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SUMMARY

A major application of computers has been to control physical processes in which the
computer is embedded within some large physical process and is required to control
concurrent physical processes. The main difficulty with these systems is their event-
driven characteristics, which complicate their modelling and analysis. Although a number
of researchers in the process system community have approached the problems of
modelling and analysis of such systems, there is still a lack of standardised software
development formalisms for the system (controller) development, particular at early stage
of the system design cycle.

This research forms part of a larger research programme which is concerned with the
development of real-time process-control systems in which software is used to control
concurrent physical processes. The general objective of the research in this thesis is to
investigate the use of formal techniques in the analysis of such systems at their early stages
of development, with a particular bias towards an application to high speed machinery.
Specifically, the research aims to generate a standardised software development formalism
for real-time process-control systems, particular for software controller synthesis.

In this research, a graphical modelling formalism called Sequential Function Chart (SFC),
a variant of Grafcet, is examined. SFC, which is defined in the international standard
IEC1131 as a graphical description language, has been used widely in industry and has
achieved an acceptable level of maturity and acceptance. A comparative study between
SEC and Petri nets is presented in this thesis. To overcome identified inaccuracies in the
SEC, a formal definition of the firing rules for SFC is given. To provide a framework in
which SFC models can be analysed formally, an extended time-related Petri net model for
SFEC is proposed and the transformation method is defined.

The SFEC notation lacks a systematic way of synthesising system models from the real
world systems. Thus a standardised approach to the development of real-time process
control systems is required such that the system (software) functional requirements can be
identified, captured, analysed. A rule-based approach and a method called system
behaviour driven method (SBDM) are proposed as a development formalism for real-time
process-control systems.

Key words: Real-Time Process-Control Systems, SFC — Sequential Function Chart
(or Grafcet), Petri Nets, Rule-3zsed Approach, Temporal Petri nets.
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Chapter 1  Introduction

1.1 Real-Time Systems

Developments of modern technology, in the form of computers and communication
networks, have increasingly created man-made systems which are not easily described by
conventional difference and differential equations [Ho 89]. These systems include
computer networks, computer controlled manufacturing systems, power plant control
systems, patient monitoring systems, weapon control systems, robotics, traffic and
transportation control systems. The behaviour of these systems is characterised by the
inclusion of discrete events. Typical examples of discrete events are: turning off a pump or
closing a valve when the level in a liquid tank reaches a predetermined value; or switching a
motor off in response to the closure of a micro-switch indicating that some desired position
has been reached. Such man-made systems are classified by researchers as Discrete Event
Systems (DES) or Discrete Event Dynamic Systems (DEDS) [Ostroff 89, Ostroff and
Wonham 90, Heymann 90] as opposed to the more familiar Continuous Variable Dynamic
Systems (CVDS) [Ho 89, Cassandras and Ramadge 90]. The study of such systems
involves the mathematical modelling and analysis of discrete event processes. A large
variety of computer and communication systems can be described using discrete

mathematics.

Some applications of computers to physical processes involve both continuous variables
and discrete events, such systems are commonly called hybrid systems. Such systems are
relatively complex and their description involves the mathematics of both continuous and
discrete event systems. However, it is common to find that such systems include
supervisory functions concerned with the sequencing and co-ordination of activities. By a
process of abstraction, attention can be focused on the supervisory function or level,
which usually concerns discrete events or decisions and can be modelled using discrete

event mathematics.

A major field of application of computers has been to control physical processes, where the
computer is interfaced directly to some physical process and is dedicated to controlling the
operation of that process [Mok 83]. A key feature of such systems is that the computer is
often embedded within some large physical process and is required to perform its function
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within specified time bounds dictated by the physical process. That s, the correctness of
these systems depends not only on the logical results of the computation, but also on the
time at which the results are produced. It is for this reason that such applications have
become known as real-time systems [Mok 83, Jahanian and Mok 86, Goldsack and
Finkestein 91, Kemmerer and Ghezzi 92, Shaw 92] or embedded systems [Zave 82, Burns
and Wellings 91] or real-time process-control systems [Bologna and Leveson 86, Jaffe et al
91]. This thesis is essentially concerned with such systems. The terms "real-time",

"embedded", and "real-time process-control” will be used interchangeably in this thesis.

Real-time systems are increasingly being designed and used in everyday life. Although
such systems offer many benefits, there can also be some disadvantages. For example, in
applications such as flight control and weapon control systems, malfunctioning could lead
to loss of life. The potential consequence of system failure depends on the characteristics
of the particular application. To distinguish between various levels of responsiveness
demanded of a system, real-time systems are often distinguished as "soft" and "hard" [Mok
83, Shin 87, Faulk and Parnas 88, Burns and Wellings 91]. Soft real-time systems are
those systems in which response times are important but the system will still function
correctly if deadlines are occasionally missed. Thatis, a result that is delivered earlier than
required is acceptable and a result that comes a little later than required is still usable. Hard
real-time systems are those systems in which it is absolutely imperative that responses
occur within a specified deadline. If the timing constraints are not met, i.e., the result
generated by the computation is t0o early or too late, then the real-time system has failed. It
is also necessary to distinguish between the severity of the consequence of a failure leads to
a hazardous situation or even a possibly catastrophe, then the system is said to be safety
critical [Leverson 86, McDermid and Thewlis 91]. For example, an aircraft control system
would be classified as a safety-critical hard real-time system if a missed deadline could lead
to a catastrophe. On the other hand, a pedestrian traffic control system would be classified
-as far as responsiveness is concerned - as a soft real-time system because the intermittent
delays are tolerant. All the systems described in this thesis are considered to be hard real-

time systems unless otherwise specified.
1.2 Characteristics of Real-Time Systems

The original distinctions between conventional data processing systems and real-time
process control systems have become blurred with the development of modern, responsive,
data processing systems such as on-line point of sales and banking systems. However, it
is possible to distinguish between such systems and hard real-time systems. The following
describes some of characteristics found in hard real-time systems. Although each feature
may not be unique to such systems, the complete set of features is typical of hard real-time
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systems [Ward and Mellor 85, Burns and Wellings 91]. The significance of the list is that
any formalism for real-time system development must be powerful enough to describe a
system with all of these characteristics.

Timing constraints

By the nature of real-time systems, the computer embedded within the system must
respond to real-world events. Since the system will not perform satisfactorily if the time at
which the result arrives does not satisfy the timing constraints of the physical processes
under control, timing is one of most important features of real-time systems and also a
major area of difference between real-time systems and data processing systems. For
example, in an emergency case the nuclear power system must be shut down within strict
timing constraints, otherwise it will result in the loss of life. This dramatic example
illustrates that timing is a very important feature of real-time systems, particular for safety

critical real-time systems.

Environment

A real-time system's timing requirements are usually defined by the physical processes
under control (i.e., the environment) rather than by the computer. In general, a real-time
computer must try to keep up with its host environment [Lin and Burke 92]. The
environment under which a computer operates is an active component of the real-time
system and the real-time system and its environment can be considered to form a

synergistic pair [Shin 87].

Concurrency
The environment of a real-time system tends to consist of several coexisting external

physical processes with which the computer software system must simultaneously interact.
It is the very nature of these external physical processes that they exist in parallel, i.e., the -
activity of one physical process may occur simultaneously with other activity on another
physical process. For example, a manufacturing system may consist of robots, conveyor
belts, sensors, actuators which can have parallel activities. These parallel activities in real-
time systems create some difficult problems because they need to interact or cooperate with
each other. A major problem associated with real-time systems which exhibit concurrency
is how to describe concurrent behaviour using appropriate notations and how to control

concurrent behaviour using appropriate synchronisation and control mechanisms.

Size and Complexity
As computers become more powerful, more control functions previously performed only

by human operators or hard equipment are assigned to computers. This means that the
software system will become more complex. For example, the size of the on-board
software on NASA's space shuttle is at least 30 times larger (and considerable more
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complex) than the software for the previous Saturn V [Leveson 86]: As the timings and
concurrency must be considered in designing real-time systems, this leads to the fact that
real-time systems are often more complex than data processing systems.

Efficiency

Although progress in hardware technology has made high-performance processors
available, high-speed execution may not solve all the problems faced by real-time systems
[Stankovic 88, Lin and Burke 92]. Just as "real-time" differs from concurrency, high
efficiency is not a necessary feature of real-time system implementation although, generally
speaking, efficiency is more important in real-time systems than in other types of systems.
Efficiency heavily depends on the timing constraints associated with the physical process
under control and begins to be important only when the physical process has a high

computation requirement and must satisfy the demanding iming constraints.

Reliability and Safety

Reliability is defined as the probability that a system will perform its intended function fora
specified period of time under a set of specified environmental conditions [Leveson 86]. In
general, reliability is concerned with making a system failure-free. Since most embedded
systems are primarily control-oriented, the failure of such a system may be very expensive
either in terms of lost production, as in the case of process control, or in terms of human
life, as in the extreme case of weapon control systems. Therefore, real-time systems must

be extremely reliable.

Safety is a property of the "real world" [McDermid 90] which is defined as freedom from
those states that can cause death, injury, occupational illness, damage to (or loss of)
equipment (or property), or environmental harm [Leveson 86] . In general, safety is

concerned with making a system accident-free.

Maintainability

Like any system, real-time systems need to be maintained because of changes occurring in
the environment. When such changes occur during or after development, the maintenance
of the real-time systems is often very difficult because the need to accommodate the new
requirement may lead to changes which have ripple effects upon the system's concurrent

behaviour and ability to satisfy time constraints [Faulk and Parnas 88].

1.3 Research Background

Recently, there has been a growing awareness of the role and importance of software in
real-time systems [Bologna and Leveson 86, Shin 87, McDermid 90, McDermid and

Thewlis 91, Wellings 91, Lin and Burke 92, Kemmerer and Ghezzi 92, Leveson and
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Nenmann 93]. This is mainly due to the hazardous consequences which have been brought
about by the malfunction of software in safety critical applications. For example, a
software error caused a stationary robot to move suddenly with impressive speed to the
edge of its operation area, crushing a nearby worker to death [Ostroff 92]. Formal
mathematical techniques have long been recognised to be useful in overcoming some of the
difficulties in the specification, design and implementation of software for complex real-
time systems [Pnueli 86, Jahanian and Mok 86, Manna and Pnueli 88, Ostroff 89, Joseph
and Goswami 89, Goldsack and Finkestein 91, Manna and Pnueli 92]. These methods
allow precise specification and provide support for formal proofs which allow the
correctness of design or implementation to be verified with respect to the specification.

This research forms part of a larger research programme which is concerned with the
development of real-time systems in which software is used to control concurrent physical
processes. Such software is primarily control-oriented and the controller is often
embedded within some systems such as a manufacturing machine or a processing plant.
The general objective of this thesis is to investigate the use of formal techniques in the
analysis of such systems at their earlier stages of development, with a particular bias
towards an application to high speed machinery. This thesis is more concerned with the
software development issues rather than the physical processes under control. The
physical processes will be considered only from the point of view of their software

interface characteristics.

In real-time process-control, perhaps the most widely used methods of providing software
control is to use programmable logic controllers (PLC) [Warnock 88, Crispin 90, Michel
90, Swainston 91, Joshi and Supinski 92]. The programmability of a PLC provides the
flexibility required in control system design. For example, when a design change is made,
it is only necessary to change the software system rather than to disconnect or re-route a
signal wire. In the past years, there has been a growing interest in using high-level
programming languages, instead of application-oriented low level languages or assembly
language, for PLC system developments [Silva 89, Michel, 90, David and Alla 92,
Falcione and Krogh 93, IEC 93]. The International standard IEC1131 Part 3:
Programming Languages for Programmable Controllers [IEC 93] which 1s becoming
increasingly influential in recent years, defines five different languages which target
different levels of abstraction for PLC systems [David 91, Falcione and Krogh 93, IEE 93,
Halang and Kramer 92, 94].

(i) Sequential Function Chart (SFC) is a graphical description language which is used to

formulate the co-ordination and co-operation of asynchronous sequential processes, i.e.
to capture a high-level description of sequential control logic of a system. SFC
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partitions a process-control software into a set of steps (states) and.transitions (state

transitions) interconnected by directed links. Each step is associated with a (set of)
action(s), and each transition is associated with a condition which is normally an
external event which initiates or governs the response of the system.

(ii) Function Block Diagram (FBD) is a graphical language inspired by diagrams of digital
circuits, which is used to represent a certain module of overall functionality pre-defined
for designing process-control software. A function block is a program unit (or a
computational element) which takes inputs and produce one or more outputs. For
example, function blocks may perform binary, numerical, analogue or character string
processing. Each function block is depicted by a rectangular box and a function block
diagram is represented as a network of function blocks connected by directed links.

(iii) Ladder Diagram (LD) is a graphical programming language which is based on the
method used for describing relay logic circuits in the electrical/electronics industry. LD

represents a convenient method of expressing logical statements (Boolean expressions).

(iv)Structural Text (ST) is a Pascal-based real-time programming language with certain
features to facilitate real-time programming such as the duration literal, ime data type,
and the ability to deal with time and date. ST uses modules and tasks to describe the
structure and to implement the behaviour of process-control software. ST provides rich

data types and statements.

(v) Instruction List (IL) is an assembler-like low level programming language which is
used to implement the process control software. For example, each instruction shall

contain an operator, with one Or more operands separated by commons.

These five languages have been used in industry and considerable experience has
accumulated in the use of the low level notations. However, associated analysis techniques
have not been well developed, and there is a significant lack of formal analysis methods.
Recently, formal proof techniques have been applied to the verification of FBD and ST by
Halang and Kramer [92, 94]. This work shows how to create function blocks, prove their
correctness, and interconnect them so that the safety properties of the entire PLC software
can be easily performed. Formal method has also been applied to verification of the safety
and reliability of PLC software written in LD by Moon [94]. The method proposed by
Moon consists of three parts: a system model, assertions, and a model checker. The model
is a representation of a PLC's behaviour expressed in LD. Assertions are questions about
the behaviour of the system, which are expressed in branching time temporal logic (see
section 2.2.6 in Chapter 2). The model checker, a method developed based on branching
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time temporal logic by Clarke er al [86], determines the consistency of the model and

assertions. However, formal techniques have not been used to analyse the Sequential
Function Chart (SEC) which is often used to describe the control and synchronisation logic
of process-control software at early development stage.

It is well known that the requirements specification is one of the first activities of software
system development [Cohen et al 86, Sommerville 92]. The set of all requirements
specifications forms the basis for subsequent development stages bf the systems. The key
problem of requirements specification is to formulate an adequate and correct set of
requirements specifications. It has been recognised for a long time that errors made during
this stage are the most difficult and expensive to correct. For example, software
requirement errors can cost up to many times more to correct than errors introduced later in
the software development process [Boechm 81]. Moreover requirements specifications may
have impact on safety of physical processes under control [Leveson 86, Jaffe et al 91].
Therefore, techniques to provide adequate requirements specifications and to verify safety

requirements early are of great importance.

This thesis mainly concentrates on the requirement specification stage because of the lack of
adequate methods and tools in both requirements specification capturing and requirements
specification analysis in process-control system developments, particular for PLC systems.

The work presented in this thesis is specifically concerned with

i) investigating the discrete mathematical model recommended for real-time process-
control system in the standard IEC1131 Part 3;

ii) developing analysis methods for the recommended model;

iii) developing a method for capturing the requirements specification of real-tim.e

“control and synchronisation logic for real world systems;

iv) verifying the properties of the captured requirements specification.
1.4 Thesis Organisation

This thesis is roughly divided into three parts. The first part (Chapters 1-2) describes the
background of the research and presents the environment and theoretical framework in
which the research is embedded. The second part (Chapters 3-5) investigates the discrete
mathematical model SFC which has been recommended by the standard IEC1131 Part 3.
The third part of the thesis (Chapters 6-7) is concerned with the method for eliciting and

representing functional requirements of real-time process-control systems and the
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application of the proposed method. Finally, conclusions of this research are drawn and
recommendations for future research are pointed out. The following is a summary of each
chapter.

Chapter two describes the background to the research and presents the mathematical
foundation of models and techniques used to establish the basis for the following chapters.
Emphasis is placed on the SFC model. Since SFC has evolved from another discrete event
model called Grafcet [[EC848 88, David and Alla 92], the Grafcet model is discussed and a
survey of past work of Grafcet is provided. To assist the discussion, considerable use 18
made of Petri net model theory [Peterson 81, Reisig 85]. The reason that Petr1 nets are
used rather than other formal models is that Grafcet was originally inspired by Petri nets
and thus contains many similar features. Finally, the chapter surveys the work of rule-

based approach in both data processing systems and real-time process-control systems.

The detailed investigation of Grafcet is presented in chapter three. It is shown that Grafcet
is a powerful model because of its features such as the simultaneous firing rule and implicit
communication (dependency). However, problem also arises due to the implicit
communication (dependency). Implicit communication makes it difficult to distinguish (or
to trace) whether states occur in a particular intended order. A method is proposed to

alleviate this deficiency.

Based on chapter three, a thorough comparative study of SFC and Petri nets is presented in
chapter four. In this chapter, the evolution rules defined for SFC are revised to overcome
the identified ambiguity. To provide a framework in which SFC description can be
analysed formally, an extended time-related Petri net model for SFC and the transformation
methods from SEC to the extended model are defined. This allows many of the existing
formal analysis techniques developed for Petri nets to be applied to the analysis of
transformed SFC.

Chapter five presents techniques for analysing an SFC design by transforming it into the
extended Petri net model. Re.:u,hablhty graph analysls b:chmun of Peiri nei model

To analyse the concurrent behaviour and temporal propert f a SFC sysiem, trace theory

[Mazurkiewicz 87, 88] and timing analysis iechniques of Petri nets [Ramchandani 74,

Merlin and Farber 76] are used.

Chapier six concentrates on rj)ipl'bbblllg the functional requirements of real-time process
control systems in terms much claaer io the "real worid COMnC pLs" whilst siill pt‘;?&mmg

"'1'1

them in an analytical framework. |




method called the System Behaviour Driven Method (SBDM) are preposed. A rule-based
formalism as a means of describing the functional requirements has been presented. Two
different rule schemes are presented and the elicitation method for capturing the functional
requirements is described in detail. Also, the formal techniques used to verify whether the
rule-based descriptions reflects the required system behaviours are defined.

Chapter seven demonstraies the applications of the rule-based formalism and the SBDM
method by examples, in which the proposed elicitation method (SBDM) is illustraied i

step by step fashion. The application of the formal techniques presented in Chapier six is
also shown via the verification of the required system behaviours (specification) of the

examples.

Finally, chapter eight summarises and evaluaies the contribution of this research effort and

the solutions introduced through rule-based formalism. In addition, areas of further
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Chapter 2  Literature Review

2.1 Discrete Event Models and Paradigms

The problem of specifying the behaviour of a real-time system makes considerable
demands on the descriptive powers and mathematical properties of any formal or semi-
formal notation. This chapter examines various approaches to the specification of real-time
systems and evaluates their suitability for describing hard real-time systems comprising sets
of concurrent communicating processes.

In the past years, a variety of (discrete) formalisms have been proposed for real-time
systems. These include Software Requirements Engineering Methodology (SREM)
[Alford 77, 85], Structured Analysis /Real-Time (SA/RT) [Ward and Mellor 85], SCR/ATE
specification [Heninger 0], VDM [Jones 86], Statecharts [Harel 87], transition axiom
method [Lamport 83, 89], PAISLey [Zave 82}, Z [Spivey 92}, Temporal Logic [Pnueli 86,
Manna and Pnueli 92], Real-time Logic (RTL) [Jahanian and Mok 86], Real-time Temporal
Logic (RTTL) [Ostroff 89], Petri Nets [Peterson 81, Reisig 85], Time and Timed Petri nets
[Ramchandani 74, Merlin and Farber 76], Grafcet [David and Alla 92], State Machines
[Ostroff 89, Shaw 92], Extended State Machines (ESMs) [Ostroff 89] and Communicating
Real-Time State Machines (CRSMs) [Shaw 92], and the process algebras CSP [Hoare 85],
timed-CSP [Reed and Roscoe 86], and timed-CCS [Moller and Tofts 90].

Many formalisms for specifying the behaviour of systems differ because of their choices in
semantic domains [Wing 90]. Some focus on just the states, some on just the events, and
some on both. In state-based formalisms, the system is represented by the set of system
states and transitions between system states; the behaviour of the system is described by the
properties of states and how properties of some states depend on those of some other
states. The typical examples on states are the state-based pre/postcondition formalisms
VDM [Jones 86] and Z [Spivey 92]. In event-based formalisms, the system is expressed
by allowable sequences of atomic events; each time an event occurs it may produce other
events at a certain time. Typical examples on events are process algebra formalisms CSP
(Communicating Sequential Processes) [Hoare 85] and CCS (Calculus of Communicating
Systems) [Milner &9]. Formalisms which focus on both states and events include state
machines [Ostroff 89, Shaw 92] and Petri nets [Peterson 81, Reisig 85, Murata 89].
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State-based formalisms and event-based formalisms are different [Karam and Buhr 91] and
are often considered as dual methods [Valette et al 85]. In fact, in state-based formalism
the notion of event is derivative although the notion of state is fundamental. By contrast, in
event-based formalism the state is derived notion although the notion of event is primafy
[Inan and Varaiya 88].

Although both state-based and event-based notations have been used in the software
development of real-time process-control systems, "there are no models of discrete-event
systems that are mathematically as concise or computationally as feasible as are differential
equations for continuous variable dynamical systems. There is thus no agreement as to
which is the best model, particularly for the purpose of control" [Fleming 88] (quoted from
[Cao and Ho 90]). For this reason, only the formalisms within the category which

encompass both states and events will be examined in detail in this chapter.

In real-time process-control systems, the behaviour of a system is typically described in
terms of changes of the states of the systems, where each state transition results from the
occurrence of an event which takes place at a discrete point in time [Ostroff 89, Heymann
90]. Thus, formalisms that focus on both states and events appear to be much more natural
and straightforward to system designers and engineers because the behaviour of the system
can be expressed in a simple and familiar way. Formalisms which focus on both concepts
also offer advantages to the formal method community because relationships such as
dependency and independency between events and states can be explicitly described. The
reviewed formalisms include finite State Machines [Hopcroft and Ullman 79, Ostroff 89,
Shaw 92], Statecharts [Harel 87], Grafcet [David and Alla 92], Petri nets [Peterson 81,
Reisig 85], Time(d) Petri nets [Ranchandani 73, Merlin and Farber 76, Sifakis 80], and
Temporal Petri nets [Suzuki and Lu 89, He and Lee 90, Sagoo and Holding 90, 91].

7.2 Mathematical Foundations and Review
2.2.1 Finite State Machines (FSMs)

A finite automaton (FA) is formally defined as a 5-tuple [Hopcroft and Uliman 79]
M=(0, %6, g, F) (2.1)

where

(1)  Qis afinite, non empty set of states;

(2) X is a finite input alphabet;

(3) &:0QxX— Qisamapping from O X% t0 O which is called the state transition

function;
(4) g, € Qistheinitial state; and
(5) FcQisthe set of final states.
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One limitation of the FA as defined above is that it has no output alphabet and its output is
limited to a binary signal: "accept"/"don't accept.” Models in which the output is chosen
from some other alphabet have been considered. There are two distinct approaches; the
output may be associated with the state (called a Moore machine) or with the transition
(called a Mealy machine) [Hopcroft and Ullman 79].

A Mealy machine is formally defined as a six-tuple M = (Q, 2, 4, 8, A, qo), where Q, 3,
5, and g, are as in the FA defined above. A is the output alphabet and A:QOxY—>Aisa
mapping from Q X3 to A. That is, the output given by A depends on the inpﬁt and the
current state. A Moore machine is also defined as a six-tuple M = (0, 3.A, 6, A, q0),
where all is as in the Mealy machine, except that A is defined as A:0 — A. Thatis, the
output given by A only depends on the current state. Fig.2.1(a) and Fig.2.1(b) are
graphical representations of an example of a Mealy machine and an example of a Moore

machine, respectively.

state and output (function of state)

state transition )
input

state transition

(function of state
and current input)

a) A Mealy machine model b) A Moore machine model
Fig.2.1 Finite state machine models

The system modelled by a FSM changes from state to state along predefined state
transitions as they execute. In FSMs, state transitions are normally considered to be
instantaneous. FSMs can be used to describe a process or a complete system at an abstract
level. However, viewing a real-time system as a finite state machine is sometimes difficult
because the timing constraints do not fit well into the model. FSMs force sequential
thinking; concurrent computations ar¢ not expressed naturally by an FSM
[Chandrasekharan et al 85, Ostroff 89]. Also FSMs do not provide decomposition of
complexity [Zave 82] (i.e. there is no structuring mechanism in FSMs for grouping sets of

related states).

Because of above restrictions, one must also consider a machine that also provides some
facility supporting timing constraints and concurrent processing. State machines have been
extended in order to model concurrent real-time systems, typical examples are Extended
State Machines (ESMs) [Ostroff 89], Communication Real-Time State Machines (CRSMs)
[Shaw 92] and Statecharts [Harel 87].
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ESM's [Ostroff 89] are finite state machines enhanced with the standard programming
notions of data variables, guarded events, concurrency and communication. ESM's
provide communication, for synchronised cooperation, as in CSP [Hoare 85] via
communication operations (message passing) over channels. For instance, the send
operation ¢!« (or ¢!m) in ESM M; which means "send the command o (or message m)
over channel ¢ to some other ESM, say M,", and the corresponding receive operation in
M, is ¢?« (or ¢?m) which means "receive the command o (or message m) from M over
channel ¢". Each transition in an ESM is defined as a guarded operation (transformation
function) which has lower and upper time bounds which define the time-span within which
a transition is allowed to fire. These time bounds are used for calculating the best and
worst case execution times by examining the maximum cumulative delays of trajectories
which are paths through ESM. When the guard (an enabling condition) evaluates to true,
then the transition occurs within the duration of a time bound causing an instantaneous

change of state determined by the operation.

CRSM [Shaw 92] is a relatively new notation for specifying concurrent real-time systems
including the monitored and controlled physical environment. Similar to ESM's, CRSM's
are essentially state machines that communicate synchronously over unique unidirectional
channels in a manner much like the CSP [Hoare 85]. Compared to ESM's, CRSM's differ
in the way in which transitions are defined and time is handled. Each transition in a CRSM
is described by a guarded command: <guard> — <command>, where the <guard> is a
Boolean expression over the local variables of machine M and the <command> can be
either an 10, an input or output, (send or receive a message), or an internal command (a
computation or a physical activity such as opening a gate or moving a robot arm). A
transition can only be executed (fired) if its guard is evaluated to true. The execution time
for an internal command ¢ is given by a best-case/worst-case pair [tmin(c), tmax(©)]
indicating that the duration d of ¢ is somewhere in the interval 0 <tpin(c) < d < tpax ().
These bounds can be interpreted as a requirement (i.e., all implementation must obey these
constraints) or as a given behaviour (i.e., the given ¢ obeys these constraints). 10 times are
also represented by pairs, only in this case the pair denotes the earliest and latest times that
the TO can occur after entering a given state. The intersection of a sender's and a receiver's

intervals gives the time of possible communications. For example, suppose

i) machine M, enters state U at ime #y;

i) U has a transition g; — E(x)? with time pair [a;, a,] where a,, a, are times,
iii) machine M, enters state V at ime ty;

iv) V has a transition g,—E(x)! with time pair [b;,b,] where by, b, are times;
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then, if g1 and g, evaluate true, the earliest possible time at which IO will occur 18:
t = max(ty + ay, ty + by) (2.2)
2.2.2 Statecharts

Statecharts [Harel 87] provide an abstraction mechanism based on FSM's. Statecharts
denote composition of state machines into super-machines which may execute
concurrently. The state machines contain transitions which are marked by enabling
conditions and events. It is assumed that events are instantaneous, and a global discrete
clock is used to trigger sets of concurrent events. Statecharts are hierarchical, and may be
composed into complex charts. Transitions may be linked between charts by chart
construction operators. Statecharts is a specification language rather than a programming
language, and emphasises execution models and external view rather than internal

structure.

Given a Statechart one may perform a number of operations, including: 'refinement’
(decomposing a state into more lower-level states), 'clustering' (making a higher level state
from more other states), 'OR' constructs (connecting two charts in a disjunction), 'AND'
constructs (connecting two charts in a conjunction). Each transition in a Statechart is
labelled with a pair (C/E) where C is an enabling condition (a Boolean expression on event)

and E is an event which triggers the enabled transition.

Let us consider a Statechart example, as described by the graph shown in Fig.2.2(a). The
system in this example comprises three states (P, Q and R) and three events (X, Y and Z)
that trigger transitions between the states. Note that event X causes state Q only if
condition C; holds. In this case the condition acts as a guard rather than as a transition
trigger. Fig.2.2(b) describes how the Statechart of the Fig.2.2(a) is clustered. In this
figure states P and Q interact with state R and can be clustered as a new state D which is
generated as a higher-level state of P and Q. Since event Z causes both P and Q to change
to R, we can denote it by a single transition Z from the higher level state D to R. The
single transition refers to two possible transitions, each from one of the "substates”.
Another issue that Fig.2.2(b) emphasises is the default entry point, shown by the small
unlabelled arc, which is to state P in D. Thus, any transition directed to D will obey the
default entry and will cause a default transition to P. Therefore event Y has the same effect

as in Fig.2.2(a).

The main objective of Statecharts is to solve the problems that characterise FSM's. Two of
the severe problems in traditional FSM's are the lack of support for modularity and the
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exponential state explosion. These problems are elegantly solved by the Statechart's visual
concept of zooming. Fig.2.2(c) and Fig.2.2(d) demonstrate zooming in both directions
based on the example shown in Fig.2.2(b). We can zoom-out and consider only higher-
level states as in Fig.2.2(c) or zoom-in and consider only events and substates in the
clustered state as shown in Fig.2.2(d). Finally, Fig.2.2(e) illustrates conjunction in which
a state F is formed by an AND constructor between charts M and N, and Fig.2.2(f)
illustrates disjunction in which a state G is formed by an OR constructor between charts 1
and K.

P Jee—Y D
z A Y P
p
[Cvxif Y R | x| |y _Z_)r_R-J n.— [cvxy |Y
z
Q Q

(a) Statecharts (b) Clustering

(e) AND construction (fH) OR construction
Fig.2.2  Examples of Statecharts

A number of studies have examined theoretical issues concerning Statecharts and have
identified problems and ambiguities, such as the transition which may enable itself
[Scholefield 90, der Beeck 94]. To avoid or solve this kind of problem the semantics of
Statecharts have had to have been altered [der Beeck 94]. Currently, there are over 20
variants of Statecharts and their scope and limitations are summarised in [der Beeck 94].

2.2.3 Grafcet and Sequential Function Chart (SFOC)
To describe increasingly complex discrete real-time process-control systems, a commission
entitled Normalisation of the representation of the Specifications of Logic Controllers was

set up in France in 1975. This group developed a discrete mathematical model, Grafcet,
for modelling complex control systems and particularly manufacturing systems. Grafcet is
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defined as a discrete mathematical model for control systems which describes the function
to be performed only, i.e. it defines a sequential machine in the mathematical sense, free
from all technology and all implementation [David and Alla 92].

Grafcet model is inspired by the Petri net model (see this Chapter) with a few differences
[David 91]. Although Grafcet is defined with a view to PLC systems, no field of
application is explicitly excluded because Grafcet provided a general process oriented way
of describing control functions. Grafcet was adopted by the IEC as an international
standard in 1988: "Sequential Function Chart" [IEC848 88]. The Grafcet standard has
now been accepted by many countries [David 91] and it is widely taught and used in
industry, particularly in France.

lstanl ~<ag——— Ipitial Step: defining the initial situation of the automated system.

'(\_ Transition: between steps and with which logic conditions are associated.

IR ™ Action: associated with a step.

Directed Links: connecting steps to transitions, and transitions to steps.

%\Step_: a state with which commands or actions may be associated.

Simultaneous Activation: indicated by a transition followed by a double
- horizontal line.

-:-r—‘\Start of Sequence Selection: indicated by one or more transitions followed

by a single horizontal line.
w: indicated by one or more transitions followed by

a single horizontal line.

Simultaneous De-activation: indicated by a double horizontal line followed
by a transition.

Fig.2.3 A Grafcet model

The basic concepts of Grafcet are "step", "transition", "action”, and "receptivity". In
Grafcet a system is described as a sequence of interconnected steps and transitions. Each
step represents a partial state of the system which can be associated with an action.
Graphically a step is represented by a named box and its associated action is represented by
another box which is (horizontally) connected with step. An action represents a processing
operation which may generate an output to the environment and is performed when the step
is active. At a given instant a step is either active or inactive. Each step has two external
attributes; a step flag and an elapsed time. The step flag is used to represent the state of a
step. The elapsed time represents the duration during which the current step has been
active. Each transition acts as a guard passing “control” from one or more predecessor
steps to One Or MOre Successor steps. A transition is either enabled or disabled. A
transition is said to be enabled when all the immediate preceding steps are active, otherwise
it is said to be disabled. After a transition is enabled; its firing 18 governed by the
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receptivity associated with the transition. Receptivity is a Boolean function of the Grafcet
variables or the step's states. If the receptivity associated with an enabled transition is true,
then the transition should fire immediately, otherwise the enabled transition must wait until,
the receptivity becomes true. The entities in a Grafcet model and the graphical notation
used to describe the model are shown in Fig.2.3.

There is no discipline enforced on the construction of Grafcet as in Petri nets and
unstructured flowcharts. The only structural restriction in Grafcet is that two steps are
always separated by a transition and two transitions are always separated by a step. A
hierarchical decomposition capability, called macro, is provided which may be adopted by
the user to impose a design discipline. A macro is a Grafcet having only one input step and

one output step, and is similar to a block in a structured programming language.

Grafcet not only represents the static structure of a control system, but also allows one to
determine its dynamic behaviours as well. By introducing evolution rules similar to the
firing rule of Petri nets, a Grafcet representation can reflect the evolution of a control
system. The Grafcet model evolves as steps complete their processing operations and the
successor transition fires, activating the next steps. The following are the evolution rules
defined for Grafcet:

1. The initial state of a Grafcet model is characterised by its initial acuve steps.

2. All firable transitions are immediately fired.

3. The firing of a transition causes the deactivation of all the immediately preceding
steps connected to the corresponding transition symbol by directed links and is
followed by the activation of all the immediately following steps.

4 TIf several transitions can be fired simultaneously then all shall be fired
simultaneously.

5. When a step is simultaneously activated and deactivated, it remains active.

SFC (also widely called Grafcet in industry) is a graphical language defined in the
international standard IEC1131 Part 3 [IEC 93]. Although SFC inherits from Grafcet
[David and Alla 92], there are a few differences between these two models. Some
"peculiarities” of Grafcet, which represent a major divergence from Petri nets such as the
simultaneously firing rule for conflicting situation, are absent in SFC. Also some
programming concepts are included in SFC; this makes SFC more programming oriented
rather than description oriented. Thatis, SFC is defined more from the consideration of the

"interior system" rather than the "exterior”
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SEC has the same syntax as Grafcet which partitions the control system into a set of steps
and transitions interconnected by directed links. Associated with each step is a (set of)
actions and associated with each transition is a transition condition. An action can be a .
command (an output statement) or a piece of program and a condition is a no side-effect
logical expression, which are expressed by the programming languages such as ST defined
in IEC1131 (see Chapter 1). The evolution rules defined for SFEC are the same as that
defined for Grafcet, except for the conflicting situation (i.e., a step is shared by more than
one transition). In SFC, if a step is shared by more than one transition then \o_nly one
condition associated with the shared transitions can become true at any instant, otherwise it
is treated as an error [IEC 93]. Specifically the similarities and differences between SFC
and Grafcet can be stated as:

Similarities:

i) SFC and Grafcet follow the same discipline for structural construction; in addition a set
of basic well-formed constructs are defined in SFC.

ii) The evolution rules defined for SFC are the same as that defined for Grafcet, except for
the conflicting problem.

ii1) Both SFC and Grafcet cannot model the non-determinism.

iv) Implicit communication between transition and step (see Chapter 3) is allowed in both

models.
Differences:

i) SFC is more programming oriented than Grafcet because it provides a good interfaces '
with programming languages via its action and condition descriptions.

ii) Simultaneous firing of transitions in conflicting situation is not allowed in SFC; instead
it is treated as an error if this situation occurs.

iii) The receptivity concept of Grafcet is absent in SFC definition; instead transitions in
SEC can be associated with a much wider condition [Mallaband 91].

iv) Action duration is not negligible (i.e. instantaneous) in SFC.

Although SFC is defined more from the consideration of the "interior system" (i.e., from
implementation point of view) rather than the "exterior" (i.e., from description point of
view), SEC is not a complete programming language because in PLC applications SFC has
to be used in conjunction with other low level programming language such as ST
(Structured Text) and LD (Ladder Diagrams) [IEC 93]. The reason is that there is no
notation in SFC to be used to describe the conditions or actions.

28 Chapter 2



2.2.4 Petri Nets
2.2.4.1 Basic Petri Nets

The theory of Petri nets was initiated by Carl A. Petri in 1962. The aim was to develop a
comprehensive mathematical theory for modelling communication, synchronisation, choice
and concurrency. Since then, a great deal of research has been done on Petri net theory
[Peterson 81, Reisig 85, Murata 89, Rozenberg 88», 89, 90, 91, 9.2]. The chief attraction
of Petri net theory is the way in which the basic aspects of concurrent systems are identified
both conceptually and mathematically. As pointed out by Rozenberg and Thiagarajan [87],
the emphatic separation of non-determinism (i.e. a non-deterministic choice in a conflicting
situation) and concurrency (i.e. two independent executing processes) at a fundamental
level has had a deep influence in the subsequent development of the theory such as the trace
theory [Mazurkiewicz 87, 88] and the partial order semantics [Castellano et al 87, Reisig
88a, Reisig 88b, Vogler 91].

Algebraically, a Petri net is defined as a 5-tuple [Murata 89],

PN =(P, T, F, W, My) (2.3)
such that:

P = {p1, P2, ..., pn} 18 a finite set of places;

T = {1, tp, ..., Iy} 18 a finite set of transitions;

F < (P xT) w (T xP) is a set of arcs (flow relation);
W:F—{1,2,3,..} is a weight function;

My: P — {0, 1,2, ... } is an initial marking (or state);
PANT=@and PUT#Q.

A Petri net structure N = (P, T, F, W) without any specific initial marking is denoted by N.
A Petri net with the given initial marking is denoted by (N, My).

A graph structure is often used to illustrate a Petri net where a circle represents a place and a
bar represents a transition. The state of a net is represented by its marking in which tokens
are assigned to places; this is shown graphically by placing dots in the places. The
graphical model describes the static properties of a system. The dynamic aspect or the
behaviour of Petri nets is denoted by changes in the markings which occur during
execution of a Petri net. The execution of a Petri net is determined by exercising enabling

and firing rules [Murata 89]:
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i) A transition z € T'is enabled if and only if each input place p €P of ¢ is marked with
at least w(p,t) tokens, where w(p,?) is the weight of the arc from p to .
i) an enabled transition may or may not fire (depending on whether or not the event

actually takes place).
iii) A firing of an enabled transition f removes w(p,t) tokens from each input place p of

t, and adds w(z, p) tokens to each output place p of 7, where w(p,?) and w(z, p) are

the weights of the arcs from p to ¢ and 7 to p, respectively.

, :
pi PP P = {p1, p2, p3, p4, ps, P67}
T = {1, t2, 13, t4, t5, 16 }
F = {<p1, t1>, <p7, t1>, <p2, 12>,
<p7, t2>, <p5, 13>, <P6, 14>,

3 t1 2 t4
<p3, t5>, <p4, 16>,
p> p3 p4 pé <t1, p3>, <t2, p4>, <3, p1>,
<t4, p2>, <t5, p5>, <t5, p7>,
t5 t6 <t6, p6>, <t6, p7>}
Mo = {ps, p6, p7}
A Petri net with Initial marking A Petri net definition

Petri nets with the next markings
Fig.2.4 A Petri net showing concurrency and non-determinism

A Petri net is said to be ordinary if all of its arcs weights are 1's. All Petri nets considered
in this thesis are ordinary. For the above rule of transition enabling, it is assumed that each
place can accommodate an unlimited number of tokens. Such a Petri net is referred to as an
infinite capacity net [Murata 89]. For modelling many physical systems, it is natural to
consider an upper limit to the number of tokens that each place can hold. Such a Petri netis
referred to as a finite capacity net [Murata 89]. For a finite capacity net (N, Mp), each place
p has an associated capacity K(p), the maximum number of tokens that p can hold at any
time. For finite capacity nets, for a transition ¢ to be enabled, there is an additional
condition that the number of tokens in each output place p of t cannot exceed its capacity
K(p) after firing 7. A Petri net is called a condition/event (C/E) net if the capacity K(p) for
each place p is restricted to {0, 1}. A Petri net modelling concurrency (t3 and 4) and non-

determinism (between t; and 1,) after transitions 3 and 14 have fired is shown in Fig.2.4.
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Reachability

Reachability is a fundamental method of studying the dynamic properties of any system
modelled by Petri nets. The firing of an enabled transition will change the token
distribution (marking) in a net according to the firing rules defined for Petri nets. A
sequence of firings will result in a sequence of markings. A marking M, is said to be
reachable from a marking My if there exists a sequence of firings that transforms My to My,
A firing or occurrence sequence is denoted by S=Mon Mty ...... tn My, or simply 0 =112
... t;. In this case, M, is reachable from Mo by § and we write Mo[8 >M,. The set of all
possible markings reachable from My in a net (N, Mp) is denoted-by R(N, Mo) or simply ‘
R(My). The set of all possible firing sequences from My in a net (N, My) is denoted by
L(N, My) or simply L(Mo).

The reachability problem for Petri nets is the problem of finding if Mye R(Mo) for a given
marking M,, of a net (N, My). For general Petri nets, the reachability, although decidable,
has been shown to be exponential space-hard [Reutenauer 88]. However the equality

problem is undecidable [Reutenauer 88], i.e., there is no algorithm for determining if L(N,
Mg) = L(N’, M) for any two Petri nets (N, M) and (N’, M%).

Boundedness

A Petri net (N, M) is said to be k-bounded or simply bounded if the number of tokens in
each place does not exceed a finite number k for any marking reachable from My, 1.€.,
M(p) < k for every place p and every marking M € R(Mp). A Petri net (N, Mp) is said to
be safe if it is I-bounded. For example, the net shown in Fig.2.4 is safe. When places in
a Petri net represent buffers, a bounded net, say k, will guarantee that there will be no

overflows in the buffers if the buffer size > k, no matter what firing sequence is taken.

Liveness

A Petri net (N, M) is said to be live (or equivalently My is said to be a live marking for N)
if, no matter what marking has been reached from My, it is possible to ultimately fire any
further transition of the net by progressing through some further firing sequence. The
concept of liveness is closely related to the absence of deadlocks. If a Petri net (N, Mo) 1s
live, then this means that deadlock-free 1s guaranteed, no matter what firing sequence is

chosen.
In Petri net theory, following symbols are often used for a pre-set and a post-set:

or = {pl(p,1)e F}=theset of input places of transition z.
tre={pl(t,p)e F}=theset of output places of transition z.
ep ={t1(t,p) € F}=thesetof input transitions of place p.
pe={tl(p,1)e F}=thesetof output transitions of place p.
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The following is a theorem, called token invariance property, of Petri nets which has been
considered as one of the powerful proof techniques associated with nets [Rozenberg and
Thiagarajan 87, Murata 89, Manna and Pnueli 92, Reisig 92].

Theorem:

Given a Petri net PN = (N, M), S is a subnet of PN. If S satisfies following requirements:

1) Vte S,lormSlzltonSl
ii) Vpe S, (epupe)c S

then S has the property that the number of tokens in § remains invariant.

Proot:

Requirement i) means that for each transition 7 in S the number of its predecessor places in
S equals the number of its successor places in S. That is, every transition ¢ in § removes
and places exactly the same number of tokens in S when t is fired. Requirement ii) means
that for each place p in S all transitions removing and placing tokens from p are in S. That
is, no transition outside § can deposit tokens in § or remove tokens from S. This
guarantees that the number of tokens in S at any stage of the execution of net equals the

number of tokens in S at the initial marking. O
2.2.4.2 Inhibitor Arc Petri Nets

The introduction of the 'inhibitor' arc [Peterson 81] produced a net which is often simpler
than an equivalent (non -inhibitor arc) C/E net. An inhibitor arc from place p; to a transition
t; has a small circle rather than an arrowhead at the transition. The firing rule is changed as
follows: a transition is enabled when tokens are in all of its (normal) input places and zero
tokens are in all of its inhibitor input places. The transition fires by removing tokens from
all of its (normal) inputs. A Petri net with inhibitor arc and its pre- and post-firing
markings are illustrated in Fig.2.5(a) and Fig.2.5(b).

poop p P l PP PP
I
t1 tz t1 tz‘ t1 tz:> ta E
:: |
P p p P p3 p % P
i

(a) t is disabled (b) t; is enabled
Fig.2.5 A Petrinet with inhibitor arc and its pre- and post- markings
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Although Petri nets have the desirable features of modelling non-determinism and
concurrency as well as graphical notation, Petri nets have been criticised in following
aspects: 1) the lack of compositionality (nets need to be completed before any properties are
proven); ii) the difficulty of automating analysis techniques in the case of infinite state
reachability graph; iii) lack of a high-level specification language; iv) lack of a satisfactory

verification system.

Some of these problems of Petri nets have been addressed already by research workers.
To model large-scale systems and keep the states manageable, various high level Petr1 nets
have been proposed; these include Predicate/Transition nets (PrT) by Genrich and
Lautenbach [81] and coloured Petri nets by Jensen [81a]. Additionally, Petri nets have
been combined with temporal logic [Suzuki and Lu 89, He and Lee 90, Sagoo and Holding

90, 91] (see section 2.2.7) in order to provide a formal specification language and a proof .

system.
2.2.4.3 High Level Petri Nets

For the needs of this thesis, only the brief concepts of high-level Petri nets are described
from descriptive aspect. More detailed discussion of these nets is beyond the scope of this
thesis and can be found in [Genrich and Lautenbach 81, Jensen 81a].

For a given condition/event (C/E) net, PN = (P, T, F, My), P can be viewed as a set of
propositional variables with changing truth values. A marking of the net indicates the
current truth values of the propositional variables. The occurrence of an event causes, in an
obvious way, changes in the truth values of the proportional variables in its neighbourhood
[Rozenberg and Thiagarajan 87]. PrT nets were developed by Genrich and Lautenbach
[81] who raised these ideas to the level of first order logic. That is, PrT nets can be
considered as a structurally folded version of conventional Petri net [Murata 89]. The

unique feature of PrT nets is that allows large complex systems to be modelled.

In the structure of a PrT net, a predicate of fixed arity is associated with each place and a
domain of tuples (of the same arity) of individuals with each place to provide the
interpretation. A token pattern is associated with each arc which specifies the extent of
change (in the corresponding predicate extensions) caused by firing of the transition. A
marking will indicate the current extension of each predicate in terms of the set of tuples of

individuals that currently satisfy the predicate.

A transition ¢ is said to be enabled in a PrT net if the token patterns on its input arcs are
satisfied by the tuples associated with its input places and the token patterns on its output
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arcs are not satisfied by the tuples associated with its output places. The firing of a
transition will change the current extensions of the predicates in its neighbourhood by
removing the satisfied tuples from its input places and adding the tuples specified on its
output arcs to its output places. Here is a simple example given in [Rozenberg and

Thiagarajan 87].

<b>
<a,b> ' Q
e Dp = DR = {<a,b>, <b,a>, <a,c>, <c,a> }

P .
@ <a,b> Dq = {<a>, <b>, <c> }
\ <b’a> R

Fig.2.6  Anexample of Predicate/T ransition nets

P and R are binary predicates and Q is a unary predicate. Let Dp, D, and D denote the
domains (of interpretations) of P, Q, and R respectively. At the marking shown the current
extension of P is {<a,b>}. In other words, just <a,b> satisfies P whereas, for instance,
<a,c> does not. Similar remarks apply to Q and R. For the transition t; to fire at a
marking M, P<a,b> must be true and R<b, a> must be false at M; after the firing of t;,
whenever it fires, P<a,b> is no longer true and R<b,a> becomes true. In other words, the
extent of change caused by firing t; consists of removing the tuple <a,b> from P and
adding the tuple <b,a> to R. This is expressed through token patterns on the arcs
surrounding transition t;. Thus at the marking shown on the PrT net, t; is enabled and t; is

not enabled because Q<b> is currently true.

From the example it can be seen that PrT nets are very powerful in a descriptive aspect and
can describe a system as a first order system. However, PrT nets have a serious drawback
in an analysis aspect. Although the invariant analysis techniques developed by Lautenbach
[87] can be adopted to PrT nets, the analysis becomes mathematically complicated and
needs much simplification and improvements to be practicable [Genrich 87]. This
complication primarily arises because the elements of the incidence matrix are no longer

integers (as in conventional Petri nets) but logical expressions.

Coloured Petri nets (CP nets) were developed from PrT nets by Jensen [81a], but have a
more refined invariant calculus [Jensen 81b]. The difference between CP nets and PrT nets
is that, in CP nets, each token has attached a data value called the token colour which can
be investigated and modified by firing transitions; each place has a colour set which
specifies the kind of tokens which may reside on the place; each transition has a guard
(Boolean expression containing some of CP net variables); and each arc has an arc
expression (containing some of the CP net variables). A transition is said enabled iff:
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« there are enough tokens of the correct colours on each input place;
o the guard expression evaluates to true.

When a transition is enabled, it may fire. A transition may fire concurrently with other
transitions if there are enough tokens that each transition can get its "own share". After

firing:

o amulti set of tokens is removed from each input place;

« amulti set of tokens is added to each output place.

Compared to PrT nets, CP nets are powerful in an analysis aspect. This is because the
invariant analysis technique has been extended to CP nets [Jensen 81b]. Although the
invariant technique is powerful, in many cases it is applicable only to special subclasses of

Petri nets or special situations. This is also true for CP nets.

The concept of time is not explicitly given in the definition of Petri nets. In the Petri net
model, transitions are fired in a nondeterministic way and do not relate in any way to
specific times. However, sometimes, it is necessary and useful to introduce time delays
associated with the transitions and/or places in a net in order to do some time-related
analysis, such as performance evaluation or solving a scheduling problem of a system. To
extend Petri net model to real-time systems, various modifications have been applied to the

basic model.
2.2.5 Time-Related Petri Nets

To model time the basic Petri net model must be enhanced. There exist several proposals
for extending standard Petri nets including time. Ranchandani [74] proposed associating
delays with transitions. The proposed model is often called a "timed Petri nef". This
approach has been used also by Ramamoorthy and Ho [80] and Zuberek [85]. Merlin and
Farber [76] proposed using two values, Min and Max times, to define a range of delays for
each transition. This model is often called a "time Petri net". Sifakis [80] proposed instead
associating the delays with places, this model is often called a "timed place transition net"
(TPTN). Coolahan and Roussopoulos [83] employed an approach similar to Sifakis.
Associating delays with places does not increase the power of the model (e.g. TPTN and
timed Petri nets are equivalent [Sifakis 80]), but does retain the instantaneous firing feature
of the basic Petri net model. Razouk [84] has proposed using enabling times along with
firing times. Both timed and time Petri nets have been proved very useful for expressing
many temporal and timing constraints. Although they are different from each other and not
equivalent (a timed Petri net can be modelled by using a time Petri net, but the converse is
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not true [Berthomieu and Diaz 91]), they are complementary to each other. Compared to
time Petri nets, timed Petri nets are useful in hard real-time systems where most timing
delays are fixed, this also simplifies system performance analysis. Time Petri nets are
more general than timed Petri nets and can be used to model ranges of delays which are
sometimes difficult to express using only fixed firing durations. The following are the basic

descriptions for each proposed model:

1) Merlin and Faber [76] associate with each transition two time units, a and b, where
a < b; aisthe minimum delay before a transition can fire starting from the time at
which the transition is enabled; b is the maximum delay before a transition must fire.

The enabling rule is the same as in Petri nets.

2) Ranchandani [73], Ramamoorthy & Ho [80] associate a finite firing duration with each
transition of Petri nets. The enabling rule is the same as in Petri nets but the firing rule
is modified as: a) firing a transition will take a fixed amount of time, and during this
period cf time the token is reserved; b) a transition can be fired when it is enabled.

3) Zuberek [85], similar to Ranchandani [73], associates a finite firing duration with each
transition of a Petri net. The only difference is that a transition must start to fire at the

moment it is enabled.

4) Sifakis [80] associates the time with each place. The advantage of this approach 1s that
it preserves the convention of transitions as instantaneous events. A token is either
unavailable (from the moment the token is deposited into a place until the time
associated with place elapses) or available (after the time associated with the place has

elapsed). Only available tokens are considered for enabling conditions.

5) Razouk [84] associates two times with each transition, one is the enabling time and the
other is firing time. Each transition must remain enabled for the enabling time. After
the enabling time, a transition becomes firable and it must begin firing at that instant of
time (unless disabled by the firing of a conflicting transition). During the firing, the
tokens are absorbed by the transition and do not appear on the output places until the

transition finishes its firing.
2.2.6 Temporal Logic
Temporal logic is an extension to propositional and predicate calculus, with new operators
being introduced in order to express properties relating to time. Temporal logic provides a

formal system for qualitatively describing and reasoning about the occurrence of events in

time, and in fact, even for the occurrence of infinitely many events [Emerson and
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Srinivasan 88]. In any system of temporal logic, various temporal Operators are provided
to specify how the truth of the properties of a temporal system vary over time. Typical
temporal operators such as O (henceforce), © (eventually), O (next), U (until) [Manna and
Pnueli 88] permit expression of such important properties of temporal systems as
invariances (assertions that describe properties that are always true of a temporal system),
eventualities (assertions that specify a property that must become true at some future instant

of time), and precedences (assertions that state that one event must occur before another).

In the past temporal logic has been found useful for the specification of real-time and
concurrent systems [Pnueli 86, Manna and Pnueli 88, Emerson and Srinivasan &8, Ostroff
89, Manna and Pnueli 92]. After using temporal logic as a language to describe the system
specification, the properties of systems can be formally verified, in which a formula
consisting of temporal logic operators is interpreted over a model which is a computational
structure of states (e.g., a sequence or tree of states) defined to be the semantics of a

program [Manna and Pnueli 88].

Three types of semantics which can be assigned to programs are identified by Manna and
Pnueli in [88] as:

e Linear Semantics. In this semantics a program is the set of all computations, where
each computation is a (possible infinite) sequence of states generated by performing the
basic actions of the program one at a time. Concurrent activity of two parallel processes in
the program is represented by the interleaving of their atomic actions. This simpler (or
perhaps less natural) representational model leads the following:

i) program a(b + ¢) is considered to be (semantically) equivalent to the program ab + ac
in linear semantics, even though the first program decides between taking b or ¢ only
after performing a, while the second program decides a prior whether it is going to

perform ab or ac.

ii) program ab + ba is considered to be semantically equivalent to a lib (where "+" stands
for alternative and "II" stands for parallel), even though in the first program there is a
non-deterministic choice in the program for the single process, while in the second

program each of the processes 18 deterministic.
That is, the linear approach is unable to distinguish between the non-determinism caused by

a non-deterministic choice existing in the program, and the one being introduced by the
interleaved representation of concurrency [Manna and Pnueli 88].
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To compensate for the limitations of the simple representation. of concurrency by
interleaving, the notion fairness is added to the interleaving computational model. One of
the main functions of the fairness requirements is to exclude the interleaving between two
processes in which, beyond a certain point all the actions taken are taken from only one of
the processes, while the other has some enabled actions which never get executed [Manna
and Pnueli 88].

o Branching Semantics. In this semantics the semantics of a program is a single
(possibly infinite) tree of states, where each node representing a state s in the computation
has as direct descendants all the states that can be derived from s. This semantics certainly
distinguishes between the program a(b + ¢) and the program ab + ac, which differ in the
point at which the choice between the two possibilities is made. On the other hand, this
approach still represents concurrency by interleaving, and considers the programs a llb and

ab + ba equivalent.

o Partial Order Semantics. In partial order semantics the semantics of a program is a
(possibly infinite) structure of states (or events), on which two basic relations are
recognised. One is a partial order which represents the precedence ordering between
events, and constrains certain events to occur following some other events. The other
relation is the conflict. Two events are considered to be conflicting if they can never
participate in the same execution. The conflict relation is extended by the precedence
relation. If a is in conflict with ¢, and a precedes b and ¢ precedes d, then it follows that
each of {a, b} is in conflict with each of {c, d}. If two events are neither related by the
precedence relation, nor are in conflict, we say that they are independent, which can be
interpreted as being concurrent, i.e. can be executed in parallel. An execution is any
maximal substructure which does not contain two conflicting actions. Partial order
semantics is the only one which identifies concurrency as a unique phenomena which is not
translatable to any interleaved representation [Manna and Pnueli 88, Katz and Peled 90].
Thus, partial order semantics distinguish between non-determinism (caused by non-

deterministic choice) and concurrency.

This variety of semantics leads to different temporal logics: Linear Temporal Lo gic (LTL)
[Pnueli 86, Manna and Pnueli 88, 92], Branching Temporal Logic (BTL) [Clarke et al 86,
Emerson and Srinivasan 88], and Temporal Logic over Partial Order Semantics [Reisig88a,
88b, Katz and Peled 90]. LTL is interpreted on a set of linear executions; formulas in this
logic are defined over sequences. BTL is interpreted on a branching structure that can be
viewed as a tree; formulas in this logic are defined over such trees. Temporal Logic over
Partial Order is interpreted on structures of partial order; formulas in this logic are defined

over independent executions.
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Although there is a consensus among many theoreticians and practitioners that temporal
logic constitutes a promising approach to the problem of designing correct parallel real-time
systems, there is not yet a consensus regarding which specific temporal logic is best suited
for this purpose [Emerson and Srinvasan 88]. LTL will be considered in this thesis
because of its simpler structure and the well developed proof system, compared to BTL and

temporal logic based on partial order.

A temporal formula is constructed from szate formulas to which temporal operators,
Boolean connectives, and qualification are applied. A state formula is a first-order
predicate which does not contain any temporal operators. A state formula is evaluated at a
single state in a sequence and expresses properties of a single state and a temporal formula

is evaluated over a sequence of states.

The computational model of LTL consists of a possibly infinite sequence of states
C= S0, S1, .- (2-4)

where each state s; provides an interpretation for the temporal formula. For a state
sequence G, let the sequence ok be the k-shifted sequence given by:

ok = Sk, Sk41 - (2.5)
then the semantics of temporal operators
O (always), < (eventually), O (next), U (until) (2.6)
are defined as follows:

(1) if ¢ is a classical formula (which is constructed from propositions or predicates and
logical operators such as NOT (=), AND (), OR (v) and implication (—))
containing no temporal operators, then the notion of ¢ holding at a state s is defined
by
cl=¢ iff So l= @ 2.7
¢ can be interpreted over a single state in &, which is the initial state s,

(i1) temporal operator always (O) is defined by
cl=0¢ iff ok|= ¢ forallk 20, (2.8)

O¢ holds on ¢ iff ¢ is holding at any state s in G,

(i)  temporal operator eventually () is defined by
cl=0p iff okl=¢ for some k 20, (2.9)

&g holds on ¢ iff @ is holding at some state sk in G,

39 Chapter 2



(iv)  temporal operator next (O) is defined by .
cl=0p iff cll=¢ (2.10)
Og holds on ¢ iff ¢ is holding at state s, in G,

(v) temporal operator until (U) is defined by
o l=yup iff there exists a k > 0, such that ok |= @,
and for every i, 0Si <k, oll=y (2.11)
wUp holds on ¢ iff yholds continuously until sometime ¢ holds.

2.2.7 Temporal Petri Nets

Both Petri nets and temporal logic have been widely used in real-time and concurrent
systems. Petri nets are appropriate to model the system causal behaviour explicitly, while
temporal logic is appropriate to specify the system properties and constraints. For
example, certain important properties of real-time and concurrent systems such as the
eventuality (certain transitions must eventually fire; certain places must eventually have a
token), fairness (if a transition becomes firable infinitely often, then it must fire infinite
often), and constraints (two places must be mutual exclusive), cannot be described
explicitly by Petri nets, but they can be described explicitly by temporal logic. In fact, Petri
nets lack a generally accepted high level specification language [Ostroff and Wonham 90].
Since one formalism can complement the other, a combination of two formalisms 1s a
highly desirable approach if they can be combined together consistently. By combining
both together, one can model a real-time concurrent system operationally by Petri nets and
specify the system properties declaratively by temporal logic. This work has been
addressed by some researchers in recent years [Suzuki and Lu 89, He and Lee 90, Uchihira
and Honiden 90, Sagoo and Holding 91]. The difference between them is how to combine
a Petri net and temporal logic. Suzuki and Lu [89] defined a new class of Petri nets, called
temporal Petri nets, in which general Petri nets are combined with the propositional LTL.

Formally, a temporal Petri net is defined as the pair:
TN = (PN, /) (2.12)

where PN is a Petri net which is defined by Equation (2.3) and f represents a set of
temporal formulas that describe the temporal behaviour of PN. The formulas f are
described in a language which is based on LTL of Manna and Pnueli [88]; in the temporal
Petri net defined by Suzuki and Lu this language was referred to as Lpy. The syntax for
(propositional) temporal formulas of Lpy over PN defined in [Suzuki and Lu 89] can be

summarised simply as follows:

i) atomic propositions: (p has a token), (¢ is firable), (t fires), where pe P and re T.
ii) If g, h € Lpp, then gah, gvh, g, g—h, Og, Ug, ©g,and gUh € Lpy
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The formal semantics of Lpy are given as follows. Let o be a possible infinite firing
sequence from a marking M. For each i, 0 <i<lal, let B;and y; be the sequences such that
IBsl =1 and o = Byy;. That is, B; is the prefix of o with length i, and 7; is the postfix of o
excluding P;. Let M; be the marking such that M; [Bi> M. For a formula g the validity of g
under pair <M, o>, written <M, o> |= g, is defined as:

<M, 0> = (p has a token) iff p has at least one token at M . (2.13)
<M. 0> |= (tis firable) iff tis firable at M (2.14)
<M, o> |= (t fires) iff o # A (A represents an empty sequence) and r=p; (2.15)
<M, o> |= gah iff <M, 0> |= g and <M, 0> I=h (2.16)
<M, o> |= g iff not <M, o> I= g (2.17)
gVvh and g —h are shorthands for —(—g A—h ) and —gVh respectively

<M, 0> 1=Og iffoo#Aand <M, V1> I=g (2.18)
<M, o> 1= Olg iff <M, > |= g for every 0 < i < lol (2.19)
<M, o> |= Og iff <M, vi> |= g for some 0 < i < loll (2.20)

<M, o> |l=gUhiff
(<M, v> = g for every 0 < i< lal) or
(for some 0 <i < lail, <M, ¥i> |= h and <M, ¥> 1= ¢ forevery 0<j <i) (2.21)

Specially, the places and transitions of a temporal formula in temporal Petri nets can be

described in the following notation:

p = (p has a token)

t ok = (t is firable)

t = (t fires)

—p = (p has no token)

t —ok = (t is not firable)

The work of Suzuki and Lu [89] defines a temporal Petri net (which is given by the pair:
TN = (PN, f)) such that f is interpreted as a restriction on the firing sequences generated
from PN thus only those firing sequences that satisfy f are allowed to occur.

He and Lee [90] integrated the Predicate/Transition (PrT) nets with first order temporal
logic. Only predicates (e.g., the set of places in PrT nets) and individual tokens are
considered in the translated temporal logic system. The temporal logic system, L,
translated from a PrT net, consists of system independent temporal logic axioms and
inference rules, such as the axioms and inference rules developed by Manna and Pnueli
[88], and system dependent axioms and inference rules which are derived from the initial
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marking and firing rules. The system independent temporal logic axioms and inference
rules are independent of any specific PrT system. The system dependent axioms and
inference rules differ from one PrT net to another. For example, the system dependent
axiom and inference rule for the example of a Pr'T net shown in Fig.2.7 are:

System dependent axiom: p;(a) A p1(c) (2.22)

System dependent inference rule:

p1(X) A P1(y) A DoY) A (x < y) = OPa(y) A —p;(X) A P(y) A (x <)) (2.23)

p! t1 p2

Fig.2.7  Afragmentofa Predicate/Transition net

An algorithm was developed for translating PrT nets into temporal logic systems and a
refutation proof technique was proposed to assist in the verification of both safety
(invariance) and liveness (eventuality) properties [He and Lee 90]. A refutation proof of a
formula p in a logical system L is a syntactical derivation of a sequence of formulas Fy, Fy,
.. F such that Fy = —p, F, = false; and F,,, is derived from F; by one of the inference

rules of the system L.

The algorithm developed by He and Lee has been extended to condition/event (C/E) nets by
Sagoo and Holding [91]. The extended algorithm is applied to C/E nets in the following
manner: given a C/E net with initial marking Mo = {p1, P2, - pk}, the algorithm is
used to express Mg as a formula of propositional logic, i.e. p1AP2A......APk and it is
referred to as the system dependent axiom. Each transition in the net is converted into a
system dependent inference rule that defines the firing of the transition in terms of pre-and
post-conditions. For instance an inference rule for transition ¢ has the form U = OU’,
where U contains a formula comprising the conjunction of all the input places in e¢ and the
conjunction of the negation of all the places in (r e - o), and U’ contains a formula which
is symmetric to U. For example, pjAp2A—p3 = O—p1A—P2AP3 is a system dependent

‘nference rule derived from transition ¢ in the fragment of a C/E net shown in Fig.2.8.

Q Or

p3

Fig.2.8 A fragment of a Condition/Event net
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Similar work has also been reported by Queille and Sifakis [82] in which BTL instead of
LTL is considered as the specification language and the atomic proposition in BTL logic
corresponds to a place. BTL is potentially more powerful than LTL since it can express all
the properties LTL can, and more [Emerson and Srinivasan 88] (e.g, it is able to
distinguish the nondeterminism caused by nondeterministic choice). However it has a high
time complexity for its decision procedures (i.e., an algorithm that determines whether a
given formula is valid or not) because of the expressiveness of its basic modalities
[Emerson and Srinivasan 83].

One of common motivations of the work above is to formally specify and verify Petri net
properties with temporal logic. However, the automatic verification problem was not
discussed in these work. To automatically verify the Petri net properties with temporal
logic, the combined temporal Petri nets must be decidable. The decidability problem 18
whether or not there exists a legal firing transition sequence satisfying a given temporal

logic formula on a given Petri net.

A different combination of general Petri nets and linear time propositional temporal logic is
proposed by Uchihira and Honiden [90], in which the atomic proposition in temporal logic
corresponds to transition firing only rather than to tokenised places and enabled transitions
as in [Suzuki and Lu 89, He and Lee 90, Sagoo and Holding 91]. Based on such a
correspondence, Uchihira and Honiden show that their combined temporal Petri nets are
decidable if a given Petri net PN is modified into PN’ by adding some places, transitions,
and arcs to PN such that PN’ is deadlock-free. However, some property about places
cannot be verified. This problem arises because the correspondence between transitions in
Petri nets and atomic propositions in temporal logic does not consider places and thus lacks
the information necessary to distinguish between different states of a system, as modelled -
by a Petri net [He and Lee 90]. Such a correspondence does not seem appropriate for
analysing real-time process-control systems modelled by Petri nets because both events
(transitions) and states (places), especially states, are important to describe the system

behaviour.
2.2.8 Petri Nets in Real-Time Systems

In the past years Petri nets, with their various extensions, have been proved to be valuable
for modelling, analysing, and controlling real-time process-control systems which exhibit
concurrency, synchronisation and co-ordination among their subsystems. For example,
Tyrrell and Holding [86] proposed a method for error detection and recovery in distributed
systems, in which Petri net model was used to identify formally both the state and the state
reachability tree of a distributed system. Leveson and Stolzy [87] proposed a technique
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for using time Petri net without generating the entire Petri net reachability graph for
analysing the safety properties of real-time systems. The idea is to work backwards from
high-risk states to determine if these hazardous states are reachable. Holloway and Krogh
[90] proposed a method for solving forbidden state control problems for a class of
controlled discrete event systems based on an extended Petri nets called controlled Petri
nets (CPN), in which binary control inputs can be applied to exogenous conditions for
enabling transitions in the net. The significance of CPN's is that the control logic i8
separated from the Petri net model of the controlled system by the introduction of external
control places. Cofrancesco et al [91a] proposed an approach to the design of software for
real-time control in which the Petri net is used to describe the control structure and the net is
then translated into executable programs. The use of Petri net formalisms as a framework
to describe a control system is reported by Cofrancesco ef al [91b]. They also describe the
development of a software workbench for control system design. Le Bail et al [91]}
proposed a hybrid Petri net model in which both discrete and continuous behaviours of
systems can be modelled. The hybrid Petri net model overcomes the deficiency of
conventional time and timed Petri nets which can only model discrete event systems. An
excellent survey about Petri nets in manufacturing systems is reported by Silva and Valette
in [89].

The application of the temporal Petri net techniques in real-time process-control systems
has been shown by Sagoo and Holding [90, 91], and application in Flexible Manufacturing
Systems (FMS) is described by Zurawsky and Dillon [91].

With specific references to logic controller design, the use of Petri nets has also increased.
A comparative study between PLC and Petri nets was presented by Silva and Velilla [82].
Various implementation for programmable logic controllers (PLCs) based on Petri nets are
discussed including details of the Petri net definition languages, the internal representation
(data structures) of Petri nets, the interpretation formalism (synchronous versus.
nonsynchronous). Similar work was also reported by Courvoiser et al [83]. The approach
to combining Petri net based PLC and artificial intelligence is investigated by Atabkhche et
al [86] and Sahraoui et al [87].

A similar approach is adopted by Murata et at [86] who proposed an enhanced safe Petri net
model, called control-net or C-net for short, for describing industrial sequence control
specification. The C-net is a Petri net extended with process I/O functions and process
status functions. These extended functions are used to define process interfaces and
process status. A C-netis very similar to the Grafcet except that the communication inaC-
net is explicit while the communication in Grafcet can be implicit (see Chapter 3).

44 Chapter 2



Zhou and DiCesare [89] presented a methodology for the design of Petri net controllers;
this accommodates error recovery while preserving desirable properties of the system.
Wilson and Krogh [90] proposed a rule-based approach to Petri net controller design for
discrete event processes. Ferrarini and Maffezzoni [91] proposed a software development
environment for logic controller design based on Petri nets. Petri net analysis techniques
using p-invariants and z-invariants [Lautenbach 87] are included into the environment as
tools to prove the correctness of the controller (instead of allowing only graphical editing
and simulation). Barker and Song [92] defined an extended Petri net called the
programmable logic controller net (PLCNet) and presented synthesis rules for their PLC,
and discussed the design of simulation tool for PLCs based on PLCNet.

The major characteristics of Petri nets that make them suitable for real-time process-control

systems are:

o Petri nets support explicit representation of causal dependencies and
independeﬁcies.

e Petri nets can be used to model a system at different levels of abstraction, without
changing the language used in the modelling. That is, Petri nets provide a family of
tools for use in many phases of the design process including system modelling,
qualitative verification, performance evaluation and implementation.

o The Petri net provides a natural means to describe formally the parallelism and
synchronisation in engineering environments.

o  Petri nets make the modelling of real-time process-control systems easier because of

a) the correspondence between the concepts of Petri nets and the concepts of
systems such as events, activities, state change;

b) the relatively straightforward graphical representation;

¢) the explicit modelling of states and events.

e  Petri nets provide the ability to check the system for undesirable properties such as
deadlock and boundedness, and to analyse system performance, and to generate

supervisor control code directly.
2.2.9 Comparison Between Petri Nets and Grafcet
2.2.9.1 Similarities Between Petri Nets and Grafcet
Two early work works on Petri nets are particularly interest from the point of view of the
concepts included in Grafcet. Azema et al [76] discussed Petri nets as a tool for describing,

designing and verifying the concurrent systems. Their model consisted of three parts: a
control graph, a data graph and an interpretation. The control graph is based upon an

45 Chapter 2



interpreted Petri net in which each transition is associated with a predicate and an action.
The nodes of the data graph are of different types and represent operators, memory cells,
predicate cells, input/output registers, and input/output lines. Transition cannot be fired if
its associated predicate is "false". If itis "true” then the transition is fired if enabled. The
action is executed each time the transition is fired. Predicates are Boolean conditions and
actions are elementary modifications or transformation functions. As the authors
explained, in order to avoid the association of both the inputs (Boolean conditions) and the
outputs (actions) with transitions it is possible to associate the action with the places during
implementation or simulation. In fact, this idea is very similar to that used later in the
interpreted Petri nets by Queille and Sifakis [82], the controlled Petri nets proposed by
Holloway and Krogh [90], and the principles adopted by Grafcet. Also the verification of
safeness and liveness of Petri nets based on the reachability tree was discussed in [Azema
et al 76). The unique feature of this work is that the control and data graphs were separated
at the abstract level and were closely combined together by the interpretation of the net

structure.

A similar idea is also discussed by Velilla and Silva [88] in which the application software
of a real-time control system is decomposed into two co-operating parts: a Control Part
(CP) and an Operative Part (OP). The control part (CP) is modelled by means of Petri nets
which include synchronisation, concurrency, and control logic of the application software.
The operative part (OP) is composed of a set of sequential procedure associated with the
transitions of the control part net model plus data structures. The sequential procedures
implement predicates and/or actions (data transformation). If a transition is enabled and the
predicate is evaluated to be true, then the transition is fired. The firing of a transition
allows the execution of the associated actions (local PID regulators, etc.). Such a CP-OP
decomposition and the Petri net based implementation provide a safe and flexible design for
application software of real-time control systems. The important thing is that the separation

between the data processing and control synchronisation logic is seen again in this work.

Since Grafcet has been adopted by the IEC as international standards [IEC848 88, IEC 93],
many PLC manufacturers and software producers have chosen it as an input language for
control and proposed implementations on computers or controllers. As the level of
industrial interest and use is growing very fast, many researchers begin to study the Grafcet
either from a theoretical or a practical point of view. Much of their work has been done in
Erance. In 1992, a congress of Grafcet (Grafcet 92/Function Charts for Control Systems,
Theory and Applications, Paris, 25/26, March 1992) was held at Paris and later a special
issue for Grafcet was published by Automatic Control Production Systems in 1993. The
special issue involves many aspects from theory to practice including semantics, times,
validation, verification, and performance evolution.
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Although Grafcet has been adopted widely by industry, it is becoming well known that
Grafcet has some problems regarding to its semantics concerning timing, evolution and
execution [Frachet and Colombari 93, Marce and Le Parc 92]. The problem concerns a
lack of precision and completeness which leads to ambiguity such that the specifier and
user of a Grafcet model may have different understanding of its behaviour and equally valid
interpretations. To tackle the problem of semantical ambiguity in Grafcet, the semantics of
Grafcet was formally defined in [Marce and Le Parc 92] by using a formal synchronous
language SIGNAL [Le Guernic et al 91]; and consequently the tools developed for
SIGNAL can be used to verify Grafcet. In [Frachet and Colombari 93] the semantics of
time in Grafcet is investigated. Based on a mathematical framework called Non-Standard
Analysis, the authors propose a time model for modelling dynamic systems and then apply
this time model to the interpretation of timing aspects of a Grafcet model. Two time scales
are introduced, external and internal. The external time scale is used to characterise the
"evolution speed" of the stimuli that are external to the system under modelling. The
internal time scale is used to characterise the execution of algorithm associated with a step
in Grafcet. The principle of the interpretation proposed by the authors is based on

following two hypotheses:

i) There is a strict simultaneous between the input and the output. That is, the
"causality delay" from input to output is "non-exist" in the external time scale.

ii) An event has a sole time in the external time scale. At any instant, one and only one

of the events can occur.

The authors state that the non-simultaneous event hypothesis does not come from the
consideration of the "interior system" being very fast with respect to the exterior; it is a
property of the exterior itself, running from its own coherence. Regarding the
implementation the authors [Frachet and Colombari 93] suggest the use of a processor in
which the sample period (in the sense of its sample of the occurrence of event) is "ideally
small" with regard to the time interval separating the successive event occurrences. A
similar implementation idea has also been mentioned by Benroniste and Berry [91] in their
synchronous model of real-time system. Also this notion has been stated as a hypothesis
by Marce and Le Parc in [92]. However, in [Andre and Peraldi 93] the hypothesis 1i) is not
considered as a fundamental one, because the authors believe that the non-simultaneous
event is a matter of interpretation which is not directly relevant to the model itself.

In [Aygaline and Denat 93] the validation (qualitative and quantitative) of the functional
Grafcet model and its performance evaluation based on the framework of Petri nets are
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proposed. Qualitative validation is performed using Autonomous Petri nets (i.€., untimed
Petri nets in which firing times are either unknown or not indicated [David and Alla 92J).
By associating time delay with each place, the analytical performance evaluation in the
normal working condition and quantitative validation can be performed based on the
obtained TPTN [Sifakis 80]. Their Petri net model of Grafcet is obtained based on the

following transformation rules:

T ‘
a) ACTION —

Fig.2.9 Transformation from Step-to-Place

Rulel:

Rule2:

b) 1
e — ACTION | —8 d = ACTION
- delay

Fig.2.10  Net marking transformation

That is, places are used to model the steps and the token unavailable time defined in TPTN
is used to model the delay of the action associated with the step. Two constraints are

imposed by the authors in this work:

i) the system must be represented by a single Grafcet.

ii) the Grafcet model must not have reactivative steps.

Here 'reactivative' means that a step will be activated while it is still active. The approach
adopted is similar to the parallel independent research reported in this thesis. The authors
argue that constraint 1) "is a little restrict because it is always possible to establish a single
Grafcet" in which all the activity flags are made graphical explicit. In a communication
from the authors [Aygaline and Denat 94] they illustrate their method by proposing that for
the two co-operating Grafcets with implicit communications (i.e., a transition depends on a
step's state but there is no explicit graphical connection between them) shown in Fig.2.11 1t
is possible to establish a single Grafcet with explicit communications shown in Fig.2.12
(where Ta means an event and X; means the active step flag of stepl, transition T, depends
on external event Tb and active state of stepl, further discussion see Chapter 3).
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Fig.2.11  Grafcet's co-operation by implicit communication

However, detailed examination of this representation reveals several problems. To
illustrate the problem, consider the original Grafcet (Fig.2.11), it can be elaborated by the
addition of an action to stepl. Also, without losing generality, let us assume that, in
Fig.2.11 event T« is associated with the input transition of stepl, event Ty is associated
with the input transition of step3, and the action associated with step1 performs "z := z +1"

and z is initially zero as shown in Fig.2.13.

1 3
— T
Tan- T S Toa-Ta T tanTo
== | _TF—I7
2 4

-5

Fig.2.12  Single Grafcet representation of Fig.2.11

Fig.2.13 Elaboration of Grafcet of co-operating processes (Fig.2.1 1)

Now, consider the following possible input sequences of events and the behaviours of both
Grafcets:

1) Suppose the input sequence is "Tx, Ty, Tb, Ta". According to the semantics of Grafcet,
the value of variable z will be 1 in Fig.2.13 when step2 is active. However, in the
Aygaline and Denat's single Grafcet shown in Fig.2.12, z will have value 2 when step2
is active. Note that Fig.2.13 has no reactivation but Fig.2.12 does for the given input

sequence.
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2) Suppose the event Ta=Tb and the input sequence is "Tx, Ta". For this case, the step2

will become active after event Ta occurs in Fig.2.13, but in the single Grafcet
(Fig.2.12) it is not because Tae—Tb = The—Ta = FALSE, and the transition with
which TaeTb is associated is not enabled since step 3 is not active.

It follows that, in certain circumstance, it is not possible to represent the two co-operated
Grafcets (Fig.2.11) by a single one in which all the implicit communication are made

explicit using the method of Aygaline and Denat.

The reason is that the implicit communication using a step's active flag not only describes
the dependency between a step in one Grafcet and a transitions in another Grafcet but also,
(and perhaps more importantly), implicitly expresses a dynamic priority (i.e., a master-
slave relationship) between two tasks modelled by two Grafcets. This notion is explained
in more detail in Chapter 3. In general, in order to represent the same sequence of states in
both Grafcet and Petri net models, Grafcet must not include reactivating situation because
steps in Grafcet work as "flip-flops" and places in Petri nets work as "counters" [Silva and
Valette 89].

Since Petri nets provide a powerful design notation, their use in Grafcet-based systems is
not restricted to the modelling and analysis of Grafcet structures. For example, the control
of real-time process systems which, due to complexity, are normally decomposed 1nto a
hierarchy of abstraction level such as planning, scheduling, co-ordination of sub-systems,
and local control of each sub-system [Silva and Valette 89]. The last two levels of control,
co-ordination and local control, are investigated by Sayat and Ladet [93] using Petri nets
(for co-ordination) and Grafcet (for local control). They define an extended Petri net called
co-ordination Petri net in which a task is represented by a place named PT; (i is the task
number) whose input and output share the same transition (i.e. they form a self-loop).
Each such transition Tj is associated with a pair {A;, E;}, where A; is the impulse action of
launching the task and E; is the occurrence of the termination of the task (see graph shown
in Fig.2.14).

P1 o P1 P1

PT1 PT1 PT1
T1 {A1, E1} Q‘ T1 {A1, E1} T1 {A1, E1}
P2 P2‘ P2
(a) Task is waiting (b) Task is running (c) Task is over

Fig.2.14 Modelling a task by a co-ordination Petri net
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The state of the task is the state of the token located in place PT,.. If the task is being

executed the token is reserved (represented by a small circle in PT5) and does not participate
in the enabling of the transition (see 2.14(b)). If the token is not reserved, then the task is
waiting. The execution of the task is launched at the moment when the transition 18
enabled, and the end of task is indicated by the occurrence of the termination of the task E;.
There are distinct similarities between co-ordinated Petri nets and Grafcet when local
control is taken into account. The authors present in co-ordination Petri net structures for
typical tasks such as sequential tasks, the synchronisation of two sequences of tasks, and

mutual exclusion between two tasks. To provide a more generic description model, high

level Petri nets [Jensen 81a] are considered.

In co-ordinated Petri nets the execution of a task is launched at the moment when the
transition is enabled. This leads to problems when considering non-deterministic choice
since it is not clear from the semantics of co-ordination Petri nets how only one task can be

Jaunched following a non-deterministic choice.
2.2.9.2 Differences Between Petri Nets and Grafcet

The first important difference between Petri nets and Grafcet lies in the simultaneous firing
rule defined in Grafcet as shown in Fig.2.15 and Fig.2.16. Petri nets can model not only
concurrency but also non-determinism. However, compared to Petri nets, Grafcet lacks of

the ability to model the non-determinism because of its simultaneous firing rule.

Ell_—':_l L—[:—JEI

After simultaneous firing
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After firing
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Before simultaneous firing

Tg@zﬂ

Before firing

Fig.2.15 Difference-1 caused by simultaneous firing
The second important difference concerns reactivation. In Petri nets, a place holds the

tokens and makes them visible and a transition transports the tokens and changes the tokens
distribution in marking. For Petri nets which are not 1-bounded, a place works like a
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counter. Compared to Petri nets, a step in Grafcet works like a flip flop as shown in
Fig.2.17. This difference means that Grafcet cannot benefit from the powerful analysis
technique P-invariant [Lautenbach 87} developed for Petri nets, even though Grafcet was

inspired from Petri nets [Silva and Valette 89]. That is why Aygaline and Denat [

to make assumptions about the reactivati

QGrafcet.
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Fig.2.16  Difference-2 caused by simultaneous firing
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A third important difference between Petri nets and Grafcet.is that in Grafcet

communication between processes may be implicit (see Fig.2.18) while in Petri nets all
communications are explicit. More details of implicit dependency about Grafcet will be
discussed in Chapter 3.

Although Grafcet is different from Peiri nets, there are significant similarities between these
two models. As stated by David and Alla [92], if Grafcet does not include the differences
mentioned above, then it can be treated as an "interpreted” Petri net.

2.3 Design Methodology

2.3.1 Introduction

A method is a guide to using a formal language or technique in the development of
systems, it may be defined in terms of heuristics or a collection of specific techniques. The
problem of complexity in real-time system development is often highlighted by the fact that
formal language developers rarely provide any method with which to utilise their language
[Scholefield 90]. Strutt [89] in a survey of formal 'methods’ (of general applicability)
asserts that this lack of methods is one of the prime reasons for hostility towards formal
techniques (quoted from [Scholefield 90]):

"Most methods are not methods at all, but merely formal languages or notations......
The provision of a method (perhaps by integrating existing structured methods

with formal languages) is essential.”

For example, the emphasis of FSM's was originally on the notation rather than the method.
One of well known software requirement methods for real-time system development, based
on FSM's, is the SREM (Software Requirement Engineering Methodology) [Alford 77,
85]. In SREM, each process is defined as a set of graph models called R-nets which define
paths from input to output interfaces. Each R-net has a single entry, which may be an
interface to the environment, and one or more exits, which are either interfaces to the
environment or terminators. R-nets are composed of subnets, which are similar to R-nets
and can be further decomposed. The limitation of SREM is that nondeterminism cannot be
modelled within SREM. Another popular method, Statecharts [Harel 87], provides an
abstraction mechanism based on FSM's. Statecharts not only solve the concurrency and
modularity problems of FSMs, but also offer extensive prescriptive guidelines. Although
Petri nets and Grafcet have been applied to the developments of real-time process-control
systems, few of the applications support a design method. Most applications support only
drawing, simulation and analysis of Petri nets and Grafcet because of the lack of a design

method. However, recent works have appeared which propose design methods for the
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development of real-time process-control using Petri nets: these include a rule-based
approaches [Wilson and Krogh 90, Etessami and Hura 91] and a hybrid approach (1.e.
combination of top-down and bottom-up approaches) [Zhou and DiCesare 89, 93].

In the hybrid approach proposed by Zhou and DiCesare, a real-world system is modelled at
the highest level of abstraction as a Petri net with single place and a single transition. The
top-down design is accomplished by gradually replacing the place or transition with more
complicated subnets. Each successive step contains increasing detail and guarantees that
desirable system properties of the Petri nets such as freedom from deadlock are preserved.
Top-'down design of Petri nets is also called as "stepwise refinement" [Valette 79, Suzuki
and Murata 83]. Since refinements are often local and are required to have no side-effects,
interaction among subnets is very difficult to handle using such a strategy. Therefore,
bottom-up design is also proposed in [Zhou and DiCesare 89, 93]. The bottom-up design
problem is to design correct interactions among the existing sub-nets (which are themselves
obtained by the top-down design). Both top-down and bottom-up designs are discussed
for the generic resources-sharing control problem in [Zhou and DiCesare 89, 93].

Rule-based methods aim to describe the functional requirements of the real-world system
by a set of rules. The rules are then mapped onto Petri nets and the system properties of
the Petri net are analysed using Petri net theory. If the analysis shows that desired
properties hold in the Petri net model, then they can be inferred in the set of rules.

In fact, the rule-based formalism can be considered as the basis of all the system modelling
techniques involving the Petri net model, because each transition in a Petri net can be
considered as a transition rule with precondition(s) and postcondition(s). The similarities
between the rule and net descriptions, and between the token player of the Petri net and the
inference engine of rule-based system, have been investigated in [Atabakhche er al 86,
Sahraoui et al 87].

A rule-based approach can be considered as a bridge to fill the gap between the informal
world and the formal world and the 'human experts generally find it easy to express
methods for solving problems in their application areas by using a rule formulation'
[Hayes-Roth 85].

The reason that rule-based schemes have been selected and used in real-time process-
control systems is the proven convenience of the notation, and the close relationships
between rule-based scheme and Petri nets [Atabakhche er al 86, Sahraoui et al 87, Willson
and Krogh 90, Etessami and Hura 91], and the great success of Petri nets for representing
concurrency as a graphical language [Rozenberg and Thiagarajan 87].
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2.3.2 Rule-Based Development

The production rule formalism has become a popular method for knowledge representation
in expert systems [Waterman 86]. However, in the last decade, rule-based approaches
have been used also by researchers in real-time process-control systems [Komoda et al 84,
Tashiro et al 85, Pathak and Krogh 89, Wilson and Krogh 90, Etessami and Hura 91],
Programmable Logic Controller (PLC) designs [Barker er al 89, Barker and Song 92], and
information system development and maintenance [Assche et al 88, Loucopoulos and ‘

Champion 88, Loucopoulos and Layzell 89, Poo and Layzell 90].

To provide highly flexible and maintainable control software for discrete event systems, a
rule-based control software development method was developed by researchers of Hitachi
in Japan [Komoda et al 84, Tashiro et al 85]. In rule-based control software development,
the control logic is described by IF-THEN forms, and control actions are automatically
inferred from the controlled system situation using the production system methodology.
Since control logic (as rules) is embedded in control software (as data rather than
procedures), control logic can easily be understood and independently modified. Thus,
when the control system requirements change, the specification description expressed in
rule forms can be easily modified. To reduce the searching time in the inference process, a
Meta-rule, defined as "IF conditions THEN SELECT <rule group name>", is used to
localise the scope of the search without specifying any actions. Although the hierarchical
structure of rules is discussed, method of how to construct a set of rules when the system
is obscure is not given. Additionally, the concurrency and real-time issues are not

discussed.

Pathak and Krogh [89] developed an executable non-procedural concurrent operation
specification language, COSL, for discrete manufacturing system control. The COSL user
can specify the control logic for a discrete manufacturing application in terms of a collection
of operations. The execution of a COSL operation represents a control step required to
achieve the overall control objective. Each operation is defined by specifying a set of
conditions and actions, i.e., by rule-based forms. The specification expressed in COSL
can be automatically transformed into an executable control program. The deficiency of
COSL is that the communication mechanism between the concurrent operations is not
clearly defined. Also verification for the specification specified by COSL is not

investigated.

Rule-based formalism has also been applied in the development of PLC's by Barker et al
[89] in which a rule-based procedure for the automatic generation of code for a PLC was
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proposed. To provide an integrated environment to the development of discrete event

dynamic systems, Barker and Song [92] also proposed a rule-based simulation tool for
PLC high level development based on Petri nets. An extended Petri net called a
programmable logic controller net (PLCNet) is defined by the authors, which forms the
basis of the rule-based simulator. The input to the simulator is in rule-based forms. Any
errors in the rule-based description can be detected by the simulator (using PLCNet
semantics) and corrected before implementation. Although it is very useful to use a
simulation technique to diagnose the design fault, Petri net analysis technique such as net
invariants [Lautenbach 87] could also need to be considered. In this work, the problem of

requirement elicitation using rules is not discussed and no method is described.

Wilson and Krogh [90] proposed a methodology for the development of discrete event

systems. The methodology addresses three issues:

o the specification of the system behaviour using a rule-based formalism,
o the generation of models from specification using Petri nets,
o analysis of the Petri net modelled specification.

Two steps for constructing the rule-based specification are stressed. The first step is to
identify a set of discrete state variables that characterise the operation of the system
components. The second step is to identify the causal relation for state transition rules in
those variables. The basic elements of the specification formalism are the state variables
and the fransition rules. Bach state variable has a set of discrete values. In generating the
Petri net model, each state value in the system specification is mapped into a distinct place,
and state transition rules from the system specifications are mapped into Petri net arcs and
transitions. The reachability method is used to analyse the system behaviour. To
efficiently analyse the behaviour of system subcomponents in isolation from the overall
state behaviour of the system, an algorithm is developed to reduce the reachability graph. It
should be pointed out that the firing rule of Petri nets is changed by the authors as follows:

If a state value is used as a condition on two or more transitions that are

simultaneously enabled, all of the enabled transitions may fire simultaneously.
To support this change, the authors state:
Physically speaking, however, the conditioning of one state variable's

state transition on another's state value should have no effect on other
state variables that also happen to be conditioned on that state value.
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Curiously, in the example used by [Wilson and Krogh 90], the marking which would be

generated using simultaneous firing rule is not reflected in the author's reachability graph.

Also the author's change, of firing rule, which is apparently simple, implicitly introduces a
priority in contention nets. Consider the Petri net shown in Fig.2.19. It can easily be
shown that the priority of transition t; is higher than or equal to the priority of transition t;.
This topic is discussed in Chapter 3. Wilson and Krogh's proposed method is limited
because of the lack of decomposition in the rule-based formalism. Also, although the
reachability graph is useful to analyse the system behaviour, a formal verification logic or
technique may need to be developed because of the deficiency of Petri nets in describing

declarative constraints for systems.

pi p2

p3 p4 ps

Fig.2.19 An Example of Petri nets

A rule-based design methodology for control problems has also been proposed by Etessami
and Hura [91] who use an Abstract Petri Net (APN) which combines the features of timed
and coloured Petri nets. In APN the timing is expressed by associating a delay function
with each place and an activation time function with each transition. According to their
rule-based design methodology, a designer first identifies the activities of the system, then
formalises, by means of set of (behaviour) rules, the conditions under which the identified
activities are affected. Each activity is represented by an APN transition. Additionally, the
designer also needs to formalise a set of transient attributes representing the status of a
system. Transient attributes are represented by means of places and token types of the
APN model. Each behavioural rule is defined as a set of input predicates associated with
each transition, these provide the enabling conditions for the transition in APN.

From the point of view of rule-based formalisms, the rule-based method proposed by
Etessami and Hura [91] is similar to the method proposed by Wilson and Krogh [90],
although APN is more powerful in a descriptive aspect than the Petri net model used in
[Wilson and Krogh 90]. However, it is difficult to model a system at different levels of
detail since the APN is not hierarchical, and decomposition and composition methods are
not discussed.
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In addition to the applications in industrial control and discrete event systems, the rule-
based formalism was also applied to the information system development. To seek a new
approach which is not only applicable to the information system development but also good
at maintaining the representation of the system specification, a rule-based development
environment, called RUBRIC (rule-based representation of information-systems concepts)
is proposed by Assche er al [88], Loucopoulos and Layzell [89]. The aim of the RUBRIC
project is to investigate the rule-based specification of information processing systems.

This approach involves building a knowledge base of business facts, rules, policies, and
decisions which can be used to control application pfogréms. This has the effects that any
change in the business environment directly relates to modifications in the knowledge base.
Rules are classified into two types in RUBRIC named: static and dynamic. A static rule
has the conventional IE-THEN construct. A dynamic rule can be regarded as consisting of
a trigger, which is an expression describing the conditions under which an action part
should be considered for execution. Preconditions, which are expressions, must be true if
an action part is to be executed, given the occurrence of the associated trigger, and an action
part. It becomes clear that dynamic rule has a richer structure than the simple IF-THEN
construct, and that one could distinguish between triggers and preconditions. Here,
preconditions are evaluated only when a trigger has occurred. A trigger causes a dynamic
rule to be considered for firing. Following is an example of a dynamic rule from
[Loucopoulos and Layzell 89], in which the WHEN clause is the trigger; the IF clause is

the pre-condition, and THEN clause is the action.

WHEN end-of-month

IF product <> 'A' or B' or 'C’ AND
quantity of product < reorder-level of product

THEN arise-order (* reorder stock *)

A trigger is actually used to describe a timing point at which some condition acts on the
conventional rule. This indicates that the concept trigger might be valuable for describing a
heavily timing related condition in a real-time process-control systems, especially when the
condition is controlled by the physical system under computer control. This has been
shown by Heninger [80], Faulk and Parnas [88], and David and Alla [92] in which
condition and condition-changing are treated separately.

It is worth pointing out that the rule-based structures proposed in [Wilson and Krogh 90,
Etessami and Hura 91] for real-time process-control systems are static rules. In fact,
Estessami and Hura [91] have already identified the objects described by dynamic rules in
terms of activities, conditions, and transient attributes, but these objects were not
formalised by a unique rule-based formalism. A static rule structure is suitable for
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describing the state-based causal behaviour (i.e. what to do), but it is not suitable to
describe the stimuli (events) which give rise to the state-based causal behaviours (i.e. when
to do) because it fails to distinguish between the state and the stimuli (events).
Distinguishing between "what to do" and "when to do" is important for real-time process
control systems because a real-time process control system is often embedded in, and
forms part of, a physical environment and state transitions are often trigged by the stimuli
(events) coming from environment. A dynamic rule provides the possibility of such a

distinction because:

i) most real-time process-control systems are stimuli (events) driven and stimuli (events)
are usually generated by the physical processes under (computer) control.

i) a dynamic rule structure explicitly distinguishes between states (represented by
preconditions) and stimuli (events) coming from the environment (represented by
triggers).

iii) a dynamic rule structure provides a means of describing the interface between the
behaviour of a controlled physical system and the action performed by the computer

system.
Summary

In this chapter, certain mathematical models of discrete event systems have been examined
and attention has been focused on the notion of states and events. Petri nets and Grafcets
and their variants have been investigated in more depth and the relationships between the
formalisms have been examined. In fact, to some degree, the formalisms express
equivalent ideas. For instance, ESMs and CRSMs are quite similar. Finally, a rule-based
development method was reviewed and it was concluded that for such approaches the
dynamic rule is superior to the static rule for describing real-time systems.
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Chapter 3

Make Implicit Grafcet Communication Explicit

3.1 Introduction

The syntax and the operational semantics of Grafcet were introduced in Chapter 2. This
chapter investigates Grafcet as defined in [[EC848 88, David and Alla 92] in the following
aspects:

1) analysis of the Grafcet model;
ii)  identification of implicit communication in Grafcet;

iii)  methods of removing implicit communication.

The purpose of this chapter is to provide a method to make the implicit communication

explicit in Grafcet such that those possible behaviours can be analysed explicitly.
3.2 Grafcet Model Formal Analysis
3.2.1 Analysis of Evolution Rule

Among all the evaluation rules defined in Grafcet (see 2.2.3 in Chapter 2), the
simultaneously firing rule is extremely important because its application results in a
deterministic behaviour. It is this rule that constrains Grafcet such that it cannot model
non-determinism due to non-deterministic choices (i.e. situations in which two or more
alternative transitions are firable but only one can be fired). The simultaneously firing rule,
which invalidates the notion of non-deterministic choice, 1s often called "interpreted
parallelism" in Grafcet (see Fig.3.1).

E1 E1 El El

1 L Lel L[]

S | 1 I
Before firing After firing

Fig.3.1 Simultaneously firing in Grafcet
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In addition to the simultaneously firing rule, reactivative firing is another peculiar feature of
Grafcet. Reactivative firing means that a step is activated again while it is still active. After
reactivative firing, a step remains active according to the evolution rules defined in Grafcet.
However, by observing the control-flow aspect of Grafcet only (i.e. without looking at the
execution effects of action associated with the active step), it is difficult to determine
whether an active step has been activated twice because the step works like 'flip flop' (see
Fig.3.2).

E1l El

Before firing After firing

Fig.3.2 Reactivative firing in Grafcet

Now let us discuss the roles of steps and transitions in Grafcet. Each transition in Grafg;et
acts as a guard passing "control" from one or more its predecessor steps to one or morq,f its
successor steps. A transition is active in the sense that it has the ability to split one control
flow into multithreading or merge multithreading control flows into one. Compared to the
roles of transitions, steps in Grafcet seem to be "passive” because the control resources
(i.e. tokens) held by them are transported from one to another by transitions. However, in
the case of simultaneous firing, a step is capable of splitting or merging control flow(s) as
well. Let us consider the Grafcet shown in Fig.3.3. At beginning, there are two threads of
control flows. After simultaneous firing, these control flows are merged into one. Note
that each transition has only one preceding step. So the merging is carried out by the
shared step rather than by transitions. Similarly, Fig.3.1 is an example in which a step

splits the control flow under simultaneous firing.

E1 E1 El1 E1

Before firing After firing

Fig.3.3 Anexample of merging flows by a step
3.2.2 Receptivity and Event

Two types of variables are defined in Grafcet: external and internal. An external variable is

a Boolean variable which may either come from the controlled process such as a physical
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process or the outside world such as an operator. An internal variable.is a Boolean variable
relating either to the situation of Grafcet such as the step active flags or to an associated

Grafcet process or function such as a calculation and a counter function.

Receptivity is defined based on concepts of condition and event. A condition is a Boolean
expression of the external and internal variables such as Cy = a + beX, where a and b can
be external or internal variables and X is a step's active flag. Special case is the 'always

true' condition, C = 1.

An event, denoted by Ta or la, represents a rising or falling edge of an external variable (or
of an external variable function) such as E; = Ta and E, = L (a+b), where a and b are

external variables. Special case is the 'always occurrence' event, E =e.

A receptivity can always be considered as an expression EeC consisting of two parts, an
event E and a condition C. For each transition in Grafcet, a receptivity has to be defined.

In Grafcet, an event occupies a point in time. From point of view of time, an event 1s
formally defined as [David and Alla 92, David 93]:

Let a be an external variable such that a = I in the time intervals [11,12), [#3,14), and a = 0 in
the time intervals [fg, t1), [£2, £3) etc., such that 1} <1y <13 <I4. The event Ta occurs at
times 1y, t3 and the event ba occurs at times t,, t4 (as shown in Fig.3.4). Let b be an
external variable and C be a condition (i.e., an expression of Boolean variables based on

it

the logic operator "¢" and "+").
1) T(aeb) is an event which occurs at the same time as Ta each time that b = 1 at the
corresponding point in time, (or vice versa).
2) T(a+b) is an event which occurs at the same time as Ta each time that b =0 at the
corresponding point in time, (01 vice versa).
3) TaeC is an event which occurs at the same time as Ta, each time that C = 1 at the
corresponding point in time.
4) the product of an event E and a condition C, EeC, is an event. If the condition is true
then the event E«C occurs when event E occurs.
5) if E; and E, are two events based on 1) to 4), then
i) EjeE, is an event which occurs when both E; and E; occur simultaneously,
(such as E; = Taec and E; = Tash). When E, and E; are independent, EjeE,
will never occur;

ii) E1+E, is an event which occurs when either E; or E; occurs.
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Fig.3.4 Graphical representation of an event

Representations of typical condition and event are shown in Fig.3.5 (where, at t3 it is

assumed that the events are not independent)..
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Fig.3.5 Graphical representation of condition and event of Grafcet

Following are two hypotheses made in Grafcet:

Hypothesis-1
Two independent external events (or simply events) never occur simultaneously.

Hypothesis-2
Grafcet changes over from one to another stable situation with zero duration.

A situation in Grafcet is said to be stable if no transition can be fired without occurrence of

an event, otherwise it is called as unstable situation.
The following are some properties about events based on the hypotheses and the definition

that symbol T takes priority over the operators "o" and "+" (e.g. Taeb = T(a)eb and Ta+b =
(Ta)+b).
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1 Ta=dd G.1)

(d' is the complement of a, i.e. if a =0 then a’ =/, and if a =] then a’'=0)

2) Taea="Ta, Taea’ =0, laed’ = la, dasa=0 (3.2)
3) TaeTa=Ta, TaeTa =0, Tase =Ta (3.3)
4) If a and b are two independent variables, then
T(aeb) = Taeb + Thea, T(a+b) = Task’ + Thed’ (3.4)
5) If a, b and c are three independent variables, then ‘ ’ .
T(ab)sT(ac) = Tashc ' (3.5)

Property 5) shows that the two events T(ab) and T(ac), which are not independent since ab
and ac depend on the same variable a, can occur simultaneously when a changes from 0to

1, if b and ¢ have the value / at this time.
3.2.3 Analysis of Implicit Dependency

In Grafcet, communication between different activities associated with steps can be
described implicitly via the receptivity associated with each transition. Specifically, the
step's active state can be inspected by a transition which wishes to fire. In the process of
inspection, the step's active state is checked but not changed by the transition. For
example, in Fig.3.6(a) the receptivity R = X0 on the transition between step40 and step50
means that the active state of step20 is inspected by the transition. If step20 is active, then
the transition may fire (and the active state of step20 is unaffected by the firing). Inspection
implicitly describes a causal order between steps. However, the implicit nature of the
dependency makes it difficult to distinguish whether steps occur in a particular intended
order. For example, in Fig.3.6(a), step occurrence sequence o=[1011401;{20i150];[30],
where "lI" stands for parallel and ";" stands for sequential, is actually an unfeasible state
sequence for this model due to implicit dependency (because whenever the system 1is in
step40, condition R = X0 requires step20 to be in the active state for the transition between
step40 and step50 to fire). Similarly, in Fig.3.6(b), transition (6) will never fire since
step3 has already become inactive when transition (6) is enabled.

Clearly, implicit dependency should be avoided in Grafcet if possible. For example, the
Grafcet shown in Fig.3.7(b) converts the implicit dependency shown in Fig.3.7(a) into
explicit one [IEC848 88 pp.35], where (a) is functional equivalent to (b). Two Grafcets
are equivalent if for all input sequences, possible according to the specifications, they
produce the same output sequence (i.e., the same actions/state sequences) [David and Alla
92]. If a Grafcet contains implicit dependency, it is desirable to make this kind of
dependency explicit to facilitate analysis of the system behaviour.
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Fig.3.6 Grafcets including implicit dependency
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(a) Grafcet with implicit dependency  (b) Preferred Grafcet
Fig.3.7 Suggested and not suggested Grafcets

In fact, the "inspection mechanism" effectively describes the co-operation between two
processes in which one is the master and the other is a slave, where the master is not
obliged to consider the slave but the slave's behaviour depends on the master and has no
effect on it. Although the inspection mechanism 1s very powerful and useful, unfortunately
there is no graphical means of describing it explicitly in Grafcet (see page 49). Without
considering context, the "inspection mechanism” expresses a test of the active state of a
step, say s. It can be intuitively substituted by a "self-loop" to a dummy step .s” if it is
guaranteed that s” is active iff (if and only if) step s is active, (where the dummy step has no
action associated with it). Alternatively it may recast as a zero test of the active state of step
s’ if it is guaranteed that s” is active iff step s is inactive.

This analysis indicates that the implicit dependency of a step's active state could be
represented explicitly by introducing some extra step or by the equivalent of a Petri net
inhibitor arc [Peterson 81]. However, this research has shown that it is extremely difficult
to make the implicit dependency explicit in a fully functionally-equivalent manner without
enforcing restrictions on the steps or transitions involved in the implicit dependency. The
reason is that the dynamic behaviours arising from combinations of simultaneous firing and

reactivation involving implicit dependency can be very complex.

65 Chapter 3



To make a feasible discussion, the following assumption 18 made: that no reactivation ex1sts
for the steps and transitions involving the implicit dependency in Grafcet. The following
discussion examines the inhibitor arc approach and the "self-loop" approach based on this

assumption.

Consider the simple case of two transitions triggered by the independent events, as shown
in Fig.3.8(a).

Ta ThbeX13

(a) (b) (©)
Fig.3.8 Grafcet and inhibitor arc Grafcet - 1

The dynamic behaviour of such a system can be described by following traces:

Ta
13] — [14
[13] - [14] "

NN T_[13, 30] ——— [14, 30]

[29] - - - - - T 113, 29] /Ta
\ [14, 29]

Fig.3.9 Traces of Fig.3.8(a)

A Grafcet without the implicit dependency can be formed using the "self-loop" approach as

shown in Fig.3.8(b). Fig.3.8(b) is functionally equivalent to Fig.3.8(a) except for the
internal structure control state S13” which has no external effect. The dynamic behaviour

of Fig.3.8(b) can be described by the following traces:

[13, 13’]___Ti.__ [14)

~ ~ /Tb
[20] - - - - - = [13, 13", 29] &
[14, 29]

Fig.3.10 Traces of Fig.3.8(b)

T
[13, 13, 30] ———— [14, 30]
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However, limitations of this approach arise when two transitions are triggered by the same
event. Consider for example the case of two transitions depending on the same event with
an implicit state dependency as shown in Fig3.11(a).

Ta Ta:X13 [of
& T T
) s I
[
(a) (b) (c) (d)

Fig.3.11  Grafcet and inhibitor arc Grafcet - 2

The behaviour of this system shown in Fig3.11(a) can be described by the traces:

[13) — 2 — [14]

~

29) - - - - [13,29) —°—[14,30]
Fig.3.12 Traces of Fig.3.11(a)

If this model is translated into an explicit communication model using the "self-loop"
technique, as shown in Fig3.11(b), then a different outcome occurs. The behaviour of
model Fig.3.11(b) is described by the traces:

1

[13, 13"] —2— [14]

~ 0
[29] ===~ - [13,13',29] ——— (13, 14, 30]
Fig.3.13 Traces of Fig.3.11(b)

In the lower part of the trace diagram, Fig.3.13, following the simultaneous firing of these
transitions whose receptivity depends on Ta, state S13 is still active which is inconsistent
with step S13 being inactive. Thus, the post-firing behaviour of the model of Fig.3.11(b)
differs from the behaviour of the model of Fig3.11(a).

This problem can be overcome by modelling the system using an "inhibitor" arc approach

as shown in Fig.3.8(c) and Fig.3.11(c). The behaviour of the inhibitor arc model shown
in Fig.3.8(c) is defined by the traces:
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' 0
[13] - - - - [13) ———— (13" 14 Ta
. } [13, 30] [13’, 14, 30]
[29] = === == = = - *[13,29] T
[13’, 14, 29]

Fig.3.14 Traces of Fig.3.8(c)

Similarly, the behaviour of the inhibitor arc model as shown in Fig.3.11(c) is defined by

the traces:

T
[13]- - - - [13] —— [13', 14]
s Ta
[29] == === === == [13,29] — [13/, 14,30]
Fig.3.15 Traces of Fig.3.11(c)

An alternative inhibitor arc structure for Fig.3.11(c) is shown in Fig.3.11(d). This model
has the same behaviour as the original model (Fig.3.11(a)) and avoids the need for a
control state c.f. Fig.3.11(c). The behaviour of the inhibitor arc model Fig.3.11(d) is
defined by the following traces which are exactly the same as the traces of Fig.3.11(a)
shown in Fig.3.12.

[13] —-E‘—— [14]

~

7
[29] = - - - - - [13,29] ——— [14, 30]
Fig.3.16  Traces of Fig.3.11(d)

Since the inhibitor arc models (Fig.3.11(c) and Fig.3.11(d)) avoid the inconsistencies of
the self-loop model Fig.3.11(b), the inhibitor arc approach is used throughout this chapter.

In the following, Grafcet will be extended by introducing the inhibitor arc into it. Then an
algorithm, to transform a Grafcet with implicit dependency into a functionally equivalent
inhibitor arc Grafcet in which all the implicit step's state dependencies are described
explicitly (or visually), will be presented.

3.3 Inhibitor Arc Grafcet — IAGrafcet

In the following the notion of inhibitor arc Grafcet will be introduced formally by forming
analogies with inhibitor arc Petri nets which were introduced in Chapter 2. In an inhibitor
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arc Petri nets, the set of inhibitor arcs, say B, can be considered as a relation which is
defined as B < PxT, where P represents the set of places and T represents the set of
iransitions of Petri nets. As discussed earlier, each inhibitor arc is represented by a directed
arc which connects a place and a transition and ends with a small circle. If place p is an

inhibitor place of a transition ¢ then that transition # is only enabled if place p contains zero

tokens.

Grafcet can be extended by introducing the inhibitor arc in a similar way. The extended
Grafcet will be called inhibitor arc Grafcet ot IAGrafcet. The inhibitor arc in extended
IAGrafcet has a similar meaning to that defined in inhibitor arc Petri nets and the proposed
notation and firing rule is shown in Fig.3.17. An inhibitor arc from step s to transition f

means that transition ¢ cannot be enabled when step s is active.

| 1 | | |
1 1
(] (] ®
| | |
—— =O 2
[ RI - Rl Rl
3 3 3
(]
|
Not enabled Enabled After firing

Fig3.17 Inhibitor arc Grafcet
3.4 Eliminating Implicit Dependency Using Inhibitor Arcs

Suppose that the state of step s is implicitly used in receptivity R which is associated with
transition 7 (see Fig.3.18(a)). Let IIT(s)/IOT(s) represent the set of Immediate Input
Transitions/Immediate Output Transitions of s and 11S(£)/10S(¢t) represent the set of
Immediate Input Steps/Immediate Output Steps of ¢ (see Fig.3.18(a)). We assume that s 18
not self-looped, otherwise we can easily introduce a transition and a step to change the self-

loop into a loop containing two transitions and two steps.

:@ (a)

Fig.3.18 A Grafcet and its transformed inhibitor arc Grafcet
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The transformation to eliminate the implicit state dependency with the help of inhibitor arc

can be done by the following steps:

Algorithm1
For each transition ¢ with an implicit dependency on step s:

Stepl:
Step2:

Step3:
Step4:

Step5:
Stepb6:

introducing a dummy step s’

define s as the input step for all the transitions belonging to IIT(s) and connect s’
with each of them by an normal arc. .

define 5" as the output step for all the transitions belonging to IOT(s) and connect
s” with each of them by an normal arc.

introduce an inhibitor arc which leaves s’ and reaches to ¢, i.e. put s” into IIS(z).
if s does not belong to the initial state, then put s” into the initial state.

delete the state of step s from receptivity R.

The dummy step s” has the following characteristic (see the proof below):

s’ is active iff step s is inactive and s’ is inactive iff s is active.

By following the steps defined above, all the implicit usage of step's active flags in

receptivities of Grafcet model can be made explicit with inhibitor arcs and dummy steps as
shown in Fig.3.18(b).

Theorem3.1
If G is a Grafcet including implicit dependency and G’ is the transformed IAGrafcet

derived using the Algorithm1, then G and G’ are functional equivalent.

The correctness of this algorithm can be shown by proving that the active state of s is still

the necessary condition for ¢ to be enabled in G’, and the inactive state of s is still the

sufficient condition for ¢ to be disabled in G.

Lemma

By definition of inhibitor arc from s’ to tin G, we have

tis enabled = s’ is inactive and s’ is active = ¢ 1s disabled

Proof of Theorem3.1:
If we can prove that s and s” are not only mutual exclusive but also complementary,

then based on the deductive inference, we can derive that:

and

tis enabled = &’ is inactive < s is active (1)

s is inactive < s is active = ¢t is disabled 2)
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From Step2 of the Algorithml, we have

Vi'e IIT(s),
§ € TIS(H)A<s’,t'> e NAAs' ¢ 10S(1)Asg IIS(1)Ase 10S(¥)A<t s> € NA (3)

where each arc is denoted as a pair <s, t > (s —step, t — transition) and NA is the set of
all normal arcs. Equation (3) means that s will be changed from active into inactive

whenever s is changed from inactive into active by firing e IIT(s). That s,
s is active = s’ is inactive 4)
Symmetrically, from Step3 of the Algorithm1, we have

Vi’e I0T(s)
e I0S(")n<t” s’ >e NAAs" & TS(")Ase IOS(t")Ase S A<s,i”> € NA (5)

Equation (5) means that s will be changed from active into inactive whenever s is changed

from inactive into active by firing " € I0T(s). Thatis,
s’ is active = s is inactive (6)
Based on (3) and (5),

vt elIT(s) and V"€ I0T(s)
s'eTIS(t) A <s',f'>eNA A s'eI0S(t") A <t”,s"> eNA (7)

’” ’

Equation (7) means L={7',s,t",s"} 1s a loop. By examining Step5 since only one step in L
is initialised, results (3), (5) and (7) yield

s’ is inactive = s is active

and sisinactive = s is active (8)

(4), (6), (8) show that mutual exclusion and complementation between s and s” are

guaranteed.
3.5 Simultaneous Firing Rule Analysis

The inhibitor arc can be used not only to eliminate implicit dependency, but also to
eliminate simultaneous firing for a class of Grafcet. That is, for a special class of Grafcet,
the simultaneous firing rule is not a fundamental restriction in inhibitor arc Grafcet. This
section examines how this class of Grafcet can be transformed into a functional equivalent

inhibitor arc Grafcet in which only one transition can be fired at any instant.
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Consider the class of Grafcet which satisfies the following requirement. any receptivity
associated with transition contains only a basic event such as ¢, Tx or 1x, where e is the

always occurrence event and x is an external variable.

In the specified class of Grafcet, simultaneous firing is denoted by transitions triggered by
the same event. The problem is to show how such transitions can be transformed 1nto a
functionally equivalent set of transitions in which any two of them are mutually exclusive.

Before giving the algorithm, consider the following example.

Example:  Let T4 be the event associated with transitions 71 and f, as shown in
Fig.3.19(a). Since f; and #p are triggered by the same event, they may be fired
simultaneously when a changes from 0 to I if they are both enabled. The problem is to
transform the Grafcet of Fig.3.19(a) into a functionally equivalently inhibitor arc Grafcet in
which all the transitions are mutually exclusive, such as that shown in Fig.3.19(b).

i
NopE—

[x._.._Ta [2____Ta o é ; : =§ . —
L T R P .
R

3 4

a) Ordinary Grafcet b) Inhibitor arc Grafcet
Fig.3.19 Grafcet and its equivalent transformed inhibitor arc Grafcet

The basic idea is quite straightforward. Suppose there are k transitions triggered by the
same event. The worst case is that all k transitions are enabled and could be fired
simultaneously. By the functionality of inhibitor arc, we can simply use 2™-1 transitions,
where m is the total number of input steps of the k transitions, to substitute these k
transitions and make the 20-1 transitions mutually exclusive based on mutually exclusive

binary code (see Fig3.19).

72 Chapter 3




AlgorithmZ

Stepl:

Step2:

Step3:

Step4:
Step5:

Step6:

Let T = {112, ... i} be the set of transitions triggered by event Ta.
Let IS and OS be the sets of Input Steps/Output Steps of all k transitions,
where IS = UIIS(%) and OS = UIOS(#) (i=1 to k), and let NIA be the set of
Normal Input Arcs of each transition denoted by NIA(#) = {<s, > s e IIS(n}.
where s is connected with 7 by a normal arc.
Define 2™-1 transitions such that each one has m input Steps, where m = #IS.
Let us consider the m input steps as m ordinal binary bits such that the active state
of each input corresponds to a "1" bit and the inactive state corresponds to a “0"
bit. Let each of the 2m-1 new transitions correspond to exact one binary code
from I to 2m-1. Generate 2m-1 mutually exclusive transitions based on the
following criteria:

If the bit in the binary code associated with transition is "1", then

connect the corresponding input step (identified by its ordinal bit)

and the transition using a normal arc, otherwise using an inhibitor arc.
For each new transition 7 and each transition t; € T, if the steps in IIS(#;) are all
connected with ¢ using normal arcs, i.e. NIA(t) N NIA(f) = NIA(%) =1 to k),
then define the steps in IOS(#;) as the output steps of ¢.
Associate R = Ta with each new transition.
For each new transition ¢, if # has no output steps, then delete ¢ and all the arcs
connected with it.
For each new transition ¢ and each transition € T,
if NIA(%) N NIA() # @ A NIA®H) 0 NIA(?) # NIA(%)
then for each fe NIA(#) N NIA(Y), where f = <s, >

1) delete f;
ii) change R associated with ¢’ as ReX.

Fig.3.20 shows how the Algorithm2 works by an example. Stepl is illustrated by
Fig.3.20(a). Step2 to Step4 are illustrated by Fig.3.20(b). Step5 and Step6 are illustrated
by Fig.3.20(c). Note that Fig.3.20(c) can be further transformed using Algorithml

presented in this chapter in order to eliminate the implicit dependency.

T = {t1, t2}
ﬁlj IS = {s1, 82, 83}
OS = {s4, 5}

ti—— Ta P IIS(t) = {s1}

E;] T0S(t) = {s4}

1IS(t2) = {s2, 83}
(a) Two transitions are triggered by the same event

g

10S(t2) = {ss}
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(b)  Only one transition can be fired at any instant
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(c) Functional equivalent inhibitor arc Grafcet
Fig.3.20  Graphical illustration of Algorithm?2

The behaviours of the Grafcet of Fig.3.20(a) and Fig.3.20(c) are represented by the

following traces:

Ta/t: I 4’
INSILLES e (L2 -3 — 2 [2,-3,4] = 4]
\\\ T~ Ta/ Yo T~ < Tajte
L g N 2e 310 12 3. 4] e [2, 4]
SN i :,\’
21 N XS
\\\\ \ \'[1 3] Ta/lts 3 4 ! (YRR NN Ta/ts
S \‘ 5 [ s ] : \\\\ \“’[l, 3]@[1, ﬁ2, 3]——-———[ﬂ2, 3, 4]@)[3’4]
2 Tl LT 1
N 1 ” \ \ .
312 5N, 2, 312 5y s DN, 2,3 14,5
\\\\\ Ta/tz I RN \‘ Ta/ts
2, 3] (51 ~o2,3] e =1, 2,3) [—1, 5] &> [5]

(a) Behaviour of Fig.3.20(a) (b) Behaviour of Fig.3.20(c)
Fig.3.21  Behaviour comparison of G and G/ ?

From the comparison shown in Fig.3.21, it can be seen that G and G’ are functionally

equivalent, and not more than one transition will be fired simultaneously in G’. For the

implicit dependencies introduced by Algorithm?2 they can be eliminated using Algorithm1.
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Summary

This chapter has presented Grafcet and its analysis. To make the implicit dependency in
Grafcet models explicit, Grafcet has been extended using inhibitor arcs. Note that all the
hypotheses and firing rules of Grafcet are still applicable in the inhibitor arc Grafcet except
the enabling rules. A method of removing the implicit dependency based on inhibitor arc
has been presented. The advantage of inhibitor arc Grafcet is that it allows one to describe
explicitly the co-operation between two processes, where one is master and the other 18
slave, i.e., inhibitor arc provides the means to describe the (dynamic) priority. Finally, the
power of inhibitor arc is illustrated by showing that for a class of Grafcets the simultaneous

firing rule is not a fundamental restriction.
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Chapter 4 Sequential Function Chart (SFC) Analysis

4.1 Introduction

Sequential Function Chart (SFC) is a graphical representation for specifying the function
and behaviour of the discrete-event part of a control system. SFC, defined in international
standard TEC1131 [IEC 93], has gained widespread acceptance amongst manufacturers and
has been implemented as the software front end for many control system products, such as
programmable logic controllers (PLC's) produced by C.J. International, Eurilor, and
Telemecanique in France, and Eurotherm Controls in U.K. Since SFC is often used in the
design of synchronisation logic and control logic for multiple independent processes in
applications which have implications for safety, an ability to analyse and to reason about
SEC designs is a necessary pre-requisite for safety-critical system design. In this chapter,
IEC standard SEC is introduced and the SFC model is analysed in detail. Secondly, the
evolution rules of SFC are investigated. It is shown that SFC semantics are ambiguous
and a revised definition based on a set of formal notations is proposed. Finally, the
possibility of modelling and analysing SFC by Petri nets is discussed. To establish a
framework for the analysis, an extended timed Petri net model and the transformation
method from SEC to the extended model are defined; this provides the basis for the formal
analysis and verification of SFC presented in Chapter 5.

4.2 SFC
4.2.1 SFC Model and Analysis Assumption

SEC is a semi-formal graphical notation for modelling the operation of a control system.
The SFC model is derived from Grafcet and can be used to describe the system control
flows and the instigation of actions in the system. For example, an SFC model will define
what should be happening at a particular stage in a process and what assertions (or
conditions) must be met before progressing to the next stage in the process. As discussed
in Chapter 2, SFC has the same syntax as Grafcet which partitions the control system into
steps and transitions interconnected by directed links, and SFC has the same evolution
rules as those defined for Grafcet, except for the conflict situation in which a step is shared
by more than one transition.
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SFC is defined more from the consideration of the "interior system" (i.e., from
1mplementati0n point of view) rather than from respect to the nexterior” (i.e., from
description point of view). However, SFC is not a complete programming language
although it is defined in IEC1131 as a language. In PLC applications, SFC has to be used
in conjunction with a programming language such as ST (Structured Text) or LD (Ladder
Diagrams) [IEC 93] because there is no notation in SFC which can be used to describe

conditions or actions.

The use of a programming language to describe the conditions and actions with SEC
provides a freedom of expression which is not necessarily consistent with a formal or
deterministic approach. If restrictions are not imposed on the composition of such
conditions and actions, then problems may arise in the analysis of the SFC concurrent
behaviour due to low-level implicit communication in SFC which may have been
introduced by unstructured programming. The reason is that the data flow (i.e., the
relationship between the definition and usage of variables) expressed by a programming
language has important effect on system execution behaviour but may not necessarily
follow the explicit SFC control flow model. The lack of consistency between the explicit
control flow expressed by SFC and the implicit data flow expressed by programming
languages may make it difficult to analyse a design due to various possible behaviours
caused by the implicit data flow dependency. For example, in Fig.4.1(a) if the condition ¢
associated with transition T involves the result generated by executing action a associated
with step50, where c and a are described by a programming notation such as ST, then the
state sequence (Or system execution behaviour) derived from SFC model [10;40;20;50;30]
is actually infeasible because it is impossible for step20 to be active before step50 according
to the data flow dependency. However, such an infeasible state sequence is difficult to
"spot” without both analysing the SFEC model and performing a data flow analysis of the
low-level (ST) program. '

Fig.4.1  Dataflow dependency of condition in SFC
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To overcome the above problem, we may either consider the semantics of the programming
Janguage associated with SFC and its use to express the conditions and actions with SFC n
our analysis. Alternatively, we can make an assumption or place a restriction on the
application of the language in SFC in order to simplify the analysis. Considering a
particular language will involve program analysis rather than system design analysis at the
abstract SFC level, and 1s considered beyond of the scope of this thesis. About program
analysis, the readers are referred to [Waters 82, Weiser 84, Jiang et al 91]. Therefore, t0
concentrate on the synthesis of system design, this thesis adopts the approach of imposing
restrictions on the description of conditions and actions as implemented in the programming

1anguage. The following is the assumption made about conditions and actions:

Assumption:

All the data flow dependencies involving conditions follow the explicit control

flow expressed by SFC.

In another words, the values of variables appearing in a condition have to be defined at
some predecessor step by executing action or are controlled by the environment (i.e., are
controlled by an operator, operating system, or a physical system). A graphical

representation of the assumption is shown in Fig.4.1(b).

This assumption implies that the condition associated with a transition must eventually
become true after the transition is enabled. Also this assumption rules out the implicit
dependency between a condition and the active state of a step. However, the latter can

actually be lifted if inhibitor arc technique are considered as discussed in Chapter 3.
4.2.2 Evolution Rule Analysis

One important feature of SFC evolution rules is that SFC deals with the conflict situation
differently from Grafcet. In SFC all conditions associated with transitions which share a
common input step are forced to be mutually exclusive; otherwise if more than one
condition becomes true simultaneously it is treated as an error (see Fig.4.2(a) and 4.2(b)).

This feature means that non-deterministic choice cannot be modelled by SFC.

(a) Allowable Grafcet construct (b) Ilegal SFC construct
Fig.4.2  Difference between Grafcet and SFC
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SEC does not define clearly how to cope with reactivation (i.e., a step is active and its
associated action is being executed when it is reactivated Fig.4.3(a)) and simultaneous
reactivation (i.e., a step may be simultaneously activated by two input transitions
Fig.4.3(b)). Although these conditions are unlikely to occur, the existence of the

conditions constitutes a potential source of error.

(a) (b)

Fig.4.3  Reactivation and simultaneous reactivation

Specifically, these undefined situations cause problems because different SEC
implementations based on IEC1131 may have different behaviour. Thus consistency
between manufacturing products conforming with IEC1131 standard SFC is not
guaranteed. Obviously this is not desirable. SFC design should always generate the same
Jogical behaviour on any product which supports IEC1131 standard SFC as long as the
executing speed is not considered. The above analysis indicates that a unified evolution

system should be defined precisely.

Before presenting a formal definition of a unified set of evolution rules for SFC, the

chapter analyses SFC to identify precisely the various areas of concern.
" 4.2.3 Step and Action

In SEC a step is either active or inactive at any given moment. A step is said to be in
"active state" after its predecessor transition is fired and before its immediate successor
transition is fired, otherwise it is said to be in its "inactive state". The duration of each step
is determined by the firing of the transitions between which the step is situated. From an
implementation point of view, "active” can be described logically as "1" with "inactive"
described by logic value "0". However this definition is incomplete because it gives no
information concerning the action execution and it does not show the correspondence
between action duration and step duration, i.e. there is not a clear distinction between the

evolution system of SFC and its action 's execution system.

Each action has two external states: running and stop. Running means that an action is
being performed and stop means that the action is not being performed (Fig.4.4). In this
thesis it is assumed that each action has a fixed duration associated with its execution.
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action finishing

action starting

Fig.4.4 State diagram of action

Often, the duration of an action is supposed to be equal to the length of the period during
which the corresponding step is active, but the actual correspondence is not always like
this. The duration of an action can be different from the duration of the step with which the
action is associated. This is particular true when a condition associated with a transition
has to wait for some information coming in from the environment after the action associated
with the transition's preceding step has been performed. Consider the two structures
shown in Fig.4.5. Let conditions ¢} and ¢y depend on the results generated by executing
action "A" and condition ¢, depend on the information coming in from the environment.
Then the "equivalence" between the duration of action and the duration of step holds for
Fig.4.5(a) only. It does not hold for Fig.4.5(b) because there may be a time delay between
the time point at which action "B" finishes its execution and the time point at which the
information comes in from the environment. The different correspondence between the
duration of a step's active state and the duration of an action's execution will become more

obvious when action qualifiers (see below) defined for SFC are considered.

Xlo ACt-iOn "An XZO Actjon "B"
——Ti(a) —1_Ti(er) Ti(c2)
(a) (b)

Fig.4.5 Correspondence between Step and action
4.2.4 Action Qualifiers

SFEC defines a set of qualifiers which can be used to describe or constrain the timing and
duration of actions. The basic qualifiers defined in IEC1131 are shown in Table 4.1. By
associating one or a combination of these qualifiers with each action more precise timing
constraints can be defined to model real time tasks in a control system. The concept of
associating qualifiers with action is, in principal, very powerful and proper combinations of

them can describe a real-time task very well.
Unfortunately, the way in which the qualifiers have been defined gives rise to ambiguity
which arises in the D-qualifier, see Fig.4.6(a). It may also lead to a mismatch between step

state and action execution. For example, based on the definitions of the qualifiers, a
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system can be in a situation in which a step has become inactive but its associated action 18
still being executing (as in the qualifier S shown in Fig.4.6(b)) or is scheduled to be
executed in some time future (as in the SD qualifier). Although this kind of mismatch
petween the evolution of SFC and the execution of action is allowed according to IEC1131,
it is undesirable because the set of current active steps is inadequate to reflect the system
real situation. These problems have generated a lot of queries world-wide requesting
clarification from the IEC1131 working group [Lewis 92]. For example, it is not clear n
[EC1131 which qualifier (P or N) should be used to execute the D qualified action after the
specified delay elapses. Also, it is not clear whether a transition should be fired when its
associated condition becomes true but the action associated with the transition's preceding
step is still being delayed. Similar problems also arise in L qualified actions.

Istep X—{ Q| action "A"

No.| Qualifier Explanation (see figure on the right) T o

Non-stored—A is started when X is activated and will keep executing continuously until

1 N ¢ becomes true. A will be executed one final time after ¢ becomes true.

Set (stored)—A is started when X is activated and will keep executing continuously even
2 S after ¢ becomes true and X is deactivated. A is terminated by the R qualifer
3 R Non-stored— A started by the S qualifier will be terminated when X is activated and A

will be executed one final time.

time Limited — A is forced to be executed and finished within a specified time limit
4 L after X is activated.
5 D time Delayed — A is delayed a specified time to start its execution after X is activated.
6 P Pulse — A is started when X is activated and will be executed once only.

7 SD Stored and time Delayed — concatenation of qualifiers Sand D.

8 | DS |Delayed and Stored — concatenation of qualifiers D and S.

9 SL Stored and time Limited — concatenation of qualifiers SandL.

Table 4.1 Action Qualifiers defined in SFC

l
, X X l l
Aol T e sl
t(c) e ; o I
? — _t(cy) o
| A
« 55—
(a) ®
Fig.4.6  Ambiguity and mismatch of qualifiers in SFC

To avoid mismatch between the evolution and execution of SFC, many PLC manufactures
have implemented only a reduced set of qualifiers. A survey of several PLC software

systems shows that the qualifiers {N, P} are supported widely. In industry, N qualified
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action is often called continuous action and P qualified action is often called oneshot action.
Although {N, P} are only a reduced set of the SFC qualifiers defined in IEC1131, PLC
manufactures claim that they have found this subset is adequate for a lot of control

strategies and applications because the functionalities of many qualifiers can be indirectly
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implemented using programming features and qualifiers N and P.
Xi
xXi S| A"
1 t(c1)
t(c2) Xj =
——1(c3) ©
(a) Graphical representation of qualifiers (S, R)
Xi N| "A"
t(ct)
] l
° Xl, N nAu
t(c2)
Xjp— P | "empty”
t(c3)
(b) Graphical representation of S and R in qualifiers (N, P)
Fig.4.7  Relationship between qualifiers (S, R) and qualifiers (N, P)
l Xi Xi
XifH B} "A" C [% C
BN one more Lime "A"
t(c) " »@i
I X 55 - 55 e
(@) D representation (b) C occurs after 5 secs. (c) C occurs before 5 secs.
l .
Xild P[ "empry| X A — Xi—%,
c c —
~— t(Xi1.T=5s A—¢) +— t(©) Xia < -
Xid N "A" ot i2
A o 3 A
1 w0 A BB A"
A ~ | Note: Xi. Xj S W
Xj is the activd _5 55— 5 55
time of Xi1 ’ :

(d) Graphical representation of D in qualifiers (N, P)
Fig.4.8  Relationship between qualifier D and qualifiers (N, P)
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(2) L representation
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Note: X1.T is the active time of
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(d) Graphical representation of L in qualifiers (N, P)
Fig.4.9  Relationship between qualifier L and qualifiers (N, P)

X
X "A' one mmore time
- N "AH &@m

t(c)

Fig.4.10 (a) N representation

Xl P nAn

— t(©) L t'(=0)
X2 P| A"

(b) Graphical representation of N in qualifier P
Fig.4.10 Relationship between qualifier N and qualifier P

In this research, it has been found that all the qualifiers can be transformed into the
combination of N and P. Fig.4.7 shows how the functionalities of qualifiers S and R can
be implemented using qualifiers N and P; Fig.4.7 also lifts the mismatch between the
evolution of SFC and the execution of action caused by S qualifier. The D qualifier with
the supposed interpretations that it terminates as N can be implemented using N and P as
shown in Fig.4.8. Similarly, Fig.4.9 shows that if the L qualifier is interpreted as
terminating as N, then L can be implemented using N and P. Obviously, qualifiers SD,
DS, and SL can be implemented using individual qualifier {S, D, L} because they are
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concatenation of these individual qualifiers. In this research, it is also found that the
functionality of qualifier N can also be implemented using P (see Fig.4.10).

Since all qualifiers can be replaced by a logical equivalent expression that uses the P
qualifier only, qualifier P can be considered as a minimum set for all qualifiers defined in
{EC1131. That means, it is sufficient to consider qualifier P only in SFC verification rather
than all qualifiers. From this point onwards, this thesis will consider the set of all
qualifiers as being P. Qualifier P has a nice property for control system: if all the actions
are qualified by P then the system situation at any moment can be explicitly defined by the

set of current active steps.
4.2.5 Representation of State

To refine and analyse the execution system of SEC, let the active state of a step be further
divided into two sub-states: execution and completion. Execution means that the step isin
the active state and the action is being performed (executed), but the step's active state is
unavailable to enable its successor transition. Completion means that the step is in the
active state, but the action has completed its execution and the step's active state is available
{0 enable its successor transition. The various phases of the state of a step are illustrated in
Fig.4.11. This division is based on the fact that an action in SFC takes time to be
performed (executed) and a transition is often delayed in being fired since its condition may
require either the results generated by the action execution, or information coming in from
the environment, or a combination of both results and environmental information. The
distinction between 'execution’ and ‘completion’ is used extensively in formal definition of

the evolution rules of SFC in section 4.3.

Refinement '
—_——

@ ———-)» COMPLETION)

Fig.4.11 State transformation diagram of step

4.2.6 Notions of Time and Timing Analysis
Timing constraints are central to the requirements specification and design of any real-time

control system. A timing constraint actually imposes a temporal restriction on system
behaviour.
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4.2.6.1 Representation of Time

In a discrete event system time may be represented in two ways: a time-point-based
representation and a time-interval-based representation [Levi and Agrawala 90]. In a time-
point-based representation the world view of a system consists of events occurring at a
single moment of time, take zero time to occur, and result in the state of the system
changing. In a time-interval-based representation the world view of a system consists of
activities that take a finite amount of time, and have start and stop-events associated with
them. Although the time-point-based representation is different from the time-interval-
based representation, they are complementary in many applications rather than in conflict.
In fact, a description of a real time system often needs both representations. For example,
the proposed hybrid system models in [Grossman et al 93, Langmaack et al 94] involve
both time-point-based and time-interval-based representations.

4.2.6.2 Transition Firing Time and Step Activation Time

It is known that an SFC step represents a situation in which its associated action will be
executed and a transition is a "switch" which passes control from steps to steps. Since the
firing time of a transition 18 negligible with respect to the duration of step's activation, a
transition's firing time can be considered as point-based and a step’s activation as interval-
based. Also if the firing time of a transition is ignored, then the state space for system

analysis can be reduced.
4.2.6.3 Timing Constraints

A timing constraint is generally represented by the description of how events are related to
other events. In [Chandrasekharan et al 85, Dasarathy 85], timing constraints are classified
into three types: Duration length — an activity must last for t amount of time; Maximum —
no more than ¢ amount of time may elapse between the occurrences of two events; and
Minimum — 1o less than ¢ amount of time may elapse between the occurrences of two
events. [In this context, an event 1s defined as either a stimulus to the system from its
environment (input), or as an externally observable response that the system makes to its

environment (output)].

Since we assume each SFC action have a fixed duration for its execution (see 4.2.3), it is

very natural to describe its execution period using the duration length timing constraint.
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4.3 Formal Definition of the Evolution Rules for SFC

All the evolution rules (semantics) of SFC are defined in natural language. Such informal
definitions often cause ambiguous problems.

In this section, a formal definition of evolution rules for SEC will be defined using a set of
formal notations based on the concepts of enabling and firing rules in Petri nets. This clear
and precise definition is necessary for both industrial implementation and the formal

analysis of SEC.

The approach adopted is similar to IEC848 [88], which presents a mathematical description
of Grafcet based on Petri nets. In IEC848 [88] a Grafcet is defined as a quadruple G =
<X, T, L, So>, where:

X = ( X1, X25 «+o» Xm ) is a finite, non empty, set of steps;
T=(1t, 12 «or tn ) is a finite, non empty, set of transitions;
X and T represent the nodes of the graph;

L=(l, ..., 1p ) is a finite, non empty, set of directed links, linking either a
step to a transition or a transition to a step.
SocX is the set of initial steps. These steps are activated at the

beginning of the process and determine the initial state.
Moreover, the graph is interpreted, meaning that:

— with each step a command or action is associated,
__ with each transition a logic transition condition is associated.

Since SFC has the same syntax as Grafcet, this description also applies to SFC.

Let SEC =< X, T, L, Sg>. Foreachte T and each x € X, the sets of input and output
steps of a transition ¢ (¢ and tT respectively) and the sets of input and output transitions of

astepx (x; and x; respectively) are denoted as:

t,={xeX | 31¢e L, such that [ = <x, r>—a directed arc from xto ¢ };
ty={xeX |31eL, such that [ = <t, x>— a directed arc from zt0 x };
x7={te T|3le L, suchthatl=<tx>}
x*={reT|3le L, suchthatl=<xr>}
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1)

2)

3)

To precisely define the evolution rules of SFC, the active state of each step needs to be
divided into tWO sub-states (execution and completion respectively) as discussed in 4.2.5.
Let S = (Se, Sc) be the state vector of an SFC where S =S, U Sc and Se N S¢ = 2.

S is defined as:

vxe X
( 1 if step x is in the execution state

S0 = 4.1)
k 0 otherwise
( 1 if step x is in the completion state

Se(x) = 1 (4.2)
\ 0 otherwise

S(x)=1(x1is active) = (Se(x) =1V Se(x) = 1) A= (Se(@) =1 A Sc(x) =1) 4.3)
S(x) = 0 (x is inactive) = Se(x) =0 ASc(x)=0 (4.4)

The five evolution rules defined in Grafcet can be formally described for SFC as:

The initial state is given by the set of initial steps. That 18:

(Vx € Sp) S(x) = 1 where Sp is the initial active step set.

A transition should be fired if it is enabled and its condition is evaluated as TRUE.

Let S = (S, Sc) be the state vector of SFC, then Vvt e T, t is said to be enabled if:

i) t. €S input steps of  are all in completion states

i) tT & Se output steps of £ are not in executing states

After transition ¢ is enabled, if the transition condition, ¢, is true (which depends on the
system internal values and the system I/O), then it should be fired. Let C be the set of
conditions, and E be a function defined from T x C to Boolean, where "E(f)(c)" means
evaluation of condition ¢ associated with z. Then transition ¢ should be fired if:

iii) E(t)(c) = TRUE the condition ¢ associated with £ is true

When a transition is fired, all the steps in its input set are deactivated and at the same

point in time all the steps in its output set are activated simultaneously.
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Letthe S’ =(S e S /C) be the new state derived from state S = (Se, Sc), then after

transition ¢ is fired under S, S is computed as follows:

Vxe X:
( 1 xett
S, () = 1 4.5)
k Se (x) otherwise
( 0 xX€t] N
SC=13 0 xe 1t ASx) =1 (4.6)
L Sc) otherwise

4) Several transitions shall be fired simultaneously if they can be fired simultaneously.

Letthe S’ = (S'e, S ;) be the next state derived from state S = (Se, Sc).

[f3ucTand
I Yt e U,
i) ;S
and i) tT & Se
and iil) E(f)(c) = TRUE
ID) Vi, e U,
(t1y vt )Ny Unt)=0

then after all the transitions in U are simultaneously fired under S, S’ is defined as:

Vxe X:
( 1 x€ tT,wherete U

S () = 9 (4.7)
k Se (x) otherwise
( 0 xe t_,wherete U

S'm=1 0 xe tt AS(x) =1, where € U (4.8)
\ Sc %) otherwise

5) If a step must be activated and deactivated simultaneously, then it remains active.
(see 2) and 3) defined above).

By examining the refined evolution rules above, it can be seen that reactivation is allowed
in SFC evolution but not in SEC execution. That is, 2 transition ¢ can fire only when 1its

immediate successor step is in "inactive” or "completion” state. Formally, ¢ fires iff:

1S Sen 11 Se A E()(c) = TRUE (4.9)
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This restricts reactivation to steps who's actions are complete. This is some advantage
pecause reactivation in execution is not desirable in many practical applications as it may
describe a potentially "unsafe" situation.

Consider for example the problems which would arise if reactivation in execution were
allowed. In the simple case shown in Fig.4.12, if event x occurs (which represents the
value change of the condition associated with the transition) at time T, then the action a
associated with step X will finish its execution at time T +%(a) where 7(a) is the time needed
by the computer system to respond to the event x. If reactivation in SFC execution system

is allowed, then following event-action sequence is feasible:

If event x occurs at times Ty, T2, ...... ,

then the associated action will complete execution at times
r1+r(a), r2+r(a), ...... (4.10)

When T < T1+(a) (i.e, the second occurrence of event is before the first action execution

is complete), if the computer system is insensitive or blind to a new event occurrence while

itis still performing an action, then the reactivation in execution will not be satisfied. To

respond correctly and completely to each reactivation, the following restriction

Ty 2 ‘L'1+r(a), ...... Tis1 2 Ti+1'(a) (4.1 1)

must be imposed on times at which event can occur.

—4—Tx

X Action "A" e

Fig.4.12 A simple SFC for reactivation analysis

However, in SEC [IEC 93], it is known that the occurrence of an event associated with a
transition depends only on the state of transition's predecessor step(s) rather than its
successor step(s). That is, there is no relationship between 7; and 7(@). This means there
is no way of imposing the constraint (4.11) and for a deterministic system the reactivation
situation should be excluded. Specifically, this restriction should be applied to both SFC
defined in [IEC 93] and the revised form of SEC defined formally in this section.

Interestingly, even if the computer system can be interrupted when an event occurs and a
new process for the action execution is created (which will be executed after the

interruption), then reactivation may still cause problems since the total number of processes
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under execution may grow unbounded or exceed a limit. For this reason, all SFCs to be

designed should avoid reactivation situation.
4.4 An Extended Petri Net Model for SFC
4.4.1 Introduction

Given a system design, an obvious question is how the logical and temporal properties of
the system can be formally analysed? It is well known that the fundamental problem in the
analysis of any system is to find a theory that allows the system to be modelled and
manipulated in a formal analysis, that is, a mathematical representation of the system and an
analysis technique based on the mathematical representation. The approach adopted in this
thesis for SFC analysis is to transform SFEC onto the framework of a time related Petri net
model about which we already know how to do the analysis, rather than to establish an
analysis technique for SFC. Following are the important reasons of using Petri nets as the
analysis model of SFC:

i) there are significant similarities between Petri nets and SFC, particular SFC without
reactivation; ,

ii) Petri nets provide an elegant means to model and analyse parallel activities and
synchronisation;

iii) the extensions to Petri net theory give the designer the ability to verify timing
properties of the system.

For example, an SFC model can be interpreted using a Petri net model in the following

aspects:

Structural aspect:
1) the steps defined in an SFC can be substituted by the places of a Petri net;
2) the transitions defined in an SFC can be substituted by the transitions of a Petri net;
3) the directed links defined in an SFC can be substituted by the arcs defined in a Petri
net;
4) the actions associated with steps in an SFC can be substituted by associating time
delays with places in a Petri net such as TPTN [Sifakis 80].

Behavioural aspect:
1) the state defined in an SFC can be interpreted by the marking defined in a Petri net.
An active step in SFC can be interpreted as a place with a token and the state
transformation in SEC can be described by the marking change in Petri nets;
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2) the enabled and firing rules defined in SEC, can be interpreted by the enabling and
firing rules defined in Petri nets;

3) the evolution rule for simultaneous activations of several steps after firing one
rransition in SFC can be interpreted by distributing a token into different places
simultaneously after a transition is fired in Petri nets;

4) the evolution rule for the simultaneous firing of several enabled transitions in SFC
can be interpreted by the non-sequential (or partial order) behaviour extracted from
the firing sequence of a Petri net.

—~

Nevertheless there are some differences between SEC and Petri nets. For example, an
SFC cannot model non-deterministic choice and an SFC is interpreted because it includes
actions and conditions. However, these differences do no prevent interpreting SFC
behaviour in terms of Petri nets, particular TPTN [Sifakis 80], because an SEC without

reactivation and its corresponding Petri net model will generate the same state sequences
[Aygaline and Denat 93). For example, an SFC without reactivation can be interpreted
using the condition/event net concept and the potential concurrent behaviour or
simultaneous firing in SFC can be interpreted using the partial order description of the net

behaviour.

4.4.2 An Extended Timed Place Transition Net (TPTN) Model

Although the TPTN model of Sifakis [80] can model SFC in many aspects such as steps,
transitions, and actions, it cannot be used to model the conditions or guards associated with
transitions and their effects on transition firings because TPTN lacks the means to model

external inputs. In fact, it is not difficult to see that all time-related Petri net models

reviewed in Chapter 2 cannot precisely model SEC conditions and their effect on transitions
because these models are uninterpreted and lack elements to describe external inputs and
outputs. This means that some extension needs to be considered in applying Petri net
models to SEC. In this section, an extended time-related Petri net model based on TPTN is

given and the transformation method from SEC to the extended model will be defined in

next section.

4.4.2.1 Sifakis TPTN Model
Definition: An TPTN model is defined as a triplet [Sifakis 80]
N¢= (PN, Y, ) (4.12)

where

« PN =(P, T, F, M) is a Petri net as defined by Equation (2.3) in Chapter 2:

* Y is atotally ordered set by a relation 2, we call instants the elements of T

* v isamappingof PxYinto Y, called time base of N, where P is the set

of places in PN, such that V(p, t) € P X Y, v(p, ) 2 Ti
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TPTN is defined by associating a delay v(p, 1) with each place p € P. In TPTN, each

token in a place may be in one of the following two states: available or unavailable. After a
rransition is fired at instant T, the token that arrives at a place p is unavailable during the
interval <T, V(p, T> and then it becomes available. At any instant T, the marking M of a
TPTN is the sum of two markings M, and M,, where M, is the marking constituted of all
the available tokens of M and M, is the marking constituted of all the unavailable tokens of
M. Transitions can only be enabled by available tokens. Transition firing is instantaneous

in TPTN. For a TPTN model with constant unavailability times associated with each place,
the mapping L is defined as:

‘v’pie P, Vte Y: D(pi, T)-T=1 (413)
That is, a token is delayed in place p; by z; time units.

4.4.2.2 Extended TPTN Model — XTPTN

In TPTN, Y can take on non-negative real numbers. To simplify the analysis, the extended
model in this thesis assumes that Y only takes non-negative integers. Also the extended

model only considers constant unavailability times associating with each place.
Definition: An extended timed place transition net is defined as
XTPTN = (PN, Y, v,1,C, Y, TURT%) (4.14)

e (PN, Y,v)isa TPTN net as defined by Equation (4.12) and PN = (P, T, F, Mp) is

a Petri net as defined by Equation (2.3) in Chapter 2.
o Mpy= My U My, My is the marking constituted of all the available tokens initially,

and M, is the marking constituted of all the unavailable tokens initially.
« 1is a finite set of interface places with capacity K(p) < 1, where pe 1, and satisfies

following requirement:
Vpel,VteY:v(p,T)-1= 0 (i.e., unavailability time associated with p is zero);

e Cisa setof directed arcs associating interface places with transitions,C €1 x T.

« W is a function which assigns a pair of non-negative integers of so called firable
interval to each transition of the net, '¥: T — 1+0 % (I*0 U o0), where I*0 is a set of
non-negative integers;

« TURT® is the vector of token unavailable remaining time for unavailable tokens at
initial instant, where T, is the initial instant. That is,

Vp e My: 0<TURTW () = v(p, To) - To
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TURT is a function which assigns a time unit to each place in P at a given moment.
That is,

Vpie P,V1e Y:0< TURT Y p) <v(p;, T) - T (4.15)
It follows that XTPTN is a TPTN with the following extensions:

(1) Places
A set of interface places 1 is added into TPTN and the unavailability time associated with
each place p € b is zero. Since the unavailability time associated with each interface place

inl is defined as zero, we have:
VPG ,1/, V1 e Y: TURTT (p) :O’ (4.16)

Places in b can be used to model a guard associated with each transition. For example,
vpe 1,if p is tokenised, then the evaluation of the guard can be interpreted as TRUE,;
otherwise as FALSE. If a transition in XTPTN has no place in‘l as its input place, then it
can be interpreted as that the transition in SEC is associated with an always TRUE guard.

(2) Transition
In XTPTN, each transition is associated with a pair of time units @ and S, 0 <o <f3, where

e 0 (0< @), is the minimum time that must elapse, starting from the moment at which
the transition is enabled, until this transition can fire;
o [ (a< < o0),is the maximum time during which the transition can be enabled

without being fired.

Thus, the meaning of this pair of numbers is the same as that defined in the time Petri nets
[Merlin and Farber 76].

(3) States

To describe the token unavailable remaining time (TURT), the idea of RFT (remaining
firing time) from [Holiday and Venon 87] is adopted for XTPTN. TURT(p) is used to
describe the period from the point a token is deposited into a place p until it becomes
available. After a token is deposited into a place p TURT(p) is set to the delay associated
with p and then starts to decrease to z€ro. Since some tokens can remain unavailable in
places while a marking change occurs, a state is characterised by both marking and the
vector of TURT.
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(4) Marking )
A marking in XTPTN is composed of two parts, M, (marking of available tokens) and M,
(marking of unavailable tokens) such that M = M, U M,. Corresponding to (4.16) we have:

VYM e R(Mp), M =M,;UM,: —dpe 1 [p e M| 4.17)

(5) Enabling and Firing Rule
n TPTN, for a transition ¢ € T it was not clearly specified whether its input and output

places can contain unavailable tokens when ¢ is enabled and fired. In XTPTN, a transition

is said to be enabled iff:

i) For each of its input place p, all tokens in p are available;

ii) For each of its output places p, either no token exists in p or all the tokens in p

are available;

let (ef)={plpe P:<p,t>e FUC } ( the input places of transition #);
(te)={ p|pe P:<t,p>€ F } (the output places of transition ¢ );

MT=MF UM be a marking of XTPTN at time 7. Then for Vte T, ¢ is said to be
enabled at T iff:

1) (ef) cMI A(et) "M =0 (4.18)

i) (te) "M =0 (4.19)

After a transition f is enabled, say at time T, transition f is said to be firable iff it is
continuously enabled from 7 to T+a, where ¥ (¢) = <, f>. In XTPTN, it is assumed
that the transition must fire between time 7+ and 7+f3 , unless it is disabled by the firing

of another conflicting transition. Firing a transition is instantaneous.

(6) State Change
After a transition is fired, one available token will be removed from each of its input places
and at the same time one token will be deposited into each of its output places. For each

output place p, TURT(p) will be set as the delay associated with p.

Suppose a transition ¢ becomes enabled at time 7under state ST= (M7, TURT?), where M?
=(MF, M), and is fired at time 7+, where ¥ (z) = <0, B> and a<¥<P. Then the new
state ST+ = (Mt+0® , TURT#?), where M9 = (M w+% M7}?), reached from S7= (M7,
TURT?) is defined as:

Vpe P:
([ v(p,w+9,) - (v+D) if pe (t o) (set delay associated with p to TURT)
TURT#®(p)={ 0 if0<TURT#p)<? (unavailable at 7 but available at 7+1%)

| TURTHp)- ¥ if ® < TURT(p)
(4.20)
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[ M(p)-1  ifpe (ot)-(to)
Med(p) = 1 Mip)+1  ifpe (re)-(or) (4.21)
| M(p) otherwise
([ MI@+1 if0<TURTHp)< ¥
l orpe (te) ATURT™? (p) = 0
MT0(p) = § MI()-1 ifpe (er)-(e) ‘ (4.22)
} orpe (et) N (¢ e) A TURT#? (p) #0
L Mip) otherwise
[ 1 if TURT#9(p) #0
M%) = 1 (4.23)

\ 0 otherwise

4.5 Modelling SFC by XTPTN

Since it is assumed that each action has a fixed duration for its execution and that the
condition associated with an SFC transition was enforced to be true within a period after
the transition is enabled in SFC, it seems reasonable to propose that the execution state of
an SFC step can be modelled by a place with a delay and the condition can be modelled by
an interface place in XTPTN. Also the timing property that all enabled SFC transitions
should immediately be fired after their associated conditions become true can be modelled
by defining the function ¥ of XTPTN as: Vre T, ¥(t) = <0,0>, where T is the set of
transitions of XTPTN.

The discussion presented in Section 4.2.4 of Chapter 4 shows that it is sufficient to
consider the qualifier P only for SFC verification because all qualifiers defined in SFC can

be replaced by a logical equivalent expression that uses the P qualifier.

Fig.4.13 shows how SFC with qualifier P can be modelled using XTPTN, and tables 4.2
and 4.3 show translations of all SFC structural constructs defined in IEC1131 in terms of
XTPTN. The next chapter considers the formal analysis of the translated constructs.

XL StepX Tamplacep
5T a] AT Duration(A) TRAN> V(p, T)-T = Zp P pe
() C - — Transition t IRAN> ransition t fo
tenabled | Condition ¢ TRAN> interface place pe ¢ <0,0>
t fires \ Immediate firing RAN, (1) = <0, 0>

Fig.4.13 XTPIN model of SFC
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No

SEC

SFC
Interpretation

XTPTN

Step

Transition

Active

1 t©)

Single sequence

An evolution from
step X1 to step X2
shall take place iff
X1 is active and ¢
18 true.

X3

_tl(Cx) __t_z(Cz)

Divergence of
sequence selection

The designer must
assure that condi-
tions ¢: and ¢z are
mutually exclusive.

U (ca) __tz(Cs)

X3

Convergence of
sequence selection

An evolution shall
take place from Xs
to Xs iff Xs 1s active
and the ¢« 1S true or
from X7 to Xs iff X7
is active and ¢s 18
true

<0, .t <0,0>

\%4._..

__t(Ce)

X3

Simultaneous
sequence-divergence

An evolution shall
take place from Xo
to X0 and X, iff

X is active and Cs
is true.

p9 pcé

pr pu

Table 4.2 XTPTN representation of SFC constructs
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SFC

No SFC Interpretation

XTPTN

Simultaneous
I sequence-convergence

An evolution shall
8 take place from X2,
-1 t(c7) Xi3to X4 iff all steps
X, above the double line
are active and the ¢»
1S true.

| Sequence skip
X1

A 1 kip" <0,0>
— t(c sequence skip
? ) | (o) is a special case of

X1 N sequence selection
I t(co) in which one or more
of the branches have
X no steps.
l
X1
_I _t(cn)
10 See divergence of peiz
X4 sequence selection
t2(Ci2) ts(C13
<0,
X2

Table 4.3 XTPTN representations of SFC constructs
Summary

SFC has been presented and analysed in this chapter. After formally analysing SFC from
different aspects, a formal definition of a unified set of evolution rules for SFC has been
presented. This formal definition 1s necessary for both SEC implementation and its
analysis. To accommodate the subtle nature of timing relationships in SFC, it was
necessary to extend existing time-related Petri net models. An extended form of TPTN has
been derived which allows a straightforward translation of SFC model while being

analysable by existing Petri net techniques (see next chapter).
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Chapter 5  Verification of SFC Designs

5.1 Preliminaries of XTPTN

Let N=(PN,Y,v,1,C, ¥, TURT,) be a XTPTN, where PN = (P, T, F, My) is a Petri
net, Mg = Mg U My is the initial marking and TURTo is the vector of token unavailable
remaining time for unavailable tokens at the initial instant. As discussed, a system state is
characterised by both marking and vector TURT; thus the initial state is represented by So =
(Mo, TURTY).

If3reT [(of) © My A (o) " My =2 A (t6) N My, = @], then ¢ is enabled. After tis
continuously enabled for ¢ but before f3 time units (where ¥(z) = <@, B>), t is said to be

firable and it must be fired during this interval unless it is disabled by some other transition
firing. On firing transition ¢, state S is transformed into a new state S” which consists of a

new marking and a new vector TURT.

LetS[->> S < Jte T: S[1>> 5 eg. state S is reached from state S by firing £. We can

now define the reachable state class associated with the initial state So.

Definition
Let Sp be the initial state of a given XTPTN, then the reachable state class of the XTPTN
defined by So, denoted by [So>>, is given by:

i) S()E [S()>> (5.1)
ii) If S’e [So>>and 8’ [->> S” then S” € [So>> (5.2)

Since each transition ¢ can be fired during an interval specified by ¥(7) = <, f> and the

firing is instantaneous, a state's transformation from S to S’ by firing transition ¢, denoted

by S[r>>S’, has following property:

Firing t at a different time point might lead to pre-firing and post-firing
states S and S’ with different TURT vectors if TURT is not zero before
firing. The markings associated with S and S”will be unchanged. That is,

for each marking M there exists a set of states which are all associated with

M but have different TURT.
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The set of states associated with the same marking can be considered as an equivalent class
and the marking as an invariant of the equivalent class. Marking changes of XTPTN can
be described using the reachability technique (see page 31) defined for conventional Petri
nets. Let M [->M & 3re T:M[1> M’ e.g. marking M’ is reached from marking M by
firing ¢. Similar to the definition of relation [ >> for states above, we can now define the
reachable marking class associated with the initial marking M.

Definition ‘
Let M be the initial marking of a given XTPTN, then the reachable marking class of the
XTPTN defined by Mo, denoted by [My >, is given by:

1) Mpe [Mo> (5.3)
i)y If M'e [Mg>and M’ [->M” then M” € [Mo> (5.4)

Definition

Let N=(PN,Y,v,1,C,¥, TURT,) be a XTPTN, where PN = (P, T, F, Myp). Then a
sequence of markings I’ = Mo...M;Mj,1... is a member of the relation [Mo>" (which is the
transitive closure of relation [Mg>) such that T starts with My and for any two adjacent
markings M; and My, in T, there is a transition ¢ € T such that Mj[z>Mi,1.

An overview of all markings of a given XTPTN net can be obtained by constructing a
reachability graph [Peterson 81, Murata 89] which represents the elementary changes of

markings. A reachability graph, where the graph node is labelled by a marking and the arc

is labelled by a transition, 18 defined as:

Definition
Let N = (PN, Y. v, 1, €, ¥, TURT,) be a XTPTN, where PN = (P, T, F, Mo), its
reachability graph is a labelled directed graph G = (N, E, ¥, #1) here

i) Nis a non-empty finite set of nodes;

1) E cNxN;

iii) F: N — I*0P! is the labelling function from node to marking,
where I*0 is the set of non-negative integers;

iv) H: E — T is the labelling function from arc to transition.

The reachability graph is a fundamental tool for studying the behaviour in any Petri net.
When a Petri net is bounded, the reachability graph contains all possible reachable
markings. The disadvantage is that this is an exhaustive method. When a Petri net is

unbounded, the graph representation will become infinitely large. To keep the graph finite,
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a special symbol @ is introduced to deal with the infinite number of tokens. It has the
following properties for integer n,

The following properties can be studied by using the reachability graph:

1) A given N = (PN, Y,v,1,C, ¥, TURTy), where PN = (P, T, F, My), is bounded
and thus G(M) is finite iff @ does not appear in any. node labelled marking in G.

2) A given N = (PN, Y,v,1,C, ¥, TURTy), where PN = (P, T, F, M), 18 safe iff
only O's and 1's appear in node labelled markings in G.

3) A transition is dead iff it does not appear as an arc label in G.

Definition
Let G = (N, E, F, ) be a reachability graph and neeiniezny...eqln be 2 path starting from
root ng of G such that:
Fno) [H(e))>F (1), Fn)[H(e)>F(n2), ... F (ng.1)[FHen)>F(np),
then He))H e H(es) ... Hiey) is called a firing sequence and can be written as
Fng)[H(e)H (e (e3) ... #H(e)>F(ny), where #H(e))H(e)H(es) ... He,)e T*

and T* denotes the finite sequences over T.

Definition Potential concurrent places
LetN= (PN, Y,v,1,C,¥, TURTo) be a XTPTN, where PN = (P, T, F, Mp). Then
Vp1, p2€ P: p; and p, are said to be potential concurrent, denoted by p1 © pyiff

I Me [Mg>: M(p1) #0 A M(p2) #0 (5.6)

Definition Concurrent set of place

LetN = (PN, Y, v,1,C, ¥, TURTp) be a XTPTN, where PN = (P, T, F, Mp). The
concurrent set of p € P, denoted by CS(p), is the set of all places that are potentially
concurrent with it. Thatis, CS(p) = {p"|p © P’}

Similarly, the concept of potential concurrent transitions can be defined. The following is

the definition of potential concurrent transition for a safe XTPTN (see page 31).

Definition Potential concurrent transitions
LetN = (PN, Y, v, 1, C, ¥, TURT) be a XTPTN, where PN = (P, T, F, Mp). Then

V11, toe T: 1; and t, are said to be potentially concurrent, denoted by 11 || £ iff

1) ety N oty =0
i) neNnhe=0
111) I Me [Mp>: M enables both #; and £,
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Concurrent places and concurrent transitions have a symmetric but not transitive nature.
Let us consider the XTPTN shown in Fig.5.1(a) in which #1]lz2, and 1,][z3, but 1y 18 not

concurrent with r3. Similarly, p» © p3 and p3 © pg4,(see markings Mo and M; on
Fig.5.1(b)) but p2 is not concurrent with p4. It is worth pointing out that the concurrent
ransition concept is different from the concurrent place concept. Let us look at the
reachability graph shown in Fig.5.1(b) again in which CS(py) = {p2, p3, P4, D5, D6} but
the transition 74 which is related to py is not concurrent with any other transitions.

p2 p3 =M1, 1,1,0,0,
€1 _V
ol t © Mi(1,0,1,1,0,0) 1 =M:(1,1,0,0,1,0)
p4 p5 V =1 ﬁ:
Ms(1,0,1,0,0,1)  ne=Ma(1,0,0,1,1,0)
o \ A-— t3
po =Ms(1,0,0,0,1,1)

¢es=u

ns = Me(0,0,0,0,0,0)
(a) An XTPTN (b)  Reachability graph of (a)
Fig.5.1 An XTPTN for illustrating concurrent places and transitions

t4

5.2 SFC State Analysis — Rechability-Based Analysis

The initial marking (or system inputs) can be used to generate the reachability graph (i.e.
state transformation sequences). Reachability graph analysis is very important to

investigate the system properties. For example, if a marking in the reachability graph of a-

XTPTN model representing an SFC is unsafe (or unbounded) in terms of Petri nets (see
page 31), then the SFC system may exhibit a reactivation or an uncontrolled proliferation of
states in SFC. Also if a XTPTN model of a SFC is not live in terms of Petri nets (see page
31), then the SFC system will exhibit deadlock or an unreachable step due to control
starvation. In IEC1131 it is stated that these behaviours shall be treated as errors during
SFC preparation. Petri net theory provides the analysis method to identify these problems.
From the reachability graph, it is easy to check whether these errors exist.

The nets shown in Fig.5.2(a) and Fig.5. 2(b) are SFCs given in IEC1131 [IEC 93] as
examples of structurally correct nets with problematic behaviours; the corresponding

XTPTN's are shown in Fig.5.3(a) and Fig.5.3(b).
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a) an “unsafe” SFC b) An “unreachable” SFC
Fig.5.2 ‘'unsafe’ and 'unreachable’ SECs
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a) XTPTN of Fig.5.2(a) b) XTPTN of Fig.5.2(b)
Fig.5.3 XTPTN representations of SFCs shown in Fig.5.2

The reachability graphs of Fig.5.3(a) and Fig.5.3(b) are shown in Fig.5.4 and Fig.5.5,
respectively. In Fig.5.4 @, meaning state with potential for repeated and potentially infinite
instantiation, appears in some nodes' labels for place p.. This means that transformed net
(Fig.5.3(a)) is “unsafe”. This implies that step X in the SFC represented in Fig.5.2(a)
may be a reactivated or unsafe step. Reactivation or unsafe nets are not suitable for use in
SFC applications because it is difficult to guarantee the system t0 respond correctly and
completely to each reactivation. (Reactivation of SEC has been discussed formally in
Section 4.3 of Chapter 4). Hence, 2 design objective is to ensure that the XTPTN of an
SEC is safe.
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Fig.5.4 Reachability graph of the XTPTN shown in Fig.5.3(a)

n=Mo(1000000)

e =1

1’11=M1(01 10000)
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¢e3:t4 ¢65:t5

=M (0000010) ns=Ms(0100001)
"dead-end" "dead-end"

Fig.5.5 Reachability graph of the XTPTN shown in Fig.5.3(b)

Examination of Fig.5.5 shows that this net will eventually deadlock, no matter what firing
sequence is chosen. A system which exhibits deadlock is not suitable for use because once
a system is in deadlock it is impossible to fire any further transition. Examination of
Fig.5.5 shows that transition 5 does not appear as an arc label in the graph, i.e. ts is dead
in the net. This means that transition te in the corresponding SFC representation,
Fig.5.2(b), is unreachable. Hence, a design objective is to ensure that the XTPTN of an
SEC is deadlock free (i.e. every transition is reachable by progressing through some

further firing sequence).
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The reachability graph can also be used for other purposes. For instance, it can provide the
information of potential maximum execution concurrency about the SFC (i.e. how many
states may be active at the same time) to the operating system.

place pi | Concurrent set of Fig.5.4 place pi | Concurrent set of Fig.5.5

p: {p2} p: {}

p: {ps, p» P+ Ps, Ds, 1} p: {ps, p+» Ps, P}

ps {p2} ps {p=}

p+ {p:} ps {p2}

ps {p2} ps {p2}

ps {p2} ps {}

pr {p2} pr {p:}

Table 5.1 Concurrent sets derived from Fig.5.4 and Fig.5.5

place pi Set of sets of Fig.5.4 place pi Set of sets of Fig.5.5

p: {<p>) p: {}

M ERERE | e
P {<p>} ps {<p>>}

ps {<p>} ps {<p=>}

ps {<p>} ps {<p>}

Ps {<p>} ps {}

pr {<p>} pr {<p>}

Table 5.2 Set of sets of each place for Fig.5.4 and Fig.5.5

The concurrent set for each place as shown in table 5.1 can be obtained by inspecting the

whole reachability graph. Concurrent set is useful in the analysis of the fault tolerance and

system recoverable capability of a concurrent Or distributed system [Skeen and Stonebraker

83, Hill and Holding 90] because, by definition, the information provided by the

concurrent set determines what the potential local states of other components are for a given

local state. (In most cases, concurrent sel construction needs reachability graph.

However, for a special class of Petri nets the concurrent set for each place can be calculated

without generating the reachability graph first. The definition of the class of Petri nets and

the algorithm of calculating the concurrent set are presented in appendix A).
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Although concurrent set provides useful information on the potential concurrent behaviour,
it does not reflect the relationships between elements of a concurrent set. To reflect this
relationship, the concurrent set for each place p can be further classified into a set of sets as
shown in table 5.2 in which each set is formed by all the places (local states) that can be
tokenised at the same time (in a global state) as p. (For this particular example each set of
places contains only one element: in general the sets will comprise more than one element).
Thus, the meaning of a basic set plus p is the same as a marking in which p is tokenised.

5.3 An Example

5.3.1 A Traffic Light Control System

In this section, the approach will be illustrated by considering the qualitative and
quantitative behaviour of a simple traffic light system. The qualitative analysis analyses the
system behaviour without considering of timing issues. The quantitative analysis includes
timing analysis. Consider the traffic light control system shown in Fig.5.6(a). Let A and
B be "main road lights" — Main and C and D be "side road lights" — Side. The SFC
functional description for the traffic light control system is shown in Fig.5.6(b). The
XTPTN model for the SFC is shown in Fig.5.7.

. 1 Xu X r\ X Xs[ ]
' olC Main-Re | Shojce Chaice | 1 Side-Red
oY L | LT—=
: i 1
Sl x (s X [T
.................... A I —— A
® ®® X1 & X1 Siden
A — —-l— t7
E] 5 X{ Ao X{ e
D ' :]: ta — s
: L |
(a) The traffic light system (b) SEC control system model
X1: A andB are both red; t;: change A & B from red to red & amber;

X5: A and B are red and amber; ty: change A & B from red & amber to green;
X3: A and B are both green; t3: change A & B from green to amber;

X4: A and B are both amber;  t4: change A & B from amber to red and

Xs: Cand D are both red; give the choice to Side road,

Xe: C and D are red and amber; ts: change C & D from red to red & amber;
X7: Cand D are both green; te: change C & D from red & amber to green
Xg: CandD are both amber;  t7: change C & D from green to amber;

Xo: choice of Main road; tg: change C & D from amber to red and

Xy0: choice of Side road; give the choice to Main road;

Initial states {X;, Xs, Xo}

Fig.5.6 Traffic light system and its SFC control system
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VL -Tt=2z; ¥() =<0 0>
V(P29 -T=23 W(t) =<0 0>
V(pn1-T=25 W(b) =<0, 0>
V(pn9-T=24 W) =<0, 0>
V(ps.9)-T=25; W¥(ts) =<0, 0>
VPs. 1) - T=2s W(t) =<0, 0>
v(pr9-T=2z; W¥(t) =<0, 0>
V(ps 9 - T=2zs; W(ts) = <0, 0>

V(ps,7)-T=6  TURTo(p) =0;

P TURT(ps) = O;
O(pe. - T=4 TURTo(ps) = 0;

Fig.5.7 XTPTN representation of the SEC control system

In Fig.5.7, the unavailability times associated with places pg and p;¢ are assumed to be the
same because they have the same functionalities; the enabled interval associated with each
transition is <0,0> which means that each transition (traffic lights) will be fired (changed)
immediately when it is enabled (can be changed); and all tokens in the initial marking are
available (i.e. TURTy(p1) = 0, TURTo(pg) = 0, TURTo(ps) = 0).

5.3.2 Qualitative Analysis

Since the traffic light control system is a critical system, some safety and liveness
requirements must be imposed on it such as the mutual exclusion problem (i.e. Main road
and Side road must be mutual exclusive in the critical section represented by subnets Ny
and N,), the reactivation problem (i.e. the net should be 1-bounded or safe), and the
deadlock problem (i.e. the net should be live). The following presents these important
properties imposed on the traffic control system and their proofs.

Property-1: The XTPTN shown in Fig.5.7 is a 1-bounded (or safe) net.

Proof: All places of the net shown in Fig.5.7 are included in following three loops:

L; = {ps, t2, P3, B, P4» U4, P10s 15 D5, t6> P6» 17> P75 P8 s, Po}
Ly = {p1, t1, P2, t2, P3, 13, P4 tg}
L3 = {ps, s, Dé» t6» P7> 17, Ps> 18}

Based on the token invariant theorem of nets (presented in Chapter 2), the number of
tokens in each loop remains invariant. Since only one token is in each loop in the initial
marking, this means that 1-bounded or safe property of the net is guaranteed. O
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Property-2: Main road and Side road must be mutually exclusive for following (local)
states: {Main_Red&Amber, Main_Green, Main_Amber, Side_Red&Amber, Side_Green,
Side_Amber}. In terms of XTPTN, this property can be stated as:

Vpi.p;€ {P2.P3.P4,P6,P7,P8}, Pi#pj: =IMe [Mo> [M(p)#0AM(p;)=0] (5.7)

Proof: This property can be proved based on the evidence derived from the proof of

Property-1. Since only one token can remain in L; at any instant,-the mutually exclusion

among places {p2, P3, P4, Ps, P7, P8} is guaranteed. Otherwise, there should be more
than one initial token in Ly which is contradicted with the initial marking. O

Property-2 can also be verified using concurrent set. Table 5.3 shows the concurrent set
for each place, which is obtained by performing the algorithm presented in Appendix A.
By examining Table 5.3, it can be seen that:

—dpi,pi€ {P2, P3> P4 Ps» P7- P8 }: Pi#P; A [pi € CP(p;) v pj € CP(py)]

place Concurrent set place Concurrent set
pr {Ps, Ps, P7, Ps, Ps, pro} Ps {p:}
p2 {ps} p {p1}
ps {ps} ps {p1}
p: {ps} ps {p1, ps}
ps {p1, P2 ps, ps, Ps, puo} pro {ps, ps}

Table 5.3  Concurrent set for XTPTN shown in Fig.5.7

Property-3: The control system must be deadlock-free.

Property-3 is a liveness property which is much more difficult to prove compared to safety

property. The details of proof for this property can be found in Appendix B.

Although the system was designed with these properties and satisfies the imposed

requirements, it does not say anything about the system timing constraints.

5.3.3 Timing Analysis

System timing constraints can be derived by assigning variable time parameters to places

and forming relational expressions of relative timing. Timing constraint has direct effect on
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system performance. For example, to increase the throughput of traffic, it is required that
the Side road (C & D) changes from red light into red & amber lights as soon as the Main
road (A & B) changes from amber light into red light and vice versa. This implies that the
token in place ps should become available before the token in place pio becomes available,
otherwise, the throughput could be decreased due to the unnecessary delay. Thus, the
token unavailable time in place ps and the token unavailable times in places {p2, p3, P4, Po-
P10} should satisfy certain relationship. Similar relationship should exist between the
token unavailable time in place p; and token unavailable times in places {ps, p7, Ps, Po

p1o}-

In order to fire transition ts (i.e. to change the Side road from red light into red & amber
lights) as early as possible after place pjg is tokenised (i.e. the Side road choice is released
by the Main road light change from amber into red), the up limit of token unavailable time
75 in place ps needs to be less than the cycle time of loop po—p2—>p3—>ps—pio- The

relationship can be expressed in timing requirements as:

725 € 20+ 23+ 2440 + 06 (5.8)
where z; = v(p;, T) - Tand 6§ =V(py, T) - T=V(P10,T) - T

If (5.8) is imposed on zs, then it is guaranteed that no unnecessary delay for Side road light
change from red into red & amber. This is because that the token in ps always becomes
available before the token in pig becomes available such that transition ts can always be

fired without delay.

For the Main road, symmetrically, the up limit of token unavailable time z; in place p;
needs to be less than the cycle time of loop p1o—psa—>p7—>Pps—ps- The relationship can be

expressed in timing requirements as:

71 € zg+27+ 2346 +0 (5.9)
where z; = v(p;, T) - T and § =0(pg, T) - T="0(P10, T) - T

Since states modelled by places pg and p1o have no external effect, the token unavailable
time & can be reduced to zero. If Cq = zp+ z3 + z4 is used to represent the total time of
Main road in traffic lights {red & amber, green, amber} and Cp =26 + 27 + Zg is used to
represent the total time of Side road in traffic lights {red & amber, green, amber}, then we

have:

([ 25 < C, whereCi=22+23+24 (5.10)
| z; £ C, where Cy=26+27+ 78 (5.11)
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The above equations describe the timing constraints for the system. Note that C; 1s not
necessary equal to C; because the system controls one Main road and one Side road.

Although a lot of information can be obtained from the reachability graph, concurrent set,
and token invariants, they do not explicitly reflect any causal order among transitions. That
is, it is difficult to see a potential concurrent set of transitions that may be fired concurrently
(or simultaneously in SFC), since the system behaviour is observed sequentially using
interleaving semantics. If the properties and behaviour of a system described in an SEC are
interpreted using net theory, then it is desirable to find a means to observe the concurrent
transitions of SFC in terms of nets.

Trace theory [Mazurkiewicz 87, 88] was introduced for describing the non-sequential .

behaviour of concurrent systems from its sequential observations. Since the reachability
graph is generated based on sequential observation, trace theory can be used as a tool to
reason about it. In the following trace theory will be used to derive the potentially
concurrent behaviour of SFC transitions from the reachability graph of the XTPTN of the
SEC.

5.4 SFC Transition Analysis — Trace Theory-Based Analysis
5.4.1 Introduction

In SFC transitions fire simultaneously if they can. Consider the SFC shown in Fig.5.8(a)
in which T; = ¢; and T; = ¢,, where ¢; and ¢ are two conditions. When steps X, and X,
are active, if c¢; and c, both become true, then transitions Tjand T, should fire
simultaneously. Even if they are not fired simultaneously, T is causally independent of
T,.

Xi le
T1(ci}—1+ T2(coy1— t <0,0> t <0,0>
}l(iz )l(jz p12 Pﬂ
(a) (b)

Fig.5.8  An SFC showing potential simultaneous firing and its XTPTN model

The firing rule defined for a XTPTN net describes a change of marking caused by a single
transition firing. The reachability graph describes all firing sequences of the net. A
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directed path on the reachability graph can be viewed as a sequential observation of the
pehaviour of net. Such a firing sequence reflects only an observation made by a sequential
observer capable of seeing only one transition occurrence at a time. Given a transition
firing sequence [ = #(e1)#(e2) ... H(e,) from a reachability graph G = (N, E, F, #) (see
page 99), the following case may hold: 3#(e;), #(ej)e I1, i < j, and H(e;) # F(ej) =
#H(e;) and #H(e;) are both F(I(e;))-enabled and e#(e;)Ne# (¢;)=0., where I(e;) denotes the
input node of e; in G. That means although two or more transitions are fired sequentially in
a firing sequence of the XTPTN reachability graph, they may actually be fired concurrently
during the system execution. For example, the XTPTN model shown in Fig.5.8(b) 1s a
case where the tokens from places {pj, Di1 > Pe1, Pea} could become available at the same
time. In fact, the ordering of transitions in a firing sequence reflects not only the causal
ordering of transition firings, but also an observational ordering resulting from a specific
view over concurrent events. Therefore, the structure of a firing sequence alone does not
allow us to decide whether the difference in ordering is caused by a choice resolution (a
decision made in the system) or by different observations of concurrency. In order to
extract the causal order of transition firing from the sequential observations of behaviour of
a net, we mus: . ° ‘i sequential behaviour with additional information — the

dependency of transiuons.

The following describes how the concurrent (or independent) behaviour of SFC can be
generated from the sequential firing sequence of XTPTN using trace theory. Intuitively, if
two adjacent transitions in a sequential firing sequence (a path) are independent of each
other (i.e. the order of their firings is irrelevant), then we can say that these two transitions
in SFC have the potential to be fired simultaneously if the conditions associated with them
become true at the same time. The following sections present an overview of those aspects
of trace theory needed in the analysis of XTPTN and SFC, (for more details of trace
theory, the reader is referred to [Mazurkiewicz 87, 88, Rozenberg 87D.

5.4.2 Trace Theory

Definition Reliance alphabet
A concurrent alphabet is any ordered pair £ = (A, D) where A is a finite set (the alphabet of

Z) and D is a symmetric and reflexive binary relation defined on A (called the dependency
in ). (A, A2) is the concurrent alphabet with full dependency. I = A2-D is asymmetric
and irreflexive binary relation defined on A (called the independency in X). Triple (A, I,
D), where A is an alphabet, D is a dependency relation over A and I is an independency

relation over A, is called a reliance alphabet.

110 Chapter 5




For instance, let us suppose A = {a, b, c,d} and D = {<a,a>,<b,b>,<c,c>, <d,d>,<a,b>,
<b,a>,<b,c>,<¢,b><b,d><d,b>}. Then X = (A, D) is a concurrent alphabet and the
independency I in ¥ is defined as I = A2- D = {<a,c><c,a>,<a,d>,<d,a>,<c,d>,<d,c>)}
and the reliance alphabet is the triple (A, I, D), where A2 = {<a,a>,<b,b>,<c,c>,<d,d>,

<a,b>,<b,a>,<a,c>,<c,a>,<a,d>,<d,a>,<b,c>,<c,b>,<b,d>,<d,b>,<c,d>,<d,c>}.

Definition  Trace equivalence relation
Let T = (A, D) be a concurrent alphabet. The trace equivalence relation over 2, denoted by
=y, is defined as: ,

Vabe A: <ab>ely=ab=yba (5.12)

where Iy = A? - D is the independency relation in =

That is, Vo, o€ A% 01 =5 0m iff:
3y, ve A*and3<ab> € Iy [0 = pabv and o, = pbav] (5.13)
where A* denotes the finite sequences over A

Equivalence classes of relation =y are called fraces over Z; a trace generated by o'is denoted
by [o]x and the set of all traces over X is denoted by O(Z).

Let us consider again the concurrent alphabet £ = (A, D) given above. Suppose o7 = bacd
e A* and 0, = bcad € A*, then we have 0 =5 0> because <a,c> € Iz. For string 0 =
bacd € A*, trace [bacd]y = {badc, bdac, bdca, beda, bcad}.

Given a concurrent alphabet T = (A, D), the trace equivalence relation over X is used to
establish equivalencies between strings of alphabet symbols which differ only in the
ordering of "adjacent independent symbols” (i.e., symbols belong to independency I in Z).
That is, a single trace contains all strings which differ only in the ordering of adjacent
independent symbols. For example, symbol ‘¢’ is independent to symbol 'd" and they are
adjacent to each other in strings 'bacd' and 'badc' such that 'bacd’ and ‘badc’ belong to a
trace. If symbols in A are thought as atomic system events, then traces can be considered
as composed events in which some elementary events occur independently (i.e. without
any causal relationship) of each other. The notion of traces allows us to eliminate from
strings the ordering between events which occur independently of each other. This view of
trace theory is used to define the non-sequential behaviour of a sequentially observed

System.

Each trace can be graphically represented as an abstract acyclic node-labelled directed graph
such that the ordering of symbol occurrences within the trace can be explicitly viewed.
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Let £ = (A, D) be a concurrent alphabet. The dependency graph over X (or d-graph for
short) is a finite and acyclic node-labelled graph where the graph node is labelled with a

symbol in A and any two nodes are connected with an arc iff they are labelled with two
symbols of A in the relation D.

Definition Dependency graph
A dependency graph is defined as a triple G = (N, E, ®), where:

N is a finite set of nodes;
EcCNXN;
d: N — AL

Definition isomorphic
Let g1 = (N1, Eq, ®@1) and g2 = (Na, Ey, ®3) be two d-graphs. We say g and g are
isomorphic, denoted as g1 = go, iff there exists a bijection &: N; — Nj such that:

(V ne Ny) [®2(§(n)) = P1(n)] and (5.14)
and (VY n,n e Ny)[(n,n) e Eqiff E(n), E(n")) € Ey] (5.15)

Given a concurrent alphabet £ = (A, D) and o€ A”, the node-labelled directed graph of ¢
denoted by <o>y is constructed as:

i) oisempty then <o>y is the empty graph (no nodes and no arcs);

ii) o=pa where L € A" and a € A, then <o>y is obtained by adding to <{t>y a
new node labelled with a and new arcs leading to the new node from all the
nodes in <>y labelled with symbols which are dependent upon a in .

Clearly, for any string o € A* the <o>y constructed as above is a d-graph. For example,
the d-graph of ¢y = bacd as shown in Fig.5.9(a) and d-graph of o7 = bcda as shown in
fig.5.9(b) are isomorphic (i.e., Fig.5.9(a) = Fig.5.9(b)) via the bijection § defined as:

Emp) =n"y; &y =1y Ema) =17 &y =n'3; (5.16)
@ d:(m)=b @ ®:(n)=b
Oi(n2) =a ®x(n2) =
®i(ns) =¢C | _ Oa(ns) =d
@ @ @ ®i(nd) =d @ @ @ ®2(n%) =a
(a) d-graph of 'bacd' (b) d_graph of 'beda’

Fig.5.9 Dependency graphs for strings of alphabet symbols
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The relationship between traces and d-graphs over X is expressed by the following theorem

whose proof has been given by Mazurkiewicz in [Mazurkiewicz 87] and can be found in
Appendix C.

Theorem Vo',o"e A" <o'>yz=<0">yiff [6]x=[0"]s (5.17)

Thus for a trace [0 ]z € O(X), <o >y is an "isomorphic invariant” of [o ]z — it does not
depend on the choice of a representative in [0 ]y.

Definition Let £ = (A, D) be a concurrent alphabet. Any ordered pair (X, T) where
T < ©(2) is called a trace system.

5.4.3 Nets and Traces

Definition Dependence relation
Let N=(PN, Y,v,1,C,¥, TURTy) be a XTPTN with capacity K(p) <1, where PN =
(P, T, F, M) and p € P, the dependence relation over T in N, denoted as Dy, is defined as:

Vit,the T:<ti,th>e Dy & (er1e )N (efp @) # D (5.18)

Definition Independence relation
Let N= (PN, Y,v,1,C,¥, TURTy) be a XTPTN with capacity K(p) <1, where PN =
(P, T, F, Mp) and p P, the independence relation over T in N, denoted as Iy, is defined
as:

Vt,he To<tto>e In & (er1e) N (st 0) =0 (5.19)

Clearly, Iy is irreflexive and symmetric and Dy is the complement of "relation In" which
can be represented as Dy = T x T - In. By definition of Iy, two transitions are said to be
independent in N iff they have no common input and common output places. If two
independent transitions occur next to each other in a firing sequence, the order of their
occurrences is actually irrelevant since (according to the firing rule defined in SEC) they
may occur concurrently in the execution (if the conditions associated with them become
TRUE simultaneously in SEC). To detect which transitions are potential concurrent (or
may be fired simultaneously in SFC), the ordered sequential firing sequence of XTPTN
will be replaced by non-sequential one. That is, the behaviour of the XTPTN system will

be expressed using traces rather than sequential sequences.

Tomodel a net N = (PN, Y, v, 1,C, ¥, TURTy) by a trace system, one has to define the

corresponding concurrent alphabet over n.
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If the sets of A and relation D in the concurrent alphabet T are replaced by the set of
transitions T and the dependency relation Dy of the net respectively, then it can be easily
verified that Zy = (Tn, Dn) is a concurrent alphabet associated with N because Dy is a
symmetric and reflexive. Respectively, we can use =y to denote the trace equivalence
relation over Zn and use [O]n to denote the equivalence class of =y containing 0. The trace
behaviour of N is defined as a trace system TSy = (Zn, [0]n), where o€ TN™ (a set of
finite sequences over the set of transitions T in the net) is a firing sequence of N. Each
element of TSy is called a firing trace of N. Clearly, each firing sequence of N is contained
in some equivalence class belonging to TSN. In another words, each firing trace includes a
firing sequence of N and all the other equivalent firing sequences which lead to the same
marking of N. Here the equivalent firing sequences mean that they consist of the same set
of transitions and their d-graphs are isomorphic.

After obtaining a trace system TSy = (Zn, [0]n), where £y = (Tn, Dn) and o€ TN, fora
given net N = (PN, Y, v, 1,C, ¥, TURT)) in which PN = (P, T, F, M), the trace can be
used to determine the non-sequential behaviour observation. If [o]y is a firing trace, where
oe TN" is a sequential firing sequence, then the non-sequential behaviour of [o]n can be
observed by representing one sequential firing sequence in [O]n as a d-graph.

—— —
X1 X2 pi p2
| 1
+ tl tl
1.t .
1 |
X3 X4 P> Pe
1 @ I E)
t2 3
Xs X6
= 16 Ps pe

Fig.5.10 An SFC and its transformed XTPTN

By examining the transformed XTPTN shown in Fig.5.10 from SFC also shown in

Fig.5.10, following dependence and independence relations can be constructed according

to the XTPTN definitions:

Tn={t, tz, t3, tg, ts};
Dy = {<ty,p>, <ty,t;>, <tp,t3>, <t3,t1>, <t,ta>, <lg,t1>, <tp,ls>, <l5,11>, <B,l4>,
<tg,tr>, <tz,ts>, <ts,tz>, <ly,01>, <ty,ly>, <t3,13>, <ly,l4>, <ts,ts>};
In=Tn2 - Dy = {t, b, t3, ts, ts}x{t1, 2, 3, ta, s} - Dn;
= {<ty, i3>, <l3,13>, <tp,ts>, <ts,t2>, <13,14>, <lg,13>, <l,15>, <ts,t4>}
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Examination of reachability graph shown in Fig.5.11 shows that o = tit)tstats is a firing
sequence and its d-graph is shown in Fig.5.12.

=Mo(110000)

*elztl

n=M(001100)

— k: ts

\
[

I

—

[S]

n=M:(000110) =M;(001001)
ﬁ:ukztz / =t e7r =
n=M«(100100) ns=Ms(000011) ne=Ms(011000)

‘ ﬁ Cio =15 /&lztz

Mv(lOOOOl) =Ms(010010)

Cz=1s e =1t
n=Ms(110000)
"Old”

Fig.5.11 Reachability graph of XTPTN shown in Fig.5.10

Fig.5.12 The d-graph for a firing sequence

Since the arc in d-graph represents a causal dependency between transitions, two elements
are concurrent iff they are not linked by an arrow sequence. By inspecting the d-graph
shown in Fig.5.12 for the sequence O = t1lat3lals We can derive that transition t; 18
concurrent with t; and may potentially be fired simultaneously in SFC if the conditions
associated with them are changed into TRUE at the same time. Potential simultaneous
firing is also applicable to the following pairs <tp,ts>, <i3,l4>, <l4,ls> because of the
causal independency between them. Also, from dependency point of view, we can derive
that transition t; must be fired earlier than t; and t3, and t3 earlier than ts because they are

linked by an arrow sequence.

Because the ordering of transitions with a firing trace is determined by mutual dependencies
of transitions and the d-graphs of all firing sequences belonging to a trace are isomorphic,
we can get the causal relationships and non-sequential behaviour of all the firing sequences

in the trace by inspecting only one representative’s d-graph. For example, the firing trace
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containing firing sequence o = t1tyt3iats is as: [titt3lats]n = {ttotatsts, ttatatsts, t1i3iotats,
t;t3latsts, titatstats}.

From the behavioural point of view, each firing trace uniguely determines the path
(represented by the firing sequences in the trace) by which the specified marking (state) is
reached from the initial marking (state). Different firing sequences which reflect different
sequential observations may result from the same non-sequential behaviour. The non-

sequential behaviour can be described by the trace and can be identified by the d-graph of
any representitive of the trace.

Summary

This chapter discusses the analysis of SFC using existing net analysis techniques. The
techniques used in the analysis include reachability tree and trace theory.
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Chapter 6

Towards A Rule-based Approach for
Real-Time Process Control Systems

6.1 Introduction

Chapter 4 and Chapter 5 presented a method of translating an SFC design into an extended
Petri net (XTPTN) and a method of analysing the resulting XTPTN to determine the
properties of the original SFC. Since SFC was defined in IEC1131 as a graphical
description language, it lacks a systematic way of synthesising SFC from the real world
systems. From this observation, a standardised approach to the development of real-time
process control systems is required such that the system (software) functional requirements
can be identified, captured, analysed, expressed in SFC and implemented using SFC and
other programming languages as defined in IEC1131. In this chapter, a rule-based
formalism will be investigated for the capture of (software) functional requirements of real-

time process control systems.

The (software) functional requirement is the first document of a system's required
behaviour. Errors in this document are difficult and expensive to correct if propagated to
the design phase (or worse, to the implementation) {[Boehm 80, Goldsack and Finkelstein
91]. Thus, the captured functional requirements must be analysed before system design

begins. In this chapter, the following issues will be discussed:

a) the rule-based formalism;
b) a method to support the construction of rule-based descriptions;

¢) the analysis of rule-based descriptions.

The analysis approach presented in this chapter is to convert the rule-based description into
a Petri net model. Assertions which are enforced by the specification are then verified
using the formal verification techniques of Petri nets [Reisig 85, Murata 89] and temporal
Petri nets [Suzuki and Lu 89, He and Lee 90, Sagoo and Holding 91, Sagoo 92].
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6.2. Rule-Based Approach

6.2.1 Rule-Based Formalism

Rule-based formalisms are a popular method for knowledge representation in expert
systems because the experts find it easy to express methods for solving problems in their
application areas using rules [Hayes-Roth 85]. However, in recent years, rule-based
formalisms have been used by researchers in other areas such as real-time process-control
systems as discussed in Chapter 2 [Pathak and Krogh 89, Wilson and Krogh 89, Etessami
and Hura 91], Programmable Logic Controllers (PLC) [Barker et al 89, Barker and Song
92], and Information systems [Assche et al 88, Loucopoulos and Layzell 89].

Conventionally, a rule consists of two parts: a premise (IF) and an action (THEN)
[Waterman 86]. When the IF portion of a rule is satisfied by the facts (data), the action
specified by the THEN portion is performed. The rule's action may modify the set of facts
(data) or may directly affect the real world. The advantage of rule formalism is that the
rule-based description can be formally analysed [Hayes-Roth 85, Loucopoulos and Layzell
89]. Thus, rules provide a formal way of representing the system behaviour against its
environment. This feature of rules provides a suitable way to describe the intended
behaviour of real-time process control systems. This is possible because most real-time
process control systems have a behaviour which can be described by a state space and a set
of state transitions which specify the set of possible future states given a present state
[Ostroff 89, Jaffe et al 91, Shaw 92]. Such a state transition can be described directly as a
conventional IF-THEN rule. Thus, integrating a rule-based formalism into the functional
requirements description of real-time process control systems looks very natural. Another
important feature of the rules is that rule-based formalism supports the development of a
system functional requirements in an incremental approach [Loucopoulos and Layzell 89,
Willson and Krogh 90]. This indicates the potential of using a rule-based formalism to

synthesise the software controller in a real-time process-control system development.

6.2.2 Rules and Events

The purpose of a software functional requirements is to describe a system's behaviour at an
early stage of its software development life cycle. The functional requirements should
describe what the system intend to do, not how it does it. The functional requirements
should describe what the state transitions are and when to perform them. The state
transition describes the observable behaviour of the system and the 'when' clause describes
the time- and event-dependent dynamic and reactive nature of the real-time process-control

system. For example, if a system is in a particular state, then only when an event (or a
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guard) occurs (is true) can this state be changed into another one. For a real-time process

control system, "when to do" is very important since it provides a means to specify the time
at which the state transition occurs.

Although the conventional IF-THEN rule structure provides a natural way of describing the
state-based causal transitions comprising the behaviour of a real-time process control
system (i.e., what to do) [Komoda et al 84, Tashiro et al 85, Wilson and Krogh 90,
Etessami and Hura 91] (see Section 2.3.2 in Chapter 2), it cannot specify the dynamic and
reactive features of the system very well (i.e. "when" features such as event- or time-
related stimuli). This arises because of the differences between events and states and a
corresponding deficiency of describing the effect of an event (a condition value change) on
the transition in a rule formulation. If the rule-based formalism is applied to the functional
requirement description of real-time process control systems, it must describe these
dynamic functional requirements precisely. In order to describe the event-based (or time-

based) constraints in the requirements, the conventional rule structure has to be extended.

The idea of adopting a, more dynamic, form of rule for real-time process control systems
appears in an earlier independent case study [Marconi 86] in which an event-based rule was
found to be useful for defining the software functional requirements of real-time process
control systems, where an event is defined as a condition value change from true to false or
vice versa [Heninger 80, Faulk and Parnas 88]. The case study concerned an industrial
real-time process control system whose most important feature was that the system's
behaviour was both state-based and event-driven. As discussed in Chapter 2, the
conventional rule structure of IF-THEN form has been extended into a WHEN-IF-THEN
form by introducing a trigger [Assche et al 88, Loucopoulos and Layzell 89]. A trigger can

be interpreted as a guard on the IF-THEN rule. The extended rule is called dynamic rule -

and the conventional rule is called static rule in [Assche et al 88, Loucopoulos and Layzell
89]. Although the dynamic rule concept was originally used in information system
developments and maintenance by researchers, it seems reasonable to apply this kind of
idea to real-time process control systems because state transitions in real-time (process
control) systems are often guarded by a condition change from false to true [Ostroff 89,
Shaw 92, David and Alla 92].

For example, the following is a simplified event-based rule example taken from the case
study by [Marconi 86] which can be construed to say 'if the computer system is in
automatic control mode, then it must immediately change into manual control mode from

automatic control mode when event X occurs'’:
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IF Auto_Control
WHEN EventX
THEN  Manu_Control

In the following research (see Chapter 7) event-based rules are shown to be suitable for
specifying the behaviour of real-time process control systems because the behaviour of
most industrial real-time process control systems are not only state-based but also event-
driven, and an event-based rule provides a convenient way to describe both state-based and
event-driven features together. The event-based rule clearly specifies when the state
transition should be performed by distinguishing between state conditions using the IF
clause and event occurrences using the WHEN clause. An event-based rule describes the
instantaneous time point at which an event acts upon the state change. From the point of
view of real-time control, it is natural to distinguish between an event and a state
(condition) [Heninger 80, Faulk and Parnas 88, David and Alla 92, IEC848 88]. During
this research it has also been found that the conventional IF-THEN rule is useful although it
says nothing which implies the transition may or should occur. It is this feature of the
conventional rule that provides a convenient way to describe the state-based behaviour in
which an action is never forced to occur. For example, if one wants to describe a machine
changing from its stationary state into its rotation state in which the time point at which the
state transition occurs is not interesting, then it can simply be specified using the
conventional IF-THEN rule construct. For this reason, two types of basic rule constructs
will be defined here, one is called static (i.e. the conventional IF-THEN) rule, the other one
is called event-based (i.e. IF-WHEN-THEN) rule.

6.2.3 Syntax and Semantics of Rule-Based Schemes
The static rule has the syntax form shown below:

IF L
THEN L’ (6.1)
where L and L’ are sets of (local) states of the system in terms of the SFC

model, and each local state [ € L\ [’ is defined as an interpretation of a

control system assigning an action to a system component.

The set L provides the enabling condition prior to the state transition and set L represents
the states immediately after the state transition. The meaning of this rule construct can be
stated as: “if all the local states L in the IF part are active, then the state transition can
occur. The occurrence of the transition will cause the changes of states from the states in

73

IF part, L, to the states in the THEN part, L.
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The event-based rule has the syntax form shown below:

IF L
WHEN EventX
THEN L’ (6.2)

Where L and L” have the same forms as those defined for the static rule. L provides the
enabling condition immediately prior to, and at the time as, the event occurrence. The
meaning of this rule construct can be stated as: "if all the local states in L are active when
event X occurs then the system shall immediately change into the states in L’ from the
states in L as a result of the occurrence of the event”. An immediate problem concerning
the event-based rule is to determine what will happen if some local state in L is not active
when the event occurs since this rule says nothing about the effect of the transition in this
case. In this situation, the state transition will not occur. It is the designer's responsibility
to guarantee that the event described in an event-based rule occurs after all states in L are
active. Ambiguity can be avoided by defining an alternative event-based rule which

specifies all alternatives for the occurrence of an event.

A static rule only describes what the state transition should be (i.e., asserts that a transition
will happen) without stressing when the transition occurs which may depend on the run
time support system such as the scheduler. However, the event-based rule is quite
different because it integrates the event occurrence with an enabling condition, the
combination of causing the state change. Thus an event-based rule describes not only what
the state transition should be but also precisely when the transition should occur.
However, the event-based rule still does not say anything about the time of event
occurrence which is usually determined by the controlled system (rather than the controller)

and is provided to the controller (software) via the sensors {Jaffe et al 91].
6.2.4 Decomposition of Rules

To keep the (software) functional requirements description manageable, a real-time process
control system may be considered as a group of sub-systems where each sub-system
description consists of a set of rules. A number of methods accommodate hierarchical
structures which reflect the layers of software functional requirement such as Statecharts
[Harel 87], Petri nets [Zhou and DiCesare 93], and G++ [Brams et al 92]. By adopting the
sequential and parallel decomposition techniques from G++ [Brams et al 92] and applying

it to the states in a rule, then rules can be decomposed using: sequential decomposition and

barallel decomposition.
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Sequential decomposition of a state in a rule describes the division of one state / into two
sub-states /1 and /5 acting in sequence (one at a time) by dividing the action a associated
with [ into a sequential execution, denoted by a;;a,, where each a; (i =1,2) is associated
with one sub-state. The implied semantics of sequential decomposition is that when action

a is being performed in state I, the sysiem is really either performing a; in state /; or as in
state [, but not both.

To decompose a state sequentially, a new event may need to be defined to trigger the sub-
state transition. For example, suppose state [ represents a machine moving with which the
action — "rotation” 1is associated. After dividing this action into two parts "initial
acceleration” and "maximum acceleration” and defining the event as the change of condition
— "machine has rotated « degree since initial acceleration starts”, then state [ can be
sequentially decomposed into /; and [;. The state change between [; and /; is triggered by
the occurrence of the event.

Parallel decomposition of a state in a rule describes the division of one state [ into two
independent sub-states / ; and / 5 acting in parallel by dividing the action a into a parallel
execution, denoted by ailla;, of a; and a;. The semantics behind the parallel
decomposition is that when action a is being performed in state /, the system is performing
both aj in state /; and a; in state [, at the same time.

To decompose a state parallelly, it does not need to introduce a new event as in sequential
decomposition. The decomnnsed sub-states [ and I, from [ in parallel decomposition will
be changed by the same transition as defined for state /. For example, suppose state [
represents a swimming state with which the action — "butter fly stroke" is associated.
After dividing this action into two parts "arm's moving" and "leg's moving", then state !
can be parallelly decomposed into /; and I, which are caused by the same transition of /.

6.3 A Method — System Behaviour Driven Method (SBDM)

Rules provide a suitable means of representing, rather than a method of constructing, the
software functional requirements. From this observation, it may be concluded that a
method is required to support the construction of a rule-based functional requirements
description. Specifically the method should facilitate the processes of elicitation and
formalisation. An obvious first step is to attempt to associate an existing requirements
engineering method with the rule-based formalism, e.g. SREM [Alford 77, 85], SA/RT
[Ward and Mellor 85], Statecharts [Harel 87], and hybrid method for Petri nets [Zhou and
DiCesare 89, 93]. However, this is not practical because the methods were not based on

rule-based paradigms and the entities such as states and events which underlie rule-based
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formalisms are not necessarily interpreted in the sense used throughout this thesis.
Therefore, this thesis adopts the alternative approach of conducting a detailed examination
of the rule-based representation scheme, with a view to answering the following: what are
the basic concepts which must be elicited and what is the best order in which to elicit them ?
The answers to these questions can be used to select techniques from a variety of existing
methods, to elicit just those concepts that are necessary to build the rule-based functional
requirements.

Goldsack and Finkelstein [91] proposed a method, called Structured Common Sense
(SCS), to support the construction of a formal requirements specification for real-time
systems, 1n which a logic called MAL (Modal Action Logic) was defined as the formal
representation scheme. SCS method provides a systematic way to guide and organise the
elicitation process for MAL. Since the requirements specifications in MAL may be viewed
as state-based [Goldsack and Finkelstein 91] and the notations agents and actions defined
in MAL have corresponding interpretation in rule-based formalism, it seems reasonable
based on the Structured Common Sense method to propose a method to support the
construction of a rule-based functional requirements description. The proposed method is
called System Behaviour Driven Method (SBDM) which provides a systematic way to elicit

the functional requirements using rule-based formalism.

Following SCS, if we look at the concepts on which the rule-based schemes are centred,

then the following features can be observed:

+  System components;

+ actions associated with system components;
« states created by actions for each component;
° events to trigger actions;

- conditions or predicates to define the events.

To construct rule-based (software) functional requirements, we must answer questions
such as:

what system components comprise the system being specified ?

what actions are associated with these components ?

why do the components undertake these actions ?

what states can each action create for each components ?

what are the events to trigger these actions ?

what are the definitions of these events ?

what are the relationships among these states ?

00 ~1 O W»n B W o

what are the timing constraints ?
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The SBDM, a rule-based requirements capture method derived from SCS [Goldsack and
Finkelstein 91], is an attempt to guide and organise the process by which these questions
are answered. It consists of a number of distinct steps; some of which are performed in

parallel and some sequentially. Progress through SBDM is driven by the behaviour of the
real-time process control system.

The steps in SBDM are as follows:

. Component identification:
The process of identifying each autonomous component within the system.
e Action analysis:
Determining, for each autonomous component, the actions the system has to perform.
o Component state analysis:
Determining the states of each autonomous component. The states can be divided into
layers using hierarchical approach.
e Event identification:
Identifying the events that trigger state transition and trigger action to occur.
o Data-flow analysis: _
Determining the links and interactions between the states and constructing the rule
representations based on the 'causal forces' exerted by actions.
e Action decomposition:
Identifying the new rules by decomposing the action.
* Timing analysis:
Determining the timing constraints associated with each state by analysing its associated

action.

It is easy to understand SBDM by looking at a sample step. The important steps of SBDM
are action analysis and event identification. The primary purpose of the action analysis step
is to support the designer in identifying the actions associated with each component, from
which the states can be subsequently derived. Actions are the operations carried out by
system within a state, which change the system behaviour. Everything that happens in the
system must be in principle traceable to some action. The primary purpose of event
identification step is to support the designer in identifying the events that will trigger the
state transitions and stimulate the actions to occur, from which the event-based rules can be

derived.

On completion of these steps, the designer should have:
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o asetof system components;

e aset of actions for each component;
« aset of states for each component;
o asetof events;

e g setof rules.

The rules obtained based on SBDM provide a formal representation of system functional
requirements, which can be used to check consistency and to verify system properties. The
set of rules provides the synchronisation and control logic for the software control system '
being developed. The declarations of actions and events provide the interfaces to next level
development, which can be further described in more details at later stage of the software
system development.

6.4 Analysis of Rule-Based Description
6.4.1 Introduction

Formal techniques have widely been used for specification, design, implementation, and
verification of real-time systems by researchers working on time-related logic's [Jahanian
and Mok 86, Ostroff 89, Goldsack and Finkestein 91, Manna and Pnueli 92], real-time
process algebra [Milner 89, Reed and Roscoe 86], and Petri nets [Ghezzi et al 91]. The
advantage of formal techniques is that formal description allows one to reason about the
intended behaviour of the system. Among these techniques, temporal logic has been
increasingly used in verification of real-time systems [Manna and Pnueli 88, 92, Ostroff
891 in which the system is portrayed as a logical model, and the specification is represented
as logical formulas. If a formula is true in the model, then the system model is assumed to -

be correct.

In order to use a particular analysis technique, such as Petri nets, one needs to transform
the functional requirement description in terms of rules into the appropriate representation
that the technique will accept. Each rule describes only the intended behaviour of one
component in the system. Since a system consists of many components and each of them
may be dependent on others, most system behaviour can be described only via the co-
operation of these individual rules. By integrating these individual rules together according
to the causal dependency among them, properties of the composed system can be analysed.
Thus, in the case of Petri nets, system properties such as mutual exclusion and deadlock
can be verified. Also, after translating a rule-based functional requirement into a Petri net,
the reachability graph of Petri nets can be explored using temporal operators [Suzuki and
Lu 89, He and Lee 90, Sagoo and Holding 90, 91]. If the system properties expressed in
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temporal formulas are determined to be true, then the properties hold in the Petri net model
and also in the (rule-based) functional requirements. Although it may be possible for rules
to be transformed into a number of different state transition models, such as extended finite
state machines (ESM) [Ostroff 89], CTL machine [Clarke et al 86], Statecharts [Harel 87]

and synchronous model [Benveniste and Berry 91], a Petri net model is chosen as the
analysis model because of following reasons:

i) There 1s a direct correspondence between rule structure and Petri nets [Atabakhche er al
86, Sahraoui et al 87, Wilson and Krogh 90, Etessami and Hura 91].

ii) Petri net framework provides a graphical representation in which the co-operation of all
the individual rules can be represented explicitly.

iii) Petri net theory [Reisig 85, Rozenberg and Thiagarajan 87, Murata 89, Mazurkiewicz
87] provides the ability to analyse the graphical representation.

iv) The ability to translate Petri nets to temporal logic for formal proof of system properties
has been shown by researchers [Reisig 88a, 88b, Suzuki and Lu 89, He and Lee 90,
Uchihira and Honiden 90, Sagoo and Holding 90, 91, Sagoo 92].

v) After formally verifying the system properties, the Petri net model can easily be
transformed to SFC and its associated programming environment for detailed design

and implementation.
6.4.2 Modelling Rules as XTPTN

The type of XTPTN considered in this thesis for modelling rule-based descriptions is the
XTPTN with capacity K(p) =1 for each place p (see page 30). It is natural to consider the
upper limit to the number of tokens that each place can hold to be 1 because each local state
defined in rules will be modelled by a place in XTPTN and it may not make sense if a place

holds more than one token.

It is assumed that all actions to be assigned to system components in rules have fixed
durations. To represent the rule-based description explicitly using XTPTN, one has to map
the elements of the rule structures onto the elements of the XTPTN structure and keep the

mapping functional equivalent.

The static rule can be naturally modelled by XTPTN using following method. Each local
state in the rule is modelled by a place p € P of XTPTN and the properties (prepositional
values — gctive and inactive) defined for local states are modelled by a place with or
without a token. The duration of the action to be assigned to the component by each local
state in the rule is modelled by the place's unavailable time. Each state transition of a rule is
modelled by an XTPTN transition with firable interval <0, e@>. Such a mapping keeps the
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functional equivalence because the state transition of a static rule can occur at any instant

after all the states in the IF part become active is preserved in XTPTN by the timing
constraint <0, oo>.

To model an event-based rule, the effect of the event on the state transition must be
considered. The set of interface places 1 and the function ¥ in XTPTN provide a
convenient way to model this special feature. Each event e in an event-based rules can be
modelled by an interface place p.e1. If place p,is tokenised (which needs to be set
externally), then it means that event e occurs, otherwise it means that event e has not
occurred yet. States and state transitions of event-based rules can be modelled by XTPTN
using the same method used for static rules. The instantaneous effect that event occurrence
acts upon the state transition in event-based rules can be modelled by defining the firable
interval of transition as <0, 0> via function . The Fig.6.1 is an example of XTPTN
model for an event-based rule. This technique will be used to systematically generate the
XTPTN models for industrial manufacturing machineries in Chapter 7.

I
IF [I<al, COI’Ilp1> U(pl,T)-T=8W
WHEN Event-e p D
THEN [’1<(1,1, COIIlp'1> .
where: [, [ are local states; ( v(pi,T)-T=

ai, a’ are actions; F(0)=<0,0>

compi, comp’s are Components; P V(P2 1)-T=5

Duration(@:) = 01; Controlled

Controlling St
ystem

System
Fig.6.1 Modelling an event-based rule in XTPTN

Duration(@z) = 0z;

6.4.3 Verification
6.4.3.1 Verification of Rule-Based Description

In the requirement document, the user typically asserts a set of properties, such as
functional and general safety assertions, that must be enforced. However, there is no
guarantee that the rules representing the behaviour of the actual system satisfy these
properties because the translation from the real world into a rule-based description is
informal, intuitive and heuristic. Whether or not the rules accurately represent all the
important facets of the system requirement depends upon the verification. Temporal Petri
nets [Suzuki and Lu 89, He and Lee 90, Sagoo and Holding 90, 91, Sagoo 92] provides
the ability to formally specify and verify the Petri net properties using temporal logic. In a
temporal Petri net, system properties aré specified as temporal logic formulas and the Petri
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net model is translated into a temporal logic system. The specified properties are then
verified over the translated temporal logic systems using developed temporal logic proof
techniques [He and Lee 90, Manna and Pnueli 92]. If a property, say @, is true over all

state sequences generated by the translated temporal logic system, then @ is called a valid
property which 1s also valid over the Petri net model. It has been shown that rule-based
descriptions can be transformed into a XTPTN with capacity K(p)=1 for each place p,
which provides a Petri net based computational model. If the required system properties
are qualitative rather than quantitative, then it seems reasonable to translate the XTPTN into
temporal logic systems using the methods proposéd by He and Lee [90], Ségoo and
Holding [90, 91, Sagoo 92], and to verify these properties using the developed temporal
Petri net proof techniques. The next section will discuss how the XTPTN obtained from
rules can be translated into a temporal logic system using these methods.

6.4.3.2 Verification Technique — Temporal Petri Nets

In this section, the translation from XTPTN obtained from rules into a temporal logic
system using the transform method proposed by He and Lee [90] and modified by Sagoo
and Holding [91, Sagoo 92] will be presented. If this can be done, then the required
system properties can be investigated by expressing them in formulas containing temporal
logic operators and showing that a formula is logically valid over the XTPTN model using
temporal Petri net proof techniques.

The temporal logic systems translated from Petri nets consists of two parts: system
independent temporal logic axioms and inference rules such as the axioms and inference
rules developed by Manna and Penuli [86, 88, 92], and system dependent axioms and
inference rules [He and Lee 90, Sagoo and Holding 91]. The system independent temporal
logic axioms and inference rules are independent of any specific Petri net systems.
However, the system dependent axioms and inference rules differ from one Petri net to
another. According to the method for low level C/E nets (Petri nets with 1 capacity for
each place) [Sagoo and Holding 91] derived from the transform method of He and Lee
[90], the initial marking of Petri nets is converted into system dependent axioms and each
transition of Petri nets is converted into an system dependent inference rule which defines
the firing of the transition in terms of pre- and post-conditions. The following is the

transformation from an XTPTN to a temporal logic system.

Temporal Formulas over XTPTN:

Let N = (PN, Y,v,1,C, ¥, TURTp) be a XTPTN, where PN = (P, T, F, Mp). Then the

syntax of propositional temporal formulas over XTPTN is defined as:
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1) A formula is built from
i) atomic proposition: (p has a token), where pe P
ii) Boolean connectives: A (AND), v (OR), — (NOT), and — (implication);

ii1) temporal operators: O (next), O (henceforth), © (eventually), and U (until).

2) The formation rules are:
1) an atomic proposition is a formula;
i) If g, h are formulas then so are gah, gvh, —g, g —h, Og, Og, Og, and gUh

In the following discussion, atomic proposition (p has a token) will be abbreviated as p.
Semantics of Temporal Formulas:

Let I' = Mp...M;Mj,1... be an execution marking sequence which is a member of the
relation [Mo>" (see the definition given in Section 5.1 of Chapter 5) and I'® be a k-shifted
marking sequence given by MMy, .... Let f be a temporal formula defined above. The

formal semantics of formula f1s defined as follows:

a) For the propositional operators:

i) for (p has a token), I' I= (p has a token) iff p has one token at Mg (6.3)
i) 'l==f iffnotlI=f (6.4)
i) Tl=f Ag iff TI=fandI'I=¢ (6.5)
iv) f vg and f —g are the short hands for —(—f A —g) and —f vg (6.6)

b) For the temporal operators:

i) Tl=0fiffforevery 0 <i <ITI,TOI=f

where [Tl represents the length of execution marking sequence I’ (6.7)
ii) T l=of iff for some 0 <i <ITLTWI=f (6.8)
iii) T l= Of iff ITI >1 and T |=f (6.9)

iv) T |=f Ug iff T® |=g for some 0 <i <II'l, and [0 |=fforevery 0<j<i (6.10)

System Dependent Axioms:

Let N = (PN, Y, v, 1,C, ¥, TURT) be a XTPTN, where PN = (P, T, F, Mo). The
initial marking Mo={p1,p2,----Pn}can be expressed as a temporal formula as pjApaA...Apy

which is referred to as the system dependent axiom.
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System Dependent Inference Rules:

Each transition in the XTPTN will be converted into an inference rule which defines the

firing of the transition in terms of system-dependent pre and post conditions [Sagoo and
Holding 91]. For instance an inference rule for transition 7 has the form U = O U’, where

U contains a formula comprising the conjunction of all the places in e7 and the conjunction

of the negation of all the places in (re-er) the U’ contains a formula which is symmetric to U.

Summary

In this chapter, a rule-based formalism has been presented as a means of describing the
functional requirements of a real-time process control system. Two different rule schemes
(static and event-based) and an elicitation method for the functional requirements have been
proposed. In order to formally analyse the rule-based descriptions, the method to translate
rules into XTPTN and the transformation from XTPTN to temporal logic system have been

presented.
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Chapter 7 Examples and their Evaluations

7.1 Introduction

Chapter 6 presented a rule-based development method and an analysis technique. In this
chapter, the application of the rule-based formalism together with the proposed SBDM
method will be demonstrated through examples. These examples illustrate in a step by step
manner how the functional requirements can be elicited by the SBDM method and
represented in terms of a set of rules. In addition, it is shown how system properties can
be verified with respect to the rule-based functional requirements via the Petri net theory
and temporal Petri net techniques.

7.2 First Example — A Can Sorting Machine

7.2.1 Introduction

Consider the demonstration can sorting machine developed by Eurotherm Controls Ltd.,
shown in Fig.7.1, in which two different sizes of cans have to pass through two drums
before being put on the conveyor. The two drums are driven by two independently
controlled motors and need to be co-ordinated when the can is exchanged from drum; to
drum,. The two drums being controlled will provide external stimulus when the operations
associated with them terminate. In this chapter, it is assumed that all the external stimulus
will occur properly when the operations associated with the physical system terminate. In
the following, the method presented in last chapter will be used to derive the rules

representing the synchronisation and control logic of the two drums.
7.2.2 Eliciting the Rules Using SBDM

A. Identifying the autonomous components within the system:
1. druml: 2. drum2; 3. conveyor; 4. can producer (including feeding);

B. Identifying the actions associated with each component:
1. druml = {can_insert, rotationl, can_exchange}
2. drum?2 = {can_exchange, rotation2, can_eject}

3. conveyor = {running} 4.  can producer = {producing}
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Fig.7.1 Can sorting physical system mode]
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C. Identifying the states created by each action within each component:

Standardised mnemonics for drums:

S =space; C = can; P=position; INS =insert; EXC = exchange; EJE =eject;

1. Druml:
First layer
druml = {C_INS_D1,D1_ROT, C_EXC, D1_STOP}
where C_INS_D1  insert can from can feed into drum1
DI_ROT rotate drum|
C_EXC exchange can from drum1 to drum?2
D1_STOP druml is stationary
Second layer
D1_STOP = {C_IN_D1, C_OUT_D1}
where C_IN_DI1 canisin druml
C_OUT_D1 canisnotindruml
DI1_ROT ={D1_C_IN_ROT, D1_C_OUT_ROT}
where D1_C_IN_ROT rotate drum1 AND can is in drum1
D1_C_OUT_ROT rotate drum1 AND can is not in drum1
Third layer
C_IN_D1 = {C_P_INS_D1, C_P_EXC_D1}
where C_P_INS_D1 canisin druml AND drum1 is in insert position
C_P_EXC_D1 canisindruml AND druml is in exchange position
C_OUT_DI1 ={S_P_INS_D1, S_P_EXC_D1}
where S_P_INS D1  druml is in insert position AND space 1s available in it
S_P EXC_D1 druml is in exchange position AND space is available in it
2. Drum2:
First layer
drum?2 = {C_EXC, D2_ROT, D2_STOP, C_EJE}

where C_EXC exchange can from drum1 to drum?2
D2 ROT rotate drum?2
C_EJE eject can from drum? onto conveyor

D2 _STOP  drum?2 is stationary
Second layer

D2_STOP = {C_IN_D2, C_OUT_D2}

where C_IN_D2 can is in drum2
C_OUT_D2 canisnotin drum?2

D2_ROT = {D2_C_IN_ROT, D2_C_OUT_ROT}

where D2_C_IN_ROT rotate drum2 AND can is in drum?2
D2_C_OUT_ROT rotate drum?2 AND can is not in drum?2
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Third layer

C_IN_D2 = {C_P_EXC_D2, C_P_EJE_D2}

where C_P_EXC_D2 can is in drum2 AND drum? is in exchange position

C_P_EJE_ D2  canisin drum2 AND drum? is in eject position
C_OUT_D2 ={S_P_EXC_D2, S_P_EJE_D2)
where S_P_EXC_D2 drum?2isin exchange position AND space is available in it
S_P_EJE D2 drum2 is in eject position AND space 1s available in it

3. Conveyor:
First layer
conveyor = {RUNNING}
where RUNNING conveyor is running
Second layer
RUNNING = {C_PRE_CO, S_AVA_CO}
where C_PRE_CO can is present on conveyor

S_AVA_CO space is available on conveyor

4. Can producer:

First layer
can producer = {C_PROD, P_STOP}
where C_PROD produce a can
P_STOP producer iS rest

Second layer
P_STOP = {C_AVA_P,S_AVA_P}
where C_AVA_PRO can is available from producer
S_AVA_PRO  spaceis available in producer

Events which cause a state transformation:

Drum1: {C_inserted,drum1_has_rotated_with_can,drum 1_has_rotated_without_can}
Drum?2: {C_ejected, drum?2_has_rotated_with_can, drum2_has_rotated_without_can}
Drum1&2: {C_exchanged} /* can has been exchanged from drum1 to drum?2 */
Conveyor: {C_conveyed} /* can has been conveyed */

Can_Producer: {C_produced} /* can has been produced */

Following are the rule-based descriptions for the functional requirements based on he

elements defined above:
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Synchronisation between can producer and drum1

RI:

text

R2:

text

IF C_AVA_PRO AND S_P_INS_D1
THEN C_INS_D1

IF "can is available from producer" AND

"drum]1 is in insert position AND space is available in drum1"
THEN "insert can from producer into drum1"

IF C_INS_D1

WHEN C_inserted

THEN C_P_INS_DI1 AND S_AVA_PRO

IF "insert can from producer into drum1"

WHEN C_inserted

THEN "drum] 1s in insert position AND can is in drum1" AND
"space 18 available in producer”

Synchronisation between conveyor and drum?2

R3:

text

R4:

text

IF C_P_EJE_D2 AND S_AVA_CO

THEN C_EJE

IF "drum? is in eject position AND can is in drum2" AND "space is available on
conveyor"”

THEN "gject can from drum2 onto conveyor”

IF C_EJE
WHEN C_ejected
THEN S_P_EJE_D2 AND C_PRE_CO

IF "eject can from drum?2 onto conveyor”
WHEN C_ejected
THEN "space is available in drum2 AND drum? is in eject position” AND

"can is present on conveyor"

Synchronisation between druml and drum?:

RS:

text

Ré6:

IF C_P_EXC_D1 AND S_P_EXC_D2

THEN C_EXC

IF "can is in drum1 AND drum] is in exchange position” AND
"space is available in drum2 AND drum? is in exchange position”

THEN "exchange can from drum] to drum?2"

IF C_EXC

WHEN C_exchanged
THEN S_P_EXC_DI1 AND C_P_EXC_D2
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text

IF "exchange can from drum] to drum?2"
WHEN C_exchanged

THEN "space is available in drum1 AND drum1 is in exchange position” AND
can 18 in drum2 AND drum? is in exchange position”

Can_producer (rules to account for full producer cycle):

R7:

text

R&:

text

IF S_AVA_PRO
THEN C_PROD

IF "space is available in producer”
THEN "produce a can"

IF C_PROD

WHEN C_produced

THEN C_AVA_PRO

IF "produce acan"

WHEN C_produced

THEN "can is available from producer”

Drum1 (rules to account for full drum1 cycle):

R9:

text

R10:

text

R11:

text

R12:

IF C_P_INS_D1

THEN D1_C_IN_ROT

IF "can is in drum1 AND druml is in insert position"
THEN "rotate drum1 AND can is in drum1”

IF D1_C_IN_ROT

WHEN drum1 has_rotated_with_can

THEN C_P_EXC_D1

IF "rotate druml AND can is in drum1"

WHEN drum1_has_rotated_with_can

THEN "can is in drum1 AND drum]1 is in exchange position”

IF S_P_EXC_Dl1
THEN D1_C_OUT_ROT
IF "space is available in drumi AND drum] is in exchange position”

THEN "rotate drum1 AND can is not in drum1"”

IF D1_C_OUT_ROT
WHEN drum1_has_rotated_without_can
THEN S_P_INS_D1
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text

IF "rotate druml AND can ig not in drum1"
WHEN drum l_has_rotated_without_can

THEN "space is available in drum] AND drum1 is in insert position”

Conveyor (rules to account for full sorter ang conveyor cycle):

R13:

text

IF C_PRE_CO

WHEN C_conveyed

THEN S_AVA_CO

IF "can is present on conveyor"
WHEN C_conveyed

THEN "space is available on conveyor"

Drum?2 (rules to account for full drum?2 cycle):

R14:

text

R15:

text

R16:

text

R17:

text

An XTPTN model of the rule description

IF C_P_EXC_DI

THEN  D2_C_IN_ROT

IF "can is in drum?2 AND drum? is in exchange position”
THEN "rotate dram2 AND can is in drum2"

IF D2_C_IN_ROT

WHEN drum?2_has_rotated_with_can

THEN C_P_EJE_D2

IF "rotate drum?2 AND can is in drum?2"

WHEN drum?2_has_rotated_with_can

THEN "can is in drum2 AND drum? is in eject position”

IF S_P_EJE_D2
THEN D2_C_OUT_ROT
IF "space is availabi’ = -um2 AND drum?2 is in eject position”

THEN "rotate drum2 AND can is not in drum2"

IF D2_C_OUT_ROT

WHEN drum?2_has_rotated_without_can
THEN S_P_EXC_D2

IF "rotate drum2 AND can is not in drum2”

WHEN drum?2_has_rotated_without_can
THEN "space is available in drum2 AND drum?2 is in exchange position”

s is given below. Note that the duration for each

place, the enabling interval for each transition are not shown in the model because they are

not relevant to the qualitative verification of propertics.
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d1 has rotated d2 has r
: 2 otated
with can without can

p43
C_exchanged

d1 has rotated P47 d2 has rotated

without can p44 with can

t8 p8 pte 15 p17 t16
p1 — S_P_INS_D1; p11— C_P_EJE_D2; p21 — C_AVA_PRO;
p, — C_INS_D1; p12— C_EIJE; p22—S_AVA_PRO;
ps — C_P_INS_D1; p13— S_P_EJE_D2; p23— C_PROD;

ps— DI_C_IN_ROT; pys—D2_C_OUT_ROT; p3;—S_AVA_CO;
ps— C_P_EXC_D1; p;s— S_P_EXC_D2; p3,— C_PRE_CO;

pe— C_EXC; pis— C_P_EXC_D2; p4s — C_ejected;
p7— S_P_EXC_DI; p17— D2_C_IN_ROT; p4s — C_produced;
pgs— D1_C_OUT_ROT; ps3 — C_exchanged, pas — C_conveyed;
pa; — C_inserted; p4» — drum1_has_rotated_with_can;

Pas — drum1_has_rotated_without_can; pss— drum2_has_rotated_without_can;

p47 — drum?2_has_rotated_with_can;

Fig.7.2 XTPTN representation of rules for the can sorting system

7.2.3 Properties of the system

For any real-time process control systems, the essential concern is that the system should

behave in a safe and acceptable fashion. Thus the system must be verified for correctness.

An important corollary is that a specification of the system, which refers to the states,
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events and properties of the controlled Systems, must be correct. The following are few
typical properties for the system asserted by the user in the requirement documents:

i) The situation where a can is exchanging from drum1 to drum2 and meanwhile drum1 or

drum? is rotating must not happen. To verify this property it is necessary to show that

the "rotate” states of drum1 or drum2 are mutually exclusive with "exchange" state. In

terms of XTPTN, this can be expressed as invariances in temporal formulas as:

0= (p4 A ps) (7.1)
O (ps A pe) (7.2)
U= (p17 A ps) (7.3)
O= (P14 A pe) (7.4)

if) Whenever a can is inserted into drum] from producer then eventually it must be

exchanged from drum1 into drum2. This can be expressed as a repeated eventuality
property in temporal formula as:

O (p3 = < ps) (7.5)

i) Whenever a can is exchanged from druml1 into drum? then it must eventually be ejected

onto conveyor. This property can be expressed as eventuality in temporal formula as:
O(ps = © p11) (7.6)

1v) Whenever a can is inserted from producer then eventually a can will be produced again

in producer. This property can be expressed as formula in temporal logic as:
O (ps = < p21) (7.7)

v) The independent motion behaviour of both drums is permitted. In another words, the
rotating states of druml and drum? are not mutually exclusive. This property can be

expressed as formulas in temporal logic as:

— O~ (pg A P17) (7.8)
— O (ps A P14) (7.9)
— O (ps A P17) (7.10)
— 0= (D4 A P14) (7.11)
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7.2.4 Verification of the system properties

Given a formal mathematical mode] and a specification of what the system should behave,

the verification problem involves the formal demonstramn by a mathematical proof that the
model satisfies the specification.

For the net shown in Fig.7.2, the following system dependent axiom and inference rules

can be obtained according to the combination between temporal logic and Petri nets
dlscussed in last chapter:

System dependent axiom:  py A pis A pa; A p3g
System dependent inference rules:

P1 A P21 A —p2 = O (P2 A =P1 A —P21)

P2 A P41 A —P3 A —p22= O (P3 A P22 A —P2 A —Pa1)
P3 A —p4= O (P4 A —p3)

P4 A paa A —ps = O (ps A —iPs A —P42)

Ps A P15 A —Pps = O (ps A —P5 A —p15)

P6 A P43 A —P7 A —p16 = O (P7 A P16 A —P6 A —1P43)
p7 A —pg = O (pg A —p7)

P8 A Paa A —p1 = O (P1 A —Pg A —P4a)

P11 A P31 A =p12= O (P12 A P11 A —p31)

10. p12 A pas A —p13 A —p32 = O (P13 A P32 A P12 A —1P4s5)
11. p13 A =p1a= O (p14a A —P13)

12. p14 A pas A =p15 = O (P15 A —P14 A —P4s)

13. P16 A —p17=> O (P17 A —P16)

14. p17 A pa7A =p11= O (P11 A —P17 A —P47)

O &0 1 O Lt A~ W N =

15. paa A —p23 = O (P23 A —P22)
16. p23 A pagA —p21 = O (P21 A —P23 A —Pas)
17. P32 A p4as A —p31 = O (P31 A —P32 A —P49)

Following are the proofs of those properties specified in last section. Refutation proof
technique and the token invariance theorem presented in Chapter 2 are used in the proofs.

A refutation proof of a formula p is a syntactical derivation of a sequence of formulas Fo,
., B, such that Fg = —p, F, = false, and Fi,1 1 derived based on Fyp to F; by one of

the inference rules.

140 Chapter 7



Proof of Property (7.1) U=(pa A pe)

(D
2)
3)

(4)

S)
(6)
(7
(8)
9)

(1)
)

3)
4

(5)
(6)
(7
(8)

— O—(p4 A pe) from property (7.1) by negation
O (pa A ps) from(l)byaxiom<>(p<:>ﬁDﬂ(p
The loop C = {Pl’tl,P2’t2»P3’t3,P4,t4,P5,tS,P6,t6,p7,[7,P8,[8} shown in

Fig.7.2 has the property that the number of tokens in C remains invariant during all
the executions of the net because C satisfies following requirements:

1) VteC,loth}:lt-mCl.
i) Vpe C, (sp U pe) C C.

Since there is only one token in C at the initial marking, this shows that mutual
exclusion in C is guaranteed. In terms of temporal Petri nets, the mutual exclusion

between places ps and pe can be expressed in temporal logic formula as [Suzuki
and Lu 89]:

O (pa —> —ps) vV T (ps = —pa)

Examining each disjunct of (4) gives:

O (pg — —ps) first disjunct of (4)

O—(p4 A ps) by definitions of logical operators —,v,—>
O (ps = —p4) second disjunct of (4)

O—(p4 A DPe) by definitions of logical operators —,v,—
= O (pa A Pps) from (6), (8) by axiom © ¢ & — - @

In both cases the conclusion (9) is contradicted with (2) obtained by negation, which

shows the assumption false.

A similar procedure can be used to prove properties (7.2), (7.3), and (7.4).

Proof of property (7.5) 0 (p3 = < ps)

P1 A P15 A P21 A P3t by system dependent axiom
pLA P2t A—P2 =0 (p2APLA —p21) from (1) by inference rule-1
the occurrence of event C_inserted (i.e. p4; is tokenised) yields

P2APa1A—P3A—P22 = O (p3Ap22A—P2A—DP41)  from (2) by inference rule-2

p3 A —ps= O (P4 A —D3) from (3) by inference rule-3

the occurrence of event dq_has_rotated_with_can (i.e. place p4; 1s tokenised) yields
Pa A Paz A —Pps= O (PsA —Pa A —P42) from (4) by inference rule-4
ps A P15 A —iPs = O (p6 A —1Ps A —P15)
P3 — < Pe

O (p3 = < pe)

from (1), (5) by inference rule-5
from (3) to (5) by tautology
from (7) by temporal reasoning

A similar procedure can be used to prove properties (7.6) and (7.7).
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(1)
2)
3)

4
(5)
(6)
(7)
(8)

false.

Proof of property (7.8)  —O—(pg A py7)

To make the proof shorter, the immediate results of proof for property (7.5) will be used.

C=(ps A p17) by negating the property (7.8)

=< (ps A p17) from (1) by axiom D@ & = 0= @
By examining step (1) to step (6) in the proof of property (7.5), we have:
P6 A P22 A P31

the occurrence of event C_exchanged (i.e. ps3 is tokenised) yields

P6AP43ATP7ATP16= O (P7AP16A—P6A—P43) from (3) by inference rule-6

P7 A —pg = O (pg A —p7) from (4) by inference rule-7
P16 A —p17= O (P17 A —P16) from (4) by inference rule-13
P8 A P17 from (5) and (6)

< (ps A P17) from (7) by temporal reasoning

This conclusion is contradicted with (2) which shows that the assumption by negation is

A similar procedure can be used to prove properties (7.9), (7.10), and (7.11).

7.3 Second Example — A Slider and Drum System

7.3.1 Introduction

The rule-based formalism and the design method proposed for the software functional
requirement capture will be applied to a time-critical real-time process control system which
consists of an incremental artor drum and an intermittent transfer slider as shown in
Fig.7.3 [Sagoo and Holding 90].

l

Fig.7.3  Arbor drum and transfer slider
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The pnn?lpél role of the controlling system (or controller) is to ensure the intermittent
synchronisation of the slider and the drum. Asynchronous concurrent motion of the drum
and slider is permitted. Clearly, the drum must be at rest and in position before the slider is

the slider must be withdrawn from the drum before the drum can
rotate. The critical point in the slider's motion occurs when the slider is moving towards

inserted into it. Similarly,

the drum and a decision has to be taken either to continue moving and insert in the drum (if
it 1s stationary and is in position) or to decelerate (abort) and stop (if it is rotating or not in

.. * . . . ..
position)”. This safety-critical decision must be computed in a timely manner, as shown in
Fig.7.4.

DISPLACEMENT

Maximum insert

............... Insert
Decision
point
Fig.7.4  Time-critical decision point
A I I i 1 I
- I I I ! I
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Fig.7.5  The motion profiles of drum and slider system

The diagram shown in Fig.7.5 is the motion profiles of the system described in a sequential
form. However, to maximise performance, the case in which asynchronous concurrent
motion is allowed will be considered. The motion of the drum and slider including

In [Sagoo and Holding 90}, after abortion occurs, the slider stops immediatel.y and .is not allowed_to move until the
drum stops. In this thesis the slider is assumed to move back to its starting point after abortion occurs and is

allowed to move towards the drum again when the slider reaches to its starting point.
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synchronisation interlocks has been modelled using Petri nets by Sagoo and Holding [90,
91]; however, their Petri net model was constructed using an ad-hoc approach. In this
section, the functional requirements of the system will be elicited based on the method
SBDM and described by the rule-based formalism. It will be seen such an elicitation is

natural and easy to understand. For this system, it is assumed that the decision whether to
commit to insert or abort is made after the slider moves distance k from its starting point.
Symmetrically, when the slider is withdrawn the drum js enabled to rotate after slider is
withdrawn to distance k from the original start point. For this system, we also assume that
an object such as a manufactured component or object located in an arbor on the drum will
be ready for pushing by the slider after each rotation of drum (the loader of the system will
be considered in section 7.4 when the flexibility of rule-based formalism is discussed).

7.3.2 Eliciting the Rules Using SBDM

A. Identifying the autonomous components within the system:
1. drum; 2. slider;
B. Identifying the action associated with each component:

1. drum = {rotation}

2. slider = {abortion, insertion, withdraw}

C. Identifying the states associated with each action within each component:

Standardised mnemonics for drums:
D = drum; ROT =rotate; S =slider; INS = insert;
WW = withdraw; ID = inside drum,; OD = outside drum;

Drum:
First layer
drum = {D_STOP, D_ROT}
where D_STOP drum is stationary
D_ROT rotate drum

Slider:

First layer
slider = {S_STOP, S_ABORT, S_INS, S_WW}

where S_STOP slider is stationary
S ABORT  abort slider's motion and returns to its initial position

S_INS insert slider
S_WW withdraw slider
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Second layer
S_INS = {S_OD_INS, S_ID_INS}
where S_OD_INS  insert slider and slider is outside of drum

S_ID_INS insert slider and slider is inside of drum
S_WW = {S_ID_wWw, S_OD_WWw}

where S_ID_WW  withdraw slider and slider is inside of drum

S_OD_WW  withdraw slider and slider is outside of drum

Events cause state transformation:

1. Events associated with drum:

D_rotated drum has rotated.

2. Events associated with slider:

S_aborted slider has aborted.
S_decision slider has reached the decision point.
S_inserted slider has inserted (i.e. reaches maximum insertion point).
S_outed slider has come out of drum.
S_extracted slider has extracted.
% One of main problem in co-ordination of concurrent processes is the management of

communication between them. The general constructs that achieve such co-ordination
between processes are referred to as synchronisation constructs. Two well known
synchronisation constructs are message-passing-based synchronisation and shared
resource-based synchronisation [Burns and Wellings 91, Manna and Pnueli 92]. Only

message-passing based synchronisation construct will be considered here because there is
no shared resource between slider and drum. As the insert and abort operations to be
perform by the slider depend on different status of drum, two communication states may be
used to convey the drum status to the slider. One informs slider that the drum has rotated
(i.e. the object in drum is ready) and slider is allowed to insert into drum and the other
informs slider that the drum has not rotated or is being rotating (i.e. the object in drum is
not ready) and slider is not allowed to insert into drum. However, only one state is
required to describe the slider status to the drum because the drum can rotate whenever the
slider is out of drum. The following are the three communication states between slider and

drum;
S_OuT slide is out of drum and drum is allowed to rotate
D_OBJ object in drum is ready and slider is allowed to insert into drum

D N OBJ object in drum is not ready and slider is not allowed to insert into drum
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Since slider has two potential operations (insertion and abortion) to perform when it
reaches its decision point, two rules are required to specify each alternative. These two
rules will have the same trigger event but have different prerequisite. The following are the
functional requirement of drum and slider system described by rule-based formalism:

Synchronisation between slider and drum:

R1:

text

R2:

text

Drum:

R3:

text

Slider:

R4:

text

RS5:

IF S_OD_INS AND D_OB]J
WHEN S_decision

THEN S_ID_INS
IF "insert slider and slider is outside of drum" AND

"object in drum is ready and slider is allowed to insert into drum"
WHEN "slider reaches the decision point"

THEN "slider is inside of drum and inserting"

IF D_STOP AND S_OUT
THEN D_ROT

IF "drum is stationary” AND "slider is out of drum and drum is allowed to rotate"
THEN "rotate drum”

IF D_ROT AND D_N_OBJ
WHEN D_rotated
THEN D_STOP AND D_OBJ
IF "rotate dram" AND
"object in drum is not ready and slider is not allowed to insert into drum”
WHEN "drum has rotated”

THEN "drum is stationary" AND
"object is ready in drum and slider is allowed to insert into drum"

IF S_STOP
THEN S_OD_INS

IF "slider is stationary”
THEN "insert slider and slider is outside of drum”

IF S_OD_INS AND D_N_OBJ

WHEN S_decision
THEN S_ABORT AND D_N_OBJ
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IF "insert slider and slider is outside of drum" AND

object in drum is not ready and slider is not allowed to insert into drum”
WHEN "slider reaches the decision point"

THEN "abort slider's motion and returns to its initial position” AND

object in drum is not ready and slider is not allowed to insert into drum"

IF S_ID_INS
WHEN S_inserted

THEN S_ID_WW aND D_N_OB]J
IF "insert slider and slider is inside of drum"

WHEN “slider has inserted (i.e. reaches maximum insertion point"
THEN "withdraw slider and slider is inside of drum" AND

"object in drum is not ready and slider is not allowed to insert into drum”

R7: IF S_ID_WWwW
WHEN S_outed
THEN S_OD_WW AND S_OUT
text IF "withdraw slider and slider is inside of drum"
WHEN "slider has come out of drum"
THEN "withdraw slider and slider is outside of drum" AND

"slider is out of drum and drum is allowed to rotate"

R&: IF S_OD_WW
WHEN S_extracted
THEN S_STOP
text IF "withdraw slider and slider is outside of drum”
WHEN "slider has extracted"
THEN "slider is stationary"

RO: IF S_ABORT
WHEN S_aborted
THEN S_STOP
text IF "abort slider's motion and returns to its initial position”
WHEN "slider has aborted”
THEN "slider is stationary"

Fig.7.6 is the XTPTN model for the rule-based descriptions above. The system starts

from states {D_STOP, S_STOP, D_N_OBJ, S_OUT} which corresponds to the initial

marking (p1, p7, P11» P14)- Following are the interpretations of all places of the XTPTN

model shown in Fig.7.6:
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__STOII); Ps:  S_ABORT; p13: D_OBJ;

S
S_OD_ p7: S_OUT: )

; _OUT; D N OBJ: : .
S

p23: S_outed;

p2s: S_aborted;

ID_WW;  p;,: D_ROT: P22: S_inserted: p2s: D_rotated;

t7

p25
S_aborted

S_extracted P5S

Fig.7.6  XTPTN representation of rules for the drum and slider system

7.3.3 Properties of the System

Safety assertions are invariant properties and liveness assertions are eventuality properties.

The safety and liveness requirements for the drum and slider system include:

(a) The state that the slider is in the drum and the state that the drum is rotating must be

mutual exclusive. This safety requirement can be expressed in temporal logic as:

0 (ps = —p12) v O (p12 = —P3) (7.12)
O (ps = —p12) vV O (p12 = —p4) (7.13)

(b) The state "the object in drum is ready and slider is allowed to insert into drum" and the

state "slider is out of drum and drum is allowed to rotate” must be mutual exclusive.

This safety requirement can be expressed in formula as:

O (p7 = —p13) vV O (p13 = —p7) (7.14)

(c) Whenever event S_decision occurs, if drum is still rotating, then slider should abort its

motion rather than insert into drum. This safety requirement can be expressed as:

O[(p2 A P12 A P21) = OPsl (7.15)
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(d) If slider is in state S_OD_INS, then either the state (flag) D_OBIJ (i.e. the object in
drum is ready and slider is allowed to insert into drum) or the state (flag) D_N_OBJ

(1.e. the object in drum is not ready and the slider is not allowed to insert into drum)

must hold such that slider can decide to insert or abort its operation in order to avoid

collision. This safety requirement can be expressed in temporal logic as:

Clpz2 = (p13 v p14)] : (7.16)

(e) Whenever the object in drum is ready and slider is allowed to insert into drurm, thén

eventually slider will insert into drum. This property can be expressed as:

O(p13 = ©p3) (7.17)

(f) Whenever the slider aborts its motion then eventually it will insert into the drum.

C(ps — ©p3) (7.18)
7.3.4 Verification of the System Properties

Safety properties must be hold during all the system executions. In the proof of the
asserted safety properties, the important token invariance theorem presented in Chapter 2
will be used. The initial marking of the net shown in Fig.7.6 consists of one token each at
slider and drum, representing the initial state of the two processes, and two tokens at
communication states, representing the initial states for the communication. For the net
shown in Fig.7.6, the following system dependent axiom and inference rules can be
obtained:

System dependent axiom:  p1 A P7A P11 A P14

System dependent inference rules:

1. piA=p2= O (p2A—p1)
P2 A P13 A P21 A —P3=> O (p3 A P2 A P13 A —P21)
D3 A P22 A P4 A —p14 = O (P4 A P1a A —P3 A —P22)
D4 A P23 A —ps A =p7=> O (P5 A P7A —P4 A TP23)
Ps A paa A —p1 = O (p1 A —Ps A —1P2a)
D2 A P14 A P21 A —P6=> O (P6 A P14 A —P2 A —P21)
D6 A Pas A —p1 = O (p1 A —P6 A —P25)

pi1 A p7A —p12= O (P12 A 7P11 A —p7)
A =p13 = (P11 A P13 A P12 A —P14A —P26)

O 00 3 O L B W N

P12 A P14 A P26 A P11
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(1)
2)
3)

(1
(2)
3)
(4)
(5)
(6)
(7)
(8)

)

(1)

Proof of property (7.12) 0O (p3 = —p12) v O (P12 = —p3)

O (=p3v—p12)v O (=p1pv—ps)  from (7.12) by 0—=A & —p v A
0O —(p3 A p12)
The loop C = {

from (1) by logical operators (v,A) and tautology

P3, 13, P4, t4, p7, 17, P12 t12, P13, t2} shown in Fig.7.6 contains
only one initial token in p7 and satisfies the following requirements:

1) Vte C,}othl:ItomCl,
i) Vpe C, (ep U pe) c C.

According to the token invariance theorem presented in Chapter 2, this means that

mutual exclusion between ps3 and py; is guaranteed. This shows that (2) is true.

This proof also shows that properties (7.13) and (7.14) are true because:

1) all places in C are guaranteed to be mutual exclusive by the theorem;
i1) places p4 and p; required to be mutual exclusive in (7.13) are included in C;

111) places p7 and py3 required to be mutual exclusive in (7.14) are included in C.

Proof of property (7.15) O[(p2 A p12 A p21) = O pg)

P1 A P7A P11 A D14 by system dependent axiom

P11 A P7A —p12= O (p12 A —p11 A —p7) from (1) by inference rule-8

p1 A =p2 = O (p2 A —p1) from (1) by inference rule-1

P2 A P12A P14 from (1), (2), and (3)

no inference rule can be applied under (4) unless pa1 or pe 18 tokenised

P21 by the occurrence of event S_decision
P2 A P12 A P14 A P21 from (4) and (6)

the only applicable inference rule under (7) is the inference rule-6 which yields:
pz/\pl4/\p21,\ﬁp6=>0(p6/\p14/\—1p2/\—xp21) from (7) by inference rule-6

C[(p2 A P12 A P21) = O pé) from (7), (8) by temporal reasoning

Proof of property (7.16) O[p2 = (P13 V P14)]

Consider the following two sets of places and transitions:
Cy = {p1, t1, P2, t2, D3, B3, P4 4, P, 15}
Cs = {t6, P14, t12> P13, 2, P3, 13}
C; and G, satisfy the following requirements:
1) Vte Ci,[-thi|=ll‘°ﬂCi!
11) Vpe C;, (ep U pe) € Ci wherei=1,2
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(2)

3)
(4)
(5)
(6)

Since each set only contains one token initially, the mutual exclusion between any

two places in Cy or C; is guaranteed according to the token invariance theorem.

P2 — —p3 by mutual exclusive property of C;
—p3 = (P13V P14) by mutual exclusive property of C,
P2 = (P13 V p14) by (3) and (4)

Olp2 = (P13 Vv p1a)] by temporal reasoning

Proof of property (7.17) O(p13 — Op3)

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)

P1 A P7A P11 A P14 by system dependent axiom |
Pi1 AP7A 7P12= O (P12 A =p11 A —p7)  from (1) by inference rule-8
P26 by the occurrence of event D_rotated
P12 A P14 A P26 A =P11 A P13 = (P11 A P13 A P12 A —P14A —P26)

from (1) to (3) by inference rule-9
the only applicable inference rule under (1)-(4) is the inference rule-1 which yields:
P1A —=p2= O (p2 A —p1) from (1) by inference rule-1
no inference rule can be applied under (1)-(5) unless po; is tokenised
P21 by the occurrence of event S_decision
the only applicable inference rule under (1)-(6) is the inference rule-2 which yields:
P2AP13AP21A—P3=O(p3A—P2A—P13A—P21) from (4) to (6) by inference rule-2
O(p1z — ¢ p3) from (1)-(7) by temporal reasoning

A similar procedure can be used to prove property (7.18).

7.3.5 Time Analysis of the System

Although the safety properties such as no collision between the slider and the drum have

been guaranteed on the model, it is still an undesirable system behaviour if the abortion

occurs. Is it possible to specify timing constraints for each state in order to avoid abortion?
Based on the assumption that the drum always starts rotating immediately whenever it is

enabled, we have the following timing analysis .

To ensure that the slider always inserts into the drum again rather than aborts its insert

operation after it comes out of drum, the time durations associated with the states

{S_OD_WW, S_STOP, S_OD_INS, D_ROT} modelled by places {ps, p1, p2, p12} need

to satisfy:

[ Time(pys) < Time(ps) + Time(p1) + Time(p2)
{ where Time(p;) stands for the time duration which (7.19)

| is consumed by state modelled by pi.
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By inspecting the net model shown in Fig.7.6, it is seen that abortion will occur from the
initial marking (state) M if the following relation (7.20) holds:

Time(p; + py) < Time(p;,) < Time(ps + p; + py) (7.20)

Note that (7.20) satisfies (7.19). To overcome this problem, the following two methods
can be considered:

1) By introducing an extra place p and an extra transition . Place p 18 put into the initial
marking (state) and p; is taken out from the initial marking (state). For transition ¢, p is
its input place and p, is its output place. Transition ¢ is associated with timing constraint
<Time(p), Time(p)>, e.g., the state modelled by place p is forced to wait for Time(p)
time units before 7 occurs. The relation between Time(p) and other places are:

Time(p;,) < Time(p) + Time( p;) + Time(p,) (7.21)

2) By putting ps rather than p; into the initial marking such that the initial marking M is
defined as Mg = {ps, p7, P11, P14}, and set the TURT o (ps) = Time(ps) (see Chapter
4). In this case, if timing constraint (7.19) is imposed, then abortion can be avoided
because place pi3 (i.e. state — "object in drum is ready and slider is allowed to insert
into drum") has been tokenised (true) whenever transition t, is enabled after event

S-decision occurs.

It is known that the cycle performance of slider is determined by timings associated with
following places {p1, P2, P3» P4» Ps}. Timing constraint (7.19) shows that the timings
associated with {p1, p2, ps} depend on the timing associated with pj, which means the
cycle performance of slider cannot be independently improved by only changing the slider
behaviour associated with the states modelled by {p1, p2, ps}. However, it can be shown
that the cycle performance of slider can be improved independently by changing the (slider
behaviour) timings associated with (states modelled by) ps and p4 if we can prove

following two properties:

(g) Whenever places ps and py; are tokenised, no transitions except the transition t (i.e.
inference rule-3) can be fired (applied) whatever other places are tokenised. This

property can be expressed in temporal logic as:

O[(p3 A p22) = O p4l (7.22)
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(h) ~ Whenever places ps and p,3 are tokenised, no transitions except the transition t4 (i.e.

inference rule-4) can be fired (applied) whatever other places are tokenised. This
property can be expressed in temporal logic as:

Ol(p4 A p23) = O (ps A p7)] (7.23)

Proof of property (7.22) O[(ps A ppy) — O pal

(I) Pt AP7APILADI4 by system dependent axiom
(2) p7Ap11 = Op12 from (1) by inference rule-8
(3) p1 = 0p, from (1) by inference rule-1

(4) no inference rule can be applied under (1) to (3) unless P21 Or pog 1S tokenised by
the occurrence of event D_rotated or S_decision. The occurrence of event
D_rotated (i.e. pys is tokenised) yields:

P12 A P1aAPp2s = OPp11Ap1z  from (1) to (3) by inference rule-9

(5) no inference rule can be applied under (1) to (4) unless p21 1S tokenised by the
occurrence of event S_decision. The occurrence of event S_decision (i.e. p21 18
tokenised) yields:

P2 AP13A P21 = Op3 from (1) to (5) by inference rule-2

(6) no inference rule can be applied under (1) to (5) unless py; is tokenised by the
occurrence of event S_inserted. The occurrence of event S_inserted yields:

(7) p3 APp11APp2 from (1) to (6)

(8) the only applicable inference rule under (7) is the inference rule-3 which yields:
p3 A P22 = OP4A P14 from (7) by inference rule-3

(9) Ol(p3s A p22) = O p4l from (8) by temporal reasoning

A similar procedure can be used to prove property (7.23). By combining properties (g)

and (h), we can have following property (1):
®) Olps — (—ps 1 p7)] (7.24)

Properties (g) to (i) above imply that when slider is inside of drum (i.e. p3 or pg4 is
tokenised), no places (i.e. p1, p2, ps» and p1o) specified by timing constraint (7.19) can be
tokenised until slider comes out of drum. This means that the timings associated with p3

and p, are irrelevant to the timing associated with pjo. Conversely, it indicates that the

operations associated with states modelled by p3 and p4 (i.e. the insertion and withdraw

within the drum) can be improved independently from the point of view of slider

performance.
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7.4 Flexibility of Rule-Based Formalism

7.4.1 Introduction

The generation of a functional requirements for a real-time control system is a continuing
problem. Even if a system is designed 10 be totally reliable and well structured and
completely meets the user requirements, it still likely requires change during its lifetime.
Changes may be caused by a better understanding of the processes controlled by the
system, the need for improved performance, changes in the behaviour of the external
environment, and technical advances that result in changes in the physical system
configuration [White and Lavi 85]. When changes are made in the system operating rules,
the problem of maintaining complete, consistent, and correct system functional
requirements will grow. In this section, it will show how the rule-based approach make

the enhancement of the amended user requirements easier.
7.4.2 Extension of the Slider and Drum System

For the drum and slider system, suppose we want to consider a third mechanism, a
“loader” component, whose function is to put or load an object into the drum, which can
only be done when the drum is stationary. It is assuming that the drum has at least two
slots on arbors for holding objects and at the beginning no objects are in any of the arbors.
The rule-based approach provides an easy way for including such an extension because it
has the important advantage of incrementabity in building the functional requirements. To
put the "loader" component into the drum and slider system, it is not necessary to consider
the whole system. For example, since the "loader" component is independent of the slider,
it is not necessary to consider the slider when the functional requirements of "loader” is
elicited. Consideration of the loader and the drum shows that it is necessary to introduce
several rules to describe the functional requirement for the "loader” component and modify
the relevant rules of the drum. Since there is no shared resource between the drum and the
loader, the synchronisation between them can be described using the typical message-
passing mechanism. That is, two communication states for the co-operation between the
drum and the loader are needed comparable to those for co-operation between the drum and

the slider. The following are the steps of elicitation for the extension.

A. Component: Loader
B. Action associated with loader: {loading}
C. States associated with loader: {L_STOP,L_LOAD}
where L_STOP loader is stationary
L LOAD load object into drum
D. Event L_loaded object has been loaded into drum
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Communication states between drum and loader:

L_AVAI
L_LOADED

drum is stationary and empty arbor is available for loading;
drum is stationary and empty arbor has been loaded by loader;

The rule-based functional requirements for the loader and the changed part of drum are
defined as:

Synchronisation between drum and loader:

R1%: IF L_STOP AND L._AVAI
THEN L_LOAD

text IF "loader is stationary" AND

"drum is stationary and empty arbor is available for loading"
THEN "load object into drum"

R2': IF D_STOP AND S_OUT AND L. LOADED
THEN  D_ROT
text IF "drum is stationary" AND
“slider is out of drum and drum is allowed to rotate" AND
"drum is stationary and empty arbor has been loaded by loader"
THEN "rotate drum"

Loader:
R3": IF L. LOAD
WHEN L _loaded
THEN  L_LOADED AND L_STOP
text IF "load object into drum"
WHEN "object has been loaded into drum”
THEN "drum is stationary and empty arbor has been loaded by loader" AND

"loader is stationary”
Drum:
R4’ IF D _ROT AND D_N_OBJ
WHEN  D_rotated;
THEN D_STOP AND D_OBJ AND L_AVAI

text IF "rotate drum" AND
"object in drum is not ready and slider is not allowed to insert into drum”

WHEN "drum has rotated"

THEN "drum is stationary" AND
"object in drum is ready and slider is allowed to insert into drum" AND

"drum is stationary and empty arbor is available for loading"
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The XTPTN model for the extended System is shown in Fig.7.7 in which the definitions of

duration for places and enabling intervalg for transitions are omitted. It can be seen that the

slider part in Fig.7.7 is still the same as that in Fig.7.6. The extended system starts from

|
16
p6 p2 ‘ ‘ S_decision
t pl4 D_rotated
v () p2s
17 11 ¢ S_erted pIs p31
A O 13
pas >0 Q)
S_aborted S outed v L_loaded
tS P
Np m©® mOm
p23
p24(_) t4 p7 p16
S_extracted PS5 o )@ >

p1s: L_AVALI p1s: L_LOADED; p3;: L_STOP;  p3p: L_LOAD
Fig.7.7 XTPTN model for extended drum and slider system

7.4.3 Properties of the Extended System

The properties for the extended system include:

Q) O (p12 = — p32) v O (p32 = =1 p12) (7.25)
k) Olp15 = < piel (7.26)
M Clp11 = < p12} (7.27)

Property (7.25) means that whenever the drum is in rotating states, the loader must not be
in loading state and vice versa; (7.26) states that if an empty arbor is available for loading it
will eventually be loaded, and (7.27) states that if the drum is stationary then it will
eventually rotate. These new properties can be proved using the techniques discussed in

this chapter; details of the proofs are included in the Appendix D. Again, significant use is

made of the token invariance technique, particularly to prove the mutual exclusion; this

technique is considered to be one of the powerful proof techniques associated with nets

[Rozenberg and Thiagarajan 87, Murata 89, Manna and Pnueli 92].
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Summary

This chapter demonstrated the application of a rule-based formalism and SBDM for eliciting

the functional requirements of real-time process-control problems and their analysis. It has
been shown that:

- the SBDM method can be applied to identify elements of a rule-based schema,

the rule-based schema can be used as system behaviour description language,

the relationship between rule-based schema and Petri net models of rules leads naturally
to the synthesis of a Petri net solution,

- the formal method (Petri net theory and temporal logic) can be used to verify the
properties of systems.
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Chapter 8  Conclusion and Future Research

8.1 Conclusions and Contributions

The aim of this thesis is to contribute to the wider use of formal techniques in £h6 modelhng
and analysis of real-time process-control systems, particularly of PLC systems, in their
developments. SFC [IEC848 88], a variant of Grafcet which was developed in an
industrial environment, has become one of the most widely used discrete event models in
control industry. SFC is used in this thesis because it has achieved a level of maturity and
acceptance and has been used in a wide variety of control applications as a software front
end. Furthermore, the international standard IEC1131 [IEC 93] in which SEC has been
chosen as the discrete mathematical model (with few changes) for real-time process-control

system development has been one of the stimuli for this research.

In Chapter 2, a detailed discussion of today's practical methods within the category that
focuses on both states and events was presented. From Chapter 3 to Chapter 5, this thesis
has been primarily concerned with the investigation of Grafcet and its variant SFC. The
Grafcet model was investigated first in Chapter 3. The scope of the investigation was from
the definitions of basic elements such as events and conditions, to detailed consideration of
its firing rules. Although Grafcet was shown to be a powerful model due to its peculiar
firing rules, such as the simultaneous firing rule and the permitted implicit dependency, a
problem arises due to implicit dependency. Methods to solve the implicit dependency was
proposed. To make implicit dependency explicit in Grafcet, an inhibitor arc Grafcet was
defined. With the help of inhibitor arcs, an algorithm to eliminate the implicit dependency
was given and its correctness was proven. Within an inhibitor arc Grafcet, the

simultaneous firing rule for a class of Grafcets has been shown to be a simplification rather

than a fundamental restriction.

SFC models were investigated in Chapter 4. Firstly, SFC was discussed in various

aspects such as timing, qualifiers, and evolution rules. Then, based on the discussion, a

formal definition of a unified set of evolution rules
ution rules is necessary for both industrial implementation and SFC

cribed in SFC using developed

for SFC was presented. This formal

definition of evol

analysis. In order to formally analyse the design des

analysis techniques, an extended Petri net model was defined which forms the basis for the
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contents presented in Chapter 5. Finally, the transformation method from SFC to the
extended Petri net model was defined. In Chapter 5, the problem of how to analyse the
properties of an SFC design modelled using extended Petri nets was discussed. It was

shown that reachability graph, trace theory, net proof, and timing analysis techniques could
be used to evaluate system properties.

In view of the increasing importance in the industrial world of system development based
on Grafcet and SFC, particularly in controller developments, the lack of a standardised
software development formalism is a significant handicap. In Chapter 6, a rule-based
approach to capture the functional requirements from the real-world systems has been
proposed. The rule-based approach is natural, easy to use and can be integrated with the
development of real-time process-control systems. The rule-based approach allows the
system designer to easily elicit the functional requirements and to prove the correctness of
the captured functional requirements with respect to the safety requirements. The rule-
based approach also enjoys the important advantage of incrementality. By this we mean
that if, after developing a functional description, a designer suddenly realises that the
functional requirement is incomplete, he or she can always rectify the functional description
by adding one or more missing functional requirements as additional rules in an incremental
fashion. To assist the rule-based development approach, a method called SBDM (System
Behaviour Driven Method) was proposed in Chapter 6. Via XTPTN and temporal logic,
the formal verification techniques to prove the correctness of the rule-based functional
requirements, instead of allowing only graphical editing and simulation, was also described
in Chapter 6. The adopted approach draws on evidence of investigations to Grafcet and
SEC models, the literature and a case study of a real-time control system in industry. The
applications of this rule-based approach together with the method SBDM and the formal

verification techniques were presented in Chapter 7 through two real-time process-control-

system examples.
8.1.1 Advantages of a Rule-Based Approach

A number of important characteristics were identified for real-time process-control systems

in Chapter 1. These characteristics are now examined in a comprehensive fashion to

summarise the strengths for rule-based approach and the SBDM method proposed in this

thesis.

(1) Environment

Real-time process-control systems must keep up with their environments [Lin and Burke

92]. Tt is known that the static rule formalism is suitable to describe the state-based causal
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behaviour of a computer system but not suitable to describe the stimuli (such as events)
coming from the behaviour of a physical system under control. This arises because of the
difference between an event and a state and a corresponding deficiency of describing the
effect of an event on the state transition in a static rule formalism. The event-based rule
proposed in this thesis provides a precise means to describe the system behaviours which
are both state-based and event-driven. Abstractly speaking, the static rule formalism can
only describe "what" to do but not "when" to do. However, the event-based rule
formalism enriches the static rule formalism such that "when" to do can be precisely
described via the enhanced rule structure. "When" is very important in real-time process-
control systems because it reflects the effects that the physical system under control (i.e.,
the environment) has on the computer system.

(2) Timing

By inspecting the definition of rule constructs, it can be seen that the timing is not
quantitatively specified in the rule-based formalism. However, if each action 18
decomposed into a "software pvart" associated with the computer system and a "mechanical
part” associated with the physical system under control, then timing can easily be
embedded into the rule-based formalism by associating a duration with each computer
system action and imposing a time interval on each event generated by the physical system.
After such an enhancement, the rule-based description can still be modelled by the XTPTN
because the time duration associated with each action in a rule can be modelled by the delay
defined for places in XTPTN and the timing interval imposed on each event can be
modelled by function y defined for transitions in XTPTN.

3) Concurrency

The rule-based formalism provides a means to describe concurrent behaviour because each
rule is defined based on local states rather than global states. Each local state describes the
behaviour of one of the system components. The state transition specified by a rule is
normally triggered by an event associated with one system component. It is the very nature

of a real-time process control system that many components behave in a parallel manner.

4)  Safety

Safety properties are a set of invariant assertions which are expressed as temporal formulas
in the propositional linear time logic (LTL) in this thesis. The rule-based functional
requirement descriptions can be represented as a XTPTN model with capacity K(p) = 1 for
each place p. The XTPTN can serve as a temporal logic model of a system. Thus,
temporal Petri net verification techniques developed by Sagoo and Holding [90, 91] can be
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used to determine if the XTPTN is a model of the logic formulas (and by implication, that
the safety properties hold in the functional requirements described by the rules). If the
verification determines the formulas true, then the safety properties hold in the XTPTN
model and also in the rule-based functional requirements.

(5) Size and Complexity

The rule-based formalism provides a hierarchical approach to elicit the functional
requirements from the real world system by its sequential and parallel decompositions.
Like Statecharts [Harel 87], the sequential and parallel decompositions defined for rules

support top-down refinement and bottom-up clustering.

(6)  Maintainability

As mentioned at the beginning of this chapter, rule-based approach has the important
advantage of incrementality. That is, the rule-based approach supports incremental
construction of functional requirements. Incrementality is a very important feature for
system enhancement which has nicely been shown in Chapter 7 through the enhancement
of the drum and slider system. The rule-based approach explicitly describes dependency
and independency, this advantage supports maintenance as well because ripple effect
analysis can be performed much easier based on explicit representation than based on
implicit representation. Ripple effect analysis is one of important activities in maintenance

after a change 1s made to a system.

The rule-based approach also has a number of other desirable properties: it has a uniform
and complete mechanism for describing the behaviour of physical processes from the point
of view of the computer system; it is executable and computationally universal; it is not
only state-based but also event-driven with a natural Petri net representation; it is amenable
to formal analysis; and it permits straightforward descriptions of given and required

behaviours.
8.1.2 Disadvantages of a Rule-Based Approach

Rule-based formalism is not a complete modelling language, it only provides an approach.
Many details about the action and event cannot be specified just by the proposed rule
formalism. Although the details of most components do not need to be specified at
functional requirement level, some components do need to be fully specified during this
stage. Rule-based formalism lacks an appropriate means such as data variables and

functions to describe them.
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8.1.3 Major Contributions
The major contributions of this research described in this thesis are:

(1) An evaluation of Grafcet model and a method to make implicit communication in
Grafcet explicit.

2) A comparative study between SFC and Petri nets and a formal definition o‘f the
firing rules for SEC. |

(3)  Anextended Petri net model and a mapping from SFC to the extended model.

4) A rule-based approach and a system behaviour driven method (SBDM) for real-time
process-control systems in functional requirement elicitation.

(5) Utilisation of these formal techniques (Petri net theory and temporal logic) to
support the analysis for both SFC and rule-based descriptions.

6) Tlustration of the techniques by application to two examples from industrial

demonstration machines.
8.2 Future Work

A number of areas for future research are identified as a result of the work developed in this

thesis.

(1) An immediate extension to this work is that a high level description language is needed
for describing the behaviour of system. Many operations associated with actions and
variables involving conditions and events cannot be specified precisely by the rule-based

formalism. Investigation of a formal production rule language is recommended.

(2) Further experimentation is required to determine whether the rule-based formalism and
SBDM method proposed in this thesis could provide useful, cost effective support for

functional requirements elicitation during early controller developments.
(3) A set of software tools supporting SFC analysis and rule-based formalism are needed.

Based on such a software supporting environment, either SFC analysis or rule-based

software development can be proceeded automatically or semi-automatically.
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(4) Another extension of this work is that the further application of formal methods in the
verifications of real-time process-control system designs when other languages such as
FBD and ST are considered. In this aspect, the investigation of predicate logic rather than
propositional logic may need to be considered because practical applications of temporal
logic and of Petri nets require first order concepts in general [Reisig 88b].

(5) Finally, further research may need to explore the combination between partial order
semantics, especially the Interleaving Set Temporal Logic (ISTL) [Katz and Peled 90], and
Petri Nets. For this further research, the verification of properties of Petri nets may be
considered to perform based on trace theory [Mazurkiewicz 87] rather than sequential firing
sequences as in [Suzuki and Lu 89, He and Lee 90, Sagoo and Holding 90].
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Appendix A

Concurrent Set Algorithm for a Class of Petri Nets

After generating the reachability graph, the concurrent set for each place can be obtained by
following formula:

Vpe P:CS(p) = (UM - {p} (A.1)
M,eRMy) AM,(p)# 0

However, for a special class of Petri nets the concurrent set for each place can be calculated

directly. This class of Petri nets satisfy folowing two requirements:

1) they are safe (1-bounded) nets, i.e. the number of tokens in each place does not
exceed 1 for any marking reachable from My;
ii) they are marked graphs, i.e., each place has exactly one input transition and

exactly one output transition.

That is, the Petri nets belonging to this class are safe (1-bounded) marked graphs.

Definition Marked graph (Murata 89]
A marked graph (MG) is an ordinary Petri net such that each place p has exactly one input

transition and exactly one output transition, i.e.,

(Vp € P) [lepl = Ipel = 1], where P is the set of places (A,2)

An developed algorithm to calculate the concurrent set for each place of this kind of Petri
nets will be presented in this appendix. Following is an important theorem related to

concurrent sets of places for safe marked graphs.

TheoremA.1l: Inheritance Property
Let PN = (P, T, F, My) be a safe marked graph, r € T be a transition and CS(p) be

the concurrent set of place p € ez. Then,

v p’ e (M CS(p)l = p’ e CS(p”), where p”c 1o (A.3)

peEet

175 Appendix



To prove this property, it is necessary to prove that:

Vp'e [M CS(p)] = IM € RMy): [TIM(p)] #0 A M(p") #0 (1)
peEer p € er
Proof:
Let us assume that;

—3M € RMy): [IIM(p)] #0 A M(p’) #0 _ (2)

pEer

then, without losing generality, we have:

Ip1, pyeor: —AM € RMg): M(py) # 0 A M(p2) 0 AM(P) 20 (3)

That 1s,
VYM’, M” € R(My):
M@)20AM@P)#0= M(p,)=0 4)
and  M"(p)#0AM(p)#0=M"(p;) =0 (5)

The relationship between M” and M” can be one of following cases:

1) M” e RM’) v M’ € RIM”) (6)
i) M” ¢ RIM') vM’' ¢ R(M") (7)

Let us consider disjunct M” € R(M’) of (6) first. When M’ is reached from the initial
marking My, clearly the transition ¢, where py, p; € et:, cannot be fired under marking M’
because there is no token in p,. Since each place p € P has exactly one input transition and
one output transition, p is still tokenised when M” is reached from M’. This conclusion is

contradicted with (5) derived based on the assumption, which shows (1) true. A similar
procedure can be used to show that disjunct M" € R(M”) of (6) is contradicted with (4) as

well.

Now, let us consider disjunct M” ¢ R(M’) of (7). From (4) and (5) we have:

381, 8, € T': Mg[6;>M’, Mo[6,>M” (8)

where, 5] = f11t12---Lips 62 = I1l2..-Ixq

Let Ord(r) represent the ordinal number of transition # in Oy or &. For example, Ord(t,;)=7
and Ord(#;5)=5. Note that different firings of the same transition are labelled differently in

firing sequences.
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To prove the assumption (2) false, it is necessary to prove that:

M e RM) A IM™ € RIM"):
M"(p1) # 0 AM”(p) 0 A M (p") %0 ©)
and  M™(p)) =0 AM”(p3) 20 A M™(p") 20 10)

Only (9) will be proved here (similar procedure can be used to prove (10)). After M is
reached from My, if p” ¢ My, then based (A.2), (4), (5), and (8), we can find a t, € 52
and a t,y which satisfy:

i) pre€te ATk >X [ty € oA pre ] (11)
i) Jp e o, M(p)=0] (12)
1i1) petye A—3Im>y[tyn€ 62 Ay =ty;] (13)

Note that Ord(t,,) # Ord(t,x ), otherwise, (7) will not be true because, based on (A.2), the
marking M” has been reached from M” when p’ is tokenised. Also, a place p satisfying ii)
will exist, otherwise (7) will not be true as well because, by firing ,; under M’, a marking
M” in which p; is tokenised can be obtained. ‘

Case-1:  Ord(t,y) > Ord(z )
Let us construct a new sequence 83, denoted as 83 = 1,01, .1,®, based on the sub-

sequence 8 =fyily...Ixx...py Of &7 in such a way such that each 1, e &3 satisfies the

following requirements:

i) there exists a transition 1,; € 6 which is the (i)th transition in 6 (from left to right)
whose occurrence is not covered by 6y;

ii) For each transition f,, € 8, if the occurrence of #,41s not covered by 9; and
Ord(f2,)<Ord(t; ), then there exists a k < j such that £, € d A 1,00 = 1.

Based on following conditions:
i) Vieh=1ed;

i) lepl=Ipel =1;
111) M0[52>M”.

we can get the conclusion that 03 is a feasible firing sequence under marking M’

Otherwise, we can derive following contradictions:

cither i) 3n®e 8, 3p € on® [Ipel > 1];
or ii) &, is an infeasible firing sequence from the initial marking.
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Let M'[83>M, where 83 = 1,M01,@,_t,®), According to the properties of f2x and 2y
specified by (12) and (13), we have:

MP1) #0 A M(pa) #0 A M) £0 (14)

The similar procedure can be applied for the case-2, where Ord(t,y) < Ord(z,, ). Thus, a
contradiction is derived from (14). Similar result can be obtained for the case of p’ € My,
by constructing §3 in following way:

if eri € 53 Zp, & 17;®
then o =1p117...Ix

else o =l'21t22...t2x...[2y

All the contradictions show (1) is true.

Algorithm of Concurrent Set for 1-Bounded Marked Graphs
Vie T,Vpe P RY%:=0, CS(p) =0
Vpe M, CS%p):=M,-{p}

1:=0;
Repeat
1:=1+1;
Vie T,Vpe P
R;:=R_; CSi(p):=CSH(p);

[ b
Foreachre T
IF CSi(p) # @, for each p € et /* to consider enabled transition only */
then R; = R; UM Csi(p)] /* to consider the inheritance property */
peEel
For each p € (te)
CSi(p) :=CSi(p) UR; U e - {p}
/* if lre] <1, thenre - {p} = &, otherwise te - {p} #@. */
/* Note 'te - {p}'is used to deal with the splitting situation */
Vp ' e CSi(p)
If pe CSI(p) /* to consider the symmetric property */
then CSi(p") := CSi(p") U {p}
Until Ri=R " and CSi (p) = CS(p), for each 1€ T and each p € P.
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Appendix B

Proof of the Deadlock-Free Property
of the Traffic Control System

The following is the proof of Property-3 for the traffic light control system in Chapter 5.
To show Property-3 is true, it is necessary to prove that the net shown in Fig.5.7 is live
(i.e., for any transition ¢ of the net, it is possible to ultimately fire 7, no matter what marking
has been reached from the initial marking My).

The net shown in Fig.5.7 (see Fig.B.1) is a marked graph according to the definition given
in Appendix A. A marked graph can be viewed as a marked directed graph, where arcs
correspond to places, nodes to transitions, and tokens are placed on arcs [Rozenberg and
Thiagarajan 87, Murata 89]. For example, the net shown in Fig.B.1 (Fig.5.7) can be
drawn as the marked directed graph shown in Fig.B.2:

Fig.B.1 Copy of Fig.5.7

Fig.B.2 The marked directed graph representation of Fig.5.7
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The firing of a node (transition) in a marked graph consists of removing one token from
each incoming arc (input place) and adding one token to each outgoing arc (output place).
If a node is on a directed circuit (or loop), then exactly one of its incoming arcs and one of
its outgoing arcs belong to the directed circuit. This means that if there are no tokens on a
directed circuit at the initial marking, then this directed circuit remains token-free.
Conversely, if a node is never enabled by any firing sequence, then by back-tracking
token-free arcs, one can find a token-free directed circuit. Based on these analysis, the
liveness of a marked graph can be characterised as follow theorem [Rozenberg and
Thiagarajan 87, Murata89].

Theorem A marked graph is live iff the initial marking Mg places at least one token on
every directed circuit. O

Now, let us look at the marked graph shown in Fig.B.1 in which three directed circuits
exist:

C1 = {p1, P2, P3, pa}

C2 = {p2, p3, P4, P10, P6> P7, P8, Po}

Cs = {ps, ps, P7, P8}

Each directed circuit C; satisfies #(C;, Mg) = 1 (1 =1, 2, 3), where #(C;, M) denotes the
total number of tokens on C;. Thus, the net shown in Fig.5.12 is guaranteed to be live

(i.e., there is no deadlock in it).
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Appendix C

The Theorem of Mazurkiewicz about
Traces and its Proof

Following is the proof of the theorem about traces used in Chapter 5. Before presenting
the proof, two propositions are needed to present first. \

Let X = (A, D) be a concurrent alphabet.

Proposition-1 If o =g |1, where o and [ denote strings over X, then ® is a
permutation of L.

Proof: In the definition of =g relation, ab is a permutation of ba; if |1, @1 are permutation
of 1y, Wy respectively, then L) is a permutation of Pow,; finally, composition of

permutation is a permutation. OJ

Proposition-2 Let 1, @, be strings, €1, € be symbols, e; # e;. If wje; =5 wrey,
then e, e, are independent and there is a string @ such that w; =5 we,, O =5 we;.

Proof: Assume i€ =5 7€), €] # €2. Applying twice the cancellation rule we get wi\e,
=y (p\e;; denote wi\e, by w. By the same rule we get ; =5 (Wr\e)e; =y ey, and oy =y
(w1\ep)e =5 weq. Thus, since w€] =5 W€, WEre] =y We1€y. By the cancellation rule
e-re] =y eje,, which proves independency of ey, e,. O

Theorem YV 01,0 € A <>y = <>y iff [01]y =[]y

Proof by induction w.r. to the length of ;. If @ = ¢ the assertion of the theorem is
obviously true, since the only trace equal to the empty trace is empty and the only d-graph
isomorphic to the empty d-graph is also empty. Let now ®; = [L1e for a string 1 and
symbol e;. Assume ®; =g W7. Thus, [Lje] =5 0 W, cannot be empty, hence W, = [ye,
for a string |1, and symbol e;. We have then [11€1 =5 ze; and by Proposition-2 either e; =
e, and |1 =5 W, or there is a string L such that Ly = [ley, Lo =5 leg and eg, e, are
independent. In the first case <[>y = <W»>y by induction hypothesis and <p;e;>5 =
<M,e,>s because e) = e;. In the second case ey, e; are independent , hence <ieje>y =
<pese; >y by the composition definition of d-graphs. Since by induction hypothesis <>y
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= <Her>y and <[>y = <lej>y, we have <|je;>y = <Hzep>y. Thus, in both cases
<Hie1>y = <2e2>F, 1e. <M1>y = <Wp>y.

Assume now <>y = <>y = {. Since { is not empty, strings ®;, w; are also not empty
and there are strings |1, [p, and symbols e, e such that ®; = pje;, 2 = Woep. Thus,
<Uie>y = <Hzerx>y. If e; = ey, <Ui>r = <Uo>y and, by induction hypothesis, |1 =5 U».
It implies that [l1e; =5 ey, If e # ep, d-graph { contains two maximal nodes labelled
with e; and e;. Remove both these nodes from {; let W bea string such that <>y is
isomorphic to the resulting d-graph. Thus, <peje;> = { = <pese;>. Clearly we have
<pe;>y = <>y and <Uex>y = <U1>y. By induction hypothesis Lle; =5 s and Le; =y I,
hence peje; =5 [oer and pese; =5 pieg.  Since by definition of trace congruence Lejer =5
Lezer, we have lhep =5 ey, i.e., 0=y ®p, which completes the proof. O
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Appendix D

Proof of the Properties for Extended
Drum and Slider System

The following are the proofs of properties required by the extended drum and slider system -
which was shown in Chapter 7. '

For the net shown in Fig.7.7, the following system dependent axiom and inference rules
can be obtained:

System dependent axiom:  ps A P7A P11 A P14 A P15 A P31

System dependent inference rules:

P1A —p2 = O (p2 A —p1)

P2 A P13 A P21 A —P3 = O (P3 A —P2 A P13 A —P21)

P3 A P22 A —Pa A P14 = O (Ps A P14 A —P3 A —P22)

P4 A P23 A —ps A —p7= O (Ps A P7A —Pa A —P23)

Ps A P2aa A —p1 = O (P1 A —Ps A —p2a)

P2 A P1aA P21 A —ps= O (P6 A P14 A —P2 A —P21)

P6 A Pas A —p1 = O (P1 A —P6 A —P2s)

P11 A P7A P16 A P12 = O (P12 A P11 A —P7 A —P16)

P12 A P14 A P26 A —P11 A —P13 A P15 = (P11 A P13 A P15 A P12 A —P14A —P26) -
. P15 A P31 A P32 = O (P32 A =p15 A —P31)
. P32 A P27 A P16 A —P31 = O (P16 A P31 A —P27 A —P32)

O 00 2 O 0 A W RN

,_.,._.
— O

Proof of property (7.25) O (p12 = — p32) vV O (p3s2 = — p12)

(1) ] (—|p12Vﬂp32)\/ O (ﬂp32\/ﬂp12) from (725) by (P—)}\. = 0V A
(2) O —=(p12 A P32) from (1) by logical operators (Vv,A) and tautology

(3) The loop C = {p12, 12, P15, 21, P32, 122, P16, 11} shown in Fig.7.7 contains
only one initial token in pys and satisfies the following requirements:

i) Vie C, letnC| = ltenC| (D.1)
i)  Ype C,(spupe)cC. (D.2)
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According to the token invariance theorem presented in Chapter 2, this means that
mutual exclusion between p;; and p3; is guaranteed. This shows that (2) is true.

Proof of property (7.26) O(p15s = Opie)

For this property, we need consider the following two sets of places and transitions:

C1 = {p12, 12, P15, 121, P32, 122, P16 t11); C2 = (P31, t1, P32, t22)
Since C and C; satisfy the requirements (D.1) and (D.2) described above and each set
only contains one token initially, the mutual exclusion between any two places in C; or Cy
1s guaranteed.

(1) p15s— —p32 A —p1s from C,

(2)  —p32— p3 from C;

(3)  p15— (P15 A P31 A —P32 A —P16) from (1) and (2)

(4) pi15sA P31 A —p32= O (P32 A P15 A —p3;) from (3) by inference rule-10

(5) p27 by the occurrence of event L_loaded
(6)  P32AP27A—P16A—P31=0 (P16AP31A—P27A—P32) from (3)-(5) by inference rule-11
(7) O (p15 > < pig) from (1)-(6) by temporal reasoning

Proof of property (7.27)  O(p11 — <p12)

For this property, we need consider the following four sets of places and transitions:
C1 = {p12, iz, P15, 215 P32, L2, P16 t11); C2 = {p11, t11, P12, 12)
C3 = {p3, 13, P4, t4, P7, t11, P12, t12, P13, 12}
C4 = {Pps, ts, P1, U1, P2, t2, P3, 13, P4> L4, P, 17, L)
Since each Cj (i=1, 2, 3, 4) satisfies the requirements (D.1) and (D.2) described above and
each set only contains one token initially, the mutual exclusion between any two places in

each Cy is guaranteed.

(1) p11— —p12 from C,

(2) —p12— (P15V P32 V P16) from C,

(3)  ((p15v p32) — < p1s) from property (7.26)

(4) —p12— (P13vp3V paV p7) from C3

(5) p13 = <p3 from property (7.17) (see Chapter 7)

(6) p22 from (5) by occurrence of event S_inserted

(7) p3ApP2A—Ps= O(psA—p3A—pr) from(4)-(5)and Csz by inference rule-3
8) p23 from (7) by occurrence of event S_outed
(9) parp23A—psA—p7=0 (psAp7A—psr—Pp23) from (7)-(8) and C4 by inference rule-4
(10) p11 = < (P11 AP16APT) from (1)-(9) by temporal reasoning

(11) p11ApP7AP16~A—P12=0 (P12A—p7A—P11A—P1s)  from (10) by inference rule-8
(12) O(p11 — © p12) from (10)-(11) by temporal reasoning
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