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The problem is further exacerbated by the widespread availability of neuralnetwork software which allows the user to train network models and even createapplications without the least idea of the theoretical basis for the models beingused. The user manuals supplied with software packages almost invariably focuson the mechanics of using the software itself and rarely provide the reader withany insight into how to make e�ective use the algorithms1.A key goal of this paper is to draw attention to a quite di�erent viewpointin which neural networks are seen as algorithms for statistical pattern recogni-tion based on a principled, i.e. theoretically well-founded, framework. As suchneural networks extend and complement the many existing techniques for pat-tern recognition, and hence build on, rather than ignore, the substantial body ofknowledge in this �eld accumulated over several decades. Indeed, it is only by theadoption of a principled viewpoint that neural networks can be used successfullyto tackle non-trivial problems and that issues associated with the validation andveri�cation of systems containing neural networks can be addressed.In Section 2 we illustrate the concept of a principled viewpoint by consideringa speci�c issue concerned with the interpretation of the outputs of a trainednetwork. We show how a principled approach leads to signi�cant insight intothe motivation for neural network algorithms and how it can have a considerableimpact on practical applications. Its relevance to the validation and veri�cationproblem is discussed in Section 3.2 Example: Interpretation of Network PredictionsOne of the most widespread applications for neural networks is to the task ofclassifying a set of input variables, described by a vector x, into one of K classeswhich we shall denote by Ck, where k = 1; : : : ;K. Typically the network model,for example a multi-layer perceptron, has one output corresponding to each ofthe classes, and is trained by minimizing an error function de�ned over a set oftraining data. There are many important and subtle issues which this raises, butwe shall focus on just one, namely the meaning which should be ascribed to theoutputs of the trained network when it is presented with new data. Even herewe shall only touch upon some of the relevant issues. Our goal is not to providea comprehensive exposition on this topic, but rather to illustrate the meaning ofa principled view of neural networks and the advantages that it conveys. A moreextensive and complete discussion of this topic can be found in Bishop (1995).One common approach to the classi�cation problem is to use a network withsigmoidal output units of the formg(a) = 11 + exp(�a) (1)1For example, the manuals for one major commercial system for simulating neural networks, amounting toover 800 pages, contain extensive discussions of �le formats and menu options, and yet nowhere in these couldI �nd any discussion of the topic of generalisation! 3.1.2



and to minimize a sum-of-squares error function. Once the network is trained,new patterns are classi�ed according to which of the network outputs has thelargest value. Sometimes various heuristics might be employed to `improve' theperformance of the network. For example, the network might be given extratraining on those patterns in the training set which it mis-classi�es, in an attemptto reach 100% correct classi�cation. As we shall see, such ad-hoc methods canbe highly counter-productive.2.1 Posterior probabilitiesThe simple application of a neural network described above is equivalent to usingthe network as a form of non-linear discriminant, in other words the networkitself is used to make the decision on how to classify a new input. There is,however, a much more powerful interpretation of the use of neural networks inthe context of classi�cation problems, which we now discuss.The key is to distinguish between the two distinct stages in the classi�cationprocess, namely inference and decision. At the inference stage the goal is todetermine the posterior probabilities, denoted by P (Ckjx), for the input vector xto belong to each of the classes Ck. These probabilities can subsequently be usedto make decisions, such as assigning the input vectors to classes. The role of theneural network model is to predict the probabilities, with the subsequent decision-making process being performed separately. We shall see in Section 2.2 how toarrange for the network outputs to represent the probabilities P (Ckjx). Here weconsider the bene�ts of a probabilistic interpretation of the network outputs.By arranging for the network outputs to approximate posterior probabilitieswe can exploit a number of results, many of which are not available if the networkis used simply as a non-linear discriminant (Richard and Lippmann, 1991). Theseinclude:1. Minimum error-rate decisionsExcept for relatively trivial problems, it will be the case that the probabil-ity density functions p(xjCk) for data belonging to each of the classes willoverlap. This means that perfect classi�cation of data is fundamentally im-possible. However, we can seek a classi�cation which is optimal accordingto some criterion. For instance, we can seek to minimise the probability ofa new input being misclassi�ed. Statistical theory (Duda and Hart, 1973)shows that this is achieved by assigning new patterns to the class for whichthe posterior probability is largest. It is important to note that, as a conse-quence of the class overlap, these probabilities need not be close to 0 or 1.Heuristic procedures, such as applying extra training using those patternswhich fail to generate outputs close to the target values, will be counterpro-ductive, since this alters the e�ective distributions of the training data andmakes it less likely that the network will generate the correct probabilities.2. Compensating for di�erent prior probabilities3.1.3



The posterior probabilities P (Ckjx) can be related to the class-conditionaldensities p(xjCk) through Bayes' theorem in the formP (Ckjx) = p(xjCk)P (Ck)p(x) (2)where P (Ck) are the prior probabilities (in other words the overall probabil-ities for observing patterns from the di�erent classes). The denominator in(2) plays the role of a normalising factor ensuring that the posterior prob-abilities sum to one Pk P (Ckjx) = 1. It can be related to the quantities inthe numerator using p(x) =Xk p(xjCk)P (Ck) (3)Sometimes the prior probabilities expected when the network is in use di�erfrom those represented by the training set. It is then it is a simple matterto use Bayes' theorem (2) to make the necessary corrections to the networkoutputs. This is achieved simply by dividing the network outputs by theprior probabilities corresponding to the training set, multiplying them bythe new prior probabilities, and then normalizing the results. Changes inthe prior probabilities can therefore be accommodated without re-trainingthe network. The prior probabilities for the training set may be estimatedsimply by evaluating the fraction of the training set data points in eachclass. Prior probabilities corresponding to the network's operating environ-ment can often be obtained very straightforwardly since only the class labelsare needed and no input data is required. As an example, consider the prob-lem of classifying medical images into `normal' and `tumour'. When usedfor screening purposes, we would expect the prior probability of `tumour' tobe very small. To obtain a good variety of tumour images in the training setwould therefore require huge numbers of training examples. An alternativeis to increase arti�cially the proportion of tumour images in the training set,and then to compensate for the di�erent priors on the test data as describedabove. The prior probabilities for tumours in the general population can beobtained from medical statistics, without having to collect the correspond-ing images. Correction of the network outputs is then a simple matter ofmultiplication and division.3. Combining the outputs of several networksRather than using a single network to solve a complete problem, there isoften bene�t in breaking the problem down into smaller parts and treatingeach part with a separate network. By dividing the network outputs by theprior probabilities used during training, the network outputs become likeli-hoods scaled by the unconditional density of the input vectors. These scaledlikelihoods can be multiplied together on the assumption that the input vec-tors for the various networks are independent. Since the scaling factor isindependent of class, a classi�er based on the product of scaled likelihoodswill give the same results as one based on the true likelihoods. This approach3.1.4



has been successfully applied to problems in speech recognition (Bourlardand Morgan, 1990; Singer and Lippmann, 1992).4. Minimum riskThe goal of a classi�cation system may not always be to minimize the prob-ability of misclassi�cation. Di�erent misclassi�cations may carry di�erentpenalties, and we may wish to minimize the overall loss or risk. Again themedical screening application provides a good example. It may be far moreserious to mis-classify a tumour image as normal than to mis-classify a nor-mal image as that of a tumour (since the latter may lead to wasted e�ort inconducting more detailed tests, while the former may result in the patient'sdeath). In this case, the posterior probabilities from the network can be com-bined with a suitable matrix of loss coe�cients to allow the minimum-riskdecision to be made. Again, no network re-training is required to achievethis.5. Rejection thresholdsIn general we expect most of the misclassi�cation errors to occur in thoseregions of x-space where the largest of the posterior probabilities is relativelylow, since there is then a strong overlap between di�erent classes. In someapplications it may be better not to make a classi�cation decision in suchcases. This is sometimes called the reject option. For the medical classi�-cation problem, for example, it may be better not to rely on an automaticclassi�cation system in doubtful cases, but to have these classi�ed insteadby a human expert. We then arrive at the following procedureif maxk P (Ckjx) �� �; then classify x< �; then reject x (4)where � is a threshold in the range (0; 1). The larger the value of �, the fewerpoints will be classi�ed. One way in which the reject option can be used is todesign a relatively simple but fast classi�er system to cover the bulk of thefeature space, while leaving the remaining regions to a more sophisticatedsystem which might be relatively slow. The reject option can be applied toneural networks provided the outputs of the network represent the posteriorprobabilities.2.2 Error functions and activation functionsHaving recognised that it is desirable for the network outputs to represent prob-abilities, we now have to face the problem of how to arrange for this to occur.There are many di�erent choices of error function, activation function, targetdata coding and so on, all of which would be expected to alter the predictionsmade by the trained network. How are we to decide on the appropriate choicesto achieve the desired goal? 3.1.5



Consider �rst a very simple problem of a one-dimensional input space and twoclasses, each of which is described by a Gaussian probability distribution withvariance �2, so that p(xjCk) = 1(2��2)1=2 exp(�(x� �k)22�2 ) (5)We can use Bayes' theorem to �nd an expression for the probability of an inputx belonging to class 1, so thatP (C1jx) = p(xjC1)P (C1)p(xjC1)P (C1) + p(xjC2)P (C2)= 11 + exp(�a) (6)where we have made use of (5). Here the quantity a is given by a = wx+w0 withw = (�1 � �2)�2 (7)w0 = �(�21 � �22)2�2 � ln P (C2)P (C1) (8)Thus the posterior probability is given by a single-layer network with a sig-moidal activation function at the output unit. This analysis can be extended tonon-linear network models and to a very general class of distributions called theexponential family (Bishop, 1995). The result is that the network output shouldagain make use of a logistic sigmoid activation function. In this case the networkhas a single output whose value gives y = P (C1jx), with the corresponding prob-ability for class C2 given by 1 � y. The correct choice of error function can beobtained from the principle of maximum likelihood, and takes the formE = � NXn=1 ftn ln yn + (1 � tn) ln(1� yn)g (9)where n labels the training patterns.For more that two classes, there will be one output per class, but the correctactivation function is not a separate sigmoid for each unit (as is commonly seen inthe neural networks literature) but a softmax or normalized exponential functionof the form yk = exp(ak)Pk0 exp(ak0) (10)where ak represents the total summed input to the kth output unit. In this casethe appropriate error function is given byE = � NXn=1 KXk=1 tnk ln ynk (11)3.1.6



p (x|C 1 ) p (x|C 2 )

0.0

1.0

2.0

3.0

0.0 0.5 1.0xFigure 1: Plots of the class-conditional densities used to generate a data set to demonstrate theinterpretation of network outputs as posterior probabilities. A total of 2000 data points weregenerated from these densities, using equal prior probabilities.Clearly the error functions (9) and (11) have quite di�erent forms from the stan-dard sum-of-squares error.Note that the average of each network output over all patterns in the trainingset should approximate the corresponding prior class probabilities, sinceP (Ck) = Z P (Ckjx)p(x) dx ' 1N NXn=1P (Ckjxn) (12)These estimated priors can be compared with the sample estimates of the priorsobtained from the fractions of patterns in each class within the training data setto provide an indication of the extent to which the actual network outputs areclose to the required probabilities (Richard and Lippmann, 1991).As a simple illustration, consider again a one-dimensional input space, andtwo classes whose distributions are shown in Figure 1. A data set generatedfrom these distributions was used to train a multi-layer perceptron network. Theresulting network function is illustrated in Figure 2 along with the true posteriorprobability calculated from Bayes' theorem.3 DiscussionWe have considered one speci�c aspect of neural networks, namely the inter-pretation of the network outputs for classi�cation problems, as an illustrationof the concept of a principled perspective. The same approach can be appliedthroughout the �eld of neural computing, and brings innumerable bene�ts includ-ing improved performance in applications, the avoidance of major pitfalls, andthe ability to quantify many aspects of network and system performance. Such3.1.7
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0.0 0.5 1.0Figure 2: The result of training a multi-layer perceptron on data generated from the densityfunctions in Figure 1. The solid curve shows the output of the trained network as a functionof the input variable x, while the dashed curve shows the true posterior probability P (C1jx)calculated from the class-conditional densities using Bayes' theorem.issues are particularly relevant in the context of the validation and veri�cation ofsystems containing neural networks.Consider, for example, the problem of determining how reliable the predictionsof a network are. E�ective assessment of the uncertainty of network predictionsrequires a clear understanding of many e�ects such as the role of the input datadistribution (Bishop, 1994b), the e�ects of uncertainty in the network parameters(Williams et al., 1995), and the contributions from the intrinsic noise on the targetdata (Bishop, 1994a).The adoption of theoretically well-founded view of neural networks is essentialboth to counter the hype and mistrust sometimes associated with these tech-niques, and to allow the e�ective application of neural networks in domains wherethe performance of the system is deemed critical.ReferencesBishop, C. M. (1994a). Mixture density networks. Technical ReportNCRG/94/001, Neural Computing Research Group, Aston University,Birmingham, UK.Bishop, C. M. (1994b). Novelty detection and neural network validation. IEEProceedings: Vision, Image and Signal Processing 141 (4), 217{222. Specialissue on applications of neural networks.Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford Uni-versity Press.Bourlard, H. and N. Morgan (1990). A continuous speech recognition systemembedding MLP into HMM. In D. S. Touretzky (Ed.), Advances in Neural3.1.8
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