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Abstract

This paper presents a forecasting technique for forward
energy prices, one day ahead. This technique combines a
wavelet transform and forecasting models such as multi-
layer perceptron, linear regression or GARCH. These tech-
niques are applied to real data from the UK gas markets
to evaluate their performance. The results show that the
forecasting accuracy is improved signi�cantly by using the
wavelet transform. The methodology can be also applied
to forecasting market clearing prices and electricity/gas
loads.

1. Introduction

Accurate electricity/gas price forecasting is very impor-
tant for traders in the energy market, especially energy gen-
erators. If an energy generator makes an accurate fore-
cast of the market price, it can develop a strategy to max-
imise its own pro�ts and minimise risk due to price spikes
by appropriate trading in forward contracts. It can also
plan its actions to maximise bene�ts or utilities by reduc-
ing/increasing its generation. Energy suppliers can use
short-term price forecasts to adjust their bidding strategies
to achieve the maximum bene�t. In addition, understand-
ing the process of forward price development can help the
generators make money on the forward market.
A number of statistical methodologies have been pro-

posed for energy price forecasting. Many approaches based
on time series models have been used for price forecasting,
such as threshold auto-regressive switching (TAR) mod-
els [1], AR models [2], autoregressive integrated moving
average (ARIMA) models [3], [4], and generalised auto-
regressive conditional heteroschedasticity (GARCH) [5],
[6]. Moreover, neural networks (NNs) are used widely for
electricity price forecasting in the literature [7]. Due to the

complexity of the environment, the functional relationships
we are looking for might be non-linear. Several researchers
have proposed additional procedures to improve accuracy.
Pre-processing procedures and regularisation methods are
used in [7]. Another approach for improving forecasting
performance is multiple NNs. The use of a committee of
NNs for forecasting is suggested in [8]. Similarly, cas-
caded neural networks are proposed in [9]. The use of In-
put/Output Hidden Markov Model (IOHMM) to combine
two NNs which estimate underlying market states and ob-
served price respectively are suggested in [10].
However, forecasting energy prices presents a number of

challenges because of the volatility characteristic of prices,
especially in such a competitive environment [5]. To over-
come this problem, multiresolution decomposition tech-
niques such as the wavelet transform (WT) have been used
as a pre-processing procedure. The WT can produce a good
local representation of the signal in both the time and fre-
quency domain. Daubechies WTwas combined with a fore-
casting model to forecast spot electricity prices and electric-
ity load in [4], [11], [12], [13]. Because this type of wavelet
is symmetric, the wavelet coef�cients takes into account fu-
ture information. However, when forecasting, we can only
use data obtained earlier in the time domain. So, symmet-
ric WTs, such as Daubechies or Morlet, are not suitable for
this type of application. Several papers have mentioned this
problem and use an à trous wavelet transform or a redundant
Haar wavelet transform in �nancial time series forecasting
[14], and electricity load forecasting [15], [16], [17].
This paper uses a combination of the redundant Haar

wavelet transform (RHWT) and prediction models to fore-
cast gas prices of forward contracts. We compare the pre-
diction performance of four methods:

� Method 1: a random walk model, which is used as a
benchmark.

� Method 2: prediction models without WT. The predic-
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tion models include linear regression (LR), Multi-layer
Perceptron (MLP), and GARCH.

� Method 3: a combination of RHWT and a forecast
model where each component of WT is separately
forecasted (multicomponent forecast).

� Method 4: using the components of RHWT as input
variables for a forecast model to directly predict the
original price (direct forecast).

Compared with previous work, our paper makes the fol-
lowing contributions. Firstly, we compared the prediction
accuracy of using WT in two approaches: (1) separately
forecasting each WT components and combining the pre-
dictions and (2) directly forecasting original price. Sec-
ondly, besides historical price data and its WT compo-
nents, a number of exogenous variables, for example, gas
demand, temperature, exchange rate (USD:GBP) etc, are
also considered as candidates for input variables. Some pre-
processing procedures are used to choose the relevant input
variables for each forecasting model. Thirdly, we tried to
combine the WT with different forecasting methods (MLP,
LR, and GARCH). The experiment results show that mul-
ticomponent forecast with GARCH are better than the oth-
ers. Fourthly, while existing papers applied WT for predict-
ing electricity load, electricity spot price or exchange rate,
we tried to use it forecasting for price of forward contracts
in the gas market. Fifthly, we analysed the correlation of
residuals of components when using multicomponent fore-
cast and have shown the residuals of WT components are
highly correlated.
This paper is organised as follows. Section 2 pro-

vides the detailed forecasting framework. In Section 3,
the RHWT for decomposing data into components is pre-
sented. The GARCH, MLP and LR forecasting models are
described in Section 4. Numerical results on data from the
UK gas market are given in Section 5. Section 6 provides
some conclusions.

2. Forecasting Framework

The framework of Method 3 for forecasting is shown in
Figure 1. This is a combination of forecasting models and
the RHWT. A data set is divided into two sub-data sets: (1)
a training set to estimate the model parameters and (2) a test
set to evaluate these models by calculating appropriate error
functions. It is summarised in four steps as follows:
Step 1: Use the RHWT to decompose the real price

of gas of the training set and the test set separately:
A;Dn; Dn�1; :::; D1. Each component represents the data
in a frequency range that is less volatile and easier to fore-
cast than the original time series.

Figure 1. The combination of RHWT and
prediction models (Method 3). (a) Training
phase, (b) Test phase.

Step 2: Determine the input vectors for each model for
predicting each component. In addition to the historical
price data, there is a large number of observable variables
which are potential inputs. However, only some of them
are relevant. Using irrelevant variables as inputs might re-
duce the performance of the forecasting models. Therefore,
selecting correct inputs for each type of model is very im-
portant. In the training phase, various measures were used
to determine the relevant input variables, including the cor-
relation matrix (CM), autocorrelation function (ACF), and
partial autocorrelation function (PACF).
Step 3: The training sets are used to develop forecasting

models (i.e. estimate parameters), one forecasting model
for each component. In the test phase, the developed models
(i.e. with the determined parameters) are used to predict the
future value of the components from the current observable
data. The outputs of these models at time t are the values of
A;Dn; Dn�1; :::; D1 at time step t + 1. In this work, three
models were used for forecasting: LR, MLP, and GARCH.
Step 4: In the test phase, the inverse WT is used to com-

pute the price from the predictions of components.

3. Redundant Haar wavelet transform

3.1. Why RHWT?

In several popular WTs, such as Daubechies or Symlets,
there can be problems with signal boundaries: if we add or
delete the last few data points of a time series, the wavelet
coef�cients will change at some boundary time points [15].
The reason is that theseWTs are symmetric wavelets, which



Figure 2. Computation of wavelet coef�cients
of different scales in the RHWT.

take into account future values when computing coef�cients
of a time series. Therefore, we cannot use these symmetric
WTs for forecasting applications. The Haar WT is asym-
metric and can be used in prediction.
Normally, a discrete wavelet transform has two stages:

(1) computing detail and approximation coef�cients with
high- and low-pass �lters, and (2) decimation, i.e. retain-
ing one sample out of every two. The main advantage
of decimation is reducing the storage requirement. How-
ever, decimation leads to the loss of phase information. To
overcome this, we can use a redundant or non-decimated
wavelet transform [15]. In a redundant WT, only stage (1)
is completed. All components of a redundant WT have the
same length as the original time series. Therefore, there is
a one-to-one correspondence between the original data and
decomposition coef�cients at a given time step.

3.2. Computing the RHWT

Assuming that there is a time series p(t), t = 1; 2; :::; T ,
Figure 2 shows how to compute its redundant Haar wavelet
transform coef�cients to the n-th decomposition level. At
level i, the detail coef�cients Di are retained, while the ap-
proximation coef�cients Ai are decomposed into a further
level of detail Di+1 and approximation coef�cient Ai+1. It
can be shown that the original time series can now be re-
constructed as: p(t) = An(t) +Dn(t) + � � �+D1(t).
Note that to calculate a coef�cient at level i + 1 at time

t (Ai+1(t) or Di+1(t)), we need to use the value of time
series Ai at time step t � 2i. Therefore, at level i + 1, it is
impossible to exactly de�ne the value of these coef�cients

before time step 2i+1 � 1. After applying the redundant
Haar wavelet transform, this paper will consider only those
coef�cients after time step 2n � 1.
In this paper, we ran experiments with several decom-

position levels. The most accurate forecasting were with
2-level WT, and these results will are reported in Section
5. An example of decomposing by redundant Haar wavelet
transform is shown in Figure 3.This data shows the price of
a monthly forward product in the UK gas market. Compar-
ing to the original data, the approximation coef�cient A is
much smoother, and the detail coef�cients D2 and D1 are
less volatile and contain periodic elements. Therefore, they
are easier to forecast than the original price.

4. Forecasting models

4.1. Linear regression

Linear regression is a simple model where the output is
linear combination of inputs. Unlike the AR, ARMA, or
ARIMA models, the input vector of a linear regression can
include both historical values of target variables and exoge-
nous variables (e.g. exchange rate, other components of
RHWT, etc.). This model is given by:

y =

dX
i=0

wixi = w
Tx,

where y represents the output of target data,w is the weight
vector (w0; w1; :::; wd), w0 is called bias of the model, and
x represents the input vector x = (x0; x1; :::; xd), x0 = 1
for the bias. Detail explanation of training this model is
given in [18]

4.2. Multilayer perceptron

A multi-layer perceptron consists of a number of per-
ceptrons organized by layers. Each perceptron has several
inputs and one output, which is a non-linear function of the
inputs. It has been shown that networks with just two lay-
ers (i.e. inputs, hidden units, and output layer) are capable
of approximating any continuous functional mapping if the
number of hidden units is large enough [19]. Therefore,
only two-layer networks will be considered.
During training anMLPmodel, we often encounter over-

�tting. Over�tting is a problem where the model �ts the
noise in the training data rather than the underlying genera-
tor, and may lead to large errors on unseen data. There are
several approaches to overcome this problem, such as early
stopping or using a committee to combine different net-
works. In this paper, we use weight decay to regularise the
model by penalising large weights and imposing smooth-
ness. The Bayesian evidence procedure is used to compute
the optimal hyper-parameters [20].



Figure 3. An example of RHWTwith decompo
sition level 2. (a) price data, (b) approximation
coef�cient A, (c) detail coef�cient D2, (d) D1

The number of hidden units is set to be the average of the
number of inputs and the number of outputs [14].

4.3. GARCH

So far, the errors are assumed to be homoschedastic (i.e.,
the variance of the residual is assumed to be independent
of time). GARCH can be used to model changes in the
variance of the errors as a function of time. GARCH was
�rstly proposed by Bollerslev (1986) and is frequently used
in �nancial forecasting. The GARCH(r;m) model is given
by:

yt = x
0

t� + "t; "t � D(0; ht)
ht = �0 +

Pm
i=1 �i"

2
t�i +

Pr
j=1 jht�j

with constraints: �i; j > 0;
Pm

i=1 �i +
Pr

j=1 j < 1,
where xt, yt, and "t represent the input vector, output vec-
tor, and error of the model respectively, ht is variance of
error "t, � is the parameter vector for the AR process, m
and r are order of ARCH process and AR for the variance
h respectively.
"t is i.i.d, with E("t) = 0 and var("t) = ht. "t can be

a Gaussian or Student-t distribution. GARCH is a general-
isation of a linear time series model with homoschedastic
disturbances in which the conditional mean ht of the noise
varies with information about errors and its variance up to
time t.

4.4. Random walk

The random walk (RW) is used as a benchmark model.
This model is given by: y(t+1) = y(t)+ "(t), where " is a

zero-mean noise. The model predicts that the next value of
the time series is the same as the current value.

4.5. Model evaluation

To evaluate the prediction performance of these mod-
els, four types of prediction errors of the test sets were
computed. They are the mean absolute percentage error
(MAPE), mean squared error (MSE), root mean squared er-
ror (RMSE), and mean absolute error (MAE), which are de-
�ned by

eMAPE =
1

T

XT

1

����yreal � yforecastyreal

�����100%
eMSE =

PT
1 (yreal � yforecast)

2PT
1 (yreal � y)

2

eRMSE =
p
eMSE

eMAE =
1

T

XT

1
jyreal � yforecastj ,

where yreal is the real gas price, yforecast is the forecast gas
price, y is the mean of yreal, and T is the number of data
points.
We also computed the improvement ratio (IR) of errors

of a method comparing to errors of the RW model. Errors
here may be MAPE, MSE, RMSE or MAE. For example,
the IR of MSE of a model M comparing to MSE of the RW
is given by:

IRMSE(M)=
eMSE(RW )� eMSE(M)

eMSE(RW )
�100%.

5. Experimental results

The data used in this work is taken from the UK gas mar-
ket, provided by E.ON UK plc. This company is interested
in the daily price of monthly gas products. The monthly gas
product is a forward contract for supplying gas in a single
month in the future. In the UK gas market, it is possible to
trade gas from one to six month(s) ahead. For each monthly
product (e.g. July 2006) there is approximately 6 months of
daily price data (approximately 130 data points). For exam-
ple, the July 2006 product can be traded from 03 Jan 2006
to 30 Jun 2006. To illustrate the behaviour of the proposed
methods, six data sets are used (shown in Figure 4). The
test sets of the �rst three data sets correspond to the begin-
ning, middle and end of a stable monthly product. The test
sets of the last three data sets correspond to the beginning,
middle and end of a volatile monthly product. If a test set
of a data set is the beginning or middle of a monthly gas
product trading period, the training set are data of another
monthly product. For example, in data set 2 (Figure 4 (b)),
the test set is the middle samples of March 2007 product



Figure 4. Six data sets used in the experi
ments (af). The thin lines are the training
sets and the bold lines are the test sets.

and the training set is November 2006 product. The prices
for different products are different even in the same trading
day; for example, the price of a colder month is normally
higher than that of a warmer month. This is the reason why
there is gap between the training sets and test sets of these
data sets in Figure 4. The average errors of each method for
the six data sets are presented in Table 1.
We compared the prediction performance of the pro-

posed method (Method 3 in Section I) with a random walk
model (Method 1) and two other approaches (Method 2, 4)
which are shown in Figure 5.
Like Method 3, the real price time series in the Method

4 is also decomposed into components. These compo-
nents and exogenous variables are also used as candidates
for input variables. However, the main difference between
Method 4 and Method 3 is that Method 4 directly forecasts
the price while Method 3 separately forecasts wavelet trans-
form components and the predicted price is derived from
these forecast components by using the inverse wavelet
transform. Therefore, Method 4 has only one forecast
model while Method 3 has several forecast models, one
model for each coef�cient.
In all methods, the training sets are used to compute the

parameters of the model. Then these developed models are
used to compute the future values of the test set. The errors
of the test set are calculated to evaluate prediction perfor-
mance.
Table 1 provides the average IRMSE , MSE, MAPE,

MAE, and RMSE for the six data sets of the methods.

Figure 5. Two methods for forecasting gas
price. (a) Method 4, (b) Method 2.

For the purpose of comparison, these errors are com-
puted for four methods as mentioned in Section I. "LR",
"LR+RHWT3", "LR+RHWT4" refer to Method 2, 3, and 4
respectively with forecast model LR. The similar notations
are used for MLP and GARCH models. "Method 1(RW)"
refers to Method 1. "Method 2" is average error of different
model (LR, MLP, GARCH) using Method 2. The similar
notations are used for Method 3 and 4.
The multicomponent forecast (Method 3) outperforms

the others. The GARCH+RHWT3 is the best with MSE
of 0.09485, its MSE improves 20% compared to the MSE
of the random walk model. Method 3 is signi�cantly better
than Method 2, which proves the usefulness of the wavelet
transform. The multicomponent forecast achieves better re-
sults than the direct forecast (Method 4).
Table 2 shows the average MSE of forecasting indi-

vidual components in LR+RHWT3, MLP+RHWT3, and
GARCH+RHWT3 for six data sets. The average improve-
ment ratio of MSEs of these models compared to the MSE
of the RW are shown in Table 3. The errors on each com-
ponent of these models are much smaller than random walk
model. However, the sum of all the components (i.e. the
price) of these models are not much better than the error
of the random walk model. For example, the MSEs of the
components A, D2, D1 in the GARCH+RHWT3 improved
85.39%, 77.77%, and 39.95% respectively, compared to
these in the random walk model while the improvement ra-
tio for the sum of all components (i.e. price) is only 20.05%.
To investigate the relatively small improvement of the

overall performance, we analysed the correlation matrix of
residuals of components in the method GARCH+RHWT3
(see Table 4). The component residuals are quite highly



Table 1. Average errors for the six data sets
of methods.

Table 2. MSE of individual components and
original price using different prediction mod
els.

Table 3. Improvement ratio of MSE of method
3 comparing to MSE of the RW model.

Table 4. The correlation matrix of residuals of
components in the method GARCH+RHWT3.

Figure 6. Residuals of components A (a), D2
(b), and D1 (c) using GARCH+RHWT3 for the
test set 2.

correlated, especially components D1 and D2. Their cor-
relation coef�cient is 0.96144. Figure 6 shows the residu-
als of the test set 2 using GARCH+RHWT3. The residual
of a component is the difference between the and the pre-
dicted value and real value of that component. The shape
of the residuals of components D1 and D2 are similar. The
residuals of these components are normally the same sign,
so their sum has a large magnitude. In the RW model,
the signs of component residuals are normally different, so
they cancel when they are summed up. This is the reason
why the prediction performance of total of components in
GARCH+RHWT3 are not much better than the RW model,
even though the accuracy of each component is much better
than RW model.

6. Conclusions

The results show that the use of wavelet transform as a
pre-processing procedure of forecasting data improves the
performance of prediction techniques. The multicomponent
forecasting outperforms the methods without wavelet trans-
form or direct forecasting. The results show that the residu-
als of components D1 and D2 are highly correlated. We will
further investigate this issue and how to use this property to
improve the results of the forecasting techniques.
This paper forecasts daily gas prices for the monthly for-



ward product as an example to verify the performance of
the proposed method. It can be used for other types of for-
ward gas products, forward electricity products, and elec-
tricity/gas demand forecasts.
Our proposed methods can be used to forecast more than

one step ahead by replacing the single-output forecasting
models by multi-output forecasting models (excepting the
GARCH model).
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