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Summary

This research is concerned with the development of distributed real-time systems, in which
software is used for the control of concurrent physical processes. These distributed control
systems are required to periodically coordinate the operation of several autonomous physical
processes, with the property of an atomic action. The implementation of this coordination
must be fault-tolerant if the integrity of the system is to be maintained in the presence of
processor or communication failures.

Commit protocols have been widely used to provide this type of atomicity and ensure
consistency in distributed computer systems. The objective of this research is the
development of a class of robust commit protocols, applicable to the coordination of
distributed real-time control systems. Extended forms of the standard two phase commit
protocol, that provides fault-tolerant and real-time behaviour, were developed.

Petri nets are used for the design of the distributed controllers, and to embed the commit
protocol models within these controller designs. This composition of controller and protocol
model allows the analysis of the complete system in a unified manner. A common problem
for Petri net based techniques is that of state space explosion, a modular approach to both the
design and analysis would help cope with this problem. Although extensions to Petri nets
that allow module construction exist, generally the modularisation is restricted to the
specification, and analysis must be performed on the (flat) detailed net.

The Petri net designs for the type of distributed systems considered in this research are both
large and complex. The top down, bottom up and hybrid synthesis techniques that are used
to model large systems in Petri nets are considered. A hybrid approach to Petri net design for
a restricted class of communicating processes is developed. Designs produced using this
hybrid approach are modular and allow re-use of verified modules.

In order to use this form of modular analysis, it is necessary to project an equivalent but
reduced behaviour on the modules used. These projections conceal events local to modules
that are not essential for the purpose of analysis. To generate the external behaviour, each
firing sequence of the subnet is replaced by an atomic transition internal to the module, and
the firing of these transitions transforms the input and output markings of the module. Thus
local events are concealed through the projection of the external behaviour of modules.

This hybrid design approach preserves properties of interest, such as boundedness and
liveness, while the systematic concealment of local events allows the management of state
space. The approach presented in this research is particularly suited to distributed systems, as
the underlying communication model is used as the basis for the interconnection of modules
in the design procedure.

This hybrid approach is applied to Petri net based design and analysis of distributed
controllers for two industrial applications that incorporate the robust, real-time commit
protocols developed. Temporal Petri nets, which combine Petri nets and temporal logic, are
used to capture and verify causal and temporal aspects of the designs in a unified manner.

Key Words:  Real-Time Control Systems, Petri Nets, Atomic Commit Protocols, Temporal
Petri Nets.
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Chapter 1  Introduction

1.1 Introduction

A major field of application for computers is in the control of physical processes. The
computer system is often embedded within its controlled environment. Such systems are
termed real-time computer systems. The essential requirement of these real-time systems 1s
to provide:

1) alogically correct response to its environment, and
11) a timely response to an input generated by its environment.

Thus the correctness of the systems response to its environment depends on both the logical
correctness of the results it produces and the timing correctness. The consequences of a late

response are used to classify real-time systems as either hard or soft [ Krishna & Shin 97 .

Soft real-time systems are required to meet deadlines, however failure to meet some
deadlines will not result in some catastrophic event in the environment, but performance may
be degraded below what is considered acceptable[ Krishna & Shin 97 ], such as banks'
automated cash dispensers or multimedia applications. While hard real-time systems are
ones where failure to meet a deadline may result in a catastrophic system failure, these
include embedded systems that control their environment such as aircraft, nuclear reactors

and chemical plants. In this thesis the control of hard real-time systems will be considered.

Since hard real-time systems need to provide a service which is both timely and highly
available in order to ensure a safe response to the environment, they must be developed using

techniques which can provide a high degree of reliability.

Reliability has been defined as the ability of a system to perform its intended function for a
specified period of time under a set of environmental conditions [ Leveson 86 ]. However,
the performance and reliability requirements of a system are often at cross purposes to one

another [ Levi & Agrawala 94 ], by making conflicting demands upon the system.

Hard real-time computer systems are often employed in the control applications, where the
computer is interfaced directly to a process and is dedicated to the control of that process. A
major use of such real-time computer controlled systems is in safety critical applications, due

to this it is necessary to consider reliability and safety aspects in the design and development
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of such systems. The type of fault likely to occur and their effects on the system must be

considered. The type of fault can be classified as either:

i) Design faults, which are introduced into a system such as errors in design, poor

component selection or software coding errors.

ii) Operational faults, which may arise during system operation due to permanent or transient

component failures.

Since the development of computer systems for control purposes there has been a need to
increase their reliability. Work in this area began in the 1950's and 1960's, and concentrated
on improving the reliability of the hardware used through the duplication and triplication of
components and sub-systems [ Avizienis 85 ][ Meyer & Pham 93 ]. However, as computer
systems and their applications became more complex, this complexity in itself became an

obstacle to reliability.

In the 1970's there began research into faults arising from the specifying, designing and
implementation of the software used[ Avizienis 85 ]. In response to this, increasing the
reliability of a computer system can be approached in two main ways, through fault
avoidance and through fault tolerance[ Anderson & Lee 81 ]. Research into these two
approaches has continued as computers are more widely used in safety-critical applications,

increasing the need for high reliability [ Levi & Agrawala 94 ].

Real-time control applications where failures can result in serious consequences include the
control of nuclear power plants, air traffic control monitoring systems, patient monitoring in
hospital intensive care units, military and defence systems[ Leveson & Harvey 83 ]. In these
type of applications software errors have led to costly failures, such as the Space Shuttle
malfunction in 1982, the lethal doses of radiation given to patients under going cancer
therapy in Canada in 1986 [ Meyer & Pham 93 ] and the death of a worker due to an error in

the software that controlled a production robot [ Ostroff 92 ].

1.2 Research Background

Fault avoidance can be achieved through the use of structured and formal methods in the
design and analysis of software controlled real-time systems. Structured methods have been
applied to produce precise specifications and designs of hard real-time systems [ Harel 87 ][
Shaw 92 ] and are widely used in industry. Formal methods are used for the verification of

the correctness of designs, and rely upon the use of an underlying mathematical model.
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Fault avoidance 1s an approach involving methods to remove all known or anticipated faults
in the specification, design and development of computer systems. This approach aims to
provide failure free performance through an error free design, and will always involve extra
effort and cost in the specification, design, testing and validation of a system [ Meyer &
Pham 93 ].

Fault avoidance entails the use of design methodologies and the selection of techniques in
order to avoid the introduction of faults during the design of a system [ Anderson & Lee 81 ].
These include the use of proven technology, the use of structured methods to aid the design
of large, complex systems and provide the ability to verify the correctness of designs. The
modelling technique used in design should be able to represent system properties precisely
and unambiguously and should allow a range of properties about a system to be proved. The
technique should provide a mathematical rigour that inspires confidence in the proofs

achieved.

The use of fault avoidance entails increased costs, in [ Heitmeyer 94 ] the application of
formal methods to the specification and verification of real-time systems is discussed and the
conclusion reached that "formal methods are still not robust enough for general use, but
necessary for certain applications. e.g. it cost $40M to formally verify 2K lines of code at the
Darlington nuclear facility (where a serious mistake was uncovered), but the cost of an

accident would have been much higher".

The use of fault avoidance as the sole means for preventing software failures is inappropriate,
as it will result in a rigid system with no provision for the occurrence of operational failures.
These can lead to unpredictable delays in system availability, and are a factor especially

important in real-time systems that cannot miss deadlines [ Levi & Agrawala 94 ].

To increase reliability fault avoidance cannot be relied upon alone as no large system can be
expected to be error free, no matter how thoroughly it has been tested, de-bugged,
modularised and verified there will still be residual design faults in the software [ Pham 92 ].
Thus designers of real time systems, especially safety critical systems, must also look for

approaches to hardware and software fault-tolerance [ Kim 89 ].

Fault tolerance involves techniques for the design of systems so that they have the ability to
function in the presence of certain faults. This approach is based on the premise that due to
the complexity of systems, careful design and validation will never remove all operational
faults and systems will always contain some residual design faults [ Anderson & Lee 81 ][

Levi & Agrawala 94 ]. The ability to measure the affect of fault tolerance techniques on the
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reliability of a system has been studied since the earliest hardware fault tolerance approaches

[ Bouricius 71 ] and have been continued with software reliability models [ Littlewood 79 ].

The availability of redundancy in processing or storage forms the basis of mechanisms for
fault tolerance, and as such distributed systems offer a natural framework in which to
implement this redundancy [ Levi & Agrawala 94 ], in fact the use of fault tolerance and
distribution have been said to go 'hand in hand' [ Powell ef «/ 91 ]. Fault tolerant schemes

rely upon redundancy:
1) Hardware redundancy: the use of active or passive replicated subsystems.

11) Software redundancy: the use of active or passive software module replication, combined

with validity checks, self-test programs and watchdog timers.

Techniques for fault-tolerance involve extra cost, due to the replication and redundancy in
software modules and hardware components. However, this extra cost must be weighed up

against the potential cost of the system's failure [ Pham 92 ].

There is an increasing adoption of distributed computer control in embedded real-time
applications. This approach offers increased efficiency through the parallelism of processing
involved. However, the reliability of communication between the components of a
distributed system must be considered as these are essential to its correct functioning. In
real-time systems the key factor is the ability to deliver a response to the environment within
a deadline [ Krishna & Shin 97 .

As the communication overhead involved in distributed systems directly affect the systems
response time, the use of communication systems that provide bounded message transmission
times are required for hard real-time systems. Hard real-time systems that are also fault-

tolerant are termed responsive systems [ Malek 90 ].

In this thesis the term distributed system is used to refer to an interconnected collection of
autonomous computers or processors that communicate in order to achieve a common goal.
For a distributed system, when a processing site or a communication system failure occurs,
fault tolerant techniques should allow the operational sites to detect this occurrence and take
appropriate action (continue processing, initiate safe shutdown). In a distributed database
this action may be to proceed with an operation and to update the failed sites local data when
the site recovers. For the distributed control of a processing plant the appropriate action may

be to initiate an emergency procedure that provides a safe shutdown.
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In this Thesis the coordination of distributed systems is considered with the intention of
developing methods for the software control and coordination of distributed embedded
controllers. These distributed controllers are used to control concurrent physical processes
such as manufacturing machines and processing plants. The loss of coordination in such
systems can lead to costly damage to the environment. Therefore, fault avoidance is required
in the design and development of the protocols used for this coordination. These protocols

will need to be fault tolerant and provide a real-time response.

A protocol is the formalised set of rules that govern communication between the processes of
a distributed system. Various protocols exist for reaching agreement between processes, their
use depends upon the application involved, the type of agreement required, the
communication method used and the required response to failures. The type of agreement

required will depend upon the application involved, such as:

(i) consensus protocols, where a minimum number of processes are required to agree to an
action. These can be used to maintain consistency of replicated data in a distributed database
[ Tel 94 ],

(ii) Byzantine agreement, the agreement of several processes in the presence of malicious or

arbitrary faults [ Lamport et al 82 ],

(iii) approximate agreement, the distributed processes agree upon a real value within a

specified tolerance [ Lynch 96 ],

(iv) clock synchronisation [ Lamport & Melliar-Smith 85 ][ Kopetz & Ochsenreiter 87 ][
Christian 89 ], for synchronising the local clocks of a distributed system within a required

accuracy,

(v) election protocols, where several processes need to reach agreement about which is to

assume a particular role, such as coordinator of a subsequent protocol | Sharp 94 ],

(vi) commit protocols, the agreement of several processes to commit or abort an action, used
in transaction processing [ Bernstein et al 87 ][ Skeen & Stonebraker 83 ] and control

applications [ Hill 90 ].

Transaction processing is used in database systems to maintain consistency, by controlling
access to data. A transaction provides the properties of atomicity, consistency, isolation and
durability, termed the ACID properties [ Sharp 94 ]. A transaction is an example of an

atomic action, which have the following properties:
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1) indivisibility, either all steps in the atomic action complete, or none of them do,

ii) serialisability, all computation steps not contained within the atomic action either proceed
or succeed the atomic action,

iii) recoverability, the external effects of all the steps of an atomic action either complete or

have no effect.

1.3 Aims & Objectives of Research

The aim of this thesis is to investigate and develop techniques for the specification and
verification of distributed real-time control systems. These techniques should provide fault
avoidance. The use of fault-tolerance in designs for such systems is also investigated and

developed.

In choosing an approach for the modelling and analysis of distributed hard real-time systems
certain important features of these systems needs to be taken into account. The distributed
systems involve independent concurrent processes, so the ability to model and reason about
concurrency is required. The interprocess communications used is integral to the design, and
so the ability to model and reason about this is required as the coordination of the system is
dependent upon this. In order to provide mechanisms for fault tolerance it is necessary to
analyse the effect of failures on the system, the ability to include the possible failures types in

the model [ Leveson & Stolzy 87 ] is required.

The use of design and analysis methods that allow the combination of formal and informal
components in a unified manner is recommended. The informality of the graphical approach
providing ease of understanding, and the formal method providing for precise specification
and verification. The approach should include analysis methods which can be used to
determine the consistency and behaviour of the system being modelled [ Peterson 81 ][ Harel
87 ]. The combination of a graphical formalism with a consistent formal logic will allow

formal reasoning about a design.

Petri nets are a powerful technique for the modelling and analysis of distributed and
concurrent systems, as well as offering the basis for a unified approach to the design of such
systems [ Ramaswamy & Valavanis 96 ]. The analysis of Petri nets is generally based on
generating the reachability graph, which involves enumerating the complete state space of a

model.
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However, as Petri nets models of systems increase in size the generation of the associated
reachability graph and its analysis can become a difficult task due to the problem of state
space explosion {Scholefield 90]. There are various approaches to this problem, such as the

use of stubborn sets and the projection of sub-nets behaviours [ Valmari 91, 93, 94 ], reduced

reachability graph through net reductions[ Murata 89 ], or the composition of sub-net

reachability graphs[ Bucci & Vicario 95 .

Petri nets, along with finite state machines, have previously been used in the design and
analysis of commit protocols [ Skeen & Stonebraker 83 ][ Yuan & Jalote 89 ][ Hill 90 ] and
distributed control systems. In this Thesis the Petri nets [ Peterson 81 ][ Reisig 85 ][ Murata
89 1, Time Petri nets [ Merlin & Farber 76 ] and the Temporal Petri net analysis of Suzuki &
Lu [ 89 ] are used for the design of both commit protocols and real-time distributed
controllers. The combination of these techniques yields an approach that offers both an

informal graphical and formal approach required for describing hard real-time systems.

The work presented in this thesis is specifically concerned with:
i) investigating modelling techniques that can be used for the design and analysis of

protocols and distributed real-time control systems.

if) the development of a commit protocol that provides both a real-time and fault-tolerant

response.

iii) developing a modular approach to the design and analysis of the commit protocols, the

analysis method should reduce the cost of state space enumeration.

iv) applying the commit protocol and the modular design and analysis method to two real

world distributed control applications.

1.4 Thesis Organisation

Chapter 2 presents a survey of the various methods used for coordinating distributed systems,
with particular emphasis being placed on the commit problem in distributed real-time control
systems. The inter-process communications employed and the expected types of failure
modes for these systems are also discussed. Several types of commit protocols are presented
and discussed in detail due to their usefulness in these applications, as they can be extended

with deadlines to provide both a real-time response and fault tolerance.

A survey of the techniques that are considered suitable for the modelling of both protocols
and hard real-time systems is presented in Chapter 3. An approach that is applicable to the
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design and analysis of the combination of distributed controller, commit protocol and

communication primitive in a unified manner is required.

Petri nets are identified as a suitable approach to these applications, and their use in the
development and analysis of such systems is described in detail. The combination of this
technique with Temporal logic in Temporal Petri nets is described, as this allows the formal
verification of Petri net designs. The existing approaches to Petri nets design are then

discussed.

In Chapter 4 the commit protocols investigated in Chapter 2 are modelled and analysed using
the Petri net techniques identified in Chapter 3. Petri net models of several commit protocols
are developed and analysed, and existing methods for the application of fault-tolerant

mechanism to these protocols are then investigated.

Fault-tolerant techniques, based on the use of timeout guarded communications, allow the
development of robust real-time commit protocols that are inherently recoverable. The
protocol design is then analysed using reachability based Petri net analysis [ Murata 89 ] and
the Time Petri nets of Merlin & Farber [ 76 ].

A commit protocol design (equivalent to that presented in Chapter 4) is developed using a
hybrid approach in Chapter 5. This approach is based on the top-down refinement of the
basic protocol structure, combined with the bottom-up composition of reusable Petri net
templates. These templates model low level interprocess communications, and are designed

and analysed in isolation using a minimal representation of each modules environment.

The modular templates are based on Valette's well-formed blocks [ Valette 79 ] and their
application shows how they offer both an intuitive approach to the design of the protocols

and reduce the cost of reachability analysis and formal verification.

The composition procedure preserves certain verified properties of each of the templates.
The separate analysis and formal verification of the templates are then used in the analysis of
the commit protocol developed. The design procedure is based on interprocess

communications and is shown to be a natural way of structuring distributed processes.

In Chapter 6 the modular approach to Petri net design and analysis developed in Chapter 5, is
applied to the controllers for two real-time distributed control applications. The distributed
controller designs are composed using Petri net templates of the commit protocols developed

in Chapters 4 and 5.

19 Chapter 1




This allows the application and evaluation of the developed protocols, along with the an
evaluation of the modular design and analysis procedure. The reusable templates of the
protocols offer a natural approach to the composition of distributed processes that coordinate

their actions using message passing communications.

In Chapter 7 the achievements of this research effort are summarised and evaluated. The

contribution made in this Thesis are assessed and suggestions for further work are made.

20 Chapter 1




Chapter 2 Coordination of
Distributed Systems

2.1 Introduction

This Chapter considers methods for coordinating distributed systems. Methods applicable to
real-time control systems are emphasised, as the coordination and control of high-speed
machinery is of prime concern. The coordination of such systems are required to be fault
tolerant and so the failure behaviour of processing sites and inter-process communications are
considered. Commit protocols have previously been used for such applications, and these are
considered in detail, as they can provide both fault-tolerance and real-time response when

extended with timeouts to guarantee deadlines.

Distributed systems and their communication and failure types are considered in the rest of

section 2.1: distributed agreement in section 2.2 and commit protocols in section 2.3.

2.1.1 Distributed Systems

The term distributed systems is used to refer to a collection of physically distributed
processing sites and the communication sub-system by which they exchange information.
Although there is no agreed definition of what constitutes a distributed system the following

definition from [ Sloman 87 ] shall be used in this thesis:

"A distributed processing system is one in which several autonomous processors and data
stores supporting processes and/or databases interact in order to achieve an overall goal.
The processes co-ordinate their activities and exchange information by means of information

transferred over a communication network."

Within this Thesis the autonomous members of a distributed computer system will be
referred to as sites, and these exchange information by message passing via a common

communication network only.

Closely coupled systems are those that communicate via shared memory or direct
connection, and will not be considered as distributed systems within this thesis. On the other
hand Loosely coupled systems execute asynchronously and communicate using message
passing via some communication network. Loosely coupled distributed systems can be

characterised by the following:

]
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1) Modular Physical Architecture. The system should consist of interconnected processing
elements, these may be physically distributed and vary in number during the systems

lifetime.

ii) Communication. The system should communicate by message passing only using a
shared communication system. This communication is by co-operation rather than in a

master-slave manner.

ii1) System-Wide Control. This integrates the distributed autonomous processing units into a

coherent single system [ Sloman 87 ].

Distributed systems are considered as being either static or dynamically reconfigurable. Static
systems have a fixed number of processing sites and application processes. Dynamically
reconfigurable systems are able to support site and application processes that increases and
decrease in number arbitrarily (within limits), in order to provide system flexibility and
availability. An example of the former would be a distributed control system designed
specifically for embedding within the environment to be controlled, where changes are
unlikely. An example of the latter would be a large distributed database system, where

changes in the overall system capacity and number of remote sites is likely.

2.1.2 Communication Model

The Communication network that interconnects distributed sites can be classified according
to how messages are transmitted, 1.e. whether point-to-point or broadcast message
transmission is used. In point-to-point transmission a message is sent {rom one site to its
destination site, possibly via several intermediate sites. In broadcast communications
messages are sent to all sites on the communication network. In this research the use of
point-to-point message transmission via directly connected sites is considered for the target
system. This is applicable to locally distributed processing sites employed in the

coordination of real-time distributed control applications.

Two basic types of point-to-point communication need to be considered, these are
synchronous and asynchronous communication. The difference between the two is in the
sender process. In synchronous communication the sender process does not continue
execution until the message is received by the receiving process, thus achieving process
synchronisation. The sender process using synchronous communications can have
knowledge of whether the receiver process actually received a message. Protocols using this
type of communication can be considered immune to message loss. Chapter 4. considers

protocol design in the presence of processor and communication failures.
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In asynchronous communication, the sender transmits its message and continues 1ts
processing immediately, there being no synchronisation required between the (wo processes.
This allows processes using this type of communication greater opportunity for concurrent
operation. The type of communication used is important for real-time applications:

i) Synchronous communication networks allow active sites to communicate within a known

bounded time.

ii) Asynchronous communication networks do not guarantee any bound on the time needed

to communicate between two sites [ Christian 93 ].

Interprocess communication for real-time distributed control applications should be stable
and fault tolerant. The protocols used should provide robustness for the system, this 18 a
combination of reliability and availability, the ability to provide an acceptable service in the
presence of failures. The use of synchronous point-to-point communication, forms an
excellent basis for such systems as messages cannot be lost or received out of order, as can

happen using asynchronous communication and local networks.

2.1.3 Failure Modes

In this section the type of failures that can occur in distributed systems are considered, these

include failures affecting processing sites and communication networks.

A failure is the possible result of an error in the system [ Anderson & Lee 81 ] and the
consequences, depending upon the application, may be costly in financial terms and injury to
personnel [ Leveson 86 ]. The following terms are defined as they are used in the rest of the
research:

i) failure - a failure has occurred when the delivered service no longer complies with the
system specification (an agreed description of the system's expected function), [ Laprie 85,
92 ]. This corresponds to the manifestation of an error [ Levi & Agrawala 94 ].

ii) error - an error is that part of a systems state that is liable to lead to a failure[ Laprie 85 ].
iii) faulr - a fault is the cause or origin of an error, [ Laprie 85 ], or has the potential of

generating an error [ Levi & Agrawala 94 ].

Faults are often classified according to their duration, as either transient or permanent:

i) transient fault - this is present in a system for only a limited threshold duration, a recurring
transient fault is termed an intermittent fault [ Anderson & Lee 81 ]. The life span of a
transient fault is significantly shorter than the systems recovery time [ Laprie 90, 92 ][ Levi
& Agrawala 94 ].

ii) permanent fault - this is present in a system for longer than the intermittent fault

threshold, and is a potential source of errors for the systems life span [ Levi & Agrawala 94 1.
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Transient and intermittent faults can be treated as noise in a system, while permanent faults
require some maintenance procedures to remove them [ Anderson & Lee 81 ][ Levi &
Agrawala 94 ]. Although a fault must first manifest itself as an error in order to be detected,
a system may contain potential or residual faults which never lead to a failure of a system,

but have the potential to do so depending on the system state reached.

Techniques for fault tolerance are commonly based on the use of redundancy in processing or
storage. This includes the use of replicated information in distributed databases to increase
data availability in the presence of site failure. The use of distributed architectures often
provides the redundancy required to implement fault tolerant schemes [ Powell er al 91 ][
Levi & Agrawala 94 ].

Faults in a distributed system may originate in the processing sites or in the communication
network, and may be due to either a hardware (H/W) or software (S/W) failure. Thus fault
tolerance in distributed systems is more complex than for single processing site case. Due to
the requirement for co-operation between sites there are two potential sources of errors, the
communication network and the processing sites. Distributed fault tolerance requires further
techniques to take account of the potential errors due to this need for communication and co-

operation between sites.

Processing site failures are considered to be less frequent than communication failures, but
for safe operation of distributed systems they must be considered. Typical communication
links are subject to various forms of unreliability and error-free communication cannot be
realistically assumed. Assumptions must be made about the kinds of faults that can occur in
order to create a reasonable model of the proposed systems behaviour. A fault model is one
which describes the kinds of failures that are anticipated, and is used in order to analyse the
behaviour of a system in the presence of such failures. A fault tolerant distributed system is

one which can operate in the presence of such faults.

2.1.3.1. site failure

The complete failure of a processing site, whether due to H/W or S/W faults, can result in
system deadlock. The term deadlock refers to the blocking of shared resources in a
distributed system. The detection of such situations, along with the avoidance of problems

that may lead to them, is required for a fault tolerant distributed system [ Levi & Agrawala 94

].

In [ Powell er al 91 ] the behaviour of failed sites is classified as either:
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i) Fail Uncontrolled (FU). Processing sites do not posses any local error detection and thus
can: (a) omit or delay sending messages, (b) send extra messages, (c¢) send messages with
erroneous content, or (d) refuse to receive messages. This type of behaviour may involve
arbitrary actions being performed by a failed site. This is also termed Byzantine failure, as
dealing with these types of failures is similar to solving the Byzantine generals problem [
Lamport er al 82 1. The Byzantine generals problem concerns a distributed system with
faulty processing sites which are unpredictable, that is entirely inconsistent and possibly

malicious.

ii) Fail Silent (FS). Where a site stops processing completely. Sites that exhibit this type of
failure possess extensive self-checking mechanisms, such that any messages sent are
guaranteed to be correct. Thus sites within a distributed system detect errors locally and shut
down before they are propagated to others. The replication of S/W components locally

serves for error detection and recovery.

In Bernstein er al [ 87 ] the term fail-stop is used to refer to the same type of behaviour in
the presence of site failure. A site is considered to be either operating correctly or not

working at all. This type of site never performs incorrect actions as it fails only by stopping.

Most processing sites fall somewhere between these two classifications, by offering some

level of fault tolerance without being fully fail silent.

In dynamically reconfigurable distributed systems, detection of failed sites is required so that
the system wide control can re-allocate tasks/processes Lo available error free sites. While in
a static distributed system design the detection of faults is required in order to guarantee the
safe behaviour of the system through the correctly operating sites, this could involve the safe

shutdown of machinery.

Where processing sites cannot be guaranteed to provide FS behaviour an interface to the
communication network that provides FS behaviour can be used. FU site are not suitable for
shared communication networks as a failed site may prevent communication between other
sites by 'babbling' or overloading a network. To implement FS sites in the distributed
operating system DELTA-4, each site is split into a computation component, and a
communication component, termed a Network attachment controllers (NAC) [ Powell er al
91 ]. These provide FS behaviour and can be used along with FU processing sites, in order to

provide 'Fail Silent' sites.

The NAC communication component provides error checking of communications, so that

errors cannot be spread to other sites. This is based on the use of hardware self-checking
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techniques. As the communication component ensures a FS site, the computation component
can be either FS or FU depending upon the available host hardware and the criticality of the
task { Powell er al 91 ].

2.1.3.2. communication failure
The communication network which interconnects the sites of a distributed system 1is
implemented as a logical link and constitute a major potential source of error. The failure

modes of which, according to [ Levi & Agrawala 94 ], are:

1) Message loss effects - These can be harmful to the system unless precautions are taken,
e.g. a message which transfers control of a resource from one site to another may cause the

whole system to become blocked if it is lost.

i1) Message duplication effects - In a completely interconnected network a message may be
sent by several routes to decrease the chance of it being lost and increase its robustness to
link failures. However, measures to deal with duplicate messages are required, for example
duplicate messages may increase a counter twice and invalidate the process executing. The
use of idempotent algorithms, where the execution of a sequence of actions result in the same

effect as if it was executed only once, protect against the duplication of messages.

iii) Message de-sequencing effects - If multiple routes for messages are used then the order

of arrival of messages may not be guaranteed.

iv) Modification of the message control - Dynamic network control may change the type of
administration in use, e.g. a change of mode may change the priorities of pending messages

and thus affect the previously predictable behaviour of the network.

v) Bounded transmission time - A process may assume a bound on the transmission time of a
message. This assumption may be extremely important in hard real-time systems, where late

arrival of a message can be as catastrophic as loss of a message.

Communication faults depend upon the kind of underlying communication system used. For
instance, a simple point-to-point link may inject random noise into the data it carries leading
to lost or corrupted messages, but messages if delivered correctly, are delivered only once

and in the correct order sent [ Fischer 90 ].

The problems of message corruption should also be considered. A message may become

corrupted at either end of/or during transmission, and may lead to the receiver taking
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inappropriate actions. This is normally overcome through the use of integrity checks, where

checksums on the message are included as part of the transmitted message.

2.2 Distributed Agreement

In distributed systems replication of resources, in processing or storage, is often used to
increase the overall robustness. In distributed database systems properties of transactions
ensure the consistency of replicated data [ Sharp 94 ], while in distributed control systems the
commit protocol can be used to ensure the consistency of operations [ Hill & Holding 90 ][
Hill 90 ].

2.2.1 Transaction Processing

In distributed database systems the transaction is used to perform the basic unit of work,
such as a 'read’ or ‘write' to a record. Transactions exhibit the ACID properties of atomicity,
consistency, isolation and durability. The transaction mechanism provides both 'failure
atomicity' and 'concurrency atomicity'. Failure atomicity is the property that a database
transaction must either complete or have no effect on a record, even in the presence of
hardware and software faults. While concurrency atomicity is the property that the partial
results of a transaction are not available to other transactions. The commit protocols
developed in this research are based on the two-phase commit (2PC) protocol, which are
adaptations of database transactions CCR requirement (Concurrency control, Commitment
and Recovery), which are the mechanisms that provide failure atomicity. Commit protocols

achieve this by ensuring a consistent distributed decision is reached.

Transactions use locks on data to achieve mutual exclusion, locking schemes can be adapted
to increase concurrency by the use of hierarchical locking. Data objects are locked at various
levels of abstraction. Failures that lead to deadlock are a serious problem in distributed
systems, especially where locking schemas are used. This situation occurs when two or more
transactions are blocked waiting for each other to release locks on resources (data).
Deadlock can be illustrated with the following example from [ Sharp 94 . Transactions T/
and T2 both operate on objects A and B, deadlock occurs when the following order of events
occur:

1) T1 locks A,

i1) T2 locks B,

iii) T1 waits for locks on B to be released,

iv) T2 waits for locks on A to be released.
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To avoid such situations deadlock detection schemes are used to abort transactions once a

deadlock occurs [ Gray 78 ].

In a distributed database system an atomic commit protocol (ACP) is a distributed commit
protocol designed to be atomic. All processes either commit or abort the transaction, thus
ensure the consistency of replicated data. ACPs must satisty the following rules:

ACI1) All processes that reach a decision reach the same one.
AC2) A process cannot reverse its decision once it has reached one.
AC3) The commit decision can only be reached if all processes voted comumnit.

AC4) If there are no failures and all processes voted comunit, then the decision will be to

commit.

AC5) Consider any execution containing only failures that the algorithm is designed to
tolerate. At any point in this execution, if all existing failures are repaired and no new
failures occur for sufficiently long, then all processes will eventually reach a decision [

Bernstein et al 87 1.

2.2.2 Voting Schemes

In a distributed database where copies of the same data object are replicated at several sites,
standard transactions synchronise access to copies of an item by requiring locks to be
obtained on all copies in order to maintain consistency. An adaptation of this scheme is
majority voting which requires a transaction to gather locks on a majority of copies of a

replicated object before performing read or write operations.

A similar but more flexible approach is termed weighted voting. In this scheme every copy is
assigned some number of votes, which may differ, and transactions need to collect a read
quorum (r) of votes or a write quorum (w) of votes in order to access an object. In this
manner access to an object to write can be restricted to one transaction at a time, while access

to an object to read can be made less restrictive [ Levi & Agrawala 94 }.

2.2.3 Clock Synchronisation

The successful co-operation of sites of a distributed system depends upon the systems ability
to understand the functioning of its partners [ Motus 92 ]. In a distributed real-time system
recording the time of occurrence of an event which can be observed from different sites
requires a common time reference amongst the sites. Clock synchronisation is the process of

reaching distributed agreement on such a common time base. This agreement should be to a
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required accuracy known as the synchronisation tightness, which is the amount that local

clocks are allowed to differ from each other while still being considered in agreement.

A distributed real-rime system requires two levels of synchronisation, internal and external, [
Kopetz & Ochsenreiter 87 ]. Internal Synchronisation is the agreement of an approximate
global time base amongst the sites of a distributed system, while external synchronisation is
the synchronisation of this approximate global time base with the external physical time, i.e.
the time in the physical environment with which the system interacts. In [ Christian 89 | it is
noted that maintaining external synchronisation guarantees internal synchronisation, however
the converse is not true as internal synchronisation may be maintained while drifting from the

external physical time.

In general each site of a distributed system has a physical clock (H/W quartz clock) with a
specified drift range in a non-faulty behaviour. It is due to this drift that some form of
periodic re-synchronisation is required. The granularity of a physical clock is the period of
this oscillation and limits the resolution of time measurement [ Kopetz & Ochsenreiter 87 ].
Each site also maintains some form of logical c¢lock , which is based on the value of the
physical clock plus some offset. It is the values of the logical clocks which are adjusted in

order to provide synchronisation [ Lamport & Melliar-Smith 85 .

2.2.3.1. Fault tolerant clock synchronisation.

[ Kopetz & Ochsenreiter 87 ]{ Lamport & Melliar-Smith 85 ][ Pfluegl & Blough 91a, 91b &
92 1[ Pfluegl 92 ] and [ Hoogeboom & Halang 92 ] all address the problem of providing fault
tolerant clock synchronisation. The approaches differ in the algorithms used and the
suggested use of extra hardware [ Kopetz & Ochsenreiter 87 ][ Christian 89 ] and [
Hoogeboom & Halang 92 ]. The following are all factors that can affect clock
synchronisation:

1) Communications delay. One of the main difficulties in synchronising distributed system's
clocks is the unpredictability of communication delays. To overcome this a probabilistic

approach to clock synchronisation is proposed by [ Christian 89 .

The probabilistic method of [ Christian 89 ] is based on an asynchronous message passing
communications network which allows sites to measure the round trip delay of a 'clock value
request’. The assumption is made that the smaller the round trip delay, the smaller the clock
reading error. Replies with a round trip delay greater than a set maximum are discarded to

increase the precision of reading a set of remote clocks.

This is a probabilistic approach in that it does not guarantee reaching rapport with other sites,

unlike the deterministic algorithms of [ Lamport & Melliar-Smith 85 ] and [ Kopetz &
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Ochsenreiter 87 ]. However, it offers a greater synchronisation accuracy when agreement

with other sites 1s reached.

i) Communication failure resulting in missing clock value replies. In [ Pfluegl & Blough
91b ] if the number of clock estimates received in response to a sites request, is less than a
certain threshold, the convergence function returns the local clock value in order to increase
the fault tolerance of the algorithm. In the case where no clock values are received for a
particular site then the estimate is replaced by a unique value nil in the convergence

function.

iii) Byzantine failures resulting in two-faced clocks. Lamport & Melliar-Smith [ 85 ] define
two-faced or Byzantine clocks as clocks that present different values to different sites. The
clock synchronisation algorithms presented in [ Lamport & Melliar-Smith 85 ] are adapted

from algorithms that solve the Byzantine Generals problem [ Lamport er al 82 ].

iv) Physical clock drift. In normal behaviour a physical clock has a specified drift rate, if the

drift rate exceeds this the physical clock/site can be considered to exhibit faulty behaviour.

The sliding window algorithm (SWA) presented in [ Pfluegl & Blough 91a ], can tolerate
bursts of intermittent or transient faults that affect many or all clocks. This is in contrast to [
Lamport & Melliar-Smith 85 ], whose algorithm cannot bring clocks back into synchronicity
once they have passed beyond the boundary of a good clock. Another difference to the
algorithms of [ Lamport & Melliar-Smith 85 ] and [ Kopetz & Ochsenreiter 87 ], is that the

SWA can bring clocks into synchronisation without the assumption of initial synchrony.

2.2.3.2. Clock synchronisation and system performance.

The techniques of [ Kopetz & Ochsenreiter 87 ][ Lamport & Melliar-Smith 85 | [ Pfluegl &
Blough 92 ][ Pfluegl 92 ] and [ Christian 89 | all require an overhead in processing (CPU
Load) and message passing (communications), and as such there is normally inherent in these
techniques some trade-off between synchronisation accuracy, fault tolerance and system
performance. Measures to guarantee fault tolerant clock synchronisation normally effect:

1) The achievable synchronisation accuracy, and

ii) The quality of the service provided by the system.

To decrease the processing overhead and the amount of message passing required, [ Kopetz
& Ochsenreiter 87 ] and [ Christian 89 ] both proposed the use of a subset of sites to perform

the synchronisation task. In [ Kopetz & Ochsenreiter 87 ] the use of a master site in a

distributed system that would maintain the necessary external synchronisation is also
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proposed and the use of a H/W clock synchronisation unit (CSU) is presented, the CSU is an
accurate physical clock designed to provide a high degree of external synchronisation, and
reduce the CPU overhead and network traffic required to maintain synchronisation to less
than 1% of the systems operation.

In the above section it can be seen how several factors need to be considered in order to
achieve this form of distributed agreement (clock synchronisation). Failure assumptions and
the fault model used affect the requirements of the algorithms and their assessment. The
available hardware ( such as the use of fault tolerant clock synchronisation units ), the
underlying communication system ( are there bounds on message fransmission times, can
messages be lost ) and the processing overhead required are all factors that must be

considered when deciding upon the approach used.

2.3 Commit Protocols

The commit protocols developed in this research are based on the 2PC protocol. This is an
adaptation of the database transactions CCR requirements, using only the mechanisms that
provide failure atomicity. The centralised versions of this protocol are static schemes with
pre-designated coordinator and participant processes. The decentralised commit protocol 18
used where any process may initiate a request for commitment. The standard centralised 2PC
is based on a coordinator and a set of participants. The coordinator site, where the transaction

originates, is responsible for orchestrating the transaction.

2.3.1 Blocking Commit protocols

A major distinction in commit protocols can be made between blocking and non-blocking
protocols, which affect the two conflicting properties of consistency and availability for
distributed systems. The relative importance of these two properties will depend upon the

application.

A blocking protocol is one where, due to a site failure, a consistent decision cannot be made
by the active sites until the failed site recovers. In a database this type of transaction will
reduce data availability because any locks on data will be held until the failed site recovers
and the transaction can terminate successfully. This approach will guarantee strong data
consistency between sites at the expense of availability, as other transactions may not be able
to proceed once one transaction has failed. In systems which require high availability, such
as real-time systems, it may be more practical to have temporary inconsistency between sites
in order to make data or resources available. This would allow the required response times to
be satisfied[ Skeen & Stonebraker 83 ].
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The 2 phase commit illustrated below, is a blocking protocol. The centralised form is
detailed, with one site acting as the coordinator, whose job it is to ensure that all sites reach a
consistent decision, and the other site/s as the participant/s. The blocking 2PC Protocol,
offering low availability & high consistency takes the following forn:
1) Coordinator
Phase 1 aready log file is written

ready messages sent to each participant

wait for participants to reply with their votes

Phase 2 when all participants have replied a decision is made
a log file of the decision is created

the decision is sent to all participants

) Participant
Phase 1 wait for ready message
if participant can commit send yes else no

write yes log file or no log file and abort

Phase 2 either commit or abort message is received
write decision log file

execute decision

Blocking protocols are unrecoverable using only local information. Communication with the
surviving sites is required in order for the recovered site to terminate the failed protocol
consistently. Blocking protocols are not considered applicable to real-time systems as sites

do not have bounded recovery times.
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Fig.2.1. Two-phase commit protocol

Fig.2.1. is a finite state machine (FSM) model of the two phase commit protocol. An
informal interpretation of the FSM is as follows; The circles denote the states and the edges
represent the state transitions. The labels associated with the edges and above the bar denote
the reason for the state change (such as a received message) and those below the bar denote
the action that is the result of the state transition (such messages sent). A formal definition of

state machines is given in section 3.2.

The 2PC protocol is the basic commit protocol, the two phases are the voting phase and the
decision phase. During the voting phase one party to the protocol, known as the coordinator
of the commit protocol, asks all the other participants to prepare to commit. If for any reason
the participant is unable to commit then it sends a No vote to the coordinator, otherwise if a
participant can guarantee to perform the outcome requested a Yes vote is sent. During the
decision phase of the protocol the coordinator propagates the outcome of the protocol to all
the participants. If all the participants voted Yes then the commit outcome is propagated. If
any participant voted No then the abort outcome is propagated to each participant that voted
Yes. Each participant of the protocol commits or aborts the effect of the transaction locally

based on this outcome [ Samaras et al 95 .

To tolerate site failures each site keeps a local log of decisions in stable storage for recovery
purposes. In the case of a site failing during a commit protocol, upon recovery the log is
interrogated in order to complete the transition, the coordinator will append a commit/abort
decision record in its log. This is the decision point of the protocol, before this point the

transaction is termed undecided. Participants record their own decisions and the coordinators
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decision in their local logs. The undecided state is where a recovering site has a prepared log

but no decision log [ Triantafillou 96 ].

2.3.2 Non-Blocking Commit protocol

A commit protocol is termed non-blocking if, in the event of a failure, the operational sites
can be terminated without waiting for the recovery of the failed sites. The 3-phase commit
(3PC) and the extended 2-phase commit (E2PC) are both adaptations of the basic 2PC, which

produce non-blocking behaviour.

These protocols provide high data availability, because data is never locked indefinitely
waiting for a failed site to recover. However, there may be temporary inconsistencies
between the failed site and operational sites, while all operational sites remain consistent. It
should be noted that non-blocking protocols generally require about 50% more
communications overhead than corresponding blocking protocols [ Dwork & Skeen 83 1.
However, non-blocking protocols are applicable to real-time applications as all operational

sites can be guaranteed to terminate within a known deadline.

The non-blocking 3 Phase-Commit Protocol offers high availability at the cost of strict
consistency, and takes the following form:

1) Coordinator

Phase 1 start message sent to all participants, and the coordinator enters wait state.
Phase 2 votes are collected, any no then an abort command is sent, else a prepare

to commit message sent. The coordinator enters prepared state.

Phase 3 The coordinator collects participants acknowledgements ack, sends commit

messages and commits the transaction.

1) Participant
Phase | This is as for 2PC, either a yes or no vote is returned to the coordinator after
the start message is received. If no then the participant unilaterally aborts,

otherwise it enters a wait state.
Phase 2 Wait for command abort or prepare to commit, and enter abort or prepared
state is entered. Acknowledgement of transition to prepared state sent to the

coordinator.

Phase 3 The final commit command received to commit the local participant.
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Fig.2.2. Three-phase commit protocol

The 3PC commit is based upon the 2PC with the addition of buffered states in both the
coordinator and the participant. This protocol is non-blocking, but not independently
recoverable (section 2.3.3.). This protocol has the same states for the centralised
implementation and the fully decentralised form, although the decentralised form involves
extra rounds of messages. Decentralised versions of the 3PC that elect leaders are possible,
but inherently more complicated. These require sub-protocols to be invoked, such as election
protocols [ Garcia-Molina 82 ], in order to designate coordinator and determine the last

process to fail.

2.3.3 Independent Recovery in Commit protocols

An important property of commit protocols is independent recovery, which is a property of a
site recovering from a failed state. Independent recovery [ Bernstein e al 87 ] is the ability
of a recovering process to reach a decision consistent with the surviving processes without
communication. The extended 2 phase-commit protocol (E2PC) is a non-blocking version of
the 2PC that can be made independently recoverable, using a prepared state in the
coordinator only. The 2 and 3-phase commit protocols cannot be made independently

recoverable.
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The E2PC protocol offers high availability at the cost of consistency between operational and
failed sites, prior to recovery.

1) Coordinator

Phase 1 starr message sent to all participants, coordinator enters wait state.
Phase 2 votes are collected, any no then an abort command is sent, else commit

message sent, coordinator enters prepared state.
Phase 3 Coordinator collects acknowledgements and commits the transaction.

1) Participant
Phase | as for 2PC, either a yes/no is returned to Coordinator after the ready
received. If no then participant unilaterally aborts, otherwise enters

ready state.

Phase 2 walt for command aborr or commit, abort or commit state entered.
acknowledgement' sent to coordinator, if ‘commit’ received.
Coordinator Participant
request start
——q—-——- start —
start - no
yes

Y yes

- commit
commit

ack

Q) )

ack

Q)

Fig.2.3. Extended two-phase commit protocol
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A protocol that uses independent recovery would be applicable to real-time systems, because
deadlines could be applied as the recovery time of operational sites from a failed transaction
would be deterministic. The effect being that each partition would operate correctly but
independently and achieve consistent states for each partition. This is important for real-time
control as link failures are more likely than processor failure, due to the hazardous

environment for links.

In [ Skeen & Stonebraker 83 ] two theorem concerning independent recovery are given:
Theorem 1) "There exists no protocol resilient to a network partitioning when messages are
lost", as this is a possible situation using asynchronous communications, the use

of synchronous communications would be recommended.

Theorem 2) "There exists no protocol resilient to multiple partitions”.

These theorems were used in [ Hill 90 ] in order to make a version of the non-blocking E2PC
protocol that was independently recoverable in the presence of a single partition, through the

use of timeout guarded communications.

To determine if a protocol can be made independently recoverable it is necessary to examine
the states other parties may occupy when a site fails. If it is impossible to determine the
actions taken by operational sites without extra communication the recovering site may not
terminate consistently and an independent recovery scheme is not possible [ Levi &
Agrawala 94 ].

The scheme for independent recovery proposed in [ Skeen & Stonebraker 83 ] is applicable
to situations where there is a single site failure in a two site system. This restriction on
Skeen's rules to systems with a limited number of sites is due to the system model used,
which assumes the atomic broadcast of messages to all sites. However, the coordinator site
could fail after sending a message to only a partial number of participant sites. This would
result in some participant sites receiving the message from the failed site, while others
timeout the communication. Thus participant sites receiving the messages will have a
different view of the failed coordinator site from those participants who took a timeout

action.

In [ Yuan & Jalote 89 ] a method is presented to overcome the problem of correct protocol
operation with multiple site failures. This scheme uses independent recovery where possible
and communication by recovered sites if independent recovery is not possible. This approach

is based on the use of an exceptional states termed recovery states. A failed site moves to a
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recovery state upon recovery, and if possible performs independent recovery to a final state.
Communication with the operational sites is used when independent recovery is not possible.
A scheme to determine which recovery states are independently recoverable is presented [
Yuan & Jalote 89 ]. This scheme avoids the election of backup coordinators to replace failed
coordinator sites, and the possibility of site failures during termination protocols leading to

the domino effect.

A termination protocol is a recovery scheme that uses voting by the operational sites in order
to elect a new coordinator in the centralised protocol forms, or to reach a consensus decision
in the decentralised form. Protocols that can handle multiple site failures, but are not
independently recoverable, are possible. These protocols use termination protocols in the
event of failures [ Yuan & Jalote 89 ]. These schemes can require many rounds of message
passing between operational sites if further failures are encountered during the voting

procedure.

A method for independent recovery applicable to systems with more than two sites 1S
presented in [ Yuan & Jalote 89 ]. This approach uses two responses (0 timeout on a
communication occurring, either timeout to abort or to commit. This decision is propagated
to all other operational sites in order to maintain consistency. This message propagation by
sites that detect a timeout ensures that all operational sites have the same response (0 a
failure. In the case of a coordinator failure, the number of timeout messages propagated by
participants will be dependent upon the number of messages sent prior to the coordinators
failure. However, in the non-failure case the number of messages sent during the protocol is
unchanged. The variable number of messages sent in the failure case would make this
approach impractical for real-time systems. It should be noted that this approach is only

applicable to systems with a single site failure and no fink failure.

In [ Carpenter 92 ] a distributed serial commit protocol is presented, this is a form of the
E2PC where the coordinator communicates with the participants in a predetermined order.
This allows a daisy-chain structure to be used for the propagation and collection of messages.
Samaras ef al [ 95 ] describe a similar approach with dynamic allocation of
coordinator/participant, called the cascaded coordinator approach, requests are passed from
coordinator to participant to further participants (the cascaded coordinator propagates
messages downstream, and collects responses and sends them upstream). A participant in
this approach does not know if its coordinator is the root of the commit tree or a cascaded

coordinator.
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2.3.4 Extensions to Commit protocols

The performance of the commit protocol has a substantial effect upon the transaction volume
that a database system can support. For transaction processing applications the commit
processing takes up a substantial part of the transaction time. It has been shown that the
commit part of a transaction typically takes a third of the transaction time[ Samaras et al 95
], in distributed systems the relative time is much higher. A faster commit protocol could
improve transaction throughput in two ways, firstly by reducing the duration of each
transaction, and secondly by releasing locks on resources earlier, thus reducing the wait time

of other transactions [ Samaras ef al 95 ].

Samaras er al [ 95 ] present several two-phase commit optimisations that are currently used
in commercial database systems. Optimisations that are intended to improve performance in
the normal case are shown on the left hand side of Fig.2.4. These optimisations are based on
two assumptions:

i) that networks and systems are becoming more reliable,

i) that the need to support high-volume traffic requires a streamlined protocol in the normal

case.
Optimize Commit Process Optimize Commit Process
for Normal Case for Failure Case
< L
High-Reliability Environment Low-Reliability Environment
High-Volume Transactions Low-Volume Transactions

Fig.2.4 Commit performance optimisation for different environments

The 2PC protocol can be optimised according to two different approaches illustrated in
Fig.2.4. The first approach concentrates on reducing the recovery time for failure cases. A
lot of research effort has gone into providing the non-blocking property to commit protocols
under certain failure modes. Extra messages have been added to the basic 2PC protocol in
order to reduce the blocking delay required to resolve the transaction outcome following a

failure.

This approach leads to a slowing down of the normal (non-failure) case in order to prevent

unacceptable delays following failures. The trade-off (between reducing recovery time in
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failure cases at the expense of increasing duration of normal commit operations) may not be
acceptable in a highly reliable environment characterised by high volume transactions. The
other approach is based on reducing the number of messages and/or local processing required
for the non-failure case, sometimes at the cost of greater recovery processing and subsequent

delay for the failure case.

The Optimistic two phase commit (O2PC) protocol [ Levy er al 91 ] is an ACP that is based
on the optimistic assumption that failures are rare. In the O2PC protocol participants after
sending their votes go ahead and commit, instead of waiting for a decision in reply from the
coordinator. This would violate the atomic commitment rules (AC1..4 section 2.2.1) if any
other member of the transaction aborts. However, this i1s overcome by the use of a
compensation transaction which undoes the local effects of a transaction without resorting to

cascaded aborts.

This form of commit protocol is based on the assumption that the probability of O2PC
protocol terminating unsuccessfully is very low. This results in an effective increased
throughput through the early release of locks on data. Compensating transactions are used to
undo the local effects of a sub-transaction, as well as handling situations where there 1s a
requirement to undo the effects of a committed sub-transaction whose results have been used
by other transactions. O2PC along with compensating transactions ensure the eventual

atomicity of transactions [ Levy eral91 ].

In [ Desai & Boutros 96 ] an adaptation of the standard 2PC protocol termed the Prudent two
phase commit protocol (P2PC) is presented. This protocol attempts to avoid aborting
transitions needlessly in the presence of failures, by giving the protocol a second chance to
commit before deciding to abort. The second chance could save the transaction from an abort
result when a transient communication error occurs, this would improve system performance
and reliability. However, the P2PC is still a blocking protocol and is intended for

environments where total failures are rare, but transient errors may be common.

The requirements for the handhing of failures determines distributed databases commit
protocol choice. It is not generally possible to achieve global atomicity in the presence of
failures whilst also preserving complete local autonomy [ Yoo & Kim 95 ]. Three distinct
approaches to maintaining global transaction atomicity in the presence of failures exist:

1) Redo - Where the actions of the failed local part of a transaction (sub-transaction) are
completed by executing a redo transaction that repeats the write operations of the sub-

transaction only [ Bernstein et al 87 ][ Soparkar er al 91 ].

i) Retry - The entire read and write actions of the aborted sub-transaction are repeated.
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i) Compensate - At each site where a sub-transaction of a global transaction committed, a
compensating transaction is run to semantically undo the effects of the committed sub-

transaction. [ Levy er al/ 91 ]

The standard 2PC treats transient communication failure as a catastrophic communication or
site failure, this leads to abort decisions which affect the system throughput and fault
tolerance. Neither the O2PC or the P2PC distinguish between site and communication
failure. Communication failure may cause a message to be lost, the second chance before
aborting offered by the O2PC should compensate for most lost messages. The O2PC is more
resilient to transient failures than standard 2PC, however this is achieved at the cost of
additional rounds of messages and the associated increase in the number of timeouts required.
In [ Desat & Boutros 96 ] it is noted that in the absence of failures the P2PC is equivalent to
the standard 2PC and is suitable for environments with rare communication failures but high
site failures. The design of the P2PC is suitable for environments where the communication

failure rate does not exceed the site failure rate.

The P2PC is suitable for situations where site or communications failures do not occur or the
probability of occurrence is very low. To implement P2PC it is also required that
compensation transactions can be used without cascading aborts throughout the entire system

in a domino effect [ Desai & Boutros 96 ].

The Reliable Two-Phase Commit (R2PC) of Yoo & Kim(95) guarantees fault-tolerant global
atomicity in multi-database systems that do not provide the facility for an explicit prepared
state. The R2PC is used for guaranteeing global data consistency and is not applicable to
systems where communications and total site failure must be tolerated. Late messages and
site failures in the R2PC are handled using timeouts that resuit in local locks on data, the re-
sending of enquiry messages (o determine the protocol outcome and the compensation of
aborted transactions. The uses of compensation protocol, to repeal committed transactions
that need rolling back, is done in a way that avoids cascaded aborts. This is achieved using a
delayed-lock-release on data. The R2PC protocol includes termination and recovery
procedures and is non-blocking due to site failures during a recovery procedure. However,

the R2PC is blocking if a timeouts occurs in the commit state of a participant.
The O2PC [ Levy eral 91 ] uses a compensating transaction to achieve atomicity, and has no

prepared state. This solves the blocking and the delay problem, but the persistence of the

compensation cannot be implemented according to Yoo & Kim [ 95 ].
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The 2PC protocol 1s optimised in VAX cluster transactions, both coordinator and participants
have access to a consistent log during a site failure [ Samaras er al 95 ]. Coordinator
migration is also used to improve reliability by transferring the commit decision to reliable

partners [ Gray & Reuter 93 ].

Triantafillou [ 96 ] attempts to resolve the commit uncertainty of recovering sites for large
scale distributed systems. The non-blocking property is achieved by identifying uncertain
data and marking them with an uncertain flag. This data is then dealt with in either a
pessimistic (uncertain data treated as aborted) or an optimistic (uncertain data are treated as

committed) manner.

Pre-transaction images are kept to allow recovery from incorrect assumptions. The notion of
quorums are also used, where a transaction can be committed if performed on a specified
quorum size of sites, where some sites fail to complete. The probability of Blocking is
reduced by replicating each sites recovery log to a predetermined group of replicated sites.
The extra cost of appending the log is high as an extra two phases are now required, in effect
making this somewhat similar to the four-phase commit protocol. However, this append log

operation may itself cause blocking [ Triantafillou 96 ].

2.3.5 Responsive Commit Protocols

Communication protocols which perform recovery from any abnormal state to a normal state
are called self-stabilising protocols [ Gouda & Multari 91 ], these protocols offer a recovery
function without the requirement for exception handling routines when loss of coordination

occeurs.

Real-time recovery functions are required for continued processing of distributed real-time
systems when faults occur in the underlying communication system. Systems such as these
that posses both real-time and fault-tolerant performance are termed responsive systems [
Malek 90 ]. Kakuda et al [ 92, 94 ] define responsive protocols as ones where responsive

systems technologies are applied to communication protocols.

In [ Kakuda er al 94 ] responsive protocols are presented where recovery to a normal state
from an abnormal one in real-time is included. The abnormal state can be caused either by a
delay in communications, transfer error of messages or transient failure in the communicating
processes. The maximum time taken for recovery from abnormal to normal state using these
protocols is computed using an extended finite state machine model (section 3.2.) of the
protocol, and real-time recovery is verified by comparing the maximum recovery time with a

deadline given by the protocol design requirements.
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Deadlock can occur when a participant to a protocol is waiting indefinitely because of some
site or communication failure. This can be overcome where synchronous communication are
used by the setting of timeouts [ Hill & Holding 90 ][ Hill 90 ]. However, the number of
timeouts required to implement this for 2PC and E2PC protocols are quite large, as every

input and output must be bounded with a timeout mechanism.

Fault-tolerant commit protocols offer two basic forms of fault tolerance, forward and
backward. The occurrence of a failure during the execution of a transaction, but before the
final commit phase, should result in the transaction being aborted. This should return the
system to the state it was in before initiating the transaction and is a form of backward error
recovery. When a failure occurs before the end of a transaction, but after the commit phase
has been reached, the transaction must ensure that all actions are completed. This latter case

is a form of forward error recovery.

2.3.6 Commit Protocols in Real-time Control

The addition of timeout guarded communications and recovery procedures can yield commit
protocols that are applicable to real-time applications. Several timed commit protocols have
been presented [ Kopetz & Grunsted! 93, 94 ][ Davidson er al 89 ] and [ Gheith & Schwan
89 ] in the literature, although all of these rely to some degree on the support of the real-time

implementations of the underlying communications system.

A version of the standard 2PC adopted for real-time environments is presented in [ Davidson
et al 89a ], with particular emphasis on real-time distributed control applications in [
Davidson ef al 89b ]. The problem of coordinating all or nothing behaviour under timing
constraints is called timed atomic commitment for hard real-time control applications. These
are where components execute concurrently on distributed sites in order to perform a control
task. This approach extends the outcome of standard 2PC protocol (commit, abort ) with an

exception state which can provide a safe alternative to an inconsistent decision.

The standard 2PC only requires parties to eventually commit or abort, there is no explicit
deadline by which decision and action must be completed. Timed correctness criteria require
intermediate deadlines on the phases of the protocol , Dv, Dd, Dp shown in Fig.2.5. The use

of these intermediate deadlines allows early detection of faults.
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Fig.2.5. Messages in a CT2PC Protocol

This notion of timed atomic commitment (TAC) has an element of a look-ahead decision.
An atomic action does not proceed unless there is knowledge, that in the absence of failure, it
will be able to complete the required action by the deadline. An understanding of the time
taken to complete the task is used in the commit decision. This is as opposed to the
simplistic approach of enclosing an atomic commitment statement in a deadline. Davidson ef
al [ 89a ] state that it is impossible to place a deadline on a traditional atomic commitment if

processor failure or message loss can occur.

This approach allows the outcome of timed atomic commitment to be either:

i) all actions complete within the deadline,

i) no actions are performed, or

iii) the system is in an exceptional state indicating that a fault has caused timing constraints

to be violated.

The notion of a global clock is used to measure the deadline for commitment (D) ( the skew
of this clock (the difference in local times) is used in the calculation of timeout values). The
Timed Correctness Criteria (TCC) are:
| TCC1) all parties reach the same decision.

TCC2) decision is commit only if all parties vote yes.
TCC3) at D, the parties local state either reflect the completed action or is EXCEPTION.
TCC4) in fault free case,

a) all parties each decision,

b) if parties vote YES then decision is to commit

¢) all parties complete the decided upon action by D,

d) a parties local state reflects the parties completed action.
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To achieve TAC, remporal scopes [ Lee & Gehlot 85 ] are used to express time dependent
behaviour. A temporal scope consists of a start time and a deadline, optional statements that
are to be performed in this interval, and an optional exception handler. The TAC approach
relies on an operating environment that provides bounds on message delays, clock

synchronisation, and guarantees resources.

In CHAOS!t [ Gheith & Schwan 89 ] real-time transactions are used at the heart of a real-
time operating system. The invocation of real-time atomic transactions form the basis for
programming embedded real-time applications. The transactions used are objects with

guaranteed timing, consistency and recovery attributes.

2.4 Conclusion

In this Chapter methods for coordinating distributed systems were considered in section 2.1.,
and the 2PC based protocols were identified as applicable to this research. The basic forms
of this protocol were then described in section 2.2. The main features of the commit

protocols considered are summarised in Table 2.1.

Protocol 2PC 3PC E2PC 02PC P2PC R2PC CT2PC
Blocking v X X X v timeout X
Non-Blocking X v \ v X during v
recovery
Independent Recovery X X V X X X X
Timeoul X X v V v v V
Transaction Volume - - | Low High - - Low
Consistency High Low High Low Low High V
Availability Low High High High High Low High
Use of Sub-Protocols X ﬂigﬁntra X V v V V
Optimised for success - X X v X X X
Optimised for failure - v v X v v v

Table 2.1 Summary of commit protocols

In section 2.3 the 2PC optimisations for database systems were evaluated in terms of the
reduction in network traffic, reduction in the number of logs written and decreased resource
lock times. However, these factors can all effect reliability. The responsive commit protocol

optimisations were of particulate interest, as these provide the fault tolerance and real-time

response required.
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The 2PC protocol was emphasised as it is becoming the standard for distributed transaction
processing [ X/Open 91] [ ISO 92]. Therefore extensions to 2PC protocol were investigated

as this atomic protocol forms the basis for those used in used in industry and academia.

The type of communication used affects protocol design and resiliency to failures, as noted in
[ Skeen & Stonebraker 83 ]. Commit protocols cannot be made resilient to multiple
partitions or message loss, this is equivalent to the Byzantine generals problem [ Lamport et
al 82 ]. Therefore protocols that can tolerate a single site or communications link failure are

considered, as link failures are expected to predominate in distributed real-time control.

The commit protocol is required for the coordination of distributed control systems with hard
real-time constraints. The failure of coordination in such systems can lead to hazardous
states resulting in damage to the systems environment. Site and communication failure can
lead to these coordination failures. These types of failures must therefore be anticipated in
the design of mechanisms for the control of distributed systems, and mechanisms used to
provide fault tolerance. Techniques that provide fault avoidance must also be employed in

the design

The available techniques for modelling and analysing functional and timing properties of
commit protocols and distributed control systems are investigated in Chapter 3. The
approach chosen should be unified, allowing the commit protocol to be modelled and

analysed as an integral part of 1ts target system.

The E2PC protocol is investigated and a responsive version is developed in Chapter 4, using
the modelling and analysis techniques considered in Chapter 3. This commit protocol is
considered suitable as it can be made non-blocking , as well as subject to real-time deadlines

when enhanced with timeout mechanisms.
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Chapter 3 Techniques for Modelling
Distributed Systems and
Protocols

3.1 Introduction

The following Chapter presents a survey of techniques suitable for the modelling, design &
analysis of distributed systems and protocols, and evaluates their suitability for application to
real-time systems. Particular emphasis is placed on techniques that can offer a unified
approach to both the controllers, for the high speed machinery of interest, and the underlying

Interprocess communication protocols that define their interaction.

This Chapter investigates techniques currently used for modelling real-time systems in an
attempt to choose the technique most suited (o this research work. These include State
Machine based techniques [ Ostroff 89, Shaw 92 ], Petri Net based techniques [ Peterson 81,
Reisig 85, Murata 89 1], Temporal Logic based techniques [ Manna & Pnueli 92, Jahanian &
Mok 86, Ostroff 89 1, process algebras [ Hoare 85 ][ Milner 89 ]. This chapter also
investigates techniques that have been used particularly for the treatment of protocols [
Suzuki er al 90, Turner 93, Ardis er al 96]. These include SDL [ CCITT 921, LOTOS [ ISO
89b ] and ESTELLE [ISO 89a ], within protocol engineering these techniques are generally
referred to as Formal Description Techniques (FDTs) [ King 91 1. Each approach has it own

intended scope of application and is applied accordingly.

In particular this Chapter concentrates on the fields of Petri nets, Temporal Logic and the
combination of both termed Temporal Petri nets [ Suzuki & Lu 89 Jl He & Lee 90 ]. These
techniques were chosen as they are applicable to distributed control systems that are
complex, concurrent, quality-critical and safety-critical. Quality-critical Systems are ones
that require high dependability and reliability, but whose failure js not normally dangerous.
This type of system includes telecommunication systems and financial applications [Turner
93].  Safety-critical systems are computer control systems employed in the
telecommunications, medical applications, defence, nuclear power industry and aerospace

applications whose failure can lead to damage to its environment or injury to human beings.
The following two properties are described at this point as they are important behavioural

properties of the systems under consideration and are referred to often in the survey. Safety
Properties and Liveness Properties [ Lamport 77 ], are described as follows:
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i) Safety Properties: These dictate those actions which a system must not perform.
ii) Liveness Properties: These dictate those actions which a system must perform.

Informally, safety properties state that bad things will not happen, while liveness properties
state that good things will happen. A more formal treatment is presented in [ Alpern &
Schneider 85 ]. The term [liveness is also used in this Thesis to refer to a structural property
of a Petri net model [ Peterson 81 ] in section 3.3.3.3, but is always distinguished when used

In this sense.

3.2 State Machines
Finite state machines (FSMs) are formally defined as an ordered quintuple [ Hopcroft &
Ullman 79 ]
M=(S,1, 6,qp.F) 3.1)
(a) S, a finite non-empty set of states;
(b) I, a finite non-empty set of inputs;
(¢) &: SxI — S is the state transition function;
(d) gp € S, is the initial state; and

(e) F < S isthe set of final states.

Thus FSMs are machines without outputs. These are considered when the state-transition

behaviour of a system is of importance.

3.2.1 Moore Machines

A state machine augmented with an output associated with the state is termed a Moore
Automata, a Moore type sequential machine is an ordered six tuple:

M=(S,I,0, d,qp.F) (3.2)

(a) S, a finite non-empty set of states;

(b) I, a finite non-empty set of inputs;

(¢) O, is the output function; &: S — O

(d) 8: S xI —S isthe state transition function,

(e) gp € S, is the initial state; and

(fy F < S isthe set of final states.

The output, given by 8, for Moore machines occurs affer a transition and depends only on the

new state of the machine.
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3.2.2 Mealy Machines

Mealy Automata associate the output with the transition, a Mealy type sequential machine is
also an ordered six tuple

M=(S,1,0,38, qo.F) (3.3)

(a) S, a finite non-empty set of states;

(b) 1, a finite non-empty set of inputs;

(c) O, is the output function; 8: Sx1 — O

(d) 0:SxI —S isthe state transition function;

(e) gp e S, is the initial state; and

(f) F < S isthe set of final states.

For Mealy machines, an output occurs during each transition and depends on the input and
the current state. Thus, for a given initial state and a sequence of inputs there is a defined set
of outputs. An example of the standard graphical representation of this type of state machine,

known as a state transition diagram, is given in section 2.3.

FSMs can be used to represent complete systems at an abstract level, however their analysis
suffers from what is termed as the state space explosion [ Scholetield 90 ]. Generally as a
model grows in size and complexity there is an exponential increase in the number of states.
Also, the models are non-compositional and timing constraints do not fit well into the model.
Another drawback to FSMs are their sequential nature, concurrency is not expressed in an
intuitive way [ Ostroff 89 .

3.2.3 Communicating Real-Time State Machines
Communicating real-time state machines (CRSM) [ Shaw 92 ] are an extension to FSMs that
model concurrent real-time systems and their environment. Communication through

synchronous, unidirectional channels is modelled in a manner similar to CSP [ Hoare 85 ].

State transitions are constrained by a guarded command, the guard is a Boolean expression
over local variables, and the command is an input/output (I/O) or an internal action. A

transition can only be executed if the guard 1s evaluated to true.

The notion of time is introduced by the interval bounded by a minimum and maximum time
[tmin(c), tmax(c)]. In the case of /O, this interval represents the earliest and latest times that
a state I/O can occur. While for an internal command, they represent a bound on execution

time of [tmin(¢), tmax(c)], such that the duration ¢ of the action ¢ is in the interval 0 <

tmin(¢c) S d < tmax(c).
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3.2.4 Statecharts

Statecharts [ Harel 87 ] are an abstraction mechanism based on FSMs and aim to resolve
some of the problems associated with state diagrams. Statecharts use a hierarchical approach
to modelling by the layering of different levels of abstraction. Composition of large systems
is possible, aided by the provision of communication mechanisms and a global discrete clock

model.

An automated software package STATEMATE [ Harel et al 90 ] has been written to provide
a development environment for statechart models. STATEMATE provides simulation and
analysis tools based on exploring a systems state space for properties such as non-

determinism, freedom from deadlock, reachable space.
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Fig.3.1. Example of a Statechart

Statecharts are illustrated in Fig.3.1., where states and encapsulation are represented by

rectangles. Transitions between states, which model events have a guard associated with

them, are represented by arrows.
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Fig.3.1.(a) represents a system with three states (A, B & C) and three events which transfer
the system from state to state (W, X & Y). Fig.3.1(b) shows how states are layered 'clustered’
event Y takes state A or B to state C, thus states A and B can be clustered as a new higher
level state D. At this abstraction, event Y causes the same transition to state C and is
represented by a single transition. The default entry point to state A within the new state D is
shown by the single arrow at the top left-hand corner of A. Fig.3.1.(c) shows zooming-out to
a level showing only the higher level states D and C. While Fig.3.1.(d) shows zooming-in to
show only the lower level states and events within the state D. This zooming-in and -out
allows a view of the system at different levels of abstraction, which is a significant aid as the

complexity and size of models increases.

Fig.3.1.(e) shows the modelling of concurrency, the sub-states of states P and C are

concurrent with each other.

3.3 Petri Nets

Petri nets are a popular technique and have been the subject of extensive research, they were
developed by C.A.Petri in the early 1960°s [ Petri 66 ][ Peterson 81 ]. Petri nets are a
mathematical theory with an associated graphical notation for the modelling and analysis of
the causal properties and the control flow in systems that exhibit concurrency and non-
determinism. Petri nets are an established technique for the modelling and analysis of
concurrent systems, that provides a simple graphical structure with an established
background of analysis techniques [ Murata 1989][ Peterson 1981 ], as well as offering
suitable synthesis strategies [ Jeng & DiCesare 1993 ]. Introductory texts and review can be
found in [ Murata 89 ][ Peterson 81 ], while Zurawski & Zhou [ 94 ] offers a tutorial to their

use in industrial applications.

The graphical notation is a bipartite graph that consists of two types of node (known as

places and transitions) and arcs that interconnect them [ Reisig 85 ], as illustrated in Fig 3.2.

Arc Transition Place
Fig 3.2. Graphical notation of Petri nets.

¢ acircle represents a place, a bar represents a transition,
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* anarrow represents an arc which connects a place to a transition, or vice versa,

* ablack dot which resides in a circle represents a token.

Petri nets are formally defined as an ordered quintuple, the definitions in [ Murata 89 ] and [
Peterson 81 ] differ, but are equivalent. This thesis follows the form of [ Peterson 81 ],
PN=(P, T, I,0,Mp) (3.4)

(@) P={py;p2; ..., pn} is afinite set of places;

() T={ry:12; ..., ry) is a finite set of transitions, PNT = and PUT = J;

(c) 1:(P XT)—N,isan input function that defines directed arcs from places to transitions,
where N is the set of non-negative integers;

(d) O: (P xT)— N, is an output function that defines directed arcs from transitions to
places;

(e) Mp. P — {0, 1,2, ... }isan initial marking (or state);

In Petri nets a state is defined by the distribution of tokens on places and is called the Petri
net marking M, defined as M. P — {0, 1, 2, ...., m}. The presence or absence of a token in a
place can indicate the truth value of a condition represented by the place. While the set of
transitions can represent events. The dynamic behaviour of a Petri net is modelled by the

changing in the markings caused by enabling and firing transitions.

The rules that determine the enabling and firing of transitions are as follows;

1) A transition 7 € T is enabled iff each input place p € P of 1 is marked with at least w(p,
1) tokens, where w(p, 1) is the weight of the arc from p to r as defined by the input
function I (p, 1) = w. Similarly, for the output function O (p, 1) = w, where w is the weight
connecting transition ¢ to place p .

i) a transition once enabled may or may not fire, dependent upon the additional
interpretation of whether or not an event actually takes place.

iii) the firing of an enabled transition  removes from each input place p the number of tokens
equal to the weight w of the directed arc connecting p to . It also deposits in each output

place p the number of tokens equal to the weight of the directed arc from ¢ to p.

A great deal of research has been done on Petri net theory for a variety of applications [
Peterson 81, Murata 89, Zurawski & Zhou 94 ], as a consequence many types of extensions
to Petri nets exist [ Reisig 85 ], [ David 91 ]. These can be broadly divided into the

categories of low-level and high-level Petri nets, and Petri nets that have some notion of time.

3.3.1 Low Level Petri net
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Low-level Petri nets have a simple graphical notation for specifying the causal relationships
of concurrent systems, an example from [ Peterson 81 ] which models the well-known dining

philosophers problem is used to illustrate the graphical form of Petri nets, Fig.3.3.

The dining philosophers problem consisting of five philosophers, each of whom can either be
thinking or eating; each philosopher requires two chopsticks for eating. Problems arise,
however, when philosophers attempt to eat because five chopsticks must be shared amongst
five philosophers, so each chopstick is shared by two philosophers. This problem, one of

deadlock [ Hoare 85 ], is represented by Fig.3.3 in the following manner.

Aston University
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Fig.3.3 A Petri net model representing the dining philosophers problem

In Fig.3.3. places represent the states of the philosophers and the availability of resources
(chopstick), and transitions represent events. The semantics assigned to the following places
are:

i) p1 to ps marked represent the condition that philosophers are thinking,

i) peto p1o marked represent available chopsticks,

iii) p11 to p15 marked represent philosophers eating,

and the semantics assigned to the following transitions are:
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iv) t] to t5 firing stand for the actions of picking up chopsticks and

v) tg to t]0 firing stand for the actions of putting down chopsticks.

The initial marking M0 shown in Fig.3.3. represents the state when all philosophers are
thinking. The enabled condition of transitions t1 to t5 represents the philosophers having the
potential to start eating. However, only the combination of philosophers represented by the
following places can actually eat:

i) p11 and p13,ift] and t3 are fired,

i) p11 and p14,1ft] and t4 are fired,

i) p12 and p14, if 2 and t4 are fired,

iv) p12 and p|5, if t2 and t5 are fired, or

v) p13 and p]5, if t3 and t5 are fired.

Since the philosophers must share the available resources (chopsticks), a deadlock situation
can easily occur in which certain philosophers cannot eat due to the unavailability of
(chopsticks). Wu and Murata [ Wu & Murata 83 ] present a starvation-free solution to this

problem.

The behavioural properties of low level Petri nets such as reachability, boundedness,
liveness, freedom from deadlock and reversibility depend upon the initial marking [ Peterson
81, Murata 89, Zurawski & Zhou 94 ]. Analysis of these properties is based on the
enumeration of the nets state space. All possible markings are generated by the successive
firing of enabled transitions in each marking. A sequence of transition firings produces a
sequence of markings. The following properties are based on reachability analysis, which

requires the enumeration of all markings reachable from the initial marking.

3.3.3.1 Reachability

Reachability is an important property in the analysis of distributed systems. It can be used
show whether a system can reach a specific state (e.g. a hazardous system state where sites
are inconsistent) or exhibit a particular functional behaviour [ Zurawski & Zhou 94 ] from the
initial conditions. A marking M is said to be reachable from Mo: iff there exists a sequence
of transitions that transforms Mo: to M . S denotes a firing sequence of transitions, § = Mo0:
t| MIt3 th Mn, or simplified as S =1] 12 . tn. Where Mn is reachable from M0 then we can
write M0 [S>Mn . Therefore Mu is reachable from Mo iff 35:MO [S>Mn .

The set of reachable markings from Mo is denoted by R(M0 ), and the problem of finding if

Mn € R(Mo ) has been shown to be decidable, but subject to state space explosion
[Scholefield 90].
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A reachability tree is a graphical representation of all the possible markings reachable from
an initial marking for a bounded net [ Murata 89 ], and as such is the equivalent of a state
transition diagram. Reachability trees are a fundamental analysis method used with Petri nets
and 1s generated by executing each enabled transition of the Petri net and recording the new
markings produced as a node on a tree. Where more than one transition is enabled then extra

branches are added to the tree, each representing the firing of a transition.

The coverability tree reduces this by merging nodes that contain the same markings, this
overcomes the problem of reachability trees of unbounded nets which grow indefinitely. The
complete reachability tree shows all the possible states that a system may exhibit during its

execution.

3.3.3.2 Boundedness

A place is k-bounded if the number of tokens in that place never exceeds k. A Petri net is k-
bounded if each place can accept a maximum of k tokens (where k > 1) for any marking
reachable from Mo [ Peterson 81, Murata 89 1. A 1-bounded Petri net is termed safe . For

safe Petri nets the reachability tree can show 'Deadlock’ and 'State Consistency' properties

Checks for boundedness ensure that places do not exceed their token capacities. Places are
often used to represent communications and buffers. Where a place in a k-bounded net is
used to represent such a buffer, the property of k-boundedness guarantees that there will be

no overflow of the buffer (buffer size < k) for all firing sequences [ Murata 89 ].

A condition-event (CE) net is a low level net which is one bounded (the capacity for each
place p 1s restricted to {0, 1}). The places represent conditions in a system, and transitions
represent events (as itlustrated in Fig.3.3.). A generalisation of the CE net is the place-
transition (PT) net which are k-bounded rather than I-bounded. As such these can produce
models that are structurally less complex and hence more compact, when compared to CE

nets.

3.3.3.3 Liveness

A Petri net 1s said to be live if for any marking Mn , where Mn € R(M0 ), it is possible to
ultimately fire any transition of the net by progressing through some further firing sequence [
Peterson 81, Murata 89 ]. If a Petri net is [ive then this guarantees that it is deadlock free.
Deadlock refers to a situation in a Petri net model in which a marking 1s reached where no

further transitions are fireable.

The major disadvantage of state space based Petri net analysis (approaches involving the

complete enumeration of the reachable states) is that the reachability graph can easily
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become complex, large and unmanageable, even for relatively small Petri net models [
Murata 89 ].

3.3.3.4 Reversibility

For an initial marking M0 , a marking Mh is termed a home state, if there exists a sequence of
transitions that can transform the marking to M from any reachable marking. A Petri net is
reversible if the home state is the initial state[ David & Alla 92 ] allowing a system to return
to its initial state from any reachable state. Reversibility is an important property for the
study of error recovery [ Zurawski & Zhou 94 ] as systems may be required to make a

transition from a failed state to a preceding correct state.

3.3.3.5 Incidence matrix and State Equations
This is an approach to Petri net analysis that does not rely upon generating the complete state
space of the model. Instead this approach uses matrix equations to represent the dynamic
behaviour of Petri net models. Matrix equations and linear algebra can be used to perform T-
Invariant (token) and P-Invariant (place) analysis of the models. The incidence matrix N is
fundamental to this approach and defines the interconnections between places and transitions.
The Petri net markings are represented by state equations of the form (3.5). The incidence
matrix N captures the Petri nets causal properties by relating the input and output places of
each transition. The firing of transition (tj) is represented by the elementary vector u, =[ 00
.1..0], where the | is the 1" element. The state equation can then be used to generate the
sequence of markings My, My, ... M,
Mk = Mk-1 + NT Uk (3.5)
where
Mk-1 1s a column vector defining the current net marking,
N the incidence matrix whose elements represent the arcs connecting a transition to
places or places to transitions. NT is the transpose of N,
Uk  is acolumn vector which defines the transition that will fire to give the new
marking M,

Mk  is the immediate successor marking to Mk-1.
Analysis of place-invariants (P-invariants) shows the set of places in which the total number
of tokens is constant. P-invariants can be calculated by finding the solutions (y) to the set of

homogeneous equations given by:

Ny =0 (3.6)
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T-invariants show the number of times a particular marking is reachable from a transition
firing sequence of a Petri net, without specifying the order of appearance. This invariant can

be calculated by finding the solutions (x) to the equation:
NTx =0 (3.7)

P-invariants and T-invariants have been used for the analysis of concurrent systems [
Lautenbach & Schmid 74 ] [ Reisig 85 ], and communication protocols [ Berthelot & Terrat
82] and are considered a powerful proof technique associated with Petri nets [ Murata 89,
Manna & Pnueli 92 ]. Knowledge of S-invariants and T-invariants can be used to deduce

properties of the net, such as reachability, boundedness and deadlock.

3.3.2 High Level Petri net

High level Petri nets, such as Coloured Petri nets (CP) [ Jensen 90 ] and Predicate-transition
nets (PrT)[Genrich & Lautenbach 81] can be considered as structurally folded forms of low
level Petri nets [ Murata 89 ]. These were developed as an attempt to overcome some of the
limitations of low level Petri nets by producing smaller and more manageable graphical
representation of complex systems. The criticisms of low level Petri nets concerns their
following aspects:

1) The lack of composition,

i1) Complexity management; for modelling of large or complex systems has the disadvantage
of producing large models [ He & Lee 90 ], which are not graphically intuitive,

11) Intractability of analysis, large models can become unmanageable and difficult to analyse
[Genrich & Lautenbach 81],

1v) The lack of automation of proofs.

A CE net can be viewed as a set of propositional variables, with changing truth values
modelled by the dynamic behaviour of the net. Whereas, for PrT nets [Genrich & Lautenbach
81] a predicate is associated with each place, tokens represent individual variables and
transitions are associated with logical formulas that define which tokens are involved in the

enabling and firing of the transition.

Sets of places in a low level Petri net are represented by a predicate in a PrT net, while
transitions represents sets of transitions in low level nets. A relational expression is
associated with the arcs of a PrT net that specify which combination of tokens can engage in

the firing process and the extent of change caused by the firing of the transition. Fig.3.4.

gives an example of a PrT that models the five dining philosophers problem ( section 3.3.1.),
taken from [ He and Lee 91 ].
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Fig.3.4 A PrT net model representing the dining philosophers problem

where the semantics are assigned as follows:

1) p1 philosophers are thinking is the predicate associated with this place; philosopher are
referred to as p|(n) (where 0 <n <4),

11) p2 chopsticks available is the predicate associated with this place; chopsticks are referred
to as p2(n) (where 0 £ n<4),

1i1) p3 philosophers are eating is the predicate associated with this place, philosophers are
referred to as p3(n) (where 0 <n <4),

1v) t] and t these transitions are associated with the actions of picking up and putting down

chopsticks, respectively.

The type and number of tokens removed from input places and placed in output places by the
firing of transitions are shown by the variables associated with arcs. For the firing of t], {x,
y };p2 loses two tokens, p2(x) and p2(y), as y =x @ | is the relational expression associated

with this transition.

For instance when philosopher 2 is thinking (expressed as p](2)) the firing of transition t]
means that pj(2) can only use chopsticks 2 and 3 (expressed as p2(2) and p2(3)), as the
enabling conditions of t} (p1(x), p2(x), p2(y) and y =x @ 1).

The invariant analysis as used in low level nets needs much simplification to be practicable
for PrT nets [ Genrich 87 ], due to the elements of the incidence matrix containing logical

expressions rather than the integers of low level Petri nets. However, invariant analysis is
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applicable to Coloured Petri nets (CP), and a coloured Petri net solution to the dining

philosophers can be found in [ Valmari 91 ].

(CP) nets [ Jensen 81 ] are developed from PrT nets, but have the advantage of being easier
to analyse due to a more refined invariant calculus. CP nets associate colours with tokens,
transitions and places. The colour set of a place specify which coloured tokens may reside in
it. Transition enabling and firing is dependent upon the numbers and colours of tokens in its
input places. Functions associated with the input and output arcs of a transition specify
which coloured tokens should be removed from its input places and which should be
deposited in the output places. A transition firing can change the colour of tokens, and this
can be used to represent complex information , a detailed formal definition of CP nets may be

tound in [ Jensen 90 ].

3.3.3 Petri nets and Time

The low level and high level Petri nets considered have no explicit notion of time, and thus
need extending for the analysis of real-time systems. These are necessary to describe and
analyse concurrent systems whose behaviour is dependent upon the notion of time, and to
formally verify time dependent systems [ Berthomieu & Diaz 91 ]. Two early extensions to
Petri net models for handling time were the Time Petri nets (TPN) of [ Merlin & Farber 76 ]

and the Timed Petri nets of Ramchandani [ 74 1.

Timed Petri nets [ Ramchandani 74 ] were originally introduced to study the performance of
pipeline processors. A finite firing time is associated with each transition and the transition
firing rule is altered, each transition takes a fixed amount of time to fire and must fire as soon
as it is enabled. Each transition has two values associated with it, an enabling time and a
firing time. Once a transition has been continually enabled for a period equal to its enabling
time the transition immediately fires. Once firing begins the token(s) are absorbed for the

period of the firing time, and then deposited at the output places of the transition.

In [ Zuberek 80 ] a model similar to that of Ramchandani [ 74 ] is presented where a
stochastic model of time is used. This approach combines the transition delay with a
probability of the transition firing. The transition must start firing as soon as it 1s enabled and
tokens are absorbed from the input places and are placed in the output places after the delay
has expired. The analysis of these nets uses a timed reachability graph, where time vectors

are associated with states. These timed Petri nets have been used to model the performance

of communication protocols.
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In [ Sifakis 78 ] Petri nets are extended by having time delays applied to places in order to
represent that a given condition is true for a certain amount of time. This approach retains

the original Petri net definition of instantaneous transition firing time.

The TPNs of Merlin & Farber [ 76 ] associate a minimum (EFT) and maximum (LFT) firing
time with each transition in order to define a range of delays. These times (earliest and latest
firing times) represent upper and lower bounds on events. This is a more general model than
that used in timed Petri nets, which can be modelled using TPNs. In Merlin and Farber's [ 76
] model, an enabled transition must fire instantaneously within the range specified by (EFT)
to (LFT), unless it becomes disabled by the firing of a conflicting transition. In [ Merlin &
Farber 76 ] TPNs are used to model recovery procedures in simple protocols, this allowed the

modelling of timeout ranges for correct protocol operation.

Razouk & Phelps [ 85 ] present a version of timed Petri nets where each transition has a
enabling time (E¢) and a firing time (F) associated with it. A transition 1s ready to fire if it
has been continuously enabled for (Et), during firing tokens are absorbed (unavailable) for a
period of (Ft). During the firing phase the transition cannot become disabled and must
complete firing. This extension was proposed in order to model communication protocols

effectively, and to provide certain performance estimates.

The TPN approach retains instant transition firing rules for the ease of standard Petri net
analyses. In [ Menasche & Berthomieu 83 JTPNs were used with the firing intervals
expressed 1n positive rational numbers, this ensured boundedness characteristics not
guaranteed using real numbers [ Berthomieu & Diaz 91 ]. This approach was necessary in
order to describe and analyse concurrent systems whose behaviour is dependent upon explicit
values of time, and also to formally verify time dependent systems [ Berthomieu & Diaz
1991 ]. However, this analysis still required an exhaustive state space enumeration of the

model.

TPNs have been successfully used in the analysis of safety and fault tolerance properties of
hard real-time systems. In [ Leveson & Stolzy 85, 87 ] an algorithm is presented that can
detect the occurrence of defined hazardous states and state sequences. This algorithm is
based on identifying a hazardous state and then using the reachability tree to backtrack
through firing sequence to find the cause of the hazardous state. Once identified the cause of

these hazardous sequences can be addressed.
A similar approach to [ Leveson & Stolzy 85, 87 ] is used in [ Kakuda et al 94 ], where an

extended state machine is used to find worst case timings for state sequences. In [ Kakuda et

al 94 ] an automated approach for the verification of real-time self-stabilising protocols is
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presented using a form of extended finite state machine. This model augmented with a
restricted notion of time and related definitions of normal and abnormal states. In this
approach, protocol states are represented by predicates and the property of self stabilisation is
proven by verifying that sequences of states lead from an arbitrary abnormal state to
converge in a normal state. The timeliness property is proven by defining timing values for
the sequences that converge from abnormal to normal states, under the assumption that each

state transition takes a maximum time value.

Suzuki er al [ 90 ] present a Petri net technique based on a combination of numerical Petri
nets and the Timed Petri nets of Razouk & Phelps [ 85 ] for the modelling of communication
protocols. The approach of Suzuki et al [ 90 ] is used for performance analysis of protocols,

and extends the Petri net with the ability to model time dependency and data manipulation.

Time Petri nets have been used to guide the required range of timeout settings for correct
protocol operation, directly from the model in [ Hill & Holding 90 ][ Hill 90 ]. However,
knowledge of the communication system used and the transmission times is required for this
procedure.

3.4. Logic Based Modelling and Analysis
Another approach to the specification and analysis of systems behaviour is to use
mathematical logic. Most formal methods are based to some extent on three established

fields of mathematical logic, Propositional Logic, Predicate Logic and Modal Logic.

3.4.1 Propositional & Predicate Logic

A proposition is a statement of a formal language which is either true or false and which
remains so regardless of any environmental considerations. Like any formal language,
propositional logic has a precisely defined syntax and a semantic interpretation. A statement
in propositional logic is interpreted by its truth table, which maps the statement to a member
of the set (TRUE, FALSE). The truth value of a statement is established by examining the

truth values of its constituents.

Predicate logic is concerned with the relative truth of a statement, unlike the absolute truth of
a statement in propositional logic. A predicate is an expression which defines a mapping
from the subjects to a member of the set (TRUE, FALSE). Predicates are combined with
connectives in the same manner as used in propositional logic, but there are two additional
operators associated with predicates, the universal quantifier and the existential quantifier.

For predicate R and set G, the universal quantifier is shown:
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Vge GeR(g) (3.7)

Which reads ‘for all elements g which are members of G predicate R holds’. While, for a

predicate R and set G, the existential quantifier is shown:
dge G*R{g) (3.8)

Which reads as * There exists at least one element g which is a member of G for which R
holds *.

Propositional and predicate logic are appropriate for describing static situations. Modal logic
is an extension of predicate logic [Chellas 80] that allows reasoning about systems in which
changes occur. Modal logic extends the notions of predicate logic by relating the dynamic

changes between situations.

3.4.2. Modal & Temporal Logic

There exist a number of modal logic's, one of the most common and useful is temporal logic [
Pnueli 86 ], which defines changes in properties through the passage of time. Temporal logic
is of particular interest due to its application in the modelling and analysis of real-time
systems. As well as using the standard connectives of predicate calculus it possesses
temporal operators such as always, next and eventually[ Pnueli 77 ]. 1t is a sultable
formalism for specifying and analysing the behaviour of concurrent systems, such as
distributed control systems, as it allows reasoning about statements whose truth value may

change for different states.

The underlying computational model of modal logic [ Chellas 80 ] consists of a universe of
states (W) and an accessibility relation (R), which specifies the possibility of getting from
one state to another. Temporal logic is a form of modal logic [ Manna & Pnueli 92 | where
the accessibility relation is defined as the passage of time. Thus, a state Sy, is accessible from

another state Sy- if through a process in time Sp-7 can transform into Sy,

Temporal logic can be based on three models of the underlying nature of time[ Rescher &
Urquhart 71 J{Manna & Pnueli 92 ]. The first is that time is linear: at each moment there is
only one possible future. Logics of this type are known as linear time temporal logic (LTL) [
Pnueli 77 ]. The second model is that time has a branching, tree-like nature: at each moment,
time may split into alternative courses representing different possible futures. Logics of this
type are known as branching time temporal logic (BTL) [ Emerson 86 ]. The third model is
that time is represented as the partial ordering of events, these types of logic are known as

partial order temporal logic[ Reisig 88 ].
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In all forms of temporal logic, the temporal operators are used to define how the truth value

of properties of a system vary over time. This allows expression of properties such as:

i) Invariance properties, describing properties that are always true for a system over time,
i) Eventualities, properties that become true at some instant of time,

1i1) Precedence, assertions that can be made about the relative order of events over time.

LTL and BTL are both based on an interleaving semantics representation of concurrency [
Manna & Pnueli 92 ] where the concurrent activity of two programs is represented by the
interleaving of their atomic actions. The linear model is unable to distinguish between a non-
deterministic choice and one due to the inrerleaved model of concurrency [ Manna & Pnueli
88 ]. The notion of fuirness is introduced to the interleaved model in order to overcome this

limitation.

In partial order semantics a structure of states, which are possibly infinite, are defined by two
basic relations. One relation is the partial order which represents the precedence ordering of
events. While the conflict relation considers two events to be in conflict if they cannot
participate in the same execution. Partial order semantics identify concurrency as a unique
phenomena which is not translatable to an interleaved representation [ Manna & Pnueli 88 |.
Therefore, partial order semantics can distinguish between inherent concurrency and internal

non-deterministic choice.

Temporal logic has been proved useful in the specification and analysis of concurrent and
real-time systems [ Pnueli 86 , Emerson 86, Ostroff 89, Manna & Pnueli 92], and is an

example of a technique ideally suited to the specification of requirements [ Holzmann 92 .

3.4.2.1. Linear Time temporal Logic

In LTL [ Pnueli 86 ] the notion of qualitative and quantitative time is used. In qualitative
time, the notion of eventuality and fairness are used to guarantee that an event can occurs at
some point, but without providing a bound on the amount of time this may take. Using
quantitative time, time is expressed as a value which defines when an event may occur.
Quantitative time temporal logics are suited to the specification and verification of hard real-
time systems, and as such are referred to as real-time temporal logics (RTTL) by Pnueli &
Harel [ 88 ].
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LTL is suitable for reasoning about concurrent programs in which a state may have several
possible futures. The choice of which is taken is made in a non-deterministic manner, but

can be resolved by imposing a fairness requirement.

The computational model of qualitative time LTL consists of a possibly infinite sequence of
states (o) and an accessibility relation (R), represented as:

G =50, 8], - (3.9)

R(s,, S, ) (3.10)

n’
where s (where n 2 0) represents a state,

and R(sn, Spep) 1s the accessibility relation.
Within LTL temporal operators are used in conjunction with logical formulas, to specify the
progression of time over the sequence of states o, the following are the LTL temporal

operators syntax:
always - [ eventually - ¢ next - O until - U

The following defines the semantics of LTL temporal operators . For a state sequence (o), let
the sequence o(k) be the k-shifted sequence given by:

o) =g, sy, oo (3.11)
then,
(1) if w is a classical formula (constructed from propositions or predicates and logical
operators such as NOT (=), AND (A), OR (v) and implication (=)) containing no temporal
operators then,

cl=w iff  spl=w (3.12)

in this case w can be interpreted over a single state in ¢, which is the initial state sy,

(i1) the temporal operator always (L) is defined as:
ol=Cw  iff Vk20, o) = w (3.13)

Cw holds on o iff all states in o satisfy w,

(iii) the temporal operator eventually (0)
G = Ow iff 320, oK) = w (3.14)
Ow holds on o iff at least one state in © satisfy w. Alternatively, eventually (0) can be defined

in terms of the temporal operator always (L) as: Ow = —[J —w
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(1v) the temporal operator next (O)
cl=0w iff oD=w (3.15)
Ow holds on o iff o(1) satisfies w,

(v) the temporal operator until ()
cl=xuy iff Fk>0 such that,
o=y and Vi, 0<i<k, ol l=x (3.16)

xUy holds on ¢ 1iff at some time y holds and until then x holds continuously.

3.4.3 Z Notation

The Z specification languages has received widespread acceptance in industry [ Mahony &
Hayes 92, Woodcock & Davies 96 ]. This is a specification language based upon typed set
theory and first order predicate logic, and is centred on a state-transition based computational
model [ Spivey 88, Woodcock & Davies 96 ].

The common style of specification using Z is based on the use of schemas which allow
portions of mathematics to be grouped and named and a schema calculus, which is used to
join these schemas in order to form a complete specification. These schemas can be used to

represent state information and state changes.

In [ Mahony & Hayes 92 ] Z is extended with a notation for specifying discrete and analogue
properties in order to model real-time systems, while Z and duration calculus have also been
combined in the ProCosll project [ Hoare ef ¢l 94 ] in order to be applicable to real-time

systems.

3.4.4 Process Algebras

Process algebras give an explicit model of concurrency and represent the behaviour of
processes by means of constraining the allowable observable communication between them.
Examples include CSP (Communicating Sequential Processes){ Hoare 85 | and CCS
(Calculus of Communicating Systems) [ Milner 80, 89 ].

In CCS, systems are modelled as algebraic expressions termed agents and the events that a
system can perform are modelled as actions of the agents. The notation describes concurrent
functions and arguments competing and choosing interactions. This technique can deal with

concurrency and supports the hierarchical decomposition of systems.
CSP is a mathematical approach for specifying and verifying concurrent systems and their

associated communications. CSP models concurrent systems by using the notion of

processes that interact with their environment. A process may represent a single sequential
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system or several concurrent systems. Processes interact by transmitting information to each
other through communication lines termed channels . Two processes can rendezvous if one
process is ready to send information over a channel and simultaneously the other is prepared
to receive information from the channel. This rendezvous achieves communication and

provides synchronisation during message transmission.

A CSP representation provides a convenient abstraction for modelling large complex
systems. Processes in CSP are defined using a process algebra which is used to construct

rules that describe the behaviour of the process.

The three basic models that constitute a specification are:

i) a trace model for a process is a sequence of events, which are the instantaneous actions
performed by that process. Thus the relative ordering of a sequence of events can be
recorded to provide a trace of a process's behaviour. The trace model can be used to prove

safety properties.

i) a failure model, which determines between deterministic and non-deterministic behaviour

of a process, the failure model can be used to prove liveness properties of a process.
ii1) and a stability model, which models the internal actions of a model.

Although CSP is a useful formalism for modelling concurrent systems, the standard form
does not incorporate the notion of time and is thus not suitable for real-time systems. The
notion of time has been introduced into an extension of CSP, termed Timed CSP (TCSP), in
order to describing real-time systems. Davies and Schneider| 89 ] used TCSP to model time-

outs for the alternating bit communication protocol.

However, the proof system of CSP & TCSP is difficult to use and its verification procedures
need to be simplified before it will find widespread application. Another disadvantage of
these techniques are that they are event based and states are not specified explicitly, unlike

Petri nets or Temporal logic.

3.5 Temporal Petri nets

Petri nets and temporal logic are both applicable to real-time concurrent systems, Petri nets
can capture the causal aspects of a system, which essentially represent the safety properties of
a system, while Temporal logic can be used to reason about the temporal behaviour of the

system. Temporal Petri nets combine Petri nets to validate safety properties and temporal
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logic to prove liveness properties [ Suzuki & Lu 89 ] or safety and liveness properties [ He &
Lee 90 ] of the model.

The attraction of combining Petri nets and Temporal logic was to relate a graphical model
with a formal model. However, some approaches allow separate specifications to be written
in each formalism, which has the disadvantage that there appears to be no means of checking
the consistency between these specifications [Anttila 83]. While approaches such as [ Suzuki
89 ] [He & Lee 90] produce a unified model. Petri net models cannot explicitly describe
certain properties of concurrent real-time systems, which are ideally suited to expression
through temporal logic:

1) Fairness, if a transition becomes enabled infinitely often, then it must fire infinitely often,

ii) Eventuality, certain places must eventually become tokenised, and certain transitions

must eventually become enabled, and

iii) model specific constraints, the tokenising of two places must be mutually exclusive.

The Temporal Petri nets of [ Suzuki & Lu 89 ] are a combination of LTL and Petri nets. The
propositions of these Temporal Petri nets, which formalise the transition firing sequences of
Petri nets, form the basis for proving liveness properties in an axiomatic manner. Following

the style of [ Suzuki & Lu 89 ] a temporal Petri net is defined as the pair:

TN = (PN, f) (3.17)

where PN is the Petri net structure defined in Equ 3.4 and f represents a set of temporal
formulas that describe the temporal behaviour of PN. A language based on LTL [Manna
83b] is used to describe the temporal formulas f, which is referred to as LN [ Suzuki & Lu 89
]. The syntax of the temporal formulas of LN over the PN structure consists of:

i) atomic propositions, where pe Pandte T:

(p has a token), (t 1s fireable), (t fires) and (p has no token),

ii) logical operators (3.4.1): = (NOT), A (AND), v (OR) and = (implication),

iii) temporal operators (3.4.2): O (next), LI (henceforth or always), 0 (eventually)
and U (until).

The formation rules for LN are:
if f], f2 € LN, then (f] A £2), (f1 v f2), —f1, (f| = f2), Of, LIf], 0f] and f] Uf2 € LN,
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The following semantics assigns an interpretation to each temporal formula of LN over the
PN structure.

The atomic propositions 1) are intended to mean:

(p has a token) - p has at least one token at the current marking,
(t is fireable) - t1s fireable at the current marking,
(t fires) -t fires at the current marking,

(p has no token) - p has no tokens at the current marking.

The meaning of the logical operators ii) follow the standard form.

If formula f uses temporal operators then its intended meanings are:

Of] - f} is satisfied at the next marking,

Lfp - f] is satisfied at every marking reachable from the current marking,
of] - f] is satistied at some marking reachable from the current marking,
f1 ufy - ] remains satisfied at least until f2 becomes satisfied at a marking

reachable from the current marking.

The formal semantics of LN are given as follows. Let o be a possibly infinite firing
sequence from marking M. Foreachi, 0 <i<laol let Bj and ¥ be sequences such that IBjl =i
and o = B{*yi. That is, Bj is the prefix of o with length i, and 7; is the postfix of aexcluding
Bi. - (lol denotes the length of o)

The notation M = ¢ M' is used to denote that, if t € T is fireable at M, then it may fire and
yield another marking M'. Let Mj be the marking such that M[Bi>Mi , denoting that from
marking M it is possible to reach marking Mj by a firing sequence Bj. (o is the sequence
obtained by concatenating j occurrences of ¢, therefore o0 is defined to be A, where A
represents the empty sequence).

For a formula f, <M,o> I= f is satisfied under the pair <M,0>:

<M,0> I= (p has atoken) iff p has at least one token at M (3.18)
<M,o> I= (tis fireable) iff t is fireable at M (3.19)
<M,o> = (t fires) iff oo # A and t = B (3.20)
<M,0> I= f1 A2 iff <M,0> I=f] and <M,0>1=1) (3.21)
<M,o> = fivDh iff <M,0> I=1f] or <M,o>Il=12 (3.22)
(note f] v 2 = =(=ff A —2))

<M,o> = —f] iff not <M,o> I= {] (3.23)
<M,o> = f| =1 iff <M,o> 1= f] implies <M,0> |= 12 (3.24)
(note f] = f2 = —f] v 12)

<M,o> |= Of iff oo#Aand <M1, y1>I=f (3.25)
<M,o> = Lif iff <Miyp> I=f forevery 0<i<lal (3.26)
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<M,o> |= Of iff <Miyp> I=f forsome 0<i<lal (3.27)
<M,o> |= f1 ufp iff (Miyi> 1= 1) forevery 0<i<lal) or
(forsome 0 <i<lol, <Myy> |=1f2 and

<Mj, 5> 1= 1] forevery 0<j<i). (3.28)

The temporal formulas of LN are constructed from the places and transitions of the Petri net

structure; these are abbreviated in the following manner:

p = (p has a token), —p =(p has no token)
t(ok) = (t1s fireable), t = (t fires), t(—ok)= (t is not fireable).

The following temporal formulas are expressed in this manner:

1) <M,o> I= Of, (3.29)
transition t must fire at the next marking reachable from M when o occurs,

i) <M,o> I= Clp, (3.30)
place p must not become token-free at any marking reachable from M when o occurs,

i) <M,o> I= Op, (3.31)
place p must eventually have at least one token at any marking reachable from M when o

occurs,

iv) <M,o> I= [(t] = 0t2), (3.32)
whenever transition t] fires, transition t2 must eventually fire in o,

v) <M,o> = [0t (3.33)
transition t fires infinitely often in o,

vi) <M,a> = p=(p Ut): (3.34)

if place p has at least one token at M, then p must not become token-free at least until t

fires.

The temporal Petri net of Suzuki and Lu [Suzuki 89] defines a temporal Petri net (given by
the pair: TN = (PN, f)) where f is interpreted as a restriction on the firing sequences
generated from PN, thus only those firing sequences that satisfy f are allowed to occur. This
approach to Temporal Petri nets allows the proof of Liveness properties, while reachability

based Petri net analysis 1s used for the proof of Safety properties.

PrT nets have the capability of producing concise and compact specifications for relatively
large systems. The integration of first order LTL temporal logic [ Manna & Pnueli 83 ] and
PrT nets was presented in [ He & Lee 90 ]. This produced a unified approach to the
modelling and analysis of concurrent real-time systems that is consistent in each formalism.

The approach is unified as both formalisms use the same semantic model, the Petri nets use
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an 1interleaved sequence of markings and the temporal logic also describes a systems

behaviour using an interleaved sequence of states.

A PrT net structure is translated in temporal logic, by considering set of places (predicates)
and individual tokens. The proof system comprises system independent axioms and
inference rules, which are obtained from the temporal logic proof system [ Manna & Pnueli
83b ][ Pnueli 86 ][ Pnueli & Harel 88 ], and system dependent axioms and inference rules

that are unique to each Petri net structure under consideration.

The PrT has been translated into the temporal logic axioms and inference rules in an
algorithmic manner,

1) the initial marking of the PrT net is expressed as a system dependent axiom, and

i) the pre-conditions and post-conditions of transitions of the PrT net are converted into an

system dependent inference rules,

1) and i1) form the basis of the proof system used to prove safety and liveness properties using
a refutation proof procedure [ He & Lee 90 ]. The property that needs to be proved is negated

and the proof system derived above is used to form a contradiction of this negated property.

The system dependent axioms and inference rules are obviously unique to each PrT, consider
the PrT structure Fig.3.4., the system dependent axiom for this {ragment are given by the

following:

Al pHO) Ap1(1) APL2) A P1(3) A PLEIA P2(0) A P2(1) A P2(2) A p2(3) A P2(4)
This axiom (A1) describes the initial marking of Fig.3.4., all philosophers are thinking and
all chopsticks are available. While, the system dependent inference rules are given by:

I p1) Ap2(x) Ap2() A=) Ay =x @ 1)
= O(=p1(x) A =p(X) A=RAY) APIX) A (y=x D 1))
The logical form of the pre-conditions of transition t]

2. =p1(x) A=) A =R(Y) Ap3) Ay =xD 1)
= O(p1(x) A p2(x) Ap2(y) A =PBX) A (y =x @ 1))
The logical form of the post-conditions of transition t2.

In [ Sagoo & Holding 90, 91 ][ Sagoo 92 ] the technique is extended from PrT nets to

condition/event (CE) nets to form extended temporal Petri nets, using the above algorithmic

approach. System dependent axioms are derived from the initial marking of the CE net
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structure, Mg = [p1, p2, ... pnJ, and translated to a logical from p] A p2 A .. pPn. While the

system dependent inference rules are constructed from a conjunction of the input places that
form a pre-condition to a transition, and a conjunction of the output places that from the post-
condition.

For the simple detail of a CE net structure, shown in Fig.3.5., the system dependent inference
rule for transition t would be expressed as P1 A p2 A —p3 = O—pg A —p2 A B, The system
dependent axiom is formed from the initial marking M@ and is expressed as a propositional
logic formula p] A p2. This approach has been successtully applied to real-time control
systems [ Sagoo & Holding 90,91 ].

P1 p2

P3

Fig.3.5. Detail of a CE net

3.6 Formal Description Techniques

As both real-time systems and interprocess communication including protocols, are
addressed in this Thesis it is worth considering techniques used specifically in protocol
engineering. Formal description techniques (FDTs) are generally used to refer to
specification methods used in protocol engineering [ King 91 ][ Holzmann 92] within the
telecommunications field [ Turner 93 ]. However, the term can be applied to other
formalisms such as Petri nets, the relational notation of Shankar & Lam [ 87 ] or the Z
notation [ Spivey 88 ][ Woodcock & Davies 96 ]. There is a large variety of design methods
and FDTs employed to contend with the inherent complexity of communications systems and

no single FDT seems completely satisfactory for all types of systems [ King 91].

The three most prominent FDTs in the telecommunications field are considered: SDL
(Specification and Description Language)[ Sharp 94 ], LOTOS (Language of Temporal
Ordering Specification)[ISO 89b] and ESTELLE (Extended State Transition Model) [ISO
89a).

3.6.1 SDL
SDL is an FDT developed in the field of telecommunications in the mid 1970's. It has been

continuously refined since then from a small informal diagrammatic notation used for design,
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into a fully fledged FDT [Turner 93] retaining its graphical flavour. SDL is widely used in

the telecommunications industry and is supported by a wide variety of tools.

SDL comprises a graphical and a textual representation. The system model is based upon
extended finite state machines, which communicate with each other and their environment by
exchanging messages. The extension to the state machine model is that each machine may
have associated variables that hold information about their history. The data typing used in
SDL is based on that used in ACT ONE [ Ehrig & Mahr 85 ], a similar approach is also used
in LOTOS.

In SDL, a system model consists of constructs for representing behaviour, interfaces and
communication links, plus constructs for abstraction, module encapsulation and refinement.
These constructs are specifically designed to aid the modelling of services and protocols in

telecommunications systems [Turner 93].

3.6.2 LOTOS
LOTOS, defined in [ ISO 89b ], is so called as it is used to model the order of events which
occur within a system. The model consists of two parts, a behavioural model derived from

process algebras and a data typing model.

The behavioural model is based principally on CCS (Calculus of Communicating Systems) [
Milner 89 ], but also to some extent on CSP (Communicating Sequential Processes) [ Hoare
85 ]. An abstract data typing (ADT) language ACT ONE [ Ehrig & Mahr 85 ] is used for the
data typing model. This provides a well defined mathematical foundation that particularly
aids in the analysis of systems modelled using this technique, and also in the development of

tools.

The modelling of sequential behaviour, choice, concurrency and non-determinism in an
unambiguous manner is possible using LOTOS. The explicit modelling of both
asynchronous and synchronous forms of communication is also possible, while the

specification of data typing as ADTs allows for an implementation independent model.

A LOTOS specification is based on the observable behaviour of a system as the sequence of
all possible interactions of the system, as represented by events. These events can be abstract
models of real-world occurrences [ Turner 93 ]. For example, the transmission of data
through an interface could be modelled as a single event, the beginning and end of the
transmission could be modelled as separate events, or the transmission of the individual bits

that constitute the data could be modelled as an event.
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3.6.3 ESTELLE
ESTELLE [ISO 89a], is a formally defined specification language for distributed systems,

especially for systems implementing the OSI communication services and protocols[ Sharp
94 1.

The system model is based upon communicating, non-deterministic state machines. These
state machines are hierarchically structured, like Statecharts [ Harel 87 ], and communicate
through bi-directional channels between defined communication ports with attached
messages queued at either end. Synchronous or asynchronous parallelism between state
machines can be represented, while actions are specified in a form based on standard
PASCAL. System models are described as being natural by [ Turner 93 ] due to their being

based on finite automata

Although widely used for the modelling and analysis of communication protocols, these
FDTs do not offer a unified approach to the modelling and analysis of both real-time

distributed control systems and the communication protocols used.

3.7 Petri net Design and Analysis

Techniques that offer a unified approach to distributed real-time systems, for the control of
high speed machinery, and the underlying communication protocols used, are required in this
research. The three main considerations taken into account were:

1) The technique should be able to express a wide range of system properties, especially
safety and liveness properties, along with the means to reason about such properties with

confidence.

1) The technique should be able to cope with real-time control systems that are inherently
distributed. The complexities inherent in distributed systems also imply that a technique that

permits modelling at several levels of abstraction would aid design.

ii1) The critical nature of temporal constraints, in the real-time distributed control systems
under consideration, requires a technique well developed to specify and prove temporal

properties.

Petri nets were considered as they offer:

1) the ability to represent concurrency, distribution and explicit communications,
i1) explicit representation of causal dependencies and independence's,

iii) some level of automation in analysis is supported,

iv) a well developed field with over 25 years of research and mathematical basis,
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v) a graphical representations of models that can be concise and intuitive.

The modelling of real-time distributed control systems is intuitive due to the correspondence
between concepts in Petri nets and these systems such as events, states, state changes and
activities. Petri nets are also particularly suited for real-time control systems as their analysis
is able to identify undesirable properties such as deadlock, boundedness (related to system

resources) and the occurrence of hazardous concurrent states.

The design and analysis of communication protocols requires some type of formal or semi-
formal technique [ Suzuki er al 90 ], due to their inherent complexity and concurrency and
the need to consider explicit communications. Petri nets have been applied extensively to the
modelling and verification of communication protocols [ Merlin & Farber 76 ][ Berthelot &
Terrat 82 ][ Suzuki er al 90 ][ Berthomieu & Diaz 91 ], as the liveness and safeness
properties that their analysis provides can be used for proving important correctness criteria

of protocols [ Murata 89 |.

Along with the modelling and analysis techniques offered by Petri nets and temporal logic,
methods to guide design and analysis are also worth considering. There are several
established approaches to aid in the design and analysis of Petri nets such as top-down [
Valette 79 ], bottom-up [ Suzuki & Murata 83 ] and hybrid design [ Zhou and DiCesare 89,
93 ], along with net reductions to aid analysis [ David & Alla 92 ]. These are considered

below.

In top-down Petri net design methods a general model of the system is expanded in a
stepwise refinement procedure. Valette [ 79 ] presents such a stepwise refinement method for
the synthesis of large Petri nets. Transitions and places in a net are replaced by subnets,
called well formed blocks. This is performed in a structured, step-by-step manner that
preserves properties such as liveness and boundedness in the refined Petri net. These well

formed blocks of [ Valette 79 ] are considered in detail in section 5.3.1.

Suzuki and Murata [ 83 ] extend this technique to the refinement of systems by replacing
transitions and places with subnets termed well-behaved nets in the top-down design of Petri
net models. In the refinement procedure the specification considered becomes more detailed
at each successive step, while the part of the net which is considered in detail becomes
smaller. Interaction amongst subnets is difficult to specify using this approach as

refinements are local and required to have no side effects [ Jeng & DiCesare 1993 ].

In the bottom-up approach to Petri net design, sub-systems are modelled separately and then

grouped or clustered to form larger systems. This approach allows for the modular
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specification and manageable analysis of subnet and refined net [ Suzuki & Murata 83 ]. The
separate analysis of the constituent parts allows the construction of systems from reusable,
fully understood subnets or templates. At each stage of the procedure the interaction between
sub-systems must be considered, and common places and transitions merged to form larger
sub-systems. The problem with this approach is in the design of the correct interaction
between existing subnets [ Zhou and DiCesare 89, 93 ]. Hybrid Petri net design combines a
top-down approach followed by a bottom-up approach in an attempt to overcome this
problem.

In the hybrid approach of Zhou and DiCesare [ 89, 93 ], a top down procedure is taken from a
highly abstract Petri net, through the gradual replacement of places or transitions by refined
subnets. Each step taken contains increased detail, and is made in a manner that preserves
properties of the system such as freedom from deadlock. The bottom-up approach is used to

design correct interaction among the sub-nets employed.

Petri net reduction methods [ Murata 89 ][ David & Alla 92 ] are procedures for reducing the
number of places and transitions in a net in order to reduce the state space of the model.
These rules allow a reduced net to replace a larger Petri net, where the reduced net maintains
the desired properties of the original net, while having a reduced reachability graph [ Murata
89 ]. Dwyer et al [ 95, 96] applies two Petri net reduction techniques termed parallel
transitions and forced communication pairs. These are applied to aid the detection of
deadlock properties, which are preserved in these reductions. Forced communication pair
net reduction is based on abstracting sequences of communications between two tasks, where

no other tasks attempt to communicate with the pair during the sequence.

The complexity of state based analysis can be reduced significantly if a structuring
mechanism that also supports analysis is available. Common structuring mechanisms [
Milner 89 ][ Valmari 93 ] allow the description of a system by composing less complex
process specifications in a well defined way. The central paradigm of this type of approach
is to define local equivalence relations. Processes are replaced by less complex, but
equivalently behaving substitutes [ Valmari 93 ], which can give a significant reduction in the
size of the state space generated. However, these hierarchical structuring methods are
generally restricted to net specification and only the most detailed level i1s executable and
allows for analysis [ Bucholz 94 }. A similar approach is taken with Petri nets in Chapters 5

and 6, however the problems of restricted analysis are addressed.
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3.8 Conclusion

This chapter has addressed different methods of modelling and analysing distributed systems
and their underlying protocols. The simple graphical structure of Petri nets can provide an
approachable, intuitive system model and aid in the designer’s understanding of a system.
Petri nets also possess well defined analysis techniques, based on enumeration of the
reachable state space, that allow the proof of safety properties. However, low level Petri net
theory is only effectively able to communicate the flow of control information between
concurrent processes, as opposed to data. This is an sufficient basis upon which to describe
the flow of synchronisation messages and control communications. In terms of verification,

the combination of the two techniques possesses the required flexibility.

Time dependencies are necessary for accurate protocol models, including modelling timeouts
[ Suzuki 90 ]. The Temporal Petri nets of Suzuki & Lu [ 89 ] and the TPNs of Merlin &
Farber [ 76 ] are used for modelling and analysis of this type in Chapters 5 & 6. The TPNs
are used to model timing constraints on commit protocols, and the Temporal Petri nets to
provide the formal basis for reasoning about liveness properties for the protocol and

controller designs developed.

The important features of the main techniques considered are summarised in Table 3.1.

76 Chapter 3



Features Formal Base Computational Concurrency | Real-time Analysis Method
Model
FSM Set Theory Interleaved State- X X Reachability Graph
transition
Petri nets , Set Theory Interleaved State- V X Reachability Graph
low & high level transition or Matrix Theory
Petri nets, Set Theory fftlliilflgfd State- V V Reachability Graph
Time(d) or Matrix Theory
LTL Modal Logic II:]:;LI:I;\;]@d State- \/ X Deductive proof
system
RTTL Modal Logic f?:i:?led State- v \/ Deductive proof
system
CSP Set Theory & | Event-based v X Deductive proof
Predicate system
Logic
TCSP Set Theory & | Event-based V v Deductive proof
Predicate system
Logic
State-transition . .
Z Set Theory & X vV Deductive proof
Predicate system
Logic
Temporal Petri Set Theory & | Interleaved State- V v Reachability Graph

nets Predicate transition & Deductive proof
Logic system

Table 3.1 Summary of modelling techniques
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Chapter 4 Design of Commit Protocols
for Distributed Control

4.1 Introduction

The commit protocols examined in Chapter 2, are typically used as part of transaction
processing component in distributed databases, but they can also be used to provide
coordination for distributed control systems [ Hill & Holding 90 ]. The 2-phase commit
(2PC) protocol is an accepted standard commit protocol [ ISO 92], while the extended 2-
phase commit (E2PC) protocol has been identified as having certain properties that make it

applicable in real-time systems.

The modelling of commit protocols using FSMs is established and many examples exist in
the literature [ Skeen & Stonebraker 83 ][ Yuan & Jalote 89 ][ Sharp 94 ][ Levi & Agrawala
94 1[ Yoo & Kim 95 ]. FSMs were discussed in Chapter 3, and are used for the modelling
and analysis of commit protocols in section 4.2 of this chapter. The limitations of FSM
models for commit protocol modelling and analysis are discussed, and problems with the
modelling of communications and failures are highlighted. The Petri net methods selected in

Chapter 3 are then applied to commit protocols in section 4.3 to overcome these limitations.

In this chapter the 2PC and E2PC protocols are considered in terms of their ability to
coordinate distributed processes and their resilience to faults. In section 4.3 Petri net models
of commit protocol are extended with failure modes, and the resulting behaviour analysed in
order to demonstrate the protocols blocking or non-blocking properties. The blocking
property can be used to guarantee strict data consistency between sites when failures occur.
While, the non-blocking property can be used to avoiding deadlock of a distributed system
due to system failure. The non-blocking property is therefore essential if a commit protocol

is required to provide a real-time response even in the presence of failures.

It is intended to design commit protocols that can offer real-time response, and are resilient o
clearly defined failure modes. This is required for the coordination of real-time
manufacturing systems, which are examined in Chapter 6. In section 4.2 the models of
standard commit protocols are presented and analysed, and a limited form of failure
modelling is examined. In section 4.3 Petri nets are used for the modelling and analysis of
commit protocols using explicit communications, and a multi-participant E2PC protocol 1s
developed. In section 4.4 detailed failure modelling is included in the Petri net models and a

responsive commit protocol is developed. In section 4.5 this version of the E2PC protocol is
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optimised using timeout mechanisms and analysed. The behaviour of the developed commit

protocol, with inherent timeout mechanisms, is analysed using Time Petri nets in section 4.6.

4.2 Modelling Commit Protocols

As explained in Chapter 2, commit protocols can be classified as either blocking or non-
blocking depending upon their termination criteria. There are two types of termination
conditions for commit protocols:

1) the weak termination condition - states that if there are no failures during the execution of
the protocol then all processes will eventually reach a consistent commit or abort decision,

i) the strong termination condition - states that if failures occur during the execution of the
protocol, then all non-faulty processes eventually reach a consistent commit or abort decision
[ Lynch 96 ].

Protocols that meet the first condition are termed blocking protocols and the second condition

are termed non-blocking protocols.

4.2.1 Blocking & non-blocking protocols

A protocol can be said to be non-blocking if the operational sites do not deadlock when a site
or link failure occurs during the operation of a protocol [ Skeen & Stonebraker 83 ]. Whereas
blocking protocols are those that allow the operational sites to block until the failed site (or
the communication link) returns to service. The 2PC is a blocking protocol and E2PC a non-

blocking protocol, and they are examined in the following sub-sections.
4.2.1.1. Two Party 2-Phase Commit Protocol

The FSM shown in Fig.4.1. illustrates the operation of the basic 2PC protocol, which is a
blocking protocol for both site and link failure occurrences.
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Coordinator Participant
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request

[ start

start

yes

YV yes

commit commit

©) ®

Fig.4.1. FSM of centralised 2PC protocol

Fig.4.1. shows a centralised form of the protocol (which was described in section 2.3.1.), with
a pre-determined coordinator and participant arrangement. The protocol would be initiated
by a request from the user to commit a transaction, this would initiate state q1 of the

coordinator.

Fig.4.2. shows a decentralised form of the 2PC protocol where all processes in the protocol
are symmetrical participants, there is no coordinator. This form of the protocol relies upon
rounds of message passing between each site. For a system of n sites (7 in Fig.4.2. denotes
process (1..n) ), there are n start messages sent to initiate the protocol, and each site replies to
all other sites (1..n). This decentralised form of the 2PC protocol relies on (2n2 - n )
messages to achieve a commit of n participants [ Levi & Agrawala 94 1, while 3(n - 1)

messages required by the simple centralised 2PC protocol for the same number of sites.
This decentralised approach is more flexible, allowing the dynamic assignment of which site

initiates a commit action. However, this entails a marked increase in the number of messages

required to reach a decision.
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start

yes;

Fig.4.2. FSM of de-centralised (symmetric) 2PC protocol

The following are the local states that each protocol process can occupy, in the FSMs of
Fig.4.1. and Fig.4.2.:

1) q - the initial state,

i) w - the ready state of the coordinator, awaiting the participants votes,

1i1) p - the prepared state of the participant, awaiting the commit or abort decision,

1v) a - the abort state, the protocols terminating state for an abort decision,

v) c - the commit state, the protocols terminating state for a commit decision.

A local state can be termed commitable if a process's occupancy of that state implies that all
other processes have voted yes on committing [ Yuan & Agrawala 88 ][ Levi & Agrawala 94
I[ Desai & Boutros 96 ]. As such, it can be said that the occupancy of non-commitable local

states cannot be used to infer the states of other processes.

The behaviour of the basic 2PC protocol shown in Fig.4.1. is as follows; The coordinator
starts in state q] initiated by a request command from the user, and issues a start message to
all participants (process-2 in Fig.4.1.), before entering a wait state w]. The participant’s
initial state is g2, upon receipt of the start message it takes one of two possible actions. If it
is capable of committing it replies yes and enters the prepared state p2, or if it is not then it
replies no and enters the final state ap abort. 1If all the participants vote yes and the
coordinator is also capable of committing then the commit message is sent to the participants,
and the coordinator enters the final state ¢c] commit. If any of the participants voted no or the
coordinator is unable to commit then the ubort message is sent to the participants that voted
yes and the coordinator enters the final state a| abort. A participant in the prepared state
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enters the final state ¢2 commir on receipt of the commit message, or a2 on receipt of the

abort message from the coordinator.

ql g2
request

Fig.4.3. Reachability tree for the centralised 2PC protocol.

In Fig.4.1. the local states of the coordinator and participant processes are shown, and in
Fig.4.3. the reachability tree is used to show the global states of the protocol. This is a two
party implementation of the protocol, where the coordinator site is denoted (1) and the single
participant (2). The protocol with a single participant is described in order to aid
understanding of the basic protocol, and avoid the description of concurrent states of the
participants. There are drawbacks to the use of FSM to model commit protocols for multi-

participant systems, this is addressed in section 4.2.5.

Two sets of reachable states of the FSM model are introduced in order to aid analysis of state
based protocol models. The concurrency set C(s;) and the sender set S(sj), for local state sj [
Skeen & Stonebraker 83 ]. The concurrency set of a local state sj is the set of all local states
that other concurrent processes can potentially occupy. From Fig.4.3. it can be seen that the
concurrency set for the coordinators wait state is:

Cw1)={q2,p2.a2} (4.1)
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From C(w]), it can be seen that the participant process can be in one of potentially three
states; initial (q2), prepared (p2) and abort (a2 ). The sender set of a local state sj is the set of

all local states of other concurrent processes that send messages to this site.
Stwp=1{q2} (4.2)

Set S(w1) shows that in the wait state (w]) the coordinator receives messages sent from the
participant in its initial state (q2). The complete sets for Fig.4.1. are given in Table 4.1 for the
2PC protocol, where J represents the empty set. The sender sets are used in this research for

determining timeout placements (in section 4.2.4.), in order to make protocols resilient to site

and communication failures.

Local State sj | Concurrency Set C(sj) | Sender Set S(sj)
q1 q2 )
W q2, P2, 42 q2
ajl p2, a2 %]
cl p2,¢c2 ©
q2 q1, Wi ql
p2 w1, al, cl W]
an wl, ajl %]
c2 cl %,

Table 4.1 Concurrency & sender sets for two party 2PC protocol

The concurrency set is derived from the reachability tree, and shows all the potentially
concurrent states for each state within the model. Concurrency sets can also be used to make
deductions about the recoverability properties of a protocol following a site failure. [ Skeen &
Stonebraker 83 ][ Hill 90 ].

An independent recovery scheme is one where the recovering site makes a direct transition to
a final state, without communicating with the operational sites [ Bernstein er ¢l 87 ]. If a
local state contains both an abort and a commit state in its concurrency set then it cannot be
made independently recoverable. This is because upon recovery, the failed site would need
to communicate with the operational sites to determine which decision had been reached. It
would not be possible for a recovered site to determine this decision using only local

information.

It can be deduced from the 2PC protocol concurrency set, Table 4.1, that if the coordinator
site fails while the participant is in the local state p2, then the participant cannot progress to a
final state. As p2 is an uncommitable state the protocol is blocked, C(p2) = { w1, a1 c] }

contains both a commit and an abort state.
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4.2.1.2. Two Party Extended 2-Phase Commit Protocol

The E2PC protocol is an extension of the 2PC protocol, with the addition of a prepared state
in the coordinator. This removes the coordinator's commit (¢ {) and abort (a]) states from the
concurrency set of the participants prepared state C(p2).

Coordinator Participant

@

request
———— start
start m———
yes
all yes
commit commit
ack

Fig.4.4. FSM of E2PC protocol

The FSM of the E2PC protocol Fig.4.4. and its associated reachability tree Fig.4.5., show the
essential difference of this protocol to the 2PC. The coordinator enters a prepared state after
sending the commit message, and the participant process has an additional acknowledgement
message to confirm its commit state. The 3-phase commit (3PC) is also a non-blocking
protocol, with the addition of a prepared state to both the coordinator and participant
processes. The 3PC protocol is a decentralised scheme which allows the use of a symmetric

form of the protocol [ Levi & Agrawala 94 .
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ql g2
request

Fig.4.5. Reachability tree for extended 2-phase commit

The reachability tree, Fig.4.5., is shown for a coordinator and a single participant process (in
Fig.4.4. | denotes the coordinator and i is 2 for the single participant). Examination of the
two reachability trees, Fig.4.3. and Fig.4.5. shows they satisfy the weak termination
condition, i.e. without failures for both processes the protocol terminates with a consistent
final state, either both commit or both abort. This condition can be seen clearly in the
concurrency set of the final states of each process (¢, c2, a|, a2) shown in Table 4.2., and in

the leaf nodes of the reachability tree.
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Local State sj | Concurrency Set C(si) | Sender Set S(sj)
ql q2 %,
W1 q2, p2, a2 q2
Pl p2, C2 p2
a] p2, a2 @
cl c? %,
q2 ql, Wi ql
p2 W1, Pl,al W
af Wi, al %,
2 p1,cl 9@

Table 4.2. Concurrency & sender sets for two party E2PC

4.2.2. Failure and Timeout Transitions in FSMs

In order to make commit protocols resilient to failures [ Skeen and Stonebraker 83 ] extends
the protocol model with timeout and failure transitions, which represent the actions taken by
a site when it detects a failure. Failure transitions are the action taken by a failed site when it
recovers. This action would be based upon the failed sites recovery procedure examining the
log records, which are written by the protocol after completing each phase, prior to the
failure. This action should bring a recovering failed site into a consistent state with the

operational sites.

The timeout transition represents the action taken by an operational site when it detects a
failure while awaiting to send or receive a communication. This is detected by the expiration
of local timers, and is mostly due to link failures or site failures [ Levi & Agrawala 94 ].

These types of transitions are illustrated Fig.4.6. for the E2PC protocol.
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Coordinator Participant

@— @

request
_eauest | start
Start H e

yes

3no

abort

commit

ack

failure transition

Fig.4.6. FSM of two-party E2PC with failure and timeout transitions

Two rules for the assignment of these types of transitions are presented in [ Skeen and
Stonebraker 83 ] as:

1) for every intermediate (non-final) protocol state sj, if the concurrency set C(sj) contains a
commit state then assign a failure transition from state sj to a commit state. Otherwise, assign

a failure transition to an abort state; 4.1)

i1) for every intermediate protocol state s, if there exists a state Tj in the sender set of the
state sj, which has a failure transition to a commit state (or an abort state), assign a timeout

transition from s;j to the commit state (or an abort state). (4.2)

Hence, to extend the E2PC protocol of Fig.4.4. with site failures by using (4.1) and (4.2)
produces the protocol shown in Fig.4.6. According to rule (4.1) failure transitions are
assigned as follows:

1) fromqitoay,asc2 ¢ C(ql)

i) fromwjtoal,asap e C(wl)

iii) frompjtocy,asc2e C(p])

iv) fromqg2toap,asc] ¢ C(q)
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1v) frompptoap,ascl & C(p2)
The set of failure transitions Fy for the E2PC protocol FSM are therefore:
Fr=1{(q1, a1) (w1, a1) (p1, c1) (92, a2) (p2, a2) }

According to rule (4.2) timeout transitions are assigned as follows:

1) fromwjtoal,asq2 € S(w1) A(q2, a2) € Ft

i) fromp] toal,asp2 € S(p1) A (p2,a2) € Ft

i) fromq toaz,asql € S(q2) A (ql,a]) € Ft

1iv) frompptoap,asw] e S(p2)A (w1, a]) € Ft

The set of timeout transitions Tt for the E2PC protocol FSM are therefore:
Te=1{(wl,a1) (p1, a1) (g2, a2) (p2, a2) }

These rules are sufficient to make the protocol resilient to single site failures. The analysis of
the reachability tree for the protocol shown in Fig.4.6. can show that a correct, consistent

decision is reached by the processes even in the presence of failures.

4.2.3. Independent Recovery

As detailed in section 2.3.3. the standard 2PC is a blocking protocol, while the E2PC and the
3PC are non-blocking protocols. Although operational sites can terminate using non-
blocking protocol schemes (E2PC and 3PC), a failed site may require extra non-local
information upon recovery in order to reach a final state which is consistent with those
reached by the operational sites. A protocol that can recover to a consistent state using only
local information is termed independently recoverable [ Bernstein et al 87 ][ Yuan & Jalote
89 1. In [ Skeen & Stonebraker 83 ] it is shown that there are no independent recovery
schemes possible in the presence of multiple site failures, or multiple partitions due to link

failures.

The work of [ Yuan & Jalote 89 ] proposes a method, that uses an approach based on FSMs,
which allow the independent recovery of a system composed of more than two sites. This
approach is based on the use of two special types of timeout transitions: timeout-to-commit
and timeout-to-abort. These require a site that times-out a communication, to propagate its
timeout action to all other operational sites. These extra messages are sent in order to retain a
consistent global view of a failed sites local state. However, this approach considers only site

failures and not link fatlures.
From the concurrency sets of Table 4.2 it can be seen that for the E2PC protocol, no

concurrent state contains both a commit and an abort action. However, in the FSM models

(such as Fig.4.4 and 4.6.), it is possible for a site to fail in the middle of a state transition; for
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instance the coordinator site could fail during the sending of messages to participant sites,
and only some of the participants would receive the message. If there are k (where k > 2)
participants and the coordinator fails during the state transition (w] to p1), it can be seen from
Fig.4.6. of the failure model, that those participants that receive the message will have a final
local state of commit (ck). While those participants that did not receive the message and
acted upon a timeout mechanism will have a final state of aborr, as there is a timeout
transition from the participant's prepared state to the abort state (pk, ak) € Tt. Therefore the
final global state in this case would contain both commit and abort states and as such would

be inconsistent.

In the FSM protocol models, the local state transitions can consist of both the receiving
and/or sending of messages in an atomic step. The sending of the commit message from the
coordinator to the participants in Fig.4.4. is modelled as an atomic action, which is valid for a
single participant where at most one message 1s sent per state transition. But, as noted in [
Yuan & Agrawala 88 ][ Yuan & Jalote 89 ] for more than a single participant this action
could fail semi-completed, and as such cannot be considered to be atomic. For a multiple
participant system, each local state transition of the FSM model can represent multiple
message send or receive operations. Thus, for this type of representation (where a failure of
one of the communicating sites or the communication links could have occurred in the middle

of a state transition), the state transition would be rendered a non-atomic action.

The use of Petr1 nets to model the E2PC protocol allows the above disadvantage of
representing multiple message send and receives as atomic actions to be overcome. The
modelling of the communications system and each message transfer can be made explicit,
this allows the behaviour of the protocol under failure conditions to be fully analysed and

understood.

4.3. Petri Net Protocol Models

4.3.1. Communication Model

As stated above, a method of overcoming the problem of state transitions becoming non-
atomic is to replace the FSM models of the protocols with Petri net models extended with
explicit communications. Rules 4.1 & 4.2 (shown in section 4.2.4) for failure and timeout

actions in FSM models are still applicable to Petri nets [ Hill 90 ].
The type of Petri nets considered in the rest of this thesis are known a safe nets; the places in

these nets have a token capacity of one (i.e. all places are l-bounded). A software workbench

for the analysis of behavioural properties of Petri net models developed in the IT research
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group of Aston University [ Azzopardi 96 ] was used in this research. This tool automates
the process of analysing a Petri net model, by allowing:

1) the enumeration of the net's reachability tree, and its concurrency and sender sets,

11) the checking of properties such as liveness, boundedness, and freedom from deadlock,

iii) the calculation of P-Invariants and T-Invariants.

Coordinator Participant
request start
Coordinator
start Participant
L X Gy (9 @
(a) send start
Coordinator -
PaI’TlClpam @ recieve

(b) 2

Fig.4.7. FSM and Petri net models of interprocess communication; (a) Finite state machine,
(fragment from 2PC section 4.2.1.), (b) equivalent Petri net with explicit asynchronous

communications, (c¢) equivalent Petri net with explicit synchronous communications.

In Fig.4.7.(a) the FSM model of interprocess communication 1s shown, this represents a
single message transmission, the sfart message being sent from the coordinator to the
participant. But as shown in Fig.4.4., the same state transition is also used where there are
multiple participants, and represents the sending of the srarr message to each participant. In
this representation multiple communications are considered as atomic actions and explicit

communication detail is omitted.
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The Petr1 net equivalents of this communication structure are shown in Fig.4.7.(b) & (c¢), and
represents the level of atomicity of communications. The representation of asynchronous
communications are shown in Fig.4.7.(b), in this model the sender process changes state
when the srarr message is sent, and the receiver process changes state when message is
received. There is a shared place (marked srarr) to represent the state of message in
transmission, and separate send and receive transitions for each process, as shown in
Fig.4.7.(b).

Fig.4.7.(c) represents synchronous communications, the sender (i.e. the coordinator) is unable
to proceed with its operation until it receives an acknowledgement from the receiver (i.e. the
participant). The states of the sender and the receiver processes change concurrently, upon
firing of the shared communications transition. When state { ok, w2 } becomes reachable, it

shows that a message has been successfully sent and received.

4.3.2. E2PC Protocol

The FSM model of the E2PC protocol, shown in Fig.4.4., was used as a basis for the Petri net
model shown in Fig.4.8. This model shows a coordinator and single participant process,
using synchronous communications. The Petri net model was created by modelling each
state in the FSM (Fig.4.4.) with a place, and replacing each FSM communication (as shown

in Fig.4.7.(a) ) with an equivalent Petri net structure for synchronous communications (shown
in Fig.4.7.(c) ).
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Fig.4.8. Petri net of 2-party E2PC protocol (shown on previous page)
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The interaction of the coordinator and the participant can be seen clearly, through the
transitions { t2, tg, t7, t11, t23, t17 } which represent synchronous communications. In the
FSM model of this protocol, Fig.4.4., this interaction is illustrated only through the notation
used. The following are the equivalent communications in the Petri net:

1) t2, the start message from coordinator to participant

) t]1, the commir message from coordinator to participant

1) 23, the abort message from coordinator to participant

1v) tg, the no vote message from participant to coordinator

v) t7, the yes vote message from participant to coordinator

vi) 117, the ack message from participant to coordinator

The states in the FSM of Fig.4.4. that are directly equivalent (in terms of their semantics) to

the Petri net of Fig.4.8. are shown as follows:
i) coordinator process:{ q1 =p1 }, { wi=p4 }, {al1=p17}, {p1=p14 ). {cl1=pi6 },

i) participant process: { qi=p20 }, { pi=p24 }, { ai=p26 }, { ci=p27 }.

The user request that initiates the functions of the protocol in Fig.4.4. and is modelled by the
tokenising of the place preq in Fig.4.8. The places { pcN, PCR. PCCs PCL, PPN; PPR» PPL. PPC
} are termed environment places. These are the minimal representation of the environment of

the protocol necessary to generate all firing sequences of the model.

In the commit protocol each process must decide whether it is prepared to commit, this would
depend upon the local state of the protocol. In the Petri net model this is represented by the
state of the environment places. For instance in Fig.4.8., when the participant has received
the starr message (t2) it is in state p2 1, the decision to send the yes or no vote depends upon
the state of the participant's environment places (ppN and ppr). The marking of these places
determine the firing of either t4 or t5 (representing the yes or no vote decision). As can be

seen from the Petri net, the firing of these transitions are mutually exclusive.

The initial marking of environment places pcn and ppn represents a particular behaviour
model of the environment. This marking is sufficient to exercise all possible decision
combinations for the protocol parties, coordinator and participant being able and unable to

commit.
The yes or no vote decision for the coordinator process is represented by the firing of either

t10 or t]3, determined by the marking of the coordinator's environment places pcn and pcr.

In this Thesis, where the firing of a transition in a protocol is dependent upon an environment
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place, the action of firing this transition is termed place sampling in the same manner as [
Sagoo & Holding 92 ].

The decision by a process to vote yes to commit often requires the locking of local resources,
this is represented by the places pcr. and ppr for the coordinator and participant. The release
of this local resource is represented by places pcc and ppc, this only occurs once the ack
message has been sent and both protocol processes have made a transition to their committed
state. For a control application the final environment places pcc and ppc, could represent the
global state that both processes have committed to take a certain action which must be

consistent, such as the lifting of a component by two independently controlled robot arms.

As for the FSM model, the abort message is only sent (t14) when the participant has voted

yes to the commit and the coordinator subsequently votes no, and the commit is sent if the

coordinator votes yes.

The Petri net of Fig.4.8. is equivalent to the FSM model of Fig.4.4., but the former is more
refined as the communications are shown explicitly and the environment conditions which
determine the yes and no vote decisions are also shown. This Petri net model has been analysed

and shown to be live, safe and deadlock free.

4.3.3. Multi-party E2PC Protocol

The commit protocol is modelled using Petri nets so that the intermediate states associated with
communication can be shown explicitly, in order to consider failures at these points in the
protocol. As described in section 4.3.1., the FSM model is only valid for representing failures in
a two party protocol, an equivalent Petri net model was developed in section 4.3.2. This 1s
extended to a multi-party protocol in order to consider the consequences of failures at the

intermediate communication stages.

Fig.4.9. shows a Petri net model of the E2PC protocol with the addition of a second participant
process. The sending and receiving of multiple messages between coordinator and participants
are represented by local atomic actions, rather than the global atomic actions of the FSM

commit protocol models.
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Fig.4.9. Petri net of 3-party E2PC

The voting mechanism of the coordinator process 1s represented by the firing of transitions {
tg, t9 }. The enabling conditions of which are based on the votes collected from the
participants, along with the place sampling of the coordinators environment places { p47, p48

}. The state space for the model was enumerated and analysed, and the protocol model
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shown to be live, safe and deadlock free. The functionality was also assessed and found to be

correct, the protocols behaviour is an atomic action, either all processes commit or all abort.

The places { p62, p63. P64, p65 | represent the intermediate states of the coordinator process,
where the participants votes are collected. The intermediate communication states are also
shown for the commit messages { p11,p12, P13, P14 }, the abort messages { p18, P19, P20,
p21 } and the acknowledgement messages { p66, P67, P68, P69 }. The above Petri net can be
extended with site and failure models in order to analyse the behaviour of the protocol when
these occur.

4.4. Modelling Failures in Petri Nets

All the possible types of failure that can occur in the system must be included in the model, to
analyse the effect of failures on the behaviour of the system [ Leveson & Stolzy 87 ]. Site
and communication failures can be included in the Petri net commit protocols. Failure
transitions can be added to model the actions taken by sites when failures are detected, these
were used in [ Merlin and Farber 76 ][ Skeen & Stonebraker 83 ] for analysing protocols, and

in [ Leveson & Stolzy 87 ] for the analysis of safety critical systems.

The site failures modelled include those types of failure that are termed:

1) fail-silent [ Powell et al 91 ] or fail-stop [ Bernstein et al 87 ], where a site stops
processing completely,

1) fail-uncontrolled [ Powell er al 91 ], these being where arbitrary or malicious actions are
performed by the failed site, and are very difficult to rectify, the problem is similar to solving
the Byzantine generals problem [ Lamport et al 82 ]. Those type of failures that involve

erroneous execution, termed Byzantine failures [ Levi & Agrawala 94 ], are not considered.

A Petrl net model that includes site failures is shown in Fig.4.10. In this model,
a site failure is represented by a transition that is shown in outline. The firing of a failure
transition represents a total site failure, and the subsequent places { f1, f2 } represents the

action taken by the failed site upon recovery.
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Fig.4.10. Modelling site failure using failure transitions

In Fig.4.10. the places f] and f2 represent the failure states of coordinator and participant
processes (respectively) at the first stage of a commit protocol. The recovery action taken by

a site would depend on the last recovery log written by the site before the failure occurred.

The types of communication failure considered in this Thesis depend upon the
communication subsystem. For synchronous communications only total communication
failure, or link failure is considered. The use of point-to-point synchronous communications
prevent message loss and message ordering failure.  While, for asynchronous

communications, failure can mean link failure and message loss.

Coordinator Participant Coordinator Participant
start to2
/
tc
tol ok

(b)

Fig.4.11. Modelling communication failure
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Fig.4.11.(a) shows the Petri net representation of communication failure for asynchronous
communications, where message loss is possible. This is modelled by a token being removed
from a message place (srart), due to the firing of a communication failure transition (tcf)

shown in outline. The removed token is placed in (mf}) place in the Petri net model.

To simulate a link failure for synchronous communications, a communication transition that
never fires is used, (i.e. tc in Fig.4.11.(b) ). Link failures are assumed to be a physical
disconnection of a communication link between processors, and messages are of short
duration so that disconnection cannot occur half way through a message. Fig.4.11.(b) shows
timeout transitions (tg], to?2), shown as a 'double bar', these transitions model the timeout
mechanisms used to guard against deadlock, where a process waits indefinitely on a failed
communication. The places marked T} and T7 represent the action taken by a process when

a timeout occurs and they indicate that a communication failure has occurred

The resilience of commit protocols to failures was studied in [ Skeen & Stonebraker 83 | and
it was found that it depended upon the type and number of failures. The following was
shown:

i) there is no commit protocol resilient to communication failure where messages are lost,

i1) there is no protocol resilient to multiple network partitions (where communications

failure.

In [ Hill 90 ] the use of point-to-point synchronous communications was used to overcome
the possibility of message loss, and this is the approach taken in the rest of this Thesis. The
commit protocol developed in the next sections will be designed to tolerate a single link

failure leading to a single network partition.

The assumption is taken that the interprocess communication system delivers all messages
within a pre-defined time limit and a late message is considered to be a failure (an inability to
either send or receive a message). Sites are assumed to fail in a fail-silent manner [ Levi &
Agrawala 94 ], and that if a site sending a message fails, the receiver site will use a timeout
mechanism to detect this occurrence. This has the implication that for a site waiting to send
or receive a message, the failure of the site (with which it 1s attempting to communicate) is
indistinguishable from a communication link failure. The site which detects the failure is

required to take the appropriate action for both cases.

For real-time control applications, appropriate responses to failures must be built into the

system. In [ Leveson & Stolzy 87 ]. Three basic forms of acceptable response are defined:
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1) fault-tolerant - a system continues to provide full functional performance in the presence of
faults,

i) fail-soft - a system provides continued service with degraded performance or reduced
functionality,

i) fail-safe - a system takes action to limit potential damage, and no attempt at continued

service is attempted.

The recovery times of failed sites are large relative to the commit protocols normal duration
and so can be considered unbounded. The recovery actions of failed sites modelled in the
manner of Fig.4.10. are not considered, as in the intended real-time control applications (such
as the applications considered in Chapter 6), site failures are expected to be infrequent and
the recovery response is assumed to be a safe restart of all sites. The use of recovery logs is

therefore unnecessary.

The response of the operational sites if communication failures are detected (due to a site or
link failure) are of prime concern. Particular emphasis is placed on the communication, or
link failures as these failure types are expected to predominate in distributed control
applications. The E2PC protocol was chosen for development as this is known to be non-
blocking [ Skeen & Stonebraker 83 ] and can provide independent recovery with the addition
of timeouts [ Hill 90 ]. These properties of the protocol allow processing to continue at

operational sites independently, in order to provide any required fail-safe response.

Within the commit protocols it is necessary to provide a timeout on either side of all
synchronous communications in order to prevent deadlock. Deadlock can occur when a
process is waiting indefinitely for a response, due to some site or communication failure.
Deadlock states can be identified explicitly in the Petri net reachability tree. A timeout
occurring initiates the actions assumed to be taken by other sites, when they detect that a site
or communication link has failed. In Fig 4.11.(b)., the places T| and T7 represent the actions
associated with the timeouts { tg], to2 }, these actions are used to reach a consistent final
state for both coordinator and participants. However, the number of timeouts required (for
the commit protocol such as Fig.4.9.) are quite large, as every input and output must be

bounded with a timeout mechanism.

The commit protocol models (Fig.4.8. and Fig.4.9.) can be extended with the addition of link
failures, in order to show where mechanisms are required in order to produce a resilient
protocol. The protocols developed in this Chapter are enhanced with timeout mechanisms so
as to tolerate the failures modelled in the Petri nets. The rules of Skeen & Stonebraker [ 83 ]
for the placement of timeout transitions, and for determining the actions associated with

timeouts occurring, do not apply to protocols using synchronous communications | Hill 90 ].
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This is because the firing of the shared communication transitions, alters the state of the

sender and receiver process concurrently.

4.4.2. Timeout actions

Each input place to a communication transition needs to be guarded with a timeout. As the
concurrency set cannot be used to determine the action associated with such a timeout
occurring (as used in [Skeen & Stonebaker 83 ]), inspection of the reachability tree will be
used. Where link failures lead to deadlock, the action associated with a timeout expiring will
depend upon whether the deadlocked state is commitable. From Fig.4.11.(b) it can be seen
that a communication transition failing will result in a pair of timeout transitions firing{to],
to2}. For the commit protocol shown in Fig.4.9. each communication will have a pair of
timeouts assigned to its input places (these timeout transitions will be denoted by T] to T]8).
Each communication (in Fig.4.9.) will be considered in turn, to determine the required action

for a timeout occurring:

1) ps and p23 are the input places to the communication transition t]¢. Timeout transitions
are assigned - (T1 from ps, and T3 from p23), that fire if communication fails and t] ¢ cannot
fire. This case represents the situation in which the coordinator and participant-1 are
deadlocked, unable to send/receive the starr message. These communication input places are
not commitable states and so the action associated with the timeouts (T 1,T3) occurring is to
enable the abort state. The same reasoning follows for participant-2's communication, and
the assigned timeout transitions T2 and T4. The timeout transitions connect the following

places T (p5 to p22), T2 (p7 to p22), T3 (p23 10 p34), T4 (P35 t0 p46). (4.3)

i1) place pg0, and places p32 and p25 are the input places to the communication transitions
t4] and t472, (the same timeout is associated with sending the yes and no votes for the
participant). Timeout transitions are assigned - (T5 from pg(, and T7 from p372 and p25).
The communication input place for participant-1 is not a commitable state, and so the
participant times-out to the abort state. In this situation the coordinator will timeout the
communication with participant-1, this is equivalent to receiving a no vote from participant-1.
In this case, if participant-2 sent a yes vote then the coordinator will need to send it an abort
message. The timeout action for the coordinator is thus the same as for receiving a no vote.
The timeout transitions connect the following places T5 (p60 to p62), T (p61 to pe4), T7
(P32 & p25 10 p34), T8 (p44 & p37 10 p46). (4.4)

iit) Timeout transitions are assigned - (T]] from p]], and T3 from p27). This situation

represents a deadlock of the commit message from the coordinator. The action associated

with a timeout occurring for a participant is to timeout to abort. The timeout action for the
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coordinator requires an alteration to the protocol design. If a single link failure occurs then it
can be assumed that one participant receives the commit message, and the other participant
times-out the communication. In this situation the coordinator will need to send an abort
message to the participant that received the commit message successfully. Thus an extra
aborr message and communication transition is required. For participant-1 the abort message
would be sent to it in place p29, and for participant-2 in place p5g8. The timeout transitions
connect the following places T1] (p11topl18 & p31), T12 (p13 to p20 & p33), T13 (p27 to
p34), T14 (p39 to p46} (4.5)

iv) Timeout transitions are assigned - (T9 from p1g, and T1¢ from p2(¢). This situation
represent the coordinator deadlocked, attempting to send the abort message. The use of the
abort message will be altered through optimisation of the protocol using timeouts in the next
section. The timeout transitions T9 and T]( (coordinator to participant-1 and participant-2
communications) will not be required, as the aborr message will only be required, as detailed

in case 1iii) above. (4.6)

v) Timeout transitions are assigned - (T15 from pgg, and T17 from p29), this situation
represents where an acknowledgement message from a participant is deadlocked. The input
places to this communication are commitable states, and so the timeout action taken by
coordinator and participants is the same is if the ack was sent/received. All processes time-
out to the commit the state. The timeout transitions connect the following places T15 (p68 to
p69), T16 (p66 to p67), T17 (p29 to p30), T18 (P58 to p42}

(4.7)

In section 4.5. the actions associated with timeouts occurring are used as a basis to optimise

the E2PC protocol, in order to design a responsive commit protocol.

4.5. Protocol Optimisation

Fault-tolerant distributed real-time systems need a way to detect failures and initiate a
recovery response consistently. This is achieved in this research by integrating timeout
mechanisms into the commit protocols used for coordinating such systems. The timeouts are
used to detect communication and site failures, and the actions associated with such timeouts

occurring prevent coordination failure.

Responsive protocols are those that have real-time properties and are self-stabilising [
Kakuda er al 92,94 1. A protocol is known as self-stabilising if it performs recovery from
any abnormal state to a normal state [ Gouda & Multari 91 ]. This form of protocol offers

provides recovery without the use of exception handling routines when failures occur. The
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E2PC protocol can be made responsive by using timeouts to detect failures (abnormal states),
and actions associated with timeouts to perform recovery to normal states. In section 4.4. the
actions taken by the E2PC protocol when timeout occurred were defined, these actions
provide a form of error recovery. The timeout to the abort state can be considered as
backward error recovery, and the timeout to the commir state as a form of forward error

recovery.

As mentioned in section 4.4., the use of timeouts requires some alteration of the E2PC
protocol design, such as the ability to send an aborr message to a participant that has received
the commir message. The actions associated with timeouts occurring can also be used to
optimise the protocol:

1) by reducing the number of messages required,

i1) by allowing messages to be synchronisation signals that have no explicit information, the

information is implied by the state of the protocol for the receiving process.

To determine the possible optimisations of the E2PC protocol, each of the timeout actions
defined in section 4.4.2., will be considered in turn:

i) the actions associated with the timeout for the srart message (4.3) are unchanged in the
optimised E2PC protocol. Consider a single link failure at this communication stage. The
coordinator and the participant that timeout this communication will proceed to the abort
state. The participant that received the start message will then deadlock at the subsequent
vote communication, and will timeout to the abort state. Therefore, all processes reach a
consistent state. This optimisation removes the need for the coordinator to send an explicit

abort message (o the participant that received the starr message;

i1) the action associated with a timeout of the vote communications (4.4) can be used to
optimise the protocol. For a single link failure, the action taken by the coordinator when a
timeout occurs is the same as for receiving a no vote. Therefore, the sending of an explicit no
vote by the participant can therefore be removed. A participant that makes a no vote decision
will proceed directly to the abort state. Using this optimisation the coordinator only receives
yes vote messages, and so the message can be made a Synchronising signal which is
implicitly a yes vote. This type of optimisation which uses messages only for
synchronisation and not data, avoids the problem of message corruption [ Birman & Joseph
88 1. This provides an efficiency in resources rather than time. There being a saving of one
message transmission, at the cost of the protocol will always requiring the duration of the

timeout to complete when a no vote decision 1s made;

iii) the action associated with a timeout of a commit communication (4.5) is the sending of

the abort message. Where a timeout of a commit communication occurs, it can be assumed
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that the other commit communication was successful due to a single link failure occurring.
The action of the coordinator for this timeout occurring, is the sending of an abort message to

the participant that received the commir message;

1v) the action associated with a timeout of the abort communication (4.6) allows an
optimisation of the E2PC protocol. The design is optimised in that there are no abort
messages sent to participants (that voted yes) when other processes (participant or
coordinator) vote no. A timeout occurring for a commit communication has the same effect
for a participant as receiving an abort message. Therefore, this timeout is used to replace the
abort message. The only abort message, in the optimised protocol, is the one detailed in
point iii), where a link failure has occurred. Under the assumption of a single link failure

occurring no timeout is required on this abort message;

v) The timeout actions associated with the acknowledgement messages (4.7), are unchanged

as the inputs to this communication are still commitable states.

Using the above approach the number of messages can reduced, the no vote is removed and
the abort message is only required when a link failure has occurred. The start message could
be removed, if the processes could be guaranteed to be initially synchronised. As the start
messages main function is to synchronise the sites party to the commit protocol. For a

practical system this initial synchronisation signal is necessary.

The E2PC protocol could be optimised by removing the ack (acknowledgement) message.
The actions associated with the timeouts on this communication would bring all sites to a
consistent (commit) state. However, the ack message is retained in the design as its use
allows the commit protocol to complete before the commit deadline. The use of timeouts to
replace the ack message would mean the time to reach the commit/abort decision would be
determined by the timeout setting. The sending of the ack messages could occur before this
deadline, and thus allow the commit decision to be reached earlier. This is efficiency in time
rather than resources, one extra message transmission is required, but the protocol can

complete earlier than the timeout deadline in the commit case.

The responsive commit protocol design incorporating these optimisations is shown in
Fig.4.12.
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104 Chapter 4



The timeout transitions are shown clearly as double bars in Fig.4.12. The locking of local
resources is shown by places { p1, p2, p3 }, and the release of tokens in these places is to

either the abort or commir final outcome states for the protocol.

There are two final states for each process reflecting the outcome of the commit decision p¢ =
{ P61, P64, p67 }, and abort decision py = { p62, P65, P68 }. Examination of the reachability
tree for this optimised commit protocol shows that it is non-blocking as expected. While, the
application specific grading of these timeouts will allow the protocol to meet real-time
deadlines. It can also be shown that inconsistent local states are not reached in normal or
failure operation, for the clearly defined failure modes. The final global states of commit (pc)
or abort (py) are always reached. The reachability tree generated had 812 nodes and analysis
showed the Petri net model to be live, safe and deadlock free tor an initial marking Mg { pé.
P35, P47, P60, P63, p47 }. The protocol always produced a consistent abort of commit

decision for all processes.

The design of the optimised E2PC protocol provides both a timed atomic commit (TAC) and
integral recoverability through the use of timeout actions. The use of timeouts in the
protocols decision process allowed a reduction in the number of messages used and a
simplification of the design, although this places a greater emphasis on the calculation of

accurate timeout values.

4.6. Time Petri Nets & Timeouts

The protocol models need to include time as they are intended for use in real-time control
applications, where deadline constraints for decisions are required and timeout values need to
be calculated and analysed. Timing properties can be added to Petri net models in several
ways, as described in chapter 2. The Time Petri nets of Merlin & Farber [ 76 ] are considered
the applicable to the commit protocol model Fig.4.12.

Time Petri nets [ Merlin & Farber 76 ] can be used to restrict the behaviour of the net and
prevent false timeout conditions from occurring. This allows the desired outcome, to commit
rather than abort, to occur whenever possible. The addition of timing constraints, using Time
Petri nets, can restrict the set of possible markings of the un-timed reachability tree[ Leveson
& Stolzy 87 ]. In the work of [ Srinivasan & Jafari 93 ] Time Petri nets are used in
conjunction with the backward firing of transitions, to compute the maximum time before a
watchdog (timeout) can safely be disabled. Backward firing of transitions involves tracing
firing sequences back from a particular state, to a previous state of interest, i.e. where a

decision was made or an action initiated.
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The timing analysis possible through the use of Time Petri nets [ Merlin & Farber 76 ]{
Leveson & Stolzy 87 ][ Berthomieu & Diaz 91 ] and [ Bucci & Vicario 95 | allow the
derivation of constraints on timeout settings to be estimated directly from the net. However,
knowledge of the underlying communication system used and its performance is required to

perform this estimation.

Using Time Petri nets minimum and maximum firing times are associated with transitions,
these are the earliest firing time (EFT) and latest firing time (LFT) for the transition once
enabled. Consider the timeout guarded communication shown in Fig.4.11.(b), each transition
has an earliest and latest firing time associated with it, which determine when it fires after the
transition has become enabled. The following constraints on the timeout values are required
in order to prevent false timeouts,

1) EFT (to]) > LFT (te),

1) EFT (tp2) > LFT (t¢),

Where tc is the communication transition, tg] and tg2 are the timeout transitions.

The timeout settings for the responsive E2PC protocol, Fig.4.12., can be given in terms of the
behaviour of the Petri net. Timeout transitions differ from the other transitions in that an
extra delay, the timeout value (Dy), is associated with them, modelling the value of the
timeout setting. The grading of timeout settings must guarantee deadlines by preventing
deadlock states, while also preventing false (early) timeouts. Preventing deadlock states can
be essential to a real-time control system, as in such applications providing a late response
can be as hazardous as performing an incorrect action. The actions associated with a timeout

occurring guarantee a response within a certain time.

The following will show how Time Petri nets can be used for deriving constraints for the

setting of timeouts.

Consider the timeout transitions associated with the sending and receiving of the yes vote
from participant-1 to the coordinator process, t] ¢ and t46 in Fig.4.12. The last
synchronisation point for the two processes was the firing of communication transition t32
(the start message). A synchronisation point is the firing of a transition common to both
processes, representing a synchronous communication event. This is represented by point (0)

in Fig.4.13., and the transition firing times will be related to this point in the firing schedule.
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Fig.4.13. Firing schedule for timeout

The setting of timeout t4¢ is considered first, this is the timeout that prevents deadlock of the
yes vote communication (sent from participant-1 to the coordinator), represented by transition
t]7 in Fig.4.12.

From the firing of t32 there are two sequences that need to be considered that enable
transition t]7: the firing of t32 before t39, or the firing of t39 before t32. Assuming the worst
case for successful communication, the timeout transition is enabled at the earliest point
EFT(t32) and the communication transition is enabled at the latest point LFT(t39). The times
from the firing schedule Fig.4.13. are then given:
(1) the earliest time that the timeout t4¢ is enabled is EFT(t3).
(2) the latest that communication transition t]7 is enabled is

LFT(t15) + LFT(t14) + [LFT(139) - EFT(132)].
(3) the latest time that communication can occur is LET(t]7).

(4) the earliest time the timeout can fire 1s Dygg + EFT(t46).

From Fig.4.13. it can be seen that:
(4) = (3) + (2) - (1), replacing these with the times above the minimum timeout setting
of Dygg for the participant to avoid false timeout is given by:
Do 2 LET(t]7) + LET(t15) + LFT(t14)
+ [LFT(t139) - EFT(132)] - EFT(t3) - EFT(t46) (4.8)

Consider a firing sequence that enables the timeout transition before the communication
transition (where the firing times given by EFT(t32) and EFT(t39) ), then the setting of the
timeout transition t]¢ for the coordinator is given by:

(1) the earliest time that the timeout t] ¢ 1s enabled is EFT(t]5) + EFT(t]4).

(2) the latest that communication transition t]7 is enabled is LFT(13).

(3) the latest time that communication can occur is LFT(t]7).

(4) the earliest time the timeout can fire is Dy + EFT(t]6).
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The setting of t] ¢ to avoid false timeout is given by
D16 2 LFT(117) + LFT(13) - EFT(t15) - EFT(t14) - EFT(t16) (4.9)

The settings for the rest of the timeouts associated with the coordinator and participant-1, and

the timeouts associated with participant-2 can be shown in the same manner.

The deadline for the protocol to produce a conmumnit or abort decision can be given as Dd. The
timeout value and the minimum and maximum firing times for the timeout pairs are assumed
to be the same; I.e. for the coordinator the pair of timeout transitions assigned to the vote
communication (t]6 and t18), Dtje = Dt1g , EFT(t16) = EFT(t18) and LFT(t16) = LFT(t18).
This follows for participant timeout pairs, such as t4g and t47. If absolute times are assumed
then the constraints of the timeout settings for the responsive E2PC protocol, Fig.4.12., can
be given:

1) Diss + LFT(t55) + LFT(12) < D¢, timeout to commit outcome for coordinator (pg1).

11) Dgsp + LFT(t52) + LET(t5) < Dg, timeout to commit outcome for participant-1(pg4).

1) D53 + LFT(t53) + LFT(t10) < Dd, timeout to commit outcome for participant-2(pg7).

1v) Dysg + LFT(t50) + LET(t7) + LFT(t124) < D(, the timeout action of the coordinator is to
initiate the sending of an abort signal to participant-1, and reach an abort state (pg2).

v) Dtig + LET(t16) + LET(t23) + LFT(t24) < Dd,timeout of yes vote communication from
participant-1, followed by the abort state (pg2).

vi) Dag + LFT(t46) + LFT(t4) < Dg,timeout of yes vote communication to coordinator, to
reach an abort state (pg3).

The constraints of case v) and vi) give the maximum values for the setting of timeouts D¢
and Dtjg. These can be combined with the minimum settings to avoid false timeouts given
above, in order to set the upper and lower limits on the timeouts. The other timeout

constraints can be given 1n the same manner.

4.7. Conclusion

In this Chapter the use of FSM for modelling commit protocols [ Skeen & Stonebraker 83 ][
Yuan & Jalote 89 ][ Levi & Agrawala 94 ][ Yoo & Kim 95 ] was considered, and the
limitations of this approach were discussed. Petr1 nets were then chosen for the development

of a responsive commit protocol as used in [ Hill & Holding 90 ][ Hill 90 ].
The limitations of Skeen & Stonebaker's [ 83 ] rules for failure and timeout transitions were

considered, and the modification of these rules made in [ Yuan & Jalote 89 ] and [ Hill 90 ]

were used in the commit protocol design. The representation of multiple communications as
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atomic actions in the FSM protocol models, highlighted the benefit of using a Petri net model

with explicit communications shown, as an approach to commit protocol design and analysis.

The communications used in the commit protocol are concerned with the flow of control
information rather than the transmission of data, because of this such communications can be
expressed easily in terms of synchronous events [ Carpenter 92 ] such as used in the Petri net

protocol models.

The commit protocol developed was enhanced with timeout mechanisms and associated
recovery actions, so as to tolerate the clearly defined set of hardware faults modelled. Once
the Petri net model of the E2PC protocol, shown in Fig.4.8. was extended with
communication failures, examination of the resulting reachability tree showed where these
recovery and timeouts mechanisms were required. The addition of these mechanisms

resulted in the Petri net shown in Fig.4.12.

An alternative method for the placement of timeout transitions by examination of the
reachability tree was given by Hill [ 90 ], and this approach was applied to a multi-party
commit protocol in this chapter. The rules of Skeen & Stonebaker [ 83 ] are only applicable
to systems using asynchronous communication and for single coordinator/participant systems
as shown in [ Yuan & Jalote 89 ]. This is because in FSMs the state transitions representing

message transfer alter the states of two process concurrently.

The multi-participant protocol developed in section 4.3 and optimised in section 4.4 offers a
timed atomic commitment, along with inherent recovery and fault tolerant properties. The
protocol 1s complete in that the timeout mechanisms used to detect communication failure are
part of the protocol, and no other sub-protocols are required. Only failure atomicity is of
concern, the preserving of consistency in the presence of failures, and not the concurrency

control of transaction processing that is used to achieve serialisability.

The Petri net model was then transformed to a Time Petri net model in section 4.6, by
associating minimum and maximum firing times with transitions. These firing time bounds
are used to illustrate a method for calculating relative timeout settings. This method is
dependent upon the accuracy with which communication times can be estimated for the

intended applications.

Standard and Time Petri net analysis of the developed commit protocol, with timeouts and
using synchronous communication, has shown that it provides a timed atomic commitment
that it is resilient to link and site failures. This was shown by the inclusion of failures within

the Petri net model and analysing the subsequent behaviour of the protocol.
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The commit protocols developed are intended for use in the applications addressed in chapter
6., which concern the coordination and synchronisation of distributed controllers for high

speed, independently driven machinery.

An independently recoverable commit protocol augmented with timeouts is well suited for
use in a real-time environment since it has the capability of surviving link failures, and
satisfying timing constraints. Synchronous communication should be used where the

application is safety critical and link failures are expected, in order to prevent message loss.

However, it should be noted that the application of the commit protocols developed in this
chapter, for the coordination of distributed controllers, would depend upon an
implementation of the controller using point-to-point synchronous communication. The
protocol was optimised, with timeouts being used to provide implicit information for the no
votes and abort messages, this allowed the use of synchronising signals rather than data
messages, and removed the need to detect and tolerate data corruption. The robust, real-time
protocol design and protocol optimisation rely upon the use of synchronous communication,
and accurate information on the timing of communications is needed in order to calculate
timeout values. This requirement for synchronous point-to-point communication 1s a

necessary but limiting factor for the use of the robust real-time commit protocol developed.

The standard Petri net design and analysis of the multi-party, responsive commit protocol
developed in this chapter is used as a comparison for the modular approach to design and
analysis presented in Chapter 5. The functional and temporal behaviour of the protocol
presented in section 4.6. will form a template for the modular commit protocol designs in
Chapter 5.

As can be seen from Fig.4.12., the final Petri net protocol design with the inclusion of explicit
communications and all timeout mechanisms, is large and complex, which results in a
correspondingly large reachability graph. The automation of the reachability graph and
concurrency set generation aided the analysis, but the state space was still prohibitively large
(1563 nodes). The combination of the commit protocol and distributed control system model
could prove difficult to analyse, due to the exponential growth in reachable states. The
modular approach to the design and analysis of commit protocols presented in Chapter 5 is
intended to overcome these drawbacks to the use of Petri nets models and to reachability

based analysis.
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Chapter 5 Modular Design & Analysis
of Commit Protocols

5.1 Introduction

In chapter 4 the development of responsive atomic commit protocols using Petri net
techniques was presented. It was shown how Petri nets offered an improvement on FSM
based methods for the modelling and analysis of protocols. The use of Time Petri nets |
Merlin & Farber 76 ] was also shown to be an aid to the grading of the timeout mechanisms

required to guarantee real-time deadlines.

The intended application for the commit protocols developed in chapter 4 is in the
coordination of distributed controllers. These controllers will be independent and use
message passing communications in order to synchronise and coordinate there operation.
This coordination will require the use of fault-tolerant real-time commit protocols. It is
intended to use Petri nets for the design of the distributed controllers, and then to embed the
Petri net commit protocol models within these controller designs. This composition of the
controller and the protocol models should allow the analysis of the complete controller

system in a unified manner.

State enumeration is a main method of analysis for Petri nets, involving the elaboration of the
complete reachable state space of the model. This is termed reachability analysis as each
reachable process state is considered to determine whether a given property, such as

boundedness and liveness, is satisfied [ Dwyer et al 95 ].

It is anticipated that the Petri net designs for the distributed controllers will be both large and
complex. This will result in a correspondingly large state space, due to the problem of state
space explosion [ Scholefield 90 ], discussed in chapter 3. This problem can render state
enumeration based analysis costly, if not intractable. It is intended to use a modular approach
to both the development and analysis of Petri net models in order to cope with the problem of
a large state space. This modular approach will conceal local events of sub-nets, whilst
preserving properties of interest, such as boundedness and liveness. The systematic
concealment of local events allows the management of state space, and permits a modular

approach to the analysis of complex systems [ Bucci & Vicario 95 ].

A set of reusable templates are developed in order to reduce the complexity of the Petri net

protocol models, and to aid the readability of designs. These templates are termed
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communication blocks and are based upon the sets of communication actions within the
commit protocol. The structure and behaviour of these communication blocks are modelled
and analysed using Petri net and Temporal Petri net methods. In this approach a 'divide and
conquer' philosophy is used to handle complexity in both the design and the analysis of
commit protocols.

In section 5.2. it is shown how communication blocks can be used in the modular design of a
protocol model that is equivalent to the protocol model developed in section 4.5. The
communication blocks are reusable templates of interprocess communications, and the
analysis of their structures are used to aid the analysis and formal verification of properties of

the protocol design.

In section 5.3. the notion of well formed multi-blocks (WFMB) is developed from Valette's |
79 1 well formed blocks (WFB). The WFMBs are used to formalise the reusable Petri net
templates termed blocks. The application of these blocks to the atomic commit protocols
developed in order to create what are termed commit blocks is shown. The application of
these commit blocks models within the design and analysis of distributed controllers is then

discussed.

5.2 Communication Block

In this section a method for reducing the complexity of the Petri net protocol models by
abstracting sets of communication actions using communication blocks is presented. It is
then shown how a modular approach to the design of commit protocols can be taken using
these templates. This approach is illustrated through the modular design of a multi-party
E2PC protocol, which is equivalent to the model presented in section 4.5. The templates are
analysed using Petri net theory to gain knowledge of their behaviour. The repeated instance
of these templates allows the repeated use of their analysis. This is applied to the analysis of

the protocol designed using the communication block approach.

5.2.1 Communication structures
As can be seen from the protocol developed in section 4.5. (see Fig.4.12.), each phase of the
protocol consists of a series of timeout-guarded synchronous communications, that involve

either two or three independent processes.

Fig.5.1. shows a model of the timeout guarded two-party synchronous communication, (as
used in Fig.4.12.) for the abort message sent from the coordinator process to one of the
participant processes. The outcome of this structure is either a successful communication of

the two processes or the firing of both processes timeout guards, aborting the communication
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attempt. The communication failure could be due to a late communication or a link failure.

This simple communication structure is represented by nine places and six transitions, which
includes two timeout transitions { t2, tg }.
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Fig.5.1. detail of 2-party synchronous

communication with timeouts

The three-party version of this structure is illustrated in Fig.5.2. This communication
structure differs from the above, in that the process termed coordinator , also requires a
decision mechanism to differentiate between the outcome of the communication with each
processes. The outcome of this decision mechanism indicates the success of each

communication attempt.
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Fig.5.2. detail of 3-party communication with timeouts

As can clearly be seen from Fig.4.12., a protocol design with fully elaborated communication
structures can become highly complex. The use of abstractions of the above two
communication structures (Fig.5.1. and Fig.5.2.) would offer a technique to simplify the
protocol design. A reduced model of the synchronous communication structures, termed
blocks, could serve as a reusable template. The use of these blocks as templates would offer
a method of modular design for protocols. The blocks could be used in protocol designs to
avoid explicitly modelling communication using multiple transitions and places. It is the
intention of this research to reduce the complexity of the Petri net protocol models ( such as

Fig.4.12.) using this method.

As noted in [ Christensen & Hansen 94 ], the modelling of systems using hierarchical or
modular Petri nets would be aided by the use of a construct that modelled the interaction
between modules. Where these constructs represented message passing communication, their
use would aid the design of distributed systems based on this form of interprocess
communijcation. The work of Christensen & Hansen [ 94 ], used this approach with coloured

Petri nets [ Jensen 90 ], but the concept applies equally to the standard Petri nets used here.
The use of templates that model communication structures in modular Petri net design, would

allow greater emphasis to be placed on the system to be modelled, rather than on the

communication sub-system and synchronisation primitives inherent in the design. A similar
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approach has been used in state machines [ Shaw 92 ] and Petri nets [ Christensen & Hansen
94 ] for the composition of modular sub-nets, based on the use of communication channels or
ports [ Bucci & Vicario 95 ] . The concept of these communication channels is influenced by
CCS [ Milner 80, 89 ] and CSP [ Hoare 85 ]. Without these communication constructs, it 1S
necessary to explicitly model each communication using transitions and places, resulting in a
complex net structure. However, the approach of [ Christensen & Hansen 94 ] is not practical

for the analysis of timing or for safety properties.

The use of checkpoint transitions in [ Shieh er al 90 ] is a similar approach, but is not applied
to modular Petri nets. The taking of a checkpoint in a distributed system requires the
agreement of all processes to record their current states for error recovery purposes. This
would typically involve the use of an agreement protocol, requiring Interprocess
communications in order to synchronise and reach agreement. In [ Shieh er al 90 ] Petr1 net
designs of distributed systems that use a single transition to represent this checkpoint action
are presented. This checkpoint transition is a high level abstraction of the underlying

communication structures involved.

5.2.2 Communication blocks

The communication blocks structures illustrated in Fig.5.3.(a) and (b), represent abstractions
of the two communication mechanisms illustrated in Fig.5.1. and Fig.5.2. These show only
the initial and final places for each process communicating (coordinator or participants). This
reduces the Petri net structure to the external behaviour of the communication. Each process
has a single input place and a pair of output places, the output places represent the two

outcomes of the communication.

Coordinator Process 1 Coordinator Process 1 Process 2
! 1 1
b ) 1 I
! 1 1
! ] |
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communication communication

timeout 5 é timeout 5 5 6
(a) (b)

Fig.5.3. communication block with timeout, (a) two-party, (b) three-party.

a

The use of communication blocks as reusable templates is illustrated through the modelling

and analysis of the two-party timeout guarded communication. Fig.5.4. shows a simple
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synchronous point-to-point communication between two processes. This is extended with
timeouts in Fig.5.5. in order to make the communication resilient to link failure, in the same
manner as used in the commit protocols of chapter 4. It can be seen that each process in
Fig.5.4. has a single path between its input and output places and is termed a single-input
single-output (SISO) block. However, for Fig.5.5. each process has two output paths, one
path represents the timeout and the other a successful communication. This type of structure

is termed a single-input multiple-output (SIMO) block.
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t1 t4
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Fig.5.4. 2-party communication block Fig.5.5. 2-party communication block with
timeout

The reachability tree is shown for the Petri net structure of Fig.5.5., and the marking for each
state is given in Table 5.1. The reachability tree is based on an initial marking of the Petri net
Mo=1{pl.p6 }.

116 Chapter 5



Fig.5.6. 2-party communication block reachability tree

Marking Places Marking Places
Mo Pl. P6 Mg P2, P9
M] P2, P6 Mg P4, P9
M2 Pl, p7 M0 P4, P6
M3 p2, p7 Ml P4, p7
Mg P3. P8 M|2 P4, P9
M3 ps, P8 M]3 PI, P9
Mg P4, P7 M4 P2, P9
M7 P4, P9 M]s P4, P9

Table.5.1 Markings from the Petri net Fig.5.6.

As can be seen from Figs.5.5. - 5.6., that even for a relatively small Petri net the reachability
tree can become relatively large. The concurrency set (not shown) offers a more compact
representation of certain net properties. For instance, the concurrency set for the coordinator
place that represents a timeout occurring { p4 } state is given by C(p4) = { pg, p7, p9 }. This
represents all the concurrent states that it is possible for the participant process to occupy
while the coordinator is in this state. The concurrency set of the final places ( denoted Cf) of
each process offers a concise view of the outcome of the communication, and thus of the
outcome of the communication block. Thus Cf(p5) = { pg } from marking { M5 } and
Cf(p4) = { p9 } from markings { M7, Mg M2 M5} The final markings { M5, M7, Mg,
M]2, M1s } along with the initial marking M@ define the external behaviour of the

communication block.
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For the multi-party communication block, such as Fig.5.3.(b), a typical communication
structure 18 shown explicitly in Fig.5.7. For this structure, with all input places marked, the
possible outcomes of the communications are either:

1) Communications successful { Ce¢, Pl¢, P2¢ },

11) Coordinator - Process-1 timeout { Cy, Plg, P2¢ },

1i1) Coordinator - Process-2 timeout { Cq, Ple, P24 }, or

1v) Timeout of both communications { Cg, Plg, P24 }.

These sets of final places (i) - (iv), along with the initial marking, represent the external
behaviour of a multi-party communication block that is an abstraction of this communication

structure.

Coordinator Process1 Process?2

O 0 ?
5

4 =0~ L A b

3 O OO0 00
Ca Cc Pic P1a P2c P2a

Fig.5.7. 3-party communication block with timeout

The Petri net reachability graph and concurrency sets for this structure (Fig.5.7.) are given in

Appendix.A.l. Using these it has been shown that the net is live, 1-bound and deadlock free.

For each of the three processes in this Petri net, there should be at most one final place
marked per firing sequence. For the coordinator process there are two final places, these
represent communication complete (C¢) and abort (Cg). The marking of these two places
should be mutually exclusive. Examination of the markings of the final places in the
reachability graph, not shown, confirms this mutual exclusion property. This property holds

for each process, as can be seen from the net.
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There are a limited number of combinations of final place markings for this block structure.
For instance the coordinator final place, communication complete (C¢), should only be
tokenised when the participants final places Plc and P2¢ are tokenised. It can be seen from
the net that case (i), Communications successful { C¢, Pl¢, P2¢ }, only occurs through a

firing sequence that does not include a timeout transition.

The set of clearly defined final place markings for each block, will be used in the composition
of the blocks. The analysis of the blocks underlying template can be reused whenever the
block is used.

5.2.3 Hybrid protocol design

In this section a commit protocol design is developed, using the communication blocks as
templates for the communications required at each stage of the E2PC protocol (prepare, vote
etc.). The use of communication blocks allows a hybrid approach to the commit protocol
design. Hybrid approaches to Petri net design [ Zhou and DiCesare 89, 93 ] were discussed

in section 3.7.

The protocol synthesis is termed a hybrid approach as it combines both a top-down
refinement of the basic protocol structure with a bottom-up composition of the
communication blocks. The composition of the blocks preserves properties such as liveness

and boundedness, in order for the analysis of the blocks subnet to be reusable.

In Fig.5.8. below, a refinement of the commit protocol structure that is the template for the
E2PC protocol is shown. This is the top-down stage of the design. Each of the basic steps of
the E2PC protocol ( prepare, vote, commit, abort & acknowledge ) are refined using the
communication blocks of Fig.5.3. This was achieved by examining the protocol structure, as
modelled in Fig.4.12., and identifying each set of communications that could be modelled by
a template such as Figs.5.1. or 5.2. Each instance of this communication structure was then
represented by the appropriate communication block, Fig.5.3.(a) or (b). These

communication blocks are templates of either 2 or 3-party communications with timeouts.

The bottom-up stage of the design process involves the composition of communication
blocks. This is achieved by merging the input and output places of the blocks with a minimal
set of places necessary to model the protocol. This minimal set of places would include the
decision places { p24, p36, p48 }, and the abort places { p23, p40, p52 } for each process in
Fig.4.12.
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In order to compose the various communication blocks of the protocol, it is necessary to:

1) examine the Petri nets for each communication block,

ii) formally define the external behaviour of each communication block (the input and output
place markings),

i11) analyse the Petri net for the defined external behaviour,

1v) determine the appropriate action for each outcome of the communication block,

v) merge the communication blocks output places with the places representing these actions.

Step (i) determines which templates are used for each communication block 1n the top-down
design (Fig.5.8.). Step (ii) defines the input and output constraints for each communication
block. In step (iii) the external behaviour of the communication block is checked against the
behaviour of the Petri net template . This involves determining the possible sets of output
place markings of the net, using the input place markings as an initial marking (M@). The
input and output constraints on the communication blocks, defined in step (ii), are then used

to determine the correct interconnection of the block structures, in steps (iii) and (iv).

To illustrate the merging of places (steps iv and v) consider the coordinator process for the
prepare communication block in Fig.5.8. When the coordinators input place to the
communication block becomes marked, this will result in one of the coordinators output
places becoming marked. These two output places represent communication complete (C), or
communication abort due to time-out (A) in Fig.5.8. The action associated with the timeout
outcome is to enter the coordinators abort state, (represented by place (p23) in Fig.4.12). So
the coordinator output place (A) for the prepare communication block is merged with the
abort place (p23). The action associated with the success outcome of the prepare
communication block, is for the coordinator to receive the participants votes. To do this
would require the coordinators input place to the vote communication block to be come
marked. So the coordinators output place (C) for the prepare communication block is

merged with the coordinators input place for the vote communication block.
Steps (iv) and (v) are considered for each process and communication block in turn, until all

blocks are composed in a bottom-up manner. This composition by place merging 1s

considered in detail in section 5.2.5.
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Fig.5.8. block structure for hybrid protocol design

In the approach presented below the Petri net template for each communication block is
analysed in terms of its external behaviour. The procedure involves taking each
communication block defined in the top-down design (Fig.5.8.) and using Petri net analysis
of the subnets to confirm the input and output place sets, prior to the communication blocks

interconnection.

5.2.4. Block structures for E2PC

The Petri net template of Fig.5.7. is the basis for the following communication blocks, apart
from the abort block. Analysis of the Petri net of Fig.5.7. has shown it to be live, 1-bound
and deadlock free, and to have a single firing path per process modelling communication

success or fatlure.
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5.2.4.1 Prepare block

The prepare block is based on the Petri net structure shown in Fig.5.9. This represents a 3-
party communication with timeouts. Tokens in the input places are absorbed by the firing of
the transitions { t], t10, t12 }. The input places form the nets initial marking Mg = {pl,pPl0;
p14 }. These represent the coordinator, participant-1 and participant-2 input places. Each of
these processes has an outcome of either communicate (c) or communicate abort (a) due to
timeout.

The marking immediately reachable from Mg are the internal places { p2, p3, pl1, P15 i
The single partition and no message loss criteria, discussed in section 4.2.3., are assumptions
that hold for all communication blocks in the protocol. The assumption of a single link
failure constrains the net behaviour to a single timeout transition pair firing, either {t5 & 1]
Jor{tg&t13}inFig.59.

coordinator participant-1  participant-2
01O o1 oﬁ) p1 4?
t10 t12
P15
P11

i ey
\_/

E
Y u P31y =

t11 t3

t6

t7'A

<
]

& O OO 0O

P9 P8 P12 p13 P16 P17
Fig.5.9. 3-party communication block with timeout
For the prepare communication block under the assumption of a the single link failure,
transition tg is not required, as this represents the coordinator process timing out both

participants communications.

Only a single pair of timeout transitions associated with a communication link can fire, and

this only occurs after the communication transition associated with the other link fires
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successfully. This behaviour is based on the assumption of a single communication link
failure and the setting of the timeouts allowing the maximum time required for a successful
communication. These failure modes form a restriction on the behaviour of the Petri net

template, and thus partially define the input/output constraints of the communication block.

From Fig.5.9. consider a communication link failure between the coordinator and participant-
2, the following timeout firing sequences occurs:

1) communication transition t2 fires (coordinator - participant-1 link), and is followed by the
independent firing of the timeout transition pair t4 and t13. The firing sequence is ( t2, t4, t13
Jor (12,113,14).

Where the communication link between the coordinator and participant-1 fails, the following
timeout firing sequences occurs:

2) communication transition t3 fires (coordinator - participant-2 link), and is followed by the
independent firing of the timeout transition pair t5 and t| 1. The transition firing sequence is (
(3,15, ty 1) or (3,11, t5).

The definition of the communication blocks external behaviour, must forms an input/output
constraint necessary for the correct interconnection of communication blocks. The constraint
on the tumeout firing sequence can be explicitly represented in the Petri net model of the
communication block by using:

1) inhibitor arcs [ Murata 89 ] - as shown in Fig.5.10.(a), or

11) places that form an interlock - Fig.5.10.(b) shows the additional Petri net structure that
needs to be used to implement an interlock. Where no timeouts occur, tokens in places px
and py would need (o be consumed by the firing of transitions not shown in the diagram, this

would preserve boundedness of the Petri net.

The above approaches can lead to a complex Petri net structure and a corresponding increase
in the net's state space. An alternative approach is to represent the relevant constraints in an
implicit manner by not modifying the net but only considering those sequences in the
reachability graph that exhibit the desired behaviour. This is a similar approach to that used
in [ Ostroff 89 ] where only certain portions of a complete reachability tree are considered.
This would involve only considering those portions of the reachability tree for this form of 3-
party communication block (shown in Appendix.A.1.), that contain the firing sequences 1) or
2) above.
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Fig.5.10. fragment from (Fig.5.9.), showing (a) inhibitor arc and (b) interlock structure.

In this thesis the second approach of using interlock places ( Fig.5.10.(b) ) to constrain the
Petri net behaviour is taken. By constraining the behaviour of the net in the above manner
the model incorporates an implicit notion of the failure mode of the system. A single
communication link failure, the firing of tj] or t]3, can only occur after a successful
communication has occurred, the firing of (2 or t3. Where both communications are
successful, 12 and 13 both fire, the tokens in places px and py are removed by the firing of a
subsequent transition. Appendix.A.2 presents the reachability graph and concurrency sets for
the constrained behaviour of the Petri net structure Fig.5.9. The use of the interlock places,

as illustrated in Fig.5.10.(b), are also detailed.

Input set Qutput set Timeout
1 Pl1. P10, P14 P8, P12, P16 None
2 P, P10, P14 P9, P12, P17 Coord - Part2
3 P1, P10, P14 P9, P13, P16 Coord - Part]

Table 5.2 external behaviour of the prepare communication block
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This approach produces the external behaviour for the communication block defined in Table
5.2., (Coord is coordinator, Partl is participant process 1 and Part2 is participant process 2).
This forms the input/output constraint necessary for composition, achieved by merging the

prepare blocks input and output places.

5.2.4.2 Vote block

The vote block structure is that shown in Fig.5.9., although the implicit constraints differ
from those for the prepare block. The use of different constraints make the generic Petri net
applicable to different communication blocks. For the vote block the reachability tree of
Appendix.A.1. can be used for analysis. This communication block consists of a 3-party
communication with timeouts, and with input place tokens being absorbed. Each process has
an outcome of either communicate(c) or communicate abort (a) due to timeout. The single

non-multiple partition criteria discussed in section 4.1. applies to this net.

This is the same structure as the prepare block, with the same failure assumptions of a single
link failure. However, due to the structure of the responsive E2PC protocol the coordinator
may need to timeout communications with both participants. However, the constraint that
timeouts occur after any successful communication still applies. Transition tg in Fig.5.9. is
required for this communication block, as this represents the coordinator process timing out

both participants communications.

As mentioned in section 4.4.1 the E2PC is optimised in that after receiving the prepare
message, a participant either decides yes and attempts to send the yes votes or decides no and
unilaterally aborts the protocol. The participants yes vote is explicit while the no vote is
implicit. In the latter case the coordinator will timeout communications with the participant,
as if a link failure had occurred. The action of the coordinator is required to be the same for

an implicit no vote as for a link failure.

Considering the input sets in Table 5.3. will illustrate the difference in the required external
behaviour of the vote and prepare blocks.

i) cases 1. to 3. - this occurs where both participants decide to send the yes vote. The
behaviour is the same as for the prepare block, the firing of a only a single timeout pair is
allowed.

ii) cases 4. & 5. - this occurs where participant-1 decides to send the yes vote, and
participant-2 decides to unilaterally abort. In these cases the coordinators timeouts associated
with communications with participant-2 always fire. If a link failure occurs for participant-1,
then both the coordinators timeouts will fire, this is case 5.

iii) cases 6. & 7. - are for participant-1 deciding to unilaterally abort.
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iv) case 8. - this is a consequence of a timeout outcome of the prepare block. This occurs
where participant-1 receives the prepare message and attempts to send a yes vote to the
coordinator. If the coordinator to participant-2 link failed for the prepare block, the outcome
would be that both these processes would unilaterally abort the protocol. As a consequence
only the timeout outcome for participant-1 is possible.
v) case 9. - as case 8., for a participant-1 link failure.

vi) case 10. - this occurs where both participants decide to unilaterally abort the protocol.

Input set Output set Timeout

l Pl. P10, P14 P8, P12, P16 None

2 P9, P12, P17 Coord - Part2
3 P9, P13, P16 Coord - Partl
4 PL, P10 P9, P12 None

S P9, P13 Coord - Partl
6 pl,pl4 P9, P16 None

7 P9, p17 Coord - Part2
8 P10 P13 Part!

9 P14 P17 Part2

10 Pl P9 Coord

Table.5.3 external behaviour of the vote block, Petri net Fig.5.9.

Cases 4. to 10. shown in Table 5.3 illustrate the major difference between the external
behaviour of the prepare and vote blocks. In these cases only one or two of the processes are
part of the behaviour of the communication block, however, execution of the net with these
initial markings has shown that the Petri net template is still live, 1-bound and most
importantly deadlock free. In case 4. only input places p] & p( are tokenised, and

execution of the Petri net template produces the correct output marking of pg & pj2.

5.2.4.3 Commit block
The commit block is shown in Fig.5.11. This Petri net models a 3-party communication with
timeout on the communications, and with input place tokens being absorbed. Under a single

link failure assumption, the firing of only a single timeout transition pair is allowed.

Although based on the same Petri net template, this communication block differs from the
prepare and vote blocks in its timeout behaviour. There are two timeout outcomes for the
coordinator, these explicitly identify the communication link that has failed. The firing of t7
to tokenise p9 indicates the coordinator timed-out communication with participant-2, while
the firing of tg to tokenise p]g indicates the coordinator timed-out communication with

participant-1.
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This identification is required in order to initiate the sending of an abort message to a
participant that has received the commir message. This requirement was discussed in section
4.5. The firing of transition t3 indicates participant-2 receiving the commit message from the
coordinator. If the communication link to participant-1 subsequently fails, the timeout
transition pair ( t5 & t1Q ) will fire. In this case the coordinator will be required to send an

abort message to participant-2. The tokenising of place p]g will initiate this action.
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Fig.5.11. commit communication block

As can be seen from the net the output place pg of the communication block indicates that
(coordinator - process 1) link has failed, while place p1g indicates that the (coordinator -

process 2) link has failed.

Input set Output set Timeout
| Pl, P10, P14 P8. P12, P16 None
2 P9. P12, P17 Coord - Part2
3 P9, p13.pPl6 Coord - Partl
4 P10, P14 P13, P17 Partl and Part2
5 P10 P13 Partl
6 P14 P17 Part2

Table 5.4 external behaviour of the commir communication block, Petri net Fig.5.11.
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As discussed in section 5.2.4.2., after the prepare block, the participants reach a decision
point. At this point the participants decide to proceed and send a yes vote or unilaterally
abort the protocol. The decision point for the coordinator is after the vote block. In Table 5.4
case 4. is where the coordinator votes no and unilaterally aborts the protocol, only the
participant input places are tokenised. As can be seen from the net Fig.5.11. the outcome for

both participants in this case is timeout.

This is part of the optimisation of the E2PC protocol where participants are left to timeout to
the abort decision, instead of the coordinator sending an explicit abort message, the action to

be taken by the participants in either case being the same.

It is at the point before the commit communication that the coordinator takes the decision to
continue or unilaterally abort the protocol. The latter case is shown in the bottom three input
and output sets in Table 5.4. Cases 5 and 6 in Table 5.4 show the situation in which a single
participant has a successful outcome to the vote block, and as a result is the only process that

initiates the commit block.

5.2.4.4 Abort block

The two abort blocks represent a 2-party timeout guarded communication. The initiation of
this abort message block was discussed in section 5.2.4.2. Referring to the structure of the
E2PC protocol, Fig.4.12. and the hybrid protocol template of Fig.5.8., these are only used

when there has been a timeout outcome in the commit block.

A coordinator timeout outcome of the commit block indicates a link failure has occurred, and
also explicitly identifies the link. Under the assumption of a single link failure the other
communication link can be assumed to be operational. If the communication link
(coordinator - process 1) fails, then the communication link (coordinator - process 2) is
available and operating correctly, and vice versa. The resulting constraint on the timeout
behaviour is that they never fire, as the assumption can be made that if necessary, this
communication i1s possible within a known deadline. The Petri net template is shown in
Fig.5.12.
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Fig.5.12. abort communication block

From the structure of the E2PC protocol, Fig.4.12., the following structure can be observed.
The participants input place to the abort block is in conflict with the input places to the
acknowledgement (ack) block. Therefore, tokens in these input places are not absorbed into
the block, through the use of what is termed atomic feedthrough of participant input place
tokens. In atomic feedthrough the communication block is an atomic action, where the firing
of a transition internal to the block removes a token from an input place and deposits it

directly in an output place.

This block is required for the aborting of some participant that has received the commit
message from the coordinator, and the coordinator subsequently being unable to send the

commit message to the other participant due to a link failure.

Input set Output set Timeout
I P1. P6 pP5. p7 None
2 Coord - Part1/2

Table 5.5. external behaviour of the abort communication block, Petri net Fig.5.12.

Due to the assumed failure modes the outcome of this block is restricted to both parties
communicating. This is possible as the timeout action would be constrained, due to the
single link failure criteria. This assumption is also important for the timeout action of

participants in the acknowledgement block.
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5.2.4.5 Acknowledgement block

The ack block 1s shown in Fig.5.13. This Petri net structure models a 3-party communication
with timeout on the communications. The coordinator's input place tokens are absorbed,
while atomic feedthrough of the participants input place tokens is used. This requirement is
due to the participants input places being in conflict with the abort blocks input places as
mentioned in section 5.2.4.4. The timeout period and action for these shared input places is
defined by the timeouts in the ack block. As shown in chapter 4, these input places are
commitable protocol states, and so a communication failure results in a timeout to a final

commit state.

As mentioned in chapter 4, a further optimisation of the E2PC protocol would be to have no
explicit acknowledgement message. In this case participants would timeout to a protocol
commit state unless an aborr message were received. As such, the use of the

acknowledgement message does not increase the robustness of the protocol.

The use of the ack block allows a possible earlier time to commit than a timeout action
alone. The timeout action will always require a set maximum time to complete, while the

sending of the acknowledgement message could complete earlier than the protocol deadline.
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Fig.5.13 acknowledgement communication block
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Input set Output set Timeout
! Pl,P10: P13 ps. pil, pl4 None
2 P9, P11, P15 Coord - Part2
3 P9, P12, P14 Coord - Partl

Table 5.6. external behaviour of the acknowledgement communication block

The outcome of the ack block for each process is communicate (¢) or communicate abort (a).
Under the single partition criteria the assumption of a single link failure can be made, and the

firing of a single timeout transition pair is allowed.

The input places to the ack block are conunitable states, and so the actions of the processes
are the same for the communicate or timeout outcome of this block. Thus, for each process,
the two output places of this block are merged when the blocks are interconnected. The
following places would be merged (p8-p9 ), (pl1-pl2)and (pi4-pls).

It should be noted that the validity of all communication block's output sets were confirmed
by executing the Petri net templates with each input set as an initial marking (M@). This also
verified that the templates were live, safe and deadlock free. Examples of the reachability

trees generated and analysis results can be found in Appendix.A.l. and A.2.

5.2.5. Block structured responsive E2PC

In order to use a hybrid design approach for the commit protocol, a number of steps were
proposed. The top-down phase of the design was completed in section 5.2.3., giving the
block structured Petri net of Fig.5.8. The bottom-up phase of the hybrid design involves the

merging of the communication blocks.

In section 5.2.3. a five step procedure for this composition was presented. The first three
steps involved (i) determining the Petri net template for each communication block, (ii)
defining the required external behaviour of the block and (iii) analysing the Petri net template
using the initial markings defined in step (i1). These three steps were completed for each of

the communication blocks 1n section 5.2.4.

The final two steps of the composition procedure involve the merging of the communication
blocks input and output places. In step (iv) the appropriate action for each outcome of the
block is determined, and in step (v) the places representing these actions are merged. In
section 5.2.3. this was illustrated by examining the output places of the prepare block, for the

coordinator process.
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In this section the commit protocol is constructed through the composition of the
communication blocks defined in section 5.2.4. The interconnection of the blocks should
preserve properties of the Petri net templates, such as boundedness, liveness and freedom
from deadlock. These properties are preserved if the external behaviour of the blocks is

maintained.

The interconnection of the communication blocks involves the merging of the blocks output
places with combinations of places that are either:

1) Input places to subsequent communication blocks,

i) abort places, these represent final internal states for each process, these initiate the
protocols abort action, { p23, p40, ps52 } in Fig.4.12,,

11) decision places, this is the point where each process takes the decision to proceed or to
unilaterally abort the protocol, { p24, p36, p48 } in Fig.4.12.,

1v) commit places, these represent final internal states for each process, these initiate the
protocols commit action, { p34, p46, p58 } in Fig.4.12.

The block structured form of the E2PC protocol is shown below in Fig.5.14. The merging of
places to compose the communication blocks is illustrated by the input and output places of
the prepare and vote block. The prepare blocks output places for the coordinator process
were considered 1n section 5.2.3., so Participant-1's output places are considered here. The
numbering of places and transitions in Fig.5.14. is taken from the version of the protocol

given in Appendix.B.2.

The output places of the prepare block represent communication complete (C) and
communication abort (A). For participant-1 the appropriate action for communication abort
(A) is the final abort state, and so this output place is merged with the abort place (p32). The
appropriate action for communication complete (C) is the decision state, and so Participant-1
output place (C) is merged with the decision place (p31]).

At the decision state Participant-1 proceeds or unilaterally aborts the protocol, as modelled by
the firing of the transitions marked Yes (tg) and No (t7). The appropriate action for the No
decision is the abort state, and so the output place of this transition (t7) is merged with the
abort place (p32). The appropriate action for the Yes decision is to send a yes vote to the
coordinator. So the output place of the Yes transition (tg) 1s merged with the Participant-1

input place of the vote block (p33).
This procedure is repeated for the coordinator and participant-2, until all output places of the

prepare block, and all input places of the vote block are merged. The merging of the input

and output places for all the communication blocks is realised in the same way. This
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completes the bottom-up composttion to produce the hybrid commit protocol design, shown
in Fig.5.14.

The merging of places can be checked by considering the input and output sets for each
communication block. The possible markings for the output places of the prepare block are
defined in Table 5.2. Consider case . of this output set, this gives the prepare block output
place marking { p21, p31, p41 }. By firing the Yes transitions (g, t] 1) the following marking
1s produced { p21], p33, p43 }. This marking gives cases 1, 2, & 3 of the vote blocks input set
(Table 5.3). This sequence represents the coordinator successfully sending the prepare
message to both participants, and the participants deciding to proceed with the protocol and

return a yes vote.

By considering each case of the prepare blocks output set, along with the firing of the Yes
(te) and No (17) transitions, a set of markings for the vote blocks input places is produced. If
this set of markings is equivalent to the vote blocks input set, then the composition of the
prepare and vote block is valid. This process is repeated for each communication block to

check the composition of the commit protocol.
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Fig.5.14. Hybrid design commit protocol, using communication blocks.

O

This commit protocol includes a reduced model of the environment, in the same manner as

the commit protocol designs in chapter 4. The places, arcs and transitions of the environment
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model are shown in bold in Fig.5.14. This minimal environment model is used in both the

design and analysis of the commit protocol.

For the protocol shown in Fig.5.14. each process has an external input place and two external
output places that represent the minimal environment model. The output places represent the
final outcome of the protocol. In this version of the E2PC protocol, there is locking of input
place tokens of the environment model. These could represent a process locking a local
resource until a commit protocol completes. The output places for the environment model

would represent a process committing to or aborting an action.

The block structured form of the E2PC protocol shown in Fig.5.14., is termed a commit
block. It is intended to use the commit block as a Petri net template of the commit protocol,

this is addressed in section 5.3.

The form of the commit protocol in Fig.5.14. is termed commit block-1 (CB1), and has
locking of all input place tokens (for the environment model). This locking action is
modelled by the firing of the Yes transitions (t], tg, t11). This occurs after each process has
made the decision to proceed within the protocol. Atomic feedthrough of (the environment
models) input place tokens is used if an abort action occurs before the decision point. This is
modelled by the firing of transitions (t}, te, t11).

A version of the protocol, commit block-2 (CB2), with atomic feedthrough of (the
coordinator process environment model) input place tokens is shown in Appendix.B.3. A
version of the protocol, commit block-3 (CB3), with atomic feedthrough of all processes
input place tokens is shown in Appendix.B.4. The application of the different versions is
discussed in chapter 6.

5.2.6. Verification of communication blocks behaviour

The composition of the communication blocks, presented in the last section, relied upon the
validity of the input and output sets for each block. In this section it will be verified that the
input and output sets are a correct representation of the external behaviour, for the underlying

Petri net template, of each communication block.

The interconnection of the communication blocks in order to form a block structured commit
protocol is shown in Fig.5.14. The verification of properties for the individual
communication blocks will show that the resulting block structured Petri net exhibits certain

desired behaviours.
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The analysis based on temporal Petri nets (described in section 3.5.) will be used to formally
verify that from the initial marking Mg a particular set of outputs from the block will be
generated. The proofs of each set of outputs will form the properties of the underlying Petri
net model.

The Temporal Petri net analysis of [ Suzuki & Lu 89 ] is used to prove liveness properties for
the communication blocks. This analysis will be based on using the notation of Petri nets and
Temporal logic to make assertions about firing sequences for particular net markings. The
input sets of the communication blocks will form the initial marking M( for the underlying

Petri nets.

This verification procedure is based on using Propositions that make assertions about the
firing of transitions in a Petri net. Specifically, for the analysis shown in this chapter,
Propositions 1 and 2 will be used and are shown below. These propositions are applied after
first checking the validity of their premises against the reachability graphs of the
communication blocks Petri nets. Examples of these reachability graphs are given in
Appendix A.]l and A.2.

Proposition | and Proposition 2 are used to make assertions about the firing of transitions in
the Petri net. Proposition 1 is applicable to the firing of transitions where the input places are
not in conflict, and Proposition 2 to the firing of transitions where input places are in conflict
(in which the firing of a transition disables itself and another enabled transition). The validity
of these transitions are checked against the reachability graph of the net, and then used to
prove certain liveness properties for an initial marking M. Propositions | and 2 can then be
used along with propositions unique to the Petri net under analysis, and are defined as
follows:

Proposition 1:
For a temporal Petri net TN| = (C,f) whose initial marking 1s M(.
(i) For a marking M reachable from My, if transition t is enabled at M, then t remains
enabled until t fires:

<Mo,o> 1= L[ t(ok) = t(ok) Ut ] (5.1)
(i) fimplies

<Mg, o> I= L[ t(ok) = Ot(—ok) ] (5.2)
where f represents the condition that for marking M and firing sequence o, that whenever t
becomes enabled then it will eventually become disabled, and C represents the structure of
the Petri net. If (i) and (ii) hold, then for any firing sequence o from marking Mg, using (1)
and (ii) it can be deduced that:
(i)  <Mo.o> = [ t(ok) = Ot ] (5.3)
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Proposition 2
For a temporal Petri net TN = (C,f) whose initial marking is M.
(i) for any marking M reachable from Mo, if t] ( input function I(t}) ) and t2 ( input function
I(t) ) are fireable at M and are in conflict, which is defined as:
It} M 1) # D
where @ is the empty set. Then either t] remains enabled until either t] itself fires or (2 fires,
or t2 remains enabled until either o itself fires or t] fires. This statement is formalised as:
<Mg,o> I= L[ t1(ok) = tj(ok) U(t] vi2) ]V
LI ©2(0k) = 2(0k) Uty v 2)] (5.4)
(Only one transition is allowed to fire at any instant using the interleaving model of
concurrency, the choice of which fires is made non-deterministically or according to a
fairness requirement if specified),
(i1) fimplies
<Mo,0> 1= [ t1(ok) = Ot)(—ok) JA
LI t1p(ok) = 01p(—0k) ] (5.5)
If (i) and (ii) hold, then for any firing sequence o from marking Mo, using (i) and (ii) it can
be proved that:
(ii1) <Mq,0> 1= T t1(ok) A t2(0k) = O(t] v 12) ] (5.6)

Property 5.7, for the Prepare communication block Fig.5.9. whose input and output sets are
shown in Table 5.2., the following property can be proved:

<Mp,o> 1= L[ Mg = (M| vM2vM3)] (5.7)
where MO ={ p|,p10, P14 }. M1 = { P8, P12, P16 }, M2 = { p9, p12, P17 } and

M3 ={p9,pI3, P16 .
The proof for this property (5.7) is presented in Appendix.C.1.

The proof for property (5.7) verified that for the prepare communication block and Petri net,
for all possible firing sequences the set of input places eventually produce the set of output

place markings .

The input set of the vore block differs from the prepare block, although the same underlying
Petri net Template is used. The input sets for the vote block contains markings for only one
or two input places (these are cases 4 to 10 in Table 5.3). This represents cases such as only

one participant attempting to send a yes vote to the coordinator.
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Due to the structure of the protocol the coordinator may timeout communications with both
participants at this stage of the protocol, although a single link failure is still assumed. All

successful communications still occur before any timeout action.

The reachability graph for the Petri net with this implicit behaviour is given in Appendix.A.1.

The vore block is verified by considering each of the input sets in turn.

Property 5.8 The first three cases in Table 5.3 are the same as for the prepare block and the
properties are proved in the same manner. This property can be formahised as:

<Mp,o> 1= I [Mg = 0M] v M2 vM3)] (5.8)

The prootf for this follows from that presented in Appendix.C.1.

The proof for Property 5.9 is presented so as to illustrate the Petri net behaviour where only

two processes are present in the input set. This is the fourth and fifth case in Table 5.3.

Property 5.9 The following will illustrate a proof of a property for the vote communication
block using Temporal Petri net analysis. The Petri net for this communication block is shown

in Fig.5.9. and its set of input and output places are shown in Table 5.3

This property can be interpreted as the following behaviour for the protocol: Prior to the vote
block the coordinator has successfully sent the prepare message to both participants. At this
point each participant takes the decision to proceed or unilaterally abort the protocol.
Participant-2 unilaterally aborts, and Participant-1 proceeds. In this case only Participant-|
attempts 1o send a yes vote to the waiting coordinator (input sets 4. and 5. in Table 5.3). The
outcome is that either the yes vote is successfully sent, or there is a link failure and the
coordinator and Participant-1 both timeout the communication (output sets 4. and 5. in Table
5.3).

Let TN| be a temporal Petri net for the Petri net PN shown in Fig.5.9., and its initial marking
be Mo = { p1, p10 }. Whenever Mg becomes reachable in TN, then eventually either one of
the following markings is reachable:

(a) M1 ={p9,p12} or

(b) M2={p9,p13}.

Hence property 5.9 can be formalised as:
<Mp,o> 1= [ Mg = 0M] v M2)] (5.9

Proof
1. At M, transitions t] and t]( are fireable, this can be formalised as:
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<Mp,o> 1= L[ Mo = O(t1(ok) A t10(0k) )]

From an observation of the Petri net of Fig.5.9. and its associated reachability graph (shown
in Appendix.A.1), it can be seen that t1 and t]( can fire independently.
2. Using Proposition | for the firing of t] and t]( yields:
<Mp,o> = [ t1(ok) = 0t] ]
3. <Mp,o> 1= [ t10(0k) = 0t10]

The firing t] and t1Q, will yield a new sub-marking, these are shown by:
4. <Mp,o> = LIt = (p2 Ap3)]
5. <Mp,o> 1= LI[t10= pl11 ]

6. Combining (2., 4.) and (3., 5.) with 1. produces:

Let M3 ={ p2,p3,pll }, hence the above can be re-written as:
<Mp,o> I= O [Mo = OM3 ]

7. At the marking M3 both 2 and t4 are fireable, however only one of these transitions can
fire. This can be formalised as:
<M, 0> 1= I [M3 = 0(12 At4)]

8. The following will consider the consequences of firing each transition t2 and t4.
Specifically:
(a) the firing of t2 will be succeeded by the transition sequence:
<14, 18 >
(b) the firing of t4 will be succeeded by the transition sequence:
<15, (1], 8 >

9. Considering case 8(a):

(i) the firing of t2 produces the submarking:
<Mp,o> = LI[t2= (p5Ap12Ap2)]

(i1) From the structure of the net TN it can be seen that
<Mp,0> 1= [ p2 = 14(0k)]

(ii1) Using proposition 1 on the firing of t4 produces:
<Mg,o> 1= TI[ta(ok) = 0Ot4]

(iv) From the structure of the net TN it can be seen that the firing of t4 tokenises pg, i.e.
<Mp,o> 1= 1[(t4)= p6l

(v) Combining 9(1) - (iv) produces:
<Mp.o> = TI[12= O(psAp6Apl2)]
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(vi) From the structure of the net TN it can be seen that the sub-marking of {ps, p6}
enables t7, 1.e.
<Mp,o> I= LI (p5 A p6) = t7(0k)]
(vil) Using proposition 1 on the firing of t7 produces:
<Mg.,o> I= I [t7(0k) = 0t7]
(viii) From the structure of the net TN it can be seen that the firing of 17 tokenises p9, i.e.
<Mgp,o> = LI[t7 = p9]
(ix) Combining 9(vi) -(vii1) produces:
<Mp,o> 1= LI (p5 A pe) = Op9]
(x) Combining 9(ix) -(v) produces:
<Mp,o> 1= LI[12= 9(pyAp12)]
Since M1 = { p9, p12 } then the above can be re-written as:
<Mp,o> 1= LI[t) = OM] ]

10. Considering case 8(b)
(i) the firing of t4 produces the sub-marking:
<Mp,o> = L[ ta = pe)l
(i1) the firing of t5 produces the sub-marking:
<Mp,o> 1= LI{t5 = p7]
(iii) the firing of t} | produces the sub-marking:
<Mgp,o>1= Li[t11 = p13]
(iv) Since t4, t5 and t]] can fire, combining 10.(1) - (111) produces:
<Mg,o> 1= LI[(t4 At5At11) = (P6ADPTAPIZ) ]
(v) From the structure of the net TN it can be seen that the sub-marking of {pg, p7}
enables (g, 1.e.
<Mg,o> I= LI[(pen p7) = 18(0k) ]
(vi) Using proposition | on the firing of (8 produces:
<Mp,o> 1= [I[tg(ok) = 018 ]
(vii) From the structure of the net TN it can be seen that the firing of tg tokenises p9, i.e.
<Mg,0> 1= I[tg = 0p9]
(viii) Combining 10(1v) -(vi1) produces:
<Mp,o> I= (g ats At )= Up9 Ap13)]
(ix) Simplifying 10(vii1) produces:
<Mg,0> = Li[tg = O(p9Api3)]
Since M2 = { p9, p13 }, the above case can be re-written as:

<Mp,o> 1= [ty = OM2]

11. Combining 10(ix) and 9(x) with 7, produces:

140 Chapter 5



<Mp,0> 1= C[M3 = & M2vM])]

12. Combining 11 and 6, produces:
<Mp,o> 1= I [ Mg = O(M] v M2)] @

Property 5.10, for the vore communication block shown in Fig.5.9, whose input and output
sets are cases 6 and 7 in Table 5.3.

Let TN| be a temporal Petri net for the vore communication block Fig.5.9, with an initial
marking Mo = { p1, p14 }. The property of TN] that will be proved is that:
Whenever Mg of TN| becomes tokenised, then eventually either one of the following
markings is reachable:

(a) M4 ={p9,pl6 )

(b) M5 ={p9.p17}

This property can be formalised as:
<Mp,o> 1= L[ Mg = (Mg v M3 )] (5.10)
The proof of property (5.10) follows from the proof of property (5.9)

Property 5.11, for the vore communication block shown in Fig.5.9, whose input and output

sets are cases 6 and 7 in Table 5.3.

Let TN| be a temporal Petri net for the vofe communication block Fig.5.9, with an initial
marking MO = { p10 }. The property of TN that will be proved is that:
Whenever M( of TN | becomes tokenised, then eventually the following marking Mg = { p13
} is reachable. This property can be formalised as:

<Mo,o> 1= T [ Mg = 0(Mg)] (5.11)

Proof
1. At Mo, transition t( is fireable, this can be formalised as:

<Mp,o> 1= T [Mg = 0t10(0k) ]

2. The firing of t]( using Proposition | produces:
<Mo,o> 1= TI[t10(0k) = 0t10]
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3. From an observation of the Petri net of Fig.5.9 and its associated reachability graph (as

shown in Appendix.A.1), it can be seen that the firing of t]() tokenises p]1, i.e.

<Mp,o> 1= TI[t10 = p11]

4. Combining 1. - 3. yields:

<Mo,e> 1= T [Mg = 0(p11)]

5. The tokenisation of p| | enables t], i.e.
<Mo,o> = Ll [p1] = t11(0k) ]

6. The firing of t]] using proposition | gives:

<Mo.o> 1= Li[t11(ok) = t11]

7. The firing of t]] tokenises p|3, i.e.
<Mp,o> 1= LI[t1] = p13]

8. Combining 7 -1 produces:
<Mp,o> 1= LI Mg = 0(p13)]
Since Mg = { p13 }, the above can be re-written as:

<Mg,o> 1= L[ Mg = O0Mg ]

Property 5.12 and 5.13 are for the input set cases 9 and 10 in Table 5.3.

These properties can be formalised as:
<Mp,0> 1= [ Mg = M7 ]

From an initial marking Mo = { p14 }, where M7={p17 }.
<Mp,o> 1= [ [ Mg = Mg |

(5.12)

(5.13)

From an initial marking M = { p| }, where M7 = { pg }. The proof for property (5.12) and

(5.13) follows from that presented for (5.11).

The verification of the input and output sets for the commit, abort and ack communication

blocks have been performed in the same manner to the above. This verification of the

communication blocks, using Temporal Petri net analysis, gives confidence in the hybrid

design of the E2PC protocol synthesised using these communication blocks.

5.3 Commit Protocol Block

The intended application of the commit protocols developed in the section 5.2. are in the

design of distributed controllers, for the coordination of real-time control operations. The
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Petri net models of the protocols will form reusable templates, that can be applied in Petri net
models of the distributed controllers. The reusable templates of the commit protocols are
termed commit blocks.

The modelling of large and complex systems using Petri nets can result in problems in the
readability of the design, and in the analysis of the model. In general as the Petri net model
increases in size and complexity, the associated state space increases exponentially [ Dwyer
et al 95 ]. Methods of analysis based on generating the reachability graph of a model can
become impractical to use due to the processing time and effort required, but more

importantly because it may be impossible to generate the complete state space.

It is anticipated that the distributed controller models, incorporating the atomic commit
protocols, will result in large and complex Petri nets. This will result in problems when using
reachability based analysis. There are various ways of approaching this problem, such as the
use of stubborn sets [ Valmari 91 ], the projection of the behaviours of composed sub-nets
onto interesting and environment components [ Valmari 93, 94 ], these components are
similar to net reductions [ Murata 89 ], and the composition of sub-net reachability graphs

using sub-net interface specifications [ Bucci & Vicario 95 ].

In section 5.2.6. the state space of each communication block's Petri net template was
separately enumerated and assessed under the intended environment for the module. This
external behaviour (environment) was specified by the set of input place markings for each
block. This approach is similar to that used by Bucci & Vicario [ 95 ], where sub-nets are
composed using reading and writing ports, resembling communication channels [ Shaw 92 .

The input and output behaviour for these ports represents the environment for the sub-nets.

In the following chapter, it is intended to use a modular approach to the design and analysis
of the Petri net models. The modular approach is intended to overcome the problem of state

space explosion [Scholefield 90], while still being based on the use of a reachability graph.

The modular approach to the design of the commit protocols, used in section 5.2, will be
employed in the distributed controller design in chapter 6. This approach allows the use of
specified and verified re-usable templates. In the development of the commit protocols, the
templates formed the underlying Petri nets of the communication blocks. The Petri nets of
the commit protocols are to be used in the same manner as the templates for the commit
blocks.

A hybrid approach will be taken to the design of the distributed controllers, as described in

section 3.7. This will involve the top-down refinement of models for separate local
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controllers. Followed by the bottom-up composition of these modules using commit blocks.
This will be achieved by merging the input and output places of the commit blocks with
places in the local controllers, to form a distributed controller model. It is intended to reuse
the analysis of the commit block's Petri net template in the analysis of the distributed

controller.

In section 5.2, the hybrid design of the commit protocols was presented, using the
composition of the communication blocks. This composition was based on the definition of
the blocks external behaviour, and required the merging of the input and output places for the

communication blocks.

The constraints on the external behaviour of the communication blocks were defined in the
input and output sets. In section 5.2.4. each communication block was analysed separately
from the total system, under the assumption of these input and output sets. This analysis
proved salient properties of the Petri net template, such as liveness, boundedness and freedom
from deadlock.

In section 5.2.6 the tformal verification of the external behaviour of each communication
block was presented. This confirmed the validity of the composition of the blocks. It is
intended for the modular design of the communication blocks presented in section 5.2, to be
extended to aid the modular analysis of the commit protocol. This would allow the reuse of
the analysis, and the formal verification, of the communication blocks for the analysis of the

total system.

In order to allow this modular analysis, a formal notion of the block structures is developed in
sections 5.3.1 and 5.3.2., that is based upon the well formed blocks of Valette [ 79 ]. A
projection of the external behaviour of the communication blocks is used to generate the
reachability graph for the commit protocols composed from these blocks, such as Fig.5.14.
This allows the use of reachability based Petri net analysis for the commit protocols, which is

presented in section 5.3.3.

The verification of the communication blocks has been shown for certain sets of input place
markings. The reachability graph for the composed commit protocol (section 5.3.3.), can be
used to confirm these sets of input place markings. Where these input sets for the
communication blocks hold, the verified properties for each block also hold. The
combination of the reachability graph for the commit protocol with the verified properties for
each block, can be used to deduce properties for the composed design. This modular

verification 1s presented in section 5.3.4.
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5.3.1 Well formed blocks

The Petri net block structures used in section 5.2. are based on Valette's [ 79 ] well formed
blocks (WFB), the definition of these will be considered in order to define the notion of well
formed multi-blocks (WEMB). These WEMB form the basis for the application of the

communication and commit blocks.

biock

tini

@ idle place

tfin

Fig.5.15. well formed block with idle place

Valette [ 79 ] proposed a top-down approach that allowed a step-wise refinement to replace
transitions in these nets with block structures, whilst preserving the properties of safeness,
boundedness and liveness. The Petri net, Fig.5.15., within the (block) outline has one initial

transition (tjpj) and one final transition (tfjn) and is termed a block.

A refined Petri net PN' = (P, T', I', O', My') , termed the associated Petri net, is obtained from
the block Petri net PN = (P, T, 1, O, Mp) , by the addition of the (idle) place p( , such that:

i) the only output transition of p¢ is tinj,

ii) the only input transition of pg is tfin,

1) Mo =Moo+ {po }.

The following definitions can then be given:
1) the block PN is bounded iff the associated Petri net PN' is bounded,
i) the block PN is safe iff the associated Petri net PN is safe,

iii) the block PN is live iff the associated Petri net PN is live.
A block Petri net PN is a well formed block [ Valette 79 ] iff the associated Petri net PN' is

such that:
1) PN'is live,
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11) Mp' is the only marking in the set of markings reachable from My’ such that the idle place
1S not empty,

iii) the only transition enabled by M’ is the initial transition tjpj.

A WEFB is such that once activated (the initial transition is fired) there exists a firing sequence
that contains the final transition, and that after the firing of the final transition the marking of
a WEB is the initial marking[ Valette 79 ].

5.3.2 Well formed multi-blocks

The WFB presented in [ Valette 79 ] are not directly applicable to the definition of the blocks
used in section 5.2. These blocks are intended to be used for the substitution of several
independent transitions, that represent the interaction of concurrent processes. Thus simple
transition substitution of WFB, is not possible in these cases. The WFMB used differ from
Valette's [ 79 ] WFB, 1n that:

1) the underlying Petri net for the block represents the interaction of several processes,

i1) there is an initial transition (tini) for each process,

111) there is a final transition (tfip) for each process,

However, the properties such as liveness, boundedness and freedom from deadlock, are to be

preserved during the refinement procedure in the same manner as for WFB.

In order to develop the notion of the WFMB, the idle place is replaced by an input and output
place (pin, pout) for the block , along with what is termed an environment transition (tenv),
for the WFB shown in Fig.5.16.(a). This transition and places can be reduced to a single
place using Petri net reductions [ Murata 89 ], and can thus be considered equivalent to the
WEFB idle place.

The environment transition along with the input and output places, are intended to be a
minimal representation of the environment for the WEMB. There is still an initial transition

(tini) and final transition (tfin) in this type of block for each process.

To form the WFMB another process is added to the single process of a WFB block to form a
multi-process block, where each process has an initial and final transition and an input and
output place. The input and output places for each process are connected by a single
environment transition. This block is shown in Fig.5.16.(b). This form of multi-block is
termed simple, as there exists a single-input and a single-output (SISO) place for each

process. The aborr communication block in section 5.2. is an example of a simple WFMB.
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process 1 process 2

pin
block l block [

tini _! tini1 i .!_tmig

T tenv tenv

tfi ti
fin1 fin2

) pout ! g

(b)

Fig.5.16. (a) well formed block with environment transition, (b) well formed multi-block with

tfin ——

environment transition, (SISO).

The associated Petri net PN'= (P, T, I', O', M) , is obtained from the block Petri net = (P,
T, 1,0, Mg), by the addition of the input and output places { pin,pour }, and the
environment transition teny, Such that for each WEMB process:

1) the only output transition of pjy is tinj for each process,

11) the only input transition of pj; is tepy foreach process,

iii) the only input transition of pgyy is tfin for each process,

1v) the only output transition of pgyy is teny foreach process,

v) Mo =MQ + Mjp .

Where Mip is the marking of the input places for each process.

Mout represents the markings of the output places for each process. For the simple WFMB
there is one place per process in each of the sets, Min+ Mout. The firing of the environment
transition transforms the marking Moyt to the marking Mjp.

v) M@ =M+ Mjp .

Where Mjp is the marking of the input places for each process.

Mout represents the markings of the output places for each process. For the simple WFMB
there is one place per process in each of the sets, Mjp and Mgy¢. The firing of the

environment transition transforms the marking Moyt to the marking Mjp.

The following definitions can then be given:

vi) the block PN is bounded iff the associated Petri net PN' is bounded,
vii) the block PN is safe iff the associated Petri net PN' is safe,

viil) the block PN is live iff the associated Petri net PN' is live.
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A block Petri net PN 1s a well formed multi-block (WEMB) iff the associated Petri net PN' is
such that:

1x) the PN'is live,

x) Mo is the only marking in the set of markings reachable from Mg’ such that marking Mip
holds, (each processes input place is not empty),

xi) the only transitions enabled by M are the set of initial transitions tjp; for each process,
xii) the only transition enabled by the firing of the final transitions tfip for each process, is
lenv,

xi11) the firing of the environment transition tepy, produces the marking Mjp.

The block structures such as the prepare and vore communication blocks differ from this
form of WEMB. They have single-input multiple-output (SIMO) places for each process and

are termed complex WFMB.

Analysis of the underlying Petri net templates for these blocks in section 5.2.5. has shown
them to be live, I-bounded and deadlock free. The verification of properties for these blocks
in section 5.2.6., showed each marking in the set of output markings Mgy contained only one
output place per process. This analysis only holds for the set of initial markings defined by

the input sets for each block.

The complex WEMB requires a set of environment transitions, one for each member of Mgy,
The firing of the associated environment transitions (tepy_j) transforms the output marking
(Mout_j) to the single input marking (Mjp). The markings Mijp and Moyt are equivalent to

the input and output sets for the communication blocks, this is shown in Fig.5.17.

The analysis of the multi-process blocks in section 5.2.5. showed that the underlying Petri

nets were live, and deadlock free, even when only some processes input places are tokenised.

The verification of properties for the communication blocks in section 5.2.6. showed that
only the processes with input places tokenised, have output places tokenised in the
corresponding output set. The tokenising of each processes output places are mutually
exclusive (for each process an input place token is absorbed and eventually produces a single

output place token).
The dynamic behaviour of the underlying Petri net template involves only those processes

present in the input set. Thus the WFMB behaviour can be considered an atomic action:
i) the block fully completes or aborts,
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ii) for a composed Petri net (such as Fig.5.14.) for each process in the input set of the block,
all transition steps either precede or succeed the steps of the block.

iii) only the external behaviour for each process is observable

The commit protocols developed in section 5.2. are restricted cases of the general (complex)
WEMB structure, as shown below in Fig.5.17. Mgyt for this form of the complex WFMB
contains only two markings, one for the commit outcome of the protocol, and one for the
abort outcome of the protocol. The two associated environment transitions are thus marked
tenv_c (commit outcome) and teny_a (abort outcome) and represent a reduced model of the

environment for the WFMB.

Process 1 Process 2
Process 3
N
— Ov OQO=——
tinitial
tenv ¢ T—-
AA Block
tfinal | m tenv.a
fo ] e fos]
Cammit

Emb &

Fig.5.17. (complex) Well formed multi-block, with dual exit path

The sets of markings Mip and Moyut, and environment transitions { tepy } form an abstract
model of the environment for the WEMB. This is restricted to the behaviour of interest in the

design and analysis of the module.

5.3.3 Reachability analysis of hybrid design E2PC
In this section the behaviour of the complex WFMB (defined in section 5.3.2.), are used for
the modular analysis of the composed protocols (developed in section 5.2.5). The firing

sequences of the WFMB's underlying Petri nets are replaced by direct mappings between the
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external behaviours of the blocks. These mappings take the form of atomic transitions, which
are fired to generate the WFMB dynamic behaviour. The use of these mappings conceal the
local events of the blocks not required for analysis. Where a set of atomic transitions replace
all the firing sequences for the composed WFMBs, their firing can be used to generate a
reachability graph. In Fig.5.14., each communication block will be replaced by several
atomic transitions, these can be fired to generate the reachability graph for the protocol,

allowing reachability based analysis to be used.

In order to extend a modular design approach to enable a form of modular analysis, it is
necessary to derive the behaviour of the composed system from the behaviour of the
composed components [ Kindler 97 ]. This should be possible without considering the
component details at each stage of analysis. Bucci & Vicario [ 95 ] point out that although
extensions to Petri nets that allow module construction exist, they are not accompanied by
analysis techniques that exploit the modularisation. Generally, modularisation is restricted to
the specification, and analysis must be performed on the (flat) detailed net. In [ Valmari 93 ]
the reachability set of a composed net is generated by composing the reachability sets of
subnets. This is combined with behaviour preserving reductions between the composition

steps. However, this can still result in a large state space for the composed system.

Reachability graphs of Petri net component modules (WEMB) can be projected onto reduced
representations. These representations conceal events local to the module that are not
essential for the purpose of analysis [ Bucci & Vicario 95 ], while preserving an equivalent

behaviour, in order to manage the state space problem.

Minlet > Moyt denotes marking Moyt 1s reachable from Mjp via the firing sequence o.. For a
WEMB, for each input set marking there are an associated set of output set markings. These
are reachable by an associated set of firing sequences, Min(i)[ag) > Mout(j). The input set
and output set markings, Mjp and Moyt, are equivalent to the input and output sets used to

define the external behaviour of the communication blocks in section 5.2.4.

In a composed Petri net design, such as Fig.5.14., each firing sequence of a WFMB 1is
considered an atomic action. This atomic action transforms an input place marking to an
output place marking. To generate the external behaviour of the WEMB each firing sequence
is replaced by an atomic transition internal to the block. This is a projection which conceals

events local to the block, where these events are not required for analysis.

To generate the reachability graph for a composed Petri net containing WEMB, each firing
sequence 0yj) of the WFMB is replaced by an atomic transition (j). The firing of this

transition transforms the input marking of the WFEMB Mijn(j) to the output marking Mout(j)-
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This 1s possible as the firing sequence aj) involves only those processes present in the input

set marking Min(i).

The atomic transition t(j) is a direct mapping from the input set marking to the output set
marking. Where Min(i)[t(j) > Mout(j) denotes Mout(j) 1s directly reachable from Min(i) via
the firing of t(j). Thus Mjn(j) and Mout(j) are equivalent to the input and output functions /

and O for a standard Petri net transition.

Atomic transitions of this form can be associated with each of the communication blocks
input and output sets. The input and output sets of the communication blocks are defined for
the commit protocols developed in section 5.2. (such as Fig 5.14.). Since confidence in these
input and output sets has been generated by the verification procedure presented in section
5.2.6., there can be confidence in the mappings based on them. The mappings are of the form
Min(j)[t(j) > Mout(j), and can be used to generate the correct dynamic behaviour of the

hybrid Petri net design.

t(i Input set [Min(i)] Output set [Mout('i)]
1 P24, P34, p44 P25, P35, P45

2 P24, P34, p44 P26, P35, P42

3 P24, P34, P44 P27, P32, P45

4 P34, p44 P32, P42

5 P34 P32

6 P44 P42

Table.5.7. external behaviour of the commit communication block

Consider the external behaviour for the commit WFEMB (The numbering of places in Table
5.7 is from the composed commit protocol given in Appendix.B.2.). To generate the
dynamic behaviour of this WFMB would require six atomic transitions of the form ((j), where
Min(i)[tg) > Mout(j). For example the firing of the atomic transition t(4), maps the input set
{ P34, p44 } to the output set { p32, p42 }.

Local events are concealed through the projection of the external behaviour of modules [
Bucci & Vicario 95 ], this forms the basis of the clustering stage of the bottom-up approach.
The dynamic behaviour of the WFMB, produced by the firing of the atomic transitions, is
equivalent to this type of projection. These mappings are then used in the WFMB defined

above for the execution of the dynamic behaviour of the hybrid Petri net design.

Applying this procedure to the hybrid protocol design (Fig.5.14. - CB1) results in a Petri net

with 39 transitions and 41 places. This includes the nine environment places (three per
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process) and two environment transitions for the abort and commit case. These are necessary
to form a WEMB for the commit protocol block (termed the commit block). The reachability
graph generated consists of a state space of 89 nodes. This state space is a considerable
reduction in size from the fully enumerated state space for the equivalent protocol of chapter
4. (Fig.4.12 ) which had a state space of 1563 nodes. The reachability graph for the commit
protocol (CB1) generated in this manner is given in Appendix.A.3., along with the
concurrency set and results of the Petri net analysis. In Appendix.A.4. the equivalent
information for the commit protocol (CB2) is given, this protocol is presented in
Appendix.B.3.

Reachability based analysis of the associated Petri net for the commit block (presented in
Appendix.B.2) using the state space generated has been performed. The Petri net has been
shown to be live, safe (1-bound) and deadlock free and has a state space of 89 nodes.
Examination of the markings of the reachability graphs has shown that all markings in Mgyt
enable one of the two environment transitions (tepny). This represents a consistent abort or
commit decision always being reached by the protocol. This property can be confirmed
through examination of the concurrency sets for the output places of the commit block, { p3,

pP7, P11} - commit and { p4, pg, p12 } - abort .

The reachability analysis has shown these hybrid designs to be consistent models of atomic
commit protocols, and also that they are equivalent to the fully elaborated designs developed
in chapter 4. Equivalent markings of the commit blocks input places { p|, p5, p9 | produce
equivalent external behaviour, markings of the commit blocks output places { p3, p7, p11 } -

commit or { p4, p8, pl12 } - abort .

The same number of synchronous communications and timeouts are used in both models
(Fig.4.12. & Fig.5.14.), but their use is implicit in the hybrid design protocol (Fig.5.14.). The
communication blocks are used to conceal the behaviour of these communications and

timeouts, as this is not required for the analysis of the protocol at this level of abstraction.

The reachability analysis in this section is modular, as the individual analysis of each
communication block (considered in section 5.2.4.) is reused in the analysis of the composed

commit protocol.

The separate analysis of the communication blocks (section 5.2.4. & 5.2.6.) has verified the
relationship between the input and output sets. The composition of these reduced reachability
graphs, is achieved by generating the reachability graph for the composed protocol (using the
defined mapping Min(j)[tg) > Mout(j) for each WEMB). Analysis of the composed protocol

is possible using the reachability graph generated.
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3.3.4. Verification of hybrid design E2PC

The composition of the communication blocks relied upon examination of the blocks input
and output sets. These sets were defined in section 5.2.4., and the composition procedure in
section 5.2.5. The verification of liveness properties for each communication block was
performed in section 5.2.6., these properties related input place marking and output place

markings.

The verification of properties for each communication block was performed using Temporal
Petri nets. These properties can only be guaranteed for certain sets of input place markings.
The reachability graph generated for the composed protocol model Fig.5.14., was developed
in section 5.3.3. This reachability graph can be used to show the input place markings for
each communication block. If the input set markings for the blocks can be shown to hold,

then the properties of the blocks can be used to deduce properties for the composed design.

The reachability graph for the composed protocol (CB1) is given in Appendix.A.3 (protocol
numbering is shown in Appendix.B.2), this shows that the input place markings for each of
the communication blocks holds, therefore the properties verified for each of the

communication blocks also holds.

From the guaranteed output set markings for each block, the possible firing sequences should
lead to the input set marking for the subsequent communication block. This can be shown by
examining each communication block in turn, for the composed protocol (Appendix.B.2).

Consider the prepare block, the input and output set for this block are given in Table 5.8:

Input set Output set

P20, P30, P40 P21, P31, P41
P20, P30, P40 P22, P31, P42
P20, P30 P40 P22, P32, P41

Table.5.8 external behaviour of the prepare block in Petri net Appendix.B.2.

The three output sets are guaranteed for the single input set by the proof of property (5.7).
The firing sequences possible from these markings are given by the reachability graph. From
observation of the net it can be seen that the transitions enabled are (tg, t7, t]], t]2). Places
p31 and p4] are the decision states for the participant processes, and the enabled transitions
represent the Yes decision (proceed with protocol) and No decision (unilaterally abort
protocol) for the participants. By considering the firing of these transitions in the reachability

graph, for each of the output set markings in Table.5.8, it can be seen that the vote blocks
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input set markings are produced. Therefore the properties for the vote block can be

guaranteed. The proofs of properties (5.8) to (5.13) verified the output sets for the vore block.

By following each blocks output set marking in the reachability graph it can be seen that the
next blocks input set markings hold, and therefore that the properties of the next block also
hold. By considering these liveness properties of each communication block in a stepwise

manner, liveness properties for the composed protocol can be deduced.

For the input marking { pi, p5, p9 } of the composed protocol, the final output place
markings produced are { p3, p7, p11 } or { p4, p8, p12 }. This property can be deduced
using the properties of the communication blocks and the reachability graph for the

composed protocol.

To verify this property using the Temporal Petri net approach presented in section 5.2.6., it
would only be necessary to consider the firing sequences for the minimal number of
transitions { [, t2, tg, t7, t} ], t]2} that interconnect the previously verified communication
blocks. This procedure requires the generation of the reachability graph for the hybrid

protocols, presented in section 5.3.2.

The verification of the liveness property for the composed commit protocol, guarantees that
for each process, the protocol produces a consistent decision. Eventually either:
1) all processes reach their commit states, or

11) all processes reach their abort states.

Case 1) is the output set for the ack communication block, and case ii) is a possible outcome
for each of the communication blocks prior to this. The validity of this can be confirmed

from the reachability analysis presented in section 5.3.3.

5.3.5 Dynamic behaviour of Commit block
The composed commit protocols can be used as the underlying Petri net template for the
commit block. It is intended to use these commit blocks in modular Petri net designs,

presented in chapter 6.
For the commit block protocol CB1 (Fig.5.18.), the underlying Petri net structure is given in

Appendix.B.2. The input and output sets for this commit block are given in Table.5.8 The

two output sets represent the commit and abort outcome of the protocol.
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§ Input set (Mip {) Output set (Mout i)
| P1, PS5, P9 P3,P7, P11

2 P1. PS5, P9 P4, P8, P12
Table.5.8 external behaviour of the commit block CB1

The dynamic behaviour of the commit block can be generated by the following mappings
between input and output sets:

1) Min(DIt(1) > Mout(1), and

i) Min(){[t2) > Mout(2).

Coordinator Participant 1 Participant 2

RN NAe
i

R
TT TT TT
=Dy Ty hy

Fig.5.18. Commit block external behaviour

When this commit block is used in a composed Petri net design, the firing of the atomic
transitions defined would produce the blocks dynamic behaviour. The commit block would
be composed in a hybrid Petri net by merging the input and output places shown in Fig.5.18.
This is illustrated in chapter 6. through the design of two distributed controller applications.

5.4. Conclusion.

This chapter has presented a hybrid approach to Petri net design for a restricted class of
communicating processes. The approach is termed hybrid as a top-down refinement was

used for the design of the commit protocols basic structure, followed by a bottom-up
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composition of sub-nets (termed blocks) to create the final design. A modular approach to
analysis was used, as the analysis and verification of the hybrid design commit protocol rely
upon properties of the sub-nets (Petri net templates) which have been proven in section 5.2

using Petri net and Temporal Petri net analysis and verification.

These blocks structures were based on the notion of Well Formed Blocks (WFB), but differ
from Valette's [ 79 ] in that each block can be used to model the interaction of several
processes and the blocks can have more than one final transition. These types of blocks were
called Well Formed Multi-Blocks (WFEMB), and like WFB the behaviour of the underlying
Petri net is live, bounded and deadlock free. The WFB presented in [ Valette 79 ] are used in
a top-down approach to Petri net design through stepwise refinement, while the WEMB
presented in section 5.3 are used in a hybrid approach to Petri net design and as an aid to
analysis. The communication and commit blocks offer a reduced representation of the
underlying Petri nets behaviour that allows a composition procedure, based on the definition
of WFEMB presented in section 5.3.

The modular approach to design is based on the hybrid synthesis of Petri nets , where the top-
down decomposition technique preserves the global view of the system, and the bottom-up
approach helps to synthesise accurate models of low level operations. While the modular
approach to analysis reduces the state explosion problem associated with fully elaborated

nets.

According to Ramaswamy & Valavanis [ 96 ] the advantage of such a hybrid, block
structured approach is that:

1) the top down decomposition technique preserves a complete global view of the details of
the system modelled.

1i) the bottom up approach can preserve responsive communication and synchronisation

structures for the different levels of abstraction.

The WEMB approach allowed the modular design and analysis of the communication and
commit block, and then the hybrid protocol designs. The communication blocks underlying
Petri nets were analysed using standard Petri net analysis, and subsequently the notation of
Temporal Petri nets was used to verify certain liveness properties. Properties of the WFMB
communication blocks were used to enable reachability analysis of the hybrid protocols. This
allowed a unified approach, as the specification, design and analysis of the commit protocols

developed are based on the same model.

This hybrid approach is suitable both for system modelling and design, and for analysis. In [
David & Alla 92 ] [ Ramaswamy & Valavanis 94, 96 ] [ Zhou & DiCesare 93 | [ Suzuki et al
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90 ] methods are described where Petri nets provide such a unified basis for the modelling
and analysis of systems. However, the approach presented in this chapter is particularly
suited for use with distributed systems as the underlying communication system model is
used as the basis for the choice of sub-net (underlying each block) and for the composition
procedure. To illustrate their application the commit blocks developed in section 5.3 will be

applied to two real-time distributed control systems in Chapter 6.

In [ Bucholz 94 ] a modular approach to Petri net design based on the communication
between processes is presented. In this approach sub-net composition is used, where each
sub-net is executable, the dynamic behaviour being described in a local reachability net, and
the composition of each sub-nets generated state space is required for the analysis of the
composed system. The behaviour of the environment is partially considered during subnet
reachability generation in [ Bucholz 94 ], a similar approach was taken in sections 5.2 and 5.3
for the analysis of the communication and commit blocks. However, the environment was

modelled as an integral part of the commit protocol.

In [ Shieh er al 90 ] the notion of synchronisation and checkpoint transitions for Petri net
models of distributed systems are introduced, and are used in the modelling and analysis of
fault tolerant schemes. The checkpoint transition represents the coordination of independent
processes in order to take a consistent checkpoint of the system for rollback purposes.
However, the coordination of the processes to achieve this checkpoint is not considered. In
Chapter 6, 1t is shown that the commit blocks provide an equivalent function to these
transitions, but are based on analysis of the actual mechanisms required to implement such a

scheme.

For each communication stage of the composed commit protocol, presented in section 5.3,
the input and output places of each communication block were shown to be sufficient for
reachability analysis, based on the execution of the communication block as an atomic action.
In section 5.3.5 it was discussed how the developed commit blocks can be used in the
reachability analysis of a Petri net design incorporating them, in the same way as the
reachability graph for the hybrid design commit protocol was generated using the commit

blocks, as presented in section 5.3.4.

The hybrid design commit protocols developed in section 5.3 will be applied to two real-time

distributed control applications in Chapter 6, in order to illustrate their use.
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Chapter 6 Synthesis & Analysis of
Distributed Controllers

6.1. Introduction

From the survey of modelling techniques presented in Chapter 3, Petri net based techniques
were selected for use in this Thesis because they allow concurrency to be represented by a
simple and intuitive graphical notation, and coupled with temporal logic they allow reasoning
about time related behaviour. Commit protocols that provide real-time and fault-tolerant
behaviour, termed responsive commit protocols, were developed in Chapter 4, and served as
the basis for the design and analysis procedure developed in Chapter 5. In Chapter 5 commit
protocols were modelled using a modular approach based on Petri nets, and reusable Petri net
templates of responsive commit protocols were developed. These commit protocols were
analysed using reachability based Petri net analysis and verified using the notation of

Temporal Petri nets using a modular procedure based on 'block’ structures.

In this chapter it is intended to apply the Petri net templates (of commit protocols) developed
in Chapter 5 in the design of distributed controllers for two real-time problems. The analysis
and verification of the resulting controller designs will then be performed, based upon the

modular analysis and verification of the commit protocols presented in Chapter 5.

The control of complex, independently driven, high-speed machinery was traditionally
achieved through mechanical means in order to achieve synchronisation for their correct and
safe operation, and forms the target application for real-time embedded applications in
manufacturing. The flexible design and speed of such applications can be greatly increased
through the replacement of the mechanical transmissions used, by independent software

controlled drives [ Sagoo & Holding 90 ].

The embedded real-time software controllers of these drives must achieve continuous or
intermittent synchronisation for the correct operation of these systems. The synchronisation
logic [ Sagoo & Holding 90 ] to accomplish this must be fault-tolerant in order to operate
safely under both normal and abnormal conditions; the latter are those that are likely to lead

to failure.
These controllers can be classified as real-time safety-critical systems (RTSCSs) because the

failure, of these systems, including the time constraints of their environment, can lead to

accidents involving injury or damage to the environment [ Burns & McDermid 94 .
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The distributed controllers for the two applications are developed and analysed in sections
6.2 and 6.3. These controllers are designed in a hybrid manner, first the centralised forms of
the controllers are partitioned into the separate processes, and then these separate controllers
are composed using the commit blocks developed in Chapter 5. These commit blocks are

Petri net templates of the commit protocols required for real-time fault-tolerant coordination.

The separate local controllers developed for each process are examined and their
synchronisation points determined. The synchronisation points represent where coordination
of the controllers are required, it is intended to achieve this coordination using commit
protocols. The controllers are then composed using the commit blocks developed in Chapter
5 at the identified synchronisation points. These interaction points are termed commit
transitions in the Petri net models of the distributed controller. The composition of the
distributed controller will follow the procedure used in Chapter 5 for the composition of the
commit protocol models.  This composition procedure is completed using protocol subnets
which have been shown to exhibit certain structural behaviour (such as liveness and

boundedness).

The analysis and verification of the resulting Petri net designs, for the distributed controllers,
is then presented. This is based upon the properties proven for the (commit protocol) Petri

net templates presented in Chapter 5.

The compositional approach to the design of Petri nets, and the modular approach to their
analysis and verification is illustrated through its application to two industrial systems; the
first is a prototype can sorting machine [ Jiang 95 ][ Holding er al 95 ] and the second a drum

transfer mechanism [ Sagoo & Holding 90 ].

6.2. Multi-Axes Can Packaging Machine

The use of commit blocks is illustrated by the application of these protocol templates
(developed in Chapter 5) to the design of synchronisation logic for a controller of a high

speed can packaging machine; a schematic of the can packaging machine is shown in Fig.6.1.
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Aston University

Ilustration has been removed for copyright
restrictions

Fig.6.1. Can packager machine physical system.

The can packaging machine developed by Eurotherm Controls Ltd., comprises six
independently driven axis, and was presented in [ Jiang 95 ]. In that work a rule based
approach was used to synthesise a controller for the mechanism, by the transformation of the
synchronisation constraints on the system into a Petri net model. Petri net analysis
techniques [ Peterson 1981 ][ Murata 1989 ] were then used, along with extended Temporal
Petri nets [ Sagoo 92 ] for analysis of the controller design. In [ Azzopardi 96 ] an object-

oriented Petri net technique was used for the design of a controller for the same system.

The above research developed designs for the controller based on the assumption that a
centralised (single) controller was able to coordinate the motion of all the independent drives.
A site failure for the centralised controller would be a single point of failure for the system,
and would result in loss of control of all drives. A failure of the communication link between
the centralised controller and an independent drive would result in the loss of control of the
particular drive. In order to increase flexibility and robustness of the system design, this
centralised controller is (o be replaced by a set of physically distributed controllers co-placed
with the independent drives. The co-ordination and synchronisation of these drives will thus
require a distributed version of the synchronisation logic and the local control, incorporating

real-time inter-process communications.

6.2.1 Application system

The system requires the intermittent synchronisation of six independent axis: druml, drum?,
drum transfer slider, feeder transfer slider, conveyor and conveyor transfer slider as
illustrated in Fig.6.1.- 6.3. These six axis exhibit independent asynchronous motion until

constrained into local synchronisation by the synchronisation logic.
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The controller design is used to achieve the co-ordination and intermittent synchronisation of
the independent drives of a high speed can packaging machine; a task achievable through the

use of distinct local controllers whose actions are co-ordinated using responsive commit

Aston University

[llustration has been removed for copyright
restrictions

Fig.6.2. Can packager physical system (side).

161 Chapter 6



Aston University

Ilustration has been removed for copyright
restrictions

Fig.6.3. Can packager physical system (front).

6.2.2. Modelled system

Cans are transferred from the feeder to druml by the feeder transfer slider, (as shown in
Fig.6.2.) from druml to drum2 by the drum transfer slider (as shown in Fig.6.3.) and drum?
to the conveyor by the conveyor transfer slider (as shown in Fig.6.2.). The conveyor/feeder,
transfer sliders and drums are driven by independently driven motors, synchronisation is

required in order to transfer the cans between the different component of the mechanism.

Petri net models of the separate controllers for each axis are created. These are illustrated in
Fig.6.4., the (commit) transitions (where the processes are required to synchronise and reach
a decision) are shown in outline. Table.6.1. gives the semantics for the places of these nets,
with the places that represent the synchronisation logic for each controller are marked *, and

Table.6.2. the semantics for the commit transitions.
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In Fig.6.4. the following are the local controller models; (a) Druml, (b) Drum2, (c)
Conveyor/Feeder, (d) Drum transfer slider, (e) Feeder transfer slider & (f) Conveyor transfer

slider.

A distributed controller is developed using a compositional design method. The Petri nets of
the local controllers are composed through fusion of the commit transitions, to form the
required synchronisation logic. While the commit transitions are refined using the commit
blocks developed in Chapter 5. Fusion of Petri net transitions means the subnets share
events. Shared transitions imply the use of synchronous communication (as used in the
commut protocol designs developed in Chapters 4 and 5), while shared places are used (when
shared resources are modelled), and implies the use of asynchronous communications [
Khalifa & Nketsa 96 ].

Process State Semantic
Drum 1 Pl Drum| rotate with can

P2 Druml await transfer with can

P3 Drum! committed to drum transfer *

P4 Druml rotate without can

Ps Drum! await feeder without can

P6 Drum! committed to feeder transter #
Drum 2 pP7 Drum?2 rotate without can

P8 Drum?2 await transfer without can

P9 Drum2 committed to drum transfer #*

P10 Drum?2 rotate with can

Pl] Drum?2 await conveyor with can

P12 Drum?2 committed to conveyor transfer *
Conveyor/Feeder P13 Conveyor/Feeder can available

pl4 Feeder committed to transfer *

P15 Conveyor/Feeder no can available

P16 Conveyor committed to transfer *
Drum Transfer P17 Shider return and approach motion

P18 Slider decision point

P19 Shder insert motion

P20 Slider abort motion

P21 Slider insert inhibit *

P22 Slider insert active ®
Feeder Transfer p23 Feeder slider withdraw

P24 Feeder slider insert
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P25 Feeder slider insert inhibit *

P26 Feeder slider insert active *
Conveyor Transfer p27 Conveyor slider withdraw

P28 Conveyor slider insert

P29 Conveyor slider inhibit i

P30 Conveyor slider active *

Table 6.1. Semantic for 6-Axes Petri nets, Fig.6.4. & Fig.6.5.

Table 6.2. gives the semantics for the commit transitions, along with the processes which are

composed through the fusion of these transitions.

In Table 6.2 the assignment of the

controller in the commit protocol shown; coordinator (Coord), participant-1 (Partl) and

participant-2 (Part2).

Transition | Processes ( Coord, Partl, Part2) Commit decision
tl Drum Transfer, Drum 1, Drum 2 Commit to drum transfer
t2 Drum Transfer, Drum |, Drum 2 Drum transfer complete
t3 Feeder Transfer, Drum 1, Conveyor Commit to feeder transfer
t4 Feeder Transfer, Drum 1, Conveyor Feeder transfer complete
t5 Conveyor Transfer, Drum 2, Conveyor Commit to conveyor transfer
16 Conveyor Transfer, Drum 2, Conveyor Conveyor transfer complete

Table 6.2. Semantic of Commit transitions for Petri net models, Fig.6.4. and Fig.6.5.

Fig.6.5. shows the composed controller, again with the commit transitions shown in outline.

These commit transitions are abstractions of the commit blocks developed in chapter 5,

which were proven to exhibit certain important properties ( liveness, boundedness, freedom

from deadlock and consistent atomic commit).
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Fig.6.5. Petri net of 6-Axis can packager controller

The refinement of the commit transitions with commit blocks allows the distributed
controller design to inherit the properties (such as application specific safety and liveness
properties) of the commit blocks underlying Petri net template. The commit blocks are
models of the commit protocols that guarantee all parties reach a timely and consistent

decision. The application requires the use of responsive protocols [ Kakuda er al 92,94 ], as
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both fault-tolerant and real-time performance constraints must be met. These properties of

the commit blocks were verified in Chapter 5.

An inspection of commit transition t] of Fig.6.5. shows the procedure used to compose the
Petri nets of Fig.6.4.(a) - (d) to yield the Petri net of Fig.6.5. Transition t] represents the
coordination of the druml, drum?2 and drum transfer processes necessary to commit or abort
the drum transfer action. The commit transitions in the local controllers are identified (such
as t] in Figs.6.4.(a), (b) and (d) ) and fused in such a way that the input and output places of
the commit transitions are merged with the input and output place sets for the commit block,
Fig.5.18. The commit transitions represent the point in the local controllers operation where
coordination with other controllers is required. For transition t], the input places to the
commit transitions (shown in Figs.6.4.(a), (b) and (d) ) are merged with the input places to
the commit block (Fig.5.18, and given in bold here):

1) p1-p21, drum transfer slider (commit protocol coordinator),

1) p5 -p2, druml (commit protocol participant-1),

1) p9 - p§, drum?2 (commit protocol participant-2).

The commit protocol outcome of a commit decision can be seen as a successful firing of
transition (t]), where the output places of the commit transitions (shown in Figs.6.4.(a), (b)
and (d) ) are merged with the output places of the commit block (Fig.5.18, and given in bold
here). The places merged are:

1) p3 - p22, drum transfer slider (commit protocol coordinator),

1) p7 -p3, drum!l (commit protocol participant-1),

i) p11 - p9, drum2 (commit protocol participant-2).
This outcome of the commit block is the consistent decision required for the controllers to
safely commit to the drum transfer action. This outcome enables the firing of transition t]7

when p|g 1s tokenised at the decision point (shown in Fig.6.5.).

The commit protocol outcome of an abort decision represents the controllers reaching a
consistent decision to abort the drum transfer action. This situation requires the re-tokenising
of the commit blocks input places. The abort decision output places of the commit block
(Fig.5.18, and given in bold here) are merged with the input places of the commit transitions
(shown in Figs.6.4.(a), (b) and (d) ) :

1) p4 - p2}, drum transfer slider and commit block coordinator,

1) p8§ - p2, drum! and commit protocol participant 1, and

iil) p12 - pg, drum2 and commit protocol participant 2.
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This outcome of the commit block represents a consistent decision by the druml, drum?2 and
drum transfer proceed to abort the drum transfer action, and to re-attempt the commit
decision. The abort outcome may be due to one of the controllers voting no at the vote stage
of the protocol, or to the occurrence of a communication link failure. A processes vote
depends upon its ability to perform the action requested, this could involve checks on the
controlled systems current state or on the availability of resources. If the controlled system is
not in the correct state or the allocation of resources necessary to reach a timely decision

cannot be guaranteed, then the process votes no .

In the presence of a permanent failure, the protocols abort decision prevents processes
committing to a hazardous action when the action of the other processes cannot be
guaranteed. While, in the case of a transient communication failure the re-tokenising of the

commit blocks input places should eventually lead to a commit decision being reached.

The outcome of the commit protocol is summarised in Table 6.3., where the output set of the

commit block is always a consistent commit/abort decision of the controllers.

Input set Output set
P2, P8, P21 P3, P9, P22
P2, P8. P21 P2, P8, P21

Table 6.3. external behaviour of the commit block (t]), from Fig.6.5.

The resulting Petri net, which is an equivalent distributed controller shown in Fig.6.5., was
composed by following the same procedure for each of the commit transitions of the local
controllers, shown in Fig.6.4.(a) - (d) ) and defined in Table 6.2. These commit transitons

were replaced with the commit block of the type shown in Fig.5.18.

The reachability based Petri net analysis of the distributed controller shown in Fig.6.5. was
performed, after substitution of the commit transitions ( t], 2, (3, 14, t5, tg ) by commit
blocks. The firing of atomic transitions, that offer equivalent behavior of the commit blocks
underlying Petr1 net templates, are used to generated the state space of the distributed
controlter. The analysis showed that the Petri net of the distributed controller to be live, I-
bound and deadlock free. The reachability graph and concurrency sets used in this analysis
are given in Appendix.A.5., the Petri net had a reachable space of 79 nodes. This
information is also used in section 6.2.4. for the verification of properties of the controller
(defined in section 6.2.3.).
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6.2.3. Properties of the System

The system must be verified for correctness, to ensure that the design exhibits the required
behaviour in an acceptable and safe manner. This type of verification is achieved by proving
two types of properties that are known as safety and liveness. Informally Liveness properties
are defined as 'what the system should do' and Safery properties as 'what the system should

not do' [ Lamport 77 ]. These properties are stated as follows:

Safety Property 1, 2 A situation will never occur in which druml's controller has

committed to a transfer and druml is rotating, this can be formalised as:

T=[(p3) A (Pl Vv p4)] (6.1)
T=[(p6) A (Pl v p4)] (6.2)

Safety Property 3, 4 A situation will never occur in which drum2's controller has

committed to a transfer and drum?2 is rotating, this can be formalised as:

C=[(p9 ) A (p7 v p10)] (6.3)
C=lp12) A (p7 v p10)] (6.4)

Safety Property 5 A situation will never occur in which the drum_transfer's controller
commits to insert when either druml or drum2 is rotating, this can be expressed in temporal

as:

C=l(p22 ) A (pl v P4y p7 v PLO )] (6.5)
Safety Property 6 A situation will never occur in which the conveyor_transfer's controller
commits to insert when either drum?2 1s rotating or the conveyor controller has not committed
to transfer, this can be formalised as:

=030 ) A (p7 v P10 Y —pL6 )] (6.6)
Safety Property 7 A situation will never occur in which the feeder_transfer's controller

commits to insert when either druml 1s rotating or the feeder controller has not committed to

transfer, this can be expressed in temporal as:

“=[(p26) A (plVvp4 Vv —pl4)] (6.7)

Safety Property 8 A situation will never occur in which the conveyor_transfer's slider

inserts when drum? is rotating or the conveyor is not stationary, this can be formalised as:
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C=l(p28 ) A (P7 VP10V —pI6 )] (6.8)

Safety Property 9 ... 12 The independent motion of the drums is permitted, the rorating

states are not mutually exclusive, this can be expressed in temporal formula as:

—C=(p1 A P7) (6.9)

—L=(pl A P10) (6.10)
—T=( A P7) (6.11)
—L=(p4 A p10) (6.12)

Liveness Property 1 Whenever a can is transferred from the feeder to drum! then
eventually 1t must be exchanged from druml to drum2, this can be expressed in temporal
formula as:

Clp6 Ap14 A p24) = O(p3 AP A P19)] (6.13)

Liveness Property 2 Whenever a can is transferred from the druml to drum?2 then
eventually it must be exchanged from drum?2 to the conveyor, this can be expressed as
eventuality in temporal formula as:

LIP3 A P9 A P19) = (P12 A P16 A P28)] (6.14)

Liveness Property 3 Whenever druml, feeder/conveyor and feeder transfer processes reach
a commit decision to initiate a feeder transfer, then eventually these processes will reach a
commit decision that the transfer is complete. This can be expressed as eventuality in
temporal formula as:

Clp6 A pla Ap24) = O(pl A P10 A P25)] (6.15)
in terms of the commit blocks, the same property can be re-written as:

(3 = 0tg)

6.2.4. Verification of System Properties

The hybrid controller design was analysed and shown to be live, deadlock free and 1-bound
(safe) using reachability based Petri net analysis . The reachability graph and concurrency
set for the Petri net model (shown in Fig.6.5.) are given in Appendix A.5.2. The following
proofs of the above safety properties use the concurrency sets generated for the controller, as

shown in Appendix A.5.2.
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Safety property 1 & 2. (6.1) O=[(p3 ) A (pl Vv p4 )] and
property (6.2) E=[(p6) A (p1 v p4 )]

Proof
To verify these properties it is necessary to show that the rorare states of druml are
mutually exclusive with states where druml's controller has reached a commit decision to a
transfer action with other processes. This property can be verified by examining the
concurrency set (Appendix A.5.3), from where it can be shown that states Drum! rotate
with can (p]) and Druml rotate without can (p4) are not in the concurrency set of Drum
committed to drum transfer (p3) or the concurrency set of Drumli commirted to feeder

transfer (p6). This can be verified by inspection of the following concurrency sets:

1) C(p3)={p9,pl5. P17, PL8: P19, P20, P21, P22, P23, P25, P27, P29 }, and
1) C(p6) ={ p7,p8. P14, P17, P18, P20, P21, P23, P24, P25, P26, P27, P29 }

Safety property 7, (6.7) O=[(p26 )A (pl VvV p4 v —pl4 )]
Proof.

To verify this property it is necessary to show that the state where the feeder slider's

controller has committed to transfer, is mutually exclusive with the rorate states of druml,
and states where the conveyor/feeder's controller has not committed to transfer. This
property can be verified by examining the concurrency set, of Appendix A.5.3., from where
it can be shown that states Druml rotate with can (p|) and Druinl rotate without can (p4)
are not in the concurrency set of feeder transfer committed to slider insert (p26). And also
that the state of the conveyor/feeder is not other than feeder committed to transfer (p14). It

can be seen from the concurrency set of p2g that states { p|, p4 } are not present:

1) C(p26) = { p6, p7. P8, P14, P17, P18, P20, P21, P23, P24, P27, P29 }

It can also be seen from this concurrency set that state p4 is present, and so this state is
potentially concurrent with p2¢ as required. From inspection of the Petri net for the
conveyor/feeder, shown in Fig.6.4.(c), it can be seen that one of the following places is
always tokenised { p13, pl4, P15, P16 }. As the only state from this set in C(p26) is pl4,
then p14 1s always tokenised whenever p2¢ 1s tokenised.

The same approach used for the proof of safety properties 1, 2 and 7 has been used to verify

the other safety properties stated above.
The same type of Temporal Petri net analysis as used in chapter 5, can be used to prove a

class of liveness properties of the system which are important and non-intuitive. These

proofs are based on using Propositions that make assertions about the firing of transitions in a
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Petri net. These propositions are applied after first checking the validity of their premises

against the reachability graph Appendix A.5.3. These Propositions are re-stated as follows:

Proposition 1:

For a temporal Petri net TN | whose initial marking is M.
(1) <Mp,o> = L[t(ok) = t(ok)T]
(i) <Mg,a> 1= L[t(ok) = Ot(—ok)]
(ili) <Mg,o> l= Ci[t(ok) = 01]

This proposition is applicable to the firing of a basic transition, which only disables itself by
firing. For the firing of conflicting transitions, where the firing of a transition disables itself

and another enabled transition, Proposition 2 is applicable:

Proposition 2:

For a temporal Petri net TN| whose initial marking is M.
(1) <Mp,o> 1= L[ t1(ok) = t1(ok) U (1] v t2)] v L[ 12(ok) = t2(ok) U (1] v 2)]
(i) <Mp,o> 1= [t (ok) = 0t](—ok)] A Li[t2(0k) = Oto(—0k)].
(ii1) <Mp,o> I= L[t (ok) A t2(0k) = O(t] vt 2)]

By applying proposition (i) and [(ii) in turn to each of the nineteen transitions in the net, it
is possible to infer using proposition 1(iii) a further nineteen temporal formulae of the form:
CItm(ok) = Oty wherem=1{1,..,19}

The following liveness property was stated in section 6.2.3.
Liveness property 3, (6.15) T[(p6 Apl14 Ap24) = O(p1 APIO A P25)]
Which can also be stated as: (6.15) (13 = 0t4)

Let TN be a temporal Petri net translated from the Petri net PN shown in Fig.6.9., with an
initial marking Mo = { p2, p8. P13, P18, P21> P23, P25, P27, P29 }. This property can be
formalised as:

<Mp,o> 1= O[(13) = 0(1g)]

Proof
1. From Mg and Fig.6.5., the firing of (3 gives the following markings (only the markings of
the conveyor/feeder, feeder transfer and druml controllers are shown),

<Mg,o> 1= LI[(t3) = O(p6, pl4, P23, P26 )]
Let M| ={p6, pld, P23, P26 }. 1. can be re-written as:
<M,o> = LIH[(t3) = O(M] )]
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2. Considering the sub-marking reached, transition t]¢ is enabled:
) <Mp,o> 1= OM] = t16(ok)]
1)  combining 2.1) with 1. produces:
<Mp,o> 1= O[(3) = Ot)6(0k) ]

3. Using proposition 1 the firing of t]¢ yields:
1) <Mp.o> = Lift1e(ok) = Ot16]
1)  combining 3.1) with 2.ii) produces:
<Mp,o> 1= O[(13) = 0(t16)]

4. The firing of transition t] ¢ will yield a new sub-marking, this is shown by:
) <Mp,e> = LIt = (p6, P14, P24, P26) |
i) Let M2 = { p6, p14, p24, p26 }, 4.1) can then be re-written:
<Mp,o> 1= LI[t1g = M2 ]
1i1) combining 4.1i) with 3.ii) and 2.i) yields:
<Mp,o> I= OM] = O0M2 ]
1v) by combining 4.1ii) with 1. yields:
<Mp,o> 1= LI[(t3) = O M2 ]

5. By an observation of the Petri net of Fig.6.5. and its reachability graph (shown in
Appendix A.5.3.), it can be seen that marking M7 enables the firing of t]7 this is shown by:
1) <Mp,o> 1= O[M?2 = t17(0k)]
i1) Using proposition 1 the firing of t17 yields:
<Mop,o> 1= LI {t17(0k) = 0t17]
111) the firing of t17 will yield a new sub-marking, this is shown by:
<Mo,0> 1= LI [t17 = O(p6, pl4, p23, p25) ]
iv) This submarking enables t4, hence:
<Mo,0> I= LI [ (p6, P14, P23, p25) = t4(0k) |
v) using proposition 1 on the firing of t4, produces:
<Mp,o> 1= [ [tg(ok) = 0t4]
vi) by combining 5.1) - iii) produces:
<Mp,o> 1= [I[t17 = Otg]

6. Combining 5.1) - 5.vi) yields:

~

<Mp,o> 1= LI [M2 = Otg ]

7. Combining 6 with 4.1v) produces:
<Mp,o> 1= CI[t3 = 0y [ |

173 Chapter 6



6.2.5. Discussion

The verification of properties of the distributed controller's Petri net has shown that it does
not have reachable states that are undesirable and that it conforms to a set of temporal
constraints. This approach specified the system using standard Petri net and temporal logic
in a unified manner, using the formal framework of Temporal Petri nets. The application of
Temporal Petri net analysis can show that the control logic satisfies the properties of the
system stated in section 6.2.3. and does not cause any hazardous behaviour of the
mechanism. The safety properties of the system have been verified using the reachability
graph and concurrency sets. While, temporal reasoning was used to verify liveness

properties of the system.

The design of the distributed controller using commit blocks was achieved in a hybrid
manner, and properties of the commit blocks proven in Chapter 5 were used to verify that the
distributed controllers always reached a consistent decision. The underlying Petri nets of the
commit blocks, used in the distributed controller, were shown to provide the type fault
tolerant and responsive coordination necessary. Analysis of the distributed controller was
based on generating its reachable state space, for this atomic transitions that offer equivalent

behaviour of the commit protocols underlying the commit blocks were used.

The commit protocols developed in chapter 4 are resilient to single communication link
failures, and also allow the remaining operational controllers to continue to function safely
when a site failure of one of the controllers occurs. These properties of the commit protocols
were shown in Chapters 4. and 5. using reachability based Petri net analysis. The commit
blocks developed in Chapter 5 use the underlying Petri net templates of these commit
protocols, and the composition procedure used in the design of the distributed controllers
preserved the properties of these commit blocks. The resulting distributed controller designs
are thus resilient to a single link failure and to site failure, allowing the remaining operational

controllers to continue to function safely without loss of coordination.

6.3. Drums and Slider Application

The second application is for the control of a Drum and Slider mechanism that was used in
the research work of [ Sagoo & Holding 90 ][ Jiang 95 ] and [ Azzopardi 96 ]. This
application is a time-critical real-time control system and will be used illustrates the timeout
mechanism within the commit block’s underlying protocol. The commit protocols used to

coordinate the distributed controller for this system will be required to provide a real-time
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response, as a late commit/abort decision (or an inconsistent decision) could result in damage

to the mechanism.

The coordination of the drum and slider mechanism uses the commit protocols with timeouts
and synchronous communication, developed in Chapter 4 & 5. These provide a timed atomic
commitment, that is resilient to link failures. The use of the previously analysed commit
blocks to prevent hazardous behaviour, shows how a link failure of the distributed controller
can be tolerated. This property of the commit protocols was shown in Chapter 5 by analysing

their behaviour with communication failures included in the model.

In Chapter 4 Time Petri net analysis [ Merlin & Farber 76 ] was used to define constraints on
the commit protocols, this was required to ensure their correct functionality and timeliness.
The relative settings of the protocol's timeouts were defined in terms of a deadline for the
commit decision. The Petri net of the distributed controller, developed in this section, 1s
extended to a Time Petri net model in section 6.3.5. This is then used to define constraints on
the commit blocks response, this defined deadline needs to be met for the controller to

maintain coordination of the system.

6.3.1 Application system

This application involves controlling part of a high speed manufacturing plant used for can
packaging, and 1s based on a mechanism made by Molins Engineering PLC of Coventry in
the UK [ Sagoo 90 ]. Specifically, it involves the distributed control of a slider and two drum
mechanisms and their interaction. The slider i1s a moving arm which periodically inserts into
an aperture Jocated on the periphery of both of the high speed rotating drums, when they are
aligned. The desired operation of the system 1s that the rotating drums should decelerate
from rotation and stop, and that the shder is inserted while the drums are stationary. The

slider is then retracted from the drums, which proceeds to accelerate and rotate again.

Originally the individual actions of the drums/slider mechanism were co-ordinated by gears
and cams powered by a central driving mechanism. It was proposed to replace the central
drive with a set of independent software controlled drives co-placed with each of the
functional units, while the coordination previously supplied by mechanical means was to be

replaced by software controllers and inter-process communications.

175 Chapter 6



Aston University

lHlustration has been removed for copyright
restrictions

vvvFig,6.6. The Drums and Slider mechanism.
The plant involves the coordination of machinery which rotates at high speeds, and both the

slider and the drums have significant inertia. The side view of the mechanism is shown in

Fig.6.6. and the motion profile of the slider mechanism is shown in Fig.6.7.
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Fig.6.7. Motion profile and time-critical decision of the slider mechanism

The main hazardous behaviour of the system would be that of a collision between the slider
and either of the drums. This could be caused by the drums accelerating from rest while the
slider is still within their periphery, or the slider mechanism inserting while the drums are

still rotating. Consequently, the controller design must ensure this behaviour does not arise.

A simple approach to avoiding a collision between the slider and drums would be (o prohibit
their asynchronous motion. A controller that enforced such behaviour would ensure that the
slider does not insert until both drums are stationary and aligned, and that the drums do not
start their rotation until the slider mechanism is withdrawn from the apertures, this would
avoid a collision of drum or slider. However, there are periods during the motions of both
the slider mechanism and the drums at which their concurrent motion is possible without
such a collision occurring. To increase the operation speed of the system this concurrent
motion must be employed whenever possible, but without compromising the hazard free

operation of the mechanism.
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The design of the controller should allow the drums and slider mechanism to move as freely
as possible within the specified safety constraints. The slider's motion is initiated irrespective
of whether the drums are rotating or stationary. The slider is allowed to approach the drums
for insertion asynchronously and only at an advanced point in its motion (termed the decision
point and shown in Fig.6.7.) must a ( time-critical ) decision be made for the insertion to
proceed (conunit ) or for the slider to decelerate and stop (abort ). A mechanism that
provides the required consistent and timely decisions, to implement the synchronisation

logic, at this point is provided by the commit block.

The decision point in the slider mechanisms motion profile (Fig.6.7.) corresponds to the point
marked (2) in the side view of the mechanism shown in Fig.6.6. The overriding factor in the
design of the distributed controller must be to ensure a collision free behaviour, while
providing a high speed of operation of the system. In such a design the commit motion of the

slider is the preferred behaviour, and the abort decision should be infrequent.

The distributed controller's synchronisation logic is required to allow the free motion of slider
and drums around virtually all of their respective motion profiles. The only restrictions apply
during the critical stage in their coordination when they have the potential to collide. This is
indicated in Fig.6.6, the point marked (1) indicates the position where the slider mechanism
begins its insertion motion, point (2) indicates the point at which the time-critical decision to
commit or abort the sliders insert action must be complete, and point (3) the maximum
insertion during the motion profile of the slider mechanism, Fig.6.7. The commit protocol
employed in the commit block must allow the controller of the slider mechanism to make a

delay-free decision to either commit or abort.

6.3.2. Modelled System

The hybrid design approach used in section 6.2 is used in the design of the distributed
controller for the drum and slider mechanism. The local control for the drives co-placed with
each unit of the mechanism (slider or drums) are designed from the simple functional
requirements of each unit, and are shown in Fig.6.8.(a) - (¢). The points at which
coordination of these local controllers is required, are indicated by the commit transitions {
(5, 16 }, shown in outline in Fig.6.8. These points in the control cycle represent the stage in
which the processes must reach a consistent decision to commit the insert action of the slider

(drum transfer mechanism), and the commit to rotate action of the drums.
The distributed controller is then composed from these local controllers (Fig.6.8.(a) - (¢)) by

the fusion of these commit transitions, and the commit transitions subsequent refinement

using commit blocks.

178 Chapter 6



The coordinator for the commit protocol is co-placed with the drum transfer controller, as
this is the process which is required to abort or proceed with the sliders insert action,
depending upon the (commit or abort) outcome of the commit protocol. The drum transfer
controller is shown in Fig.6.8.(c), where place pg represents the controller state at which a
time-critical decision is required, and transition tg represents the abort insert action and t7

the inserr action.

t1 t2
p2 p3
tio
t5 tS
p3 po
to to
(@) (b)

Fig.6.8. Drum and slider mechanism, individual controllers model; (a) Druml,

(b) Drum?2, (¢) Drum transfer.

The semantics for the places in the controllers designs are given in Table 6.4, with the
required synchronisation logic indicated (*). The semantics for the commit decisions, and
thus the commit blocks commit outcome are given in Table 6.5, along with the assignment of
each process in the commit blocks underlying protocol ; coordinator (Coord), participant-1

(Partl) and participant-2 (Part2).
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Process State Semantic
Drum | Pl Druml rotate

p2 Drum] await transfer

pP3 Drum! committed to drum transfer *
Drum 2 P4 Drum? rotate

P5 Drum?2 await transfer

pP6 Drum? committed to drum transfer *
Drum Transfer p7 Slider approach motion

P8 Slider decision point

P9 Slider insert motion

P10 Slider abort motion

Pl Slider withdraw motion

P12 Slider insert inhibit

P13 Slider insert active *

Table 6.4. Semantic for 6-Axis Petri net, Fig.6.8.

Transition | Processes ( Coord, Partl, Part2 ) Commit decision
t5 Drum Transfer, Drum 1, Drum 2 Commit to slider insert
t6 Drum Transfer, Drum 1, Drum 2 Commit to drum rotate

Table 6.5. Semantic of Commit transitions for drum transfer mechanism, Fig.6.4.

The composed distributed controller design is shown in Fig.6.9., where the commit blocks
are shown in outline. The distributed controller Petri net was composed form the three local
controller Petri nets (shown in Fig.6.8.(a) - (c)) by the fusion of the commit transitions (t5
and tg). This was achieved by replacing the two sets of commit transitions (those marked (5
and tg in Fig.6.8.(a) - (¢)) by two commit blocks (marked t5 and tg in Fig.6.9.). The input
and output places of the commit transitions are merged with the commit blocks input and
output places, on a per process basis; i.e. for commit block t5, Druml is assigned the role
participant-1 in the commit protocol, so place p2 (in Fig.6.8.(a)) is merged with the
participant-1 input place to the commit block (place ps in Fig.5.18). This procedure was

described in section 6.2.
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Fig.6.9. Distributed controller design.

The drum transfer process is assigned the role of coordinator in the (t5) commit blocks
underlying commit protocol, to coordinate the insert commit/abort decision. This assignment
is chosen as the initiation of the sliders withdrawal (represented by t]¢ in Fig.6.9.), by the
drum transfer process, can also be used to initiate the commit protocol. The commit block
CB2, whose behaviour was described in section 5.2.5, can be used for the (t5) commit block,
as this uses atomic feedthrough of coordinator input place tokens. This type of commit block
uses place-sampling of the coordinators input place token, this allows place p12 (in Fig.6.8.)
to remain tokenised and thus the abort decision (represented by the firing of (g8) is possible
until the commit protocol completes. Due to the controller structure the locking of the drum
processes input place tokens (by commit block t5) is possible without altering the behaviour
of the net, while place sampling of the slider controllers input place token is required to
maintain a non-hazardous sequence of states. In Section 6.3.5. the constraints necessary for

the locking of all input place tokens using commit block CB1 is described.

In Chapter 5 it was shown that the commit protocols used have the timed atomic commit
behaviour required for this application. The input and output places of the commit blocks are
merged with the input and output places of the commit transitions in the local controllers
(shown in Fig.6.8.(a) - (¢)), these are shown along with the outcomes of the commit blocks in
Table 6.6.
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Commit block outcome Input set Output set
t5 commit P2, P5. P12 pP3, P6, P13
t5 abort P2, PS5, P12 P2, PS5, P12
t6 commit P3, P6, P12 Pl P4, P12
t6 abort P3, P6, P12 P3. p6, P12

Table 6.6. external behaviour of the commit blocks { ts, tg }, from Fig.6.9.

As can be seen in Table 6.6 the abort outcome of the commit protocol requires the re-
tokenising of the commit block's input places. The functional and temporal properties for the
commit blocks, as verified in chapter 5, will be used in stating and verifying the properties of
the distributed controller in the following sub-sections. The commit blocks complete
external behaviour was used in the generation of the reachable space for the resulting Petri

net design.

The abort outcome of the commit block could be the result of a permanent or transient
communication failure, or as a result of one of the protocol processes taking the decision to
unilaterally abort. The protocols used in the commit blocks were analysed with the inclusion
of link failures in Chapter 4 and 5, and shown to exhibit the external behaviour given in
Table 6.6. This has guaranteed that the outcome of the commit blocks are always a consistent
decision. The resiliency of the commit protocols to communication failures is important for
the fault-tolerant coordination of the drum and slider mechanism. These type of failures are
expected to predominate in real-time control applications, and so the fault-tolerant property
of the commit protocol is necessary (o prevent a collision, of the drum and slider mechanism,

when a communication failure occurs.

In the case where the controlled process (the drum and slider mechanism) is not in the correct
state or the controller cannot guarantee the resources necessary to complete the protocol in
time, the decision is taken by the controller to abort the protocol. The timeouts used by the
other controllers in the protocol to reach a decision consistent with this, also guarantee a
fixed maximum deadline for the commit blocks outcome. The timeout to abort outcome
allows for a safe decision to be reached by the controllers, while the re-tokenising of the

commit blocks input places allows the commit protocol to be retried.

6.3.3. Properties of the System

The specification of the controller must be shown to be correct, by ensuring that certain
liveness and safety properties (which are specified in the system requirements) are satisfied.
The following safety and liveness properties for the synchronisation logic are examples of the

properties required for the distributed controller. The first five properties of the controller
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refer to behaviour which must not occur, and as such constitute safety properties, while the
last three properties, termed liveness properties, and refer to the behaviour the controller

should exhibit:

Safety Property 1 A situation will never occur in which the drum transfer controller
commits to insert when either drum! or drum? is rotating, this can be expressed as invariance

in temporal formula as:

Ol (P13 Aa—=p3) v (PI3A—6) ] (6.16)
Safety Property 2 A situation will never occur in which the drum transfer slider inserts
when either drum! or drum? is rotating, this can be expressed as invariance in temporal
formula as:

(A=) Vv (P9A—T6) ] (6.17)
Safety Property 3 A situation will never occur in which the controller commits to drum

rotate when the slider mechanism is inserting, this can be expressed as invariance in temporal

formula as:

CA[(p9 ) A (pi2)] (6.18)

Safety Property 4 A situation will never occur in which the slider is at the decision point

and no decision can be made, this can be expressed as invariance in temporal formula as:

C—-[p8 A(=pl2A=pI3)] (6.19)

Safety Property 5 The independent motion of the drums is permitted, and their rotating

states are not mutually exclusive, this can be expressed in temporal formula as:

=O=[(p1) A (p4)] (6.20)
Liveness Property 1 Whenever druml, drum?2 and drum_transfer processes reach a commit
decision (slider insert), then eventually these processes will reach the commit decision (drum

rotate). This can be expressed as eventuality in temporal formula as:

Dl(ts) = 0(t6)] (6.21)
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Liveness Property 2 Whenever the slider reaches the decision point, it will eventually insert
into the drum due to a commit to slider insert decision being reached, this can be expressed

as eventuality in temporal formula as:
D0(pg) = 0(p9) (6.22)

Liveness Property 3 Whenever drum! and drum? start to rotate then eventually their

rotation cycle will end. This can be expressed as eventuality in temporal formula as:

Cl(te) = O At7)] (6.23)

6.3.4. Verification of System Properties

The controller design (Fig.6.9.) has been shown to exhibit certain properties, such as
liveness, I-boundedness and freedom from deadlock using Petri net analysis (given in
Appendix.A.6). The reachable state space of the controller model and the concurrency sets

are shown below in Table 6.7 and Table 6.8, and will be used in the following proofs.

Marking Places Marking Places

M] P2, PS, P8, P12 Mi4 pl p5p7pl2
M2 p2 pSplOpl2 Mis p2 pSp7pl2
M3 p3 p6 plOpl3 Mg p3 p6 p7 pl3
M4 p3 p6 p9pl3 M|7 p3 p6p8 pl3
M5 p3p6pllpl2 Mg p2 p4 p7 pl2
Mg plp4pllpl2 M19 plpSpllpl2
M7 pl p4p7pl2 M20 p2 p5Spllpl2
Mg pl p4 p8 pl2 M2] p3 p6pllpl3
Mg plpdplOpl2 M22 p2p4pllpl2
M10 pl pSplOpl2 M23 p3 p6 p7 pl2
M1 p2 p4 plOpl2 M24 p3 pb p8 pl2
M2 pl pSp8pl2 M2s p3 p6plOpl2
M3 p2 p4 p8 pl2

Table.6.7 reachable markings from the Petri net Fig.6.9.
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State Concurrency Set

Pl Places { 4,5,7,8, 10,11, 12 }
p2 Places { 4,5,7,8, 10,11, 12 }
p3 Places { 6,7,8,9,10, 11, 12, 13 }
p4 Places { 1,2,7,8,10,11, 12}
PS5 Places { 1,2,7,8,10,11, 12}
P6 Places { 3,7,8,9, 10, 11, 12, 13 }
p7 Places { 1,2,3,4,5,6, 12, 13}
P8 Places { 1,2,3,4,5,6,12,13}
P9 Places { 3,6, 13 }

P10 Places { 1,2,3,4,5,6, 12,13}
pll Places { 1,2,3,4,5,6,12,13}
P12 Places { 1,2,3,4,5,6,7,8, 10, 11 }
P13 Places { 3,6,7,8,9,10, 11 }

Table 6.8 concurrency sets for drum transfer mechanism, Fig.6.9.

In order to allow maximum freedom of motion for the mechanism, the controller allows the
slider to begin insertion before the commit decision is reached. This decision to commit or
abort the insertion must be made by a point in the slider motion termed the decision point.
This decision point is situated just before the slider is irrevocably committed to inserting into
the drum by its inertia. The decision point is marked as point (2) in Fig.6.6. and indicated on

the slider's motion profile shown in Fig.6.7.
At this point in its motion the slider can still be brought to rest before it inserts into the
drums. Safety property 4 stipulates that at its decision point the controller must always be

able to decide upon the actions slider commit or slider abort at the next step.

Proof of safety property 1, (6.16) T (p13 A=) vV (P13 A=15) ]

To verify this property it is necessary to show that whenever p3 is marked then both p3
and pg are also marked. From inspection of the concurrency set for p13 ( shown in Table

6.8) it can be seen that states p3 and pg are concurrent states at some markings.

i) C(p13)=1{p3,p6:P7, P8 P9, P10, PI1 }

The loop C = { pJ, t1, p2, t5, p3, t6 } shown in Fig.6.8.(a). has the property that the number
of tokens in C remains invariant during all executions of the net (given by the minimal P-

invariants in Appendix.A.5.3.) This means that mutual exclusion between places in the
loop is guaranteed. As places p| and p2 are not present in the concurrency set for p13 then
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whenever p13 1s tokenised p3 must also be tokenised. The same can also be shown for
state pg by examination of the concurrency set for pj3, where it can be shown that states p4

and p3 are not present in the concurrency set of p| 3.

Proof of safety property 3, (6.18) T—[(po) A (p12)]

To verify this properties it is necessary to show that the insert state of the slider mechanism
1s mutually exclusive with the state where the controller has reached a commit decision
(committed with other processes to the drum rotate action). This property can be verified
by examination of the concurrency set for Fig.6.9. (shown in Table 6.8), from where it must
be shown that states Slider insert motion(p9) and Slider insert inhibit(p|2) are not present
in each others concurrency sets. This can be verified by inspection of the following
concurrency sets from Table.6.8

i) Cp9) = { p3,p6, P13 }

i) C(p12)={pl, P2, P3, P4, P5 PG, P7, P8, P10. P11 }

The liveness properties will be verified using the Temporal Petri net analysis from section
6.2.4.

Proof of liveness property 1. (6.21) O[(t5) = 0(tg)]

Let TN | be a temporal Petri net translated from the Petri net PN shown in Fig.6.9., with an

initial marking Mo = { p2, ps, pg, pi2 }.

This property can be formalised as:
<Mp,o> = O[(t5) = 0(16)]

Proof
1. From Mg and Fig.6.9., it can be observed that transitions t5 and tg are fireable. Hence
<Mo,o> = LI [Mg = t5(ok) A t8(0k)]

2. By applying proposition 2, transitions (5 or (§ can fire, hence

<Mg,o> |= LI [t5(0k) A tg(ok) = 0O(t5 v 18)]

3. Since t5 and tg are in conflict, the firing of each transition will be considered.
(a) The firing of t5 produces marking M7 = { p3, p6, P8, P13 }, (shown in Table 6.7). At
this marking t7 1s fireable:

—

1) <Mp, o> 1= Lits = Ot7(ok)]
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ii) By applying proposition 1 on 3(i), we have:
<M,a> 1= T [t7(0k) = 0t7]

iii) The firing of t7 enables t](, hence:
<Mp,o> 1= LI [t7 = Ot10(0k)]

iv) By applying proposition 1 on 3(iii), we have:
<Mgp,o> I= Tl [t1ook) = 0t10]

v) The firing of t]o will enable transitions t3 or tg. Since these transitions can fire

independently, hence the firing of tg will be considered:
<Mgp,o> 1= LI[t10 = Ote(ok)]

vi) By applying proposition 1 on 3(v), we have:
<Mp,o> 1= L [tg(ok) = Ote]

vil) Combining 3(1) to 3(vi) we have that:
<Mp,o> 1= Ll [ts = 0tg]

viii) Considering the firing of t3 from step 3(v) we have
<Mg,o> 1= [1[t10 = Ot3(ok)]

ix) By applying proposition 1 on 3(v), we have
<Mg,0> 1= [ [t3(0k) = 0t3]

x) The firing of t3 enables t4, hence
<Mg,o> 1= L {t3 = Otg(ok)]

xi) By applying proposition 1 on 3(v), we have
<Mg, o> I= [ [t4(ok) = 0t4]

xi1) The firing of t4 produces marking M24 = { p3, p6, p8, P12 }, (shown in Table 6.7) at

this marking tg is fireable:
<Mp,o> 1= [ [tg = Otg(ok)]

xiii) By applying proposition 1 on 3(xii), we have
<M,0> 1= LI [tg(ok) = 0tg]

(b) The firing of tg produces marking M25 = { p3, p6, P10, P12 }, at this marking only tg is

enabled:

xiv) <Mg,o> = [1[tg = Otg(ok)]

xv) By applying proposition 1 on 3(xiv), produces:
<Mg,0> 1= [ [telok) = Otg]

xvi) Combining 3(viii) to 3(xv) we have that:
<Mg,o> 1= I [t10 = Ote]

xvii) Combining 3(xvi) to ( 3(i) - 3(iv) ) we have that:

<Mo,o> |= I {ts = Ote] |
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6.3.5. Time Analysis of System

Although the safety properties above guarantee that the controller avoids hazardous system
states, such as a collision of the slider mechanism and the drums, it is still undesirable
behaviour in failure free operation for an abort decision to be reached. The insert action
performs the intended function of the mechanism, transferring an item from druml to drum?2.

While the abort action is a safety feature that prevents damage to the mechanism.

In the case of a communication failure the abort behaviour is unavoidable and increases the
robustness of the controller. However, the deadline for the protocol, constrained by its
timeout settings, should allow for a 'commit to insert' decision to be reached whenever

possible.

The slider controller is always able to make a (commit or abort) decision due to either p]2 or
p13 being marked. This was verified by the proof for safety property 4 (6.19). The place
p]2 is the coordinator's input place for the commit block of t5. Where commit block CB?2 is
used for commit transition t5, the coordinators input place tokens are not absorbed.
Therefore the (commit/abort) decision 1s not prevented by a late outcome for the commit
block, as this commit block uses atomic feedthrough of the coordinators input place tokens.
A late outcome for this commit block may result in an abort decision, but would not prevent

a late decision being reached.

Where a commit block such as CB1 is used (where the coordinators input place (p[2) tokens
are locked), the setting of the timeouts for the protocol are critical. These timeouts determine
the maximum time for the protocol to complete. On completion a token is placed in either
p12 or p13, depending upon the protocols outcome. The proof for Safety property 4 (6.19)
showed that a token in one of these two places is required for reaching a safe decision
(section 6.3.4). Therefore the deadline for the completion of the commit protocol is critical

to reaching a safe decision.

Timing constraints can be added to the Petrl net in the form of minimum and maximum
transition firing times [ Merlin & Farber 76 ]. These are termed EFT (Earliest Firing Time)
and LFT (Latest Firing Time). These represent the upper and lower bounds on event times,
and for an enabled transition the times can be converted to absolute times by adding the time

the transition is enabled to the firing times.
At marking Mg = { p3, p6, P9, p13 } of Fig.6.9, the slider must next withdraw from the

drums. From this marking there is a firing sequence <C > that leads to the slider inserting (t7

firing) and a firing sequence <A > that leads to the slider aborting (tg§ firing). For an insert to
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be possible, the sum of EFTs for C must be less than the sum of LFTs for A, giving the
timing constraint:

EFT (C)<LFT (A) (6.24)

From marking M4 = { p3, p6, p9, p13 } the maximum time taken for the abort firing
sequence 1s:
LFT(t10) + LFT(13) + LFT(t4) + LFT(tg) = LFT (A )

This represents the maximum time taken to withdraw the slider mechanism from the point
where 1t 1s clear of the drums to its starting point, to accelerate the slider towards the drums

until it reaches the decision point, and to then abort its motion.

From marking Mg = { p3, pg, p9, p13 } the minimum time taken for the commit firing
sequence 1s:
EFT(t6) + MAX[ EFT(t}), EFT(12) ] + EFT(t5) + EFT(t7) = EFT (C)

This represents the maximum time taken to withdraw the slider mechanism from the point
where it is clear of the drums to its starting point, to accelerate the slider towards the drums

until it reaches the decision point, and to then commit to insert.

Where EFT(tg) and EFT(t5) are the earliest times that the commit protocols used can
complete, and MAX[ EFT(t1), EFT(t2) ] is the maximum of the shortest times taken for the

rotation of drum! and drum?2.

Timing constraint (6.24) must be guaranteed for a slider commir decision to be possible
using a commit block of type CB2 at transition t5. This gives the minimum duration for the
commit block to reach a consistent decision. As there is no locking of the coordinator input
place token (p12) a slider abort decision is always possible. Thus the commit blocks
duration does not require a hard real-time constraint for safe operation, as the firing of tg

before 15 does not result in a hazardous state.

Where a commit block of type CB1 is used then timing constraints must be guaranteed in
order for a safe decision to be reached, even in the presence of a communication failure. A
consistent and timely decision (either a commit block abort or commit outcome), is thus
required to implement the synchronisation logic at this point. Since the slider is in motion
when the decision is taken, a late decision could have as catastrophic a result as an incorrect
decision. A timed atomic commit (TAC) behaviour for the commit blocks is thus required.
The timing constraint can be expressed as:
LFT(C)<EFT (A) (6.25)
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Where LFT (C ) is the total latest firing time for the commit firing sequence, and EFT (A )
the earliest possible firing time for the abort firing sequence. From marking M4 = { p3, p6.,
P9, p13 } the minimum time taken for the abort firing sequence is:

EFT(t10) + EFT(t13) + EFT(t4) + EFT(t8) = EFT (A )

While the maximum time taken for the commit firing sequence is:
LFT(tg) + MAX[ LFT(1]), LET(t2) ] + LFT(t5) + LFT(t7) = LFT (C)

The time LFT(t5) is the maximum time that the commit protocol can take to complete in
order to guarantee a timely decision. The commit block outcome could be either a commit or
abort decision for the slider. Therefore this constraint can be related directly to the maximum
time for protocol completion D{, used in section 4.6. for the calculation of E2PC protocols
timeout settings. By setting the commit block timeouts relative to D, the protocol can be

tailored to application specific constraints.

The value of the protocols timeouts must be set carefully so as to avoid false timeouts, which
are due to not allowing enough time for communication to occur. However, timeout values
must not be too large as undue delays are unacceptable and may upset the timing
requirements of other parts of the system. It must be ensured that there are no redundant
timeouts, and timeouts that depend on others. These factors were taken into account in the

design of the commit protocols in chapter 4.

The environment of the distributed controllers are considered to be the motion drives upon
which they sit. One factor to consider in such an arrangement is that every action initiated by
the process is translated into a command to the motion controtler and each of these
commands takes time to be implemented. This must be taken into account when determining
the upper and lower bounds on event times. For instance the EFT and LFT for t3 represent
the minimum and maximum time taken to withdraw the slider mechanism from the point
where it is clear of the drums to its starting point, and then to initiate the sliders insert

motion.

The operation of commit blocks such as CB2 using atomic feedthrough of input place tokens,
can be considered an atomic action in terms of the Petri net of the controller. However, for
the use of a commit block such as CB1 using locking of input place tokens, time constraints
must be considered. Where the timeout settings of the commit block can guarantee timing
constraint (6.25), then commit block t5 can be considered an atomic action in terms of the
Petri net of the controller. The actions external to the commit protocol can be considered to

occur before or after the protocol takes place.
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6.4. Conclusion

This chapter has described the use of Petri net, Time Petri net and Temporal Petri net
techniques in the specification and verification of distributed controllers for two real-time
distributed systems. The applications chosen include both time-critical and safety-critical
functions, and are representative of the type of systems commonly found in the control of
manufacturing machinery. It has been shown that the above techniques can be used to reason
about safety and liveness properties of the systems and to verify the defined hazard free
operation of the controllers. The distributed controller designs are optimal control strategies
as they permit the maximum asynchronous operation of the independent drives possible,
whilst maintaining safe behaviour of the controlled system; i.e. the drums and slider

mechanism move as freely as possible within the constraints of the specification.

The distributed controllers are intended to be implemented using local control processes for
each independent software controlled drive, these being co-placed with each functional unit
(the drums and slider mechanism). The control of the two application considered have three
main properties which were used in the choice of the specification and analysis methods
used:

i) the system is distributed, with concurrent actions whose operation is co-ordinated by
message passing communications. Petri nets and Temporal Petri nets provides a framework
around which such a system can be specified, modelled and analysed.

ii) the system must operate within time constraints, and therefore the distributed controller
design requires a model which is able to capture and reason about time.

iii) the communications involved in the distributed controllers operation are concerned with
the flow of control information rather than the transmission of data. Because of this such
communications can be expressed easily in terms of synchronous events employed in the
underlying Petri net templates of the commit blocks . These lead to a unified representation

of the distributed controller system and the commit protocol used for coordination.

Analysis of the Petri net description of a controller design showed that it does not have any
reachable hazardous states. The desired properties of the distributed controller were
specified properties using the notation of Temporal Petri nets, and the verification of these
properties using concurrency sets and Temporal Petri net analysis was presented. The
application of a consistent temporal logic proof showed that the control logic satisfied its
specification and did not cause hazardous operation. The use of Time Petri net allowed
reasoning about the relative timing constraints for the commit protocol inherent within the
controller design. The use of these modelling and analysis methods provided a measure of

fault avoidance in the controller design.
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The distributed control of the two applications considered has fault tolerant coordination in
the presence of communication failure, through the use of the commit protocols developed in
Chapters 4 & 5. However, the use of these protocols would depend upon an implementation
of the controller using point-to-point synchronous communication, as the responsive
protocols designs rely upon this form of communication, and accurate information on the
timing of communications, in order to calculate timeout values. This requirement for
synchronous point-to-point communication is a limiting factor for the use of these responsive

protocol.

The use of the commit blocks allowed the properties proven for these structures, such as
their consistent outcome and recoverability, to be inherited in the controller design. The
hybrid design of the distributed controllers using commit blocks was shown to satisfy the

requirements of the synchronisation logic.

Analysis of the Petri net model was only able to determine the untimed behaviour of the
system, but as a result of extending this to a Timed Petri net model (in section 6.3.5) it was
possible to reason clearly about the relative times that give a constraint for the protocols
completion. Thus in the second application, presented in section 6.3, after reaching the
decision point (place pg in Fig.6.9.) the system must perform either a commit or an abort
action within a time interval (Dqd) where a protocol that locks input place tokens is used.
This gives a constraint for setting the deadline of the commit protocol, to guarantee a timely

decision is always reached.

The recovery time of sites cannot be calculated, and so only link failures are considered for
these real-time applications. The behaviour of the commit protocols was considered for
single link failures, as there does not exist any protocol resilient to multiple partitions [ Skeen
& Stonebaker 83 ], or where messages are lost. When there is a site failure of one of the
parties to a commit block, the action of the other parties is the same as for a communication
failure, this always results in a consistent abort decision being reached by the operational
sites. The assumption is taken that upon recovery the failed site would initiate a safe restart
for the whole system. This is a valid assumption as controller site failure are expected to be

extremely rare when compared to communication failure rates.

The type of failures termed Byzantine failures, discussed in Chapters 2 and 4 are not
considered in the application of these commit protocols, these failure types being where
incorrect actions are performed by the failed item, and are very difficult to rectify, being
similar to solving the Byzantine generals problem [ Lamport et al 82 ]. Only fail silent type

failures are considered, where failed sites do not perform an expected action.
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In the failure analysis link failures are assumed to be a physical disconnection of a
communication link between processors, and that messages are short so that disconnection
cannot occur half way through a message. In real-time control applications this should be an
accurate assumption. Tolerating link failures in control applications such as these is
important because the processors can still control the motion drives independently, and

maintain safe system behaviour in the presence of such failures.

The synthesis of the synchronisation logic that performs intermittent synchronisation of the
asynchronous processes controlling these high speed drives is presented. This
synchronisation logic incorporates real-time fault-tolerant commit protocols. The analysis of
the distributed controller designs relied upon the inheritance of certain properties of the
commit blocks used, the verification of these commit blocks and their underlying Petri net
protocol models was performed in Chapter 5. The coordination of the distributed controllers
has been shown to be preserved even in the presence of certain defined failures, through the

use of these fault tolerant commit protocols.

The analysis of the distributed controller designs relied upon properties of the commit blocks
used in the design. These properties were proven separately by the analysis and verification
of the commit blocks and their underlying Petri net templates , and presented in Chapters 4
and 5. Thus the analysis of the Petri net controllers in this chapter is a modular approach,
that allows the management of the Petri net models state space. Some form of modular
analysis is desired as the size of the reachable state-space of the composed system, with the
protocols state space fully enumerated, could become unmanageable for manual analysis.
The commit block approach allows the modular specification and manageable analysis for
controller mode!l and protocol model sub-net. This is required as even using automated tools
the state explosion can render reachability based analysis unmanageable for real-world
systems [ Zhou & DiCesare 93 ].

In this chapter the verification of the distributed controller designs for the two applications
(section 6.2 & 6.3), has shown that they provides equivalent safety and liveness properties to
the centralised controller designs presented in [ Sagoo 92 ][ Jiang 95 ] and [ Azzopardi 96 ].
The use of the commit blocks in the controller designs, and the inheritance of their previously

proven properties, allowed a reduction in the size of the state space enumerated for analysis.
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Chapter 7 Conclusions and Future
Research

7.1 Conclusions

This thesis has been concerned with the development of responsive commit protocols for
distributed real-time control systems, and the incorporation of these in the synthesis and
design of distributed controllers. It has also been concerned with the modelling and analysis
of such systems and the incorporation of a structuring approach, using Well Formed Multi-

Blocks (WFMB), that aids the design and verification processes.

This approach was based on the use of WFEMBSs, Petri nets, Time Petri nets and Temporal
Petri nets. In this thesis the Temporal Petri nets of Suzuki & Lu [ 89 ] were used, based on
linear time temporal logic (LTL). The Temporal Petri nets offer a combination of Petri nets
(which provide a graphical notation) and Temporal logic (which provides a formal
mathematical basis for verification). The Petri nets are used for the proof of safety properties
and the Temporal Petri nets for the proof of liveness properties, which specify the eventual
occurrence of a state or event using qualitative time. Temporal Petri nets, unlike Petri nets
and Time Petri nets, provide a notation that allows fairness and eventuality properties to be

specified.

The WEMB approach developed in Chapters 4, 5 and 6 handles the following characteristics,
which make it suitable for application in distributed real-time control systems.

i) Concurrency. Distributed real-time control systems have many components that behave in
a parallel manner, as well as the parallel nature of the systems interaction with its
environment. Petri nets model concurrency and allow the explicit modelling of interprocess
communication. This is especially important for the modelling and analysis of distributed
systems, as discussed in Chapter 3 and illustrated in Chapter 4. Reachability trees of Petri
nets show the global state of a system, comprised of the local states for each concurrent

process, and concurrency sets can be used to show all concurrent states possible.

ii) Safety. The Petri net (reachability based) analysis and the Temporal Petri net analysis
allow the verification of safety and liveness properties. This was shown for both the commit
protocols developed in Chapters 4 and 5, and the distributed controller designs developed for
the two (real world) applications in Chapter 6. The use of Temporal Petri net verification
techniques developed by [ Suzuki & Lu 89 ] [ Sagoo 92 ] can verify that the required safety,

and liveness properties hold.
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iii) Timing. Time Petri nets can be incorporated in the Petri net designs, and were used for

deriving relative values for the settings of timeouts in the responsive commit protocols in
Chapter 4 & 5.

iv)  Environment. The modelling and analysis of the communication structures
(communication blocks - section 5.2) and the commit protocols (commit blocks - section
5.3) both used a minimal representation of the environment. The target environment for the
block structured commit protocols developed in Chapter 5 are the distributed controller
designs developed in Chapter 6. In fact the use of environment constraints is the key to the

structuring of WFEMBSs and the reuse of the WFEMBs subnets verification.

v) Size and complexity. This is a hybrid approach to design, involving both top-down
decomposition and bottom-up clustering to handle complexity. WFMBs were used in the
design of commit protocols in Chapter 5 and in the design of distributed controllers in
Chapter 6 to manage the size of models. They were also used to reduce the size of the
reachable state space considered in analysis of these designs. Using WFMBs the flat net
(fully elaborated subnet) is not required for the generation of the block structured Petri nets
behaviour. This is to help prevent the problem of state space explosion [ Scholefield 90 ] as

discussed in Chapter 3.

The basis of the approach to design and analysis presented in Chapters 5 & 6, was the use of
WFMBs which offer a reduced representation of Petri net structures. These blocks allowed
the reuse of formally proven Petri net templates of two basic structures:

i) interprocess communications. Synchronous point-to-point message passing was used in
these applications, with timeout guards to avoid deadlock. These are termed communication

blocks and were presented in section 5.2;

ii) commit protocols. These protocol models were based on those developed in Chapter 4,
and their development was based on the use of the above communication blocks. These are

termed commit blocks and were presented in section 5.3.

The distributed controllers are intended to be implemented using local control processes for
each independent software controlled drive, these being co-placed with each functional unit
(such as each drum and slider mechanisms in the second application). The two control
applications considered have three main properties were used in the choice of the

specification and analysis methods used:
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i) the systems are physically distributed and involve concurrent actions whose operation
must be co-ordinated. Petri nets and Temporal Petri nets provide a framework around which

such a system can be specified, modelled and analysed.

i) the system must operate within time constraints, and therefore the distributed controller

design requires a modelling approach which is able to capture and reason about time.

iii) the communications involved in the operation of the distributed controllers are concerned
with the flow of control information rather than the transmission of data. Because of this
such communications can be expressed easily in terms of synchronous events, employed in
the underlying (low level) Petri net templates of each commit block. This led to a unified
representation of the distributed controller system and the commit protocol used for

coordination.

The use of these modelling and analysis methods provided a measure of fault avoidance in
the controller design. The distributed control of the two applications considered has fault
tolerant coordination in the presence of communication failure, through the use of the commit

protocols developed in Chapters 4 & 5.

The refinement of the local controllers using commit blocks, allowed the distributed
controller designs to inherit the verified properties of the commit protocol designs, such as
fault tolerance and timed atomic commitment. Using the timed Petri net model (in section
6.3.5) it was possible to reason clearly about the relative times that give constraints for the

protocols required behaviour.

The behaviour of the commit protocols was considered for single link failures, as there does
not exist any protocol resilient to multiple partitions [ Skeen & Stonebaker 83 ], or where
messages are lost. When there is a site failure of one of the parties to a commit block, the
action of the other parties is the same as for a communication failure, this always results in a
consistent abort decision being reached by the operational sites. The assumption is taken that
upon recovery the failed site would initiate a safe restart for the whole system. This is a valid
assumption as controller site failure is expected to be extremely rare when compared to

communication failure rates.

The type of failures termed Byzantine failures, discussed in Chapters 2 and 4 are not
considered in the application of these commit protocols, these failure types being where
incorrect actions are performed by the failed item, and are very difficult to rectify, being
similar to solving the Byzantine generals problem [ Lamport et al 82 ]. Only fail silent type
failures are considered, where failed sites do not perform an expected action.
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The use of the responsive commit protocols developed in this thesis allowed the distributed
controller designs to tolerate communications failure. Tolerating link failures in control
applications such as these is important because the processors can still control the motion

drives independently, and maintain safe system behaviour.

The synthesis of the synchronisation logic, incorporating real-time fault-tolerant commit
protocols, that perform intermittent synchronisation of the asynchronous processes
controlling industrial control problems was presented in Chapter 6. The analysis of the
distributed controller designs relied upon the inheritance of certain properties of the commit
blocks used, the verification of these commit blocks and their underlying Petri net protocol
models was performed in Chapter 5. The coordination of the distributed controllers was
shown to be preserved even in the presence of certain defined failures, through the use of the

fault tolerant commit protocols.

The analysis of the distributed controller designs relied upon properties of the (WFMB)
commit blocks used in the design. These properties were proven separately by the analysis
and verification of the commit blocks and their underlying Petri net templates, and presented
in Chapters 4 and 5. Thus the analysis of the Petri net controllers in Chapter 6 uses a
modular approach, that allows the management of the size of the Petri net model and its state
space. Some form of modular analysis is required as the size of the reachable state-space of
the composed system, with the protocols state space fully enumerated, would become
unmanageable. The WFMB approach allows the modular specification and manageable
analysis for the controller model and the protocol models sub-net. This is required as even
using automated tools the state explosion can render reachability based analysis

unmanageable for real-world systems [ Zhou & DiCesare 93 |.

The main advantage of the formal verification performed (presented in sections 6.2.4 &
6.3.4) is the high level of confidence it provides in the controller's design. However, the
complex nature of the proof system leaves it prone to error and requires a high level of skill

and understanding on the part of the designer.

The design and analysis procedure used in this thesis 1s novel in that the controller and the
protocol are synthesised from verified Petri net templates that are structured in a similar
manner to the well formed blocks defined in [ Valette 79]. The WFEMB differ from these, in
that they allow the structuring of multiple interacting processes, whose numbers may change
without causing deadlock of the underlying nets. They also allow the modelling of several
possible outcomes for the blocks underlying nets behaviour.
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The use of WEMBs allowed a move towards a modular approach to be taken with analysis
based on the use of these structures. The modular construction of designs allowed the system
to be built from well understood sub-systems, for both the distributed controllers and the
commit protocols. The composition procedure can offer an intuitive guide to the modelling
and design process, as well as offering real benefits in the analysis and verification through
the reduction in the reachable state space. By observing specified constraints on a WFMBs
interconnection, properties of the WFMBs underlying net structure can be inherited in

composed designs.

7.2 Summary of Contributions

The major contributions of the research described in this thesis are:

1)The development of a responsive commit protocol design, based on the E2PC protocol,

using Petri nets.

i1) The development of a structuring approach (WFMB) for a Petri net based design and
analysis, that is suited to distributed control systems, as the structuring is based on inter-
process communication. The approach is used to manage the size and complexity of the

design and to overcome the problem of state space explosion in analysis.

11) The development of a responsive commit protocol design, equivalent to the standard Petri

net version previously developed, using the WEMB approach.

1v) An illustration of the approach developed by application to two industrial applications.

v) The partition of centralised synchronisation logic designs to yield an accurate distributed
control logic. This used the commit blocks to deliver a design equivalent to the original

centralised controllers.

vi) The formal verification of the distributed control logic designs, developed using the

WEFMB approach, that incorporate the responsive commit protocols developed.
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7.3 Further Work

A number of directions for future research are identified as a result of the work developed in

this thesis, and these are:

i) The development of a methodology for the application of WEMBs. This methodology
should provide a systematic procedure for synthesising a controller design from the
specification of the system, along with techniques for analysing the resulting controller.

The WEMB approach developed in this Thesis could form the basis for this methodology.

ii) The application of model checking [ Clarke & Kurshan 96 ] to the type of commit
protocols and distributed control problems investigated in this Thesis. This would involve
a similar approach to that used in this research as the reachable state space of designs are
required by the analysis techniques. Model checking could be used to automate the proofs
done by hand in this thesis. The use of an (LTL) model checker to automate proofs would

allow the approach to be applied to larger industrial applications.
iii) An investigation of the combination of high level Petri nets and temporal logic to the

types of applications addressed in this thesis, as the management of size and complexity of

design and analysis is of prime concern in the application of this research.
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Appendix A.

A.l1. 3-Party Communication Block

The following are the reachability analysis for a 3-party communication block. The net is live
as all ur dnsmons fire, and safe as. all places are 1-bound. The reachability tree has 74 nodes.
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Fig.A.l. 3-party communication block
A.1.1. Petr1 net structure
places=17 transitions=13
transition 1: input places { output places { 23 };
transition 2: input places }: output places {51
transition 3: b outpul places { 4 |

1
input places

|

|

L)

{311

{215
transition 4: input places { 2 }: output p aces { 6 };
transition 5: input p aces { 3 }: output places { 7 };
transition 6: input places { 4 5 }: output p aces { 8 };
transition 7: mput places { 56 }:output places { 9 };
transition 8: input p aces { 6 7 }: output places { 9 };
transition 9: input places { 4 7 }: output places {9}
transition 10: input places { 10 }: output places { 11 };
transition 11: input places { 11 }: output places { 13 };
transition 12: input places { 14 }: output places { 15 };
transition 13: input places { 15 }: output places { 17 };

Mg ={ 110 14}, initial marking.

A.1.2. Concurrency set

place concurrency set
Place | {10, 11,13, 14, 15,17 }
Place 2 [3,5,7,10, 11,12, 13, 14, 15,17 }

5 &S

P16 P17
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Place 3 {2,4,6,10,11,13,14,15,16,17 }
Place 4 {3,5,7,10,11,12,13,16 }

Place 5 {2,4,6,12,14,15,16,17 }s

Place 6 {3,5,7,10, 11, 12,13, 14, 15,17 }
Place 7 {2,4,6,10,11,13,14,15,16, 17 }
Place 8 {12,16}

Place 9 {10, 11,12, 13,14, 15,16, 17 }
Place 10 {1,2,3,4, 6,7, 9,14, 15,16, 17 }
Place 11 {1,2,3,4,6,7,9,14, 15,16, 17 }
Place 12 {2,4,5,6,8,9,14, 15,16, 17 }
Place 13 { 1,2,3,4,6,7 9, 14, 15,16, 17 }
Place 14 {1,2,3567,9,1011 12,13}
Place 15 {1,2,3,5,6,7,9,10,11, 12,13 }
Place 16 {3,4,5,7,8,9,10, 11, 12, 13 }
Place 17 {1,2,3,5,6,7,9, 10, 11, 12, 13}

A.1.2. Reachability Tree
The tree deadlocks at nodes { 9, 17, 31, 45 }, these represent the following final states;
Node 9, all communications failed and all timeouts occurred.

Node 17, communication link coordinator - process 2 failed, associated timeouts occurred.
Node 31, communication link coordinator - process 1 failed, associated timeouts occurred.
Node 45, all communications succeeded.

Node Index =1
Marking = { plplOpl4

}

Enabled =11012
Pre _nodes =0
Pre_trans =0
Post_nodes =2 5570
Post_trans =110 12

Node Index =2
Marking = { pl plOpl5

Node Index =5
Marking = { pl pl3 pl7

}

Enabled =1

Pre _nodes =425
Pre trans =11 13
Post_nodes =6
Post_trans = 1

Node Index = 6
Marking = { p2 p3 pl3

(nodes 9 to 70 not shown)

Node Index = 71

Marking = { p2 p7 pl0
pl4}

Enabled =410 12
Pre_nodes =70
Pre_trans =5

Post_nodes =48 63 72
Post_trans =4 10 12

} pl7} Node Index = 72
Enabled =11013 Enabled =45 Marking = { p6 p7 plO
Pre_nodes = | Pre_nodes =511 26 pl4}

Pre_trans = 12
Post_nodes = 3 24 47
Post_trans =1 10 13

Node Index = 3

Pre_trans =1 1113
Post_nodes =7 10
Post_trans =45

Node Index =7

Enabled =8 1012
Pre_nodes =71 74
Pre_trans =45
Post_nodes =49 64 73
Post_trans =8 10 12

Marking = { pl plOpl7 Marking = { p2 p7 pl3
} pl7 ) Node Index = 73
Enabled =110 Enabled =4 Marking = { p9 plOpl4

Pre nodes =2
Pre trans =13
Post_nodes =4 19
Post_trans =1 10

Node Index =4

Pre_nodes =6 12 27
Pre_trans =511 13
Post_nodes = 8
Post_trans = 4

Node Index = &

)

Enabled =1012
Pre_nodes =72
Pre_trans =8
Post_nodes = 50 65
Post_trans = 10 12

Marking = { pl pll pl7 Marking = { p6 p7 pl3

} pl7} Node Index = 74

Enabled =111 Enabled =38 Marking = { p3 p6 pl0
Pre_nodes =324 Pre_nodes =7 10 13 28 pl4 }

Pre_trans =10 13
Post_nodes =5 11
Post trans =111

Pre trans =451113
Post_nodes =9
Post_trans = 8

Enabled =51012
Pre_nodes =70
Pre trans =4
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Post_nodes = 53 66 72 Post_trans =510 12

A.2. Restricted 3-Party Communication Block

This is a form of the 3-party communication block, as used in the E2PC for the prepare and
acknowledgement blocks ( although the acknowledgement block differs in that there is atomic
feedthrough for the participant input places ). The dynamic behaviour of the net is restricted
using the interlock places { p18, P19, P20, p21 }, based on the assumption of a single link
failure, and timeout settings being such that all possible communication can take place.
Therefore the transition (t8) that represents the coordinator timing out both participants 1s not
required,. Places p18(19) and p20(21) are interlock places, such that timeout transitions t5(4)

and t11(13) are only fireable once communication transition t3(2) has fired.

A.2.1. Petri net structure
places=21 transitions=12

transition 1: input places { output places { 23 };

transition 2: input places 1 }: output places { 512 19 21 };
transition 3: input places 5 }: output places { 4 16 18 20 };
transition 4: input places 1 }: output places { 6 };

{7}

transition 6: input places
transition 7: input places

1920 21 }: output places { 8 };

b

I}

15 }:

21 )

20 }: output places
518

6 }: output places { 9 };
IRE

{
{
{
transition 5: iput places {
{
{
{

transition 9: iput places output places { 9 };
transition 10: mput places { 10 }: output places { 11 };
transition 1 input places { 11 18 }: output pldCGS {13 };
transition 12: input places { 14 }: output places { 15 };
transition 13: input places { 15 19 }: output places { 17 };

Mo={ 11014}

A.2.2. Concurrency set

place concuuency set

Place | { 10,11, 14,15}

Place 2 {3,5, lO 11,12, 14, 15,17, 19,21 }

Place 3 { 2,4, 10,11,13, 14, 15, 16, 18, 20 }

Place 4 {3,5,7,10, 11,12, 13, 16, 18, 19, 20, 21 }
Place 5 {2,4,6,12,14,15,16,17, 18, 19, 20, 21 }
Place 6 (512, 14,15,17,19

Place 7 {4,10,11,13,16, 18}

Place 8 { 12,16}

Place 9 {10, 11, 12 13,14, 15,16, 17,18, 19 }

Place 10 {1,2,3,4,7,9, 14, 15, 16, 18, 20}

Place 11 (1,2,3,4,7,9, 14,15, 16, 18,20 }

Place 12 {2,4,5,6,8,9,14, 15,16, 17, 18, 19, 20, 21 }
Place 13 (3.4.7.9.16,20 )

Place 14 {1,2,3,5,6,9,10, 11, 12,19,21}

Place 15 {1,2,3,5,6,9,10,11,12,19,21}

Place 16 {3,4,5,7,8,9,10, 11, 12, 13, 18, 19, 20, 21 }
Place 17 {2,5,6,9,12,21}

Interlock places

Place 18

{3
Place 19 { 2
{3

Place 20

[}

4,5,7,9,10,11, 12, 16, 19, 20, 21 }
4,5,6,9,12, 14, 15, 16, 18, 20, 21 }
4,5, 1

0, 11,12, 13,16, 18, 19,21 |}
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Place 21 { 2,4,5,12, 14, 15,16, 17, 18, 19,20 }

A.2.3. Reachability Tree

The tree deadlocks at nodes { 8, 12, 17 }, these represent the following final states;

Node 8, communication link coordinator - process 2 failed, associated timeouts occurred.
Node 16 communication link coordinator - process 1 failed, associated timeouts occurred.
Node 12, all communications succeeded. The Petri net is live and I-bound (safe). The

reachability tree has 28 nodes.

Node Index =1

Marking = {plplOpl4
}

Enabled =19 11

Pre nodes =0

Pre trans =0
Post_nodes =2 23 28
Post_trans =19 11

Node Index =2

Marking = { pl pl0pl5
}

Enabled =19
Pre_nodes =1

Pre_trans =11
Post_nodes =3 19
Post_trans =19

Node Index =3

Marking = { pl pll pl5
)

Enabled =1

Pre_nodes =2 23
Pre_trans =9 11
Post_nodes =4
Post_trans = |

Node Index =4
Marking = { p2p3 pl!
plS}

Enabled =23
Pre_nodes =3 1924
Pre_trans =19 11
Post_nodes =5 13

Post trans =23

Node Index = 5
Marking = { p3p4pll
plé p18 p20 }

Enabled =2510
Pre_nodes =4 20
Pre_trans =39
Post_nodes =69 ]
Post_trans =2 5 10

Node Index =6

Marking = { p3p4pl3
pl6 p20 }

Enabled =5
Pre_nodes =5
Pre_trans = 10
Post_nodes = 7
Post_trans =5

Node Index =7

Marking = { p4 p7 pl3
plo )

Enabled =8
Pre_nodes =69
Pre_trans =510
Post_nodes = 8
Post_trans = 8

Node Index = 8
Marking = { p9pl3pl6

}

Enabled =
Pre_nodes =7 10
Pre_trans =8 10
Post_nodes =
Post_trans =

Node Index =9
Marking = { p4p7pll
pl6plg }

Enabled =8 10
Pre_nodes =521
Pre_trans =59
Post_nodes =7 10
Post_trans = 8 10

Node Index = 10
Marking = {p9pllpl6
pl8 }

Enabled =10
Pre_nodes =9 22
Pre_trans =89
Post_nodes = §
Post_trans = 10

(nodes 11 to 22 not
shown)

Node Index = 23

Marking = {plpllpl4
}

Enabled =111
Pre_nodes =1

Pre_trans =9
Post_nodes = 3 24
Post_trans =1 11

Node Index = 24
Marking = { p2 p3 pll
pld }

Enabled =211
Pre_nodes =23 28
Pre_trans =19
Post_nodes =4 25
Post_trans =2 11

Node Index = 26
Marking = { p5p6 pl2
pl4 plo}
Enabled =71
Pre_nodes =25
Pre_trans =4
Post_nodes = 17 27
Post_trans =7 11

I

Node Index = 27

Marking = {p9 pl2pl4
pl9 ]}

Enabled =11

Pre_nodes =26
Pre_trans =7

Post_nodes = 18
Post_trans = 11

Node Index = 28
Marking = { p2 p3pl0
pi4 |

Enabled =911
Pre_nodes = |
Pre_trans =1
Post_nodes = 19 24
Post_trans =9 11
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A.3. Block Structured E2PC Protocol (CB1),
locking of all input places.

This Petri net can be seen in chapter 5, Fig.5.14. and Appendix.B.2, the net is live, 1-bound
and deadlock free. Transitions t18 & 119 are the environment transitions of the commit
protocols WEMB, t18 firing represents the action of the environment in the commit case, and
t19 in the abort case. Transitions (16 & t17, and places 13..19, 29 &37..39 are used only to
keep the notation for each process distinguished. The reachability tree has 89 nodes.

A.3.1. Petri net structure
places=46 transitions=40

transition 1t input places { 1 23 }: output places { 2 24 };

transition 2: input places { 23 }: output places { 22 };

transition 3: input places { 2 28 }: output places { 3 20 };
transition 4: mput places { 222 }: output places { 4 20 };
transition S: input places { 122 }: output plac s {420},
transition 6: nput places { 5 31 }: output places { 6 33 };
transition 7: input places { 31 }: output places { 32 };

transition 8: input places { 6 36 }: output places {730},

transition 9: input plaues { 632 }: output places { 8 30 };

transition 10: input places { 532 }: output places { 8 30 };
transition 11: mput places { 9 41 }: output places { 1043 };
transition 12: mnput places { 41 }: output places {42 };

transition 13: input places { 1046 }: output places { 11 40 };
transition 14: mput places { 1042 }: output places { 12 40 };
transition 15: input places { 942 }: output places { 12 40 };
transition 16: mput places { 29 }: output places { 37 38 39 };
transition 18: input places { 37 11 }: output places { 159 };
transition 19: input places { 4 8 12 }: output places { 1 59 };
transition 20: mpul places { 20 30 40 }: output places { 21 31 41 };
transition 21: mpul dlaces { 20 30 40 }: output places { 22 31 42 };
transition 22: input places { 20 3040 }: output places { 22 32 4] };
transition 30: input places { 21 3343 }: output | )laces { 233444 };
transition 31+ input places { 21 33 43 }: output places {2234 42},
transition 32: input places { 21 3343 }: output places { 22 32 44 };
transition 33: input | )Jaces { 213340 }: output places { 22 34 40 };
transition 34: input p]aces { 213340 }: output places { 22 32 40 };
transition 35: input places { 21 30 43 }: output places { 22 30 44 };
transition 36: mpul places { 21 3043 }: output places { 223042 };
transition 37: input places { 20 33 40 }: output places { 20 32 40 };
transition 38: input p aces { 203043 }: output places { 203042 };
transition 39: mput places { 21 30 40 }: output places { 22 30 40 };
transition 40: input places { 24 34 44 }: output places { 25 3545 };
transition 41: input places { 24 34 44 }: output places { 26 3542 };
transition 42: 1npu[ places { 24 34 44 }: output places { 27 32 45 };
transition 43: mput places { 20 34 44 }: output places { 20 32 42 };
transition 44: input places { 20 34 40 }: output places { 203240 };
transition 45: mpu[ places { 20 30 44 } output places { 203042 };
transition 46: input places { 26 33 joutput places { 22 32 };
transition 47: input places { 27 45 }: output places { 22 42 };
transition 48: input places { 25 3545 }: output places { 28 36 46 };

Mo=1{159203040 )

A3.2. Concurrency set
Place 1 {5,6,8,9, 10, 12, 20, 21, 22, 23, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44 }
Place 2 { 6,7, 8, 10 11, 12,22 24, 75 26, 27, 28 30, 32, 34 35, 36 40 42 44, 45,46 }
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Place 3 { 6,7, 10, 11, 20, 21, 22, 30, 31, 32, 36, 40, 41, 42, 46 }
Place 4 { 5,6, 8,9, 10, 12, 20, 21, 22, 30, '%1 32,33, 34 40 41,42,43,44 }
Place 5 { 1,4, 9, 10, 12, 20, 21, 22, 30, 31, 32, 40,41,42,43 }
Place 6 { 1,2,3,4,9,10, 11, 12,20, 21, 22, 23, 24, 25, 26,27, 28, 32, 33, 34, 35, 36, 40, 41,
42,43, 44, 45,46 )
Place7 {2,3,10, 11, 20,21, 22, 28, 30, 31, 32, 40, 41, 42, 46 )
Place 8 { 1,2,4,9, 10, 12, 20,21 22,27, 30 31 32, 40 41 42,43,44, 45 )
Place 9 { 1,4, 5,6, 8, 20, 21, 22, 30, 31 32, 33,40 41 47}
Place 10 { 1 2 3,4,5,6,7,8, 20 21, 22,23, 24,25, 26 27,128, 30,31, 32, 33, 34, 35, 36, 42,
43,44, 45.46}
Place 11 { 2,3,6,7,20,21, 22,28, 30, 31, 32, 36,40, 41, 42 }
Place 12 { 1,2,4,5,6,8 20,21 22, 26, 30 31, 32, 33, 34 35,40,41,42 }
Place 20 { 1,3,4,5,6,7, 8,9, 10, 11 12,30 31, 32, 33, 34, 36, 40 41,42,43,44,46 )
Place 21 { 1, 3,4,5,6,7,8,9 10, 11, 12, 30, 31, 32, 33, 40, 41, 42, 43}
Place 22 { 1,2, 3,4,5,6,7,8,9, 10, 11 12,30 31 32,33, 34, 40 41 ,42,43,44 )
Place 23 { }, 6, 10, 34, 44 }
Place 24 { 2, 6, 10, 34, 44 }
Place 25 { 2, 6, 10, 35, 45 }
Place 26 { 2, 6, 10, 12, 35, 40, 42 )
Place 27 { 2, 6, 8, 10, 30, 32, 45 }
Place 28 { 2,6,7, 10, 11, 30, 306, 40, 46 }
Place 30 { 1,2,3,4,5,7,8,9,10, 11, 12,20, 21, 22, 27, 28, 40, 41, 42, 43, 44, 45, 46 }
Place 31 { 1,3,4,5,7,8,9,10, 11, 12 20, 21, 22,40 41,42,43 )
Place 32 { 1,2,3,4,5,6,7,8, 9, JO 11, 12, 20 21,22, 27 40,41,42,43,44,45 }
Place 33 { 1,4, 6,9, 10, 12, 20, 21, 22, 40, 41 42, 4’5}
Place 34 { 1,2, 4,6, 10, 12, 20, 22 23, 24, 40 42,44 }
Place 35 { 2,6, 10, 12, 25, 26 40, 42, 45 }
Place 36 { 2, 3, 6, 10, 11, 20, 28, 40, 46 )
Place 40 { 1,2, 3,4, 5, 6,7 8,9, 11,12, 20,21, 22, 26, 28, 30, 31, 32, 33, 34, 35, 36 }
Place 41 { 1,3,4,5,6,7,8,9, 11, 12,20, 21, 22, 30, 31, 32, 33 )
Place 42 { 1,2,3,4 5,6,7,8,9,10, 11, 12,20, 21, 22, 26, 30, 31, 32, 33, 34, 35 }
Place 43 { 1,4,5,06, 8, 10, 20,21, 22, 30, 31, 32,33 }
Place 44 { 1,2,4,6,8, 10, 20, 22, 23, 24, 30, 32, 34 }
Place 45 { 2, 6,8, 10, 25, 27, 30, 32, 35 }
Place 46 { 2, 3, 6,7, 10, 20, 28, 30, 36}

A.3.3. Reachability Tree

Marking = { pl p5Sp9 Enabled =35
Node Index = 1 p22 p32 p42 |} Pre_nodes =427 29 38
Marking = { pl p5p9 Enabled =51015 82
p20 p30 p40 ) Pre_nodes =28 10 66 Pre_trans = 10319 14 15
Enabled =192021 Pre_trans =12 187 17 Post_nodes =6
Pre_nodes =064 6 Post_nodes = 4 20 82 Post_trans =5
Pre_trans =017 I8 Post_trans =510 15
Post_nodes =2 10 23 Node Index =6
Post_trans = 19 20 21 Node Index =4 Marking = { p4 p8pl2
Marking = { pl p5pl2 p20 p30 p40 }
Node Index =2 p22 p32 p40 |} Enabled =18192021
Marking = { pl p5SpY Enabled =510 Pre_nodes =514 16 21
p22 p32 p4l } Pre_nodes =3 11 3955
Enabled = 5 101112 Pre trans =157 Pre_trans =59 1015 14
Pre_nodes =17 65 Post_nodes =5 16 4
Pre_trans =21 18 17 Post_trans =5 10 Post_nodes =179 22
Post_nodes = 3 83 87 89 Post_trans = 18 19 20 21
Post_trans=51011 12 Node Index =5
Marking = { pl p8 pl2 Node Index =7
Node Index =3 p22 p30 p40 }
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Marking = { p4 p8 pl2
p22 p32 p4l }

Enabled =1218
Pre_nodes =6
Pre_trans =21
Post_nodes =2 8
Post_trans =12 18

Node Index = §
Marking = { p4 p8pl2
p22 p32 p42 }

Enabled =18
Pre_nodes =79
Pre_trans =127
Post_nodes = 3
Post_trans = 18

Node Index =9
Marking = { p4 p8 pl2
p22 p31 p42 }

Enabled =718
Pre_nodes =6
Pre_trans =20
Post_nodes =8 10
Post_trans =7 18

Node Index = 10
Marking = { pl p5 p9
p22 p31 p42 }

Enabled =567 15
Pre_nodes =9 67 1
Pre_trans = 18 17 20
Post_nodes =3 1117 19
Post_trans =567 15

(node 11 to 85 not shown)

Node Index = 86
Marking = { p4 p5 pl0
p20 p32 p43 }

Enabled =10
Pre_nodes =83 89
Pre_trans =511
Post_nodes = 85
Post_trans = 10

Node Index = 87
Marking = { pl p8 p9
p22 p30 p41 }

Enabled =51112

Pre_nodes =2
Pre_trans =10
Post_nodes = 82 84 88
Post_trans =511 12

Node Index = 88
Marking = { p4 p8 p9
p20 p30 p41 }

Enabled =11 12
Pre_nodes =87 89
Pre_trans =5 10
Post_nodes =21 85
Post_trans =11 12

Node Index = 89
Marking = { p4 p5p9
p20 p32 p41 |}

Enabled =1011 12
Pre_nodes =2
Pre_trans =5
Post_nodes = 20 86 88
Post_trans = 10 11 12

A.4. Block Structured E2PC Protocol (CB2),
locking of participant & atomic coordinator.

This Petri net can be seen in Appendix.B.2 , the net is live, 1-bound and deadlock free.
Transitions t18 & t19 are an abstraction of the commit protocols environment, t18 firing
represents the action of the environment in the commit case, and t18 in the abort case.
Transitions t4, t16 & (17, and places 2, 13..19, 29 &37..39 are used only to keep the notation
for each process dlSUnOUlSth The 1eachab1]11y tree has 86 nodes.

A.4.1. Petri net structure
places=46 transitions=39

transition |: input places { 1 23 }: output places { 1 24 };

transition 2: input places { 23 }: output places { 22 };

transition 3: Input places { 1 28 }: output places { 3 20 };
transition 5: input places { 1 22 }: output places { 4 20 };
transition 6: mput pldces { 531 }: output places { 6 33 };
transition 7: mput places { 31 }: output places { 32 };

transition 8: mput places { 6 36 }: output places { 7 30 };
transition 9: mput places {632 }: outputplaces { 830 },
transition 10: input places { 532 }: output places { 8 30 };
transition 11: input places { 9 41 }: output places { 10 43 },
transition 12: input places { 41 }: output places { 42 };

transition 13: mput places { 10 46 }: output places { 1140 };
transition 14: input places { 1042 }: output places { 1240 };
transition 15: input places { 942 }: output places { 12 40 };
transition 16: input places { 2 29 }: output pldces { 373839 };
transition 18: input places { 37 11 }: output p aces { 159 };
transition 19: input places { 4 8 1 2 } output places { 1 59 };
transition 20: input places { 20 30 40 }: output places { 21 31 41 };
transition 21: input places { 20 30 40 }: output places { 22 31 42 };
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transition 22: input places { 20 30 40 }: output places { 22 32 41 };
transition 30: input places { 21 33 43 }: output places { 23 34 44 };
transition 31: input places { 21 33 43 }: output places { 22 34 42 };
transition 32: input places { 21 33 43 }: output places { 22 32 44 };
transition 33: input places { 21 33 40 }: output places { 22 34 40 };
transition 34: input places { 21 33 40 }: output places { 22 32 40 }:
transition 35: input places { 21 30 43 }: output places { 22 30 44 };
transition 36: input places { 21 30 43 }: output places { 22 3042 }:
transition 37: input places { 20 33 40 }: output places { 20 32 40 };
transition 38: input places { 20 30 43 }: output places { 20 30 42 }:
transition 39: input places { 21 30 40 }: output places { 22 30 40 };
transition 40: input places { 24 34 44 }: output places { 25 35 45 };
transition 41: input places { 24 34 44 }: output places { 26 3542 };
transition 42: input places { 24 34 44 }: output places { 27 3245 };
transition 43: input places { 20 34 44 }: output places { 20 32 42 };
transition 44: input places { 20 34 40 }: output places { 20 32 40 };
transition 45: input places { 20 30 44 }: output places { 20 30 42 };
transition 46: input places { 26 35 }: output places {2232},
transition 47: input places { 27 45 }: output places { 22 42 };
transition 48: input places { 25 3545 }: output places { 28 36 46 };
Mo={159203040 }

A.4.2. Concurrency set
Place 1 { 5,6,7,8,9,10, 11, 12,20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 306,
40, 41,42, 43, 44, 45, 46 )

Place3{6 7,10, 11, 20, 21, 22, 30, 31, 32, 36, 40, 41, 42, 46 }
Place 4 { 5,6, 8, 9, 10 12 20 21 22,30, 31, 32, 33, 34, 40 41,42,43,44 }
Place 5 { 1,4, 9, 10, 12, 20 21,22, 30 31, 32 40,41, 42 43 }
Place 6 { 1, 3,4, 9, 10, 11 12, 20 21 22, 23 24, 25, 76 27,128, 32, 33, 34, 35, 36, 40, 41, 42,
43,44, 45, 46}
Place 7 { 1, 3, 10, 11, 20, 21, 22, 28, 30, 31, 32,40, 41, 42, 46
Place8{ 1,4,9,10, 12, 20 21,22, 27,30, 31,32,40,41, 42,43, 44, 45 )
Place 9 { 1,4,5,6 8,20,21,22, 30,31, 32, 33,40,41, 42 )
Place 10 { 1 3 4,5,6,7,8, 20,21, 22, 23,24, 25,26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 42,
43, 44, 45,46}
Placel] {1,3,6,7,20,21,22,28, 30,31, 32, 36,40, 41, 42 )
Place 12 { 1, 4, 5,6,8,20,21, 22 26 30 31 32 33, 34, 35 40,41,42 )
Place 20 { 1, 3,4, 5,6, 7,8,9 10, 11, 12, 30,31,32, 33,34,306,40,41, 42,43, 44, 46 |
Place 21 { 1,3,4,5,6,7,8,9, 10, 11, 12, 30, 31, 32, 33, 40, 41, 42, 43 )
Place 22 { 1,3,4,5,6,7,8,9, 10, 11, 12, 30, 31, 32, 33, 34,40,41,42,43, 44 )
Place 23 { 1, 6, 10, 34, 44 }
Place 24 { 1, 6, 10, 34, 44 )
Place 25{1,6,10, 35,45 )
Place 26 { 1, 6, 10, 12, 35, 40, 42 }
Place 27 { 1,6, 8, 10, 30, 32, 45 }
Place 28 { 1,6,7, 10, 11, 30, 36, 40, 46 )
Place 30 { 1,3,4,5,7,8,9,10, 11, 12,20, 21, 22, 27,28, 40, 41, 42, 43, 44, 45,46}
Place 31 { 1,3,4,5,7,8,9,10, 11, 12,20, 21, 22, 40, 41, 42, 43 }
Place 32 { 1,3,4,5,6 7, 8,9 10, 11 12 20, 21,22,27,40,41,42,43,44,45}
Place 33 { 1,4,6,9, 10, 12, 20, 21, 22, 40,41,42, 43}
Place 34 { 1,4, 6, 10, 12, 20 22, 73 24,40,42, 44 |
Place 35 { 1, 6, 10, 12, 25, 26, 40 42,45}
Place 36 { 1, 3, 6, 10, 11, 20, 28 40, 46}
Place 40 { 1,3,4,5,6,7 8,9, 11 12,20, 21, 22, 26, 28, 30, 31, 32, 33, 34, 35, 36 }
Place 41 { 1,3,4,5,6,7,8,9, 11, 12, 20,21,22, 30,31, 32,33}
Place 42 { 1,3,4,5,6,7,8,9, lO 11,12, 20, 21, 22, 26, 30, 31, 32, 33, 34, 35 }
Place 43 { 1,4,5,6, 8, 10, 20, 21, 22, 30, 31, 32, 33 }
Place 44 { 1, 4, 6, 8, 10 20, 22, 23 24 30, 32 34}
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A.4.3. Reachability Tree

Node Index = 1
Marking = { pl p5p9
p20 p30 p40 |
Time= 0
Enabled 18
Pre_nodes _O
Pre_trans —O
Post_nodes = 2
Post_trans = 18 |

»—-O\o\r—-
oo _Tw
Nr\)\lo‘\w
o W (@]

Node Index =2
Marking = { pl p5p9
p22 p32 p41 }

Time= 0

Enabled =491011
Pre_nodes =17 62
Pre _trans =20 17 16
Post_nodes = 3 80 84 86
Post_trans =49 10 11

Node Index = 3

Marking = { p!l p5p9Y
p22 p32 p42 |
Time=0

Enabled =49 14
Pre_nodes =2 8 10 63
Pre_trans =11 176 16
Post_nodes =4 20 79
Post_trans =49 14

Node Index =4
Marking = { pl p5pl2
p22 p32 p40 |

Time= 0

Enabled =49

Pre nodes =311

Pre trans =146
Post_nodes=516
Post_trans =4 9

Node Index =5

Marking = { pl p8pl2
p22 p30 p40 }

Time= 0

Enabled =4

Pre_nodes =427 29 38
79

Pre_trans =9308 13 14
Post_nodes =6
Post_trans = 4

Node Index = 6

Marking = { p4p8pl2
p20 p30 p40 }

Time=0

Enabled =17 181920
Pre_nodes =5 14 1621
39

Pre_trans =489 14 13
Post_nodes=17922
Post_trans = 17 18 19 20

Node Index =7
Marking = { p4 p8pl2
p22 p37 41}

Time=0

Enabled =1117
Pre_nodes =6
Pre_trans =20
Post_nodes =2 8

Post trans= 1117

Node Index = 8

Marking = { p4p8 pl2
p22 p32 p42 }

Time=0

Enabled =17
Pre_nodes =79
Pre_trans =116
Post_nodes =3
Post_trans = 17

Node Index =9

Marking = { p4 p8 pl2
p22 p31 p4
Time=0
Enabled =617
Pre_nodes =6
Pre trans =19
Post_nodes = 8 10
Post_trans =6 17

peu——

Node Index = 10
Marking = { pl p5p9
p22 p31 p42 |

Time=0

Enabled =456 14
Pre_nodes =9 64 1

Pre trans =17 16 19
Post nodes=3 111719
Post _trans=456 14

(nodes 11 to 81 not
shown)

Node Index = 82
Marking = { p4 pS pl0O
p20 p30 p43 |

Time=0

Enabled =29
Pre_nodes =81 83 85
Pre_trans =49 10
Post_nodes = 39
Post_trans =29

Node Index = 83
Marking = { p4 p5plO
p20 p32 p43 |

Time=0

Enabled =9
Pre_nodes =80 86
Pre_trans =4 10
Post_nodes = 82
Post_trans =9

Node Index = 84
Marking = { pl p8 pY
p22 p30 p41 |

Time= 0

Enabled =41011
Pre_nodes =2
Pre_trans =9
Post_nodes =79 81 85
Post_trans =4 10 1|

Node Index = 85
Marking = { p4 p8 pY
p20 p30 p41 }

Time= 0

Enabled =1011
Pre_nodes = 84 86
Pre_trans =49
Post_nodes =21 82
Post_trans = 10 11

Node Index = 86
Marking = { p4 p5 p9
p20 p32 p41 |}

Time= 0

Enabled =9 1011
Pre_nodes =2
Pre_trans =4
Post_nodes = 20 83 85
Post_trans =9 10 |1
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A.5. 6-Axis Machine

This Petri net can be seen in chapter 6, Fig.6.5. , the net is live, 1-bound (safe) and deadlock
free. The reachability tree has 79 nodes.

A.5.1. Petri net structure
places=30 transitions=19

transition 1: input places { 2 8 21 }: output places { 3922 };
transition 2: input places { 39 21 }: output places {41021 };
transition 3: input places { 5 13 25 }: output places {61426 };
transition 4: mput places { 6 14 25 }: output places { 1 1525 };
transition 5: input places { 11 1529 }: output places { 12 16 30 };
transition 6: mput places { 12 16 29 }: output places { 7 13 29 };
transition 7: input places { | }: output places { 2 };

transition 8: input places { 4 }: output places { 5 };

transition 9: input places { 7 }: output places { 8 };

transition 10: mput places { 10 }: output places { 11 };
transition 11 input places { 17 }: output places {18 };
transition 12: input places { 18 22 }: output places { 19 22 b
transition 13: input places { 1821 }: output places { 2021 };
transition 14: input places { 20 22 }: output places {1922},
transition 15: input places { 1922 }: output places { 17 21 };
transition 16: input places { 23 26 }: output places {2426 };
transition 17: input places { 24 26 }: output places {2325};
transition 18&: mput p aces { 27 30 }: output places { 28 30 };
transition 19: input places { 28 30 }: output places { 27 29 };
Mo={2815182123252729}

A.5.2. Concurrency set
Place 1{7,8,15,17, 18, 20,21, 23, 25,27,29 }

Place 2 { 7,8, 15, 17, 18, 20, 21, 23, 25,27,29 }
Place 3 { 9. 15, 17, 18, 19, 20, 21, 22, 23, 25, 27,29 }
Place 4 { 7.8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 27, 28, 29, 30 }
Place 5 { 7.8, 10, 11, 12,13, 15, 16, 17, 18, 20, 21, 23, 25, 27, 28, 29, 30 }
Place 6 { 7.8, 14, 17, 18.20. 21,23, 24, 25, 26, 27, 29 }
Place 7 { 1,2,4,5,6, 13, 14, 15, 17, 18, 20, 21, 23, 24, 25, 26, 27, 29 )
Place8{ 1.2.4.5.6.13, 14, 15, 17, 18,20, 21, 23, 24, 25, 26, 27,29 }
Place 9 { 3. 15, 17, 18, 19, 20, 21,22, 23, 25, 27, 29 }
Place 10 { 4,5, 15. 17, 18. 20, 21. 23, 25, 27, 29 }
Place 11 { 4,5, 15, 17, 18,20, 21, 23, 25, 27,29 }
Place 12 { 4, 5, 16, 17, 18, 20, 21, 23, 25, 27, 28,29, 30 }
Place 13 { 4.5.7,8, 17, 18, 20, 21, 23, 25, 27, 29 |
Place 14 { 6,7, 8, 17, 18,20, 21, 23, 24, 25, 26, 27, 29 }
Place 15{ 1.2.3.4,5,7.8,9, 10, 11, 17, 18, 19, 20, 21, 22, 23,25, 27,29 }
Place 16 { 4. 5. 12, 17, 18, 20, 21, 23. 25. 27, 28, 29, 30 }
Place 17 { 1.2.3,4,5.6,7,8.9, 10, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30 )
Place 18 { 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30 }
Place 19 { 3,9, 15, 22,23,25,27,29 }
Place 20 { 1.2,3.4,5.6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30 )
Place 21 { 1,2,3.4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 23, 24, 25, 26, 27, 28,
29,30 }

Place 22 { 3,9, 15, 17, 18, 19, 20, 23, 25, 27, 29 }
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Place 23 { 1,2.3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27,
28,29, 30 }

Place 24 { 6,7, 8, 14, 17, 18, 20, 21, 26, 27, 29 )

Place 25 { 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28,
29,30 )

Place 26 { 6,7, 8, 14, 17, 18, 20, 21, 23, 24, 27, 29 )

Place 27 { 1.2.3,4,5,6.7,8,9. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26,29, 30 }

Place 28 { 4, 5, 12, 16, 17, 18, 20, 21, 23, 25, 30

Place 29 { 1,2,3,4,5,6,7,8.9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26,27 )

Place 30 { 4, 5,

A.5.3. Reachability Tree

Node Index = 1

Marking = { p2 p8 pl5

pl8 p21 p23 p25 p27 p29

Enabled =113
Pre_nodes =042 47 66
Pre_trans =079 11
Post_nodes = 2 68
Post_trans =1 13

Node Index =2

Marking = { p2 p8 pl5
p20 p21 p23 p25 p27 p29
}

Enabled =1
Pre_nodes =119 24
Pre_trans = 1379
Post_nodes =3
Post_trans = 1

Node Index =3

Marking = { p3 p9pl5
p20 p22 p23 p25 p27 p29
)

Enabled =14
Pre_nodes =2
Pre trans =1

Post_nodes =4
Post_trans = 14

Node Index =4

Marking = { p3p9pl5
pl9 p22 p23 p25 p27 p29
)

Enabled =15
Pre_nodes =3 68
Pre_trans = 14 12
Post_nodes = 5
Post_trans = 15

Node Index =

12,16, 17, 18, 20, 21, 23, 25,27, 28 }

Marking ={ p3p9pls
pl7 p21 p23 p25 p27 p29
J

Enabled =211
Pre_nodes =4
Pre_trans =15
Post_nodes = 6 54
Post_trans =2 11

Node Index =6

Marking = { p3p9pls
pl8 p21 p23 p25 p27 p29
}

Enabled =213
Pre_nodes =5
Pre_trans = 11
Post_nodes =7 31
Post_trans =2 13

Node Index =7

Marking = {p3p9plS
p20 p21 p23 p25 p27 p29
}

Enabled =2
Pre_nodes =6
Pre_trans = 13
Post_nodes = 8
Post_trans = 2

Node Index =8

Marking = { p4 plOpl5
p20 p21 p23 p25 p27 p29
1

I
Enabled =810
Pre_nodes =731
Pre_trans =2 13
Post_nodes = 9 30
Post_trans = 8 10

Node Index =9

Marking = { p4pllpl5
p20 p21 p23 p25 p27 p29
)

Enabled =58
Pre_nodes =8 32
Pre_trans =10 13
Post_nodes = 10 25

Post trans =58

(nodes 10 to 76 not
shown)

Node Index =77
Marking = { p4 p7 pl3
pl7 p21 p23 p25 p27 p29

Enabled =89 11
Pre_nodes =76
Pre_trans =6
Post_nodes =51 60 78
Post_trans =89 11

Node Index = 78
Marking = { p4 p8 pl3
pl7 p21 p23 p25 p27 p29
}

Enabled =811
Pre_nodes =77
Pre_trans =9

Post_nodes =52 61
Post_trans =8 11

Node Index = 79
Marking = { p5SplOpl5
pl7 p21 p23 p25 p27 p29

Enabled =1011
Pre_nodes = 54
Pre_trans =8
Post_nodes = 53 56
Post_trans = 10 11
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A.6. Drum & Sliders Mechanism

This Petri net can be seen in chapter 6, Fig.6.9 | the net is 1

11 }. The reachability tree has 25 nodes.

A.6.1. Petri net structure
places=13 transitions=10

transition |: mput places { 1 }: output places { 2 1
transition 2; mput vlaces { 4 }: output places { 5 };
transition 3: input places { 11 }: output places { 7 }:
transition 4: input places { 7 }: output places { 8 };
transition 5: input places { 25 12 }: output places { 36 13
transition 6: input places {3612 }:output places { 14 12
transition 7: input places { 8 13 }: output places { 9 13 b
transition 8: mput places { 8 12 }: output places { 1012 };
transition 9: mput places { 10 13 }: output places { 9 13 1;
transition 10: input places { 9 13 }: output places { 1112 };

Mo={25812)

A.6.2. Concurrency set
Place 1{4,57,8,10,11,12 )

Place 2 { 4,5, 7, 8, 10, 11,12}
PlaceB{6,7, 8,9,10, 11,12, 13 )
Place 4 { 1, 2,7,8,10,11, 12 }

Place 5{ 1,2,7,8, 10, 11 12}
Place 6 { 3,7,8,9, 10,11, 12 13}
Place 7 { 1,2,3,4,5,6, 12, 13}
Place 8 { 1,2,3,4,5,6, 12, 13 }
Place 9 { 3,6, 13 )
Place 10{1,2,3,4,5,6,12,13)
Place 11 { 1,2,3,4, 5,6, ]2, 13}
Placel2{ 1,2,3,4,5,6,7,8,10, 11 )
acelB{3,6,7,8,9,10,11}

A.6.3. Reachability Tree
Pre_nodes =110 1]
Node Index = 1 Pre_trans =812
Marking = { p2 p5p8 Post_nodes = 3
pl2} Post_trans = 5
Enabled =358
Pre_nodes =012 13 15 Node Index = 3
Pre_trans =0 124 Marking = { p3 p6 pl10
Post_nodes =2 17 pl3}
Post_trans =3 8 Enabled =9
Pre_nodes =2
Node Index =2 Pre_trans =5
Marking = { p2 p5pl0 Post_nodes = 4
pl2} Post_trans = 9
Enabled =35

224

Node Index = 4

Marking { p3 p6p9
pl3}
Enabled =10

Pre_nodes =3 17
Pre_trans =97
Post_nodes = 5
Post_trans = 10

Node Index = 5

Marking = { p3 p6 pl1

pl2}
Enabled =36
Pre_nodes =4
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ive, I-bound and deadlock free.
This structure has minimal p-invariants of { I, 2, 3 bo{4,5,6), (12,13 }and { 7,8, 9, 10
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Pre_trans = 10
Post_nodes = 6 23
Post_trans =3 6

Node Index = 6
Marking = { pl p4 pll
pl2}

Enabled =123
Pre_nodes =35
Pre_trans =6
Post_nodes =7 19 22
Post_trans =123

Node Index = 7
Marking = { pl p4 p7
pl2 )

Enabled =124
Pre_nodes =623
Pre_trans =36
Post_nodes =8 14 18
Post_trans =124

Node Index = 8
Marking = { pl p4 p8
pl2}

Enabled =128
Pre_nodes =724
Pre_trans =46
Post_nodes =9 12 13
Post_trans =128

Node Index =9
Marking = { pl p4 pl0O

pl2}

Enabled =12
Pre_nodes =8 25
Pre_trans =8 6

Post_nodes = 10 ||
Post_trans =12

Node Index = 10
Marking = {pl p5pl0
pl2 }

Enabled =1
Pre_nodes =9 |2
Pre_trans =2 8
Post_nodes = 2
Post_trans = 1

Node Index = 11
Marking = { p2 p4 pl0
pl2 )

Enabled =2
Pre_nodes =9 13

Pre trans =18
Post_nodes = 2
Post_trans =2

Node Index = 12

Marking = { pl p5p8

pl2}

Enabled =18
Pre_nodes =8 14
Pre_trans =24

Post_nodes =1 10
Post_trans =18

Node Index = 13
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Appendix B.
B.1. Responsive E2PC Protocol
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Locking of coordinator and participants input place tokens.
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B.2. Hybrid Design E2PC Protocol (CB1)

Commit block 1. - CB1
Locking of environment input place tokens, for coordinator and participants.
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B.3. Hybrid Design E2PC Protocol (CB2)

Commit block 2. - CB2

Atomic feedthrough of coordinators input place token, and locking of participant input place

tokens.
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B.4. Hybrid Design E2PC Protocol (CB3)
Commit block 3. - CB3

Atomic feedthrough of coordinator participants input place tokens.
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Appendix.C.

C.1.

The following illustrates a proof of a property for the Prepare communication block
using Temporal Petri net analysis. The Petri net for this communication block is shown

in Fig.5.9., and its set of input and output places are shown in Table 5.2.

Property 5.7
Let TN| be a temporal Petri net for the prepare communication block as shown in

Fig.5.9., which has an initial marking Mg = { p1, P10, P14 }. The property of TN
that will be proved is that:
Whenever Mg of TN | becomes tokenised, then eventually either one of the following

markings is reachable:

(a) Ml = { 138’ P12, Pl6 }
(b) M2 ={p9,pl2.pP17 }
(c) M3 ={p9,pl3, P16}

This property can be formalised as:
<Mgp,o> 1= J[Mg = 0(M] vM2vM3)] (5.7)

This property can be interpreted as the behaviour for the prepare block when the
coordinator attempts to send the prepare message to participant-1 and participant-2.
The outcome is either that (a)both participants receive the message, (b) participant-|
receives the message while the coordinator and participant-2 timeout communications,
due 1o a link failure, or (¢) participant-2 receives the message while the coordinator and

participant-1 timeout communications, due to a link failure.

Proof
At Mo, transitions ty, t]o and t]2 are fireable, this can be formalised as:
1. <Mp,o> = TI[ Mg = 0(t1(ok) A t10(0k) A t]2(0k)) ]

From an observation of the Petri net of Fig.5.9. and its associated reachability graph
(shown in Appendix.A.2), it can be seen that t], tj0 and t]2 can fire independently.

Hence firing each transition yields the following sub-markings:
2. <Mop,o> = CI[t] = (p2Ap3)]
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3. <Mg,o> 1= LI[t10 = p11]
4. <Mp,o> 1= [t = P15 ]

5. By Proposition | the following can be asserted about the firability of transitions t],
t]10 and t]2;
i

i

(1)  <Mp,o>1= CI[t1(ok) = 0t ]

(1) <Mg,o> 1= LI t1o(ok) = 0t10 ]
(i) <Mp,o> 1= I [t12(0k) = 0t12]
Combining (1) - (ii1) with 1. yields:

(iv) <Mp,o>1l= I[ Mg = 0t] ]

(v) <Mp,o>1I= [ Mg = 0tjo]

(vi) <Mp,o>Il= CI[ Mg = 0t)2]
Combining (iv) - 2. yields:

(vii) <Mg,o> 1= LI [ Mg = 0(p2 A p3)]
Combining (v) - 3. yields:

(viii) <Mgp,o> 1= L[ Mg = 0(p11)]

Combining (vi) - 4. yields:
(ix) <Mp,a>l= D[ Mg = 0(p15)]
Combining (vii), (viii) and (x) via conjunction (because tjand tj( and t]2 can fire)

(x) <Mp,0>1= Mg = O(p2 Ap3APII ADPIS)

Let Mg ={ p2,p3,pIl.pl5 }, at this marking only the following sequence of

transitions are allowed to fire.
(X1) <t2,13>,
(xil) <t2,14,1t13 >,
(x11i) <13,t5,t]11 >,
The following will consider the consequences of firing the transitions detailed in 5.(xi)

- (xiii)

6. considering case 5(xi), the firing of t2 and t3 yields the following:
@D <Mp,a>l= LI[(12= (p5API2)) A (3= (P4 ADL6) )]
which can be stated asLI [ 12 At3 = (p4 A PS5 API2 APIG)]
(i1) From the structure of TN it can be seen that:
[(p4 A p5 ) = t6(0k)]
(111) Using proposition 1 on 6(ii), produces:
<Mop.,o> 1= LI[(p4 A ps)= 06l

~
it

<Mg,o> 1=

(iv) From TN, it can see that
<Mgp.a>1= I[t6¢ = pg ]

[\%]
)
[N}
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(v) Combining 6(i1) -6(iv), we have
<Mo.o> I= LI[(p4 A ps) = Ops]
(vi) Combining 6(v) - 6(1)
<Mp, o> 1= Z[(2A3)= O(pgApI2APl6)]

The consequences of 6(vi) represents M| above.

7. Considering case 5(xii)
(1) Firing 12 produces:
<Mo,o> 1= L2 = (p2ApI5)A(psApI2)]
(1) But From TN, it can be seen that when sub-marking ( p2 A p]5 ) occurs, t4 and
t13 can fire independently. This can be formalised as:
<Mo,o> = LI[(p2Apl15) = (4 A113)]
(1) Firing t4 and t13 independently produces
<Mo.o> = L[4 At3)= (p6rp17)]

(iv) Combining 7(11) -7(iii), we have

(v) Combining 7(iv) -7(i), we have
<Mo,o> 1= L[t = O(psAp6Ap12Ap17)]
(vi) But From TN], it can be seen that when sub-marking ( p5 A pg ) occurs, t7
becomes fireable. When t7 fires (using Proposition 1) pg becomes tokenised. This
can be formalised as:
<Mo,o> 1= LI[(ps A p6) = Op9]
(vii) Combining 7(v) -7(vi), we have
<Mg,o> 1= L[t = 0(p9Ap12Ap17)]
The consequences of 7(vii) represents M2 above.

8. Considering case S(xii)
(i) Firing t3 produces:
<Mp,o> 1= i3 = (parple)A(p3apil)]
(i1) But From TN, it can be seen that when sub-marking ( p3 A p]] ) occurs, t5 and
t1] can fire independently. This can be formalised as:
<Mo.o> 1= LI[(p3apll)= 0tsAtir)]
(i11) Firing t5 and t] ] independently produces:
<Mo,0> 1= LI[(t5At11) = (p7AP13)]
(1v) Combining 8(i1) -8(iii), we have
<Mo.o> = L[(p3Apll)= 0(p7ApI3)]
(v) Combining 8(1v) -8(1), we have
<Mp,o> = L [13 = O(paAp7API6API3)]

3]
(V)
(98]
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(vi) But From TN}, it can be seen that when sub-marking ( p4 A p7 ) become
tokenised, t9 becomes fireable. When tg fires (using Proposition 1) pg becomes
tokenised. This can be formalised as:

<Mg,0> 1= LI [(p4 A p7) = 0p9)
(vii) Combining 8(v) -8(vi), produces

<Mp,o> 1= 1[13 = 0(p9Ap13API6)]

The consequences of 8(vii) represents M3 above.

Now combing 6(vi), 7(vi1) and 8(vii) with 5. we have that:
<Mg,o> 1= LMo = O[(p8 ApP12API6)
V(pPIAPI2APIT)V(PIAPIZAPIG)]]

Since M| = { pg, P12, P16 }» M2={p9, p12,p17 Jand M3 = { p9, p13, p16 }
we have that
<Mp,o> 1= L1 [Mg = 0(M] v M2 v M3)] [
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