification can be translated into an obligation to verify a set of smaller
processes relative to respective specifications. That is the system is compositional.

An alternative approach to formal proof is that'of testing. This involves comparing
the actual response of a system against its desired response as given by the specification
[Lanski 89]. As a rule testing is more procedural and easier to automate, whereas
formal proof can be more concise and have a greater scope.

Although the approaches of formal proof and the concept of testing can be seen to be
different, they do not by necessity exclude one another. In fact they can be
complementary if formal rules are used to reduce the range of testing necessary to
establish the truth of a specification, or alternatively if testing is used to establish some
of the axioms necessary for factorizing a formal proof [Bermot 91].

With respect to CSP much of the theoretical research to date has centred on
improvements to the semantic theory such as higher semantic models and treatment of
singular operators [Davies 92, Roscoe 88a, Reed 90], or applying the techniques to
the solution of specific problems [Jackson 89]. Little has been published on using the
formalism supported by CSP as a means to assist in the process of testing.

The theoretical contribution of this thesis was motivated by an acknowledgement that
the methods proposed by CSP for the specification and verification of CSP possess a
wide and useful scope and have the potential to assist in the development of safety
critical systems. In particular there was an early realization that the formalism of CSP
could be used to support a theory of testing, which in turn could serve to improve the
approach to verification. This culminated in a desire to investigate methods of
structuring such a theory, and applying them to the solution of problems.

13 Approach.

The approach adopted for the research contained in this thesis was to first establish a
familiarity with the formal method CSP and the existing approaches to verification it
supported, particularly with respect to its use in a control environment. This was
achieved by considering a case study taken from the manufacturing industry. The
advantage of this was that, as well as illustrating the use of CSP in the specification,
design and verification of a controller, it would provide a tangible example with which
to make observations about the methods of CSP and to draw comparisons with any
developed techniques.

As a result of the case study a number of observations were made which proved to be
useful in guiding the research. The first observation was that the axiomatic proof

17

ct One: Introduction to the Thesi

system of CSP constituted a powerful verification tool. The range of formal
specifications to which it could be applied, that of continuous behavioural specifications
[Olderog 86], was sufficient to capture all the necessary controller requirements.
However, it was also noted that the axiomatic proof system was complex. To
effectively apply it required both an in depth understanding of the theory of CSP and a
thorough knowledge of the system at hand in order to both propose suitable initial
axioms and factorize the subsequent proof. It was also noted that one of the most
complex factors of this axiomatic proof system was its treatment of recursion.

The second observation was less conventional. It transpired that the structure of the
recursive sequential processes involved in the application controller was similar to that
of a loop. That is they acted as a process which repeated one of the same limited set of
behaviours in sequence. When two process behaviours are joined in sequence they are
said to be catenated. Thus in terms of the behaviours of a process it was noted that
certain recursive process structures could be linked to the concept of catenation.

The third observation was that in the axiomatic proof system developed for CSP the
inference rule associated with recursion was based on the principle of mathematical
induction. The underlying principle of mathematical induction is that the truth of a
statement over a large, possibly infinite, domain can be inferred from its truth over a
particular value or set of values.

The final observation was that a number of the specifications used in the case study
had particular inductive properties over the catenation of process behaviours. For
example if a certain specification S were true for a behaviour b then it could be shown
that S was true for all process behaviours which at some point acted as b.

When taken together, these observations suggested that there was a class of processes
and specifications for which the particular links between recursion, induction and
catenation could be exploited to benefit. Coupled with an understanding of the
structure of CSP they led the author to consider the following points

* It is observed that for certain processes recursion is linked to catenation and for
certain specifications catenation is linked to induction. What is the specific nature of
these links? How can they be explicitly defined and which processes and
specifications exhibit them?

* If such a connection can be clearly established and understood, how may the
interrelationships between the concepts of recursion, induction and catenation be
exploited? Specifically, is it possible to use the principles which underlie
mathematical induction to infer that a recursive process satisfies a specification by

18

C One: Introduct be Thesi

demonstrating that the specification satisfies a particular finite set of process
behaviours?

It is the desire to investigate and answer these questions which provided the
motivation for the method of Ideal Test Sets presented in this thesis.

1.4 Aims,

With respect to the observations made in the previous section, it is now possible to
state some of the aims of this thesis

» The main aim of the thesis is to investigate methods by which the proof obligations
necessary for verifying systems may be reduced. Specifically, the thesis aims to
investigate how the axiomatic proof obligation on a particular process/specification
pair can be reduced to testing a subset of the process behaviours over which the truth
of a specification can be determined.

* Because the approach will be limited to a particular class of processes and
specifications, it is imperative to define the boundaries of any methods proposed. It
is envisaged that this would take the form of a range of syntactic definitions.

e It is recognized that the limitations of any methods put forward imply that a
verification procedure based upon them may not be complete. It is therefore
important that any restrictions in the scope of the methods can be compensated for by
resorting to existing techniques. That is the approach should be compatible with
current proof systems.

* In order to be assured of the methods proposed, they should be supported by a
mathematical theory. Wherever appropriate, definitions should be given in a precise
mathematical manner, and theorems should be justified by proofs. The rigour of
such an approach will instil confidence.

mmar Thesi

The main body of the thesis commences with Chapter 2 which opens by looking at
current approaches to the formal specification and verification of systems. The

19

a O Titiodiét be Thesi

underlying concepts and terminology employed are described and the different
approaches to specification and semantic interpretation are discussed. Of particular note
are the concepts of safety and liveness specifications, correctness and compositionality.
The thesis then moves on to address different approaches to verification. Axiomatic
proof techniques are discussed and the importance of the soundness and completeness
of a logical system is stressed.

All axiomatic systems possess an underlying structure based on mathematical logic.
The thesis outlines three main types of logic, namely propositional, predicate and
modal. The basic points of each are outlined and theorems which relate to later work
are presented. _

The second chapter concludes by providing examples of specific formal methods
which are in current use. Six methods are discussed and the rationale of choosing
Communicating Sequential Processes is given.

Chapter 3 provides an introduction to the notation and concepts of CSP. It opens by
describing the initial proposal for CSP as a programming language for distributed
systems. It outlines some of the observations made about CSP, particularly with
respect to its use of a synchronous communications primitive, and looks at some of the
executable implementations of CSP such as occam. The chapter then moves on to
discuss proof systems for CSP. It compares the earlier approaches to axiomatic proof
based on specifications on the state of a process with later methods which specify a
system’s behaviour by sequences of interprocess communications. Then the formal
notation which is employed by the rest of the thesis is given. Concepts such as events,
traces, alphabets and catenation are formally defined. The syntactic operators are
related and their effect on the traces of a process is described. It is shown how the
formal treatment of the traces of a process leads to a mathematical semantic
representation of traces in the form of the traces domain My. Finally it is demonstrated
how this mathematical representation can be expressed as a metric space in order to
support a theory of recursive processes.

Chapter 4 relates some of the higher semantic models which have been developed for
CSP and details their respective properties. In particular the untimed failures (Mg) and
timed failures (TMg) domains are discussed in detail because of their use in a following
case study. The case study itself involves the coordination of a high speed slider and
drum mechanism. The system is initially specified by a natural language specification
which is translated into a formal set of requirements and CSP models which satisfy
them. To meet the specification two CSP models are proposed, an untimed model and
a timed model. The timed model is necessary because of the timing constraints which
have to be placed upon the system to ensure hazard free operation. Each of these

20

ot One: Introduct he Thesi

models and their respective specifications are verified with the existing axiomatic proof
system for CSP.

Chapter 5 looks at automated methods for assisting in the verification of complex
systems. The two main approaches of model checking and theorem proving are
outlined. Particular attention is paid to the concept of an ideal test, where a subset of
behaviours can be used to determine the correctness of a specification relative to a
system by exhaustive testing. These ideal tests suggest a means of verification based
on exploiting the link between recursion and catenation exhibited by the case study of
the previous chapter. In order to clarify the bounds of such a link, the concept of
Catenary functions is introduced and a precise semantic definition of these functions is
provided. An investigation is made to determine which of the CSP operators given in
Chapter 3 are Catenary. The chapter ends by using this analysis to provide a syntactic
definition for a Catenary function and discussing some of the limitations.

Chapter 6 extends the concept of ideal tests discussed in Chapter 5 to a formal
definition of an Ideal Test Set for a CSP process and specification. An Ideal Test Set is
defined as a subset of the behaviours of a process over which the truth of a
specification can be determined. In order to structure a method of generating Ideal Test
Sets the chapter looks at how specifications distribute over catenation. It introduces
four categories, o, B, ¥, 8, into which particular specifications can be placed by virtue
of their properties over catenation. The chapter then investigates how these categories
may be used as a basis for a method to structure Ideal Test Sets for particular
process/specification pairs. In order to provide some syntactic rules relating to the
limits of the specifications for which the method of Ideal Test Sets is suitable the syntax
RSPEC is developed. The chapter concludes with the important result that for any
process/specification pair where the process is defined by a Catenary function and the
specification is defined by RSPEC then there is always a finite Ideal Test Set.
Furthermore a procedure for generating such Ideal Test Sets for RSPEC is given.

Chapter 7 completes the definition of RSPEC presented in the previous chapter. By a
series of examples the expressibility of RSPEC is examined and it is discovered that
there is scope for improvement. The approach to improvement is given in the form of
monotonic trace endomorphisms. These are functions which take a trace as an
argument, return a trace as a value and which are monotonic on a given partial order.
By using these functions in the place of the trace variables of RSPEC a new syntax for
specifications is developed, that of ERSPEC. To support the extensions provided by
ERSPEC two further categories relating the properties of specifications over catenation
are introduced. It is shown how these new categories, & and f8, are resolved with the
existing theory of Ideal Test Sets to develop an extended theory. The chapter concludes
with the result that it is possible to generate an Ideal Test Set for a process/specification

21

i One: Introducti he Thesi

pair where the process is defined by a Catenary function and the specification belongs
to ERSPEC. A procedure for generating this Ideal Test Set is given.

Chapter 8 presents a complete syntax of ERSPEC and illustrates by means of a
number of examples how it can be used to specify and verify system properties. The
thesis then returns to the case study of Chapter 4 and demonstrates how the method of
Ideal Test Sets can be used to verify the specifications which were previously
established by axiomatic proof. The chapter then draws some conclusions about the
suitability of the methods proposed and suggests some proposals for further work.

\J f the T

The novelty of the work in this thesis lies in the method of Ideal Test Sets and the
theory which has been developed to support it. The extension of the existing notion of
an ideal test to that of the formally defined Ideal Test Set is work presented in this thesis

for the first time, as is the syntactic and semantic definitions of a Catenary function, the
special set Dy and the definition of #7R functions. The semantic categories o, B, ¥y, 3,

& 3, and the theorems and definitions relating to their closures and their use in the
structure of Ideal Test Sets is also novel work, and was partially presented in [Clarke
92b]. In addition the the syntaxes RSPEC and ERSPEC which are used to indicate the
limits of suitable specifications are introduced here.

The application of CSP to the Arbor drum problem is work originated by the author
and was initially presented in [Clarke 92a]. The notations 2, 2 for partial ordering
over traces are unique to this thesis but are derived from the basic principles of an
ordering over traces presented in [Hoare 85]. The concept of a dedicated event is
based loosely on the special qualities exhibited by the termination event.

22

CHAPTER TWO

FORMAL SPECIFICATION AND VERIFICATION

Intr ion Formal

As systems become more complex by their size or structure, it becomes increasingly
difficult to manage them without resorting to some form of assistance. Formal methods
aim to provide just such assistance by providing the field of software engineering with
a firm scientific basis similar to that which exists for other engineering disciplines.

A formal method is a mathematically based technique for describing and reasoning
with a system’s properties [Pagan 81]. It provides the software engineer with a
framework with which to make assertions about a systems performance, and to prove
rigorously properties about that system [Stoy 77 .

Formal methods facilitate the detection and correction of errors throughout the
software development cycle. A possible result of an error is a failure [Anderson 81]
and the consequences of failures are undesirable, not only in terms of financial cost but
also in terms of injury to personnel [Leveson 93, New Sci 89]. Formal methods
detect errors by revealing ambiguity, incompleteness and inconsistency throughout a
systems development from specification through to design and verification.

There are at present a number of formal methods available, some established and
others under development. Each has it own intended scope of application and
accordingly adopts a particular approach. Between them they cover all phases of
system development from specification and design through to implementation and
verification. This thesis concentrates on two particular stages of development, those of
specification and verification, with an emphasis on the latter.

This chapter addresses the area of formal specification and verification. It opens by
discussing some of the terms and concepts commonly used in formal methods. Then it

23

8

Chapter Two: Formal Specification and Verificat

outlines the three main approaches to formal description: operational, denotational and
axiomatic. The underlying principles of formal verification are related and a brief
description of relevant mathematical logics is provided. Finally the chapter cites some
specific examples of formal methods. é

Form i tion Lan

In general terms, the mathematical basis for a formal method is provided by a formal
specification language [Wing 90].

Definition 2.1: A formal specification language is a triple
{ syn, Sem, Sat } Eq. 2.1

where Syn is the languages syntactic domain,
Sem is the languages semantic domain,
Sat is a satisfies relation between them (Sat € Syn X Sem).

The syntax of a formal specification language is essentially its notation. It consists of
a set of symbols along with a set of rules which determine how these symbols may be
composed. A syntactic expression is called a sentence of a formal language. The
semantics of a formal specification language is a universe of objects which attach an
interpretation or meaning to a syntax. The satisfies relation comprises of a set of
precise rules which define the relation between a specification and the semantic objects.

There are two broad, but not mutually exclusive, classes of formal methods:
Property-Oriented and Model-Oriented [Cohen 86].

-Orien ification

In the Model-Oriented or State-Based approach, a system is explicitly specified by a
model giving its mathematical structure, most often in terms of sets, functions and
relations. Initially a highly abstract formal model is proposed for the system in hand.
The original model then undergoes a series of refinements, most often by the use of
mathematical transformations, which result in a more detailed and less abstract model.
With each refinement step the data structures involved are reified (the process of
adding more implementation detail) and built upon. For the purposes of factorizing
correctness proofs it is important that refinements follow a logical structure.

24

o
It
P
1
'

222 P _Oricated Specification I

In a property-oriented method the user specifies a system by stating a set of
properties, or rules, which that system must satisfy. This is a more indirect method
than the model-based approach because there is no explicit representation of the system.
The rules which are used form a property-oriented specification fall into two categories,
axiomatic and algebraic.

Axiomatic specification stems from work on the proof of correctness for abstract data
types [Hoare 69] where predicate logic assertions were made on the preconditions and
post-conditions of an operation (Section 2.4.3). With an axiomatic specification, the
system behaviour is expressed indirectly as a set of axioms written as predicates on a
set of abstract data types, which the system must satisfy.

An algebraic specification defines a system property in terms of functions of an
abstract algebra. Thus it still expresses the properties as axioms, but in the form of
algebraic equations rather than predicate assertions.

2.2 ification of ification

The taxonomy of system specifications divides it into two broad categories. They are
Safety Properties and Liveness Properties [Lamport 77]. They are described as
follows:

Safety Properties: Dictate those actions which a system must not perform.
Liveness Properties: Dictate those actions which a system must perform.
Thus, informally, safety properties stipulate that bad things will not happen, while

liveness properties stipulate that good things will happen. A more formal treatment is
presented by Alpern & Schneider [Alpern 85].

2.3 Semantics of Formal Specification Languages.

The semantics of a formal specification language is the interpretation or meaning that
is attached to a syntactic sentence of that language [Nielson 92]. There are three
established approaches to semantics: Operational Semantics, Denotational Semantics
and Axiomatic Semantics.

25

Chapter Two: Formal Specification and Verification

231 Q ionsl.§ :

An operational approach to defining the semantics of a sentence of a formal
specification language is concerned with how that sentence is executed, rather than
merely what the effect of executing it is. This is achieved by defining an abstract
machine which interprets a sentence by passing through a sequence of discrete states of
that abstract machine. Thus the sentence is represented by an explicit sequence of
computational operations, which represents how the states are modified during
execution.

2.3.2 Denotational Semantics,

The denotational approach is concerned with the effect of executing a sentence of a
formal specification language. With this approach a semantic valuation function [
Woodcock 88] is defined for each syntactic category of the language. The meaning of
a sentence is represented by mappings to mathematical objects, such as sets. Thus
there is no explicit concept of a computation sequence; the semantics are taken as an
abstract mathematical form.

2 Axiomatic Sem.

The axiomatic approach views a specification language’s semantics as a mathematical
theory for that language. That is a system in which properties about a sentence of the
specification language can be expressed and proved or disproved. These properties are
formal expressions called formulae. A formula may be either true or false; a true
formula is called a theorem. The purpose of an axiomatic semantics is to determine
which formulae are theorems. The semantics is made up of three kinds of component

Syntactic Rules: Determine the well-formed formulae which express the
properties about the statements of the specification language.

Axioms: Basic theorems, which are accepted without proof.
Inference Rules: Mechanisms for deducing new theorems from established ones.

An axiomatic semantics provides a firm basis upon which to factorize program
proofs.

26

Verification is concerned with proving that a specification is correct relative to some
particular system, hence the term correctness [Meyer 90]. The system could be an
implementation, such as a program or piece of hardware, or it could be another formal
specification. As a convention for this chapter such a system will be represented as a
sentence of an arbitrary formal specification language. _

Correctness itself is characterized by two approaches, namely partial and total
correctness. These are defined as follows

Partial Correctness: When it can be shown that if a system terminates then it
satisfies a particular requirement.

Total Correctness: When it can be shown that a system will terminate and it
satisfies a particular requirement.

If a process is proved partially correct and also proved to terminate, then it has been
shown to be totally correct. Termination is essentially a liveness property in that it
states that a process will eventually terminate. It is this liveness which makes the above
taxonomy of correctness relevant. The proof of liveness properties, and hence total
correctness, is usually different in nature than the proof of safety properties [Meyer 90

)

2,41 Motivations,
Formal verification lies at the heart of the need for a formal method. Just as it is

important to be able to define precisely the requirements of a system in terms of a
formal specification, so it is necessary to be able to deduce with confidence that that
system will be able to fulfil those requirements. Dijkstra [Dijkstra 81] stresses the
importance of a mathematical approach to verification by highlighting three important
requirements of verification. They are

Generality of Scope: A good verification technique should have the ability to
prove a wide range of properties about a system.

Precision of Definition: The technique should be able to represent system
properties precisely without vagueness or ambiguity.

27

Novmmmmnae, e D

cl Two: Formal Specificati | Verificati

Confidence in Proof: The technique must provide a rigour which inspires
confidence in the results achieved.

These three desirable properties are embodied by a mathematical approach to
verification.

2.4.2 Compositionali

Compositionality asserts that a process should be verifiable in terms of the axioms of
its syntactic sub-processes [de Roever 85]. Consider a process PROC with syntactic
sub-processes P,,..,P, about which a specification S must be verified. A
compositional, or modular, proof system advocates that proving the correctness of
PROC relative to S should be decomposed to verifying the correctness of each P,
relative to a specification S; (for i = 1 ton). Here S; is a specification of P; which is
independent of PROC. This decomposition allows the prover to deal with processes as
smaller, more manageable units. Once the specifications have been established for the
syntactic sub-processes, there then exist a set of inference rules which allow the
processes and specifications to be reconstituted in order to establish the correctness
proof for the full system.

Apart from splitting the proof process into smaller modules, compositionality has an
added attraction given by the Principle of Compositionality [de Roever 85].

Principle Of Compositionality: A Correctness Proof for a process should
be similarly structured as that process, showing that a proof of a process is
composed of the proofs of the constituent parts of that process.

If the inference rules are based on the syntactic operators, and the initial axioms are
provided by specifications which hold for the syntactic sub-processes, then the
principle of compositionality implies syntax directed proofs [Lamport 84]. That is the
proof has a structure which can be determined by the syntactic definition of the process.

2.4.3 Foundations,

The early work in the field of formal verification was done by Floyd [Floyd 67] and
Hoare [Hoare 69]. Floyd, in a paper to the American Mathematical Society, presented
his method of inductive assertion. This attaches assertions about the state of a system
represented by a flow chart at points on the chart. The assertion would be true
whenever execution reached that point. For a looped flow chart it was proved that if an
assertion is initially true then it will be true when execution next reaches it, thus

28

o Teo: F i ation o e

permitting an inductive proof. It was also suggested that a programming language
could be defined in terms of proof rules.

This suggestion was taken up by Hoare who defined a small programming language
in terms of a logical system of axioms for each syntactic construct. The method
formally characterizes a specification in the form

{Q} P (R} Eq. 2.2

Here Q and R are predicates, called the precondition and post-condition respectively,
and P is a program. Equation 2.2 has the notation that if execution of P is begun in a
state satisfying Q then, upon termination, P will satisfy R.

Hoare’s method placed great emphasis on axiomatic techniques and the soundness of
the proof system (Section 2.5.2.2). By aiming to provide an axiomatic inference rule
for each of the various program constructs it laid the foundation for deductive program
proofs as well as compositional proof systems. The compositionality of the axiomatic
approach is seen as an advantage in that it allows a modular approach to design and it
permits the structuring of a proof around the syntactic definition of the process.

44 P 1 Verification

It was recognized by Owicki and Gries [Owicki 76] that although both the inductive
assertion method and the axiomatic approach addressed partial correctness for
sequential programming structures, they do not account for stronger concepts such as
parallelism and total correctness.

Owicki’s work on the correctness of parallel program structures has since become the
seminal basis for concurrent verification techniques. This extends the axiomatic
approach for sequential programs in order to represent parallelism as described by two
languages, GPL and RPL. GPL starts and terminates several sequential programs
together within a cobegin .. coend statement. The control and expression of
parallelism is achieved via the primitive await construct.

Partial correctness in GPL is established by considering each sequential process in
isolation and establishing pre-conditions and post-conditions in the standard axiomatic
fashion. Then the proofs of the programs must be shown to be interference-free, i.e.
that no await statement from one program interferes with the proof of another. If the
processes are not interference-free then examples illustrate [Barringer 85a] that they
can be transformed by auxiliary variables to achieve interference-free proofs. Once this
property has been established the pre-conditions and post-conditions of the parallel
program are the logical conjunction of the pre-conditions and post-conditions of the

29

Chapter Two: Formal Specificati { Verification

constituent sequential programs. The second language, RPL, employs a shared
read/write variable method.

A method for proving total correctness in parallel processes has been suggested by
Flon and Suzuki [Flon 81]. This proves the total correctness of a parallel program by
recognizing the equivalence between a parallel program communicating through shared
memory and a non-deterministic sequential form. Total correctness specifications for
the parallel program are then translated into total correctness properties for non-
deterministic sequential programs and solved with a given proof system due to Gries [
Gries 81 |

Current approaches to verification of parallel systems tend to be specific to particular
formal methods. Examples are given in Section 2.7. '

Meth ifi

Section 2.4 discussed in general terms the background for verification and its
application to parallel systems. It is now appropriate to consider in more detail what
different approaches there are to verification.

Proofs of Partial

As well as the syntax (Syn) and semantics (Sem) of a formal specification language
Definition 2.1 illustrates the existence of satisfies relations (Sat) between the two.
These relations, or consequence closures [Cohen 86], form the basis for the rules of
logical deduction which permit reasoning over the semantics of a system and thus allow
verification.

Examples have shown [Nielson 92] how such consequence closures can be used to
achieve proofs of partial correctness in both operational and denotational semantic
models.

The operational approach to verification is by symbolic execution [Darringer 78].
Here the actual object values representing initial states and input are expressed as
metavariables called symbolic object values. Symbolic execution generates a trace of
the system. The semantics are then derived as a function, ® say, of the symbolic object
values explicitly from the symbolic execution traces. To show the correctness of a
specification it is first translated into a function, ¥ say, of symbolic values. The proof
of correctness is then a matter of algebraically establishing equivalences between ¥ and

30

Cl Two: Formal Specificati { Verification

®. Because the semantics are independent of any particular initial and final states
symbolic execution obviates the need for testing with specific subsets of data.

One important limitation of the operational approach is its reliance on generating a
trace of the execution. For conditional constructs all alternative traces must be
generated which increases the computation involved. Furthermore, recursive
constructs may lead to infinite traces. This latter case, however, may be overcome with
inductive arguments [Berg 82] .

2.5.1.2 Denotati rifi

With the denotational approach to verification the semantics of each syntactic operator
of the formal language are defined by semantic valuation functions. The semantics of a
formal sentence are then generated by evaluating all the relevant semantic valuation
functions. This is achieved algebraically by solving a set of fixed point equations [
Stoy 77] to result in a function, say £. A specification is expressed as a function of
symbolic values, say ¢. The correctness of that specification is established by
algebraically establishing equivalences between & and @.

Although it has obvious similarities with the operational approach in establishing
algebraic equivalences, the denotational technique differs in the way in which it
constructs the semantic function. The hallmark of the denotational semantics is the
compositional nature of its semantic valuation functions.

iomati ification

The direct verification methods described above are often too detailed to be of
practical use for complex systems. What is required is a verification method which
allows abstraction from such semantic detail as well as supplying a convenient
mechanism to support proofs of correctness. Axiomatic semantics provides a basis for
this.

The idea of the axiomatic approach is to associate semantics of formal languages with
logical assertions. These are analogous to the axioms and inference rules of a logical
calculus and such they provide the ideal medium for factorizing verification proofs.

Initial axiomatic semantics [Hoare 69] were able to prove partial correctness
properties. If restricted to non-looping sequential syntactic sentences it is reasonable to
assume total correctness because such structures always terminate. However, with the
introduction of recursive constructs this assumption is not generally true and it was
found that the axiomatic semantics had to be extended to permit proofs of total
correctness [Nielson 92].

31

[

—— e

cl Two: Formal Specification and Verificat

2.5.2.1 Inference Rules.
An inference rule is the means by which a set of initial axioms, (premises) are

composed to form a new theorem (conclusion). Typically, this is written:
!

Rl
oo B8
> R, Eq. 2.3

Equation 2.3 is interpreted as “ If R, is true and R, is true then R; is true ”. A
syntactic inference rule is one which is associated with a particular syntactic construct
of a formal language, and which defines the conclusions given the initial premises.

The purpose of inference rules is to provide the mechanism for proofs. A proof is
defined as a sequence of valid statements, each accompanied by a justification for its
validity, which lead from initial premises to a final conclusion [Backhouse 86 J. The
justification for each step of a proof may come from an inference rule or from an
axiom.

P ndn leten: f an Inferen

An axiomatic semantics provides the user with a means of proving properties about a
process by applying inference rules to a set of established axioms. However, to have
faith in any such semantics and to assess how useful they may be, there are two criteria
on the semantics, namely soundness and completeness [Borowski 89]

Soundness: A system is sound if the application of the inference rules does not
allow a contradiction to be proved from the axioms.

Complete: A system is complete if every property can be proved or disproved by
suitable application of the inference rules to the axioms.

These properties are not trivial to prove and they are important in terms of the
applicability of the axiomatic semantics. Soundness is the more important of the two.
It is intrinsic to any deductive system. If an axiomatic semantics is not sound then the
theorems which it is used to prove have no value. Completeness is a secondary
consideration. An incomplete axiomatic semantics is restricted by those theorems
which it is unable to prove. However, the validity of those which it may proved is not
dependent on completeness. For example, Godel’s famous incompleteness theorem [
Hamilton 78] asserts that mathematical arithmetic as a whole is incomplete, yet there
are still valid arithmetic theorems.

32

2 mati

Up to now the discussion of axioms and inference rules has been generic. It is
important to note, however, that most formal methods are based on one of three
established fields of mathematical logic. They are Propositional Logic, Predicate Logic
and Modal Logic, and in themselves they form a hierarchy. Predicate logic is an
extension of Propositional Logic, and Modal Logic is an extension of Predicate Logic.

6.1 Propositional Logi

A proposition is a statement of a formal language which is either true or false and
which remains so regardless of any environmental considerations. Like any formal
language, propositional logic has a precisely defined syntax, given by Definition 2.2,
and a semantic interpretation. A statement of propositional logic is interpreted by its
truth table which maps the statement to a member of the set {TRUE,FALSE}.

Definition 2.2: Propositional calculus has the following syntactic definition in
BNF
PROPOSITION := PROPOSITION
| “=”, PROPOSITION
1 “(’, PROPOSITION, “A”, PROPOSITION, “)”
| “C’, PROPOSITION, “v”, PROPOSITION, “)”
1 “C’, PROPOSITION, “=”, PROPOSITION, “)”
1 “C”, PROPOSITION, “<”, PROPOSITION, “)”;
Furthermore the connectives are labelled as follows
v Disjunction
N Conjunction
=> Conditional

= Biconditional

= Negation |

33

In broad terms a proposition can be thought of as a set of basic statements, or simple
propositions, compounded together under a set of operators called connectives. This
sét of connectives 18 { A,V ,= ,4 , = }. For example consider two simple
propositions Q and R. The statement ‘ Q AR’ is interpreted as TRUE if both Q and R
are TRUE, but FALSE otherwise. This is illustrated by the truth table, given in Fig 2.1
for all the connectives.

0 R QAR QVR Q=>R| Q&R —Q

TRUE| TRUE| TRUE| TRUE| TRUE| TRUE| FALSE
TRUE| FALSE| FALSE| TRUE| FALSE| FALSE| FALSE
FALSE| TRUE| FALSE| TRUE| TRUE| FALSE| TRUE
FALSE| FALSE| FALSE| FALSE| TRUE| TRUE| TRUE

Fig. 2.1 Truth Table For Propositional Logic.

2.6.1.1 Expressing Propositions in Normal Form.

Two propositions are equivalent if they both have the same truth table. For example
the propositions ‘ Q = R’ and ‘-~ Q v R ’ have the same truth table and are thus
equivalent. It can be seen from this example that every occurrence of the conditional
connective (=>) may be replaced with the negation (—) and disjunction (V) connectives.
A similar result for the biconditional connective (<) leads to Theorem 2.1 [Hamilton,
78 1.

Theorem 2.1: Every proposition is equivalent to a proposition in which the only
connectives occurring are from the subset { A, v, — }. This subset is known as an

adequate set of connectives. []
Proof
See [Hamilton 78] O

This theorem leads to two important corollaries on the standardization of
propositional statements.

Corollary 2.1: Every statement which is not a contradiction is equivalent to a
restricted statement of the form

34

(V (A Qi5)) Eq.24

where m, n are non-negative integers and each Qi Or —Q; 5 is an elementary
proposition (See Section 6.3 for an explanation of the notation). This is termed the
disjunctive normal form.]

Corollary 2.2: Every statement which is not a tautology is equivalent to a restricted
statement of the form

(A (V oy Eq. 2.5

i=1 j=1

where m,n are non-negative integers and each Q5 O —Q; 5 is an elementary

proposition. This is termed the conjunctive normal form. |

2.6.2 Predicate Logic.

Whereas the propositional logic was concerned with the absolute truth of a statement,
predicate logic is concerned with the relative truth of a statement. A predicate is an
expression which ascribes a property to some thing, called the subject. More formally
it is a mapping from a set of objects (subject) to the space {TRUE, FALSE}.
Predicates are combined with connectives in the same manner as propositions, but there
are two additional operators associated with predicates, the universal quantifier and the

existential quantifier.

2.6.2.1 Universal Quantifier.

For a predicate R and set G of the same type as the subject of R, the universal

quantifier typically has the notation
VYVge G*R(g) Eq.2.6

This is interpreted as ‘for all members of the set G predicate R holds’.

2.6.2.2 Existential Quantifier.

For a predicate R and set G of the same type as the subject of R, the existential
quantifier typically has the notation

35

Chapter Two: Formal Specification and Verification

Jdge G*R(Qg) Eq.2.7
This is interpreted as ‘ There exists at least one member of G for which R holds °.

2 M Logicsand T L

Modal Logic adds another dimension to description by predicates, and as such it is an
extension of predicate logic [Manna 88]. Predicate logic is appropriate for describing
static situations in the sense that it makes statements about basic objects. Modal Logic
extends this notion to that of dynamic change from one situation, or world, to another.
It portrays a set of static situations (a universe of worlds) and relates the rules of change
between them.

Modal Logics attempt to define different notions of truth, such as truth by necessity
or probabilistic truth. There exist a number of modal logics, one of the most common
and useful of the modal logics in terms of real-time systems is temporal logic [Pnueli
86]. Temporal logic is an expression of how properties alter through the passage of
time. As well as the standard notation of predicate calculus it possesses temporal
operators. There are variants of temporal logic with different temporal operators. Most
commonly the operators O,<, and OJ appear. When interpreted with respect to a
sequence of states, with R as a predicate on the state of the system interpretations are

OR - [next] states that R will hold in the next state.
¢R - [eventually] states that R will hold in some future state.
O R - [henceforth] states that R will hold for all future states.

For example, for predicates Q, R the temporal logic sentence R = < Q says that if R
holds in the current state, then Q will eventually hold.

Ex f Formal Meth

This section looks at a selection of current formal methods for specification and
verification. The choice of methods has been made on two criteria. First, the
popularity of the particular method and secondly the approach to verification. The
exception to these is PAISLey, which lacks effective verification but provides an
example of an executable specification language.

36

Chapter Two: Formal Specification and Verification

271 VDM,
The Vienna Development Method, or VDM, evolved from research carried out at IBM

Vienna Laboratories in the 1970’s. The first book on the subject appeared in 1978 [
Bjgrner 78] and since then VDM has achieved a level of maturity and acceptance [
Jones 86]. It has been taught widely and used in a number of applications. Examples
include studies in the field of telecommunications and the specification of electronic
mail systems [VDM 87].

VDM possesses more scope than a formal specification language in that it also
provides rules and procedures which outline the progression through every stage of
system development. The system development involves a series of refinements to the
initial model, and from this it can be seen that VDM adopts a model-oriented approach
to specification. Each refinement step consists of adding more implementation detail
until a desired level is achieved. Within the framework of its development technique
VDM has a precisely defined syntax and semantics. The syntactic notation for VDM
was originally the metalanguage META-IV, this has since been extended to a British
standard notation VDM-SL (Specification Language) [ISO 91]. The underlying
semantics of VDM is denotational, mapping the syntactic constructs to set-theoretic data
types. System specifications are expressed as predicates in a first order predicate
calculus which forms the basis of a logical inference system.

Each VDM model consists of a set of modules which each possess an internal state
represented by variables. VDM operations may be defined which are able to use and
amend the values of these variables. The use of modules illustrates object orientated
techniques for VDM. Object-Oriented Design (OOD), in which a system is
characterized as a set of objects that pass messages to one another, can then be
exploited [VDM 87].

&l2 Z Refinemen 1

Z is a formal specification language developed at the Programming Research Group at
Oxford. It is a popular, well used formal method with published case studies [Hayes
87 1. Z takes a model-oriented approach to specification with an underlying
denotational semantics based on set theory. It uses first order predicate logic and
axiomatic description to capture and prove the correctness of specifications. Thus in
many ways Z is similar to VDM. It differs in two main respects. Primarily, VDM is a
development method, concerned with aspects of design such as proof obligations etc.
Z is simply a specification and verification method. Secondarily, Z possesses a major
notational difference in the schema [Lightfoot 91]. This is essentially a means of
expressing part of a specification with an emphasis on its readability and subsequent
inclusion in natural language documents. An example of a schema is:

37

SCH

Fig 2.2 A Z Schema.

~ This schema is called SCH and it declares two variables a and b, with the property
that a must always be less than b. This has an equivalent linear form

SCHA4[a,b:Nla < b]

where & indicates textual equivalence. In addition to providing clarity such schemas
can be regarded as units and manipulated by a set of Z operators which are analogous to
those of predicate calculus.

It has been noted that although Z has been widely used to describe several large
systems its use has been significantly less in the later stages of the development cycle,
particularly implementation. A response to this is the refinement calculus [King 90].
This is based on Dijkstra’s language of guarded commands [Dijkstra 76] and is similar
in notation to Z. The refinement calculus is intended to be used in conjunction with Z.
Z is used in the specification and design stages, where its schema calculus can be used
to structure and simplify work. Then the laws of refinement calculus are employed to
develop the abstract Z model into an implementation. The Refinement Calculus is
currently at an early stage of development.

2.7.3 Concurrent Theories.

The two above techniques are directed solely towards the analysis and design of
sequential systems. There exist techniques to extend VDM to cover concurrent
systems. VDM has been incorporated with time and CCS to create the MOSCA
specification Language [Toetenel 92]. However, these approaches are still in an early
stage of development. As extensions of sequential methods they were not originally
intended to model concurrency. The next sections provide examples of techniques
designed with concurrency in mind.

38

ct Two: Formal Seecification and Verification

2.7.4 Petri Nets,

Petri nets were developed by Petri in the early 1960’s at GMD Bonn, Germany [Petri
66]. They are a popular technique and are the subject of extensive research and
introductory texts [Murata 89, Peterson 81]. !

Petri nets are influenced by automata theory and were the first general theory of
concurrency. They are a powerful technique which models concurrency by
representing the causal relationships between events and conditions. A Petri net takes
the form of directed bi-partite graphs [Wilson 84] with two types of nodes: places
which represent the state of the system, and transitions which represent the system’s
actions. The distribution of tokens, indicated by black dots, indicates the current state.
Tokens move around the net, reflecting system dynamics, by the firing of transitions.
The firing rules are

i) A transition is enabled when each of its input places has at least one
token.

ii) A transition may only fire if it is enabled.

iii) Upon firing, one token is removed from each input place and a token is
placed at each output place.

The destination of arcs from a transition to a place are output places, the origins of
arcs from places to a transitions are input places.

The mathematical representation of a Petri net is achieved via a graph-theoretic
incidence matrix and state equation. The incidence matrix A captures the causal
properties of a net by relating the input and output places of each numbered transition.
The firing of transition 1 is then represented by the elementary vectoruy =[00..1 ..
0], where the 1 is the i*" element. It is then possible to generate a sequence of
markings My, M,, .. with the state equation

Mk= Mk-1+ ATllk Eq 28

The reachability of a Petri net is the set of markings which it is possible to achieve
from an initial marking M, by firing a legitimate sequence of transitions. The state
equation enables the construction of a graph with markings at the nodes and transitions
at the edges. By starting at the initial marking it is then possible to trace the reachability
of the net by following the edges of this graph. This graph is called the reachability
tree. To establish invariant properties of a Petri net the reachability tree is used to

39

. Two: Fomnal Specificat | Verificat

compare those properties against the reachable states. However, it is important to note
that while this method of verification has rigour, it cannot be described as formal. This
is because Petri nets do not possess a suitable mathematical structure for generating
correctness proofs. It should also be noted that the method lacks the ability to establish
liveness properties.

— O
Arc Transition Place

Fig 2.3 Graphical Syntax of Petri nets.

There exist two main extensions to standard Petri net theory to represent real-time
properties. Time Petri Nets [Merlin 76] attach a minimum and maximum delay to each
transition. Timed Petri nets [Berthomieu 83] associate a discrete time period to each
transition such that after being enabled that transition must fire within this period.

2.7.5 PAISLey.
PAISLEY (Process-oriented, Applicative and Interpretable Specification Language)

was developed at the AT&T Bell Laboratories in New Jersey, USA, in the late 1970’s
and early 1980’s [Zave 82]. It is formed from merging the concepts of two models of
digital computation, asynchronous processes and functional programming [Zave 86].
PAISLey aims to be a simple and coherent language, with relevance to education as
well as real applications. It illustrates many central concepts such as concurrency, data
flow and real-time constraints.

PAISLey is an executable specification language. That is, it forms the basis of a
software development process which translates a specification into an implementation.
A PAISLey specification is written as a set of functional definitions, the behaviour of
which is represented by a notional dataflow paradigm. This serves to guarantee the
integrity of data by controlling its flow and additionally maximizes concurrency.

Inter-process communication and thus concurrency is effected by special functions
called exchange functions. The nature of these functions provides PAISLey with a
synchronous communications primitive, but unlike the CSP input/output operator (
Section 2.7.6) exchange functions permit two way flow of data.

40

o Two: Formal Specificati | Verification

An important stage in the software development cycle is verification. Limited
verification is attainable by representing the control flow of a PAISLey specification as
a Petri net. It is then possible to verify properties via a reachability tree in the usual
fashion. The underlying semantics of PAISLey is operational but they have not yet
been captured in the form of proof rules [Zave 91]. Thus there exists no axiomatic
inference system. Additionally, the nature of the exchange functions also serve to
prohibit the composition of two PAISLey processes into one equivalent process.

PAISLey is able to represent real-time systems by imposing property-oriented timing
constraints. These form part of the original PAISLey syntax and semantics and they
relate to the evaluation time of functions.

2.7.6 Communicating Sequential Processes.

Communicating Sequential Processes, or CSP, was developed by C.A.R. Hoare in
the late 1970’s at Queen’s University, Belfast and later at the Programming Research
Group at Oxford University. The seminal paper was published in 1978 [Hoare 78]
and was followed by a book [Hoare 85] in which the original theory has been much
refined and clarified.

CSP is a discrete event based process algebra which adopts a denotational approach
to semantics, after the fashion of the lambda-calculus [Stoy 77]. It is influenced by
Dijkstra’s language of guarded commands [Dijkstra 76]. The underlying theory is set
based with processes being represented in an observational manner in terms of traces,
or sequences of events which they perform. In his book, Hoare discusses two styles
of denotational semantics, the traces model and the failures model. The traces model is
the simpler of the two and describes a process in terms of the traces it performs. The
failures model extends this concept by describing a process in terms of its failures. A
failure is an ordered pair which relates a trace to the set of actions which the process
may be unable to engage in after having performed that trace. These two semantic
models form the basis of a larger hierarchy [Reed 90].

As well as providing for parallelism, interleaving and communication, the syntax of
CSP also distinguishes between two types of choice, non-deterministic and
deterministic. Specifications in CSP are represented as predicates over a particular
semantic domain. Correctness is established with an axiomatic proof system which
infers complex properties from basic initial axioms. This proof system is
compositional, and there exist well defined proof rules associated with each syntactic
operator which provide syntax directedness to the proofs.

The motivation and history of CSP are discussed in detail in the following chapter.
However, it is important to mention one influential extension to CSP, and that is Timed
CSP [Davies 89a]. TCSP extends the syntax of conventional CSP by only one

41

C] I I 'E _ls .ﬁ . I![.ﬁ ‘On

operator, a delay primitive. But it has associated with it a range of semantic domains
which give it a powerful capability for real-time description. TCSP also represents
specifications as predicates under an axiomatic proof technique.

2.7.7 Calculus of Communicating Systems

The calculus of Communicating Systems, or CCS, was developed in the late 1970’s
by R. Milner at the University of Edinburgh. The first book on the subject was
published in 1980 [Milner 80] and since then CCS and its extension, Synchronous
Calculus of Communicating Systems, or SCCS, have become recognized algebraic
techniques for the formal description of parallel processes.

The underlying semantics of CCS is operational, based on labelled transition
sequences. Later versions of the semantics are also compositional [Milner 89]. The
semantic theory of CCS is intentionally biased in favour of interaction or
communication rather than the state of a machine. CCS represents a system as a
collection of agents which communicate with each other. Agents perform actions
which are either external actions - which are observable to the external environment, or
hidden actions - which are not observable. Associated with each agent is a label, which
comprises all the external actions which that agent may perform. CCS also possesses
operators for the parallel composition of agents (conjunction), choice between agents
(summation) and hiding actions from the environment (restriction).

CCS and CSP have many aspects in common. Comparisons can be made with the
above constructs and the alphabets, processes, events and operators of CSP.
However, there do exist subtle but important distinctions between CSP and CCS [
Brookes 83]. They differ in their approach to verification.

CCS relies heavily on the concept of bisimulation relations. A bisimulation relation
establishes a class of semantic equivalence between agents. There are broadly two
categories. Weak bisimulation indicates that two agents have a class of equivalence in
their external behaviour, whereas Strong bisimulation indicates equivalence of external
and internal behaviour. Specifications are conventionally represented in an algebraic
form. The approach to verification in CCS is to establish algebraically a bisimulation
relationship between a process and a specification. This contrasts with the axiomatic
approach of CSP (above). (As an alternative to algebraic specification a simple
specification language called process logic, or PL, has been proposed. This can
represent specifications in a predicate logic form, but is only able to represent safety
properties [Milner 89]). Another difference between the process algebras is the
inability of CCS to explicitly distinguish between deterministic and non-deterministic

choice.

42

Chapter Two: Formal Specificati { Verification

CCS is considered to have a more elegant algebraic approach than CSP. This is
typified by the fact that CCS eschews the conventional method of inter-process
communication by data transmission. Instead it employs a combination of
synchronization with a non data passing primitive and summation to give the power to
express the communication of variables of any kind. This has the advantage that it
restricts CCS to a purer calculus, where conditional statements are expressed in
algebraic forms.

The extended form of CCS, SCCS, aims to clarify some of the arbitrary features of
CCS which are caused by its asynchrony [Milner 83]. That is the fact that concurrent
agents perform actions at unknown relative rates. SCCS insists on synchrony of
agents, by which actions proceed in lockstep at defined time intervals given by a
conceptual global clock. It has been shown that CCS is derivable from SCCS, and
thus SCCS forms a more comprehensive but more complex process algebra [
Scholefield 90]. The ‘clock ticks’ of SCCS provide a basis for temporal reasoning.

Another approach to incorporating real-time properties into CCS is suggested by
Tofts [Tofts 90] in his weak Timed CCS, or wTCCS. This extends CCS by
introducing primitives for asynchronous and synchronous delay and defines them as
operational semantics, separate from the untimed actions.

2 T ationale of Choosi P

This thesis requires a means of analysing the control logic of high speed machinery.
To achieve this three important considerations were identified. First a method was
needed that possessed the ability to express a wide range of system properties and the
means to reason about such properties with confidence. Secondly the method should
be able to cope with the fact that many contemporary control systems are distributed in
nature. The complexities inherent in distributed systems also imply that a method
which permitted the user to abstract away from unnecessary detail would be
advantageous. Thirdly, the critical nature of timing constraints in high speed control
points to an emphasis on a technique with well developed temporal properties.

Dijkstra [Dijkstra 81] has noted that precision, scope and confidence are enhanced
by a mathematical or formal approach to system description. This points to the use of a
formal method for carrying out the necessary analysis. Thus a formal method which
can deal with concurrency, allows abstraction from detail and has developed temporal
properties is sought.

CSP has a representation of concurrency and communication. This is coupled with a
formal approach to specification and verification. Since its development in the 1970’s

43

Chagtés Two: Fotmal Specificati | Verifica

CSP has been the subject of research and application [Jackson 89]. This has served to
refine the techniques, placing them on a firm theoretical basis and increasingly giving
CSP the status of a mature formal method.

The clear distinctions between syntax and semantics in CSP permit a hierarchy of
semantic domains for interpretation [Reed 90]. Within this hierarchy there exist
different semantic domains with the power to express such properties as
nondeterminism, divergence, deadlock and stability. The advantage of such a hierarchy
is that it permits a user to select an appropriate domain depending on the properties to
be proved. Additionally the extensional approach of this hierarchy, in which complex
models are direct extensions of simpler models, inherently permits contrasting
properties, such as safety and liveness, to be expressed in one semantic domain [Hoare
91].

Another important factor in choosing CSP is its axiomatic proof system. Inference
rules are associated with each syntactic operator and this permits both a compositional
approach to proof and the ability to use the structure of the syntax to factorize a proof.

The timed extension to CSP permits real-time properties to be specified and verified.
TCSP adopts most of the conventions of CSP. It has the same style of proof system, a
hierarchy of semantic domains which can be related to those of CSP, a similar syntax
and similar representation of specifications. There also exist well defined mappings
between the timed and untimed semantics which permit specification by refinement |
Schneider 90]. CSP also has a well developed theory of recursion with a fixed point
representation of recursive processes. This is based on establishing metric spaces over
each of the semantic domains [Reed 90].

Thus CSP and TCSP are established formal methods with axiomatic proof systems, a
hierarchy of domains which permit abstraction, an established real-time representation
and a mathematical treatment of recursion. These properties make CSP an attractive
formal method for the analysis of real-time control systems.

2.9 Sg!!;marg .

This chapter has discussed formal methods of specifying and verifying control
systems, and described some of the different approaches available. It has outlined the
mathematical concepts and notations often used in formal methods. The first two
specific examples cited, Z and VDM, serve to illustrate two sequential formal methods
which are well used and understood. These methods are similar but differ in their
intended applications. VDM is primarily a development method whereas Z is a
specification and verification tool.

44

Chapter Two: Formal Specification and Verification

The chapter then addressed different methods of modelling and studying parallel
systems. Petri nets proved to have a simple graphical structure, which provides an
approachable user interface and adds to the designer’s understanding of the system.
They also possess a well defined matrix based semantics which makes an oper:ational
approach to verification convenient to implement in the form of reachability trees.
However, pure Petri net theory is only effectively able to communicate the flow of
control information between concurrent processes, as opposed to data. PAISLey is not
so restricted, its dataflow paradigm gives it a good basis upon which to describe the
flow of both data and control communications. In terms of verification, both
techniques possess equal flexibility. In their unextended forms neither support an
axiomatic semantics.

Two other methods which are based on the concept of describing parallel systems in
terms of their interprocess communications were then considered, CCS and CSP. Both
methods are process algebras and support a highly mathematical approach to the
description of systems. To different extents they eschew a state based approach in
favour of a transitional approach. However, they differ in their approach to to
verification and semantic style. CCS adopts an operational semantics and favours an
algebraic approach to verification based on the concept of bisimulation. CSP has a
denotational semantics and has an axiomatic approach to verification. While CCS
possibly advocates a more mathematical approach than CSP (it has fewer primitive
operators) CSP has in its favour a wide range of semantic interpretations and a more
mature real-time theory.

In conclusion it was felt that CSP constitutes a useful and productive method for the
specification, analysis and verification of real time control logics. Chapter 3 provides a
more detailed and constructive review of CSP, its origins and present form.

45

CHAPTER THREE

COMMUNICATING SEQUENTIAL PROCESSES

Intr ion

Fundamental concepts which underlie CSP are modularity and compositionality.
Systems are perceived as processes which may readily be decomposed into parallel
subprocesses that are able to interact with one another as well as their common
environment. The properties of such subprocesses are easier to analyse than those of
the whole process. The simplicity of construction of a process from the parallel
composition of its subprocesses is placed on a par with the sequential composition of
statements in a conventional programming language [Hoare 85].

This chapter aims to illustrate the principles and notation which constitute the formal
language CSP. It opens by discussing the origins of CSP as a proposed programming
style for distributed systems. This introduces some of the fundamental concepts of
parallelism, such as communication and guarded commands. The contemporary
observations and criticisms made about this proposal are introduced and discussed.
These points are illustrated by examples of specific languages which, in varying
degrees, implement the concepts behind CSP.

The chapter then considers methods for the verification of processes in CSP. Two
main axiomatic approaches are studied and discussed. The first adopts an approach to
specification using precondition and post-condition predicates. Methods of this type
employ proof systems based on establishing non-interference between the proofs of the
constituent sequential processes. The second considers a system where specifications
are written as predicates on transitional trace models. This system obviates the need to
establish non-interference between the proofs of sequential processes.

46

cl Theee: cating S ial P

The text then moves on to consider the development of CSP as a mathematical theory
for the description of concurrency. A semantics for the theoretical description of CSP
processes is described. This trace semantics is based on the sequence of transitions and
communications which a process exhibits externally. It upholds a more rigorous
definition and understanding of a syntax for CSP. This syntax is outlined and shown
to extend the original concepts of CSP. Particular attention is paid to the recursion
operator. It is demonstrated how correctly structured recursion leads to an avoidance of
unchecked process behaviour, or divergence. This is supported by a topological metric
space representation for CSP which allows a distinction to be drawn between divergent
and non-divergent processes.

Finally an axiomatic proof system for CSP based on the trace semantics is outlined
and described in terms of its inference rules.

32 CSP as a Programming Language.

Hoare’s seminal paper on CSP [Hoare 78] advocated a new programming style,
designed to cater for the needs of distributed programming. The paper suggests that the
parallel composition of sequential processes which communicate with one another is a
fundamental basis for a programming technique. The approach is characterized by its
treatment of parallelism, communication and alternative commands.

2.1 Parallel Composition

The approach of CSP to parallelism is to define a number of sequential processes and
then combine them in parallel permitting them to communicate. In Hoare’s notation,
each sequential process is assigned a label or process name and a command list. This
takes the form

label :: commandlist Eq. 3.1

A construct is required to specify the concurrent execution of the constituent
sequential processes. This is achieved with the parallel command, denoted syntactically
by the Il operator. The parallel command follows Dijkstra’s parbegin construct [
Dijkstra 76]. Upon execution, the constituent processes in a parallel command all start
simultaneously. The command will only terminate after all its sequential processes
have terminated.

For example, consider the following process

47

i Three: C icating S il P

[west :: DISASSEMBLE Il X :: SQUASH |l east :: ASSEMBLE] Eq.32

This consists of three processes, named west, X and east respectively, all running
concurrently. The capitalized words represent the command lists which the respective
sequential processes execute.

2.2 Communication

Communication between concurrent sequential processes is specified by the input and
output commands. These effect communication by transferring a variable value
between processes. Both input and output commands have to explicitly name their
source and destination processes respectively. They have the following syntax

source.label ? variable - Input Command Eq. 3.3
destination.label ! variable - Output Command Eq. 34
An inter-process communication may occur when the following three criteria are met

i) An input command in one process specifies as its source the name of the
other process.

ii) An output command in the other process specifies as its destination the
name of the first process.

iii) The target variable of the input command matches the type of the output
command variable.

These three criteria ensure that communication is synchronous because one process
must wait until the other is ready before data is transferred. There is explicitly no
provision made for automatic buffering. |

Input and output commands fail if their sources or destinations are terminated. A
possible consequence of this is one process waiting forever for a synchronized
communication which may never occur. This would lead to deadlock.

2 v mm

A guarded command has the notation

G — CL Eq. 3.5

48

where G is a guard and CL a command list. A guarded command is executed if and
only if the execution of the guard does not fail. A guard may take the form of either a
Boolean expression or an input command, or a combination of the two. If the Boolean
expression is false the guard fails, if true it succeeds. In the case of an input command
the guard succeeds upon successful execution of the input communication.

Guarded commands are used to provide a mechanism for making decisions in
sequential processes. CSP provides a similar such mechanism with the alternative
construct, denoted by the term . For guarded commands G; = CL, , where i =1 to
n, this has the notation:

Gy~ CLy U i@y ~ichy 0.0 g, = o, Eq.3.6

This construct specifies the execution of exactly one of the constituent guarded
commands. The alternative command fails if all the guards fail. If more than one guard
succeeds simultaneously the choice between them is arbitrary. By allowing input
commands to act as guards in the alternative construct, one sequential process is able to
affect the flow of another sequential process in parallel.

4 rvation

In their appraisal of CSP, Kieburtz and Silberschatz [Kieburtz 79] raise two main
objections to the proposed notation. These refer to the synchronous communication
primitives and the absence of output guards in guarded commands.

It is recognized that, with asynchronous communications primitives, a source process
is not required to wait on a destination process after it sends a communication. This
implies that the parallel execution of an asynchronous system will be greater than that of
a synchronous system such as CSP. Asynchronous communications are restricted only
by their causality. Thus Kieburtz and Silberschatz infer that a synchronous
communications primitive will degrade a systems performance relative to its potential.
They put forward an alternative in the form of input/output ports with memory. This
essentially constitutes an asynchronous communications primitive with a buffer able to
hold a single message.

There are three responses to the use of an asynchronous communications primitive.
First, in his original paper, Hoare asserts that buffered communication is not primitive.
It can be represented in terms of conventional CSP. Secondly, the proposed buffers of
Kieburtz and Silberschatz have a finite capacity. As a system increases in size and
complexity the number of communications is liable to increase rapidly. This would
eventually lead to overflowing buffers and thus present separate problems. Finally, the

49

Chapter Three. C eatian s ial P <

primitive synchronizes the behaviour of concurrent processes about their
communications. This limits the non-deterministic behaviour a concurrent system may
exhibit because of different process execution speeds, thus facilitating design and
analysis. It also gives a process an indication of the current state of its partner
processes.

The second criticism is levelled at the lack of a syntactically defined output guard.
This involves allowing an output command to act as a guard in a guarded command.
For example, consider the statement

PROCESSA ! message = PROCESSBLIST Eq. 3.7

This constitutes a process which will wait until it has successfully sent a message to
PROCESSA, and then continue with the command list PROCESSBLIST.

Hoare and others [Bernstein 80, Silberschatz 81] agree that the addition of an output
guard would increase the symmetry of CSP. Most commentators also appreciate,
however, that the inclusion of output guards is not as straightforward as it initially
appears. The problem lies in an effective implementation rather than the theory [
Silberschatz 79]. Bernstein [Bernstein 80] proposes just such an implementation.
He postulates an algorithm for output guards based on prioritizing the guarded
command in the alternative construct. Silberschatz [Silberschatz 81] proposes a
broader solution. He disputes Hoare’s insistence that input/output commands must
name their source and destination explicitly. Instead he suggests that communication
and synchronization should be handled through ports. Each process is assigned a set
of ports which it is then said to own. Two processes communicate when one process
names a port owned by the other and sends a message by that port. These concepts lay
the groundwork for a more efficient implementation of the communication and
synchronization constructs. More relevantly they permit the inclusion of both input and
output commands in guards.

mentations of th P programming lan

The proposals for concurrent programming languages which CSP espouse provide a
basis for an effective notation. However, it has been noted [Hull 86] that an emphasis
on notation should be followed by efforts to achieve a workable implementation of the
language.

This section considers three such implementations. The first two, COSPOL and
CSP/80 are presented here because they are examples of implementations specifically

50

cl Theee. C catine S ial P

derived from the principles of CSP. Both were intended solely as academic projects
with a limited scope of application. The third example, occam, is a commercially
available language which is strongly influenced by the principles of CSP. It is well
established and has a wide range of applications

3.3.1 COSPOL.

COSPOL - “COmmunicating Sequential PrOcess Language and implementation” -
was developed by T.J. Roper and C.J. Barter from the University of Adelaide in 1979
- 1981 [Roper 81]. The language is strongly motivated by the proposals for CSP and
is written in standard Pascal. It has a parallel command and a message based
communications protocol. Nondeterminism is controlled using Dijkstra’s guarded
commands. As in CSP there is no provision for output guards.

One important respect in which COSPOL differs from CSP is that it does not employ
synchronous communications. Instead it uses an automatic buffering method that
allows a process which has sent a message to proceed without awaiting a response.

Another difference between CSP and COSPOL is the latter’s early use of ports.
Ports were suggested by Silberschatz [Silberschatz 81] as an alternative approach to
the explicit process naming convention of CSP communications. Each process declares
local port names and is designated as the owner of those ports. If two processes wish
to communicate then they must be connected by a common port which is owned by one
of the processes. The advantage of ports is the added identification which they supply
to communications. For example if two processes exchange multiple messages it may
be useful to know which messages come from which parts of the processes. This can
be achieved by directing those messages through appropriate ports.

COSPOL uses a combination of process naming and ports. Messages are accepted
for input and placed in a suitable ‘slot’ depending on their construction. These slots
correspond to ports. However, process naming is supported by the fact that a process
outputs information on the construction of a message to the input process label.

332 CcsSp/80,

CSP/80 was developed by M. Jazayeri and colleagues at the University of North
Carolina in the late 1970’s [Jazayeri 80]. They wished to develop a language which
would exhibit the properties of CSP.

Like CSP, csP/80 has a synchronous communications primitive and a
nondeterministic alternative construct for selection between processes. Unlike CSP,
however, CSP/80 effects communication and synchronization by using ports and
channels. A channel connects two ports, one in each process, in one direction only.
Each sequential process declares its own ports and types them. Channels are also

51

PAGE
NUMBERING
AS ORIGINAL

A new version of occam, sometimes called occam3, is expected to be released by
Inmos soon. The literature that exists [Barret 90, Edwards 91] indicates that
occam3 will have stronger data typing and floating point arithmetic to keep up with
hardware advances such as the IMS T9000 transputer. There is no indication that
occam3 will include recursive calls or output guards.

4 Proof ms F mmunicatin ntial Pr

In addition to suggesting a style for concurrent programming, Hoare’s original paper
acknowledged the need for formal proof techniques to assist in the design and
verification of correct parallel programs. The groundwork for an axiomatic approach to
the partial correctness of parallel programs had already been laid [Owicki 76]. The
next natural step lay in applying these techniques to Communicating Sequential
Processes.

4 iti - ition Proof

Two approaches to the verification of CSP processes were formulated at
approximately the same time. Because they were both influenced by the same work
their methods have much in common. The first is by Apt, Francez and de Roever [Apt
80]. Their system was able to prove partial correctness and deadlock freedom.
System properties are represented as preconditions and post-conditions on the system
state. A CSP process is then expressed as n sequential processes P, .., P, operating
in parallel with the notation

[pylip,l..lip,] Eq. 3.8

Proofs are then presented for the sequential processes in separation. In these separate
proofs each precondition and post-condition refers only to the variables of the process
in which the statement occurs. Axioms and proof rules relating to the sequential
constructs of CSP are given and allow the proof of properties for these sequential
components. However, these rules are only meaningful in the context of parallel
composition, they do not capture the complete meaning of the constructs. When
viewed in isolation it is not yet possible to ascertain whether or not these sequential
processes will cooperate.

Sequential proofs cooperate if, when placed together, they fulfil the requirements of
the Input and Output commands expected by the sequential proofs. Proofs cooperate
provided that

93

Chapter Three: C —— iaLP

i) The inter-process communications match one another in sequence.

ii) The variables of the preconditions and the post-conditions do not
overlap between processes.

Once cooperation has been established the inference rule for the parallel composition
may be employed. Here the preconditions and the post-conditions of the parallel
process are simply the logical conjunction of the preconditions and post-conditions of
the constituent sequential process. A formal justification for the proof method is
provided in a later paper which also includes soundness and completeness of the
axioms [Apt 83].

Levin and Gries paper [Levin 81] proposes a similar proof technique also based on
precondition/post-condition specifications. Again proofs are factorized for the
sequential processes and then combined in parallel. Just as for Apt et al there is an
onus on the proof system to show that parallel processes cooperate with their
communications, a property Levin and Gries term satisfaction. The paper makes use of
inference rules attached to each syntactic operator and improves the technique by
allowing the proof of total correctness in the sense that a process can be shown to
terminate in the absence of deadlock. Additionally, output guards are considered as a
permissible primitive, reflecting the trend.

In this proof system, however, variables used in the post-conditions and
preconditions are allowed to overlap between the concurrent sequential processes.
These variables are called shared auxiliary variables. This places an extra proof
obligation on the parallel composition of processes, that of proof of non-interference.
The proof of non-interference is necessary because of the possibility of the execution of
one process to affect the assertions, and thus the sequential proof, of another process.
The property of non-interference involves showing that each process is invariant over
any parallel execution.

Although the proof system proposed by Apt et al does not explicitly require non-
interference proofs, this is because it is essentially a restricted form of the Levin and
Gries techniques. The obligation to prove such properties between parallel processes
before performing correctness proofs increases the effort required by the verifier. This
is a major drawback of these state based proof systems. There have been attempts to
reduce the complexity of the proofs, such as Prasad [Prasad 84], but they were
restricted by the need to prove cooperation.

54

Chapter Three: C icating § ial P .

3.4.2 Proof Methods Based on S £ C o

The need for non-interference is a result of the structure of concurrent languages.
Specifically the parallel execution of commands can no longer be expressed as a
function from the initial state to the final state at it was in a sequentiaf process. During
the execution time of a command a parallel process may alter its state, and the difference
between initial and final states ceases to be the result of a single command.

Some methods circumvent this problem by orienteering their proof systems around
the sequences of messages exchanged by the processes. This method is suggested by
Misra and Chandy [Misra 81] and is indirectly achieved by Soundararajan [
Soundararajan 84] in a proof system with similarities to that of Levin and Gries. He
reasons about hidden variables which correspond to the sequences of messages which
pass between processes. Consequently, he proposes an axiomatic method which
simplifies the proofs by removing the obligations of cooperation and non-interference.
Murtagh [Murtagh 87] concedes this point but maintains that concentrating on the
sequence of communications alone limits the approaches to constructing proofs.

Hoare and others [Hoare 81, Hoare 85, Brookes 84] have adopted just such an
approach to a proof method for CSP. System specifications are expressed as assertions
on a trace based semantic model. A set of axiomatic inference rules associated with the
syntactic operators are derived, and there is no requirement for either cooperation or
non-interference to be established.

An Intr i ion of

In order to structure a proof system for CSP based on assertions made over the
communications passed within a process, it is necessary t0 possess an appropriate
semantic model for CSP processes.

An early approach to a semantics based on the transitional behaviour of a process is
adopted in [Hoare 81]. Here the state of a process is considered to be defined by the
current sequence of interprocess communications. In later works [Brookes 84, Hoare
85] the scope of the semantics is extended to all transitions or events which the process
exhibits externally.

It is noted from these works that CSP has undergone a change in tone from its
original description. By developing a formal trace based semantics and axiomatizing all
of the constructs, CSP is placed on a more rigid theoretical basis. This affords a more
precise and comprehensive understanding of the nature of existing constructs, and in
addition it has led to the introduction of new notation. For example, in [Hoare 85]
CSP has an interleaving operator, a recursive operator, two different choice operators,

55

ol Three: C icating S ol T

a hiding operator and allows output guards; all of which were not present in the original
definition. From its proposal as a programming style CSP has shifted emphasis from
implementation towards mathematical description.

This next section describes this extended CSP formally in terms of the traces which
processes perform. Each syntactic operator is described first informally and then in
terms of a rule which precisely defines what effect that operator has on the traces of its
operand processes. Section 3.6 then illustrates how the description of CSP processes
in terms of their traces can be formalized into a complete semantic model.

(This change in emphasis is reflected by a comparison with the programming
language occam which was described in Section 3.3.3. It is sometimes informally
stated that occam is an implementation of CSP. This is true to the extent that occam
embodies virtually all of the proposals for a programming language made in [Hoare 78
] and has a broadly similar notation. However, it is also noted that occam has as yet
no provision for recursion or output guards. The reason given for the absence of
recursion was the secure operation of the transputer under compiler memory
constraints. Section 3.2.4 made the point that output guards are also difficult to
implement. Yet the formal language described in this and subsequent sections
possesses both recursion and output guards. In addition occam does not, as yet,
allow multiple process synchronisation on communications. Thus it would not be true
to say that occam constituted an implementation of the formal language CSP.)

3.5.1 Processes, Events and Traces.
Following Hoare, the unit of CSP is the process. A process is an entity which is able

to perform actions or tasks, and which is able to interact with its environment and other
processes. A process may be made up of smaller constituent subprocesses, or it may
form part of a larger process.

In the description of a process it is convenient to isolate and label the actions in which
it may engage. Such actions are called events. An event is a discrete action or package
of actions which a process may perform. Events are the external representation of the
progress of the process, they denote the internal behaviour. They are considered to be
instantaneous.

A trace is an ordered sequence of events. The trace of a process is a sequence of
events which a process has performed in the order in which they occurred. The set of
traces of a process P, say, is the set of all traces in which P may engage. This takes the

notation

Definition 3.1: The set of all possible traces exhibited by a process P is

represented by the notation

56

Cl Three. C — ialp .

Traces(P) Eq. 39
]

The following conventions of notation apply in this text: A trace variable will be
expressed in lower case text, such as s or t. A process variable will be expressed in
uppercase text, such as P or X. An event will be expressed in lower case bold text,
such as up or down. A trace is explicitly expressed as a sequence of events by
separating those events by commas and placing the expression in chevron brackets,
such as

s =<up, down > Eq. 3.10

A set of events, as distinct from an ordered sequence, is expressed within curved
brackets, such as

{ up, down, left, right } Eq.3.11

(Some of these notations may also be used to represent other quantities, such as sets
or real variables. Wherever this is the case the distinctions will be made clear).

3.5.2_Alphabets and Empty Traces.

The alphabet of a process is the set of those events which that process has the
potential to perform. The alphabet is a pre-defined property of a process and may not
be changed dynamically.

The special set Z is defined as the set of all possible events. That is the union of the
alphabets of every process. For a set of events A, say, the star of A represents the set
of all traces which contain only events from A. This is denoted

a* Eq.3.12
Thus the set £* represents the set of all traces which some process can perform.
The empty trace is a trace with no events in it, representing the action of a process

which has done nothing externally. It is expressed as

<> Eq.3.13

57

. Thres: C catina's ial P

Since there is a point in the execution of every process at which it has not done

anything, it is logical to conclude that the empty trace belongs to the traces of every
process.
/

3.5.3 Trace Operations.
Certain operations are defined over traces. The operations defined here are relevant to
later work.

3.53.1 Catenation,
Catenation is the joining of two or more traces to form a single trace. This is a simple

yet important concept both in CSP and in the work which follows. It is formally
defined

Definition 3.2: Let s, t be traces. Then the catenation of s and t is represented

st Eq.3.14
=

Catenation does not affect the ordering of the events in the operand traces. In
Definition 3.2 trace t simply follows on from trace s. For example

La.p. 68> Cw, x> = <a,b, e, d. x> Eq. 3.15

For traces s, t, u catenation obeys the following laws

i) s'>=<"s =8 Eq. 3.16
ii) s't=<> = S=E AL=S Eq.3.17
1ii) s*(t™u) =(s"t)u Eq. 3.18
iv) §ot =ut = s=u Eq. 3.19
V) S t=810 = =y Eq.3.20

58

AR wo UMIVERSLETY

&

Sometimes it is useful to be able to filter out certain events from a trace and confine it
to a particular set of events. This can be achieved by the restriction operator.

Definition 3.3: Let s be a trace and A be a set of events. The restriction of s to A
is denoted

sfA Eq. 3.21
|

As an example, consider the trace < a, b, 4, ¢, b, d > restricted to the set { a, b }
<a,b,d,c,b,d>{a,b}=<a,b,b>

Restriction is distributive over catenation, and restriction to two sets results in
restriction to the union of those sets. For traces s, t and sets of events A, B

i) (s t)fa (sfa)y(tla) Eq. 3.22

ii) (sfa)ls s[(AUB) Eq. 3.22

3.5.3.3 First Event of a Trace.
The first event of a trace s is denoted by the expression
Firs(s) Eq. 3.24

As an example consider the trace < right, left >. The first event in this is

given by
Firs{< right, left >) = right Eq. 3.25

If s is the empty trace then the convention adopted in this text will be to represent the

first event of s as a null symbol. That is

First(<>) =) Eq. 3.26

59

- —" —— 1 p .

3.5.3.4 Last Event of a Trace.

The last event of a trace s is denoted by the expression
Last(s) Eq. 3.27

As an example consider the trace < right, left >. The last event in this is given
by

LasH< right, left >) = left Eq. 3.28

If s is the empty trace then the convention adopted in this text will be to represent the
last event of s as a null symbol. That is

Las{(<>) a ® Eq. 3.29

3.5.3.5 Event Inclusion.

Event inclusion indicates that a particular event is contained within a trace. For a trace
s and an arbitrary event a the statement

ain s Eq. 3.30
is TRUE if a is one of the events in the trace s and FALSE otherwise. For example

road in < road, tree, car > = TRUE Eq. 3.31

3.6 Syntactic Operators.

The syntactic operators are used to define processes in a compact and precise manner.
They follow a set of syntactic rules which are summarized at the end of the chapter.
Before describing the syntax it is useful to outline the fundamental CSP processes
STOP.

3.6.1 STOP.
STOP is the deadlocking process. Deadlock occurs when a process is unable to make

any further external progress and thus is unable to perform any more events. STOP is
the process which does nothing. This is reflected by its set of traces.

60

T

Chapter Thros: C — ial P ’

In the process P ; X a trace t of X will only occur after a trace s which effects the
successful completion of P. That is s must end with the termination event, so there is
some trace s ' such that s* = s"<v>. Thus, since t follows s a trace of P ; X is given
by s'"t. (Note that the termination event has been removed from s ' *t because the
successful completion of P results in the commencement of X).

This reasoning gives rise to the following rule which relates the effect of the
sequential operator on the traces of its operand processes.

1) Traces(P;X)={s|se Traces(P)A—<v>ins }
U {s'tls<v> € Traces(P) At € Traces(X)) Eq. 3.38

The termination event leads on to the definition of another fundamental CSP Process.
SKIP is the process which starts, does nothing and then terminates successfully. The
traces of SKIP are

Traces(SKIP)={ <>, <v> } Eq. 3.39

4 ized Parall r

Consider two processes, P and X say, which are combined in parallel so they may
interact. Interactions between them may be regarded as events which require the
simultaneous participation of both processes. Such events are called synchronized
events. Like a synchronous communication an event a, synchronized between P and
X, will not occur until both processes are ready to engage in it.

Synchronous events are those which are of concern to all the processes which engage
in them. They are those events which are common to the alphabets of those processes.
Let A and B be the alphabets of processes P and X respectively. Then the alphabetized
parallel combination of P and X is denoted

P,ll; X Eq. 3.40

Here both P and X proceed, synchronizing on the events common to both their
alphabets, i.e. those in the set A N B.

Let s be a trace of (P,ll;xX). Every event in s which belongs to A has been
performed by P and thus (s['A) is a trace of P. Similarly (sI'B) is a trace of X.
Furthermore every event in s must be in either A or B. This reasoning implies the

following rules

62

Chapter Three: C icating § ial P :

i) Traces(Pyll,X)= {s | (s[A) € Traces(P) A (sIB) e Traces(X)
As € (AUB)¥) Eq. 3.41
ii) Alphabet of P, |l ;X = Alphabet of P U Alphabet of X Eq/3.42

Parallelism in CSP is sometimes denoted by the Il symbol without the alphabet
subscripts [Hoare 85, Brookes 84]. In this text this symbol will be taken to mean that
the processes on either side each have the same alphabet and so must synchronize on
every event each performs. That is it is a special case of the alphabetized parallel
operator

PIX = Pl,X, A = Alphabet of P U Alphabet of X Eq. 3.43

3.6.5 Deterministic choice.

Deterministic choice defines a mechanism by which a process can make a choice
between two courses of action dependent on the environment of the process. The
environment of a process is the circumstances and surroundings in which it is placed.
For example the environment of a networked computer may consist of the current user,
the status of the network server or the number of people using the network. The
environment may relate only to the other processes composed in parallel.

The deterministic choice between two processes P and X is denoted

pOX Eq. 3.44

Suppose the environment in which (P O X) is placed allows the first event of P to
occur but not the first event of X. Then process P will proceed instead of process X. If
the opposite is true, that the first event of X is possible but not that of P then process X
will proceed and not process P. By using synchronous events as guards for processes
the choice between them can be controlled. For example, for the set A={ a,b }

consider the process

(a—SKIP),l,(a—»P0Ob—-X) Eq. 3.45

Both a and b are synchronized events. The right hand process is required to choose
between (a — P) and (b — X). Its environment, in this case the left hand process,

will only permit the first event of (a — P) to proceed. Thus

63

Chapter Three: C (it s ial P

(a—SKIP),l,(a—»P0Ob—oX)=(a—>P) Eq. 3.46

If s is a trace of P, then s is also a possible trace of (P O X) since P may be
selected. Similarly if s is a trace of X, it is a trace of (P O X).’ This gives rise to the
rule

i) Traces(P O X) = Traces(P) L Traces(X) Eq. 3.47

3.6.6 Nondeterministic Choice

Sometimes a choice between processes is unaffected by the current environment.
There is no way of telling from the external actions of any of the processes what the
outcome will be and thus the choice becomes arbitrary. This is termed nondeterministic
choice. For two processes P and X nondeterministic choice is represented by

PMx Eq. 3.48

Either process P or X will proceed in (PI1X), the choice is not controlled.
The nondeterministic operator is infrequently used in the description of processes;

nondeterminism arises more naturally from the use of the deterministic choice operator.
This can be seen by considering a situation which occurs if, in the construct (P O X),

both the first events of processes P and X are allowed by the environment. In this case
the choice between P and X becomes nondeterministic. To illustrate this consider the

equality
(a—mP0a—-Xx)=(a>Plla—>Xx) Eq. 349
Nondeterministic choice has the following rule

i) Traces(P X) =Traces(P)L Traces(X) Eq. 3.50

3.6.7 Interleaving,

Sometimes it is convenient to join two processes together concurrently without them
directly interacting or synchronizing with one another. In this case, at any point an
action of the composite process is an action of only one of the subprocesses. This form
of composition is called interleaving and for processes P and X is denoted

Chapter Three: C icatine S ial P

Pl X Eq. 3.51

A trace of (P lll X) is an arbitrary interleaving of a trace from P with a trace from X.
To define the meaning of this more precisély consider a sequence (trace) r say. A
subsequence of r is a sequence derived from r by selecting certain of its terms (events
) and retaining their order [Borowski 89]. Define the complement of a subsequence as
being the sequence of terms in the original sequence which were not selected for
subseq(r), with their original order. This are denoted

subseq(r) - A Subsequence of r Eq.3.52
comsubseq(r) - The Complement of subseq(r) Eq.3.53

These lead to the derivation of the interleaved set of two traces, s and t say. This is
the set of all traces which may be interleaved from s and t and is defined

Interleave(s, t) ={uls =subseq(u) A t =comsubseq(u)} Eq.3.54
In turn these definitions allow the following rule for interleaving to be stated

i) Traces(PIl X)={ s | s € Interleave(t,u) A t € Traces(P)
A ue€ Traces(X) } Eq. 3.55

h Hidi
Change of symbol denotes an injective function which maps the process alphabet to
some other set. Its purpose is to relabel certain events. Because it is injective it has an
inverse function which restores events to their original labelling. For a process P and a
change of symbol function f the operator has the notation

f(P), (f~(P) is the inverse function) Eq. 3.56
Hiding is an operator which conceals events from anything other than the process
which performs them. If P is a process and A is a set of events to be concealed then the

hiding operator is denoted

P\A Eq. 3.57

65

al Three: C icating S ial P :

Equation 3.57 represents a process which behaves like P except that the occurrence of
any event in A is hidden.

3.6.9 Syntactic Rules in Backus-Naur Form.

The above operators follow a precise set of syntactic laws so that they may represent
a formal language in the true sense [Wing 90]. These laws are expressed below in
standard Backus-Naur form [Woodcock 88]. The function F represents a CSP
function and the function f represents a change of symbol function.

Definition 3.4: The syntax of CSP as used in this thesis is given by the following
BNF form. (This broadly follows the definition in [Brookes 84].)

event s= “a”, “b”, ..* list of names *... ;

"

“{”, event, event, ... “}";

eventset

process u= STOP | SKIP|
event, “—”, process |
processevenrseﬂ “"”’ EVEHISBIPrOCess I
process, “00”, process |
process, “”, process |
process, *;”, process |
process, “II", process |
process, “liI”, process |
process, “\”, eventset |
“f(”, process, “)" 1 “f~1(”, process, “)” |
“WP.F(P)";

The notation pP.F(P) is discussed in Section 3.8 |

3.7 The Traces Semantic Model.

The theoretical treatment given to the operators of the previous section forms the basis
for a semantic description of every syntactic process in CSP. This semantics is defined

as follows

66

Cl Three: C icatine S ol P :

Definition 3.5: A process is defined as a pair (A, T), where
A is a set of symbols - the Alphabet of the Process
T is a subset of A* - the Traces of the Process

Furthermore, T is subject to the rules

i) OerT Eq. 3.58
ii) Vs, t*(s'teT=s€T) (Prefix closure) Eq. 3.59 |
n

The first rule ensures that the empty trace is included. All traces engage in the empty
trace before they have done anything, and thus all processes contain it. Prefix closure
means that if a process can perform a trace then it can perform all prefixes of that trace.
That is if s™t is a trace of process P then P can also perform the trace s.

The semantic domain in which processes are so defined is called the Traces Model,
denoted by My. My is the set of all possible pairs (A, T). The traces model is the
simplest semantic representation in CSP, and is used as the basis for the others which
are introduced later in the text.

M7 is a denotational semantics. This is seen from the fact that in each of the
Subsections 3.6.1 to 3.6.7 dealing with syntactic operators a mapping from the
semantics of the operands to those of the composite process was supplied.

R ion and Fixed Point Treatm

There is one more CSP operator to be discussed. This is the recursion operator and it
is used extensively in later chapters. It has a complex theory underlying it and so
merits discussion.

A process is recursive if it can call itself as a subprocess. For example, consider the

simple process expressed by

P=a—P Eq. 3.60

67

Chapter Three: C tcating & (ol P

3.8.2 Metric S R ;

The concepts of recursion and fixed points are generic to other fields. To represent
them in a mathematical sense it is convenient to use the branch of Topology known as
Metric Spaces , an introduction to which can be found in [Bryant 85].

3.82.1 A Metric Space,

A metric space is defined as a pair (U, d), where U is a set and d is a function which
relates the ‘distance’ between two points in U. The function d is called a metric. The
formal definition of a metric space is as follows

Definition 3.6: Let U be a set and let d be a function such that d : UX U = R, (R
is the set of real numbers). Let x,y, z be members of U. Then the pair (U, d) is
said to be a metric space if and only if the following hold

i) Vx,yeU d(x,y)=20 Eq. 3.64
ii) Vx,yeU = dlxy)=0 & XSy Eq. 3.65
1ii) Vx,yeU d(x,y)=4d(y,x) Eq. 3.66

iv) VX,v,z€e U » d(x,y)+d(y,z) 2 d(x,z) Eq. 3.67
|

The term ‘distance’ is often used for the metric because it is sometimes convenient to
envisage a metric space as two dimensional real space, with the metric defined as the
spatial distance between points in that space.

2 n ion Mappin Non ion
A function which reduces the metric between any two points in a metric space is

called a contraction mapping. More formally

Definition 3.7: For a metric space (U, d) a contraction is a mapping f: U — U
with the property that, for some real number k < 1,

Vx,yeUe* d(£f(x), f(y)) < kd(x,y) Eq. 3.68

69

sequence of points generated by repeatedly applying f to x converges to a point x' then
the sequence of y points will converge to f(x'). Thus x'= £(x'). This means that the
limit of the sequence produced by repeatedly applying £ to any member of U will be the
fixed point of £.

Additionally, the contraction mapping f can only have one fixed point solution in the
set U. Suppose there were two distinct fixed points in U, say x' and y', and suppose £
were applied to each of them. Then because f is a contraction they would have to
move nearer. To do this at least one point would have to alter position under £ and
thus would not be a fixed point of £.

These ideas are presented more formally by the following theorem

Theorem 3.2: (Banach’s Fixed Point Theorem). Let £ : U = U be a contraction

mapping over the (completet) metric space (U,). Then f has a unique fixed point
solution. Furthermore, if x, is any point of U then the sequence

X1, Xy = £(x;), X3 = £(x3), ... Eq.3.70
converges to that unique fixed point. =
Proof
See Appendix A: Theorem A.2 O

3.8.3 CSP as a Metric Space,

Roscoe [Roscoe 82] has shown that processes of CSP can be structured as a
complete metric space. For the traces semantic domain given above this is the metric
space (My, d).

My is the traces model defined in Section 3.7 above. Prior to defining the metric dy
additional notation is required. Let P be a process and n a natural number. The
notation

pPln Eq.3.71

represents the process which behaves like P for its first n events, and then stops.
The metric d over the space My is defined for two processes P and X in My as
1

dr(P,X) = = n =max{m | Plm=XIm } Eq.3.72

T For a definition of completeness see Appendix A.

71

Roscoe has shown that the above metric complies with the necessary conditions
3.8.2.1 (i) - (iv) and that the metric space is complete.

384 S ic O AT . IN ;
The CSP operators outlined in Sections 3.6.1 to 3.6.7 had certain related functions
which demonstrated their effect on the traces of a process. These relations over the set
of traces constitute mappings from the space M onto itself [Roscoe 82].
A preliminary result for this interpretation of the syntactic operators being associated
with semantic mappings is that the prefix operator is a contraction on the metric space (
Mr, dr). To illustrate this consider any two processes P and X from My. Suppose

1

dT(P,X)=n
1

n; 20 Eq.3.73

From the definition of the metric d,, it can be seen that the maximum value of m such
that {m | Plm = XIm } is n,. Prefixing both processes with the same event a will have
the effect of adding 1 to n,. Therefore

1 1
< —
1S) Eq.3.74

di(a—>P,a—>X) =
The prefix operator is the only contraction in CSP over the metric space (M, d,).
However, the following functions [Roscoe 82] are nonexpansive: Parallel
Composition, Deterministic Choice, Nondeterministic Choice, Interleaved
Composition, Sequential Composition and Change of Symbol.
Hiding, however, is expansive (not nonexpansive). This is illustrated by
considering the CSP function F(P) = P\{ a } applied to the processes (a — STOP)
and (a — SKIP). First the metric between (a — STOP) and (a — SKIP)is given

by
d(a — STOP,a —» SKIP)=1 Eq. 3.75
After applying F the metric becomes

dg(F(a = STOP), F(a = SKIP))
= do(STOP, SKIP) = oo Eq.3.76

72

dy(a — STOP,a — SKIP)
P d(F(a — STOP), F(a = SKIP)) Eq. 3.77

The Uniquen Fix i P

Thus all the syntactic operators for CSP so far described, with the exception of the
hiding operator, are nonexpansive and one, the prefix operator, is contractive. From
Theorem 3.1 (ii) it may be concluded that any CSP function composed from operators
excluding hiding is nonexpansive. Furthermore it is possible to make use of Theorem
3.1 (iii) to establish a result for contractions.

That is, if F is a CSP function which maps the space of all processes onto itself and
all the occurrences of the operand of F are, directly or indirectly, guarded by a prefix
operator, and furthermore if F does not contain the hiding operator, then F isa
contraction over the metric space (My, d;) [Brookes 84]. This provides a method of
determining whether or not F is a contraction by examining the syntax of the
expression.

By applying the Fixed Point Theorem 3.2 to this it can be deduced that an equation of
the general recursive form

P=F(P) Eq.3.78
will have a unique fixed point solution if F complies with the above syntactic rules for
contraction. A unique solution means that the process does not diverge.
ification
An observation of a process is a finitely describable experiment to which that process
can be subjected [Olderog 86]. Specifications in CSP may be expressed as predicates
over the observations of a process. A process P satisfies a specification S if S holds

for every observation made of P. This is denoted

PsatS Eq.3.79

For the case of the traces model M, an observation is a trace of the process and a
specification is written as a predicate on the set of traces of the process. That is

PsatS = V s € Traces(P)* S(s) Eq. 3.80

73

Specifications expressed as predicates on a semantic domain are called behavioural
specifications.

le an i ifi
Consider a specification R. R is said to be satisfiable if there exists some process P
such that R(P) is true. Furthermore R is said to be continuous if its truth or falsehood
can be determined by examining the finite restrictions of its argument [Brookes 84].
That is R is continuous if it satisfies the condition

VP eCSP,ne N*3xe(Pln=xIn) = (REX) = R(P)) Eq.381

An example of a non-continuous specification is the requirement for an infinitely
recursive process that “The process will eventually perform the event a”. No bound
has been set on when a may occur, and thus its non-occurrence can only be determined
by considering every single trace the process may perform, which may be an infinite
number.

All behavioural specifications in M are continuous [Roscoe 82]. Thatisif R is a
behavioural specification on the traces of a process then R is continuous.

1 Proof em For My,

The nature of behavioural specifications gives rise to a set of inference rules [Hoare
85]. These allow the properties of the behaviours of a composite process to be
deduced from the behaviours of the syntactic subprocesses. The inference rules have
been derived directly from the semantic definitions of syntactic operators provided
earlier in the chapter. Thus there is a rule associated with each operator. The set of
rules provided for the traces semantic model, Mr, allows the proof obligation on any
composite CSP process to be transferred to an obligation on its component
subprocesses. Thus the proof system is both axiomatic and compositional.

3.10.1 General Rules,

Three rules embody the general properties of the proof system. For a processes P
and predicates Ry, R, they are

i) p sat TRUE Eq. 3.82

74

Cl Three. C icating S ol P <

ii) PsatR; A PsatR,
=>Psat(RlAR2)

i) PsatR;A(R;=R,)
= P sat R2

3.10.2 Syntactic Rules,

Eq.3.83

Eq. 3.84

The following are the inference rules associated with the syntactic operators in CSP.
Here P, X are processes with alphabets A, B respectively. R,, R, are predicates over
Mrand s, s,, s, are trace variables. For a definition of the Tail operator see Section

7.9.2.3.
Rule for Prefix Operator

PsatR,
(a—P)sat(s=< v (First(s)=a A Ry(Taifs))))

Rule for Alphabetized Parallel Operator

PsatR, A XsatR,
(P ,llyx)sat (Ry(slA) A Ry(sI'B))

Rule for Deterministic Choice
.E..SﬂLB._l_Al_ﬁa.t_Bz_
(p0OX)satR, V R,

Rule for Nondeterministic Choice

PsatR, A XsatR,
(plM X)satR; Vv R,

75

Eq. 3.85

Eq. 3.86

Eq.3.87

Eq. 3.88

Chapter Three: Communicating Sequential Processes

Rule for Interleaving Operator

PsatR, A XsatR,
(PllX)sat(3s,,s,*s, € subseq(s) A s, € comsubseq(s)
A Ry(s7) A Ry(sy)) Eq. 3.89

Rule for Sequential Operator

PsatR, A XsatR,
(P;X)satR,(s) v (s, € Traces(P) A vV ins; A
s=(s;[{Z-v})s, A R,(s,)) Eq. 3.90

3.10.3 The Recursive Inference Rule.
The structuring of My as a complete metric space allows the construction of an

inference rule relating to the fixed point processes of recursive CSP equations. This

rule is given here as a theorem. The theorem can be seen to follow immediately from
the definitions of a contaction on Mt and a continuous specification. A treatment and a

proof of this theorem can be found in [Brookes 84].
Theorem 3.3: Let F be a CSP function which is a contraction on the metric space
(M, d;). Furthermore let R be a satisfiable continuous specification over Mt such
that STOP sat R (R is satisfiable). If R is such that for all processes P
VpPeR(P) = R(F(P))) Eq. 391

then the fixed point of F satisfies R. That is

UP.F(P) sat R Eq.3.92

3.11 Summary

This chapter has outlined some of the principles behind Communicating Sequential
Processes. It opened by discussing the early work on CSP as a proposal for a
programming style for distributed systems. The concepts of parallelism and

76

C Three: C oty & ial P

communication were discussed and observations about the suitability of the approach
were made.

CSP has subsequently influenced the development of parallel programming. In
particular three languages which implement its fundamental principles were considered,
csp/80, COSPOL and occam. Most notable of these was occam because of its
commercial availability and wide area of application.

The emphasis then turned to formal verification techniques for CSP. It was shown
how different approaches to the proof of correctness for CSP processes were
proposed. Early approaches were based on a state model oriented method of
verification, using preconditions and post-conditions on the state of the process. These
approaches were broadly compositional in that they associated an inference rule with
each of the syntactic operators and they permitted proofs to be factorized in isolation for
each of the sequential subprocesses involved. However, to varying degrees they all
necessitated a proof of cooperation between the sequential subprocesses before an
overall process proof could be established. In contrast later verification methods
concentrated on specifying the system requirements in terms of sequences of
interprocess communications. This removed the obligation of establishing cooperation.

The refinement of this latter approach has led to the development of a formal
denotational trace based semantics for CSP. It is noted that this semantics, which is set
theoretic, allows the effect of each CSP operator to be described in a rigorous
mathematical fashion. By concentrating on this mathematical description and laying
less emphasis upon considerations of implementation later models of CSP have allowed
new operators such as interleaving and recursion to be defined and modelled.

The chapter describes the traces semantic model in terms of the effect each of the
semantic operators has on the traces of the operand process(es). Particular attention is
paid to the mathematical description of recursion. Specifications are shown to be
represented as predicates over the traces model and then finally a formal proof system is

given.

77

AT

CHAPTER FOUR

HIGHER SEMANTIC MODELS AND APPLYING THEM.

4.1 Introduction,

The purpose of this chapter is to investigate how CSP may be used in the
specification and verification of a controller for a real-time industrial application.

The traces model of the previous chapter proved to be a concise and useful means of
explaining the underlying concepts of CSP. However, the traces model is limited with
respect to its ability to express certain system properties which are manifest in the real
world. In particular some of these properties, such as time and liveness requirements,
are necessary for a suitable treatment of the intended controller application. For this
reason the chapter opens by outlining some of the higher semantic models which have
been developed to express complex system properties.

The chapter considers two such semantic models, the failures model and the timed
failures model. The failures model is able to distinguish between deterministic and
nondeterministic choice and is able to represent liveness properties. The timed failures
model is, in addition, able to incorporate time into a process description. The
fundamental concepts of events and traces are redefined with respect to time to
accommodate this.

It is shown how these models along with other semantic interpretations can be
structured into a well defined hierarchy which delineates the relationship between
domains.

The chapter then moves on to evaluate how these different semantic models can be
used in the specification and verification of a controller. The application involves the
coordination of high speed machinery, typically in a safety critical environment. It
requires a controller which must make the system function correctly to a high level of
confidence. To achieve this confidence the system’s operational requirements are

78

T L L

a Four: Higher § i Models and Apalving them.

considered and expressed formally as a behavioural specification in CSP. This
specification is then used to develop processes representing the controller’s underlying
logic. Two processes are proposed, an untimed process and a timed process. The
correctness of these processes relative to their formal specification is established by
using the axiomatic proof system of CSP.

4.2 Failures Model

The need for higher semantic models for CSP processes is highlighted by two
restrictions which limit the ability of the traces model to specify systems.
One restriction is the inability of Mt to distinguish between deterministic and

nondeterministic choice. Inspection of the behavioural definitions and inference rules
for each choice operator in M show that there is no semantic difference between them.

This can lead to difficulties, especially if two processes are informally interpreted as
distinct but shown to be semantically equivalent in Mt. For example, consider the two

processes PRO1 and PRO2 below, where a,bare eventsand A={ a, b }
PRO1 = a —> SKIP,ll,a — SKIP O b — SKIP Eq. 4.1
PRO2 = a — SKIP,ll,a = SKIP [1b— SKIP Eq. 4.2

PRO1 is equivalent to a process which performs an event a and then terminates
successfully. PRO2 is equivalent to a process which will either perform event a and
terminate or will simply deadlock on its first step. That is it is equivalent to ((a —
SKIP)M STOP). PRO1 and PRO2 are thus interpreted as distinct. However

examination of their traces shows
Traces(PRO1) = Traces(PRO2) = { < >,<a><a, v >} Eq. 43

Another limitation in M is that, using the sat relation, it is only possible to specify
safety properties. This can be demonstrated by considering any process P with a
specification R expressed over Traces(P). If P sat R then R must be true for all traces
in P. By Definition 3.2(i) the empty trace belongs to every process P . Because the
empty trace is equivalent to the traces of the process STOP [Hoare 85] it is seen that
for an arbitrary process P

Traces(STOP) C Traces(P) Eq. 44

79

Chapter Four: Higher S ic Models and Applying tt

Thus it can be concluded that the specification R must also satisfy the process STOP.
Since R satisfies the process which does nothing it can only be a safety specification.

These problems can be overcome by the use of the failures model [Brookes 84,
Hoare 85] (Sometimes called the Refusals model [Olderog 86). This is based on the
concepts of Refusals and Failures.

Let B be a set of events which are offered initially by the environment of a process P
say. Then if it is possible for P to deadlock on its first step when placed in this
environment B is said to be a refusal of P. In the above example { b } is a refusal of
PRO1 - the process cannot perform event b on its first step and thus if this were
offered by the environment then the process would deadlock. The set of all refusals of
a process P is denoted

Refusals(P) Eq. 4.5

The concept of refusals leads directly to the idea of failures. A failure is a relation
between a trace of a process and the set of events which that process refuses to perform
immediately after having engaged in the trace. For a more precise definition, define
(P/s) as being that process which behaves exactly as process P would after having
engaged in trace s. Then the set of all failures of process P can be expressed

Failures(P) = { (s, B) | s € Traces(P) A B € Refusals(P/s) } Eq. 4.6
Note that the set of all failures of a process is an extension of the set of all traces of a
process, because the failures contains the traces. If Domain represents the domain of a
relation, then

Traces(P) = Domain(Failures(P)) Eq. 4.7

These definitions lead to a mathematical representation for a semantic domain to
represent the failures of a process [Hoare 85].

Definition 4.1: A process is defined as a pair (A, ¥) where
A is any set of symbols - the Alphabet of the Process
Fis a relation between A* and IP(2) - the Failures of the Process

Furthermore, if s, t are traces, B, C sets of events and a an arbitrary event, then ¥is

subject to the rules

80

i) (<> {hHe¥F Eq. 4.8
i) (s"t,B)e F = (s, {})e ¥ / Eq. 4.9
i) (s,C)e FABCC = (s,B)e ¥ Eq. 4.10

iv) (s,B)e FA a€e i
— (s"<a>,{})e Fv (s,Bu{a})e ¥F Eq.4.11
|

Rule (1) indicates that every process, before it starts, is in a position where it has
performed no external events. Rule (ii) ensures the prefix closure of the traces. Rule
(iii) implies that all the failures related to one trace form a powerset. Rule (iv) states
that for some trace s of a process either event a is a possible next event, in which case
s"<a> is a trace of the process, or event a is not a possible next event, in which case {
a } will be refused.

The space of all processes represented by their failures in this way is termed the
Failures Model, and has the notation Mg. The usual representation of a failure in this
text will be (s, X) where s is a trace and X the refusal associated with s.

It can now be seen how refusals allow a formal semantic distinction to be drawn
between the two types of choice. Consider the refusals of the processes (20 X) and
(pMx).

Refusals(POX) Refusals(P) N Refusals(X) Eq. 4.12

Refusals(PT1X) Refusals(P) U Refusals(X) Eq. 4.13

In addition, the reasoning which showed that M could only support safety properties
does not apply to Mg. The Failures of a process STOP with an alphabet A is

Failures(STOP) = (<>, IP(3)) Eq.4.14
For an arbitrary process P it does not follow that
Failures(STOP) c Failures(P) Eq. 4.15

Thus a specification which satisfies P in Mg does not by necessity satisfy STOP, and

so is not by necessity a safety specification.

81

Chapter Four: Higher Semantic Models and Applying them

Rule for Alphabetized Parallel Operator in My

Psat S,(s, X))

Xsat S.(s, X,) .
P ,llyX sat s;(sTa, X;) A S,(s['B, K,) Eq.4.19

where X, X, are the respective refusals.

Rule for the Recursive Operator
Let F be a CSP function which is a contraction on the metric space (Mg, d;).
Furthermore let R be a continuous predicate over Mg. If R is such that for all
processes P

VPe[R(P) = R(F(P))) Eq. 4.20

then the fixed point of F satisfies R. That is

ULP.F(P) sat R Eq. 421

4.3 Timed CSP.

There is a need to be able to express parallel systems, such as Communicating
Sequential Processes, with time incorporated. For example real-time applications
inevitably involve circumstances where correctness may depend on even the most
subtle of timing considerations. The recognition for such a need has led to the
development of Timed CSP, or TCSP.

A number of models have been proposed which allow CSP to be applied to real-time
systems. Zwarico and Lee [Zwarico 85] suggest adding simple timing constraints to
the Traces Model. Boucher and Gerth [Boucher 87] extend the untimed failures
semantics of Brookes et al [Brookes 84] in a manner which specifically aims to
preserve the recursive theory.

It is the timed models of Reed and Roscoe [Reed 86] and subsequent refinements [
Reed 87, Davies 89a, Schneider 90] which are considered in this text. This is because
they are essentially extensions of the untimed Failures Model so far discussed and thus
can be treated with similar semantics and inference rules. They may also be represented
as metric spaces under a suitable metric and there exist well documented examples of

83

Cl Four: Higher S ic Models and Applving them.

their use in expressing specifications and factorizing correctness proofs [Jackson 89,
Davies 89b].

The following assumptions are made about timing in a distributed system
/
1) There is a non-zero lower time bound between the occurrence of any
two events in a sequential process. This is to prevent singularities such
as the occurrence of an infinite number of events in a finite time.

i1) The times at which events occur in the system relate to a global clock.
Time passes at the same rate in each process.

4.3.1 Extending The Syntax, -
The syntax of TCSP is the same as that of CSP except in one regard; the introduction
of the time delay operator, WAIT. For a time interval T the process (WAIT 1) represents

a process which starts, waits for time T, and then terminates successfully with the
termination event.

4.3.2 Timed Events, T Refu

A timed event in TCSP is a pair (T, a) where a is an event which occurs at time 7.
The time domain is continuous and is represented by the positive real numbers R*. A
timed trace is a sequence of timed events arranged in their chronological order.

In the Timed Failures Model of TCSP, processes are identified with sets of timed
failures. A timed failure is a pair (s, X) where s is a timed trace and R is a timed
refusal. A timed refusal is a set of timed events. The presence of a timed event (T, a)
in the refusal of (s, R) indicates that, after having engaged in trace s, the process in
question may refuse to perform event a at time 7.

The above definitions are sufficient to develop another mathematical interpretation of
processes in terms of the timed failures of a process. Informally a TCSP process is a
pair (A, 7) where A is any set of symbols representing the alphabet and Tis a
relationship between the set of all timed traces and the set of all timed refusals. For a
more precise definition in the style of Definition 4.1 the reader is referred to [Reed 90
]. This model is called the Timed Failures Model or TMg. In this text the mapping
from a TCSP syntax to the semantic domain TMg is represented by the semantic

function fr.

13.3 Specificati ™;.
As with My and Mg, specifications in TMg. are expressed as predicates. For a process

P with behavioural specification R this is equivalent to

84

PsatR & V(s,N)e fr(P)*R(s, R) Eq.4.22

To facilitate the representation of specifications in TMg some extra timed operators are
required [Schneider 90]. The expression end(s) gives the time at which the trace s
performed its last event. In addition the expression end(R) gives the time of the last
timed refusal in the set X. The expression exev(s) extracts the set of all event names
from a timed trace (timed events with the time removed).t For example

end(< (1, up), (2.54, down) >) = 2.54 Eq.4.23
end({ (2, left), (3, 1left) }) = 3 Eq.4.24
exev(< (1, up), (2.54, down) >) = { up, down } Eq.4.25

All behavioural specifications in TME, are continuous [Schneider 90].

434 M

TME can be represented as a complete metric space under a suitable metric [Reed 87
]. If P is a TCSP process and T € [0,0), then define P(t) as representing the
behaviour of P up to time 7. That is

{(s, R)|(s, R) e fr(P) A
end(s) <t A end(R) <1} Eq. 4.26

P(7)

The complete metric on TMg is defined
dre(S1,S,) = 2", where tm=max{ T|5,(%) = S,(7) } Eq. 4.27

All of the syntactic operators of CSP, except hiding, have been shown to be
nonexpansive under d,, and the prefix operator is a contraction. The same syntactic
rules for establishing contraction from a function’s syntax apply as for My. That is if
every occurrence of the process variable in a function is guarded then that function has

a unique fixed point.

T Note: In [Schneider 90] exev is represented by the symbol 0. However this symbol is used later in
a different context and so is changed to avoid confusion.

85

Chapter Four: Higher Semantic Models and Applying them,

There is a sound and complete compositional proof system for TMg. which associates
an inference rule with each of the syntactic operators [Schneider 90]. This proof
system allows the proof for a composite TCSP process to be reduced to a set of
subproofs for component subprocesses. For a complete set of the inference rules and a
proof of their soundness and completeness the reader is directed to [Schneider 90].
However, one rule in particular will be used later on in this chapter and so is
reproduced here.

For processes P, and P, with alphabets 2, B respectively the rule associated with the

alphabetised parallel operator is

P, sat S,(s, R))
P, sat Sy(s, X)
exev(s, X)) C A A exev(s, X,)C B S(s,, X, UR,UR,)
A exev(R)) € X-(AUB)
Si(sy, Ry) A Sy(s,, Ky)

A s € Traces(P |l P,)

P, AllgB,) sat S(s, X) Eq. 4.28
q. 4.

4.4 Other Semantic Domains and their Hierarchy.

In addition to the three semantic interpretations so far discussed (Traces, Failure,
Timed Failures) there are other semantic models with the ability to distinguish different
characteristics of a system. Some of these include the concept of the stability of a trace.
The stability of a trace is an indication of whether and when a process, after engaging in
that trace, will recover and be able to perform further events. This is divided into two

categories

i) Timed stability: This associates with each trace a particular time at which the
process, after having engaged in that trace, ceases any internal activity and becomes

able to perform another event.
ii) Untimed Stability: This associates with each trace a particular value according to
whether or not the process will be able to stabilise and perform another event after

having engaged in that trace. If the process may continue then the value is set to zero,

if not then the value is set to infinity.

Some of the other semantic models available in CSP are

86

* Failures-Divergence Model - Represents a process as its set of failures and
divergences. A divergence of a process is any trace of that process after which the
process diverges, or behaves chaotically [Brookes 85).

* The Failures-Stability Model (Mgs) - Represents a process as a set of observations
of the form (s, ¢, R), where s is an untimed trace, X the set of refusals of that trace
and ¢ the untimed stability of the process.[Reed 90 .

* Timed Failures-Stability Model (TMgg) - Represents a process as a set of
observations of the form (s, {, X), where s is a timed trace, X the refusals of s and
€ the timed stability of s [Reed 90].

* Timed Traces Model (TMy) - Represents a process as the set of its timed traces [
Boucher 87].

* The (Untimed Failures) - (Timed Stability) Model (TMEg) - Represents a process as
a set of observations of the form (s, {, X), where s is a timed trace, { is the time at
which the process stabilises after s, and X is the powerset of untimed events which
the process is unable to perform after s, that is X is the untimed refusal set.

* Untimed Stability Model (Mg) - Represents a process as a set of observations of the
form (s, a), where s is an untimed trace of the process and a is the untimed stability

of that process after engaging in s.

Reed [Reed 90] has shown that the semantic definitions of all of these models can be
tailored so that they form a precise hierarchical structure. This hierarchy is based
around a set of projection mappings between semantic models which preserve
behavioural information. This supports a method whereby the design of complex timed
systems can be achieved by first considering simple semantics and then refining them.
This structure is presented in Figure 4.1.

For the majority of the above domains it is possible to deduce a sound and complete
inference rule associated with each operator which leads to a compositional proof
system. An exception to this is the Timed Failures-Stability Model TMgg. Blamey [
Blamey 89] has shown that certain inference rules derived from semantic definitions in
TMEgg are incomplete. He suggests overcoming this by using a semantics which
defines a process in terms of its timed failures and the times at which it is not stable,

i.e. instability sets.

87

Chapter Four: Higher Semantic Models and Applying them

*FS
/ M
= o N
TMF —-» | M |_>Ms-4— .

N
~N 7

- Untimed Traces ™ - Timed Traces

M T
M - Untimed Stability TM _ - Timed Failures

M - Untimed Failures TM 5 Timed Failures Stability
Mps

- Failures Stability ~TM ¢ - Untimed Failures Timed Stability

Figure 4.1: Hierarchy of Semantic Domains

.5 The Applicati

The chapter now illustrates the use of the formal methods associated with CSP and
TCSP by considering a specific industrial example. It shows how employing those
formal methods leads to the specification, design and verification of an embedded logic
controller for a real-time system.

To achieve this it is initially important to establish the objectives and approach. These
are summarised by the following points

* Consider and analyse a specific example of a real-time logic controller required for
an industrial application.

* Produce a tangible expression of the requirements, or specification, of the system.

* Express this specification in as precise and unambiguous mathematical form as
possible.

* Produce and express formally a process for a system which aspires to meet the
specification.

* Show that a formal mathematical representation of the process satisfies the
specification. That is show the correctness of the process relative to the specification.

* Appraise the process and the specification with respect to the requirements of the
customer. Incorporate any improvements in both which have resulted from the study
of the formal representations and the correctness proofs.

45.1 li

The application chosen involves controlling part of a high speed manufacturing plant
used for packaging. The plant itself is made by Molins Engineering PLC of Coventry
in the UK. Specifically it concerns the control of a slider and drum mechanism. The
slider is a moving arm which periodically inserts into an aperture on the periphery of a
high speed rotating drum. The desired operation of the system is that the rotating drum
should decelerate from spinning and stop, then the slider is inserted while the drum is
stationary. The slider then performs whatever function is required in the aperture and is
retracted from the drum, which then proceeds to accelerate and spin again [Clarke 92a

].

89

Chapter Four: Highier Semantic Models and e e

Traditionally the individual actions of the system were coordinated by gears and cams
powered by a central driving mechanism. A disadvantage of this arrangement is its
inflexibility. Changing the product on a manufacturing machine often entails
rearranging the precision gear and cam mechanisms. This involves stopping the
machine, stripping it down and installing alternative mechanisms. All of this is time
during which the machine is not producing. Additionally, introducing a new product
may involve tooling a new set of gears or cams. It was proposed to replace the central
drive with a set of independent software controlled drives. The coordination previously
supplied by the gears and cams was to be replaced by software and inter-process
communications.

It is worth mentioning the motivation behind the choice of this application. To a
certain extent an industrial example will be less “well behaved” than an idealized
example. An idealized example would be better able to illustrate the subtleties and
nuances of the formal language and could be formulated so as to avoid any difficult
circumstances. However, because the true aim here is to both illustrate the use of CSP
and evaluate it as a tool for real-time systems, an idealized example would limit the
effectiveness of any appraisal. An industrial application illuminates the theory of CSP
in a more relevant context. Additionally it was noted that in the literature there is a lack
of publications which apply these techniques to manufacturing systems.

4,52 Stecificati

The plant involves the coordination of machinery which rotates at speeds and
accelerations of up to 14 rad/sec and 800 rad/sec? respectively. Consequently both
slider and drum have significant inertia. Figure 4.2 and Figure 4.3 supply the intended
velocities and motion profiles of the mechanism. Additionally it is typically placed in a
safety critical environment where a failure may potentially result in serious injury or
loss of life to personnel. Because of this the overriding factor in the specification of the
controller must be to ensure hazard free operation.

The main hazard presented by the mechanism is that of a collision between the slider
and drum. This is caused by two circumstances. First, the drum accelerating from rest
while the slider is still within its periphery. Second, the slider inserting while the drum
is still rotating. Consequently the specification must stipulate that these circumstances
do not arise. This is expressed in a natural language form as

i) The drum must not start to rotate if the slider is inserted.

ii) The slider must not insert if the drum is still rotating.

90

LX S

Chapter Four: Higher Semantic Models and Applying them.

A

67:5° | i | | i i
]] I 1]
]] | 1 1
]] |]]
e]] |]]
]] I]
5 1 i 1 1 :
g 1 1 I 1 I
]] 1 1 1
% 450 i ! I] I 1
i 1 1 [[1
joh 1 | | I 1
@ | i | 1 DRUM ROTATION
o I] 1 1]
1] 1 1 1
I] 1 1 1
[}] I 1 [}
1] I 1 1
22.5° ; i : : :
]] 1 I 1
)] [} 1 1
] 1 I I 1
]] I 1]
1]] 1 1
]]]]] 5
! 1 : i ITlme {ms)
1L 1 1L | L
0° o 155.5 133.3 188.8 266 .6 :352.2
‘ 1 I 1 1 1
] 1 1
181 mm _]] 1 1 : :
o5 ! ! . | SLIDER SWEEP
c] I |] I
Q 1 I 1] I
5 1 1 1 1 1
1 1]] 1
E{; i i 1 i |
Ly
% : : : : j;;ime (ms)
o R =
a 0 0 133.3 188.8 266.6
Figure 4.2: Time/Displacement Profiles for Arbor and Drum
DISPLACEMENT ‘

Maximum Insert

AR RRLRRRLR

AnLRA N e

TR T AR AT I A A A T A A AR T A A AR AR T AR AR R R R R R LR R R

Insert

ARATRLLLLRR

-

\ VELOQCITY

Decision Point

Figure 4.3: Positioning of Decision Point in Slider Motion Cycle
92

Astuil URITLAR3G e

a

One of the simplest means of preventing a collision between the slider and drum
would be to prohibit their synchronous motion. A sequential control structure would
ensure that the slider did not move until the drum was stationary and in position, and
that the drum did not start to move until the slider was at rest and not inserted.
However, there are points in the motion profiles of both slider and drum at which
concurrent motion is possible without a collision occurring. Not to utilise these points
would be an inefficient use of the time resource and thus to increase the operation speed
of the mechanism it is advantageous to maximise concurrent motion. Consequently the
natural language specification is extended to include

iii) Concurrent motion must be employed whenever possible provided it
does not compromise the hazard free operation of the mechanism.

At this point an intuitive feel for the design of the controller starts to appear. If
synchronous motion is to be allowed then the mechanism has roughly two phases of
operation. One where neither component impinges on the motion of the other and thus
each component can move freely, and one where the components do impinge upon each
others motion and thus certain conditions must be met to prevent collision. When the
mechanism passes from the free phase to the restricted stage it is apparent that the
control logic will have to make a decision about the next course of action. This choice
will be based on whether it is proper to proceed and allow the slider to insert into the
drum, or whether it is improper. Essentially the controller will reach a decision point at
which it must either commit the mechanism to insertion because it is secure to do so, or
abort the insertion procedure because the environmental circumstances may lead to
collision.

The implications of introducing a decision point correctly require consideration. The
controller must always be able to make a delay-free decision to either commit or abort.
If it is unable to do so then control over the system is diminished and a collision may
occur. This is expressed by

iv) At its decision point the slider must always be able to commit or abort.

Also, because the slider is travelling towards the periphery of the drum a decision
has to be made in sufficient time so that, if required, the slider’s momentum can be
overcome before it encounters the periphery of the drum. This requirement can be
expressed as the natural language specification

92

Specification (ii) implies that the process may only perform the event enter if the
drum is stationary. That is

Last(s) = enter =
— (Last(s[{ dstart,dstop }) =dstart) Eq.4.32

For simplicity it is noted that specifications (i) and (ii) are equivalent to the
specification

Last (s { enter, extract }) = enter
= (Last (s { dstart,dstop }) #dstart) Eq.4.33

4 rFormalizing Untimed Livene necification:

Specification (iv) is concerned with establishing what a process will do, and as such
it constitutes a liveness specification. However, Section 4.2 demonstrated that the
traces model My was insufficient for the description of liveness properties. As a result
it is necessary to employ a higher semantic model for the representation of specification
(iv). The semantic model employed is the failures model Mg.

The logic controller will have a decision point at which it must decide between
continuing with the present motion or invoking an abort procedure. In order to allow
maximum freedom of motion for the controller this decision point is situated at the point
just before the slider is irrevocably committed to inserting into the drum by its inertia.
That is when the slider can still just be brought to rest before it inserts. The actions of
the slider are then considered to be its approach to the periphery of the drum, labelled as
the event approach, and then either an event indicating committal, commit, or
one indicating abortion, abort. In terms of the traces of the control process the
decision point would be after approach and before either commit or abort.

Specification (iv) stipulates that at its decision point the controller must always be able
to order the actions commit or abort at the next step. This would be satisfied if it
could be shown that either commit or abort were not failures at the decision point. That

is
DEC. POINT = ABORT IS NEXT v COMMIT IS NEXT Eq.4.34

As mentioned, the slider is at decision point between approach and
commit/abort.

cl Four: Hisher Semantic Models and Aoplying 1

The conclusion was that a method of design by directly translating the formal
specification into a formal model is not suitable in these circumstances. Instead a more
informal method of design was adopted. It was felt that the application was small and
well understood, and that a controller could be designed without recourse to structured
design methods. Thus, using the formal representations of specifications (i), (ii) and
(iv) as a basis and the informal requirement of specification (iii) as a guide, an intuitive
iterative approach to design was adopted. That is a process was postulated, and
compared with the formal specification to ensure it complied. Then, through
understanding of the operation and requirements of the system an improved model was
put forward, and compared. The informality of this approach implies that the
correctness of the system cannot be ensured by virtue of its design. As a result a
greater emphasis on verification is needed, as it is then the only assurance that the
process functions correctly relative to its specification.

This method of speculation and refinement eventually led to the design of an untimed
control logic for the slider drum mechanism. This is presented in Figure 4.4

(SLIDER ,ll; CON) , gll. DRUM
A, B, C are alphabets given as:

A ={ abort,accelerate,allow,approach, commit,
decelerate, enter,extract, perform, slow }

B ={ abort,allow, commit,dstart,dstop, extract}

C ={dstart,dstop }

SLIDER, CON and DRUM are recursive processes defined by:

SLIDER = uP.F (P)
CON = UP.G,.(P)
DRUM — upP.H, (P)
F m» Gums Hun are CSP functions defined by
Fun(P) = approach —»((commit - enter — slow —
perform - extract = P)
O

(abort — decelerate — allow —
accelerate - enter — slow —
perform - extract — P))
Gyn(P) = dstart — (dstop — P [0 abort — dstop — P)
0 commit — extract =P

O allow — extract - P

H,.(P)= dstart — dstop — P

Figure 4.4: Untimed Model

97

Chapter Four: Higher Semantic Models and Applying them

This priority structure was subsequently introduced into the design of the controller,
and lead to the timed controller model given in Figure 4.5 overleaf.

4.5.7 Liveness in the Timed Model.

The untimed model was only able to determine the untimed behaviour of the process.
As a result of extending the untimed model to incorporate time it is now possible to
reason more clearly about its potential to make timely decisions. Specification (v)
requires that a decision be reached within a prescribed time. Thus after reaching the
decision point, the process must perform either commit or abort within time
interval 1) say.

The Timed Failures Model can determine what a process may not do at a particular
time, and what a process may be able to do at a particular time. But the semantics alone
cannot stipulate that a process will perform a particular event at a particular time. This -
is because the formal treatment of processes always assumes them to be in an
environment which can affect the occurrence of events. To say that a process will
perform an event requires knowledge about both the process and its environment.

Environmental conditions can be represented as predicates on the observations of a
process [Jackson 89]. The environment of the logic controller is considered to be the
position/motion controllers upon which it sits. One factor to consider in such an
arrangement is that every event recorded by the process is translated into a command to
the motion controller and each of these commands takes time to be implemented.

Two assumptions are made about the interaction of the physical system with its
environment. First the events commit, abort and allow occur as soon as they
become able to. Secondly the time interval d is so arranged that the events dstop,
dstart have time to stabilise. Therefore the events dstart and dstop occur
immediately after WAIT 0 terminates.

Say the mechanism reaches the decision point at time 7,. Then the specification
insists that after reaching this point it must perform either commit or abort within
a certain prescribed time, say 1. This is equivalent to saying that if the decision point
starts at time 7, after a trace s then there is some time 7', where T, <7’ < T,+1, such
that either (T', abort) is not a refusal of s or (1, commit) is not a refusal of s.

This is expressed as the behavioural specification
(Last (sI{ approach, commit, abort }) = (approach)
A end(sl{ approach, commit, abort })=1,) = @1'°*

(1, <7 <T,4M) A ((T,, commit) & X)V (T, abort) ¢ R))) Eq.4.41

The proof that equation 4.41 satisfies the process (SLIDER” ,ll; CON™) gllc DRUM®

as given in Figure 4.5 is presented in outline in Section 4.7.3.

99

(SLIDERT ,ll; CONT) , sll. DRUMT

where, with alphabets A, B, C as for the untimed model respectively

SLIDERT = UP.F . (P)
CONT = UP.G,(P)
DRUMT = WP.H,.(P)

Fim G and Hy, are TCSP functions defined by

F..(P) = approach > ((commit - enter — slow —
perform - extract — P)

a
(abort — decelerate — allow —

accelerate = enter — slow —
perform — extract — P))

Gen(P) = WAITO; (dstart - (WAIT 9 ; (dstop — P)
O

abort — dstop — P))

O commit - extract 5 P

O allow = extract =2 P

H. (P) = dstart —» dstop > P

Figure 4.5: Timed Model

100

4.6 Summary,

The control of the Slider-Drum mechanism with independently communicating
microprocessors has three main properties which point to using TCSP/CSP for an
analysis. First itis a distributed system which requires parallel actions coordinated by
communications. CSP provides a framework around which such a system can be
specified and studied.

Secondly the system will operate within hard time constraints and therefore requires a
semantic model which is able to capture and reason about timing. This is provided by
the Timed Failures Model. Finally the communications involved are concerned with the
flow of control information rather than the transmission of data. Because of this such
communications can be expressed easily in terms of synchronous events. This leads to
a clearer mathematical representation of the system as a process in CSP.

An alternative approach to the design of such a controller has been undertaken by
Sagoo and Holding [Sagoo 90]. Their approach specifies the system using Temporal
Petri nets. By introducing temporal logic into the Petri net description the systems
behaviour can be explored in terms of the state reachability tree. They propose a Petri
net description of a control logic and show that it does not have reachable hazardous
states and that it conforms to a set of timing constraint. This employs a consistent
temporal logic proof technique to show that the control logic satisfies its specification
and does not cause hazardous operation.

This chapter has described the use of CSP and TCSP in the specification and
verification of a controller for a hard real-time distributed system. The application,
which is representative of the type of system commonly found in flexible
manufacturing machinery, includes both time-critical and safety-critical functions. It
has been shown that CSP and TCSP can be used to reason about such properties and to
verify hazard free operation. The design permits the drum and slider to move as freely
as possible within the constraints of the specification.

The main advantage of formal verification is the high level of confidence it provides
in a system. Naturally, an axiomatic proof system depends not only on the soundness
of the inference rules but on the truth of initial axioms. The compositionality of the
proof system permits axioms to be established more easily by process decomposition.
However, the complex nature of the proof system leaves it prone to error and requires a
high level of skill and understanding on the part of the designer. The techniques
described in this paper are most advantageously applied to well specified and well
understood problems.

The hierarchy of semantic domains provided by CSP and TCSP permits levels of
abstraction. Existing domains allow for nondeterminism, divergence, time and
stability. However, the notation adopted, P sat S, is restricted to behavioural

101

Chiautes Fous: Hisher Semaotic M ‘ ‘

(continuous) specifications. Behavioural specifications possess a wide scope for
specifying system properties, but it is noted that there are higher logics, such as
temporal and other modal logics, which have a greater capacity for specification. There

is currently work under way to develop a temporal logic based calculus for CSP [
Barringer 85b, Davies 92].

4.7 Proofs.

This section presents proofs for the formal specifications expressed in the above text.
It consists of three subsections. The first two give the proofs for the safety and

liveness properties of the untimed model The third section outlines the proof approach
for the timed liveness properties.

To prove

(SLIDER ,ll; CON) »gllc DRUM sat
(Last (sI'{ enter, extract }) = enter)
= (Last (s { dstart,dstop }) # dstart) Eq. 4.42

The initial axioms proposed for each process are
SLIDER sat &,

E(s) =
(Last (sl { enter, extract }) = enter)

=

(Last (sT{ commit,allow, extract })=commit

v Last(sl{ commit,allow, extract })=allow) Eq. 4.43
CON sat vy,

yi(s) =

(Last(s[{ commit, allow, extract }) = commit
v Last (sT{ commit,allow, extract }) =allow)

=
(Last (sI'{ dstart,dstop }) # dstart) Eq. 4.44

102

@l(S) = TRUE Eq. 4.45

It is necessary to establish the truth of the above axioms. The defining functions F,
Gun and H, of the processes SLIDER, CON and DRUM are composed of nonexpansive
monotonic operators (Prefix and Deterministic Choice). Each occurrence of the process

variable is guarded and thus these processes represent the unique fixed points of
contractions in Mr.

The predicates Z;, y; and @, are behavioural specifications in Mt and are thus
continuous. All are satisfiable by the process STOP.

Consider some process P which satisfies predicate ;. Application of the semantic
definitions for the deterministic choice and prefix operators on M yields the result that

Traces(F,(P)) = { s | s € Traces(F ,,(STOP) v (t € Traces(P) A
(s =< approach, commit, enter,
slow,perform, extract > t
vV s =< approach, abort,decelerate,allow,
accelerate, enter,slow,
perform, extract >"t))} Eq. 4.46

Analysis of the above leads to the conclusion that if predicate Z, holds for Traces(P)
then it will hold for all traces in F(P).

In a similar way it can be seen that the function G, is a monotonic contraction and
that vy, is a satisfiable behavioural specification. For a process P which satisfies
predicate , an analysis of the semantic definition

Traces(G(P)) = { s | s € Traces(G,,(STOP) v (t € Traces(P) A
(s =< dstart,dstop >t vV s =<dstart, abort,dstop -
v s =< allow, extract >t

V S =< commit, extract >"t)) Eq. 4.47

leads to the deduction that if y, holds for Traces(P) then it holds for all traces in
Gyn(P). Thus

EiP) = E(Fun(P) Eq.4.48

yi(P) = Vi(Gu(P)) Eq. 4.49

103

The conditions for applying the recursion rule are met, and so SLIDER sat Z, and
CON sat y, are established.

DRUM sat @, holds trivially as @, is true for all processes. Now that the initial
axioms are established it is possible to infer results about the sequential processes
composed in parallel. CON and SLIDER are combined with the alphabetized parallel
operator to form the process

SLIDER ,ll; CON Eq.4.50
The alphabetized parallel inference rule on My gives

SLIDER sat £; A CON sat
= (SLIDER ,ll; CON) sat (E,(sl'a) A y(slB)) Eq. 4.51

Thus,
E,(sMa) = ast (sTA){ enter, extract }) =enter
= (Las{((sTA)N{ commit,allow, extract }) = commit
v Last((sTA){ commit, allow, extract }) =allow) Eq.452
v,(sI'B) = (Last (sTB)[{ commit,allow, extract })=commit

v Last (sI'B)'{ commit,allow, extract })=allow)
= rast (sIB)[{ dstart,dstop }) #dstart Eq. 4.53

By noting that

A O ({ enter, extract }
U { commit,allow, extract }) Eq. 4.54

B O ({ commit,allow, extract }
v { dstart,dstop }) Eq.4.55

and applying 3.5.3.2 (ii), it is seen that

v (sfB) = yy(s) & E,(sfn) = E(s) Eq. 4.56

Thus,

104

SLIDER ,ll; CONsat (Z,(s) A y;(s)) Eq. 4.57
From the tautology ®, it follows that

((SLIDER ,lly CON) o sll. DRUM) sat (E,(s) A y;(s)) Eq. 4.58
By combining Z;(s) and y,(s) it can be seen that

((SLIDER ,ll; CON) , ;llc DRUM) sat
Last (s { enter, extract }) = enter
= Last (sl'{ dstart,dstop }) #dstart Eq. 4.59

Thus the safety properties are established for the untimed model.

4 1V i
To prove that

(SLIDER ,ll; CON) »gll. DRUM sat
Last (sI'{ approach, commit, abort }) =approach
ey (abort ¢ X v commit ¢ X) Eq. 4.60

The initial axioms proposed for each process are

SLIDER sat Z,,

E,(s, X) = Last (sI'{ approach, commit, abort }) = approach
= (Las(sl'{ allow, commit, extract,abort }) = extract
v sl{allow, commit, extract, abort } =< >)

A (abort ¢ R A commit ¢ R) Eq. 4.61

CON sat Y5,

¥,(s, R) = (Last (sT{ allow, commit,
extract,abort }) =extract

v sl{allow, commit, extract, abort } =< >)

= abort ¢ X vcommit ¢ R Eq. 4.62
DRUM sat ®,,

105

The defining functions F, and G, are composed of monotonic operators which are
nonexpansive on Mg. All occurrences of the process variable are guarded by a prefix
operator and thus the F, and G, are contractions. Both Z, and ¥, are behavioural
specifications and thus continuous. J

Analysis of the functions in Figure 4.4 will show that

E,(P) = E,(F n(P) Eq. 4.64

ViB) = Wy(GyalP) Eq. 4.65

All the conditions hold for the recursive rule to deduce that SLIDER sat E,(s, R)
and CON sat y,(s, R).
The alphabetized parallel inference rule on Mg gives

SLIDER sat Ey(s, R;) A CON sat '¥y(s, X,)
= (SLIDER,ll; CON) sat R(s, X; UR,) Eq. 4.66

R = (Ez(sz, Kl) A \Pz(SFB, Rz)) Eq. 4.67
Here (s, 8; UR)) is the failures relation. This is applied to give

SLIDER ,ll, CON sat
(cast (sTa)l { approach, commit, abort }) = approach
= (Last((sTA){ allow, commit, extract,
abort }) = extract

v (sfa)N{ allow, commit, extract,abort } =< >)

A (abort € RX; A commit ¢ R)
A
(Last ((sI'B)[{ allow, commit, extract,abort }) = extract
v (sI'B)['{ allow, commit, extract, abort } =< >)
= abort ¢ R, v commit ¢ X,) Eq. 4.68

Applying 3.5.3.2 (ii) and reducing this gives

SLIDER,ll; CON sat

Last (sI'{ approach, commit, abort }) =approach

= (abort € X; A commit ¢ X,)

A (abort ¢ X, v commit ¢ K,) Eq. 4.69

106

To outline the proof of equation 4.72 it is necessary to establish the preliminary result

(SLIDERT, I, CONT) /
sat

Last(s) = (t,, approach)

—

(Las{sT2) = (1., approach) A slB=<>5)

v (LasH(sl2) = (t,, approach) A fasfslB)= (1., dstop))
Vv (Last(sTA) = (1., approach) A Last(sI'B) = (1., extract))
v (Las(sl'n) = (1, approach) A Las(sl'B) = (1., dstart))
Eq. 474

where 1., T, are such that
Ta-Tp < d Eq.4.75

This can be established by inspection of Figure 4.5 and a realisation that the events
dstart and dstop occur immediately after the successful termination of each
preceding process WAIT 0.

Suppose that after the occurrence of the event approach at time T, the sequential
process SLIDER takes a time A, to recover before it is able to perform its next event.
Then it can be seen that for the time period [1,, T,+A,] the process SLIDER will refuse
all events. After time T,+A, however the process may continue and either perform
event commit or event abort (see Figure 4.5). Thus the refusals of any trace of
SLIDER (with alphabet A) which ends in the timed event (T,, approach) is given

by the specification

0 Last(s) = (t,, approach) = XN=RK_ Eq. 4.76
R,= {[T, T.+A] XP(a)}
U { [T.4+A,, °] X P(A-{ commit, abort })} Eq.4.77

If CON has not performed any events then it can be seen from Figure 4.5 that for an
interval of 0 served by the WAIT d command CON is able to perform either commit
or allow on its next step. After a time d the process WAIT d terminates and the only
option open to CON is to perform the event dstart immediately. The refusals of this
are summed up by the specification on CON

108

Ry

]
(0]
]
A
v
%
I
>

<> Eq. 4.78

R_.={[0,0]xP(B-{commit,allow})} Eq.4.79

A similar piecewise analysis can be used to establish the following specifications for
CON.

R, = LasKs) = (1, dstop) =5 R=Ni.0p Eq.480
xdstop = ([tb' 1b+x'l] X IP(B)] U

{ [t,+A;, 0] XIP(B - { commit,allow }) } Eq. 4.81
R, = Last(s) = (T, extract) = R=R_. Eq482
xextr = [[Tb! Tb"‘lz] X IP(B) } [

{ [ty+A,, 0] XP(B - { commit,allow }) } Eq. 4.83
Ry = Las(s) = (T,,dstart) = R =Ngar: Eq484
Ndstart = { [Tb' Tb+x3] X IP(B) } v

{ [t,+A5, 9] X P(B - { abort }) } Eq. 4.85

Where A, A,, A; respectively are the times which it takes CON to recover from
performing the events dstop, extract and dstart. Itis seen that

SLIDER sat Q(s;, X,) A
CON sat R;AR,AR3AR (S5, R) Eq. 4.86

By applying the rule for the alphabetized parallel operator in TME, it can be seen that

(SLIDERT ,ll; CONT)
sat Q(s;I'a, R;UR,) A R;AR,AR;AR,(s,I'B, R UK) Eq. 4.87

Now, returning to equation 4.74, consider each of disjunct cases in turn

109

T T —

Case (Las{slA) = (1., approach) A s[B=<>)
Using the fact that (SLIDERT ,ll; CONT) satisfies the specifications Q(s,la,
X ,UX,) and R,(s,I'B, X;UR)) it can be seen that for all (s, X) in (SLIDERT i,
/
conT)

Last(s) = (1,, approach) = R=R_UR__ Eq. 4.88

Analysis of the sets X, X_ _ shows that there exists at least one time value T' (T, <
T' < 1,+7) such that (7', commit) does not belong to R ,UR 4., provided

(T +A)<(T,+Mm) A (T, +A, +9)> (T, +A,) Eq. 4.89
Case (Last{sla) = (‘L‘;, approach) A Last{sB) = (7, dstop))
Using the fact that (SLIDERT ,ll; CONT) satisfies the specifications Q(s,['a,
R,UR,) and R,(s,I'B, X;UR) it can be seen that for all (s, R) in (SLIDERT I,
CONT)

Last(s) = (1,, approach) = R =R URso0p Eq. 4.90

Analysis of the sets X, R4, shows that there exists at least one time value 7' (7,
< 1T' < 1,+1M) such that (7', commit) does not belong to X ,UR 4., provided

(T, +A)<(T,+M) A (T, +A; +09)> (T, +A,) Eq. 491
Case (Last{sl'A) = (t,, approach) A Las{s['B) = (1,, extract))
Using predicates Q and R, gives that for all (s, R) in (SLIDERT ,ll; CONT)
Last(s) = (1,, approach) = R=RUR .. Eq.4.92

Analysis of the sets X, R, shows that there exists at least one time value 7' (T, <
T' < 1,+1) such that (', commit) does not belong to X ,UR ;... provided

(T +A)<(T,+M) A (T, +A, +0)> (T, +A,) Eq.4.93
Case (Last{sl'A) = (t,, approach) A Last{s[B) = (1, dstart))

Using predicates Q and R, from equation 4. gives that for all (s, X) in (SLIDERT
conT)

110

Last(s) = (T,, approach) = R =R URgrare Eq. 4.94

Analysis of the sets X, R4, ... shows that there exists at least one time value T' (T,
<1'<1,41n) such that (', abort) does not belong to X _UR 4., ., provided

(T, +A)<(T,+Mm) A (T, +A;+9)> (1, +A,) Eq. 4.95

Thus for all the cases cited in the consequence of equation 4.74 there is always some
suitable time T' (T, < T' < T_,+M) such that either (t', commit) or (7, abort) is not
a refusals at the decision point. Therefore it can be concluded that provided the time
conditions expressed in equations 4.89, 4.91, 4.93 and 4.95 hold, then the timed
liveness specification holds for (SLIDERT ,ll; CONT). It then follows that the liveness
specification holds for (SLIDERT ,ll; CONT) , !l DRUMT.

111

CHAPTER FIVE

CATENARY FUNCTIONS

3.1 Introduction.

The previous chapter outlined a verification system which is flexible, comprehensive
and rigorous. Its flexibility stems from a well structured mathematical basis which
defines a number of inter-related models. It is comprehensive because it has a formal
specification language based on predicate calculus. It is rigorous in the sense that there
is a sound and complete inference rule associated with each operator for the majority of
domains.

However, one sense in which the system is lacking is its inability to present a tangible
user interface. Even for the simpler models the inference rules can be complex. In turn
this means that proofs for even relatively small systems are liable to rapidly become
prohibitively complex.

This is tempered to some extent by the compositional nature of the proof system.
Proofs can be carried out in a modular fashion and be syntax directed. However, these
procedures often require both an in depth knowledge of the calculus and a high level of
familiarity with the process involved.

An obvious benefit would be the ability to replace some of the complex proof
obligations with automated methods. Automation provides a more user-friendly
interface to formal verification. It has the potential to reduce the tedium of long proofs,
which in turn minimises the occurrence of trivial mistakes, and to accelerate verification
methods and instil confidence in them.

This chapter has two aims. The first is to study some of the different approaches to
automatic verification and testing. The second is to lay the foundations for a new
approach to testing based on the concept of an ideal test. Central to the development of

112

Chapte Five: C Funct

this approach is the idea of Catenary functions. A Catenary function is one which

permits its fixed point to be represented as the catenation of traces from a certain
defined set.

2 Verification and Ideal

There are two main approaches to verifying that a system will meet its specification;
testing and formal proof. To assess their relevance it is worth describing and
contrasting these methods.

The procedure of testing a system involves empirically comparing its actual response
against its desired response [Lanski 89]. Most often testing is implemented by
comparing the actual output obtained from a specific input against the desired output
with regard to the specification. By using specific input values testing can show that
those particular values do not lead to incorrect behaviour of the system. As a result it is
only possible to demonstrate the correctness of a system by testing that every input
results in a correct output. That is the system can only be verified by individually
investigating every possible behaviour the system may exhibit. This procedure is
known as exhaustive testing.

The advantage of exhaustive testing is that it is relatively easy to implement. It adopts
a direct approach which does not impose the need for an in-depth understanding of the
system upon the verifier. The disadvantage is that it is a cumbersome method which
can lead to long, possibly unmanageable, verification procedures.

Exhaustive checking is fully automatable, and is the basis of the concept of model
checking described later in this chapter. To exhaustively test a CSP process would
involve evaluating the behavioural specification for each and every process observation.

3.2.2 Formal Proof.

With a formal proof a system is expressed as a collection of axioms and inference
rules. The system specification is formally expressed as a theorem. Correctness is
established by showing that the specification theorem is a valid theorem of the formally
described system. A valid theorem is one which can be deduced by applying a
sequence of inference rules to established axioms. Thus verification is carried out by
applying appropriate inference rules to suitable axioms to factorize a proof for the
required specification. In order to assure the validity of any formal correctness proof
there are three requirements which must be fulfilled

113

Chapter Five: C P

i) There is a complete axiomatization of all aspects of the system at hand;
including the code, the operating systems, drivers etc.

ii) A suitable set of initial axioms and a corresponding sequence of
inference rules must be found which will lead to the proof of the
specification.

1ii) Each deductive step in the proof can be shown to be correct.

The advantage of formal proof is that it provides an elegant and concise means of
proving correctness. Additionally it possesses general rules which can cope with
complex structures such as loops and recursion. It is these same structures which often
make exhaustive testing infeasible because of the quantity of behaviours they produce.
This gives formal proof a wider scope than exhaustive testing.

Alternatively to effectively employ formal proof often requires both a familiarity with
specific techniques and an in depth understanding of the system at hand. In particular
the first and second of the above criteria, axiomatising the system and choosing suitable
axioms and inference rules to factorize a proof, are formidable procedures to
implement.

For all the semantic models of CSP described in Chapter 4 each syntactic operator is
fully axiomatized by a sound inference rule. This means that for a syntactically correct
CSP process conditions (i) and (iii) will always hold. It is the role of automatic
theorem provers such as those described later in the chapter to determine a suitable path
to a proof.

2 mpari in

When comparing exhaustive testing with formal proof it should be noted that the
objective of testing is in some respects at odds to that of proving. Formal proof aims to
show that a system is correct, whereas testing tries to show that certain behaviours are
incorrect.

To some extent the advantages and disadvantages of each approach overlap one
another. Testing is automatable and has an approachable user interface in that it
requires little comprehension of the system on the part of the verifier. But it offers the
prospect of a long, sometimes infeasible, verification procedure. Alternatively, formal
proof provides a concise and elegant method of verification, but it is difficult to
automate and requires more expertise with the formal method and the system concerned
by the verifier.

114

Chapter Five: C. _

This overlap indicates that there is scope for a compromise between both of these
methods. It may be possible to combine the most desirable properties of each and
produce a verification method which has a tan gible user interface, a flexible scope and
is realistic to automate.

This concept was addressed in a seminal paper by Goodenough and Gerhart [
Goodenough 75]. They recognize the benefits of testing but also acknowledge the
impracticality of exhaustive testing. The paper identifies the essence of testin g as being
to establish a base proposition for an inductive proof. It sets out to develop a theory of
testing based on the following concept of an ideal test.

Definition 5.1: (From [Goodenough 75]) Let D be the set of all possible inputs
available to a system, and let F(d) be the output of the system corresponding to an
input d. The predicate OUT(d, F(d)) is defined to be a statement which is true if
and only if F(d) is an acceptable output with respect to the specification of the
system.

If Tis a subset of D, then T is said to be an Ideal Test if and only if

(VteT.OUTH, F(1)) = (VdeD+OUTW, F(d))) Eq.5.1
|

Automa Verification Techni

Automated verification techniques fall broadly into two categories. The first approach
concentrates on demonstrating specifications by a method called model checking [
Ramsay 88]. With this, labelled transition systems are generated and possible
sequences of states or behaviours are explored. Analysis is carried out usually by
means of a decision procedure. The advantages of model checking are that it is simple
to implement and fully automatic. However, it can only practically be used for
reasoning about a finite number of process behaviours, with a small number of
branches at each stage. It is susceptible to the problem of state explosion in complex
systems.

Implementing model checking for a CSP process involves generating the set of
process observations and then comparing them against the behavioural specification.
Kourie [Kourie 87] has developed a generator for CSP, written in Prolog, which
generates the observations of a process in the traces domain M. He goes on to indicate
that with modification the Prolog code has the ability to pose questions about these
traces and thus establish certain properties about the process concerned.

95

Chapter Five: C Fupct

A more rigorous approach to developing a extensive model checker is achieved by
Concurrency Workbench [Cleaveland 90]. Developed by researchers at the
Laboratory for the Foundations of Computer Science in Edinburgh during the middle to
late 80’s, this tool is based on Milner’s CCS [Milner 80]. Specifications are initially
expressed in the user oriented interface logic which is a modal logic known as the mu-
calculus (p-calculus). These specifications are then translated into a logic called the
system logic, which is a machine oriented form, and compared against a generated
semantic model.

The second approach to automated verification is that of theorem provers [Ramsay
88]. These represent the specification of a system as a set of theorems. The system
itself is defined by a collection of axioms and inference rules. A theorem must either be
postulated as an axiom or deduced from existing theorems and axioms via inference
rules. Thus specifications are established by an automatic process of logical deduction.
The advantage of such an approach is that in many instances is affords a more elegant
proof than model checkers, and it is not restricted to systems with finite behaviours. It
is, however, much more complex to implement. Additionally, formal logics of the
order of predicate logic or higher are not fully decidable [Galton 90], and therefore for
these theorem proving can never be a fully automatic procedure.

The concepts and strategies involved in theorem proving encompass a wide area in
the field of artificial intelligence, and for further discussion the reader is directed to [
Ramsay 88]. For the purposes of this text two particular examples of theorem provers
are considered because of their application to CSP. The first is the HOL theorem
prover, developed by M.J. Gordon at the University of Edinburgh [Gordon 88,
Inverardi 91]. It consists of two elements, the Higher Order Logic (HOL), which is an
extension of predicate calculus, and a general purpose programming language called
ML [Wilkstrom 87] which is used to mechanize the logic. The HOL theorem prover
has been used to mechanize both the traces model [Camilleri 90] and the failures
divergence model [Camilleri 91] of CSP. It achieves this by adopting a suitable set-
based interpretation for each model and then representing the semantic definition of
each operator as an inference rule expressed as a program in ML. These programs are
then applied to supplied axioms to generate new theories.

The B-Tool [Abrial, J.R.] was developed by J.R. Abrial in cooperation with the
Programming Research Group at Oxford University and British Petroleum’s Research
Centre at Sunbury. It specifies processes in a simple language which is an extension of
Dijkstra’s language of guarded commands [Dijkstra 76]. The tool itself is a Pascal
program that acts as a proof assistant by applying inference rules which are supplied to
it as theories. By supplying the appropriate inference rules the tool has been used to
support alternative formalisms including CSP [Davies 87] and Z.

116

5.4 Motivati

In the light of the concept of model checking, the followir;g observations were made
about the arbor drum example cited in Chapter 4:

* Each of the sequential processes SLIDER, CON and DRUM essentially repeated one
of a fixed set of behaviours. That is, on each recursive call the processes perform a
trace from this fixed set and then make another recursive call. Here the recursion was
seen to be equivalent to a loop. For a specific illustration of this see Example 5.1.

* There was no inherent bound to the behaviours of each of the sequential processes
SLIDER, CON and DRUM. Theoretically they would never terminate.

* There existed a compositional proof system in which to prove particular system
properties for each of SLIDER, CON and DRUM. In the example cited the inference
rule associated with the alphabetized parallel operator was successfully used to derive
a correctness proof.

The first of these observations suggests that for at least some CSP functions there is
an explicit link between recursion and catenation. That is that the recursive definition of
a function may be replaced by a definition based on the successive catenation of traces
from a particular set. This in turn suggested that such a link had the potential to be
exploited in the verification of a process behaviour, particularly with respect to model
checking.

The second property, however, indicates that, in its basic form, model checking
would be unsuitable. This is because a theoretically non-terminating process would
generate a prohibitively large amount of behaviours. This makes exhaustive testing of
the process behaviours infeasible. If it were to be used, therefore, it would be
necessary to appropriately modify the principles of model checking.

The third observation indicates that even if it were only possible to establish a
verification system for a limited set of functions which behaved in a suitable manner,
CSP possesses a compositional proof system with the ability to fill in any gaps in the
proof which this would entail.

The chapter now concerns itself with the problem of finding a subclass of processes
which repeat the same behaviours on each recursive call. In order to investigate the
nature of such processes the text introduces a particular category of CSP functions,

117

Chapter Five: C o

namely the Catenary functions. The following example gives an instance of such a
function

Example 5.1: One particular trait inherent in the control logic of the slider and
drum mechanism of the previous chapter was that recursion led to the process
repeatedly performing a trace taken from a limited set. Consider the untimed process
SLIDER which was defined by the function

Fn(X) = approach — ((commit —» enter — slow —
perform — extract — X)
O (abort —» decelerate - allow —
accelerate — enter — slow —
perform = extract — X)) ' Eq. 5.2

Furthermore, consider the two following traces,

S = < approach,commit, enter, slow,
perform, extract > Eq.5.3
S, = < approach, abort,decelerate,allow,

accelerate, enter, slow,
perform, extract > Eq. 5.4

When placed outside the environment of the slider/drum mechanism SLIDER may
either approach and commit, in which case it performs trace s,, or it may approach
and abort, in which case it will perform trace s,. After each of these options
SLIDER then recurs and repeats the same behaviour. The result of applying the
function F,, to some arbitrary process P is that F,,,(P) will either perform s, and
then behave as P, or perform s, and behave as P. This is expressed in terms of

traces as

Traces(F ,(P)) = Traces(F ,,(STOP)) U
{stl(s=s;Vs=s,)At e Traces(P) } Eq.55

It is noted that the behaviour of the operand P is not fundamentally altered by the
process F, - at some stage in its execution F,.(P) will behave like P. Specifically
F,(P) behaves like P after engaging in either s; or s, . That is

118

Chapter Five: Catenary Functions

F(P)/s, =F(P)/s, =P Eq.5.6

If P is a process which does not deadlock on its first step then it is possible to derive

the equivalence 4

Traces(F (P)) = Traces(F ,(SKIP) ; P) Eq. 5.7

Because SLIDER is the fixed point of F - the limit of repeatedly applying the

function to some process - the above equivalence can be used to show that

Traces(UP.F,(P)) = Traces(F ,(SKIP) ; F,(SKIP);..) Eq. 5.8
5]

Equation 5.7 shows that F (P) can be teased into two parts, first the behaviour
induced by the functional definition, and then the behaviour exhibited by the operand.
Equation 5.8 shows how this leads to recursion being represented as the sequential
composition of an infinite number of finite processes.

5.5 Relating Recursion to Sequential Composition and Catenation.

Before discussing the link between recursion and catenation it is convenient to
introduce here the concept and notation of Set Catenation. This extends the concept of
catenation from that given in Chapter 3 to sets of traces and serves to simplify equations
which follow in the text. It has the following definition

Definition 5.2: For two sets of traces A and B the Set Catenation of A and B is
defined as A * B, where

A*B={stlse Arte B} Eq. 59

Set Catenation is associative, distributes over set union and intersection and has the
empty trace, { <> }, as its unit. The follows rules apply for all sets of traces A, B, C

and for any set of events D.

)y AM<) = {<>}"A=A Eg. 5.10

119

Chapier Five: C Fuct

ii) ANB"C)

i) A"BuUO)
! & (AuB)*C

iv) ABNO)
& (AnB)*C

V) A*B - A"C
& AC-B”C

vij AFMD*BI'D

vii) {} " A

]

(A*B)*C

(A"B)uU (A%C)
(A"C)u B*0O)

(A"B)n (A"C)
(A B O

A*B-C)
(A-B)*C

(AB)' D

{} = A™{)

These results are proved in Appendix B

Example 5.1 illustrates that there is at least one function which allows recursion to be
expressed in terms of sequential composition and thus catenation. A natural response
to this is to address the problem of identifying a broad general class of functions which
exhibit similar properties. In order to achieve this it is necessary to specify the qualities
which such a class of functions must possess. For a function F and an arbitrary

process P these are summed up by the following points.

* Primarily a function must not fundamentally alter the behaviour of its operand. That
is for a function F and operand P there must be some stage in the execution of F(P)
during which it behaves like P.

» Additionally it must be possible to divide the behaviour of F(P) into two distinct
parts. The behaviour induced by the functional definition of F, and the behaviour

exhibited by the operand P.

These points give rise to two main problems. First the behaviour induced by the
functional definition must be identified and expressed in a convenient fashion.
Secondly it is necessary to precisely define the nature of the link between recursion and
catenation, and to place it on a mathematical footing which permits analysis.

To address the first of these problems, consider the following theorem

120

Eq.5.11

Eq. 5.12

Eq.5.13

Eq.5.14

Eq. 5.15

Eq.5.16

Theorem 5.1: Let F be a CSP function. For every process P the process F(P)
contains the behaviours of the process F(STOP). That is

VPe CSP - Traces(F(P)) 2 Traces(F(STOP)) Eq.5.17
Furthermore, if F is a contraction on the metric space (Mr, d;), then for every
process P the process F(P) will exhibit the same behaviour as F(STOP) for at least its
first step. That is

V s € Traces(F(P)) ® < First(s) > € Traces(F(STOP)) Eq. 5.18

Proof
Appendix A states that for the partial ordering 3 on the set of CSP processes the

lower bound is STOP and every CSP function is monotonic. Therefore

P 3 STOP , lower bound of 3 Eq.5.19
F(P) o] F(STOP) , monotonicity of F Eq. 5.20
Traces(F(P)) 2 Traces(F(STOP)), definition of 2 Eq. 5.21

If F is a contraction, then forn;,n, € N

dy(F(P), STOP) = —I%I > an = 4,(F(P), F(STOP)) Eq.5.22

Since STOPI 0 = STOP it can be deduced that n, = 0. As a consequence n, must be
greater then or equal to 1. Hence from the definition of d,

uP.F(P) 1 = F(sTop)1 Eq.5.23
s € Traces(F(P)) = < First(s) > € Traces(F(STOP)) Eq. 5.24
O

What Theorem 5.1 hints at (but does not prove) is that a process of the form F(P),
where F is a contraction and P an arbitrary process, will always initially behave in the

121

Chapter Five: Catenary Functions

same way as F(STOP). This in turn suggests that, because F(STOP) is independent of
the operand P, this behaviour is a result of the functional definition of F rather than any
behaviour of P. Additionally, because the text is only concerned with functions which
do not fundamentally alter the behaviour of P, it is reasonable to suppose that the
behaviour of F(P) can be informally summed up by the statement

F(STOP) then P Eq. 525

In the above, then represents some indefinite operation which sequentially joins
F(STOP) to P. It is inappropriate to replace then with the sequential operator “;”,
because this makes demands about the successful termination of F(STOP) which it may
not be prepared to meet. Instead t hen anticipates that, for F(P), there are certain traces
of F(STOP) that can be prefixed to those of P which result in traces of F(P). It
therefore identifies such traces and accordingly prefixes only these to traces of P.

Thus the process F(STOP) then P is one which behaves like F(STOP), and
subsequently, after certain traces of F(STOP), behaves like P. This can be summed up
formally as

Traces(F(STOP) then P) = Traces(F(STOP)) U (D N Traces(P)) Eq.5.26

where D is some subset of F(STOP). That is D is the set of traces from F(STOP)
which can be prefixed to traces in P to yield traces in F(P).

5.6 Dedicated Eve and Catenar nctions.

The concept of a dedicated event is introduced here as a notational tool. Its purpose is
to allow the subset D of F(STOP), referred to above, to be identified in terms of the

functional definition of F alone.

Definition 5.3: For a function F the dedicated event * is defined to be some event
which is not directly or indirectly included in the definition of F. That is it is totally
unconnected with F in that it is not in the alphabet of F(STOP), F does not hide *
from the environment and F does not involve a change of symbol concerning *.
Furthermore DED is defined to be the process which starts, performs the dedicated

event * and does nothing more. |

122

Chapter Five: C Functi

Informally, the process DED is intended to act as a substitute for the process P in the
expression F(P). If a trace s”< * > belongs to F(DED) this implies that a trace s"t
belongs to the process F(P), where t € Traces(P).

This line of reasoning permits the generation of a set of traces which may be suffixed
to Traces(P) to result in Traces(F(P)). Call this set ’_Dyf and define it by

/

Definition 5.4: For a function F the set Dy is defined by the expression

Dy = (Traces(F(DED)) - Traces(F(STOP)))I' {Z - *} Eq. 5.27

The above definition of the set Dy now permits the formal concept of a Catenary
function to be introduced here.

Definition 5.5: A function F is said to be Catenary if for all processes P

Traces(F(P)) = Traces(F(STOP)) U (D " Traces(P)) Eq. 5.28
|

Informally a function F is Catenary if, when it is applied to a process P, it results in a
process which behaves first as F(STOP) and then as P.

7 _Instan f Function

This section considers each of the individual syntactic operators of CSP and
determines in what way they can be used to define Catenary functions.

Theorem 5.2: The identity function

F(P)=P Eq.5.29
is a Catenary function [|
Proof

F is the identity function, therefore F(STOP) = STOP. Furthermore,

t Note: The set description D should not be confused with the metric dg. They are unconnected.

123

i Five: C R

Dy = (Traces(DED) - Traces(STOP))I {Z-*}={ <>} Eq. 5.30
Traces(F(STOP)) U (Dy " Traces(P)) Eq.5.31
/
={<>}u({<>}"? Traces(p)) = Traces(P) = Traces(F(P)) Egq.5.32
Therefore the identity function is a Catenary Function. O

Theorem 5.3: If F is a function which is independent of the operand P, then F is a
Catenary function. it

Proof
If F is independent of the operand P then F(P) will be the same for all values of P.
That is there is some set of traces A, say, such that.

Y P e CSP ¢ Traces(F(P)) = A Eq.5.33

Consider then the expression

Traces(F(STOP)) U (D" Traces(P)) Eq. 5.34

=AU A-A)MZ-*} " Traces(p)) Eq. 535

= AU ({) ? Traces(p)) =A = Traces(F(P)) Eq. 5.36
Therefore F is a Catenary function. O

The immediate corollary of Theorem 5.3 is that F(P) = SKIP and F(P) = STOP are
Catenary functions.

Theorem 5.4: The prefix operator is a Catenary Function. That is for some event
a the function F defined by

F(P)= a— P Eq. 5.37

is a Catenary Function. []

124

Chapter Five: C _

Lroof

From the definition of the prefix operator,
Traces (F(P))={ <>,<a>}u({<a>}" Traces(P)) Eq. 5.38
Consider the expression,

Traces(F(STOP)) U
((Traces(F(DED)) - Traces(F(STOP))) X - *} Traces(P)) Eq. 5.39

It can be seen that,

Traces(F(STOP)) ={ <>,<a >} . Eq.540
Traces(F(DED)) = { <>,<a>,<a,*>} Eq. 5.41
Therefore equation 5.39 becomes,

{<>,<a>}u
(({<>,<a>,<a,*>}-{<>,<a>})M{Z-*} " Traces(P)) Eq.542

={<>,<a>}uU({ <a>}" Traces(P)) = Traces(F(P)) Eq. 5.43
Thus the prefix operator is a Catenary function. a

Theorem 5.5: Both Deterministic Choice and Nondeterministic Choice are
Catenary functions. That is if a function F is defined by either expression

F(P) =G,(P)OG,(P) Eq. 5.44
F(P) =G,(P)IG,(P) Eq. 5.45

where G, and G, are Catenary functions, then F is a Catenary function. =

Proof
To prove this result first requires three preliminary results

Lemma A: If G is a Catenary function then

125

S € (Traces(G(DED)) - Traces(G(STOP))) = ¥*in s Eq. 5.46
B
/
Proof of Lemma A
From the definition of a Catenary function there is a set of traces such that
Traces(G(DED))= Traces(G(STOP)) U (D * Traces(DED)) Eq. 5.47
Traces(G(DED)) - Traces(G(STOP)) = Dg " { < * > } Eq. 5.48
s € (Traces(G(DED)) - Traces(G(STOP))) Eq. 5.49
= Lasf(s)=* = *ins Eq. 5.50
O

Lemma B: If G, and G, are CSP functions and G, is a Catenary function then

(Traces(G,(DED)) - Traces(G,(STOP))) N G,(STOP) = { } Eq. 5.51
|
Proof of Lemma B
From the definition of DED and the Lemma B
(s € G,(STOP) = —(*in s))

(A s € (Traces(G,(DED)) - Traces(G,(STOP))) = *in s) Eq. 5.52

(Traces(G,(DED)) - Traces(G,(STOP))) N Traces(G,(STOP)) = {} Eq.5.53

O
Lemma C: If A, B, C and D are sets then
(A-B)nD={} A (C-D)nB={}
= (A-B)u(C-D)=(AuC)-(BuUD) Eq. 5.54
n

Proof of Lemma C

126

Chapter Five: C _

This result is proved in Appendix B. O
Continuing with the main proof, by definition for processes X, and X,
/
Traces(X,MX,) = Traces(X, 0X,) = Traces(X,) L Traces(X,) Eq. 5.55
Expanding the definition of a Catenary function, where F(P) = G,(P)0G,(P)

Traces(F(STOP)) U (D" Traces(P)) Eq. 5.56

= Traces(G,(STOP)0 G,(sTOP)) U ((Traces(G,(DED)OG,(DED))
- Traces(G,(STOP)OG,(STOP)))M{Z - *} * Traces(P)) Eq. 5.57

= Traces(G,(STOP)) L Traces(G,(STOP)) U (((Traces(G,(DED)) U
Traces(G,(DED))) - (Traces(G,(STOP)) U Traces(G,(STOP))) {Z - *}
A Traces(P)) Eq. 5.58

Using Lemmas B and C,
= Traces(G,(STOP)) U Traces(G,(STOP)) L (((Traces(G,(DED)) -
Traces(G,(STOP))) L (Traces(G,(DED)) -
Traces(G,(STOP))))I {Z - *} * Traces(P)) Eq. 5.59
Expanding this expression using the rules given in Definition 5.2
= (Traces(G,(STOP)) U ((Traces(G,(DED)) - Traces(G,(STOP)))I {Z - *}
A Traces(P))) v

(Traces(G,(STOP)) L ((Traces(G,(DED)) - Traces(G,(STOP)))I {Z - *}
A Traces(P))) Eq. 5.60

From the definitions of the Catenary Functions G, and G, this reduces to
= Traces(G,(P)) UTraces(G,(P)) Eq. 5.61
= Traces(G,(P)0G,(P)) = Traces(F(P)) Eq. 5.62

Therefore the function F is a Catenary function.

127

Chapter Five: Catenary Functions

The proof for the nondeterministic operator follows in the same way, because it has
the same semantic interpretation in the traces model. 0O

Theorem 5.6: For a Catenary function G and a process X the function F defined by

F(P) =X ; G(P), where X is independent of P Eq. 5.63
is a Catenary function.]
Proof

Let A be the set of all traces in Traces(X) which end with the termination event. That
is

A={tlLast)=v A te Traces(X)) Eq. 5.64

Then by the definition of sequential composition [Hoare 85]
Traces(X ; G(P)) = (Traces(X) - A) U (A " Traces(G(P))) Eq. 5.65

= (Traces(X) - A) U (A " (Traces(G(STOP)) U ((Traces(G(DED))
- Traces(G(STOP))) {Z - *} * Traces(P)))) Eq. 5.66

= (Traces(X) - A) U (A " Traces(G(STOP)))
U (A " ((Traces(G(DED)) - Traces(G(STOP))F (X - *} * Traces(P)))

Eq. 5.67

= (Traces(X) - A) U (A * Traces(G(STOP)))
U ((((Traces(X) - A) U (A * Traces(G(DED))))
- (Traces(X) - A) U (A Traces(G(STOP))))) {Z - *} * Traces(P))

Eq. 5.68

= Traces(F(STOP)) U ((Traces(F(DED)) - Traces(F(STOP))) I'{X - ¥}

” Traces(P)) Eq. 5.69
Which satisfies the definition for a Catenary function. O
Theorem 5.7: Interleaving is not a Catenary Function []

128

Chapter Five: Catenary Functions

Eroof

By counter example. Consider the function F and process P defined
F(P)=a — STOP Il p, P=b—c — STOP
Traces(F(P))={.,<b,a,c>,.)

A Traces(F(STOP)) ={ <>,<a > }
A (Traces(F(DED)) - Traces(F(STOP))) [{Z-*} ={ <>, <a >}

The Catenary definition can be expanded
Traces(F(STOP)) U (Dy " Traces(P))

={<>,<a>}u({<>,<a>}"{<>,,<b,e>})

<b,a,c>¢ (Traces(F(STOP)) U (Ds " Traces(P)))
= Traces(F(P)) # Traces(F(STOP)) U (Dy " Traces(P))

Therefore Interleaving is not Catenary

Theorem 5.8: Change of Symbol is not a Catenary Function

Proof

By counter example. Consider the function F and process P defined
F(P) = f(P), where f: a — b - (f changes event a to event b)
P =a — SKIP

From these definitions

Dg={ <>} ATraces(F(P))={ <>,,<b, vV >}
Traces(F(STOP)) U (Dy " Traces(P))
= {4>}u({<>]’\{<>,{a>,<a,~/>})

={<>,<a>,<a,v >} #Traces(F(P))

129

Eq. 5.70

Eq.5.71

Eq.5.72

Eq. 5.73

Eq.5.74

Eq. 5.75

Eq. 5.76

Eq. 5.77

Eq. 5.78

Eq. 5.79

Eq. 5.80

Thus Change of Symbol is not Catenary O

Theorem 5.9: The hiding operator is not a Catenary function. =

Proof

By counter example. Consider the function F and process P defined
F(P)=P\{a}, _ P=a— b — SKIP Eq. 5.81

From these definitions

Dy={ <>} A (Traces(F(P)) ={ <>,,<b,v >}) Eq582

Traces(F(STOP)) U (Dy " Traces(P)) Eq. 5.83
= {<>}u({<>}" Traces(p)) Eq. 5.84
= {<>,<a>,<a,b>,<a,b, v >} Eq. 5.85
Traces(F(P)) Eq. 5.86

Thus for an arbitrary set of events A the function F = P\ A is not a Catenary
function. O

Theorem 5.10: If F and G are Catenary functions, then so is the composition of F
and G, G ° F, (That is F(G())). []

Proof
Using the rules given by Definition 5.2 (v) and (vi), first establish the result

(Traces(F(DED)) - Traces(F(STOP))) [{Z-*}
A (Traces(G(DED)) - Traces(G(STOP))) ['{Z - *} Eq. 5.87

= ((Traces(F(DED)) - Traces(F(STOP))) " Traces(G(DED)))I'{X - *}
- ((Traces(F(DED)) - Traces(F(STOP))) A Traces(G(STOPR)))I (X - *}

Eq. 5.8

130

= ((Traces(F(STOP)) U ((Traces(F(DED)) - Traces(F(STOP))) ['{X - *}
» Traces(G(DED))))I {Z - *)

- (Traces(F(STOP)) U ((Traces(F(DED)) - Traces(F(STOP))) [{Z - *}
N Traces(G(STOR)))MZ - *} Eq. 5.89
= (Traces(F(G(DED))) - Traces(F(G(STOP))) [N Z - *} Eq. 5.90

Because both F and G are Catenary functions,

Tréces(F(G(P))) = Traces(F(STOP))

U ((Traces(F(DED)) - Traces(F(STOP))) ['{Z - *}
A Traces(G(P))) Eq. 5.91
Traces(G(P)) = Traces(G(STOP))
U ((Traces(G(DED)) - Traces(G(STOP))) (X - *}
A Traces(p)) Eq. 5.92
Therefore,
Traces(F(G(P))) = Traces(F(STOP))

U ((Traces(F(DED)) - Traces(F(STOP))) ['{Z - *}

A (Traces(G(STOP))

U ((Traces(G(DED)) - Traces(G(STOP))) ['{Z - *}

A Traces(P)))) Eq.5.93

= Traces(F(STOP))

U ((Traces(F(DED)) - Traces(F(STOP))) [{Z - *} * Traces(G(STOP)))

U ((Traces(F(DED)) - Traces(F(STOP))) ['{Z - *}

A (Traces(G(DED)) - Traces(G(STOP))) ['{Z - ¥} A Traces(P)) Eq. 5.94

From the definition of a Catenary function,

Traces(F(G(STOP))) = Traces(F(STOP))
U ((Traces(F(DED)) - Traces(F(STOP))) ['{Z - *}
A Traces(G(STOP))) Eq. 5.95

From equation 5.90,

131

/

(Traces(F(G(DED))) - Traces(F(G(STOP)))) ['{Z - *}
= (Traces(F(DED)) - Traces(F(STOP))) ['{Z - *}
" (Traces(G(DED)) - Traces(G(STOP))) [M{Z . *} Eq. 5.96

By substituting these into equation 5.95,

Traces(F(G(P))) = Traces(F(G(STOP)))
U ((F(G(DED)) - F(G(STOP))) ['{Z - *}
A Traces(G(STOP))) Eq.5.97

This is the definition of the Catenary function G ° F. Thus G ° F is a Catenary
function. =

As a direct result of Theorem 5.10 it is now possible to derive a syntactic definition
for a Catenary function.

Corollary 5.1: A function F is a Catenary function if it holds for both the
following

* F is an expression composed of the following operators: sequential , deterministic
choice, nondeterministic choice, prefix.

* For every occurrence of the sequential operator the left hand argument must be
independent of the operand.
|

The advantage of this is that, compared to the original semantic definition, a syntactic

definition is easier to identify. It comes straight from the syntactic definition of the
process and does not require any further analysis.

: Parallel mposition

There is one notable omission to the operators discussed in the previous section, that
of the parallel operators. This is because they possess certain properties over recursion
which require discussion.

132

Chapter Five: C. Functi

The first point to note concerns the use of the alphabetized parallel operator in a
recursive function. In these circumstances it becomes equivalent to the non-
alphabetized parallel operator Il, which requires parallel processes to synchronize on
every step. This is illustrated by the definition from [Hoare 85] that for all processes
P and CSP functions F

Alphabet(F(P)) = Alphabet(P) Eq. 5.98
This is illustrated by considering the function F defined by
F(P) = G,(P) ,ll; G,(P) Eq. 5.99
It can be seen that since Alphabet(G,(P)) = Alphabet(P) and Alphabet(G,(P)) =
Alphabet(P) it follows that Alphabet(G,(P)) = Alphabet(G,(P)). That is that A =B. In

these circumstances the alphabetized parallel operator becomes equivalent to .
The simplification which this assertion affords leads to an important result. That if,

for a set of Catenary functions F,, F,, .., F,, the alphabetized parallel operator is used
in the definition of a recursive function of the form
Fi(P)IF,(P) I .. NF(P) Eq. 5.100
then the traces of this process are such that
Traces(F,(P) Il .. | F(P)) = Traces(F,(P)) N .. N Traces(F,(P)) Eq.5.101

The second point to note is that parallelism is not a Catenary function.

Theorem 5.11: The Alphabetized Parallel Operator is not Catenary L]

g_;riqiunter example. Consider the function F and the process P defined by
F(P)=b—> Pllb—>c— P, P=c—>c—>b-—>SKIP Eq.5102
Now,
Traces(F(DED)) = Traces(F(STOP)) = { <>, } Eq. 5.103

133

. Five: C Funcii

It is now possible to use this definition of Weak Catenary functions to develop a rule
determining the properties of the parallel operator.

Theorem 5.13: If P is an arbitrary process and F, G are Weak Catenary functions,
then the parallel composition of F(P) and G(P), F(P) Il G(P), is such that

Traces(F(P) Il G(P)) < Traces(F(STOP) |l G(STOP)) A Traces(P) Eq. 5.110
That is F(P) Il G(P) is Weak Catenary. i)

Proo
By definition,

Y P ¢ Traces(F(P) Il G(P)) = Traces(F(P)) N Traces(G(P))

C (Traces(F(STOP)) ® Traces(P)) N (Traces(G(STOP)) A Traces(P))

Eq. 5.111

c (Traces(F(STOP)) N Traces(G(STOP))) * Traces(P) Eq.5.112

c Traces(F(P) | G(P)) * Traces(P) Eq. 5.113
Therefore F(P) Il G(P) is Weak Catenary. O

Theorem 5.13 may be generalised to a set of n Catenary functions.
Corollary 5.2: If the functions F,, F,, .., F, are either Catenary or Weak
Catenary functions, then the parallel composition.
F,(P) I Fy(P) Il .. 1 F (P) Eq. 5.114
is a Weak Catenary Function. That is

Traces(F,(P) | Fo(P) Il .. || F(P))
 Traces(F,(P) Il F,(P) Il .. 1 F(P)) * Traces(P) Eq. 5.115

135

If F is a Weak Catenary function then this implies that the fixed point of F can be
expressed as the catenation of a infinite number of the same set of behaviours.
/

Theorem 5.14: If F is a Weak Catenary Function then

Traces(uP.F(P)) < Traces(F(STOP)) ™ Traces(F(STOP)) * .. Eq.5.116
Proof
F is Weak Catenary, therefore

Traces(F(P)) < Traces(F(STOP)) * Traces(P) Eq.5.117
Because uP.F(P) is the fixed point,

UP.F(P) = F(LP.F(P)) Eq.5.118

Traces(F(LP.F(P))) < Traces(F(STOP)) * Traces(up.F(P))

c Traces(F(STOP)) * Traces(F(STOP)) * Traces(P) Eq.5.119
=
c Traces(F(STOP)) * Traces(F(STOP)) * .. Eq. 5.120
O
5.9 lati Functi r

Finally in this chapter a result is provided which explicitly illustrates how the fixed
point of every Catenary function F is made up from the catenation of traces from a

particular subset, specifically F(STOP).

Theorem 5.15: Let F be a Catenary function. Let n be a non-zero positive integer
and r,,.., r, be traces. Then the trace s is such that

s € F?(STOP) & s=r0rg Eq. 5.121

136

where g<n, T1Xq-1 € Dyand r, € Traces(F(STOP)) |

Proof
For convenience of notation, let (D4") represent the set catenation of n sets Dy. That
is

@5 = (D" .. " Dy Eq. 5.122

From the definition of a Catenary function it can be seen that

Traces(F(STOP)) = Traces(F(F™-*(STOP)))

Traces(F(STOP)) U (Dg " Traces(F™ 1(STOP))) Eq. 5.123

Traces(F(STOP)) U (Dy " (Traces(F(STOP))
U (D" Traces(F™%(STOP))))) Eq.5.124

Traces(F(STOP)) U (D" (Traces(F(STOP)))
U (D" D" Traces(F*-*(STOP))))) Eq. 5.125

Continuing this expansion results in the expression

= Traces(F(STOP)) U (D " Traces(STOP))
U (D) " Traces(P)) U .. U (D) * Traces(STOP)) Eq.5.126

Now, if there is some integer g <n such that ry,.,r, ;€ Dyand r e
Traces(F(STOP)), then

r,"."ry €.(Dy3) " Traces(F(STOP)) Eq. 5.127
Therefore comparison with equation 5.126 yields
r,.."r4 € Traces(F"(STOP))

Conversely if s € Traces(F*(STOP)) then inspection of equation 5.126 shows that s
must belong to one of the unified sets. Therefore

137

Chapies Five: C _

3gsnese (Do) " Traces(P)) Eq. 5.128
s=r,"" r, Eq. 5.129
where T15.0Yq-1 € Dyand r € Traces(F(STOP)). a
1 mmar

The chapter has set out to categorize a subclass of CSP functions which, when used
in recursive definitions, result in processes that repeat the same set of behaviours on
each recursive step. The class of functions is called the Catenary functions, and
suitable definitions have been provided to allow functions to be categorized as such.
To make this categorisation simpler, the chapter has produced a set of syntactic rules
which indicate that a function is Catenary.

The functions which remain after the limitations imposed by Catenary functions are
the deterministic choice operator, the nondeterministic choice operator, the prefix
operator and the sequential operator. However, perhaps a greater insight into the scope
of Catenary functions can be gained by considering those functions which do not fall
into this category.

The first exception was the hiding operator. This is neither Catenary nor is it
contractive on any of the semantic domains My, Mg, TMg. As such its inclusion in any
functional definition would require care since it may lead to a divergent process.

The change of symbol operator is a contraction on the semantic domains of CSP, but
is not a Catenary function. While its omission is a drawback, there are suggestions that
the theory could be modified to include it, particularly if the change of symbol function
f is such that there exists some n such that

VPef(P)=P Eq. 5.130

However, it was felt that such modifications would complicate the work of
subsequent chapters for an operator with limited use.

The loss of the interleaving operator is considered to be more serious. It was initially
thought that interleaving was a Catenary function but subsequent analysis has shown
otherwise. Admittedly the use of the interleaving operator in a functional definition
may lead to nondeterministic behaviour since there is little guarantee about the ordering
of the subsequent traces. However, the operator has been useful in the modelling of
interrupts and timeout mechanisms [Davies 89a].

138

i Five: C Functi

The non Catenary nature of the parallel operator was also seen as a drawback. The
development of the idea of a Weak Catenary function was a direct measure to counteract
this and to place the parallel operator in a similar league with the other Catenary
operators. But with regard to subsequent work on the composition of predicates and
the construction of Ideal Test Sets (see next chapter) it was found that the definition of a
Weak Catenary function was insufficient to support this theory. There is, however,
some question as to the validity of introducing a parallel operator into the definition of a
recursive function. It allows the possibly of the recursive process creating an unlimited
number of parallel processes, which would invariably cause implementation problems.

Finally it should be pointed out that the nature of Catenary functions is somewhat
similar to the concept of tail recursion used in functional languages such as ML.

139

CHAPTER SIX !

IDEAL TEST SETS

6.1 Introduction.

The previous chapter discussed a subset of recursive processes which repeatedly
perform the same fundamental set of behaviours. That is those defined as the fixed
point of a Catenary function. By doing so it established that, for Catenary functions,
an explicit connection between recursion and catenation can be made. It is the purpose
of this chapter to exploit this link between recursion and catenation, and to show how it
may be used to develop a theory of testing for CSP processes.

The chapter opens by considering the idea of an ideal test which was also discussed
in the previous chapter. This is a procedure by which the properties of an entire system
may be inferred by considering only a part of the possible behaviours the system may
exhibit. By placing these ideas within the context of CSP the related concept of an
Ideal Test Set is developed. An Ideal Test Set is a subset of the behaviours of a CSP
process for which the truth of a particular specification over all the behaviours may be
determined.

The chapter then moves on to show how Ideal Test Sets can be generated for the
recursive fixed points of those Catenary functions which were introduced in Chapter 5.
By utilising the link established between recursion and catenation in Catenary functions
the chapter introduces four categories that describe the properties which behavioural
specifications display over catenation. By a series of definitions and theorems a
mathematical theory is built up around these categories. This theory is developed using
the traces model M. Finally this theory is subsequently used to generate and justify

Ideal Test Sets.

140

The concept of an ideal test as given in Definition 5.1 suggests an attractive means of
reducing the obligation for correctness proofs. In this thesis it was considered to be
particularly applicable to recursive CSP processes for two reasons.

1) Recursive processes have the potential to produce many, sometimes
unlimited, system behaviours. This makes exhaustive testing alone
infeasible for verifying them.

ii) There is a well established mathematical theory of recursion, which uses

fixed point solutions and induction to prove properties about recursive
processes. It was felt that such a theory could be used to provide
justification for ideal tests.

The first problem encountered was that of providing a definition of an ideal test which
was properly applicable to CSP. The main obstacle to this was the fact that
Goodenough’s original definition [Goodenough 75] was for state-based systems
where specifications were written as predicates on the input/output relationships.
However, the semantic models of CSP given in Chapters 2 and 3 represent systems in
terms of the events and traces they produce rather than an input/output relationship.
These conventional models of CSP deliberately avoid a state transitional approach and
thus have no explicit embodiment of state.

Similar problems arise with input/output relationships. Perhaps the closest analogy
for defining the input and output of a CSP process is to equate input with the
environment of a process and output with the behaviour of that process when placed in
that environment. However these definitions do not resolve how ideal tests can be
applied to CSP on their own. The main problem perceived by the author is that
behavioural specifications do not take the environment of a process into account, and
thus are independent of the input. In such circumstances it makes no sense to try and
determine a subset of the input over which the truth of a specification can be inferred.

To avoid the problems outlined above, the approach adopted was to preserve the idea
of inferring properties of a set from a subset, but to apply it to the behaviours of a
particular process rather than the input/output relationships of a particular system. This
resulted in the new concept of an Ideal Test Set, presented below.

141

Chapter Six; Ideal Test Sets

Definition 6.1: Let P be a CSP process and let R be a behavioural specification on
P. Let Obs denote the set of all observations which process P may exhibit. The set
I is said to be an Ideal Test Set for the pair (P, R) if and only if

i) Obs DI Eq. 6.1
ii) (VteI*R(t)) & (Vse Obs*R(s)) Eq. 6.2
i

Condition (i) is present both to simplify and fortify the definition. If, for example,
there is some observation in I for which specification R does not hold then Obs 2 T
implies that R will not hold for all observations in Obs. That is R is true over I if and
only if R is true over Obs. Consequently it is possible to infer both the truth and the
falsehood of predicates with an Ideal Test Set.

In order to develop this concept and to construct methods for the generation of Ideal
Test Sets for specific processes, such as those defined by Catenary functions, it is
necessary to examine the types of process behaviours for which the approach is valid.
In particular, Section 6.3 examines the need to exclude infinite traces and processes
with infinite alphabets.

Tr nt_of Infinite Tr nd Alph

An infinite trace is one which has an infinite number of events in it. Likewise a
process has an infinite alphabet if it has the potential to perform an infinite set of events.
Note that a process with an infinite alphabet is not necessarily the same as a process
which has the potential to perform all events.

The treatment of infinite traces requires special consideration because their properties
are different to those of finite traces. With respect to the work of this text the main
problem that infinite traces present is that it is not possible to catenate an infinite trace
with any other trace. This is because an infinite trace effectively has no end onto which
another trace can be attached. However, catenation is crucial to the concept of an Ideal
Test Set. Therefore, in the following text infinite traces are excluded and subsequently
all traces are assumed to be finite, unless otherwise stated.

This assumption is not as restrictive as it may appear. The notion of an infinite trace
is very much an abstract concept. The abstract processes described in this thesis are
ultimately intended to realise an implementation. No implementation can truly generate
an infinite sequence of discrete actions.

142

One circumstance in which infinite traces may arise is for recursively defined

processes. Therefore it is useful to explicitly state what interpretation will be assumed

by this text. The statement
/

UWP.F(P) sat R Eq. 6.3

as defined by Hoare [Hoare 85] is interpreted as * The behavioural specification R is
true for every finite observation of the process WP.F(P). ” More formally, drawing on
the fixed point treatment of chapter three

WLP.F(P) sat R =3 Vne Ne«FY(STOP)satR Eq.6.4

The presence of an infinite alphabet may lead to the problem of unbound
nondeterminism [Roscoe 88a]. Unbound nondeterminism arises when a process is
able to make a nondeterministic choice between an infinite number of events at any one
time. The difficulties encountered with this have forced the language and syntax of
CSP to be restricted.

It is recognized that the problem of unbound nondeterminism is an inconvenience and
that research has been undertaken to address it by reappraising the semantic definitions
of CSP processes [Roscoe 88a]. However there is no indication that the presence of
either an infinite alphabet or unbound nondeterminism has an adverse effect on any of
the catenation rules. Consequently in this chapter there is not thought to be a need for
any assumption to be made about alphabets. (However, it will be shown in the next
chapter that there are advantages to finite alphabets in increasing the scope of the
method used.)

4 ategorizin ecifications

There are certain behavioural specifications which exhibit properties over catenation.
Take for example the predicate (a in s) which states that a trace s will contain the
event a. If, for two traces s and t, the event a is present in either of them, then the
event a will also be present in the catenation of s and t. More formally

(ains)v(aint) = (ains™t) Eq. 6.5

This is an example of a predicate which distributes over catenation. Other predicates
can be shown to distribute over catenation in other ways. It is the aim of this section to

143

Chapter Six; Ideal Test Sets

develop four categories which define the properties a predicate may possess over the
catenation of traces. Furthermore it will show how these predicate categories behave
when operated upon by logical connectives.

6.4.1 Notation,
As this chapter progresses some of the expressions will require notational
conventions. These are defined and explained below.

Definition 6.2: Let e; be some indexed expression, where i € IN. The logical
compositions under conjunction and disjunction of n such expressions, where n €
IN, may be abbreviated by the notations

n
N (e)) = e A ALAE Eq. 6.6
i=1
n
V (e;) =e,Ve,V.ve, Eq. 6.7
i=1

Additionally, for arbitrary predicates Q and R, logical conjunction and disjunction
may be abbreviated by

Q(s) AR(s) = QAR(s) Eq. 6.8
Q(s) VR(s) = QVR(s) Eq. 69
|

In the subsequent text expressions may be written as the combination of an ordered
set of indexed terms under some operator. That is for an operator ® , say, and some
set of indexed terms, e, .., e, (n € IN), there may be the expression

e, ®e,®.0e, ®¢, Eq. 6.10

The convention adopted in this text is that two full stops in an indexed expression
indicate the presence of an intermediate sequence of ordered indexed terms. For

example

e;®.0ey = e ®e, Be, ®e; ey Eq. 6.11

144

Chapter Six; Ideal Test Sets

Sometimes it is necessary to express an ordered sequence of n terms with the it?
term missing. The notation chosen for this is

e,®.®e; ;®e;,;..Q¢, Eq. 6.12
To avoid confusion, especially when the index i takes the value 1 or n, when i=1
equation 6.12 is interpreted as having the first term missing, but no term e, and when
i = n equation 6.12 has the last term missing. That is
i=1 = e, ®.®e; ®e;,; ..®e =e,8..Qe, Eq6.13
i=n = e;®.®e; ;Qe;,, ..Q®e,=e,®..Qe, , Eq6.14
6.4.2 Categories,
There are four ways in which a predicate may distribute over catenation. The

following definition introduces four categories which correspond to these.

Definition 6.3: Four categories of predicates which possess properties over the
catenation of traces are defined here. They are the sets o, B, v, 8 T such that for

traces s, t
o={RIVsz#<> R(s) o R(s"t) } Eq. 6.15
B={RIVt#<> R(t) & | R(s"t) } Eq. 6.16

Y={RIVs, t# ¢ R(s) vV R(t) & R(s"t) } Eq. 6.17

0={RIVs,tzxc R(s) A R(t) & R(s"t)} Eq. 6.18

tNote: The categories a, B, v, 8 and the later categories t-r.,ﬁ and 8" are unconnected with the
conditions of continuity (a), (B), (¥) and (8) imposed upon predicates in [Roscoe 88a]. The similarity
is purely notational.

145

Having given the above definition for the categories a, B, v, & it is useful to be able
to determine some general properties about all the categories. Theorem 6.1 illustrates a
property which is common to all four categories.

Theorem 6.1: Let R be a predicate such that

Re {avuBuyud) Eq.6.19

For traces s and t, the predicate R is such that

Vs, btz R(s) A R(t) = R(s"t) Eq. 6.20
]

Proof
CaseRe

(Vs,t#<>*(R(s)AR(L) = R(s) = R(s"t))) Eq. 6.21
Case Re B

Vs, t#<>*(R(s)AR(L) = R(t) = R(s"t))) Eq. 6.22
CaseRe Y

(Vs,t#<>*(R(s)AR(L) = R(s) VR(t) = R(s"t))) Eq.623
CaseRe 6

(Vs,t#<>*(R(s) AR(t) = R(s"t))) Eq. 6.24

It is this particular property and its derivatives which form the fundamental basis of
this chapter. It illustrates that the defined categories permit the truth of a composite
trace to be deduced from the truth of its constituent parts.

146

Chapter Six: Ideal Test Sets

To explain the advantage of this consider a process P which performs a trace t. Let
t be formed from the catenation of n non-empty traces ry, r,, .., r, and let R be a
predicate belonging to one of the above categories and suppose that R(t) must be
established. By repeatedly applying equation 6.20 to t it is possible to show that

R(r;)) AR(ry)) A .. AR(x,) = R(t) Eq.6.25

At present there may seem little advantage in determining the truth of the component
parts to infer the truth of the composite trace when the truth of t could easily be
established on its own. But if n were a very large number, and it was shown that all
the traces r,, r,, .., r, belonged to a relatively small set, A say, then in these
circumstances it might be easier to establish that R were true over A, and thus infer
R(t), rather than showing that R were true for a long trace t. Furthermore, if it could
be shown that every possible trace in P was expressible as the catenation of traces
which belonged to A, then if R were true for every trace in A, R would be true for the
catenation of every trace in A, and thus R would be true for every trace in P.

In the previous chapter it was shown that the fixed point of a Catenary function F
could be expressed as a process made up from a set of traces, each of which was in
turn made up from the catenation of traces from the limited set Traces(F(STOP)). This
suggests that, for a predicate R from one of the above categories, if R is true for every
trace in Traces(F(STOP)), then R is true for every trace in the fixed point of F.

In addition the set Traces(F(STOP)) is a subset of Traces(LP.F(P)). Therefore the set
Traces(F(STOP)) fulfils the definition of an Ideal Test Set for the pair (LP.F(P), R).
This line of reasoning is more formally summed up by the following theorem.

Theorem 6.2: Let F be a Weak Catenary function, and let R be a predicate which
belongs to the set { c U BuU YU d }. Then the set of traces

Traces(F(STOP)) Eq. 6.26
is an Ideal Test Set for the pair (LP.F(P), R). Thatis

(V s € Traces(F(STOP)) * R(s))
& (V s € Traces(UP.F(P)) * R(s)) Eq. 6.27

147

Chapter Six: Ideal Test Sets

Proof

Let the trace s be any trace of the process WP.F(P). From the definition of F as a
Weak Catenary function

/
Traces(WP.F(P)) < Traces(F(STOP)) " Traces(F(STOP))" .. Eq. 6.28
Therefore, for traces r,, r, .., v, € Traces(F(STOP)), where n € N
In21lea=1,"%,.'r, Eq. 6.29
Establish by testing that predicate R holds for the process F(STOP). Thus
V s € Traces(F(STOP)) * R(s) | Eq. 6.30

R(r;) AR(r;) A..AR(T,) Eq. 6.31

Now,Re { a U Uyud } and thus, by Theorem 6.1

R(r;) AR(ry) = R(r;"r;) Eq. 6.32
R(r;"r;) AR(r;) = R(r;,"r,"r3) Eq. 6.33
R(r;".."r,_1) AR(r,) = R(r;".."ry) Eq. 6.34

Therefore, if s is a finite trace in the process LP.F(P), and R is a predicate which is
true over the set F(STOP), then R is true for all finite traces s. If Obs is the set of all
finite behaviours of WP.F(P)

(V s € Traces(F(STOP)) * R(s)) =5 (Vs e Obs *R(s)) Eq.6.35
Additionally,

Obs 2 Traces(F(STOP)) Eq. 6.36

(Vse Obs*R(s)) & (V s € Traces(F(STOP)) * R(s)) Eq. 6.37

148

Chapter Six; Ideal Test Sefs

Thus by definition Traces(F(STOP)) is an Ideal Test Set for (WP.F(P), R)
O

/

This theorem captures the essence of how it is possible to generate Ideal Test Sets for

all pairs of the form (LP.F(P), R), where F is a Catenary function and R is a predicate
in one of the categories o, B, 7, d.

6.6 Using the Categories to Build Compound Predicates.

In themselves, the four categories so far defined have a limited scope. They represent
a somewhat restricted range of predicates, that is those which possess certain well
defined properties. As such it would clearly be useful to be able to extend the range of
predicates over which the categories ., B, v, & apply. It is intended to achieve this by
permitting predicates from the different categories to be composed under logical
operators or connectives.

A language, called RSPEC, is now introduced in which such composed predicates
can be expressed. As is seen below a statement in RSPEC is essentially the result of
combining a number of predicates from the set { o U B U YU & } under the logical
connectives {A, v, -, =, <}. RSPEC is defined by the following Backus Naur

Form

Definition 6.4: Let RSPEC be a formal language in which to express predicates.
The BNF definition of RSPEC is

STATEMENT w= CATEGSI
STATEMENT, “v”, STATEMENT |

STATEMENT, “A”, STATEMENT |
STATEMENT, “=", STATEMENT |
STATEMENT, “&”, STATEMENT |

“~”, STATEMENT;
CATEGS == PREDo | PREDP | PREDy| PREDS ;
PREDa = (A predicate in the category o),
PREDp == (A predicate in the category 3);

149

PREDy

(A predicate in the category y);

PRED$ (A predicate in the category §);

It can be surmised from the above definition that an informal description of the set
CATEGS would be the set of syntax of all predicates which belong to categories a, B,
Y, . The structure of RSPEC is very similar to that of propositional calculus, with
predicates from the set { o« U B Uy U 8 } taking the place of propositions. In fact, this
parallel is so strong that it is possible to use the concept of substitution instances [
Hamilton 78] to state the following theorem.

Theorem 6.3: Let R be a statement in RSPEC which is not a tautology. Then it is
possible to write R in the conjunctive normal form as

n m

A (V @y Eq. 6.38

f21 i
where either Q; ; or —(Q; ;) is a predicate from the set { a UBU YU § }.
|

Proof
The reader is referred to [Hamilton 78] a

Essentially, a statement in RSPEC is a tautology if it is always true. For the purposes
of this text all statements will be assumed not to be tautologies. This is justified on the
grounds that it is the aim of this work to prove statements true with regard to some
system, and that as a consequence it is unnecessary to prove tautologies true.

Theorem 6.2 showed that given a predicate R from the set { c U BuU YU S } and a
Catenary function F, that it was possible to construct a finite Ideal Test Set for the pair
(uP.F(P), R). This was possible because the categories related how predicates within
them distributed over trace catenation. This suggested that if similar distributive
properties could be identified in all the predicates of RSPEC then a similar mechanism
may exist for RSPEC. That is, given a predicate R from RSPEC and a Catenary
Function F, it should be possible to generate an Ideal Test Set for the pair (UP.F(P),
R).

150

Chapter Six; Ideal Test Sets

The purpose of the remaining sections of this chapter is to develop this idea and show
how Ideal Test Sets are generated for predicates in RSPEC.

6.7 __Closures.

Certain predicates from the set { o U B U YU & } when operated upon by
connectives can be shown to remain in that set. The advantage of this is that it is
possible to show that some compound predicates in RSPEC actually belong to { a LU
VYU d }. Forexample, if R is a predicate in category o, then —R is also a predicate in
category a.. Category a is therefore said to be closed under logical negation. The
following theorem shows how all the categories behave under logical negation.

Theorem 6.4: The sets a, B, (YL 9) are each individually closed under logical
negation. That is for some predicate R

i) ReE O & —RE O

ii) Re B o -Re B

iii) RE Y & —Red [|
Proof
Case (1)

R € o if and only if

(R(s) & R(s'D)) Eq. 6.39
Eq.639 & (—R(s) & —=R(s™t)) Eq. 6.40
Thus R € o if and only if =R € @

Case(ii)
The proof is similar to that of Case (i)

Case(iii)
For traces s, t # <>, R € Yif and only if

151

Chapter Six: Ideal Test Sets

(R(s) VR(t)) < R(s™t) Eq. 6.41
Eq.641 < —(R(s)VR(t)) = —R(s"t) Eq. 6.42
Using De Morgan’s Rule [Borowski 89]

Eq. 641 <& —R(s) A—=R(t)) = —=R(s"t) Eq. 6.43

Thus R € yif and only if =R € § O

Theorem 6.4 is a useful and deliberate result. Not only are the categories specifically
closed under the negation connective — in the way described, they are also closed as a
whole. That is if R is a predicate in the set {o. U B U YU 8}, then it can be deduced
that =R is also a predicate in the set {oc U B Uy U 8}. Therefore, referring back to

equation 6.38, it is possible to deduce that every statement in RSPEC can now be
expressed in the form

A (V@) Eq. 6.4

i:l]:l

where Q; ; is a predicate from the set {o.U B U YL 8}
The next operator, that of logical disjunction (the ‘or’ operator) is less
straightforward. It does possess a range of certain useful closure properties which are

given by the following theorem.

Theorem 6.5: The sets o, B, ¥ are specifically closed under logical disjunction.
That is for predicates R,, R,

1) R,EQ A Ryea = (R,VR,) € O
ii) R,eB A Roef = (RVRy)EP

i)y R,e€Y A Ryey = (RiVR)EY =

Proof
Case (i)
By definition

152

R,(S) VR,(s) & R;(s"t) VR,(s™t) Eq. 6.45
R;VR,(s) S R;VR,(s"t) Eq. 6.46
Thus R, VR, €

Case (ii)
The proof is similar to that of Case (i)

Case (iii)
By definition

(R1(s) VRy(8)) V(Ry(t) VRy(L)) & R,(s"t) VR,(s"t) Eq.6.47
"Ry VR,(S) VR VR,(t) = R;VR,(s"t) Eq.6.48
Thus R,VR, € ¥ O
Each of the categories a, B, v are therefore closed under logical disjunction but
category 0 is not so closed. However category 0 does preserve some properties under

logical disjunction. That is for predicates Q, R € J the predicate QVR can be shown to

exhibit certain properties over the catenation of traces. To illustrate these it is necessary
to extend the definition of category .

Definition 6.5: Category 8 may be extended to the general indexed category &°,
where n € IN. This is defined by

n+l
an - { R l V rl’"' rn+1 #<> * A R(rlA"Ari“lnri+1‘"‘\rn+l)
i=1
& RESTog)) Eq649

Contrast equation 6.49 with the definition of category & given by equation 6.18.
Note that when n = 1 equation 6.49 is equivalent to equation 6.18. Category 8 showed
how a predicate true over a set of distinct traces could be shown to be equivalent to a
predicate true on the ordered catenation of those traces. The general category 8"

153

Chapter Six;: Ideal Test Sets

illustrates how a predicate true over a set of overlapping traces may be shown
equivalent to a particular composite trace.

The relevance of category 8" is that it allows a theorem to be developed which relates
the properties of category & over disjunction.

Theorem 6.6: Consider n predicates, Ry, R,, .., Ry, which belong to category 9.
Then the logical disjunction of these is such that

R;VR,V .. VR, € &" Eq. 6.50

Proof
To prove this result the following Lemma is required

Lemma 6.6(a): For positive integers i, j let Q§ be a statement in propositional

calculus. For every positive integer m the following equivalence holds:

m

m-1)

A (V @Ar.r0l A0, A..AQ))

i=1 j=1

m-1 }))

& V(QAga.aQ) Eq. 6.51
j=1
&

Proof (of Lemma 6.6(a))
This Lemma is proved in Appendix C.]

Turning to the main proof let ry, r,, .. ,X,,, be non-empty traces. Represent the

logical disjunction of predicates Ry, Rj,.., R, by

R=R, VR, V.VR, Eq. 6.52
Consider the expression
n+1
AR (¢ Jighs Al FEDPN W) Eq.6.53
i=1

154

Chapter Six; Ideal Test Sets

n+1l
= ./\1 Ry (X" 05 1"y %) VR N) v
1=

« VRUE . T W) Eq. 6.54

By definition, for all predicates R in category &

R{E: %) & R(r;) AR(r;) ALAR(T,. ;) Eq. 6.55
Therefore
n+1l
Eq.654 & /N (Ry(r)) A. AR (T;) ARy (T) A AR, (T,,,))
i=1

V (Ry(r)) AL ARY(T; DA Ry(ri{,1) A ARy(T,,1)) -
V.V (R(T)ALAR(r;)AR(Y,1)A . AR(T,,)
Eq. 6.56

By making the substitution O = R;(r)

n+1l

Eq.654 & A (QA-AQI AQL A.AQL)

jal
v (Qf A s qu A qu Nl Qiu)
vV.v (@QIA.A Qi AQL A.AQL)) Eq. 6.57
Using Lemma 6.6(a) for the value m = n+1 yields
Eq.654 & (QIAQA.AQL IV(QIAQIA.AQE))

V.V(QIAQGA..AQY) Eq. 6.58

Re-substituting R;(r;) = Q; gives

Eq.6.54 & (Rl(rl) A R1(r2) AL A Rl(rn+1))
vV (Ry(r1) AR,(ry) A ARy(T,1))
V.VR,(ry) AR(T;)A..AR(T,,1)) Eq. 6.59

& Ry(r T, rng) VR (r 1y T) VAV R T)

155

Eq. 6.60
& Ry lr.q) } Eq. 6.61
Therefore the compound predicate R is such that
Re o Eq. 6.62
a

Logical Disjunction acr h i
The previous text has shown that it is possible to come tip with an expression which

relates the behaviour of certain predicates R;VR,V..VR_ over catenation. That is,
consider a general statement R

R

R,VR,V..VR, Eq. 6.63

where Ry, Ry, .., R, are predicates and (R, R,, .. ,R,€ &) or (R, R,, .., R € P
)or(Ry, Ry, ..,R,€ Y)Or (R, R,,..,R € 8). Then it is possible to show that R
belongs to one of o, B, yor 8”. Thus properties of R over catenation are known.
However, it has not yet been determined to what extent the predicate categories are
closed amongst themselves. That is, what properties can be inferred about a statement
of the form

R;VR,V.VR, A (Vi*R; € {aUPBuUyUd}) Eq. 6.64

where Ry, R,, .. , R, are predicates

The categories so far introduced have all stipulated that a predicate will satisfy some
composite trace if and only if it satisfies some set of lesser constituent traces. The if
and only if condition is required to make the categories strong enough to be closed
under logical negation. The same condition, however, serves to restrict the scope of
closures over logical disjunction. It was seen from Theorem 6.1 that weakening the if
and only if condition resulted in equation 6.20 which encompassed all the defined
categories. This idea is extended by the following definition.

Definition 6.6: The category 6" is such that

156

n+1l
o"={RIVr,,Ir 2 “ IN RO R)
i=1

- ity) § Eq. 6.65
||

Note how category 6" is equivalent to equation 6.20 when n = 1. Equation 6.20
described a property of catenation which was common to each predicate in the set {0 U
Buyu 8}. Category o™ has been introduced here with the aim of providing a general
statement about the catenation properties of predicates which lie outside this set.
Specifically those predicates represented by equation 6.64. This constitutes a relatively
broad category of predicates in comparison to the set to which equation 6.20 could be
applied. The rest of this section outlines the justification for stating that 6™ has this
scope. To achieve this it is first necessary to investigate some of the properties of 6™,

Theorem 6.7: For the definition of the set 6", the following properties hold

i) o, B, Y. S are all subsets of ¢! Eq. 6.66
i) & gon Eq. 6.67
|
Proof

(i) By definition, for traces ry, r;

ol = {(RIVr,, r,#<>*R(r;) AR(r;) = R(r;’r,)} Eq.6.68
The result follows from Theorem 6.1
(i) This follows directly from the definitions of 8" and 6™. =]
Consider now the disjunction of two predicates, one in category «, the other in

category . The following theorem shows how he definition of o™ can determine some
of the properties of this disjunction over catenation.

Theorem 6.8: Let Q and R be predicates such that:

Qe o & Re P Eq. 6.69

157

The logical disjunction of Q and R, QVR, is such that

QVR € ©? Eq. 6.70

Proof

Let ry, r,, ¥, be non-empty traces and consider the expression

3

IN QVR(E S) Eq.6.71
L= -
& QVR(r,’r3) AQVR(r;"r;) A QVR(r;"r,) Eq. 6.72

= (Q(r;"r3) VR(r;'r3)) A (Q(r;"r;) VR(r;"r3))
A (Q(r;"r,) VR(r;"r,)) Eq. 6.73

Because Q € o and R € 3, the middle term in equation 6.73 is such that

Eq.6.71 = (Q(r,;"r;) VR(r;'ry)) = Q(r;) VR(r3) Eq. 6.74
= Q(r,°r,’r;) VR(r;"r;’r;) & QVR(r;"r,"r;) Eq. 6.75
Therefore, from the definition of 6™ when n = 2, QVR € ¢? O

Theorems 6.9 and 6.10 show how a predicate from the general category 8" can be
disjoined with a predicate from another category.

Theorem 6.9: Let Q and R be predicates such that:
Qe " & RE Q. Eq. 6.76
The logical disjunction of Q and R, QVR, is such that

QVR € o1 Eq. 6.77

158

Chapter Six; Ideal Test Sets

Proof

By the definition of the predicates Q and R, for all non-empty traces ry, .., r,; €

n+1l

N O, e 0) e Q%) Eq. 6.78
i=1
VYVt R(r,) = R(r;"t) Eq. 6.79

Consider the expansion of the below expression

n+2

AN QURGE T i B) Eq. 6.80

i=1
The proof is split into two cases.

Case R(r,) is true
From equation 6.79 the truth of R(r,) implies the truth of R(r;".."r,,), and thus

n+2

Rz) A AN QVRIE] S T) = QVR(E, "o ty,5) Bg.681

i=1

Case R(r,) is false
The expansion of equation 6.80 is such that

Eq.680 & (Q(r,"."r,,,) VR(r,)) A

n+2
I\ QVREE, *. 8y P i Ea) Eq. 6.82
i=2
n+2
Eq.680 = /\ QVR(r;"."r; i"ri, " 1r0,0) Eq. 6.83
i=2

By making the substitution s, = r,"r, it is seen that

Eq.6.80 = (Q(r;"r3".."r,,,) VR(r,))
n+2
A N QVR(s,"r3" 1 "1y, " T,,) Eq 684
i=3

By applying equation 6.78 it is possible to deduce that

159

QT Eave Triss) =3 Q(xy". ., 5) Eq. 6.85
Thus

Eq. 680 = (Q(r;".."r,,,) VR(r}))

n+2

A N OVR(E, T3 1 ' 2.0, L 5) Eq. 6.86
i=3

By making the substitutions s, =r;, s; =1y, ..,s_,; =r,,, and assuming that
R(x,) is false, equation 6.86 becomes

n+l

Eg.680 = /\ 0(s,"."s; ;"8;,1""S.,1) Eq. 6.87

i=1

Applying equation 6.78 and re-substituting,

Eq.680 = Q(s;".."s,,;) & O, L in) Eq. 6.88
Therefore
n+2
(-R(r) A A\ QVR(r; " 1y 1y)"0y, 2)
i=1
= QVR(r;".."r,,,) Eq. 6.89

Resolving equations 6.81 and 6.89 yields

n+2
I\ QR T) QVR(x;".."rp,2) Eq. 6.90
i=1

Thus by definition QVR € o™*! |

Theorem 6.10: Let Q and R be predicates such that:
Qe & & Re P Eq. 6.91

The logical disjunction of Q and R, QVR, is such that

160

QVR € o7l Eq. 6.92

Proof
The proof of this theorem follows in a similar manner as that of the previous theorem
and is presented in Appendix C. C

Theorem 6.11 shows how predicates from three distinct classes can be logically
disjoined to form a predicate in the category G".
Theorem 6.11: Let Q, R and S be predicates such that:
Qe & & RE O & sep Eq. 6.93
The logical disjunction of Q, R and S, QVRVS, is such that
QVRVS € ¢™*? Eq. 6.94

Proof

The proof of this theorem is similar to that for Theorems 6.9 and 6.10 and is
presented in the Appendix C. O

Theorem 6.12 shows that the category 7y is so weak that a predicate from it can be
disjoined to one in the category 6" (n 2 1) and result in a predicate which is still in

category C".
Theorem 6.12: Let Q and R be predicates such that:
Qe o" & Re Y Eq. 6.95
The logical disjunction of Q and R, QVR, is such that

QVR € o" Eq. 6.96

161

Proof
Letr,, r,, ., r,,, be arbitrary non-empty traces. By definition predicates Q and R
are such that /

n+1
AN gleile fr st B Sl Eq. 6.97
i=1

R(r,"r;".."ry,1) < R(r,;) VR(r,) V.VR(r,,,) Eq. 6.98

To prove that QvR € ¢" the proof itself is split into two cases

Case R(r;".."r,,, ;) is true
Therefore

R(r;"r;"."In,1) A QVR(X,".r; 1714, 1)

= QVR(r,".."r,.;) Eq. 6.99

Case R(r,".."r,,) is false

From equation 6.98
_IR(r1Ar2A..Arn+1) ~ _IR.(rl) AN —IR(rz) AL —|R(I‘n+l) Eq. 6.100

From equation 6.100 and the definition of category Y

n+l
Vse {rIV (@=r,"r; "r;,;" 1,1} * R(s) Eq. 6.101
i=1

Consider the expansion of the expression

n+l
A\ OVR(E: e 3 B L) Eq. 6.102
i=1
n+1l
= A\ (o] i <TG T Lrt)
i=1

VR(r,"..’r; ,°r; 1""rn.1) Eq. 6.103

Using equation 6.101

162

Chapter Six; [deal Test Sets

n+1
Bg- 6102 = I\ Q4 i) Eq. 6.104
i=1
/
Using equation 6.97
Eq.6.104 = Q(x,".."r,) = QVR(r,".."r,,) Eq. 6.105
Therefore
n+l
R(z;, 0" Eh) A A QVR(r"."r; 371,17 1y)
i=1
= QUR(x".0ry..) Eq. 6.106
Combining equations 6.99 and 6.106
n+l
/\ QVR(rll"Arb1Ari+la",\rn+l) = QVR(rIA"Arnﬂ) Eq 6.107
i=1
And thus QvR € o™ O

The result of the last four theorems taken as a whole is twofold. First it shows that
the logical disjunction of a finite number of predicates from the set o U B U YU 8 lies
within the category o™ for some value n. Thus such a disjunction can be shown to
have certain properties over catenation. Secondly the theorems are precise enough to
allow the calculation of a lowest possible value x such that the predicate lies in the class
o*. This is expressed more formally by the following equation.

Theorem 6.13: For all integers i, let R?, RE, RZ, Rf, be predicates such that
R%e a R?e B Rey Rfeﬁ Eq. 6.108

1

Consider the expression

163

9i=_\/Rf:vyRﬂv_\/R'Iv\/R5 Eq. 6.109

where a, b, c, n are non-negative integers. Let the expression x be defined by

x=n+[a#0]+[b#0]+[c#0Aa=0Ab=0An=0] Eq6.110

(where for a statement Q the expression [Q] has the value 1 if Q is true and the value 0
if Q is false). The compound predicate R is such that

R e o Eq. 6.111

Proof

By Theorem 6.5, the sets o, B and y are closed under logical disjunction. Therefore,
for all values a, b, c, n 2 1 it can be seen that

a b e
V rR%c o & VrPep & V Rley Eq. 6.112

feg > f=1 §wd
Additionally, from Theorem 6.6

n
V Rfe &° Eq. 6.113
i=1

The theorem is proved by showing that X € ¢ for every possible case where one or
more of the variables a, b, ¢, n is zero.. There are fifteen cases in all, excluding the
trivial instance when a =b = c =n = 0. Two cases are considered here, the rest
follow in a similar manner.

Case a#0,b#0,c#0,n#0
Evaluating x for this yields

x =n + [TRUE] + [TRUE] + [FALSE] = n+2 Eq. 6.114

By Theorem 6.11

164

Chapter Six; Ideal Test Sets

a b n

V r*v V RP v V rbe g2 Eq. 6.115
i=1 i=1 =1

/
And by Theorem 6.12

a b n c
VR‘;’VVR?VVR?VVRIE Lo g Eq.6.116
i=1 i=1 i=1 i=1

Therefore R € o*.

Casea=b=n=0,and c#0
Evaluating x for this yields

x = 0 + [FALSE] + [FALSE] + [TRUE] = 1 Eq. 6.117

By inspection R is in category y. By Theorem 6.5 category ¥y is closed under logical
disjunction. Thus forall c #0

C
V R'e ¢! Eq. 6.118

1=1

Therefore R € o*.

The remaining cases show that for all values of a, b, c, n the predicate R is such that

Re gn+la#0]+[b#0]+[c#0Aa=0Ab=0ANn=0]) Eq.6.119

O

The result of Theorem 6.13 is that given a predicate R which is formed from the
logical disjunction of a number of predicates from the set {a U B U YU 8} it is always
possible to calculate an integer value x such that R € ¢*. In turn this means that for all
predicates of the type R there always exists an equation which relates to the distribution
of R over trace catenation.

Taking this finding to the language RSPEC means that it can now be seen that every
predicate in RSPEC can be written as

165

_/\ Qi Eq. 6.120

where k is an integer and Q; is a compound predicate such that, for every i, there
exists a value x; (which can be calculated from Theorem 6.13) such that

Q;& o™ Eq. 6.121

6.9 Using the General Category ¢" to Construct an Ideal Test Set.
Theorem 6.2 illustrated how the category ¢* could be used to construct an Ideal Test
Set for a process recursively defined by a Catenary function. In turn it is possible to
show that the general category o™ can be used to construct an Ideal Test Set for a
similar process. This is illustrated by the following theorem.

Theorem 6.14: Let F be a Catenary function and let R be a predicate such that

Re o" Eq. 6.122

where n is a non-zero positive integer. The set of traces defined by

Traces(F™(STOP)) Eq. 6.123
is an Ideal Test Set for the pair (ULP.F(P), R). |
Proof

This proof requires the definition of Dy from Chapter 5. The theorem is proved by

mathematical induction.

INDUCTIVE STEP

Assume that there exists some positive, non-zero integer m, where m 2 n, such that
the predicate R is true for all traces t of F™(STOP). Thatis

Y t € Traces(F"(STOP)) * R(t) Eq. 6.124

Let s be any trace in the set Traces(F™*}(STOP)). Then there is some non-zero

positive integer p S m+1 such that

166

Chapter Six; Ideal Test Sets

8 =T . Xy Eq. 6.125

where r,,.,r;, ; € Dyand r_ € Traces(F(STOP)). The proof divides into two
cases

Case p < m+1
If p<m+1 then p <m. By Theorem 5.15 s € Traces(F™(STOP)). Therefore R(s)

holds from the initial assumption.

Case p=m+1
If p =m+1 then

s=1,"1," .. Eq. 6.126
By substituting

By S e Linaplst Sa=Tipanien e Snel =Ine1 Eq. 6.127
It is seen that

s=8,"8," ."8,.1 Eq. 6.128
Additionally, by Theorem 5.15

V1<i<n+les,"."s; ;"sy,:".."s,,, € Traces(F"(STOP)) Eq. 6.129

A/ 1<i<n+le R(Slh-.asi_1A5i+lA..ASn+1) Eq 6.130

R € o, therefore by definition

n+l

v S15 Snia F>e /\ R(slﬁ“hsi-lasi-*la"‘.srnl)
i=1

= R(s;".."sp,1) Eq. 6.131

The antecedent of equation 6.131 holds from equation 6.130. Therefore

R(s;".."sp,1) Eq. 6.132

167

Therefore predicate R is true for every trace in Traces(F™1(STOP)). Therefore if R is

true over the set Traces(F"(STOP)) then R is true over the set Traces(F™*(STOP)).
This establishes the inductive step.

BASE CASE

The base case for m = n can be established by testing the Ideal Test Set
Traces(F"(STOP)).

Therefore if R is true for every trace in Traces(F*(STOP)), then by induction it can be
seen that for all values i € IN

V s € Traces(Fi(STOP)) * R(s) Eq. 6.133

Thus Traces(F™(STOP)) is an Ideal Test Set for the pair (WP.F(P), R) O

1 ntr ing Logical njun

Up to this point it has been shown that an Ideal Test Set may be generated for all
predicates of the form

V (@) Eq. 6.136

j=1

where every Q; ; or —(Q; ;) is a predicate from the set { @ U pU YU 8 }. The Ideal
Test Sets produced for predicates of the form of equation 6.136 shall be termed
provisional Ideal Test Sets in this thesis, since they represent only a part of the ultimate
Ideal Test Set. However the aim of this work is to generate an Ideal Test Set for all
predicates in conjunctive normal form. To achieve this it is necessary to consider the
effect of combining predicates under the conjunction connective.

Predicates were combined under disjunction by developing a set of rules which
related to the behaviour of composite predicates over catenation. In turn this
information was used to construct Ideal Test Sets. However, with conjunction there is
no need to develop similar rules concerning the distribution of predicates over
catenation. Instead it has been found that the structure of conjunction allows the Ideal
Test Sets themselves to be manipulated. This is illustrated by the following theorem.

168

Chapter Six; Ideal Test Sets

Theorem 6.16: Let P be a CSP process and let Q, R be predicates on that process.
Let the sets I,, I, be Ideal Test Sets for the pairs (P, Q) and (P, R) respectively. If
/

25 Eq. 6.137

then an Ideal Test Set for the pair (P, QAR) is I,. Conversely if I, € I, an Ideal
Test Set for the pair (P, QAR) is I,. [|

Proof
Let Obs be the set of all behaviours exhibited by process P and assume that I, D I,.

From the definition of an Ideal Test Set,
Obs2I; 21, Eq. 6.138

I, and I, are Ideal Test Sets for (P, R) and (P, Q) respectively, therefore

(Vte I,*R(t)) o (V u e Obs *R(u)) Eq. 6.139

(Vte I,*Qt) = (V u € Obs * Q(u)) Eq. 6.140
From equation 6.138, I, D I, and Obs D I, thus

(Vte I,°0(t)) = Vte I,°Q(t) Eq. 6.141

(Vue Obs*Q(u)) = (Vte I;*Q(t) Eq. 6.142
Therefore from equations 6.139 - 6.141,

(VteI;*Qt) & (VueObs*Qu) Eq. 6.143

(Vte I,*RE)A(Vte I,°Q(t))
& (Vue Obs *R(u)) A (Vue Obs *Q(u)) Eq. 6.144

(V t € I; *RAQ(L)) & (V u € Obs *RAQ()) Eq. 6.145

So I, is an Ideal Test Set for (P, RAQ). The proof for the case I, C I, followsina

similar manner. O

169

It can be seen from this theorem how the need to know the properties of a predicate

- - - . - - j- -
over catenation is obviated when considering the conjunction connective. The corollary
of this theorem is that if F is a Catenary function and the sets I,.., I, are Ideal Test

Sets for the pairs (LP.F(P), R,),..,(LP.F(P), R,) respectively and one of the sets I,..,
I, is a superset of all the others, then that set is an Ideal Test Set.

Provided Ideal Test Sets are written in the general form
Traces(FY(STOP) Eq. 6.146
where u is a positive integer, then it is possible to show from the partial ordering
given in Appendix A that for any two Ideal Test Sets I,, I, one is always a superset of

the other. As a consequence for any such set I,,..,.I, of Ideal Test Sets there will
always be at least one which is a superset of all the others. That is

Ime Ne(m<n A (VO0Li<ne*I D1I,)) Eq. 6.147
The theory presented in this chapter is now sufficiently mature to show how an Ideal

Test Set can be generated for every pair (LP.F(P)), R), where F is a Catenary function
and R is a predicate in RSPEC. The following theorem describes the mechanism for

generating an Ideal Test Set.

Theorem 6.17: Let F be a Catenary function. For all non-zero positive integers 1,
j let

. . . 3
Ri%e @ RJEE B RiT ey Ri’e 8 Eq. 6.148

Furthermore, let &, be a compound predicate such that

A - s "
R, = Ri%* v \} rRiP v \) Rjz v \} Rji5 Eq. 6.149
. L 5 1 .

where, for all non-zero positive integers j, the values aj, by, ¢4, n; are positive
integers. Let x; be defined by

170

Chapter Six: Ideal Test Sets

xj' = nj +[aj¢0] +[b] ¢0]
+[c;#20Aa;=0Ab;=0Ac;=0] Eq. 6.150

Let the predicate R be defined by ’
R=R, AR, AR, Eq. 6.151

where k is an integer. Note that equation 6.151 is in conjunctive normal form and
that every predicate in RSPEC can be expressed in this form. An Ideal Test Set for
the pair (LP.F(P), R) is

Traces(F*™2*(STOP)), xmax =max{x;|j=1tok } Eq. 6.152
|

Proof
By Theorem 6.13, for all predicates of the form R there is a value x; such that

R, e oM Eq. 6.153
where x, is given by the equation

+[Cj¢0Aaj=0Abj=0ACj=0] ECI6154

Consequently, by Theorem 6.14, for every j (0<j <k) the set Traces(F*
(STOP)) is an Ideal Test Set for the pair (LP.F(P), K;).
Consider the set of Ideal Test Sets given by

{Traces(F** (STOP)), .., Traces(F** (STOP)) } Eq. 6.155

Let xmax be the maximum element of the set {x, .., X, }. It is possible to show

from the partial ordering over CSP processes given in Appendix A that

Vu,ve N ¢ (u2v= Traces(F'(STOP)) 2 Traces(F'(STOP))) Egq.6.156

It follows from the definition of xmax that

V 1< j <k * (Traces(F™**(STOP)) 2 Traces(FI(STOP))) Eq. 6.157

171

Chapter Six: Ideal Test Sets

Theorem 6.16 and its corollaries may now be used to show that FX™2X(STOP) is an
Ideal Test Set for the pair
/

(uP.F(P), R) Eq. 6.158
where
R =R AR, AR, Eq. 6.159
O
1 mmar

The main points developed in this chapter are as follows

i) The concept of ideal tests proposed by Goodenough and Gerhart [
Goodenough 75] for state-transition systems has been translated into the new
concept of Ideal Test Sets for CSP. A formal definition of an Ideal Test Set has
been provided by Definition 6.1.

ii) It has been shown that the theoretical foundations for generating an Ideal
Test Set can be established by exploiting the link between recursion and
catenation exhibited by Catenary functions which was discussed in the previous
chapter.

iii) The chapter has introduced the four categories &, B, ¥, 6 into which certain
predicates may be classified by virtue of their properties over catenation. The
nature of these categories has been utilised to determine rules concerning how
compound predicates distribute over catenation.

iv) A predicate language RSPEC has been proposed to facilitate the generation
of Ideal Test Sets. It has been shown that the language RSPEC is such that for
every pair (UP.F(P),R), where R is a predicate of RSPEC and F is a Catenary

function, there exists a well defined procedure for generating an Ideal Test Set.

172

CHAPTER SEVEN

A SYNTAX OF RSPEC

7.1 Introduction.

The previous chapter proposes a syntax, RSPEC, for describing particular
behavioural specifications of CSP processes. It was shown how, given a suitable
process defined by a Catenary function, there exists a general procedure for
establishing the correctness of behavioural specifications in RSPEC.

However, there remain a number of points which the previous chapter has not fully
addressed. First there is the question of providing a precise syntactic definition of
RSPEC. Recall that RSPEC relied on the definition of CATEGS as being “ The set of
syntax of all predicates which belong to categories o, 8, Y, §.”. Although this
definition may be sufficient to understand the nature of CATEGS it still does not
constitute a precise syntactic definition. Secondly, the expressibility of RSPEC is
limited. That is the scope of the behavioural specifications permitted by the
composition of predicates from the categories a, B, ¥, 8 is somewhat restricted.

This Chapter has two main objectives. The first is to create a well defined syntax for
RSPEC which can be used to capture and prove the correctness of behavioural
specifications. To achieve this the Chapter opens by addressing the problems caused
by the initial loose definition of the syntactic set CATEGS. It is recognised that in
order to provide a proper syntactic definition of RSPEC it will first be necessary to
delineate a more precise definition for CATEGS. It is shown how a general set of
syntactic rules to indicate inclusion in each of the categories o, B, ¥, 8 can be factorized
by studying specific examples of predicates. This leads to a partial syntactic definition
of CATEGS and, in turn, to a well defined syntax for RSPEC. The applications of

173

Chapter Seven: A Svntax of RSPEC

RSPEC and its role in generating Ideal Test Sets for suitable processes are then
demonstrated by a number of examples.

The second aim is to critically analyse the scope that RSPEC has to represent
specifications and to subsequently propose and implement an extension to RSPEC
which constitutes an improvement. Attention is focused on the scope and limitations of
RSPEC in representing behavioural specifications for CSP processes. By discussion
and examples it is seen that, while RSPEC is able to capture a number of interesting
and useful properties, there is room for improving the method. With this in mind a
strategy is proposed for extending the syntax of RSPEC to that of ERSPEC, which is
shown to be more expressive. _

The Chapter then turns to the specific problem of defining a particular syntax for the
extension ERSPEC and resolving this extension with the theory outlined in Chapter
Six. The basis for the extension is the use of monotonic trace endomorphisms. By a
series of definitions and theorems it is demonstrated how every behavioural
specification in ERSPEC can be used to generate an Ideal Test Set for a process defined
as the fixed point of a Catenary function.

Finally the chapter summarises these results and draws conclusions about their
applications.

ntax mantics of CATE

In the previous chapter, CATEGS was defined as being the set of syntax of all those
predicates which fall into one of the four categories a., B, ¥, 8. However, such a loose
definition leads to problems in the subsequent development of a syntax for RSPEC.
RSPEC is intended to provide a purely syntactic definition for behavioural
specifications which can be used for the generation of Ideal Test Sets. It is based
directly on the syntax set CATEGS. Inclusion of a predicate in CATEGS depends on
membership of one of the categories ., B, ¥, 8. In turn membership of these categories
is dependent on the interpretation given to a particular predicate when it is evaluated
over all traces. Thus although the set CATEGS is one of syntax, the criteria for
inclusion is semantic.

Now, suppose there were a set of syntactic rules equivalent to saying that a predicate
belonged to CATEGS. That is a set Z, say, of rules such that a predicate R satisfies Z
if and only if R belongs to CATEGS. Z is, as a consequence, also equivalent to the
semantic rules which indicate inclusion in the set { « U B U YU 8 }, such that

R satisfiesZ & Re {auBuyud} Eq. 7.1

174

Also, it would be possible to use Z to manufacture a syntactic definition for
CATEGS. This gives rise to the following question. Is it feasible to develop a set of
syntactic rules Z which are equivalent to the semantic criteria for inclusion in CATEGS?

There are two factors which direct the answer to this question, expediency and
compromise. To find Z would involve drawing comparisons between two
complementary theories, one of syntax and one of semantics. Such theories already
exist for CSP and are well documented [Roscoe 82, Olderog 86]. However, these
specifically relate to an axiomatic proof system for CSP. It is not known how the
concepts would translate to the verification system described in the previous chapter,
which is predominantly based on the properties of catenation. As a consequence, to
have confidence in any results it would be necessary to carry out a detailed investigation
into the relationships between the syntax and semantics of this new system. The
literature [Revesz 83, Watt 91] readily concedes that the general relationship between
syntax and semantics is complex and, as a consequence, analysis would prove difficult
and time consuming.

Therefore, a lateral approach to the problem was adopted that yielded an alternative
solution which, although not as comprehensive, offered a compromise. This was
based on finding a set Z' of syntactic rules which, when true, imply that a predicate
belonged to CATEGS.

These rules can be compared with Z. They are such that a predicate R satisfies Z'
only if the predicate belongs to CATEGS. That is

R satisfiles Z' = Re {aufuyud} Eq. 7.2

Note that Z' is a much weaker conceptual set of rules than Z. With Z it was possible
to take any predicate R, see if it satisfied Z and thus determine whether or not R was a
predicate in { ¢ U B U YU & }. With Z' it is only possible to take a predicate R and
deduce that it belongs to CATEGS if it satisfies Z'. If it does not satisfy Z' then it is
unknown whether or not the predicate is in CATEGS.

To summarise, the search for syntactic rules which completely define the set
CATEGS was not initiated because it was felt to be prohibitively complex and a feasible
alternative had been proposed. This alternative involves finding a weaker set of rules
and this proved easier to generate.

The problems of finding such a set of rules Z' are addressed by the following two
sections. The tactic adopted is to consider, for each category, specific examples of
member predicates. The properties of these member predicates are then analysed and
used to generalise a syntax for a class of related predicates.

175

Chapter Seven: A Syntax of RSPEC

1l i i i i

/

1.3.1 Category o

Consider the first category, category o. This details a class in which a predicate
holds for some non-empty trace s if and only if the predicate also holds for all traces
with s as a prefix. An example in this category is provided by the predicate which
determines whether the first event of a trace s is the event a. This may be written as
R'(s) where

R' (é) = First(s) = a Eq.7.3

Provided predicate R' holds for s it is reasonable to suppose that if any trace were
suffixed onto s the resulting trace would also begin with event a. That is

Vs, teFirst(s)=a = Firs{(s"t) =a Eq. 74
The trace s has a first event if and only if it is non-empty. Therefore it is also
reasonable to suppose that if a trace satisfies R ', then any non-empty prefix of that
trace will also satisfy R'. Thatis
Vs#<>*First(s't)=a = First(s) = a Eq. 7.5
By combining equations 7.4 and 7.5 the following result is obtained.
Vs#<>*First(s)=a =3 Firs{(s"t) = a Eq. 7.6
= Vs#<>°*R'(s) & R'(s"t) Eq. 7.7
By comparing this against the original definition given by Definition 6.3 it can be
seen that the predicate R is indeed a member of category .
Predicate R* is by no means an isolated example. Other predicates with a similar
syntax can also be shown to possess similar semantic properties, and thus belong to the

category o. For example

(First(s)=Db) € a, (Firs(t)=up)€ o Eq. 7.8

176

Chapter Seven: A Syntax of RSPEC

In fact, it is possible to generalise the predicate R' to form a whole class of
syntactically similar predicates by developing the following definition.

Definition 7.1: Let a set of predicates be syntactically defined by PREDa. This is
represented as follows

PRED«x

“First("’, tracevar, **) =", event ; Eq. 79

where event is the syntactic representation of an event (e.g. “a” or “startit”)
and tracevar is the syntactic representation of a trace variable (e.g. “s” or “t”).
(These definitions of event and tracevar shall be used throughout the text.) |

Because all the predicates in PREDG, can be shown to possess similar properties to
those of R *, it is likewise possible to show that all the predicates in PREDa belong to
the category a. This leads to a useful and interesting conclusion, namely that the
definition of PREDa provides syntactic rules to establish a predicate’s inclusion in the
category o. That is if Q is a predicate syntactically defined by PREDa.,, then Q belongs
to category o.. Note, however, that the reverse is not always so. If Q is a predicate in
category o then Q is not necessarily syntactically defined by PREDa.. PREDa does not
purport to be a complete syntax for the category o.

7.3.2 Category f.

A similar syntactic definition can be arrived at for the second category. Category 3
details a class of predicates which are such that a predicate holds for some non-empty
trace s if and only if the predicate also holds for all traces with s as a suffix. Consider
the following example predicate Q'

Lasy(s)=a Eq.7.10

QI

By analysis it can be shown that the predicate Q* is a member of category . The
syntax of Q' can be generalised to produce the following definition

Definition 7.2: Consider the set of predicates syntactically defined by PREDJ

PREDf = “Last(’”’, tracevar,) =", event ; Eq.7.11
|

177

Chapter Seven: A Syntax of RSPEC

Again, by exploiting the similarity of predicates in PRED to the predicate Q' , and
observing that Q' belongs to category B, it is possible to conclude that PREDP
provides syntactic rules to establish a predicate’s inclusion in the category B. That is if
a predicate belongs to PREDS it also belodgs to category f.

7.4 n ically Defining Predi i ri n

1.4.1 Category 0.

Category & details a class of predicates such that a predicate holds for both of two
traces if and only if the predicate holds for the catenation of the two traces. To illustrate
an example of a predicate in this category let R" state that an event a does not belong to
atrace s. This is written |

R"(s) = —(a in s) Eq. 7.12

By undertaking analysis of R" it is possible to show that for any traces s, t

—~(ains) A =(aint) =3 —(ain s"t) Eq.7.13
Vs, t#<>*R"(s) AR"(t) = R"(s"t) Eq.7.14

Referring back to the Definition 6.3 it can be seen that the predicate R" is a member of
the category 8. Now consider the predicate which states that an event a belongs to a
trace u when u has been restricted to a set of events A. This can be written Q" where

Q"(s) = —~(ainula) Eq.7.15

By making the substitutions s = ul'2 and t = vI'A into equation 7.13, and noting that
restriction distributes over catenation, it is seen that

—~(ainula) A —(ainvl2) & —(ain@la”vla) Eq7.16
& —(ain @Vla) Eq. 7.17

Again, by analysis, it is possible to deduce that Q" is also a member of category 8. In
the same manner as for section 7.2, these examples of predicates can be generalised

into a syntactic definition.

178

Definition 7.3: Let a set of predicates be syntactically defined by PREDS. This is

represented as follows
!

PREDS = “=(", event, “in”, tracevar,")”

| “~(", event, “ in”, tracevar, “I' ", eventset, “)”; Eq.7.18

where eventset represents the syntax of any set of events (e.g. { a, b, ¢ }, This
definition of eventset will be used throughout the text.) =

By noting the similarity of predicates in PREDS to the examples R" and Q" it is
possible to draw the conclusion that every predicate in PREDS is also a predicate in the
category O. -

742 Category ¥y,
The previous chapter showed that the logical negation of a predicate in category &
resulted in a predicate in category y. Utilising this property leads to the following

definition
Definition 7.4: Consider the set of predicates syntactically defined by PREDy

PREDy = event, ' in ", tracevar
| event, “in ", tracevar, 1", eventset ; Eq. 7.19
[|

The definition of category y (Definition 6.3) implies that if P' is a predicate in
PREDy, then (—P"') is equivalent to a predicate in PREDS. As a result (=P ') will be
in category 8, and so P' (= —(=P')) will be in category Y. Therefore it can be
concluded that if P' is a predicate in PREDy, P is also a predicate in category Y.

The rules and definitions espoused by Sections 7.3 and 7.4 now permit the following
statement which summarises the relationship between the semantic definition of

CATEGS and the syntaxes of PREDo, PREDf, PREDy and PREDS.

Statement 7.1: If R is a predicate defined by one of PREDo., PREDf, PREDY or
PREDS, then R is also a member of the set { a U BU YU }. []

179

Chapter Seven; A Syntax of RSPEC

fstificati
See Sections 7.3 and 7.4]

7 1 x RSPE

The rules and definitions provided in Sections 7.3 and 7.4 can now be used to
develop a full syntactic definition for the set CATEGS. But first it is important to
comment on the original definition and make adjustments. In the previous chapter
CATEGS was defined as “ The syntax of all predicates which belong to categories o,
B, 7, 8.”. The decision was made in Section 7.2 to find rules which would imply a
predicates inclusion in the set { a U B U yuU 8 } (that is Z') rather than rules which
would be equivalent to that inclusion (that is Z). Any subsequent syntax of CATEGS
may not contain every predicate in { c W B UYU S }. As a consequence it was
decided to re-define CATEGS as being “ A syntax of predicates which belong to
categories o, B, y, 8.”. Since the previous chapter only assumes that predicates in
CATEGS are also predicates in { oo U B U yU d }, adjusting this definition does not
affect the theory.

Recall the previous definition of RSPEC.

STATEMENT ::= TRUE | FALSE | CATEGS |
STATEMENT, “v’, STATEMENT |
STATEMENT, “A”, STATEMENT |
STATEMENT, “=", STATEMENT |
STATEMENT, “<”, STATEMENT |
“—”, STATEMENT ; Eq.7.20

By employing the definitions and rules given so far, it is now possible to generalise
the above into a more complete definition of RSPEC, by including the formal definition
of a syntax for CATEGS.

Definition 7.5: The syntax of RSPEC is defined in BNF form as

STATEMENT ::= TRUE | FALSE | CATEGS |
STATEMENT, “v”’, STATEMENT |
STATEMENT, “A”, STATEMENT |
STATEMENT, “=", STATEMENT |
STATEMENT, “&”, STATEMENT |

180

“=", STATEMENT ;

CATEGS #= PREDa | PRED | PREDy| PRED$
PREDa = “first(”, tracevar, “) =", event :
PREDf = *“ Last(”, tracevar,“) =", event
PREDy = event,*“in”, tracevar

| event, “in ", tracevar, “I"”, eventset :

PREDS = “=(”, event, “in”, tracevar, *“)”

B

—(”, event, “in”, tracevar, “I'’, eventset, “)" ;

event e “a” | “b’ | .. ** list of event names **

(TR

eventset = “”, event , ", event, .., event ““}”
tracevar v “s” 1 “e” | .. ** list of trace variable names **
|

RSPEC is essentially a syntax for representing behavioural specifications of CSP
processes. The motivation behind it is to provide behavioural specifications which can
be always be used to generate Ideal Test Sets in conjunction with Catenary functions.
The syntax provided above is aimed at behavioural specifications ranging over the
simplest semantic model, the traces model.

The conclusion of Statement 7.1 was that all predicates in CATEGS (as defined by
the syntax of PREDa, PREDf, PREDy, PREDS) were also predicates in the set { o
Buyud}. The conclusion of Theorem 6.17 was that if predicates from the set { o
U B uUyuU S} were composed together under the logical operators (A, v, &, =, =),
then the resulting behavioural specification had particular properties which, in
combination with a suitable process, allowed the generation of an Ideal Test Set.
Together, these conclusions lead to the following statement.

Statement 7.2: Let R be a (finite defined) behavioural specification from RSPEC
and let F be a (finite defined) Catenary function. Then there exists a (finite) set I

181

Chapter Seven; A Syntax of RSPEC

which is an Ideal Test Set for the pair (uP.F(P), R). Furthermore there is a defined
procedure for generating I. E

fustificati
The basis for this statement lies in the work of this and previous chapters. It can be
said to capture the theme of this part of the thesis. That is that there exists an
automatic procedure in the form of an Ideal Test Set for establishing the correctness
of certain processes against certain specifications, and that furthermore the limits of
the acceptable processes and specifications can be bound by a suitable syntax. In this
case that syntax is provided by RSPEC and by the syntactic definition of Catenary
functions. O

7.6 Testing for the Em Tr

Sometimes when composing behavioural specifications it is useful to be able to test
for the presence of an empty trace. This is represented by the predicate

sS=<> Eq. 7.21

The problem with this predicate is that it does not belong to any of the four defined
categories. Recall that these categories specifically exclude empty traces and as a
consequence they exclude the empty trace predicate. To overcome this problem this
thesis develops a procedure which allows the empty trace predicate to be included in
behavioural specifications defined by RSPEC. Introduce a further syntactic class
PRED. , defined by

PRED,_ , u= tracevar,* =< >" | tracevar, * # < >”; Eq.7.22

This is incorporated into RSPEC by replacing the definition of CATEGS with

CATEGS ::=PREDo | PREDB | PREDY|PREDS |PRED, . Eg 7.23

To distinguish the revised version of RSPEC from the original, call it RSPEC+. That
is RSPEC+ is simply RSPEC with the inclusion of the empty trace predicate. Now let
0 be some behavioural specification syntactically defined with RSPEC+ and let F be a
Catenary function. To verify that Q satisfies the process uP.F(P) the following

procedure is adopted

182

Chapter Seven: A Syntax of RSPEC

1) Given the behavioural specification Q in RSPEC+, replace all occurrences of
“s = < >” with the proposition FALSE. (Note that all occurrences of “ —(s =
< >)"or “s # < >” should be accordingly replaced by the proposition TRUE).
This results in a new Q *, which is a behavioural specification in RSPEC.

ii) Using the procedures outlined, generate an Ideal Test Set I for the pair (
UP.F(P), Q") in the conventional way.

iii) Test Q * againstthe set I - { < > }
1v) Test Q against the set { < > }
v) Q satisfies the process WP.F(P) if and only if tests (iii) and (iv) are

successful.

7.7 Some Examples of Using RSPEC and RSPEC+.

This section contains four examples of natural language specifications and shows
their equivalent representation in RSPEC. The first three examples are intended to
illustrate the scope of RSPEC and give an indication of how it is used to capture
behavioural specifications. The fourth example is more detailed. Given a suitable
Catenary function and behavioural specification in RSPEC+ it describes how an Ideal
Test Set is generated to establish correctness.

Example 7.1: Let P be some process. Consider the natural language requirement
“p will always perform the event shiver before the event shake”. This can be

expressed by the behavioural specification

Last(s) = shake = shiverins Eq.7.24

The conjunctive normal form is

— (Las(s) = shake) v (shiver in s) Eq.7.25

183

Chapter Seven: A Syntax of RSPEC

Example 7.2: Let P be some process. Consider the natural language requirement
“If the first event P performed was shake, then when it performs roll it will

previously have performed rattle”. This may be expressed
/

(Last(s) = roll A First(s) = shake)
=5 rattleins Eq. 7.26

The conjunctive normal form is

—(Las(s) =roll) v —(First(s) = shake)
Vv (rattlein s) Eq. 7.27

Example 7.3: Let P be some process. Consider the natural language requirement
“Once P has performed the event wobble it cannot perform the event roll”.
This may be expressed

wobble in s = —(LasH(s) = roll) Eq. 7.28

The conjunctive normal form is

—(wobbleins) VvV —(Last(s) =roll) Eq. 7.29

Example 7.4: Let F be some Catenary function such that

F(X)=a—b—oXOa—>c—=2b—X Eq. 7.30

and let P be the process defined by the fixed point of F, UP.F(P). A requirement of P
is that the first event performed must always be a and prior to performing the event ¢
process P must not have performed event b. This can be expressed by the

behavioural specification R

R(s) = (First(s)=aVvs=<>)A
(Lass)=cvs=<>)=—(bins)) Eq. 7.31

184

Chapter Seven: A Svntax of RSPEC

Note that this compound behavioural specification contains the empty trace predicate.
As a consequence the appropriate procedure must be followed. Replacing “s=<>"
with FALSE yields the new behavioural specification R

/

R'(s) = (Firs(s)=a) A ((Las{s)=c)= —(bins)) Eq. 7.31

To generate an Ideal Test Set for the pair (UP.F(P), R") it is necessary to express R '
in conjunctive normal form. This is

(Firs(s)=a) A (=(Las(s) =c) v —~(bin s)) Eq. 7.32

The above may be written as two behavioural specifications under logical

conjunction.
R' - R',(s) AR',(s) Eq. 7.33
R',(s) = (First(s) = a) Eq. 7.34
R'5(s) = (—(Las(s) = ¢) v (b in s)) Eq.7.35

Because R', € 0, by Theorem 6.2 an Ideal Test Set for the pair (WP.F(P),R",) is
Traces(F(STOP)). R', is the logical disjunction of two predicates in two separate
categories, one in (3 and the other in 8. Therefore it can be seen from Theorem 6.10
thatrR', € 2.

By Theorem 6.14 an Ideal Test Set for the pair (LP.F(P), R',) is Traces(F?(STOP).
Theorem 6.16 now gives that an Ideal Test Set the pair (LP.F(P),R') = (UP.F(P),
R', AR',)is Traces(F*(STOP)). Recalling the overall procedure which is being

followed, first test R against the empty trace

R(<>) = (Fis(<>)=av<>=<>)
A((Las{< >)=cv<>=<>)=>(bin<>))

= (FALSE v TRUE) A ((FALSE v TRUE) = TRUE) = TRUE Eq. 7.37
Now R' must be tested against the Ideal Test Set

(Traces(F*(STOP)- { <> })
= <ia>, < &, bi>, < a, e 3, £4a,0,0 3,<a,b, & > <a,b,a, ¢ 5

185

Chapter Seven: A Syntax of RSPEC

{atb|a1c1b>ﬁ 4a,b.a,b>, <a,c,b,a>,
<a,c,b,a,b>, <a,c,b,a,¢c>, <a,c,b,a,c,b>

Eq. 7.38

/

The predicate R' does not satisfy all the above traces. Therefore it can be concluded
that the predicate R does not hold for the process uP.F(P). Note, however, that the
predicate R ' does hold for the traces of F(STOP), given by the first four traces in the
expansion of equation 7.38. Thus to establish the fact that R did not satisfy uP.F(P)
it was necessary to analyse the second recursion of function F.

7.8 The Expressibility of RSPEC and a Strategy for Improving it.

The examples cited illustrate that there exist processes and behavioural specifications
for which RSPEC can provide a method of generating an Ideal Test Set. However, it
was also noted that the present scope of RSPEC is somewhat limited; there are a
number of important and desirable properties which it is unable to capture. For
example, it cannot represent requirements such as “The length of a trace must be more
than/less than/equal to 5 events.” or “The fifth event in a trace must be a.”.

An overview of the scope and capabilities of RSPEC suggested that it could be
extended. It was decided to undertake a detailed analysis of RSPEC in terms of the
behavioural specifications which it could capture. This would provide an insight into
the nature of RSPEC and, in turn, hopefully suggest a strategy by which it could be
extended and improved.

By its structure, RSPEC relies on the combination of predicates from the four
categories to which it is bound. Every behavioural specification in RSPEC can be
decomposed into a number of predicates. Each of these predicates belongs to one of
the four categories o, B, y, 8. From the definition of these categories it is possible to

assert that each decomposed predicate can be used for at most one of the following.

i) To directly reason about the first event in a trace. That is it can define the

position and nature of the first event.

ii) To directly reason about the last event of a trace.

186

Chapter Seven: A Syntax of RSPEC

iii) To indirectly reason about the rest of the trace. That is it can determine
whether or not a particular event is in a trace, but it cannot define the position of
that event.

It was found that as a behavioural specification in RSPEC is composed of predicates
which are limited by the properties i) - iii), so all behavioural specifications in RSPEC
are also limited to these properties. As a result of experience gained in decomposing
specifications, an interesting property of RSPEC surfaced. It was seen that there exist
certain traces between which RSPEC is unable to differentiate. That is there exist pairs
of non-equal traces t,, t, such that there is no expression R in RSPEC for which

R(t;) © =R(t,) Eq. 7.39

For example there is no expression in RSPEC which can distinguish between the
following traces

<a,c,d,e,b> & <a,d,e,¢,b> Eq. 7.40

This property, which for convenience will be called the non-differential property of
RSPEC, is postulated. It is not formally proved in this text but there is strong evidence
to suggest that it is both true and provable.

The realisation that RSPEC is both non-differential and limited in its expressibility
leads to the hypothesis that the two properties are in some way related. If this is so,
then a further conjecture could be that an extension to RSPEC which is differential, in
that it can always distinguish between two non-equal traces, would also prove to be
more expressive. Although these concepts are unproven and based on intuition rather
than deductive reasoning, they can be seen to serve a useful purpose. Previously it was
recognised that an extension to RSPEC was needed but there was no clear strategy for
developing it. If, however, expressibility is related to the non-differential property then
this suggests that a productive strategy may be to extend RSPEC so that it is
differential.

In summary, the lack of a tangible strategy by which to develop an extension for
RSPEC led to analysis. This analysis showed that RSPEC was unable to differentiate
between certain traces and this in turn suggested a favourable strategy. This now
draws attention to how it is possible to extend RSPEC to a differential form and how to
resolve any extension to the existing theory. The nest section addresses these points
and introduces a fundamental factor in their solution, monotonic endomorphic

functions.

187

Chapter Seven; A Syntax of RSPEC

En rphic F i
71.9.1 Definition of Endomorphisms,
An endomorphic function is a function which maps any particular space onto itself [
Borowski 89]. Thatis if f is a function mapping from the set A to the set A then £ is

said to be endomorphic or an endomorphism. A preliminary result is that the
composition of two endomorphisms is also an endomorphism. That is

Theorem 7.1: Let £, g be endomorphic functions and A be some set such that
f:A—> A, g:A— A Eq. 741

Then the composition of £, f ° g, is also endomorphic in that

feg:A—>A Eq. 7.42
&
Proof
For a proof of Theorem 7.1 the reader is directed to [Herstein 75]. a

A function which takes the set of traces as its domain can be loosely termed a trace
function. By applying the general concept of endomorphisms to trace functions a new
definition is arrived at, that of the endomorphic trace function or the trace
endomorphism

Definition 7.6: A trace endomorphism is a function which has the set of all traces,
T*, as both its domain and its codomain.]

Th fE ic Function
Suppose it were required to explicitly reason about a particular event, p, say, whose
position in a trace was known, but is not the first or last event in that trace. In these
circumstances RSPEC is insufficient. It only has the capability to explicitly reason
about the first and last events of a trace. However, suppose there was some function
which, when applied to a trace, always returned a trace in which p was the first or last

188

Chapter Seven: A Syntax of RSPEC

event, then it would be possible to use RSPEC to reason about the function of the trace
and thus about the event explicitly.

For example, suppose a requirement dictates that the third event in a trace s must
always be event a. This is not expressible in RSPEC. Let f represent a function
which removes the first two events in a trace. Then, provided s is of three events or
more, the first event of £(s) is also the third event of s. The following RSPEC
expression Q can be used to determine that the first event of f(s) is event a

Q(£(s)) o Firs{f(s)) =a Eq. 7.43

Note that to apply Q to a function of s means that the value of that function should be
of the same type as its argument. This is so with endomorphic functions.

This example provides an insight into the use of endomorphic functions to extend
RSPEC. The scope of an expression Q from RSPEC has been extended by taking as
its subject a function of a trace variable rather than just the trace variable itself. In a
similar manner it is proposed to allow behavioural specifications in RSPEC to take both
trace variables and functions of trace variables as their subjects. Because such
behavioural specifications relate to the traces of a process it is appropriate that any
function of a trace should also be a trace. For this reason the functions used are
restricted to endomorphisms.

To extend RSPEC in this way involves two main stages. First the syntax must be
extended with suitable rules that allow the correct definition of expressions containing
endomorphic functions. Once this has been achieved it will then be necessary to
resolve this extended syntax with the existing theory developed for generating Ideal
Test Sets. These two stages are the subject of the following sections.

2.9.3 Instances of Endomorphisms.
The concept of an endomorphic function has so far only been described in general
terms. It is now appropriate to provide some specific examples of trace

endomorphisms and investigate their characteristics.

1_Trace Restriction Function
The trace restriction function has already been described in the text in Chapter Three.

It is the function which restricts a trace to a particular set of events. Strictly speaking it
is not an endomorphism because it has the domain IP(Z) x Z" and the codomain Z".

However, if the restricting set of events is bound then the function can be treated as
endomorphic. For a set of events A the restriction function is defined by

189

Chapter Seven: A Syntax of RSPEC

sfla:2" - %* Eq. 7.44
Examples of this function are

<a,c,d,b>l{a,b}=<a,b> Eq.?.45

<>M{a,e} =<> Eq. 7.46

1.9.3.2 The Head Function,
The head function takes as its argument any trace s of arbitrary length n and returns
the trace containing the first n-1 events of s in order. Effectively Head(s) removes the

last event in a trace. In the exceptional case of the empty trace as argument the function
returns the empty trace as its value. The head function is endomorphic, it maps from
the set of traces to the set of traces.

Head(s) : X" = ¥° Eq. 7.47

Some examples of the use of this function are.

Head(< a,b,c,d,e >) = <a,b,c,4d> Eq. 7.48

Head <d >) = <> Eq. 7.49

Head < >) = <> Eq. 7.50
7.9.3.3 The Tail Functi

The tail function takes as its argument any trace s of arbitrary length n and returns the
trace containing the last n-1 events of s in order. Effectively 7ai(s) removes the first

event in a trace. In the exceptional case of the empty trace argument the function
returns the empty trace as its value. The tail function is endomorphic, it maps from the
set of traces to the set of traces.

Tails) : " - X7 Eq. 7.51

Examples of the use of the tail function are

Tail(< a,b,c,d,e >) = <b,c,4,e> Eq.7.52

190

Chapter Seven: A Syntax of RSPEC

Taif <d>)

1}
A
v

Eq. 7.53

Taill < >)

[}
A
v

Eq. 7.54

(It 1s noted from equations 7.49, 7.50, 7.53 and 7.54 that because the #Head and Tail

operators map more than one trace to the empty trace then they are not isomorphic, and
thus endomorphisms rather than automorphisms [Borowski 89].)

7.9.4 Other Definitions of Head and Tail.
The notations for the Head and Tail operators are introduced in this thesis as specific

examples of endomorphic functions. These functions are based on the trace operators
of the same name described in [Hoare 85]. There are, however, two major
differences. Primarily the head of a trace s is denoted by Hoare as s, and is
interpreted as the first event in a non-empty trace, rather than the result of removing the
last event. The tail of a trace is denoted by Hoare as s’, having the same interpretation
as Tail(s) except that s’ is not defined for the empty trace. To draw parallels with

Hoare’s notation the following equivalences are formulated

Tail[s) = s’ ,SE<>

= & , S =< > Eq. 7.55
Head(s) = ®) ,S#F<>

= <> ,8=<> Eq. 7.56

where a bar over the top of a trace indicates the reverse of that trace, that is the
reversing of the order of events in the trace.

7.9.5 Developing a Syntax of Endomorphic Functions.

If endomorphisms are to be included in any extension to the syntax of RSPEC then it
stands to reason that they themselves must be able to be expressed in a syntactic form.
That is there should be some syntax function, say, such that if £ is an expression in
function then £ is endomorphic.

Syntactic rules which indicate that an expression is endomorphic can be developed
along the same lines as those which govern inclusion in the set { a W BuUyuU b }.
Specifically that a number of examples are studied, and their syntax is generalised.

To achieve this the text restricts itself to the three functions already mentioned,
namely the restriction, head and tail functions. It is noted that, as endomorphic

191

Chapter Seven; A Syntax of RSPEC

functions, the composition of any of these functions is also endomorphic. This
realisation allows the following class of endomorphic functions called #7R functions to

be introduced here.
/

Definition 7.7: A function f is said to be an #7TR (head-tail-restriction) function if

it is exclusively composed of head, tail or restriction functions. That is if £ is such
that

f(s)mg;*..°g.(s) Eq.7.57
where for all i suchthat 1 <i<n
g.(s) = Head(s) v g,(s) = Taifls) v (g;(s)=sTAAACP(E)) Eq.7.58

An HTR function is said to be primitive if it is either the head, tail or restriction
function. L]

The result that all #7R functions are endomorphisms follows naturally.

Theorem 7.2: All #IR functions are endomorphic [|

Proof
All 7R functions are the composition of primitive #7R functions. These are all

endomorphic and so, by Theorem 7.1, the composition of them is also endomorphic.
O

The general syntactic form of each of the primitive #TR functions can be quickly
derived. In turn these can be combined to yield the following precise definition of #IR.
functions in BNF.

Definition 7.8: A function f is an #7R function if and only if it has the following
BNF syntactic definition

tracevar |
| “(”, function, “T"”, eventset, ©)”

| “Head(”, function,)"
| “Tail(”, function, “)"; Eq. 7.59

i

function

192

Note that 47 functions only constitute a subset of all endomorphic trace functions.
One given reason for identifying TR functions is the convenient way in which they
syntactically define endomorphisms.

Another less apparent, but equally important, reason for restricting the definition of
HTR. functions to the composition of the given primitives was to assure that the

resulting functions were also monotonic. To understand this first introduce the
following definition of monotonic.

Definition 7.9: Define two partial orders on the set of traces. The first is suffix
partial ordering, 2, defined as

uzv & Sreusry Eq. 7.60
where u, v, r are traces. The second is prefix partial ordering, 2, defined as
u%v = Ao =vT Eq. 7.61

where u, v, r are traces. A function is said to be monotonic if it preserves a partial
order. For the purposes of this text, a traces function is defined to be monotonic if
and only if it preserves both the prefix and suffix partial orders. That is f is
monotonic if and only if

Vuve (u%v =5 f(u)%f(v))

AC uzv = fW2ZEV)) Eq.7.62

7 i fT morphism

The importance of a function being monotonic will become more apparent as the text
proceeds. For the present it is stressed that if a function is not monotonic, then it
cannot be resolved with the subsequent theory. Consequently it is necessary to
establish that all the functions defined by the syntax function are indeed monotonic.
This is achieved in Theorem 7.4. However, prior to this it is useful to take stock of
some of the more general and specific properties of the trace endomorphisms which are
being used. These properties are valuable both in terms of understanding more about

193

Chapter Seven: A Syntax of RSPEC

the nature of trace functions as well as furnishing the subsequent proofs with some
prerequisite results. The following Theorem lays out some of the properties which
trace functions possess.

/

Theorem 7.3: The following properties hold for arbitrary traces s, t

1) LasH(Tail(s)) = LasKs) & Taills)#< > Eq. 7.63
i) Firs{ Head(s)) = First(s) & Head(s) # < > Eq. 7.64
iii) LasH(s"t) = Last) &> t£<> Eq. 7.65
iv) Firs(s"t) = Firs«(s) & s#E<> Eq. 7.66
v) Tail[s"t) = Tail(s)"t = s#¥E<> Eq. 7.67
vi) Head(s"t) = s"Head(t) & t#<> Eq. 7.68
vii) s = First(s) " Tails) Eq. 7.69
viii) s = Head(s) " Last(s) Eq. 7.70
iX) Head(Tail(s)) = Tail(Head(s)) Eq.7.71
x)sfa~tlfa=s"tla Eq. 7.72
=
Proof
Each rule is proved by inspection. O
Theorem 7.4: All #TR functions are monotonic. &
Proof

To prove Theorem 7.4 it is first necessary to demonstrate that each of the primitive
#4TR functions are monotonic. To achieve this let r, s, t be traces such that r % s

and r > t. Therefore there are arbitrary traces u, v suchthat r =s"vand r = u"t.
s

194

Chapter Seven: A Syntax of RSPEC

Case Head r)
Taking the head function for both sides of the equality r = u™t yields

Head(r) = Head{u"t) Eq. 7.73
= U Head(t) fromeq. 7.68 if t # < > Eq. 7.74
Head(r) 2 Head(t) ift#<> Eq. 7.75

Additionally, from equations 6.78 and 6.70

Head(u"t) Head(u)" Last(u)" Head(t) ift#<> Eq.7.76

Head(x)

olvV

Head(t) iftzgt<> Eq. 7.77

If t = < > then it follows trivially that Head(r) 2 Head(t) and Head(r) 2 Head(t).

Therefore, it is seen that the function #ead is monotonic.

Case Tail r)
By a similar argument as for #ead'it is possible to show that for Zail

r2t = Tail(r) 2 Tail(t)
A r % s = Tail(r) % Tail(s) Eq.7.78

Case Restriction
Restriction is distributive over trace catenation. For a set of events A the general
restriction function ['A over the equality r = u”t yields

rfa = @@e)la Eq. 7.79
= la)y(cla) Eq. 7.80
a2 tfa Eq. 7.81

The case for prefix ordering is shown in a similar way. Thus restriction is a

monotonic function.

195

Chapter Seven: A Syntax of RSPEC

It now remains to show that if £ and g are monotonic functions, then so is f * g. Let
s, t be traces such that

r 2 t Eq. 7.82
f(x) 2 f(t) £ is monotonic Eg. 7.83
g(f(x)) 2 g(f(t)) g is monotonic Eq. 7.84

Again the case for the prefix ordering follows in a similar way. Therefore f © g is
monotonic. All #7R functions consist of the composition of a finite number of the
primitive TR functions. The primitive 7R functions are monotonic and thus so is
their composition. Therefore all #7R functions are monotonic. O

7.11 Extending th RSPE

Having given a syntax for #7R functions, it is now appropriate to address the
question of how it may be incorporated into an extension of RSPEC. This extension
will be called ERSPEC. It is broadly similar to RSPEC in overall structure, but the
syntactic definition of predicates given by CATEGS in RSPEC has been extended.
Recall that in RSPEC the set CATEGS was defined as

CATEGS ::= PREDa | PRED | PREDY | PREDS Eq. 7.85

It is proposed to add two more syntactic groups to this definition. The first is the
syntax of all those predicates with the general form

First(£(s)) = a Eq. 7.86

where f is an #TR function and a represents some arbitrary event. The form of
expressions such as equation 7.86 can be generalised by the following BNF syntax.

PREDX “First(”, function, “) =", event ; Eq.7.87

e

The second group is the set of all those predicates with the general form

Last(f(s)) =a Eq. 7.88

196

where f is an #TR function and a represents some arbitrary event. Again it is
possible to generalise expressions such as equation 7.88 into the following BNF syntax

PREDﬁ B “Last”, function, *“) =", event ; Eq. 7.89

Extending the existing CATEGS by including the definitions PREDf and PREDf
yields a new set of syntax NEWCATEGS given by the definition.

NEWCATEGS

PREDo. | PREDB | PREDy | PREDS
| PREDX | PREDf | PREDe Eq. 7.90

The extra syntax PREDe is included here to afford a more complete definition of
NEWCATEGS and thus ERSPEC. It will be described in more detail in Section 7.16.
The method of generating an Ideal Test Set for a behavioural specification in RSPEC
relies upon being able to determine the properties over catenation of every predicate in
CATEGS. This is assured by the assertion that every predicate in CATEGS belongs to
{auBuyud), and thus its properties over catenation are known. However, this

is no longer the case for NEWCATEGS. If a predicate is in NEWCATEGS then it
does not necessarily imply that that predicate belongs to { a W BuUyu & }. This is
illustrated by the following example

Example 7.5: Let R(s) be a predicate defined by PRED& where

R(s) = First(Tails)) = b Eq. 7.91

Then for the traces <a> and <b, ¢> the predicate R is such that

R(<a>"<b, ¢>) & R(<a>) Eq. 7.92
R(<a>"<b, c>) &b R(<b, c>) Eq. 7.93
R(<a>"<b, ¢>) &b R(<a>) Vv R(<b, c>) Eq. 7.94
R(<a>"<b, c>) &b R(<a>) A R(<b, c>) Eq. 7.95
Thus R does not belong to any of the categories a., B, ¥, 8. -

197

Chapter Seven: A Syntax of RSPEC

Building an Ideal Test Set for a behavioural specification in the manner of Chapter
Six requires knowledge about how that specification behaves over trace catenation.
This knowledge can be derived from understanding how the individual predicates
which make up the specification behave over catenation. For RSPEC this means being
able to attribute a property over catenation to each and every predicate in CATEGS.
For an extension to RSPEC built around the set NEWCATEGS this will involve being
able to attribute a property of catenation to each and every predicate in NEWCATEGS.

Example 7.5 showed that not every predicate in PRED belongs to the set { o U B U
YU 8 }. The same is true for PREDB. Because of this and the importance of being
able to attribute a property over catenation to every predicate in NEWCATEGS it
proved necessary to introduce two new categories &, which could attribute such
qualities to predicates in PREDa and PREDa. This is achieved in the next two
theorems.

Theorem 7.5: Let £ be an #7% function and let R be a predicate defined by the
expression

R(s) = Last(f(s))=a Eq. 7.96
Then R is such that

VE(t)#<> Rt) & R(s"t) Eq. 7.97

| |

Proof
Let s, t be traces such that £(t) # < >. By the definition of the partial ordering on
traces

s"t % t Eq. 7.98

The function f is an #7R function and thus by Theorem 7.4 is monotonic. Therefore
f(s™t) 2 f(t) Eq. 7.99
Thus, by definition, there exists some trace u such that

£(s"t) = u"f(t) Eq. 7.100

198

Chapter Seven; A Syntax of RSPEC

Las(f(s"t)) = Last(u"£(t)) Eq. 7.101

Now, since £(t) # < > it is seen from Theorem 7.3 (iii)

Last(u"f(t)) = Last(£(t)) Eq. 7.102

V f(s)#<>¢ Las(f(s"t)) = Last(u"f(t)) Eq. 7.103

V f(s)#<>e Last(f(t)) =a = Las(u“f(s"t))=a Eq.7.104
[

Theorem 7.6: Let f be an #7R function and let X be a predicate defined by the
expression

R(s) = First(£(s)) =a Eq. 7.105
Then R is such that
VEi(s)#z<> » R(s) & R(s"t) Eq. 7.106
]
Proof
The proof of Theorem 7.6 is similar to that of Theorem 7.5 O

Theorems 7.5 and 7.6 indicate that the predicates formed under the syntax PRED&
and PRED possess similar but different semantic properties to predicates formed
under PREDo and PREDP. These properties are espoused by equations 7.97 and
7.106. The Theorems now allow the semantic properties of predicates in PRED& and
PREDf} to be made clear by the following definitions.

Definition 7.10: Let M be some condition on s. Then a predicate R belongs to the
category & provided

VME),te R(s) & R(s"t) Eq. 7.107

199

Chapter Seven: A Syntax of RSPEC

Definition 7.11: Let M be some condition on s. Then a predicate R belongs to the
category B provided

VM(t),s* R(t) & R(st) Eq. 7.108
]

These new categories allow the properties over catenation of every predicate formed
from the syntax NEWCATEGS to be made explicit. This is summed up by the
statement

Statement 7.3: Let R be a predicate in the syntactic set NEWCATEGS. Then R

belongs to one of the categories a, B, ¥y, 6, &, f3.
[

hustificati
If R is a predicate in NEWCATEGS then R is either also in CATEGS or it belongs to
the set { PRED& U PREDP U PREDe }. If it is in CATEGS then from Statement
7.1 that Ris alsoin the set { o w puyu & }. If it belongs to the set { PRED& U
PRED } then it is seen from Theorem 7.5 and 7.6 that R possess the semantic
properties to be included in the set { & U). For the present it is simply assumed
without qualification that if R belongs to PREDEe then R is also in { & UP). Thisis

qualified in section 7.16 0O

Theorems 7.5 and 7.6 also highlight the importance of the earlier stricture that
functions such as £ must be both endomorphic and monotonic. Theorem 7.5 showed
that the monotonicity of the function £ was a requirement for an expression in PREDot
to belong to the category &. Later sections reinforce this point by demonstrating that all
behavioural specifications in the extended syntax ERSPEC need to be decomposed into
predicates which belong to the categories o, B, v, 8, &, B. This is only feasible if it can
be guaranteed that Statement 7.3 is valid, and this is dependent on the monotonicity of
participating functions.

As an aside, it is worth noting that if a predicate belongs to category a, then it also
belongs to category &. To illustrate this substitute the condition *'s is non-empty” for
the expression M(s) in equation 7.107 in the definition of .. In a similar way it can be
shown that if a predicate belongs to category P it also belongs to category B. Itcan thus

be concluded that

200

Chapter Seven: A Syntax of RSPEC

(RUBuyud) o (auBuyud) Eq. 7.109

This section concludes with a result which determines a normal form for behavioural
specifications in ERSPEC. This follows the fashion of Chapter Six where a normal

form was given for expressions in RSPEC. It standardises the approach to dealing
with behavioural specifications in ERSPEC.

Theorem 7.7: Let R be a statement in ERSPEC which is not a tautology. Then it is
possible to write R in the conjunctive normal form as

o
_/\ (V @) Eq. 7.110

where either Q; 5 or —(Q;) is a predicate from the set { & UBuyud)and o, @ are
integers.

i
Proof
Theorem 7.7 can be proved by using the concept of substitution instances given in [
Hamilton 78]. O

7.12 Closures of &, f, 7y, .

In the previous chapter it is shown how an Ideal Test Set is generated for behavioural
specifications of RSPEC. The procedure adopted is to take an expression in normal

form and use reasoning to determine the properties over catenation of those parts of the
¢

expression in the disjunctive form V' (Q, ;). These properties are then used to
=1

develop provisional Ideal Test Sets. The union of the provisional Ideal Test Sets is

used to formulate an overall Ideal Test Set for the behavioural specification given by

¢ 9 .
A V (© i3)- This chapter approaches the generation of Ideal Test Sets for

i=1 j=1
behavioural specifications of ERSPEC in a similar way. The following sections are
concerned with generating provisional Ideal Test Sets for a general expression of the

form

201

S - V (@' Eq. 7.111

'where each Q' or —~(Q' ;) is a predicate from the set { & UB LUYU S }.
Specifically, it is required to generate an Ideal Test Set for the pair (LP.F(P), S), where
F is some Catenary function. To achieve this it will be necessary to establish by
reasoning the properties that S possesses over catenation. Thus it is important initially
to establish closures over the set { & UP Uyu § }. That is to determine those

predicates which, when composed under logical disjunction, preserve certain properties
relating to catenation.

121 Cl fo ical Negation
Attention is first focused on those two new categories & and . The following
theorems establish important results for closures on these categories.

Theorem 7.8: The category & is closed under

i) logical negation

i) logical disjunction [|
Proof
Case i) negation

Let R be a predicate in o such that

YV M(s) * R(s) = R(s"t) Eq. 7.112

V M(s) * —R(s) = -R(s"t) Eq. 7.113

—-R€E & Eq. 7.114
Case ii) disjunction

Let O, R be arbitrary predicates in & with conditions M, N respectively such that
VM(s)*Q(s) & Qst) Eq.7.115

V N(s)*R(s) & R(s"t) Eq.7.116

202

Chapter Seven: A Syntax of RSPEC

V M(s) AN(s)*Q(s) VR(s) & Q(s"t) VR(s"t) Eq. 7.117
Let E(s) be equivalent to M(s) A N(s).
V E(s) * QVR(s) < QVR(s™t) Eq.7.118

Thus QVR belongs to the category & and so & is closed under logical disjunction.

|
Theorem 7.9: The category f is closed under
i) logical negation
ii) logical disjunction
|
Proof
Theorem 7.9 follows in a similar manner as Theorem 7.8. O

Taken in conjunction with Theorem 6.4 it is now possible to use these results to
show that the set { & UB Uy U8 } is closed under logical negation (just as the set { o
U BuUyuUd } is closed under logical negation). The corollary of this is that the
expression S can be rewritten as

@
s = V @) Eq. 7.119

i=1

where each Q"; is a predicate from the set { X UB UYU 8 }. By employing
Theorem 7.8 (ii) all the predicates in the expansion of S which belong to & can be
composed into one expression Rz which also belongs to &. Similarly, by Theorem 7.9
(ii), all predicates belonging to B can be composed into some predicate Rj € B. Using
Theorem 6.5 and Theorem 6.6 it is likewise possible to show that all expressions in
category Y can be composed into a predicate Ry € Y and the n remaining expressions in
category O can be composed into an expression Rg, € d".

The result of these simplifications to S is that, provided there exists an expression Q";
in each of the defined categories, an expression of the form S can now be written

203

S = Rz VR VRyVRgn Eq. 7.120

where Rz € &, R e f,Ry € ¥, Rs € 8" If however, as is often the case, there is
not an expression Q"; in every category, then the expression S can be written in one of
fourteen other ways.

S = Rz VR5 V Ry
S = Rz V R5 V Rgn
v S = Rgn Eq. 7.121

That is there are in total fifteen different ways in which predicates of the form S can
be expressed as the disjunction of one or more of the predicates from the set { Ry, Rg,

Ry, Rgn }.

7.13 Ideal T i in ies & an

Having simplified the expression S by demonstrating closures within the individual
categories, it is now appropriate to consider the effect of logical disjunction between the
categories. However, prior to this there is another important consideration.

It was seen in Chapter Six that every predicate Q from the set { c UBuU YL S } is
such that Traces(F(STOP)) is an Ideal Test Set for the pair (uP.F(P), Q). This
particular property is instrumental in the theory of Chapter Six. For instance, recall the
set defined by 6™. One of the fundamental results is that for an expression

0
R = Q) Eq. 7.122

je1

where each Q; € { a UB UYL J } it is always possible to generate an integer n
such that R € o™. This property is then utilised to generate an Ideal Test Set. The
ability to place all such R in 6" is only possible because all the constituent predicates of
R are related to the same Ideal Test Set.

However, the existence of Ideal Test Sets for predicates in the categories o and [_3 is
not as straightforward as it was for categories o and 8. For a Catenary function F it is
not possible to state that for all R € { & U UYL } there is an equivalent Ideal Test
Set for all the pairs (LP.F(P), R). As a direct result the method of placing all predicates

204

Chapter Seven; A Syntax of RSPEC

into some indexed classification such as 6™ is no longer tenable. A different method for
generating provisional Ideal Test Sets is required.

The approach adopted for ERSPEC is to develop theorems to explicitly determine the
nature of the provisional Ideal Test Sets. That is given an expression of the form S it
will be possible to generate an Ideal Test Set associated with S by applying one or more
of a number of relevant theorems. These theorems are given in the next section.

However there remains one obstacle. The change in the definition of the categories
o, B to &, means that Theorem 6.1 no longer applies. That is for a Catenary function
F and predicate Re { & U ﬁ U YU O } the set Traces(F(STOP)) is no longer
necessarily an Ideal Test Set for the pair (WP.F(P), R). Yet, just as in Chapter Six, the
theorems to be developed for composite predicates are dependent on the Ideal Test Sets
of the constituent predicates. Thus it is necessary to have knowledge of these Ideal
Test Sets. Consequently results for Ideal Test Sets of predicates from the set { & U }
are required.

Before this is undertaken, the following definition will prove useful in subsequent
work

Definition 7.12: Let M(s) be some condition on s. Then the order of the pair (F,
M) is defined as the minimum integer x such that

V s € { Traces(F*(STOP)) - Traces(F*"*(STOP)) } * M(s) Eq. 7.123
Alternatively, the order of the pair (F, M) can be related to the set D, which was

introduced in Chapter Five. If y is the minimum integer such that the condition M
holds for every trace in (DY) then y+1 is a value for the order of (F, M).

The rationale behind this definition is not easier with the hindsight of subsequent
work. Its essence is that it provides a means of simplifying notation. Definition 7.12
now enables the following theorems which provide a means of generating Ideal Test
Sets for predicates in the categories & and f3.

Theorem 7.10: Let M be a condition on traces and R be a predicate in & that is

VM(s),t* R(s) & R(s't) Eq.7.124

Let F be a Catenary function. Then the set

205

Traces(F*(STOP)) Eq. 7.125

/
is an Ideal Test Set for the pair (UP.F(P), R), where x is order of (F, M). B
Proof
Assume that R has tested positive against the set Traces(F*(STOP)). Let r be an
arbitrary finite trace of the process LP.F(P). Then, by Theorem 5.15, there is some
integer n such that r can be expressed

r = e - Eq. 7.126

where r,, .., r,_; € D; and r, € Traces(F(STOP)). To prove that predicate R
always holds for the trace r consider the two following cases

Case n<x
If n < x then, by Theorem 5.15, the trace r belongs to the set Traces(F*(STOP)) and

its truth against predicate R follows from testing.

Case n > x
If n > x then r can be expressed

r = Ty v Liiss By Eq. 7.127
From Theorem 5.15 it is seen that

r,".°r, € Traces(FX(STOP)) A r;>."r, & Traces(F*"*(STOP)) Eq.7.128

r,"."r, € { Traces(F*(STOP)) - Traces(FX'l(s'ro.P)) } Eq.7.129

M(r,".."r,) ,definition of order x Eq. 7.130
Therefore from the initial definition of R

Vte R(r,"..r,) & Rl %t k) Eq.7.131

Lett = rx+1A--Arn

206

Chapter Seven: A Syntax of RSPEC

R(r;".."r,) & R(T; . X Xiti Tisa o L) Eq. 7.132

By Theorem 5.15 the trace r;".."r belongs to the ;set Traces(FX(STOP)) and its truth
against R follows from testing.

Thus provided R holds over Traces(F*(STOP)) then R(r) is true for all traces r.
Therefore Traces(F*(STOP)) is an Ideal Test Set for the pair (LP.F(P), R).

O

Theorem 7.11: Let M be a condition on traces and R be a predicate in f§ such that
VMt),s* R(t) & R(s"t) _ Eq. 7.133
Let F be a Catenary function. Then the set
Traces(F*(STOP)) Eq. 7.134

is an Ideal Test Set for the pair (LP.F(P), R), where x is order of (F, M). B

Proof
It is possible to prove Theorem 7.11 by studying Theorem 7.10. O

7.14 Generating Provisional Ideal Test Sets.

In Section 7.12 it was shown that there are fifteen possible ways of expressing S as
the disjunction of predicates Ry, Ry, Ry Rgo, Where R, € &, R5 € B, R, € Yand Ry, €
d°. Therefore the task of generating an Ideal Test Set for the pair (LP.F(P), S), where
F is a Catenary function, is equivalent to the problem of finding an Ideal Test Set for
each of the fifteen combinations of S.

By individually treating all fifteen combinations of S it would be possible to generate
an Ideal Test Set for each, and then use these to factorize an algorithm for generating an
Ideal Test Set for the general expression S. However, such an exhaustive method is
clumsy and can be circumvented.

Instead consider initially only those combinations of S which do not contain any
predicates in category Y. This reduces the number of combinations to seven. The

justification for removing category y will be given later. Those seven combinations are

207

) S=Ryg ii) = Rj

ii) S = Rgn iv) S = Rz VRp
/

V) S =Rz VRg vi) S = R§ VRg

vi) S = Rz VR VRs

Theorems have been developed which cover these seven cases and show how Ideal
Test Sets are generated for each. These are given in the next section.

7.14.1 Theorems for Deriving Ideal Test Sets,

The means of generating Ideal Test Sets for-lhe pairs (LP.F(P), S) in cases i), ii) and
iii) are given by Theorems 7.10, 7.11 and 6.6 respectively. It remains to develop
theorems which can be used to determine values for iv), v), vi) and vii).

The following theorem provides a treatment for case iv). Here two predicates, one
each from category & and 3, are composed under logical disjunction.

Theorem 7.12: Let Q, R be predicates from the categories &, B respectively and M,
N be conditions such that

YV M(s) ¢ Q(s) & Q(s"t) Eq. 7.135
V N(t)* R(t) & R(s"t) Eq. 7.136

Let F be a Catenary function. Let x, y be the orders of the pairs (F, M) and (F, N)
respectively. Then an Ideal Test Set for the pair (LP.F(P), QVR) is

Traces(F**Y(STOP)) Eq. 7.137

Proof

It is seen from Theorem 7.10 and 7.11 that the sets Traces(F*(STOP)),
Traces(FY(STOP)) are Ideal Test Sets for the pairs (UP.F(P), Q), (WP.F(P), R)

respectively.
Assume that the predicate QVR has tested positive over the set Traces(F**Y(STOP)).

Let r be an arbitrary finite trace from the process UP.F(P). Then by Theorem 5.15
there is some integer n such that r can be expressed

208

r = s TR Eq. 7.138

/
where r,, ., r _; € Dy and r € Traces(F(STOP)). To show that QvR always
holds for r consider the two cases.

Case x+y 2n

If x+y <n then, by Theorem 5.15, r is a member of the set Traces(F**Y(STOP)),
and so QVvR(r) holds by testing.

Case x+y <n
The trace r can be written as

r = Yy o Ly Yye1 o Tnoy Lisn-y - Fn Eq. 7.139

From the definitions of x and y it can be shown that

M(r,".."r,) A N(ryip-y + Tn) Eq. 7.140
VYee ofr".7xr,) — I o o N o Eq. 7.141
& Vse R(Tju-y+ Ty = R(S"Cy -y - Tn) Eq. 7.142

By Theorem 5.15 the traces r;".."r, and r,,,_,".."r, both belong to
Traces(F**Y(STOP)). Thus

6] P b %) A R(Tiyn.y+ Tn) Eq. 7.143
Consider the predicate QVR
QVR(x;".."rp) & BT e Ey)
VIREIE, B, Tiagons <o Kigd Eq. 7.144

From equations 7.141 and 7.142

~

QVR(r;.."ry) = O, °r) VR T 4oy Ty) B 7148

Equation 7.143 yields that QVR always holds for r

209

Since these cases cover all possible values for r, it is deduced that if QvR holds for
Traces(F**Y(STOP)) then QVR holds over uP.F(P). Therefore Traces(F**Y(STOP))
is an Ideal Test Set for the pair (WP.F(P), QVR) O '

Note the similarities between Theorem 7.12 and Theorem 6.8. To deal with case v)
another theorem in a similar style is required.

Theorem 7.13: Let Q and R be predicates from the categories 8%, & respectively
and M be a condition such that

V M(s) * R(s) © R(s"t) Eq. 7.146

Let F be a Catenary function and let x be the order of the pair (F, M). Then an Ideal
Test Set for the pair (WP.F(P), QVR) is

FO+X(STOP) Eq. 7.147

Proof

This theorem is proved by induction

INDUCTIVE STEP
Assume that there is some integer m (>n+x) such that QvR holds over

Traces(F™(STOP)) Eq. 7.148
Now let r be an arbitrary trace of the process

F™1(STOP) Eq. 7.149
and consider the following cases

Case r € Traces(F"(STOP))
OVR holds for r because QVR holds over Traces(F™(STOP)).

Case r & Traces(F"(STOP))
In this case it can be shown that r is such that

210

Chapter Seven: A Syntax of RSPEC

-~

Fery o T Eq. 7.150
where ry,.., r € D-and r, ., € F(STOP). Consider the two following subcases

Subcase R(r,".."r) holds
If x is the order of (F, M), then by definition M(r,".."r,) holds. From the definition
of R

R(r,"..'r,) & R(Ei X E) Eq. 7.151

-

R(r;"..'r,) & (¢ e S SRR, JEN Eq. 7.152
Therefore QVR holds for trace r

Subcase =R(r,".."r,) holds
Consider the set of traces given by

m+1

Q M (T1 0 Ty Tgun v Tust) Eq. 7.153
i=1

QVR holds over Q because for all 1 < i <m+1 the trace r,".."r; ,"r;,,".."r,,
belongs to the set Traces(F™(STOP)), and QVR holds over this. If x is the order of
(F, M), then by definition M(r,".."r,) holds. From the definition of R

V t * —R(r;".."r,) © —R(r;".."r,t) Eq. 7.154

That is R will not hold for all those traces with r,".."r as a prefix. Because QVR
holds for all traces in Q it can be deduced that Q must hold for all the traces in Q
which have the prefix r,".."r,. This can be expressed by

m+1
’A\ Q(rla"Arxa"Ari-lari+1A"Arm+l) Eq. 7.155

i=x+1
The following substitutions are made

8;=X; T Eq. 7.156

m+1l-n

211

Chapter Seven: A Syntax of RSPEC

S2=TIny2-n
sn'l = rm+l

Equation 7.155 becomes

m=-n
'/\ QlEy o By B B3 8 5)
i=x+1

n+1

A /\2 Qfs;1"."85.1"8141 " 8011)
l=

By definition Q is such that

n+l

Vusj#<>e /\1 QU7 0 W e W) 2 1000)
1=

Equation 7.160 can be used to show that

n+l

Eg. 7159 = 0O(8; " 8,0) A I\ 08,578y 1 78,,08.,1)
i=2

n+1l

= /\ Q(s;".."85.1"S141" Sne1)

i=1
Again equation 7.160 shows that
Eq. 7.162 =5 Q(s;".."sp41)
Therefore QVR holds for r
Thus if r € Traces(F™(STOP)) then QVR(r). The inductive step is

F"(STOP)satQVR = F™1(STOP) sat QVR

BASE CASE

Eq. 7.157

Eq. 7.158

Eq. 7.159

Eq. 7.160

Eq. 7.161

Eq. 7.162

Eq. 7.163

Eq.7.164

When m = n+x the predicate QVR holds over the set F***(STOP) by testing.

212

Chapler Seven: A Syntax of RSPEC

Therefore for all finite integers m, F"(STOP) sat QVR. As a consequence it is seen
that F***(STOP) is an Ideal Test Set for the pair (LP.F(P), QVR). O

Again, note the similarities between Theorem 7.13 and Theorem 6.9. The next
Theorem develops a similar result for the disjunction of predicates from categories B
and &" for case vi).

Theorem 7.14: Let Q and R be predicates from the categories 8", B respectively
and M be a condition such that

VM(s)*R(t) & R(s"t) Eq. 7.165

Let F be a Catenary function and let x be the order of the pair (F, M). Then an Ideal
Test Set for the pair (LP.F(P), QVR) is

FP*X(STOP) Eq. 7.166
|
Proof
Theorem 7.14 follows in a similar manner as that for Theorem 7.13. a

Finally a Theorem for the disjunction of predicates from all three categories to cater

for case vii).

Theorem 7.15: Let O, R and S be predicates from the categories 8%, &, f
respectively and M, N be conditions such that

V M(s) * R(s) < R(s"t) Eq. 7.167
WV N(s) * S(t) < S(s"t) Eq. 7.168

Let F be a Catenary function. Let x, y be the orders of the pairs (F, M) and (F, N)
respectively. Then an Ideal Test Set for the pair (LP.F(P), QVRVS) is

Fn+x+Y(STOP) Eq. 7.169

213

Chapter Seven: A Syntax of RSPEC

Proof

Theorem 7.15 is proved in a similar manner as Theorems 7.13 and 7.14. A full
proof is provided in Appendix D 0

7.14.2 Including Category ¥,

Section 7.14.1 shows how Ideal Test Sets can be generated for the seven
combinations of S which excluded the category y. The following result illustrates how
category Y can be incorporated.

Theorem 7.16: Let R be a predicate that can be expressed in the form
(p .
R = V A, Eq. 7.170

where A, is any predicate from the set Rz U R U Rgo and @ is a non-zero positive

integer . Let F be a Catenary function and suppose that the set I is an Ideal Test Set for
the pair (WP.F(P), R). Then I is also an Ideal Test Set for the pair

(LP.F(P), ‘.RVRY) Eq. 7.171
|
Proof
The proof for Theorem 7.16 follows in a similar manner from the proof of Theorems
7.15, 7.14, 7.13 and 6.12. O

Of the remaining eight combinations of S yet to be treated, seven are equivalent to the
seven combinations already treated but with a predicate from category y under

disjunction. That is they are the cases
viii) S = Rz VRy 1X) S = RgVRy

X) S =RsmVRy Xxi) S =Ry VR§VRy

Xii) S =Rz VR VR, xil) S =Ry VRmVEy

214

Chapter Seven; A Syntax of RSPEC

Xiv) S = Ry VRj VRg VRy

From Theorem 7.16 it can be seen that Ideal Test Sets for cases viii) to xiv) are
identical to those for cases i) to vii). The final case is given by

Xv) S =Ry

An Ideal Test Set for this is given by Theorem 6.2. Thus it has been shown how to
generate an Ideal Test Set for each of the fifteen combinations of S.

7.15 Generating Ideal Test Sets for ERSPEC.

The previous sections have shown how it is possible to generate an Ideal Test Set for
the pair (LP.F(P), S). The results can be summed up by the statement

Statement 7.4: For every expression from ERSPEC of the form S (see below) and
Catenary function F there exists an integer m such that

Traces(F™(STOP)) Eq. 7.171

is an Ideal Test Set for the pair (LP.F(P), S). To calculate a value for m, express S in

the form
P11 _ By P3 Pa
s = VEvVEYVERyYVER Eq. 7.172
j=1 J j=1 3 j=1 J j=1 J

where p;,.., p, are integers and V J ¢ R"; € o, R'aj € B, R‘j’ e B, R? € B.

Pl
If p, > O then let m; be the order of (F, VR, otherwise let m; be zero.
j=1
P2 ﬁ
If p, > O then let m, be the order of (F, A\ R)) otherwise let m, be zero.
j=1

If p, +p,+p4 = 0 then let m; = 1 otherwise let m; = 0.

215

Chapier Seven: A Syntax of RSPEC

Letm, =n.
Then a value for mis m = m, +m,+m;+m, |

Justification

The justification of this statement lies in the work of preceding sections. [J

Statement 7.4 provides a general means for generating prov-isional Ideal Test Sets.
Now that this has been accomplished it is possible to focus attention on the overall Ideal
Test Set. This is captured by the following statement and justification.

Statement 7.5: Let R be a behavioural specification in ERSPEC and F be a
Catenary function. Then there exists a method for generating an Ideal Test Set for the
pair (LP.F(P), R). [|

Justification
Let F be a Catenary function. From Theorem 7.7 every expression R in ERSPEC can

be expressed in conjunctive normal form as
¢
R= A (V (@) Eq. 7.173

where each Q; ; is a predicate from the set { & UPuyud}and o, @ are integers.

¢
By definition each V (Q;4) is an expression of the form S as given in Statement

j=1
7.4. Therefore from Statement 7.4 there exists a set of integers qj,.., q,, such that

Traces(F%(STOP)),.., Traces(F(STOP)) Eq. 7.174

are respectively Ideal Test Sets for the pairs

P ¢
@e.F®), V Qi)®P.F(E), V Q) Eq. 7.175
j=1 j=1

Let g be the maximum value from the set { a..., q, }. Then from the partial
ordering of processes in the traces domain given in Appendix A the set
Traces(F3(STOP)) contains all the other sets in equation 7.174. From Theorem 6.16

216

Chapter Seven: A Syntax of RSPEC

it is seen that the set Traces(FA(STOP)) is an Ideal Test Set for the pair (LWP.F(P), R)
)

where R is the logical conjunction of all V (Q;4)- Thatis
j=1
Traces(F%(STOP)) Eq. 7.176
is an Ideal Test Set for the pair (WP.F(P), R) O

7.16 Empty Trace Predicates in ERSPEC.

To complete the treatment of ERSPEC it is necessary to address the problem of
expressing predicates which determine whether or not a particular trace is empty. The
approach to this was simplified in RSPEC by the fact that there are no trace-to-trace
functions present in the syntax and so there is only one trace, the subject trace, which a
predicate can show to be the empty trace. However, in ERSPEC there are trace-to-trace
functions in the form of #7R functions. This means that a predicate may required to
show that functions of the subject trace are the empty trace. That is, for some HTR

function f let a predicate R be defined as
R(s) = f(s)=<> Eq.7.177

The problem is how can predicates such as R be incorporated into the syntax of

ERSPEC?
The first step in answering this is to develop a general syntax for predicates such as

R. This is given by the following definition
Definition 7.13: Let PREDe be defined in BNF as

function, “(”, tracevar, *) = < >”

| function, “(”, tracevar, ©) # < >”, Eq. 7.178
[|

PREDe

W

Reference to Section 7.11 shows that PREDe has already been included in

NEWCATEGS. Statement 7.3 made the unqualified assumption that every predicate in
PREDe was also a member of the set { & Ufuyud). Since Statement 7.3

embodies the assumptions made by the semantic theory about the syntax of ERSPEC it

is necessary to qualify that assumption.

217

Chapter Seven: A Syntax of RSPEC

The following Theorem reveals an interesting property of predicates from the set
PREDe. It was expected that, as they contained monotonic endomorphisms, they
would be somehow linked to one of the semantic categories & or fi. In truth it was seen
that any predicate in PREDe could be shown to belong to not one but both of the

categories & or f.

Theorem 7.17: Let £ be an IR function and let R be a predicate defined by

R(s) = f(s)=<> Eq. 7.179
Then R is such that
VEi(s)#<>*R(s) & R(s"t) Eq. 7.180
VEit)2<>*R(t) & R(s"t) Eq. 7.181
That is R belongs to both category & and category f. -
Proof
By Theorem 7.4 the function f is monotonic over prefix ordering and therefore for
traces s, t
f(s™t) 2 f(s) Eq. 7.182
f(s)£#<> = f(s"t)#<> Eq. 7.183
Vi()#<>" —R(s) A —R(s™t) Eq. 7.184
Vi(s)g<>" R(s) & R(s™t) Eq. 7.185

Furthermore f is also monotonic over suffix ordering.

f(s™t) 2 £(t) Eq. 7.186
ft)#£<> = f(s"t)#< > Eq.7.187
VE()#<>* —R(t) A —R(s"t) Eq. 7.188

218

Chapter Seven: A Syntax of RSPEC

VEit)£<>e R(t) & R(s"t) Eq. 7.189

Thus equations 7.185 and 7.189 demonstrate that R belongs to both category & and
category ﬁ]

Corollary 7.1: If R is a predicate in PREDe then R belongs to both category & and
category f.

This corollary implies that Statement 7.3 is fully justified.

To draw the main body of this chapter to a close it is worth taking up two points
which, up to now, have not been treated. The first concerns the hypothesis that the
expressibility of RSPEC was in some way related to its non-differential nature. Recall
that the strategy for improving RSPEC was to find a differential extension. This
consideration was instrumental in the structuring of ERSPEC and it is now useful to
show that ERSPEC is in fact differential. This is achieved by the following Theorem.

Theorem 7.18: ERSPEC is differential. That is for every two finite non-equal
traces s, t there always exists a predicate Q in ERSPEC such that

Q(s) <« Qt) Eq. 7.190
]

Eroof

Let the expression s(i) represent the 1" event of a trace s. Two traces are
equivalent if they have the same set of events in the same order. That is traces s, t

are equivalent if
Vies(i)=t(@) Eq. 7.191

Now, let s and t be any non equivalent traces. Then there must exist some integer

value q such that

s(q) # t(q) Eq. 7.192

The gt element of a trace can also be given by the function Las{(Taif*"(s)) (See
next chapter). Thus the expression LasfTail*~1(s)) is such that

219

Chapter Seven: A Syntax of RSPEC

Last(Taif 1(s)=a © —(Last(Tailf1(t))) = a Eq. 7.193

Therefore for any two traces s, t there exists a predicate of the form Las# Tailf1(s))

is in ERSPEC which can differentiate between s and t. Therefore ERSPEC is
differential. 0

7.18 Summary.

The main points of this chapter can be summarised as follows

* It was recognised that the definition provided for RSPEC in Chapter Six was not
strong enough for RSPEC to be defined totally in terms of a syntax. This was
overcome by developing a set of syntactic rules which restricted RSPEC to those
predicates which were compatible with the existing theory for generating Ideal Test
Sets. This resulted in a precisely defined syntax for RSPEC which, in tandem with a
suitable process, could be used as a means for generating Ideal Test Sets and thus as

a verification method.

» The suitability of RSPEC as a specification language and its use as a means for
generating Ideal Test Sets was illustrated by a number of examples

» Although RSPEC is a useful syntax in its own right, it was noted that there were
certain modifications which could be made to improve it. Therefore an extension to
RSPEC, namely ERSPEC was suggested. It was shown how ERSPEC could also
be expressed solely in terms of a syntax and that by restructuring the theory
developed in Chapter Six it was demonstrated that an Ideal Test Set existed for every
pair (LP.F(P), R), where F is a Catenary function and R a behavioural specification
of ERSPEC. Thus ERSPEC was shown to be a more powerful verification tool than

RSPEC.
 The extension of RSPEC was built up around the use of a particular class of trace
functions. It was found that restricting these trace functions to monotonic

endomorphisms enabled the subsequent theory and led to a number of elegant proofs.

« Finally a hypothesis was suggested for measuring the expressibility of the extended
syntax ERSPEC against the original RSPEC, namely the quality of non-

220

Chapter Seven: A Syntax of RSPEC

differentiation. It was stated that, although this hypothesis was unproved, it was able
to provide a strategy for improving RSPEC which was successful.

221

CHAPTER EIGHT

CONCLUSIONS

8.1 Introduction,

This chapter sums up the work of previous chapters. It opens by providing a
complete formal definition of the language ERSPEC which was introduced in Chapter 7
and is used to form the basis of the method of Ideal Test Sets. The chapter then moves
on to show through a number of examples how ERSPEC can be used to capture
different system requirements. By using the example of the Arbor Drum introduced in
Chapter 4 a fully worked example of the use of ERSPEC and the method of Ideal Test
Sets is provided which demonstrates the verification of a control logic. The chapter
then assesses the suitability of the methods employed and draws some conclusions
concerning their advantages and disadvantages. It also makes suggestions for possible
improvements and future work which would extend the scope of the methods.

- ntactic Definition ERSP

As stated in previous chapters, ERSPEC is the syntax which was proposed as an
extension to the original syntax RSPEC. It has the same fundamental structure as
RSPEC except that it has three extra syntactic definitions incorporated into it. These are
PRED®, PREDf and PREDe. Recall from Chapter 7 that predicates expressed in these
syntaxes were shown to belong to one or more of the semantic categories &, . The

full definition of ERSPEC is as follows

222

Definition 8.1: The syntax of ERSPEC is defined in BNF as

STATEMENT:= TRUE | FALSE | NEWCATEGS |
STATEMENT, “v", STATEMENT |
STATEMENT, “A”, STATEMENT |
STATEMENT, “e", STATEMENT |
STATEMENT, “=", STATEMENT |
“—", STATEMENT ;

NEWCATEGS::= PREDa | PREDP | PREDY| PREDS
| PRED& | PRED | PREDs

PRED« = “First(”, tracevar, ‘) =", event ;
PREDf = “Last(”, tracevar,) =", event ;
PREDy = event,*“ in”, tracevar, |

event, “in ", tracevar, “", eventset ;
PRED?S = “~(’, event, “in”, tracevar,)"

“(’, event, “in ", tracevar, “T 7, eventset, *)”;
PREDo Y “First(’, function, *‘) =", event ;
PREI}E = “Las{”, function,) =", event ;
PREDe o= function, “(’, tracevar,) =< >"

| function, “(’, tracevar, “) # < >";
function = tracevar | “(", function, “T”, eventset, “*)"

| “Head(”, function, ‘)"’ | “Tail”, function, “)”;
event u= “a” | “b” | ... ** list of event names **
tracevar = “g” | “t” | .. ** list of trace variable names **
eventser o u[n‘ event 2 u'n‘ i event u]n .

223

X in ifications in ER

This section illustrates how ERSPEC can be used to capture different properties for
processes in CSP. This is achieved by a series of specific examples which demonstrate

how certain requirements are shown to be equivalent to behavioural specifications in
ERSPEC.

The most straightforward properties which ERSPEC can capture are those which are
simply predicates in one of the syntaxes PRED&, PREDf, PREDy or PREDS. To

demonstrate these consider the following example

Example 8.1: Suppose that a requirement of a process P is that the third event is
always the event swing. This is equivalent to demonstrating that the first event of
any trace which has its first two events removed is the event swing. Thatis

Firs Tai Tail(s))) = swing Eq. 8.1
1]

Note that equation 8.1 is an expression in PRED& and as such belongs to ERSPEC.

The reasoning employed in Example 8.1 can be quickly extended to cover the general
case. That is showing that the n*" event (where n € IN) of a trace is some event, say

a. This can be written as

Eq. 82

]
W

First(Tail "~ *(s))

Likewise, consider the requirement *“The fourth event from the end of a trace must be
rattle”. This can be demonstrated by removing three events from the end of the
trace and comparing the remaining last event with rattle. Thatis

Last{ Head *(s)) = rattle Eq. 8.3

Again this can be extended to the general case of the n*" event from the end of a trace

by the expression

Last(Head™(s)) = rattle Eq. 8.4

224

From equations 8.6 and 8.8 this is seen to be equivalent to
#s = n & Head"l(s) # <> A Head"(s) = < Eq. 8.10
Now consider the following example

Example 8.3: Suppose that it is required for some process that a trace either
satisfies some property Q or that trace is < roger, over, out > This
requirement would conventionally be expressed

Q(s) v S =< roger,over, out > Eq. 8.11

The right hand side expression of equation 8.11 is not in the syntax of ERSPEC and
thus neither is the whole equation. However, the statement s = < roger, over,
out > is equivalent to saying that the first event of s must be roger, the second
event must be over, the third event must be out and that the trace must be of
length 3. Using previous results this can be expressed

Firs(s) = roger A Firs(Tail (s)) = over A

First(Tail *(s)) = out A Head *(s) # <> A

Head*(s) = <> Eq. 8.12
|

Examples 8.2 and 8.3 demonstrate how it is possible to use an understanding of
ERSPEC to express requirements as predicates in ERSPEC. By making the
assumption that the alphabet of a process is finite it is possible to express other types of
requirement in ERSPEC. Consider the following example

Example 8.5: A group of children encounter a chocolate machine which vends
flake, bounty, twirl and crunchie bars. While it does not matter

which bar comes out first, in the interests of a peaceful afternoon it is required that all

the bars are the same as the first.
On first inspection this requirement can be expressed as

First(s) = LasH(s) Eq. 8.13

226

Chapter Eight: Conclusions

However, equation 8.13 is not an expression in ERSPEC. Suppose it is assumed
that the chocolate machine is restricted to the following four events, each
corresponding to the machine delivering a chocolate bar.

A = {flake, bounty, twirl, crunchie} Eq. 8.14

Then it is seen that the process has a finite alphabet consisting of the above four
events A. The terms Firs((s), Last(s) therefore can each have one of five possible
values, namely ¢, flake, bounty, twirl or crunchie. These terms are

cequal when they both have the same value. That is they are equal if the following
holds

(First(s) = £lake A Las{s)=flake)

v (First(s) = bounty A Last(s) = bounty)
Y (First(s) = twirl A Last(s)=twirl)
v (First(s) = cxrunchie A Last{s) = crunchie) Eq. 8.15

Thus, provided the alphabet of the process concerned is as above, it can be seen that
equation 8.15 is equivalent to the expression Last(s) = Firs«(s). iii

By restricting processes to those with finite alphabets, it is also possible to express
other predicates in a similar form to that of equation 8.15. Examples are

sflA=s Eq. 8.16

First{ £(s)) = Las#(g(s)), where £, g are IR functions Eq. 8.17

8.4 A Worked Example.

This section illustrates the use of Ideal Test Sets as developed in Chapter 6 and
Chapter 7 for verification. It presents an overview of the techniques employed and
applies them to a specific example to illustrate their use.

For clarity, and to emphasise the use of the technique, the procedure is abstracted
from the work presented in previous chapters. It was considered that a informal
description, given in point form, would serve to augment the understanding of the

method of Ideal Test Sets.

227

for Generating |
For a process P and a behavioural specification R the following procedure for
verification by the method of Ideal Test Sets is presentf;ci

i) Determine whether or not the process/specification pair (P, R) is a suitable

candidate for verification. That is, ensure that the process P can be expressed as the

fixed point of a Catenary function and that the behavioural specification R is in
ERSPEC.

ii) Express the behavioural specification in conjunctive normal form as

R = A\ s, Eq.8.18

Vidne(s; Eq. 8.19

]
L <
-._'.O
%,

where Q; ; are predicates from NEWCATEGS. The expressions S;,..,S,, which
represent the conjunction of predicates in NEWCATEGS are termed the provisional
predicates of R.

iii) Categorize each of the disjoint predicates Q; ; from the provisional predicates of R
into one of the categories o, B, ¥, 8, &, . This is achieved by determining to which
of the syntaxes PREDa, PREDf, PREDY, PREDS, PREDX, PREDP or PREDk they

belong.

iv) For each provisional predicate S; of R use the theorems given in Chapter 6 and
Chapter 7 to generate Ideal Test Sets for the pair (P, S;). This results in a number of
Ideal Test Sets, termed the provisional Ideal Test Sets.

v) Using Theorem 6.16 the intersection of all provisional Ideal Test Sets yields an
Ideal Test Set I for the pair (P, R).

vi) It finally remains to determine the correctness of process P relative to
specification R by testing R against all the behaviours in I.

228

8.4.2 The Arbor Drum

Consider the Arbor Drum mechanism given in Chapter 4. This concerned a CSP
process which modelled the control logic of a high speed rotating drum with a slider
which periodically inserted into an aperture on the edge of the drum [Clarke 92a). The
motivation behind choosing this particular problem is to provide a means of
demonstrating that the method of Ideal Test Sets can successfully be applied to an
industrial problem. The CSP model of the controller and the formal representation of
the system requirements were constructed before the main body of the theory of Ideal
Test Sets was developed. As such they are more likely to represent a ‘real’ problem
rather than an example specifically tailored for the theory. In addition it cites an
example which has already been solved by the existing method of axiomatic
compositional proof. '

In order to establish the hazard free operation of the mechanism it was necessary to
prove that the slider and drum would never collide. This was formulated as a safety
property and expressed as a behavioural specification on the untimed traces model. Its
formal representation was

(SLIDER ,lly CON) pgll- DRUM

sat

Last(sl {enter, extract}) = enter

= Last(sl {dstart,dstop}) # dstart Eq. 8.20

In Chapter 4 it was shown how equation 8.20 could be established by first
determining that certain behavioural specifications held for each of the three processes
SLIDER, CON and DRUM. Once established these specifications were composed under
an inference rule associated with the alphabetized parallel operator to show the
correctness of the process (SLIDER ,ll; CON) 5 gllc DRUM.

This example is concerned with establishing the first of these criteria. That is
showing that certain specifications hold for each of the processes SLIDER, CON and
DRUM. The requirement for SLIDER was that it satisfy the predicate given as E;.

More formally that the following statement was true

SLIDER sat £,

E,(s) = Last(sl {enter, extract}) = enter

= (Last(sl {commit,allow, extract})=commit

v Last(sl'{commit, allow, extract})=allow) Eq. 8.21

229

Chapter Eight: Conglusi

To establish this using the method of Ideal Test Sets the procedure outlined in Section
8.4.1 will be pursued. Stage (i) requires that the suitability of the candidate process
and specification is shown. This is so if SLIDER is the fixed point of a Catenary
function and if Z is expressible in ERSPEC. By definition the process SLIDER is the
fixed point of the function F, where

F(P) = approach — ((commit — enter — slow —
perform — extract -5 P)
O
(abort — decelerate — allow
— accelerate — enter — slow
— perform — extract — P))

Eq.8.22

F is composed entirely of prefix and deterministic choice operators. Thus, by
reference to Corollary 5.1, it is a Catenary function. It was also established in Chapter
4 that F was a contraction on M. Therefore SLIDER can be deduced to be the unique
fixed point of a Catenary function.

By comparing the behavioural specification Z, against the syntax of ERSPEC it can
also be seen that it obeys the syntactic rules and thus is an expression of ERSPEC.

Having established the suitability of the pair (SLIDER, £,) as candidates for the
method of Ideal Test Sets, stage (ii) requires the behavioural specification =, to be

expressed in conjunctive normal form.

Last(sl {enter, extract}) = enter

E4(s)
= (Last(sl {commit,allow, extract}) = commit
v Last(sl' {commit, allow, extract}) = allow)

Eq. 8.23

—(Last(s {enter, extract}) = enter)
v Last(sl {commit,allow, extract}) = commit

v Last(sl {commit,allow, extract}) = allow

Eq. 8.24

At this point, for convenience, define the predicates R,y Ry, R, as

R, —(Last(s {enter, extract}) = enter) Eq.825

230

R, = Last(sl {commit, allow, extract}) = commit
Eq. 8.26
R, = Last(sl {commit, allow, extract}) = allow
Eq. 8.27
so that
Eis) = (R, vR,vR;) Eq. 8.28

Stage (iii) requires that each of the predicates R,, R, R, be placed into one of the
defined categories. An inspection of each of R,, R,, R, reveals that they all belong to
the syntax of PREDf. Therefore, by Statement 7.3, they also all belong to the category
B. The specific conditions under which they belong to f§ are given by

R, € RIV sesl{enter, extract} <>
= (R(t) ®R(s"t)) Eq. 8.29

R,,R,;€ RIVse+sl{commit, allow, extract} # <>
= (R(t) ®R(s™))) Eq. 8.30

Let M(s) represent the condition

sl {commit,allow, extract} # <

A sl {enter, extract} # < Eq. 8.31
Applying Theorem 7.9 gives
R, vR,vR, € (RIV s*M(s) > R(t) @ R(s"t)) Eq. 8.32

Stage (iv) requires the generation of the provisional Ideal Test Sets. There is no
logical conjunction in the normal form of =, and so there is only one provisional Ideal
Test Set for the pair (SLIDER, R; v R, v R;). By Theorem 7.10 this is given by

Traces(F*(STOP)) Eq. 8.33

where x is the order of the pair (F, R, v R, v R,). To establish the order x first
employ Definition 5.3 to determine the set Dy as follows

231

Dy = {<approach, commit,enter,slow, perform,
extract >, <approach,abort, decelerate,
allow,accelerate,enter, slow, perform,
extract> } Eq. 8.34

By comparing each of the two traces in Dy against M it is seen that M holds for both.
Using the definition of the order of (F, M) it can be seen that since M holds for all traces
in (D4'), then the order of (F, M) is 2. Therefore an Ideal Test Set I for the pair
(SLIDER, R; VR, vR,)is

T = Traces(F?(STOP)) Eq. 8.35

It finally remains to compare the behavioural specification =, against each of the

specific traces in F2(STOP). There are 43 traces in total and each was successfully
tested against Z;. This leads to the final conclusion that since I is an Ideal Test Set for
the pair (LP.F(P), £,), and E; holds for I, then

SLIDER sat &, Eq.8.36

By adopting the same procedure it is possible to determine that the following also
holds

CON sat y,

yi(s) =

(Last(s[{ commit,allow, extract }) = commit

v Last (sI'{ commit, allow, extract }) =allow)

=

(Last (sI'{ dstart,dstop }) # dstart) Eq. 8.37

Having established that equations 8.36 and 8.37 are valid, the alphabetized parallel
operator can now be applied to establish the truth of equation 8.20.

8.4.3 Comparisons.
Two methods have now been used to establish the hazard free operation of the slider
and drum mechanism with respect to the specifications and models given in Chapter 3.

This permits some comparisons to be made on the different methods employed.

232

Q Eisht: Conclusi

It was noted that where the method of Ideal Test Sets was applied it proved to be
more procedural and well defined than the axiomatic techniques. In Chapter 4 the
truths of the statements SLIDER sat Z, and CON sat y, were established by an
intuitive analysis of their process defining functions. This analysis was also helped by
the fact that the processes were relatively simple. In contrast the method of Ideal Test
Sets has an algorithmic approach which does not rely on intuition or the simplicity of
the model to establish such predicates.

However, it was also noted that the method of Ideal Test Sets was not sufficient to
cope with the alphabetized parallel operator, and thus could not establish the correctness
of the mechanism as a whole. This is in contrast to the complete approach of the
axiomatic verification. This inabililty to treat certain models was recognised at an early
stage in the development of these techniques. From its inception the method of Ideal
Test Sets has been structured so as to be compatible with the axiomatic approach. Thus
when difficulties such as those presented by the inclusion of the alphabetized parallel
operator are encountered the underlying axiomatic proof system is always available to
provide a solution.

8.5 Conclusions.

This thesis presents a method for verifying the correctness of a specific class of CSP
processes, namely the fixed point of Catenary functions, relative to a particular set of
specifications, namely those defined by the syntax ERSPEC. This method is based on
the concept of Ideal Test Sets. An Ideal Test Set is a finite subset of the behaviours of a
process over which the relative correctness of a particular specification can be
determined.

The main perceived advantage of the method of Ideal Test Sets is that it reduces the
proof obligation. It has been demonstrated that the correctness of a particular
specification relative to a recursive process is equivalent to the correctness of that same
specification relative to a simpler and finite process. This removes much of the
complexity of verification. Indeed for suitable process/specification pairs it removes
the need for the inference rule connected with the recursion operator.

Another advantage to the technique is that the method of Ideal Test Sets has
developed a procedural approach to verification coupled with a precise syntactic
definition of suitable process/specification pairs. These factors suggest that the method
lends itself well to automated verification techniques such as those described in Chapter
5. Model checking in particular suggests itself since the proposed method generates a
finite set of process behaviours over which the truth for the whole process can be

determined.

233

cl Eight: Conclusi

There are strong indications that the original approach of Chapter 6 which used the
syntax RSPEC and the categories a, f, ¥, 8 is fully automatable. It must, however, be
noted that there are at present reservations about a fully automated version for ERSPEC
specifications introduced in Chapter 7. This is based on a realization that for certain
process/specification pairs (LP.F(P), R), where the predicate R € { & uﬁ } and N is
the corresponding condition on R as defined in Definition 7.12, there are difficulties in
determining the order of the pair (F, N).

One of the disadvantages of the method is the fact that it is restricted to a particular
class of processes as well as a particular set of predicates and thus cannot be freely
applied. This is in comparison to the axiomatic approach of the compositional proof
system described in Chapter 3 which is complete for the semantic domains My, Mg and
TMg and applies to all behavioural specifications [Blamey 91, Schneider 90].

With respect to these constraints this thesis has emphasised the importance of being
able to clearly and efficiently define the limits of the method of Ideal Test Sets. It was
considered to be important that there existed a procedure for determining the suitability
of a particular process/specification pair for verification with Ideal Test Sets. For this
purpose the syntactic definition of Catenary functions and ERSPEC were developed.
Provided a process/specification pair meets these syntactic requirements then the pair
will also conform to the semantic requirements necessary for structuring an Ideal Test
Set. The advantage of the syntactic definitions are that they provide a concise set of
rules which require no interpretation.

Another observation made of the method of Ideal Test Sets is that it does not truly
address the concepts of concurrency for which CSP was originally developed. This is
seen as the result of two factors. First, the alphabetized parallel operator was shown in
Chapter 5 to be not Catenary, and secondly the method is restricted to the fixed point of
a single valued CSP function.

A response to the realization that the alphabetized parallel operator was not Catenary
was the introduction of the concept of Weak Catenary functions to which alphabetized
parallelism belonged. It was originally hoped that weakening the requirement of
Catenary functions to that of Weak Catenary functions would still permit a viable theory
of Ideal Test Sets. However it ultimately only proved possible to establish limited
results for Weak Catenary functions. It was found that if R were a predicate such that R
e o" and F were a Weak Catenary function, then

(V s € (Traces(F(STOP) ".. "Traces(F(STOP)) *R(s)) = WP.F(P)satR

< 4

N
nterms Eq. 8.38

234

Chapter Fight: Conclusi

The problem with this result is that it was also found that there were many correct
process/specification pairs for which the antecedent of equation 8.38 did not hold.
Such a method would only be able to prove the truth of a limited number of
specifications and the falsehood of none. Thus the method would only be partially
effective.

The difficulties associated with the application of the method to processes which were
not fixed point Catenary solutions is addressed either by decomposing the process into
suitable fixed point solutions and then using the existing axiomatic proof system to
complete the proof (as was used in Section 8.4) or by efforts to establish a process’s
equivalence to a fixed point solution as discussed in Section 8.6.3.

In conclusion, it is the opinion of this thesis that although the method of Ideal Test
Sets is restricted in terms of the properties it can verify and the processes to which it
may be applied, its strength lies in the fact that these limitations are known and are
clearly defined by the semantic and syntactic constraints set upon it. These limits mean
that suitable process/specification pairs can be identified and treated accordingly, and
that any remaining proof obligation can be addressed by the compositional axiomatic
proof system. Because of this its role is seen as that of an aid to verification which may
be used in conjunction with existing axiomatic proof methods.

ions for Further rk

1 Extendin Th Ideal Test he Fai 1

The theory presented in this thesis has concentrated on generating Ideal Test Sets for
the simplest semantic representation of CSP processes, that of the traces model.
However, as was noted in Chapter 3, the traces model has certain shortcomings in that
it is unable to capture liveness properties and it cannot semantically distinguish between
deterministic and nondeterministic choice. Therefore it would be useful if it were
possible to extend the theory of Ideal Test Sets into the failures domain M.

The main difficulty perceived in achieving this is the fact that the theory developed
has been heavily based on the concept of catenation and, unlike for Mr, there is no
proper definition of the catenation of behaviours over Mg. That is the behaviours of My
are traces and they can be directly concatenated, however the behaviours of M. are
trace-refusal pairs, which cannot be directly concatenated.

To overcome this it would be necessary to develop a concept of catenation for Mg.
That is to develop for this thesis a rule by which any two behaviours of Mg can be
joined together as if one immediately followed the other. From an understanding of the
principles of CSP the following rule for catenation over Mg is proposed

235

Definition 8.2: Let (s, X,) and (t, X ,) be two behaviours in the semantic
domain Mg. Then the trace/refusals pair which represents the behaviour of (s, R;)
followed by the behaviour of (£, X.) is given by

(s, Rl)ﬂ(t, R,) = (s"t, R,), provided First(t) € X, Eq.8.39
The symbol ~ is introduced here as failures catenation. u

Using such a definition of failures catenation as a basis rather than traces catenation, it
is then possible to form categories oy, Bg, Yg, O for Mg which correspond to the
categories 0., 8, v, introduced for Mr.

Definition 8.3: The categories Oy, Bg, Yr. O, are defined as sets of predicates
such that

ap={R|V s#<>*R(s, X;) & R((s, X)) (t, X))} Eq. 8.40
Br={RIV t#<>*R(t, X,) & R((s, X)) (t, R))) } Eq. 8.41

YE={RIVs, t#<>e
R(s, X;) VR(t, ;) & R((s, R;)7 (€, X,)) } Eq.8.42

p={RIVs, t#<>e
R(S) Rl) A R(t! xz) A R((St R]_)H(t'v 82))] qu43

These categories could then be used to formulate a corresponding theory of Ideal Test
Sets for pairs (LP.F(P), R) where R was a behavioural specification on Mg.

In terms of the scope of such an extended theory it can be seen that because the
failures catenation rule preserves the structure of trace catenation, then a predicate in {
o U BuUyU S }is also a predicate in { ag U Br U ¥r U O }. Thus the extended
theory would at least have the expressibility of RSPEC. Added to this would be the
ability to represent predicates on failures. Consider the example predicate

R(s, X) = a€ X Eq. 8.44

236

a Eight: Conclusi

Inspection shows that R belongs to the category By as defined above. In fact it is
possible to see that all predicates which take only the refusals as their subject would
belong to the category Bg, because failures catenation simply preserves the refusals of
the suffix behaviour.

However this still suggests a syntax which treats predicates over traces and predicates

over refusals separately. In the opinion of this thesis the true challen ge to developing a
method of Ideal Test Sets for Mg would lie in structuring a syntax and corresponding

theory which allowed predicates that range over both traces and refusals
simultaneously.

Fail Extension
Just as for the failures model, extending the theory of Ideal Test Sets to the Timed

Failures domain would necessitate a definition of the catenation of two behaviours of
TMg. One definition suggested here is

Definition 8.4: Let (s, X,) and (t, X,) be two behaviours of a TCSP process in
the timed failures domain TMg. Furthermore let the expression r+1 indicate the trace
r which has the time value T added to each of its timed events, and let the expression
X +7 indicate the set which adds a time 1 to every timed event in the set of refusals X.

That is
R+T = ((t+7, e)I(t, e) € R) Eq. 845

Then the timed trace/timed refusals pair which represents the behaviour of (s, X;)
followed by the behaviour of (t, X) is given by

(59 R 1)—(‘:! a 2)
= (s"(t+9), R,+9) (provided (Firs((t), start(t)) € R, Eq. 8.46

where ¢ is some value such that
¢ > end(s) - star(t) Eq. 8.47

and start(t) is the time at which trace t performs its first event.
The symbol _ is introduced here as timed failures catenation. L]

237

al Fight: Conclusi

.6.3 Catenary Functions and Fixed Points.
Chapter 5 and Chapter 6 demonstrated that an integral part of the method of Ideal Test
Sets was that in its stated form it could only be applied to processes which were the
' fixed points of Catenary functions.
However, it is also noted that there exist processes which, while not explicitly

represented as the fixed point of a Catenary function, can be shown to be equivalent to
one. For example consider the process given by

A={a,b,c} & B={a,ec,4d} Eq. 8.48
F(P)=a—>b—oc—>HP & G(P)=a—>d—>c—>P Eq.8.4§
PROC1 = UP.F(P) ,ll, LP.G(P) Eq. 8.50

PROC1 is not defined as the fixed point of a CSP function, rather as the alphabetized
parallel combination of processes UP.F(P) and uP.G(P) which are themselves fixed
points. However, analysis of PROC1 reveals that PROC1 is equivalent to p P.H(P),
where

H(P)=a — (b » SKIP[le - SKIP);d—> P Eq. 8.51
The statement that PROC1 is equivalent to \L P.H(P) is made on the basis that
Failures(PROC1) = Failures(jL P.H(P)) Eq. 8.52

Establishing this equivalence suggests that another related area of further study would
be to investigate the use of a system of algebraic rules to transform processes into those
which are the fixed point of a Catenary function. There already exist published
algebraic laws for Dijkstra’s language of guarded commands [Hoare 87] and a similar
set of laws for occam [Roscoe 88b] which is derived from those of CSP [Hoare 85
]. It is envisaged that it would be algebraic systems such as these which would form
the basis of an approach to demonstrate the equivalence of certain processes to fixed

point Catenary solutions.
Finally it is noted that the current semantic definition of a Catenary function given by

Definition 5.5 is derived only for the untimed failures model Mt. In order to extend the
method of Ideal Test Sets to higher semantic models as proposed in Section 8.6.1 and
8.6.2 it would be necessary to formulate new semantic definitions for Catenary

238

a Eight: Conlusi

functions with respect to the proposed new definitions of failures and timed failures
catenation.

239

References

[Berthomieu 83]

[Bjgrner 78]

[Blamey 89]

[Blamey 91]

[Borowski 89]

[Boucher 87]

[Brookes 83]

[Brookes 84]

[Brookes 85]

[Bryant 85]

[Camilleri 90]

[Camilleri 91]

[Clarke 92a]

Berthomieu B., Menascre M., An Enumeration Approach for
Analysing Time Petri Nets, Proceedings of the IFIP Congress,
Paris, Pages 41 - 46. 1983.

Bjgmer D., Jones C.B., The Vienna Development Method: The
Meta Language., Springer Verlag Lecture Notes in Computer
Science, Volume 61, 1978.

Blamey S., TCSP Processes as Predicates, Oxford University
Programming Research Group Technical Report, Draft Copy,
December, 1989.

Blamey S., The Soundness and Completeness of Axioms for CSP
Processes, Topology and Category Theory in Computer Science,
Edited by Reed G.M., Roscoe A.W. & Wachter R.F., Pages 29 -
56, Clarendon Press, 1991.

Borowski E.J., Borwein J.M., Collins Dictionary of
Mathematics, Collins UK, 1989.

Boucher A., Gerth R., A Timed Model for Extended
Communicating Sequential Processes, Proceedings of ICALP '87,
Springer Verlag Lecture Notes in Computer Science Volume 267
Pages 95 - 113, 1987.

Brookes, S.D., On the Relationship of CCS and CSP, Springer
Verlag Lecture Notes in Computer Science Volume 154, Pages 83
- 96, 1983.

Brookes S.D., Hoare C.A.R., Roscoe A.W., A Theory of
Communicating Sequential Processes, Journal of The ACM N° 31
(7), Pages 560 - 599, 1984.

Brookes S.D., Roscoe A.W., An Improved Failures Model for
Communicating Sequential Processes, Proceedings NSF-SERC
Seminar on Concurrency, Springer Verlag Lecture Notes in
Computer Science Volume 197 Pages 17 - 43, 1985.

Bryant V., Metric Spaces - Iteration and Application, Cambridge
University Press, 1985.

Camilleri A.J., Mechanizing CSP Trace Theory in Higher Order
Logic, IEEE Transactions on Software Engineering, Volume SE-
16 N° 9, Pages 993-1004, 1990.

Camilleri A.J., A Higher Order Logic Mechanization of the CSP
Failure-Divergence Semantics, Proceedings of the 4th Higher
Order Workshop, Banff 1990, Edited by G. Birtwistle,
Workshops in Computing, Springer Verlag, Banff, Canada 10-14
September 1990, Pages 123-150, 1991.

Clarke P.J.,, Holding D.J., The Specification, Design and
Verification of Real-Time Embedded Control Logic using CSP
and TCSP. Proceedings of the IFAC International Workshop on
Real-Time Programming WRTP '92. Bruges, Belgium, IFAC, 23
- 26 June 1992.

241

References

[Clarke 92b]

[Cleaveland 90]

[Cohen 86]

[Darringer 78]

[Davies 87]

[Davies 89a]

[Davies 89b]

[Davies 92]

[de Roever 85]

[Diijkstra 76]

[Dijkstra 81]

[Edwards 91]

[Flon 81]

[Floyd 67]

Clarke P.J., Holding D.J., The Verification of a CSP Process by
Constructing an Ideal Test Set, Proceedings of the 4th IMA
International Conference on Control: Modelling, Computation,
Information, Manchester U.K., IMA & IEEE, Sept 2-4 1992

Cleaveland R., Parrow J., Steffen B., The Concurrency

Workbench, Springer Verlag Lecture Notes in Computer Science.
Volume 407, Pages 24- 37.

Cohen B., Harwood W.T., Jackson M.L., The Specification of
Complex Systems, Addison Wesley, 1986.

Darringer J.A., King J.C., Application of Symbolic Execution to
lfgggsrmn Testing, Computer, Volume 11 N° 4, Pages 34 - 40,

Davies J.W., Assisted Proofs for Communicating Sequential
Processes, M.Sc. Dissertation, Oxford University Computer
Laboratory, September 1987.

Davies J.W., Schneider S.A., An Introduction to Timed CSP,
Oxford University Programming Research Group Monograph,
PRG - 75, Pages 1 - 35, 1989.

Davies J.W., Schneider S.A., Factorizing Proofs in Timed CSP,
Oxford University Programming Research Group Monograph,
PRG - 75, Pages 36 - 70, 1989.

Davies J.W., Jackson M., Schneider S.A., A Brief History of
Timed CSP, Oxford University Programming Research Group
Monograph, PRG - 91 Pagesl - 35, 1992.

de Roever W.P., The Quest for Compositionality - A Survey of
Assertion Based Proof Systems for Concurrent Programs, The
Role of Abstract Models in Computer Science, Edited by E.J.
Neuhold, Pages 181 - 206, 1985.

Dijkstra E.-W., A Discipline of Programming, Prentice Hall
International, 1976.

Dijkstra E.W., Why Correctness must be a Mathematical Concem,
The Correctness Problem in Computer Science, Edited by R.S.
Boyer and J.S. Moore, International Lecture Series in Computer
Science, Academic Press UK, Pages 1 - 9, 1981.

Edwards J., Lawson P., The Advancement of Transputers and
Occam, Occam and the Transputer - Current Developments,
Proceedings of the 14th World Occam and Transputer User Group
Technical Meeting, 16-18th September 1991, Loughborough,
UK, Edited by J. Edwards, Pages 1 - 12, 10S Press, 1991

Flon L., Suzuki N., The Total Correctness of Parallel Programs,
Siam Journal on Computing, Volume 10, N° 2, pages 227 - 246,
1981.

Floyd R., Assigning Meaning to Programs, Mathematical Aspects
of Computer Science, XIX American Mathematical Society, Pages

19 - 32, 1967.

242

[Froome 88]

[Galton 90]

[Glendinning 89]

[Goodenough 75]

[Gordon 88]

[Gries 81]
[Hamilton 78]

[Hayes 87]

[Herstein 75]
[Hoare 69]

[Hoare 78]

[Hoare 81]

[Hoare 85]

[Hoare 87]

[Hoare 91]

[Hull 86]

Froome P., Monahan B., The Role of Mathematically Formal
Methods in the Development and Assessment of Safety Critical
Systems, Microprocesors and Microsystems Volume 12 N° 10,
Pages 539 - 546, December 1988.

/

?;ét(()m A., Logic for Information Technology, Wiley Press UK,

Glendinning L., What makes Occam so Interesting?, Occam User
Group Newsletter, N° 11, Pages 29 - 32, July 1989.

Goodenough J.B., Gerhart S., Towards a Theory of Test Data
Selection, JEEE Transactions on Software Engineering, Volume
SE-1 N° 2, 1975.

Gordon M.J.C., A Proof Generating System for Higher Order
Logic, VLSI Specification, Verification and Synthesis, Edited by
G. Birtwistle and P.A. Subrahmanyam, Kluwer Academic
Publishers, Boston, 1988.

Gries, D., The Science of Programming, Springer Verlag, 1981.

Hamilton A. G., Logic For Mathematicians , Cambridge Press,
1978.

Hayes 1.J. (Editor), Specification Case Studies, Prentice Hall
International, 1987.

Herstein 1., Topics in Algebra, Xerox College Publications, 1975.

Hoare, C.A.R., An Axiomatic Basis for Computer Programming,
Communications of the ACM, Volume 12 N° 10, Pages 576 -
583, October 1969.

Hoare C.A.R., Communicating Sequential Processes,
Communications of the ACM, Volume 21 N° 8, Pages 666 - 677,
August 1978.

Hoare C.A.R., A Calculus of Total Correctnes for
Communicating Processes, Oxford University Programming
Research Group Technical Monograph PRG-23, 1981.

Hoare C.A.R., Communicating Sequential Processes, Prentice
Hall International, 1985.

Hoare C.A.R., Hayes LJ., He J., Morgan C.C., Roscoe A.W.,
Sanders J.W., Sorenson LH., Spivey, J.M., Sufrin B.A., The
Laws of Programming, Communications of the ACM, Volume 30
N° 8, Pages 672 - 686, 1987.

Hoare C.A.R., Personal Electronic Mail Communication to
clarkepj@aston.ac.uk, November 1991.

Hull M.E.C., Implementations of the CSP Notation for
Concurrent Systems, Computer Journal, Volume 29 N° 6, Pages
500 - 505, 1986.

243

References

[Inmos 88a)
[Inmos 88b]

[Inverardi 91]

[ISO 91]

[Jackson 89]

[Jazayeri 80]

[Jones 86]

[Joseph 89]

[Kieburtz 79]

[King 90]

[Kourie 87]

[Lamport 77]

[Lamport 84]

[Lanski 89]

Inmos Ltd., The Transputer Instruction Set, Prentice Hall
International, 1988.

Inmos Ltd., Occam2 Reference Manual, Prentice Hall
International, 1988. ’
Inverardi P., Camilleri A., Nesi M., Combining Interaction and
Automation in Process Algebra Verification, Proceedings of the
International Joint Conference on Theory and Practice of Software
Development, Volume 2, Edited by S. Abramsky and T.
Maibaum, Springer Verlag Lecture Notes in Computer Science
Volume 494, Pages 283 - 296, Brighton, 6 - 13 April 1991.

ISO SC22/WG19(1991). VDM Specification Language - Proto-
Standard, British Standardisation Institute ISO Standard, 1991.

Jackson D.M., The Specification of Aircraft Engine Control
Software Using Timed CSP, M.Sc. Thesis, Oxford University
Programming Research Group, 1989. '

Jazayeri M., CSP/80: A Language for Communicating Sequential
Processes, Proceedings of the Fall IEEE COMPCON 80, IEEE
Press New York, Pages 736 - 740, 1980.

Jones, C.B., Systematic Software Development using VDM,
Prentice Hall International, 1986.

Joseph M., Goswami A., Formal Description of Realtime
Systems: A Review, Information and Software Technology,
Volume 31, N° 2, pages 67 - 76, March 1989.

Kieburtz R.B., Silberschatz A., Comments on “Communicating
Sequential Processes”, ACM Transactions on Programming
Languages and Systems, Volume 1 N° 2, Pages 218 - 225,
October 1979.

King S., Z and the Refinement Calculus, Oxford University
Programming Research Group Technical Monograph N° 79,
Febuary 1990.

Kourie D.G., The Design and Use of a Prolog Trace Generator
for CSP, Software - Practice and Experience, Volume 17 N° 7,
Pages 423 - 438, 1987.

Lamport L., Proving the Correctness of Multiprocess Programs,
IEEE Transactions on Software Engineering, Volume SE-3 N° 2,
Pages 125 - 143, March 1977.

Lamport L., An Axiomatic Semantics of Programming
Languages, in Logics and Models of Concurrent Systems edited
by K.R. Apt, Proceedings of the NATO Advanced Studies
Institute on Logic and Models of Concurrent Systems held at.La
Colle-sur-Loup, France, October 1984.

Lanski J., Testing in the Program Development Cycle, Software
Engineering Journal, Volume 4 N° 2, Pages 95-106, 1989.

244

References

[Leveson 93]

[Levin 81]

[Lightfoot 91]

[Manna 88]

[Merlin 76]

[Meyer 90]
[Milner 80]
[Milner 83]
[Milner 89]
[Misra 81]
[Mitchell 90]

[Murata 89]

[Murtagh 87]

[New Sci 89]

[Nielson 92]

[Olderog 86]

Leveson N.G., Introduction to Special Issue on Software for

Critical Systems, IEEE Transactions on Software Engineering,
Volume SE-19 N° 1, Page 1, 1993,

L{:vinJ G.M,, Gries D., A Proof Technique For Communicating

gggtl?géeil Processes, Acta Informatica Volume 15, Pages 281-

Lightfoot D., Formal Specification using Z, Macmillan Computer
Sciences Series, Macmillan UK, 1991.

Manna Z., Pnueli A., Temporal Verification of Concurrent
Programs, The Correctness Problem in Computer Science, Wiley
Press, Pages 215 - 273, 1988.

Merlin P.M., Farber D.J., Recoverability of Communication
Protocols, Implications of a Theoretical Study, IEEE Transactions
cf;_jcﬁ'omunicatfons. Volume COM-24 N° 9, Pages 1036-1043,

Meyer B., Introduction to the Theory of Programming Languages,
Prentice Hall International, 1990.

Milner R., A Calculus of Communicating Systems, Springer
Verlag Lecture Notes in Computer Science, Volume 90, 1980.

Milner R., Calculi for Synchrony and Asynchrony, Theoretical
Computer Science, Volume 25, Pages 267-310, 1983.

Milner R., Communication and Concurrency, Prentice Hall, 1989.

Misra J., Chandy K.M., Proofs of Networks of Processes, IEEE
Tranactions on Software Engineering, Volume SE-7 N° 4,
Pages417 - 426, July 1981.

Mitchell D.A.P., Thompson J.A., Manson G.A., Brookes G.R.,
Inside the Transputer, Blackwell Scientific Publications, 1990.

Murata T., Petri-Nets: Properties, Analysis and Applications,
Proccedings of the IEEE, Volume 77 N° 4, Pages 541 - 578, April
1989.

Murtagh T.P., Redundant Proofs of Non-interference in Levin-
Gries CSP Program Proofs, Acta Informatica, Volume 24 N° 2,
Pages 145 - 156, 1987

The Times when Software could Kill, New Scientist,11 Febuary
1989 Pages 53-56.

Nielson H.R., Nielson F., Semantics With Applications, a Formal
Introduction, Wiley Press UK, 1992.

Olderog E.R., Hoare C.A.R., Specification-Oriented Semantics

for Communicating Processes, Acta Informatica Volume 23 N° 1,
Pages 9 - 66, April 1986.

245

References

[Owicki 76)

[Pagap 81]
[Peterson 81]

[Petri 66]

[Pnueli 86]

[Pountain 88]

[Prasad 84]

[Ramsay 88]

[Reed 86]

[Reed 87]

[Reed 90]

[Revesz 83]

[Roper 81]

Owicki S.S., Gries D., Verifying Properties of Parallel Programs:
An Axiomatic Approach, Communications of the ACM, Volume
19 N° 5, Pages 279 - 285, May 1976.

Pagan F.G., Formal Specification of Programming Languages,
Prentice Hall, 1981. ¥ f Programming Languages

Peterson, J.L., Petri-Net Theory and the Modelling of Systems,
Prentice Hall International, 1981.

Petri C., Communication With Automata, Technical Report
RADC-TR-65-377, Volume 1, Supplement 1, Applied Data
Research, Princeton, New Jersey. Translation of Kommunikation
mit Automaten. Bonn: Institut fiir Instrumentelle Mathematik,
Schriften des IIm N° 2, 1966.

Pnueli A., Applications of Temporal Logic to the Specification and
Verification of Reactive systems: A Survey Of Current Trends, in
Current Trends in Concurrency: Overviews and Tutorials, edited
by de Roever W. P., Rozenberg G., Springer Verlag Lecture
Notes in Computer Science, Volume 224, Pages 510-584, 1986.

Pountain R., May D., A Tutorial Introduction to Occam
Programming, Blackwell Scientific Publications, 1988.

Prasad B., Interference Freedom in Proofs of CSP Programs.
Proceedings of the 4th IEEE International Conference on
Distributed Computer Systems, San Francisco, Pages 79 - 86,
May 1984.

Ramsay A., Formal Methods in Artificial Intelligence, Cambridge
University Press, 1988.

Reed G.M., Roscoe A.W., A Timed Model for Communicating
Sequential Processes, Theoretical Computer Science 58, Pages
249 - 261, 1988.

Reed G.M., Roscoe A.W., Metric Spaces as Models for Real-
Time Concurrency, Proceedings of the Third Workshop on the
Mathematical Foundations of Programming Language Semantics,
Springer Verlag Lecture Notes in Computer Science, Volume 298
, Pages 331 - 343, 1987.

Reed G.M., A Hierarchy of Domains for Real-Time Distributed
Computing, Mathematical Foundations of Programming
Semantics, Springer Verlag Lecture Notes in Computer Science
Volume 442, Pages 80 - 128, 1990.

Revesz G., Introduction to Formal Languages, McGraw-Hill
Computer Science Series, 1983.

Roper T.J., Barter C.J,, A Communicating Sequential Processes

Language and Implementation, Software - Practice and Experience
Volume 11 N° 11, Pages 1215 - 1234, 1981.

246

References

[Roscoe 82]

[Roscoe 88a]

[Roscoe 88b]

[Sagoo 90]

[Schneider 90]

[Scholefield 90]

[Silberschatz 79]

[Silberschatz 81]

[Soundararajan 84]

[Stoy 77]
[Sutherland 75]

[Toetenel 92]

[Tofts 90]

[VDM 87]

[Watt 91]

[Wilkstrom 87]

Roscoe A.W., A Mathematical Theory of Communicating

Sequential Processes, D.Phil. Dissertation, Bodelian Library,
Oxford University, UK,1982.

Roscoe A.W., Two Papers on CSP, Oxford University
Programming Research Group Monograph N° 93, 1988.

Roscoe A.-W., Hoare C.A R., The Laws of Occam Programming,

Theoretical Computer Science, Volume 60 Issue 2, Pages 177-
229, September 1988.

Sagoo J.S., Holding D.J., The Specification and Design of Hard
Real-Time Systems Using Timed and Temporal Petri Nets,
l{lgsgaoprocessing and Microprogramming 30, Pages 389 - 396

Schneider S.A., Correctness and Communication in Real-Time
Systems, Oxford University PRG Technical Monograph N° 84,
March 1990.

Scholefield D.J. The Formal Development of Real - Time
Systems: A Review, University of York - Department of
Computer Science Report YCS 145 (1990), 1990

Silberschatz, A., Communication and Synchronization in
Distributed Systems, IEEE Transactions on Software Engineering,
Vol SE-5 N° 6, Pages 542 - 546.

Silberschatz A., Port Directed Communication, Computer Journal
Volume 24 N° 1 Pages 78 - 82, 1981

Soundararajan N., Axiomatic Semantics of Communicating
Sequential Processes, ACM Transactions on Programming
Languages and Systems, Volume 6, Pages 647 - 662. 1984.

Stoy J.E., Denotational Semantics, MIT Press, 1977.

Sutherland W.A., Introduction to Metric and Topological Spaces,
Open University Press, 1975.

Toetenel H., VDM + CCS + Time = MOSCA, Proceedings of the
IFAC International Workshop on Real-Time Programming WRTP
'92. Bruges, Belgium 23 - 26 June 1992 IFAC.

Tofts C., Moller F., A Temporal Calculus of Communicating
Systems,Proceedings of CONCUR 90, Edited by J.C.M. Baeten
and J.W. Klop, Springer Verlag Lecture Notes in Computer
Science Volume 458, Pages 401 - 415, 1990

Proceedings of the 1987 Workshop on Vienna Design Method,
Springer Verlag Lecture Notes in Computer Science Volume 252,

1987.

Watt D.A., Programming Language Syntax and Semantics,
Prentice Hall International, 1991.

Wilksrom A., Functional Programming Using Standard ML,
Prentice Hall International, 1987.

247

[Wilson 84]
[Wing 90]

[Woodcock 87]

[Woodcock 88]

[Zave 82]

[Zave 86]

[Zave 91]

[Zwarico 85]

Wilson R., Graph Theory, Open University Press, 1984.

Wing J. M., A Specifiers Introduction to Formal Methods, IEEE

(li‘gér(:)puter Journal, Volume 23 N° 9, Pages 8-24, September

Woo.dcoc_k. J.C.P.,‘ Sorensen, I.H., Mathematics for
Specification and Design: The Problem with Lifts..., Proceedings
of the Fourth International Workshop on Software Specification

gnf ?gﬁgn Monterey CA, USA , IEEE Computer Society, April

Woodcock J., Loomes M., Software Engineering Mathematics,
Pitman Publishing, 1988.

Zave P., An Operational Approach to Requirement Specifications
for Embedded systems, IEEE Transactions on Software
Engineering, Volume 8 N° 3, Pages 250 - 269, May 1982.

Zave P., Schell W., Salient Features of an Executable
Specification Language and its Environment, JEEE Transactions
on Software Engineering, Volume 12 N° 3, Pages 312 - 325, May
1986.

Zave P., An Insiders Evaluation of PAISLey, IEEE Transactions
on Software Engineering, Volume 17 N° 3, Pages 212 - 225,
March 1991.

Zwarico A., Lee 1., Proving a Network of Real-Time Processes
Correct, Proceedings of the Real-Time Systems Symposium, Dec.
1985, California, Pages 169-177, IEEE Press, 1985.

248

APPENDIX A

Definition A.1 (3.6): Let U be a set and let d be a function such that d: UX U =
R, (R is the set of real numbers). Let x, Y, z be members of U. Then the pair (U,
d) is said to be a metric space if and only if the following hold

i) Vx,yeu - d(x,y)=20 Eq. Al
1) VX,YEU o d(x,vy)=0 & X=y Eq. A2
i) Vx,yeu o d(x,y)=d(y,x) Eq. A3

iv) VX,v,z€e U * d(x,y)+d(y,z) 2 d(x,z) Eq. A4

Definition A.2: Let (U, d) be a metric space and let a,, a5, a3, .. be a
sequence of elements from the set U. The sequence is said to be a Cauchy
sequence if and only if

d(am an)—0 as m,n — % Eq. AS
The set A C U is said to be complete in the metric space (U, d) if every Cauchy
sequence in A converges to a limit in A. =
Theorem A.1: Let £, g be mappings of the complete metric space (U, d) onto
itself. (£, g: U— U). Then the following rules hold

i) If £ and g are contractions, then sois f o g.

ii) If f and g are nonexpansions, then so is £ o g.

iii) If £ is a contraction and g is a nonexpansion, then f o g is a contraction.

iviIffisa nonexpansion and g is a contraction, then f o g is a contraction.

249

Lroof

From the definitions of contractions and non-expansions for all functions £ and g
there exist positive real values k, and k, such that

d(x,y) < k,.d(£(x), £(y)) Eq. A6
d(£(x), £(v)) < k,.d(g(£(x)), g(£(¥y))) Eq. A7
d(x,vy) < ki.k,.d(£ og(x), fog(y))

Eq. A8

The corresponding cases are

Casei)

k; <1 and k, < 1, therefore k,.k, < 1, thus f o g is a contraction.

Case i)

k,;<1 and k, < 1, therefore k,.k, < 1, thus f o g is a nonexpansion.

Case i)

k, < 1 and k, < 1, therefore k, .k, < 1, thus £ o g is a contraction.

Case iv)

k, <1 and k, < 1, therefore k;.k, < 1, thus £ o g is a contraction.

Theorem A.2: (Contraction Mapping Theorem) Let F:U — U be a
contraction of the complete metric space (U, d). Then F has a unique fixed point.
Furthermore, if x; is any member of U the sequence,

X, X2= F(X1), X3 = F(XZ) = F(F(Xl)), e Eq A9
converges to that unique fixed point.

Proof

250

Appendix A

Consider the sequence
Xi: X1, X2 = F(X1), ., Xj41 =F(x;), .. Eq. A.10
/

The metric between two consecutive elements of X; is given by

d(Xn, Xns1) = d(F(Xn-1), F(xp)) Eq. A.11

F is a contraction and thus there is some k < 1 such that

d(F(xn-1), F(xp)) < k.d(Xn-1, Xn) Eq. A.12
< k.A(F(Xn-2), F(Xpn.1)) Eq. A.13
< k%8(X5, %01) Eq. A.14
< k™-2.d(F(x1), F(x3)) Eq. A.15
< k™ L.d(%, x5) Eq. A.16

Thus d(%y, Xn.1) € kP 1.d(%y, X,). This result can be generalised to d(x,,
Xp) as follows. Using the triangle rule (Definition A.1(iv))

d(Xpy X) < d(Kns Xn+1) +*
d(Xn+ls Xn+2)+..+d(xm_1, xm) Eq. A.17

< kP1.d(%, x3) +

k™.d(x1, X2) + ... + k™ 2.d(xq, X,) Eq. A.18

< (k"1 (1+k+k?+..)).d(x1, X3) Eq. A.19
n-1

< 1-k d(X1, X2) Eq A20

Equation A.20 tends towards zero as n tends towards infinity. Additionally F is a
mapping from U to U. Thus the sequence x; is a Cauchy sequence. Now since U
is complete the sequence x; has its limit in U. Let x be the limit of x ;.

251

Xi—=X Eq. A21
Since V n * x,,1 = F(Xy) it is possible to see that the sequence generated by

F(x;) will tend to F(x). The sequences x; and F(x;) tend towards the same limit
and so

X = F(x) Eq. A22

Thus the limit of x; is a fixed point of F. To show that this is unique let x, and
Xy, be fixed points of the contraction F. Assume x, # x;. Then by definition

d(xa xp) = d(F(xa), F(xx)) #0 Eq. A23
Therefore there is no real number k < 1 such that
k.d(Xa, Xp) 2 d(F(xa), F(xp)) Eq. A24

Thus F is not a contraction over (U, d). The initial assumption that x, # x;,
must be false and so

Xa =Xp Eq. A25
Since there is only one fixed point of F and the limit of x; is a fixed point, it

follows that the limit of x; is a unique fixed point.
0

Definition A.3: Let P, =(A,, T,)and P, = (A,, T,) be two processes in M (
See Definition 3.5). The partial ordering £ over My is defined as follows

(Al,Tl)E (Az,Tz) = (A1=A2ATIQT2) Eq. A.26
For processes X,, X, and X; this ordering satisfies the rules
i) 3 EX Eq. A27

(X, EX A% EX) =2 X=X Eq. A28

252

Appendix A

i) (X EXAXEX) = x EXx Eq. A.29

Furthermore, a function is monotonic if it preserves some partial ordering [Lipschitz
=il . . wis. &
69]. That is the function F is monotonic if for processes X, and X,

xwEX = FX)E FX) Eq. A30

The CSP operators of hiding, deterministic choice, nondeterministic choice,

interleaving, prefix, change of symbol, parallel, alphabetized parallel and
sequential are all monotonic over the above partial ordering on My.

253

APPENDIX B

Definition 5.1 : The proofs for each of the rules are as follows
1) Follows from the result that
Vses"o>="s=s
ii) Follows from the associativity of catenation, i.e.
‘?’ S, t,u*s™(t™u) =(s"t)u
iii) By definition
BuC={tlteB v teC}
A"BuUC) = {stlseAA(teBvteC))}

{s"tl(se AAteB)v(iseAaAte()}

"

(A*B) U (A™C)

the second result follows from the associativity of *.
iv) By definition
BNnC={tlteB A teC}
A*BNC) = {s"tlse AA(teB A te()}

{s'ti(seAAteB)A(seArte()}

(AB)n (A"C)

the second result follows from the associativity of ™,

v) By definition

254

Eq.B.1

Eq.B.2

Eq.B.3

Eq.B.4

Eq.B.5

Eq.B6

Eq.B.7

Eq.B.8

Eq.B.9

Eq.B.10

Appendix B

A”B - A"C
- {s“tlseAAteB]-[s“tlseAz\teC] Eq.B.11
= {s'tlse AAte(B-0)} = A"B-C) Eq.B.I2

second result follows from the associativity of *.

vi) Follows from the rule that for a set of events A

V se(slfa)y(tla) =(s"t)fa Eq.B.13
vii) By definition
{(}*A=(stlse{} AteA} Eq. B.14

However, s € {} can never be true since s must always be at least the empty trace.
Thus the expression (s € {} A t € A)is always false. The result follows.

O
Theorem 5.6, Lemma C: If A, B, C and D are sets then
(A-B)nD={} A (C-D)nB={}
= (A-B)u(C-D)=(AuC)-(BuUD) Eq.B.15

Proof
To prove this some initial results are stated from [Lipshitz 69]. For all sets A, B the
following equivalence holds

A-B = ANnBC Eq.B.16

where BC is the complement of B. Additionally, for all sets A, B

AAB={} & ANBC=A Eq. B.17

255

Appendix B

Now consider the expression
(A-B)u(C-D))n(BUD) Eq.B.18

This expands to

((A-B)r\B))U((A-B)ﬁD)u((C-D)nB)u((C—D)nD) Eq.B.19

And using equation B.16

(ANBCNB)U((A-B)AD)u
(C-D)NB)U(CNDEND) Eq.B.20

The initial assumption in Lemma C was that
(A-B)nD={} A (C-D)nB={} Eq.B.21
Using this and the fact that a set intersected with its complement yields the empty set

it is seen that equation B.20 is equivalent to { }. Thus it follows from equation B.17
that

(A-B)u(C-D)) n(BUD)® = ((A-B)u(C-D)) Eq.B22

Now consider the expression

(AuC)-BuUD) = (AUONEBUD) Eq.B.23
= (AuC) N BCNDO) Eq.B.24
= (ANBENDC U (CNBEND) Eq.B.25
- ((A-B)nDS U (C-D)NB) Eq.B26

= (A-B)u(C -D)) N ((A-B) v BS)
N ((C-D) U DC) N (DC U BC) Eq.B.27

(A-B)uU(C-D)NBEN DN (DY B) Eq. B.28

256

Appendix B

(A-B)u(C-D)Nn(BUD) Eq.B.29

(A-B)u(C-D)) Eq.B.30

Thus the equality is established

257

PPENDIX

53 ; L i /
Lemma 6.6(a) : For positive integers i, j let Q; be a statement in propositional

calculus. Then the following equivalence holds:
((Qi AQ; A.A erl) V.V (erl_l A Q;'l A.A QE_I))

o A ((Qi/\--/\ Qi-l '\Qiu AwA Qlln) V.
i=1

n-1 -1 =1 -1
V@ ALAQIIAQLIA.AQYY) Eq. C.1
|
Proof
The following notation is introduced for convenience. For positive integers i, 3, n
let the expression SR; be such that

R, =@ A-rQliAQL ALAQ) Eq.C2
S, =@ AQGAAQ) 63

From this it can be seen that equation C.1 can be re-expressed as

1 n-1
3. vav 3,

& n/\ (ER1 v iﬁi L V.V 911;1) Eq. C4
i=1

i,l’l r

To establish this result two further lemmas are required.

Lemma A : For arbitrary propositions R and S the following equivalence holds

B O
R&RV(RAS) El

258

Appendix C

Lroof
This can be shown by the following truth table

/

I R S I RV (RA S)l
1 1 1
1 0 |
0 1 0
0 0 0
Eq.C6
O
Lemma B: For integers j, p, g, n such that p # q:
3 3 j
RonAR,, & 8: Eq.C.7
[]
Proof
By definition
R . & QI AAQL 1 AQ A aRD Eq.C8
Also, sincep# g
S}tim = (Qi A LA Qg ALA Qf,) Eq.C9
AR, e @AGAAQ Eq. C.10
ad

Returning to the main proof, by expanding the right hand side of equation C.4 it can

be seen that

259

Appendix C

i,n 1,n

A & vR v.v 9'{?';)
=1 ’

-1

1 2
ER 5 n 1 2 n-1
Py R, ﬁl’n V.V SRLn) A (‘:Rz,n v 9‘!2,11 V..V ERZ’n) A

AR v Eﬁi,n V.V SRE:;) Eq. C.11

The further expansion of equation C.11 can be expressed as

\V4 { (Sﬁfn A ﬁ;in ALA ‘.R::n) X35 %€ {1,.,n}} Eq.C.12

Equation C.12 can be partitioned as S, v S, where

S; = vV { (9'{}1(:1,1 A SR:fn ALA ‘.-Rf;jn) Xy, X € {1,.,n-1)
AX)=X,=..=x_}) Eq. C.13
s, = vV { (Sﬁfin A m;fn A A SR:':n) 1%y, x,€ {1,..,n-1}

A ~x,=x=.=x.)}) Eq.C.14
From Lemma B it is possible to deduce that

stvsiv.y gt Eq. C.15

= 51

The n variables X, ,.., x,, €ach take one of n-1 integer values. Therefore there must
always be at least one pair x,, X, (@, b€ { 1,.,n-1}) such that x_=x,. Thus in

X

. x ” . a Xb
each expression (SR’;:H ARZ ALA R o) Of S, there is always a pair R, R”

2,n

which conjoin to form S, It can be seen by following this reasoning and analysis

of S, that

Sy (331 A Ry V (3:21 A Ry V.V (32-1 A R, ;) Eq.C.16

where R, .., R,,_; are simply some predicates which need not be determined.

260

Appendix C
The conjunction of S; and S, yields

Gav 3iv.y 32

v ((Srl, A Ry) Vv (Si ARy V.V (32_1 A Ry y)

=

G v SEARY V.V S’ v 3T AR_Y)

Using Lemma A

EgC4 & (SivSiv.y 3

Thus the theorem holds.

Theorem 6.10: Let Q and R be predicates such that
Qe d" & R e B.
The logical disjunction of Q and R, QVR, is such that

OVR € o™+l

Proof

By the definition of the predicates Q and R, for all non-empty traces r,, ..

n+1l

N\ o .1 T Thg) @0 Q)
i=1

Ve o R(rp,2) & RtT.0)

Consider the expansion of the below expression

261

Eq. C.17

Eq. C.18

Eq. C.19

Eq. C.20

Eq. C21

» Tne2s t

Eq. C.22

Eq. C23

Appendix C

n+2
A OVRIT v Bl Tid <o Fien)
=1

The proof is split into two cases.

Case R(r,,,,) is true
The truth of R(r,,,) implies the truth of R(r;"."r,,,), and thys

n+2

R@ra) A A QVR(r,"."r; 1°ry,,".0)
i=1

= QVR(r,"."r,,,)

Case R(r,, ,) is false
The expansion of equation C.24 is such that

n+l
Eq.CU4 & _/\1 QVR(r,".."r;_;"r;,;"."r,,)
.—

AQ(r, .. r,1) VR(T,, 1))

n+l
Eq.C4 = A QVR(x,"."r; ;,"r; "0, 0)
i=1

By making the substitution s_,, =r_,,"r,,, it is seen that
Eq.C24 = (Q(r,".."r."r,,,) VR(r,,,))
A N QVR(Ty T s,)
i=1
By applying equation C.22 it is possible to deduce that
Q(rla'-ArnArn-n-Z) = Q(rla"arn)
Thus
Eq.C24 = (Q(r,".."T) Vv R(Tp,2)) A

n
A\ QVR(r,".."r; Ty - Ty Sn+1)
i=1

262

Eq.C.24

Eq.C25

Eq. C.26

Eq. C.27

Eq. C.28

Eq. C.29

Eq. C.30

Appendix C

By making the substitutions s, =r,, s 3=T,,
R(r,,,) is false, equation C.30 becomes

n+l

E.q_ C2H4 = A Q(S1A'-Asi~1“si+1A"Asn+l)

i=1
Applying equation C.22 and re-substituting,
Eq.CU = Q(s;"."s,,;) & 5, b2 s Sy

Therefore

n+2

~»Sn =T, and by assuming that

Eq. C.31

Eq.C.32

(_'R(rn+2)) A iél QVR(rIA"Ari-lArH1A°'Arn+2)

= QVR(r,"."r,,,)

Resolving equations C.25 and C.33 yields

n+2
Al QVR(I‘IA..AI‘i_lariﬂa--armz) =
i=

Thus by definition QVR € ¢™*!

Eq. C.33

QVR(r;"."ry,,) Eq.C.34

Theorem 6.11: Let Q, R and S be predicates such that:

Qe & & Re o &

sep EqC.35

The logical disjunction of Q, R and S, QVRVS, is such that

QVRVS € o™*2

Proof

EqC.36

Let W represent QvS and let m = n+1. Itis seen from Theorem 6.10 that

we o™

263

Eq. C37

Appendix C

Letuy, .., uy,; be a set of non-empty traces. Using the definitions of predicates Q, S
it can be deduced that

w(ulﬂ"aum-i-l) a4 Q(ulA"AumﬁL) v S(U1A'°Aum+ 1) Eq. C.38
= Quy . 1) Vv S(uy™ Ny,) Eq. C.39
= W, . ug,,) Eq. C.40

Now consider the following expression

m+2

/\1 WVR(r, .5 70,1070, 0) Eq. C41
1=

The proof is split into two cases.

Case R(r,) is true
The truth of R(r,) implies the truth of R(r,".."r,), and thus

m+2
R(r)) A /\ WVR(r,".'r; ;"r;,"10,,)
i=1
= WVR(r;".."r,,) Eq. C42
Case R(r,) is false

The expansion of equation C.41 is such that

Eq.C41 & (W(r, .."rp.2) VR(X,)

m+2
A I\ RVR(EZD) 1 i Tnia) Eq. C43
i=2
m+2
Eq.C41 = /\ WVR(T, T 1T) Eq.C44
i=2

By making the substitution s; = "I, it is seen that

Eq.C41 = (W(r;"r3 . Tp.2)V R(r,))

264

Appendix C

m+2

PNAN WR(S1 25" B) Bau O

i=3
By applying equation C.40 it is possible to deduce that
W(r;,"r;3".) = W(ry i ry.q) Eq. C46

| Thus,

Eq.C41 = W(r;".."r,,)V R(r,))

m+2

A A WVR(s,"r;". r $.0 it L) Eq. C47

i=3

By making the substitutions s, =r3,s;=1,, ..,5,,, = I'n., and assuming that
R(r,) is false, equation C.47 becomes

m+1

Eq.C41 = /\l W(S;™."S1 1"S11""S 1) Eq.C48
£ |

Using the fact that W € 0™, and re-substituting,

Eq.C41 = W(s,".."s,,;) & W(r,".."r,,1) Eq. C49
Therefore,
m+2
(=R(xy) A /\ WVR(T;" L1701)
i=1
= WVR(r;".."r,,7) Eq. C.50

Resolving equations C.42 and C.50 yields

m+2
A va(rlal-Ari—lnri+1A..Arm+2) = WVR(rl . rm+2) Eq. C51

i=1
Thus by definition WWR € o™!. Since m =n+1 it is seen that

e Eq. C.52

[]

265

APPENDIX D
Theorem 7.15: LetQ,R and S be predicates from the categories 57, & B
respectively and M, N be conditions such that
V M(s) * R(s) & R(s™t) Eq.D.1
V N(s) * S(t) & S(s™t) Eq.D2

Let F be a Catenary function. Let x, y be the orders of the pairs (F, M) and (F, N)
respectively. Then an Ideal Test Set for the pair (UP.F(P), QVRVS) is

FR+*+Y(STOP) Eq.D3
Proof
This theorem is proved by induction

INDUCTIVE STEP
Assume that there is some integer m such that QvRvS holds over

Traces(F™(STOP)) Eq. D4
Now let r be an arbitrary trace of the process

F™1(STOP) Eq.D.5
and consider the following cases

Case r € Traces(F"(STOP))
OVRVS holds for r because by definition QVRVS holds over Traces(F"(STOP)).

Case r & Traces(F"(STOP))
In this case it can be shown that r is such that

. Eq.D.6

r=rxp. Imi

266

where r,,.., r, € Dy and r,, € F(STOP). Consider the two following subcases

Subcase R(r;".."r,) vV S(tp, ;... . 1) holds

/
If x is the order of (F, M) and y is the order of (F, N) then, by definition
M(r,".."r,,,) and N(r;".."r,,,) hold. From the definition of Rand s

R(rl - rx) = R(rlﬁ"arxarx-fla“ﬁrm-rl) Eq D.7
S(rm+2—ya“‘rm+1) = S(rlA--ArxArx+ 1A--Arm+1) Eq.D8

Therefore, since at least one of the antecedents of equations D.7 and D.8 is true
QVRvVS(r,".."r,,,,) holds.

Subcase —R(r,"."r,) v =S(r,,,. . ."r,, ;) holds

Consider the set of traces given by

m+1

Q M (ry T T Tha) Eq.D9
i=1

QVRVS holds over €2 because for all 1 < i <m+1 the trace r,"."r;_;"r;, "1,]
belongs to the set Traces(F™(STOP)), and QVRVS holds over this. If x is the order of
(F, M), then by definition M(r,".."r,) holds. From the definition of R

V t * —R(r,".."r,) & —R(r;".."r,"t) Eq.D.10

That is R will not hold for all those traces with r,".."r, as a prefix. Additionally, the
predicate S will not hold for all those traces with the trace r,,,,_,".."r,,, as a suffix.
This is because if y is the order of (F, N) then by definition N(r,,,_,".."r,,,) holds

and consequently

V s ¢ 8(Cpa2-y - Tme1) € 8(8" T,z This) gD

Because QVRVS holds for all traces in Q it can be deduced that Q must hold for all the
traces in Q which have the prefix r,".."r, or the suffix r,,_,"."r,;. This can be

expressed by

m+1l-y D12
VAN ¢ 5t S SPE R Luia) =

i=x+1

267

The following substitutions are made

}5'1 ik SR M Eq.D.13
S2 = Tns2-n-y Eq.D.14
8 =Ty y Eq.D.15
Sns1 = iy v Lpyg Eq.D.16

Using these substitutiqns equation D.12 becomes

m-n-y+1
; xAl Q(rl .. rx .. rl-]. ri+l s rm—n_y+2A52A"Asn+l)
=X+

n
& /\2 Q(S1“..“51_1‘si+1~"-sn+1)
=

A Qs " sy 0 T) Eq.D.17

n
= vi's; s, A /\2 Q(s;"."84.1"8;,1"."80,1) A 8,7 8,7V
1=

Eq.D.18
where v, v, are some traces. By definition Q is such that
n+l
Vu,#<> A Qu;"."uy "y, L) © Q(u;™uy,,) Eq.D.19
i=z1
Equation D.19 can be used to show that
n+1
Eq.D.18 = 06 WELD) A N 08884 B)
i=2
A Q(s;".."8,,1) Eq. D.20
n+1l
= VAN Q(s;".."s;.178;,1"-"Sn41) Eq. D221
i=1

Again equation D.19 shows that

268

Eq.D.21 — (S8 n41) Eq. D.22
Therefore QvRvS holds for r
Thus if r € Traces(F™*1(STOP)) then oVvRvS(r). The inductive step is

= F™1(STOP) sat QVRVS Eq.D.23

F"(STOP) sat QVRVS

BASE CASE
When m = n+x+y the predicate QVRVS holds over the set F™***Y(STOP) by testing.

Therefore for all finite integers m, F"(STOP) sat QVRVS. As a consequence it is seen
that F****Y(STOP) is an Ideal Test Set for the pair (LP.F(P), QVRVS). O

269

