
Neural Computing Research GroupDept of Computer Science & Applied MathematicsAston UniversityBirmingham B4 7ETUnited KingdomTel: +44 (0)121 333 4631Fax: +44 (0)121 333 4586http://www.ncrg.aston.ac.uk/
Regularisation of Mixture DensityNetworksLars U HjorthNeural Computing Research GroupAston University, BIRMINGHAM, B4 7ET, UKemail:hjorthl@aston.ac.ukTechnical Report NCRG/99/004 February 12, 1999

AbstractMixture Density Networks are a principled method to model conditional probability density func-tions which are non-Gaussian. This is achieved by modelling the conditional distribution for eachpattern with a Gaussian Mixture Model for which the parameters are generated by a neural net-work. This technical report presents a novel method to introduce regularisation in this context forthe special case where the mean and variance of the spherical Gaussian Kernels in the mixtures are�xed to predetermined values. Guidelines for how these parameters can be initialised are given,and it is shown how to apply the evidence framework to mixture density networks to achieve reg-ularisation. This also provides an objective stopping criteria that can replace the `early stopping'methods that have previously been used. If the neural network used is an RBF network with �xedcentres this opens up new opportunities for improved initialisation of the network weights, whichare exploited to start training relatively close to the optimum. The new method is demonstratedon two data sets. The �rst is a simple synthetic data set while the second is a real life dataset, namely satellite scatterometer data used to infer the wind speed and wind direction near theocean surface. For both data sets the regularisation method performs well in comparison withearlier published results. Ideas on how the constraint on the kernels may be relaxed to allow fullyadaptable kernels are presented.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78879874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Regularisation of Mixture Density Networks 2AcknowledgementsThe �rst people I would like to thank are Jan-Erik Lundkvist at Linkoping University who enabledme to participate on this MSc program and to all the sta� at the University that have given me ahigh quality eductation during my time there.I am very grateful to my supervisor, Dr Ian Nabney, who has patiently explained to me what I wasunable to understand and who has greatly inuenced the quality of this work. He have also giveninvaluable comments on early drafts and helped me translate my Swenglish writing into English.I thank Chris Bishop whos work has been a great source of inspiration and understanding.I am thankful to two fellow students, David Evans and Guillaume Ramage. They have very helpfulwith information about the wind data set together with Dr Dan Cornford.I am grateful to Dr Chris Williams, Dr David Saad and all other sta� at Aston that have beenhelpful and provided me with various bits and pieces of advice.And at last, but not least, I would like to thank Ulf Merell for providing me with a laptop duringthe project that has been very much appreciated.

Regularisation of Mixture Density Networks 3Contents1 Introduction 41.0.1 Notation Used . 42 Background 52.1 Mixture Density Networks 52.1.1 The class of Mixture Density Networks 72.1.2 Constraining the outputs of the Network 82.1.3 Choosing a Network Architecture 82.1.4 Initialisation and training 92.2 The Evidence Framework 102.2.1 Bayesian Regression 112.2.2 Applying the Evidence Procedure to Classi�cation . 142.2.3 Training the network 152.3 A Bayesian Approach to Input Dependent Noise 152.3.1 The Model . 152.3.2 Hierarchical Bayesian analysis 162.4 Modelling the Complete Covariance Matrix 182.4.1 The Likelihood . 192.4.2 Training and Regularisation 192.5 Training of RBF networks for classi�cation 203 Regularisation of MDNs with Fixed Kernels 223.1 Modifying the Mixture Density Network Model. 223.1.1 The New Mis�t Function 223.1.2 Initialisation of the Fixed Parameters 223.1.3 Using a RBF Network to Generate the Mixture Co-e�cients. 253.1.4 Initialisation of the Second Layer Weights 254 Experimental Results 274.1 The S-curve experiment . 274.1.1 The Data Set . 274.1.2 Con�gurations . 274.1.3 Results . 284.1.4 Discussion . 364.2 Application to Radar Scatterometer Data 374.2.1 Modelling Probability Distributions for PeriodicFunctions . 394.2.2 Con�gurations . 394.2.3 Results . 404.2.4 Discussion . 455 Discussion 475.1 Summary . 475.2 Conclusions . 475.3 Some possible directions for future work 48References 50A Calculations 51A.1 Calculating the gradient . 51A.2 Calculating the Hessian . 54B Results 57B.1 The S-curve Results . 57B.1.1 Results for the standard MDN 57B.1.2 Results for MDN(RBF, single-reg) 57B.1.3 Results for MDN(RBF, multi-reg) 57B.2 The Wind Data Results . 57

Regularisation of Mixture Density Networks 41 IntroductionThis project originally had two objectives. The �rst was to �nd more e�cient ways of trainingMixture Density Networks. During the spring of 1998, a fellow student (Evans, 1998a), discoveredthat much of the slowness in the training was due to an implementation problem in the software.He implemented a new version which is 10�50 times faster. This enhancement made it feasible totrain models with c. 10000 patterns, which was the original goal for the problem we had in mind.Therefore my work focussed on the second objective; providing e�ective regularisation for thesemodels.The relevant background is reviewed in Section 2. The material is presented in a very compact formand if the concepts are new, I recommend reading of the original papers for a better understanding.This section also serves as an introduction to the notation used throughout this technical report.I have assumed that the reader is familiar with concepts like the likelihood, clustering algorithms(EM algorithms, k-means), basic knowledge about neural networks (multi layer perceptron net-works, radial basis function networks) and some knowledge about general multipurpose non-linearoptimisation techniques (quasi-Newton, conjugate gradients). Bishop (1995) is a suitable referencefor this material.In the third section I present a novel way to regulariseMixture Density Networks with the constraintthat the mean and variance of the Gaussian kernels in the mixture are �xed to predetermined values.I also present an e�ective procedure to initialise these parameters.Next, in the fourth section, I show that the regularisation method discussed in Section 3 gives goodestimates of the posterior distribution, �rstly for a synthetic and secondly for a real life data setinvolving prediction of the wind speed at the sea surface from radar scatterometer data gatheredby a satellite.Finally, in the last section I discuss the advantages and the disadvantages of this approach comparedwith earlier work. I also give a brief outline of directions for future work and conclude with a shortsummary.1.0.1 Notation UsedWherever possible I have tried to used a coherent notationc number of network outputs; number of classesd number of network inputsD dataset consisting of input vectors x and targets tE error function� mixing coe�cienti,j mixture labelsk,l output dimension labelsr,s hidden unit labelsn pattern labelM number of mixturesP(�) probabilityp(�) probability density functiont target valuew parameter vector for the network weights.x network input variablez network output variableln logarithm to base e

Regularisation of Mixture Density Networks 52 BackgroundIn this section I present a review of the relevant background for this technical report. Since thiswork is trying to merge conditional mixture models with regularisation theory the literature surveyquickly becomes rather broad since in both areas several relevant papers have been written. Theidea of modelling both the conditional mean and variance in order to provide error bars for thepredictions goes back to Nix and Weigend (1994). First we look at one generalisation of this,the Mixture Density Network (Bishop, 1994), which uses a mixture of spherical Gaussians. Ithen move on to the evidence approximation (MacKay, 1992a; MacKay, 1992d; MacKay, 1992c)which gives a good method of controlling model complexity for least-squares regression models. Thisframework has been extended in (Bishop and Qazaz, 1997) to handle input dependent noise for asingle (spherical) Gaussian. This leads us to review a paper (Williams, 1996) that deals with asingle multivariate Gaussian. Here Williams models the complete covariance matrix and �nally welook at a method to initialise our network weights by (Nabney, 1998) for generalised linear models,that I will adapt to the novel theory for Mixture Density Networks in the next section.2.1 Mixture Density NetworksBefore starting to explain what a Mixture Density Network (MDN) is, it is useful to look at whathappens if we use a standard multi layer perceptron (MLP) network on a data set that containsmultiple branches, i.e. for some x values f(x) has two or more distinct values, so f(x) is not afunction but a multi-valued relation. The data set used is taken directly from (Bishop, 1994) andthe predictions made by the network can be seen in Figure 1.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

t

Figure 1: The data was generated by the function x = t+0:3 sin(2�t)+0:2� where � is Gaussiannoise with zero mean and unit variance. The solid line corresponds to predictionsfrom a MLP network with 8 hidden units after training it for 80 iterations witha quasi-Newton optimiser. For some x values the predictions are very poor; thishappens because the MLP models the average of the conditional probability densitywhich is not a useful statistic for those values of x where the function has morethan one branch. The dotted line corresponds to x = 0:35; the predicted conditionaldensity for this input is plotted in Figure 2.It is easy to see that the predictions made are not satisfactory but why does it not work? Theanswer to that question is that an MLP network predicts the conditional average of the targetdata (Bishop, 1995) and this limited statistic is not appropriate for this kind of data set. One wayto solve this problem is to model the complete conditional probability density instead, and this isthe approach used by Mixture Density Networks. An example of this can be seen in Figure 2. It isfrom the same problem as was used for Figure 1 and it shows the conditional probability density

Regularisation of Mixture Density Networks 6

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

f(
x)

Figure 2: The graph shows the conditional probability distribution for x = 0:35 predicted bya Mixture Density Network. The cross corresponds to the prediction made by theMLP network and it is clearly not a good prediction, since it is far from both peaksthat correspond to the two branches of the relation. Note that the peaks correspondwell with t-values that have high data density along the line x = 0:35 in Figure 1.estimate of an MDN for x = 0:35. The prediction of the MLP network for that x value has beenincluded as a cross. It is important to note that instead of making a prediction of a single valuewe now estimate a whole distribution. The distribution in the example is clearly bi-modal, andthe prediction made by the MLP is poor since in this case the average of the solutions was notitself a solution. If we want to visualise the results for all x values a contour plot of the conditionalprobability density is needed, and it can be seen in Figure 3.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

Figure 3: The contour plot shows the conditional probability distribution for x 2 [0; 1] pre-dicted by a Mixture Density Network trained on the same problem as in Figure 1.Note that the slice of this plot for which x = 0:35 corresponds to the plot in �gure 2The Mixture Density Network was �rst introduced by (Bishop, 1994) and the review of them inthe next section is based on that technical report.

Regularisation of Mixture Density Networks 7
NeuralNetwork MixtureModelx Z p(tjx)

Figure 4: A block diagram showing the structure of a MDN. When a pattern x is presented tothe network, a parameter vector Z is generated as the outputs of the network, whichin turn is used as input to theMixture Model to generate the conditional probability,p(tjx).2.1.1 The class of Mixture Density NetworksIn its broadest meaning, a MDN can be seen as using a Neural Network to generate some param-eters for a Mixture Model. This is illustrated in Figure 4.Given an input vector, x, the Neural Network generates a parameter vector, Z, that is used as inputfor the Mixture Model, which will generate a conditional probability density, p(tjx), as its output.We can interpret the standard MLP as modelling the conditional distribution by a Gaussian with�xed variance and input dependent mean. This distribution can be used to make predictions in anumber of ways. One would be to take the average, which would lead us back to the MLP modelagain. Another could be to use non-linear optimisation to �nd the highest mode.We now have two black boxes, the Neural Network and the Mixture Model that need closerexamination. In (Bishop, 1994) an MLP network was used together with a spherical GaussianMixture Model and the same choice is made in this review.Likelihood Suppose that the data set is a collection of independent samples drawn from a �xeddistribution and is a set of tuples D = fxn; tng where n is a label running over all patterns. Thelikelihood can then be written asL = NYn=1 p(tn;xn) = NYn=1 p(tnjxn)p(xn); (1)where N is the number of examples. The factor p(xn) can be omitted since it is independent ofthe model parameters and it will appear as a constant in the subsequent analysis.The remaining factor can be recognised as the output of the Mixture Model when its parametersare generated as in Figure 4. We choose to model p(tnjxn) byp(tnjxn) = MXi=1 �i(xn)�i(tnjxn): (2)�i is, in this case, a spherical Gaussian density function, �i is the mixing coe�cient for thatGaussian and the index i runs over all M kernels in the mixture. This linear combination ofkernels can in principle model any conditional probability density, given a su�cient number ofkernels with correctly set parameters (McLachlan and Basford, 1988).Taking the negative log likelihood of the relevant part of (1) yields the cost functionE = � NXn=1 ln p(tnjxn) = � NXn=1 ln(MXi=1 �i(xn)�i(tnjxn)): (3)The next thing to ensure is that the network outputs that will be used as the means, variances andmixing coe�cients in the mixture model are constrained so that p(tnjxn) can always be guaranteedto be a probability distribution.

Regularisation of Mixture Density Networks 82.1.2 Constraining the outputs of the NetworkThe MLP network has linear output functions, and if we want to be able to interpret the posterioras a probability density function we need to place some constraints on these outputs. First weneed the de�nition of a spherical Gaussian in c dimensions�i(tjx) = 1(2�)c=2�i(x)c exp �jjt� �i(x)jj22�i(x)2 !; (4)where �i and �2i are the mean and variance respectively. The mean is a vector of dimension c, andthe standard deviation, �i, should always have a positive real value.Means The means of a Gaussian can take on any real value, exactly the same range as for anetwork output, so the `connection' between them is straightforward:�ik = z�ik for k = 1; 2; : : : ; c; (5)where z denotes an output from the network. One network output is required for each componentof the mean for each kernel, giving a total of Mc outputs.Variances The standard deviation has the constraint of being positive, implying that this couldbe modeled by an exponential function, �i = exp(z�i): (6)This also has the advantage that it discourages the variance from going to zero which would causethe likelihood to go to in�nity.Mixing Coe�cients For the mixing coe�cients we have to ensure that p(tnjxn) is positivewhich leads to �i � 0 and we also have to ensure that p(tnjxn) integrates to one as a function oftn. This property is known to hold for a Gaussian kernel and to ensure the same property for ourmixture of Gaussians the only additional requirement is that the non negative mixing coe�cientsalso sum to one, MXi=1 �i = 1: (7)This can be achieved by applying the `softmax' transformation (Bridle, 1990) to the networkoutputs. �i = exp(z�i)PMi0=1 exp(z�i) : (8)Total Number of Outputs After establishing the constraints we can see that Mc outputs areneeded for the means and M for the variances and mixing coe�cients respectively, leaving us witha total number of M(c+2) outputs compared with c for neural networks used in the conventionalway.2.1.3 Choosing a Network ArchitectureTo generate these three di�erent kind of outputs Bishop used a standard multi layer perceptronnetwork (MLP) with a single hidden layer. To train the network with standard non-linear tech-niques we need an expression for the gradient of the error function, as this will speed up the

Regularisation of Mixture Density Networks 9optimisation. Appendix A.1 contains the calculations in detail and only the result is stated here.The error function for one pattern fxn; tng isEn = � ln MXi=1 �i(xn)�i(tnjxn) (9)and the total error can be written as E = NXn=1En: (10)The gradients are @En@z�ik = ��i(xn) (�ik(xn)� tnk)�i(xn)2 for k = 1; 2; : : : ; c; (11)@En@z�i = ��i(xn) jjtn � �i(xn)jj2�i(xn)2 � c!; (12)@En@z�i = �i(xn)� �i(xn); (13)where �i(xn) is de�ned to be the posterior probability (or `responsibility') that the ith mixturecomponent generated the data point. For convenience and clarity the dependence on xn and tnwill from now on be omitted where it is unlikely to create confusion, �i(xn) will be written as �i,�i(tnjxn) as �i etc. So �i = �i�iPMj=1 �j�j for i = 1; 2; : : : ;M . (14)Note that the posterior probabilities sum to one,MXi=1 �i = 1: (15)2.1.4 Initialisation and trainingThe initial values of the weights in theMLP can be sampled from a Gaussian distribution with zeromean and an appropriate variance. My experience is that the variance should be relatively largesince a small value is more likely to give rise to symmetries that can slow down the convergence, oreven cause the network to be trapped in a poor minimum. The output layer biases are however aspecial case where we can initialise the weights di�erently and use the data to improve our initialguess.Initialisation of the output layer biases The initialisation method starts by estimating theunconditional probability density for the target space with some clustering algorithm (like k-means,see, for example (Bishop, 1995)). By clustering the data into the same number of clusters as wehave mixture components we can use the positions of each cluster as the initial values for thesecond layer biases corresponding to the means. One of the e�ects of this is that the kernels areseparated, which will normally speed up convergence.Training The training can now be done with any generic non-linear optimisation method, e.g.Scaled Conjugate Gradients or quasi-Newton. For references, consult (Press et al., 1992). But howdo we know when to stop? Often a procedure called `early stopping' (Baldi and Chauvin, 1991)is used. We start by partitioning the data into three independent sets, that we call the training,validation and test sets. The parameter adjustment is done using the training set and periodically

Regularisation of Mixture Density Networks 10w�
1st Layer w�

w�
x

z�
z�
z�

Figure 5: The �gure shows how the MDN can be seen as three di�erent network sharing acommon �rst layer.we stop training and measure the error on the independent validation set. In the beginning thevalidation error normally decreases but as the network starts to over-�t, the validation error startsto increase. The point at which to stop training is therefore when we reach the minimum of thevalidation error. The generalisation performance of the model can then be evaluated using thethird part of the data to compute the test error.One reason I believe that this procedure is sub-optimal for MDN's is that we implicitly assumethat the functions for the mean, variance and mixing coe�cients reach their optimum at the sametime, and we also assume that they have the same complexity since they all share the �rst layer,as illustrated by Figure 5. However, it seems very unlikely that we will reach the optimum of themeans, variances and mixing coe�cients at the same time. The obvious way to reduce the e�ectsof this would be to use regularisation (Tikhonov and Arsenin, 1977) and a Bayesian view of thisis described in the next section.2.2 The Evidence FrameworkThe evidence framework (MacKay, 1992a; MacKay, 1992d; MacKay, 1992c) provides, among otherthings, a method to deal with the problem of determining model complexity for RBF and MLPnetworks, i.e. how to choose a model that matches the complexity of the data in an objectiveBayesian way. For regression the posterior distribution is modelled as a single Gaussian under theassumption of Gaussian zero mean noise and for classi�cation the outputs are logistics for two classproblems and generalised to the softmax transformation for multiple class problems.For a Bayesian the posterior distribution of the model parameters is the natural starting pointand all other quantities are inferred from it. The correct approach is to integrate over all possibleweights for some prior. In the evidence procedure we do this integration (approximately in somecases) assuming the posterior to be distributed as a Gaussian around the most probable networkweights, wMP . One obvious reason for this is approximation is, e�ciency since a full integrationof the posterior cannot always be carried out analytically and in that case is very computationallyexpensive and Monte Carlo techniques have to be considered.

Regularisation of Mixture Density Networks 11Consider a data set D = fxn; tng, where n is an index running over all patterns and xn and tn are,for simplicity, scalar input and target vectors respectively. So, by using Bayes' rule we can writethe posterior with respect to the network weights w for some architecture A, asp(wjD; �; �;A) = p(Djw; �; �;A)p(wj�;A)p(Dj�; �;A) (16)The parameters � and � are going to be explained in the following sections; �rst we need tointerpret the di�erent factors on the right hand side of (16). p(Djw; �; �;A) is the likelihood ofthe data D, p(wj�;A) is a prior distribution that gives us an opportunity to incorporate priorknowledge about our data into the posterior distribution and �nally p(Dj�; �;A) is the evidencefor the model. This term is independent of the network parameters and it can be used to give usan idea of how well a speci�c model �ts the data. This is useful information when dealing withquestions concerning model comparison but it is outside the scope of this technical report. Fromnow on the dependence on A will be taken implicitly in all equations. These interpretations canbe summarised by writing the posterior symbolically asPosterior = Likelihood� PriorEvidence :Before we start investigating how we can use the expression for the posterior distribution we haveto �nd a suitable prior distribution. The problem is how to transform any knowledge we have intopreferences for speci�c values of weights in our neural network. What we can do is to express ourbelief in di�erent levels of smoothness for a speci�c function. A more complex function usuallyrequires larger weights while simpler functions can be represented with smaller weights. Thissounds very subjective and the objective solution is to introduce a hyperparameter � that controlsthe prior distribution as follows p(wj�) = 1ZW (�) exp(��EW); (17)where ZW (�) = �2�� �k=2; (18)EW = 12 kXi=1 w2i ; (19)and k is the number of parameters. This choice of EW corresponds to a Gaussian prior, but otherchoices are of course possible. We can then, once again, infer the most probable value of � fromits posterior distribution. Figure 6 shows the e�ect that di�erent � values have on �tting a simplesinusoid function using a MLPnetwork.We now move on to show how to �nd the most probable weights, both for regression (continuoustargets) and classi�cation (discrete targets).2.2.1 Bayesian RegressionHierarchical Bayesian analysis consists of di�erent levels, and for each level we can infer one ormore of the quantities we are interested in. In the �rst level we infer the posterior of the weightscorresponding to the regression parameters and on the second level the value of the regularisationconstants can be estimated.For regression the likelihood of the data set D isP (Djw; �) = exp(��ED)ZD(�) ; (20)

Regularisation of Mixture Density Networks 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 6: The plot shows the same MLP network trained with di�erent values of the weightdecay parameter �. The dashed line corresponds to the function that generated thedata. For too small � values the networks over-�t and when it is too large theyunder-�t.where ED is normally the sum-of-square error functionED = 12 NXi=1(zn � tn)2: (21)For this ED the normalisation constant for (20) isZD(�) = Z exp(��ED)dt = �2�� �N=2; (22)and 1=� is the estimated average noise in the targets. This choice of ED corresponds to theassumption of additive zero mean Gaussian noise in t with variance �2 = 1=�.First level of Inference We are now ready to �nd an expression for the posterior distributionof the weights w, which we will use to �nd the most probable parameters wMP . Substituting theexpression for the likelihood (20) and the prior (17) into the expression for the posterior (16) givesP (wjD; �; �) = exp(��EW � �ED)ZM (�; �) ; (23)where ZM (�; �) = Z exp(��EW � �ED)dw (24)is the evidence term mentioned earlier. Maximisation of (23) is equivalent to minimising �EW +�ED because ZM is a constant with respect to w. This gives usM(w) = �EW + �ED (25)Minimising the mis�t function M(w) yields the most probable network weights wMP and it cor-responds to �nding the most probable interpolant. Minimising ED alone leads us back to themaximum likelihood estimate with weights wML.

Regularisation of Mixture Density Networks 13Second level of Inference After we have inferred the most probable values for the weights wewant to infer the most probable value of the hyperparameters � and �. To do this we need tocalculate the joint posterior distribution with respect to these hyperparameters, which we haveearlier implicitly assumed to be independent. This posterior is expressed, with Bayes' rule, asP (Dj�; �) = p(D; �; �)P (�; �)P (D) : (26)Here we, once again, have to determine a prior distribution and this time it is for the hyperparam-eters. We choose to use a at prior because this corresponds to our lack of knowledge about theirtrue values. Under these assumptions the posterior (26) can be written in terms of normalisationconstants, already given by (24), (18) and (22), as followsP (Dj�; �) = ZM (�; �)ZW (�)ZD(�) : (27)The only integral left to solve is ZM (�; �), and to do this we use the second order Taylor expansionof M(w) which is M(w) =M(wMP) + (w �wMP)TA(w �wMP); (28)where A is the Hessian of M(w) calculated at wMP . This makes (24) a Gaussian integral withthe following solution ZM (�; �) = (2�)k=2jAj�1=2 exp�M(wMP)� (29)If ED and EW are both quadratic this is an exact result, otherwise it is an approximation, buteven so the Gaussian approximation is serviceable in practise.After solving the integrals the negative log of the posterior (26) is written as� lnP (Dj�; �) = ��EMPW � �EMPD � 12 ln jAj+ k2 ln�+ N2 ln� � N2 ln 2� (30)We can now �nd the optimum values of the hyperparameters by setting the the partial derivativesof (30) equal to zero and solving the resultant equations. (For non-quadratic ED(EW) this is onceagain an approximation). This gives � = 2EMPW (31)� = N � 2EMPD ; (32)where is the e�ective number of parameters ; it measures how much structure from the datais incorporated into the network parameters or, to rephrase it, how many parameters are welldetermined by the data. Let �a be the k eigenvalues of M , calculated in the natural basis for theprior, i.e. the basis where the Hessian for the prior is the identity matrix, and EW = 12Pi2w w2i . is de�ned as = kXa=1 �a�a + �; (33)where each term in the sum is a number between 0 and 1; thus ranges from 0 to k.This means that evaluating requires the calculation of the Hessian of M . If this is not possibleor too computationally expensive some numerical approximation can be used, for example thefollowing approximate re-estimators �c = kc2EcW (34)� = N2ED ; (35)where kc is the number of parameters in regularisation class c. We interpret this as no longerdistinguishing between well and poorly determined parameters. The advantage with these expres-sions are that since they are very cheap to compute it is a�ordable to update the regularisationfrequently whereas in the case where we calculate the e�ective number of parameters we have to�nd the balance between updating frequency and the computational cost.

Regularisation of Mixture Density Networks 14Regularisation Classes MacKay has shown that for some problems it can be bene�cial tointroduce di�erent regularisation classes, which means that we partition the weights into di�erentdisjoint groups (it does not, however, need to be exhaustive, i.e. some weights, like biases, may notbelong to any regularisation class). A common grouping is to have di�erent regularisation groupsfor �rst and second layer weights and distinguish between weights and biases. The motivationbehind this is that these groups can have weights of di�erent magnitudes due to, for example,scaling di�erences between input vectors and target vectors. The mis�t function (25) is thenmodi�ed to be M(w) = CXc=1 �cEWc + �ED where EWc = 12 Xi2wc w2i ; (36)and the re-estimation formulae for the hyperparameters change into�c = c2EMPWc (37)� = N �PCc=1 c2EMPD ; (38)where C is the number of regularisation classes and c is the sum of the eigenvalues correspondingto regularisation class c.2.2.2 Applying the Evidence Procedure to Classi�cationConsider a data set D = fxn; tng where x is the input vector as in the previous section and tn isa vector with 1-out-of-M coding with a 1 in column corresponding to the correct class and zerosfor all other columns. For classi�cation the objective function is no longer the sum-of-squaresbut some information based measure like the cross-entropy (Bishop, 1995). For the two class casethis corresponds to a logistic distribution. In the context of MDN's, a mixture of two kernels is,however, hardly very useful, so we focus on the case with more than two classes, which uses thegeneralised logistic, the softmax ((Bridle, 1990)).The cross-entropy for M classes is de�ned asG(Djw) = � NXn=1 MXi=1 tni ln �i(xn;w); (39)where �i(xn;w) is the softmax transformation of the network outputs zi as follows�(xn;w) = exp(zi(xn;w))PMj=1 exp(zj(xn;w)) : (40)The mis�t function from (25) transforms intoM(w) = �G+ �EW : (41)Here we can see that the term �ED has been replaced by �G. This is valid when the targets areorganised in a 1-out-of-M coding.We can now use (41) to �nd the most probable weights analogously to the regression case but notethat the expression for the Hessian also changes since it depends on M(w). The regularisationconstant � can be evaluated as before using the new mis�t function and (31).For regression, the evidence procedure, is exact for generalised linear regression (GLR), for examplea RBF network with �xed centres and linear outputs, because for these modelsM is quadratic. Inin the classi�cation case it is an approximation because G is non-quadratic and this will slow downthe convergence since we are approximating a non-quadratic error function with a quadratic one.MacKay motivates the validity of this approximation with the central limit theorem; `We expectthe posterior to converge to a set of locally Gaussian peaks with increasing quantities of data.'

Regularisation of Mixture Density Networks 152.2.3 Training the networkThe values of the weights are determined by non-linear optimisation of M . To do this we needan initial estimate of �. The evidence framework does not give us a method to systematicallydetermine the initial value. If similar networks have been trained on the same data their �nal �can be used to get an initial guess of the right magnitude. The initial choice is not critical tothe convergence of the algorithm. After a few iterations of the optimisation algorithm we stop tore-estimate the regularisation parameter. In theory the re-estimation formula is only valid at alocal minimum of the cost function but it is still serviceable away from the minimum and as theoptimisation of M proceeds the quality of the � update will increase until we reach a minimum.MacKay re-estimated � and � every other iteration. The e�cency of the quasi-Newton optimiserrelies on its estimate of the inverse Hessian. The optimiser starts with the identity matrix andfor every iteration the approximation is re�ned with an update rule. For frequent updates ofthe regularisation parameters it is important to maintain the estimated Hessian in the optimiserotherwise the convergence rate will decrease to a similar rate of the gradient descent. In the sameway care has to be taken with other quadratic optimisation routines in order to not decrease theirconvergence rate.2.3 A Bayesian Approach to Input Dependent NoiseThe evidence framework described in Section 2.2 assumes that the noise on the targets is constant.It is easy to invent situations where this assumption is not true. (MacKay, 1992b, Section 6)gives an outline for a solution to this problem and (Qazaz, 1996; Bishop and Qazaz, 1997) haveinvestigated this for the case of a single Gaussian kernel at the output using generalised linearmodels (RBF networks with �xed centres in the hidden layer) and showed that this approachreduces the bias in the estimated variance compared with a traditional ML approach. The rest ofthis section is a review of their work.2.3.1 The ModelIf we want to be able to model input dependent noise we need to let �, the inverse variance, bea function of the input vector. One way to achieve this is by using another network to estimate�. Using this idea we have two networks, one that models the mean and one that models theinverse variance. The networks are chosen to be RBF networks with �xed basis functions becausethis simpli�es the analysis but they could in principle be MLP networks (but that requires furtherapproximations in the following calculations).The likelihood for the data set can be written asp(Dju;w) = 1ZD exp�� NXn=1�(xn;u)En�; (42)where ZD is a normalisation constant ZD = NYn=1�2��n�1=2; (43)En is the sum-of-squares error En = 12�y(xn;w)� tn�2; (44)and the two networks are de�ned to bey(xn;w) = wT�(xn) (45)�(xn;u) = exp�uT (xn)�; (46)

Regularisation of Mixture Density Networks 16where u and w are the weights for the respective networks. The design matrices �(xn) and (xn)are the output of the �rst (non-linear) layer of the RBF networks where one of the basis functionsis a constant, �0 = 0 = 1, so the corresponding weights represent bias parameters. Note that theinverse variance � is modelled as an exponential to prevent it from being negative. This will alsodiscourage � from going to zero, which would cause the likelihood to approach in�nity.2.3.2 Hierarchical Bayesian analysisThis is the same approach as in section 2.2.1 but the generalisation that allows � to be a functionof the inputs increases the hierarchy with one extra layer.First Level On this �rst level of inference we want to infer the most probable weights, wMP .We can do this by �nding an expression for the posterior of w and maximising that. At this stagewe temporarily assume that the value of all other relevant parameters, uMP and �w are known.The posterior of w can then be written asp(wjD;uMP ; �w) = p(Djw;uMP)p(wj�w)p(DjuMP ; �w) (47)by using Bayes' rule. The denominator of (47) is insigni�cant at this stage of inference and canbe omitted since it is independent of w. Before we can do any inference we need to de�ne a priorover w and as in Section 2.2, we choose a Gaussian distribution p(wj�w)p(wj�w) = ��w2� �kw=2 exp���w2 kwk2�; (48)where kw is the length of the parameter vector w. Substituting (42) and (48) in (47) yieldsp(wjD;uMP ; �w) = 1ZD(uMP) exp�� NXn=1�nEn� 1Z�(�w) exp���wEw(w)�; (49)where all quantities have been de�ned in Section 2.3.1. Taking the negative log of (49) and omittingconstant terms with respect to w givesM(w) = NXn=1�nEn + �w2 kwk2: (50)The most probable weights, wMP can now be found by maximisingM(w) for a �xed u and �w.This can be done by solving a set of linear equations.Second Level After �nding the most probable weights for the regression network we can nowmove on to infer the most probable weights for the network estimating the inverse variance. Thecorrect Bayesian approach is then to marginalise over all possible regression weights. This makesour estimate of the inverse variance independent of the mean. If we do not use marginalisation themean will inevitably �t some of the noise, since it is indistinguishable from the true data whichwould cause the variance to be underestimated.The posterior with respect to the inverse variance is written, using Bayes' rule, asp(ujD; �w; �u) = p(Dju; �w)p(uj�u)p(Dj�w; �u) : (51)Once again the denominator of the posterior can be discarded due to its independence of u. Theprior p(uj�u) is chosen to be Gaussian in the same way as for the prior over w,p(uj�u) = ��u2� �ku=2 exp���u2 kuk2� (52)

Regularisation of Mixture Density Networks 17where ku denotes the length of the vector u.The factor p(DjuMP ; �w), from (51) can be recognised as the denominator from (47) and it canbe written as p(Dju; �w) = Z p(Djw;u)p(wj�w)dw: (53)The integral in (53) can be solved analytically for GLR and after taking the negative log anddiscarding constants with respect to u we getS(u) = NXn=1�nEn + �u2 kuk2 � 12 NXn=1 ln�n + 12 ln jAj; (54)where A is the Hessian of S(u) which can be written asA = NXn=1�n�(xn)�(xn)T + �wI: (55)The term ln jAj is interesting since it is the only term that di�ers from what we would get with apenalised ML approach and it originates from the marginalisation over w.To �nd uMP we cannot use linear techniques in the same way as we solved wMP because S(u) isnon-linear in u. For this case (slower) non-linear optimisation algorithms have to be employed.Third Level Thus far the most probable values for u andw have been inferred and the remainingtask is to �nd the most probable values for the regularisation constants, �w and �u.The posterior for the alphas isp(�u; �wjD) = p(Dj�u; �w)p(�u; �w)p(D) : (56)The denominator can be discarded since it is independent of the regularisation constants. Theregularisation constants are assumed to be independent so p(�u; �w) = p(�u)p(�w) and if we chosea at prior over these, which corresponds to our lack of knowledge about their correct values, (56)reduces top(�u; �wjD) = p(Dj�u; �w) = Z p(D;uj�u; �w)du = Z p(Dju; �w)p(uj�u)du (57)The term p(D; j�w) can be recognised from the second level of inference as (53). We now continueto marginalise over the u but this integral is not tractable. However by Taylor expanding aGaussian approximation of S(u) and some algebraic manipulation we getp(Dj�u; �w) / (�w)kw=2(�u)ku=2jHj�1=2 exp���wEW� exp��M(uMP)� (58)where jHj is the determinant of the Hessian with respect to u at uMP , which is written asH = @2S(u)@u2 ���uMP (59)We can then form a mis�t function, W (�u; �w), by taking the negative log of the posterior ap-proximation in (58) as followsW (�w; �u) = � lnp(Dj�u; �w)= �wEW + �uEU � kw2 ln�w � ku2 ln�u + 12 ln jAj+ 12 ln jHj (60)

Regularisation of Mixture Density Networks 18At the minimum of W the most probable hyperparameters satisfy�wMP = w2EW (61)�uMP = u2EU (62)where w and u are the e�ective number of parameters as explained in Section 2.2.1. And it isalso possible to use the cheaper approximative re-estimation formulaes from (31) and (32).Training the Model The training is divided into three di�erent stages that coincide with thelevels of inference described earlier, as follows:1. Optimise u with non-linear techniques for a given w.2. Optimise w with linear techniques for a given u.3. Re-estimate the regularisation constantsWe repeat these steps until convergence is reached. Note that u is optimised for several iterationswith non-linear algorithms while the optimal w is calculated by solving a set of linear equations,for a given u, which is computationally cheaper. At every new step the last value of the parametersare used as initialisation.2.4 Modelling the Complete Covariance MatrixAnother interesting approach to modelling both the conditional mean and variance has been carriedout for Gaussians. Williams (1996) has investigated a model where the full covariance matrix ismodelled and demonstrated good results with this method on both synthetic data and real life�nancial time series.The density function for a c dimensional Gaussian with covariance matrix � and mean, � can bewritten as p(tjx) = 1(2�)c=2j�j1=2 exp �12(t� �)T��1(t� �)!: (63)We now want to use a neural network to generate the parameters of a Gaussian that models thetarget vector, when we propagate the input vector through the neural network. This is the sameidea as for the MDN in Section 2.1. The only extension we need is to include the non-diagonalelements in the covariance matrix.The covariance matrix is always a symmetric positive de�nite matrix. This means that we can usethe Cholesky decomposition to �nd a triangular matrix that satis�es��1 = STS: (64)It is then possible to model the elements of S as followssii = exp(zii) i = 1; 2; : : : ; c (65)sij = zij i = 1; 2; : : : ; c� 1 j = 2; 3; : : : ; c; i < j: (66)The mean is simply modelled as �i = z�i i = 1; 2; : : : ; c: (67)

Regularisation of Mixture Density Networks 19For the normalisation term we need to evaluate the square root of the determinant of the covariancematrix and this becomes very simple since S is a triangular matrix. The square root of thedeterminant of the covariance matrix can be written asj(�)j�1=2 = �jST jjSj�1=2 = � cXi=1 sii�� cXi=1 sii�!1=2 = cXi=1 sii: (68)2.4.1 The LikelihoodThe negative log likelihood for this model can be written asE = NXn=1En (69)where the error for each pattern isEn / 12 log j�nj+ 12(tn � �n)T j�j�1(tn � �n) (70)under the assumption that the observations are jointly independent. In order to obtain a MLestimate we optimise the weights to minimise the error and for more e�cient optimisation thegradient of the error function can be used. To calculate the gradient we �rst introduce two newde�nitions to simplify the calculations�i = �i � ti i = 1; 2; : : : ; c (71)�i = cXj=i �ij�ij i = 1; 2; : : : ; c: (72)The error function for one pattern can then be written asE = cXi=1�12�2i � z�ii� (73)where we have omitted the indices on the patterns. The gradient of (73) can the be written as:@E@y�i = iXj=1 �jsji i = 1; 2; : : : ; c; (74)@E@y�i = �i�isii � 1 i = 1; 2; : : : ; c; (75)@E@y�ij = �i�j i = 1; 2; : : : ; c� 1; j = 2; 3; : : : ; c; i < j: (76)2.4.2 Training and RegularisationThe model can then be trained with ordinary non-linear optimisation, with or without regulari-sation. The regularisation can be achieved by adding a regularisation term (penalised likelihood)or by pruning (Williams, 1994), i.e. where we start training with a large network and during thelearning process we remove hidden units with some objective criteria until we have matched modelcomplexity with the complexity of the data.

Regularisation of Mixture Density Networks 202.5 Training of RBF networks for classi�cationIn Nabney (1998), an e�ective method for training RBF networks in classi�cation tasks is intro-duced. Here the position of the centres in the RBF network are �xed and the model is e�ectivelya generalised linear model. For the theory of GLM see McCullagh and Nelder (1983). If the RBFnetworks have linear outputs the likelihood L, is a quadratic form with respect to the weights w,L = (T��w)T (T��w); (77)where T denotes the target matrix and � is the design matrix. Equating the derivative of (77) tozero gives the normal equations (�T�)w = �TT (78)which we solve by computing the pseudo-inverse �y of � and setting w = �yT. This is numericallymore stable than computing explicitly the inverse of the square matrix �T�.The drawback with linear outputs is that the outputs cannot be interpreted as probabilities. Ifwe want this interpretation we once more need to use the logistic and softmax functions on theoutputs but this will lead to a non-quadratic likelihood function and we have to resort to iterativemethods for the solution. The Fisher scoring method updates the parameter estimates w at the rth step by wr+1 = wr � fE[H]g�1 @L@w (79)where the Hessian is H = @2L=@w@wT . In our case, the expected value of the Hessian coincideswith the Hessian and this update rule is equivalent to the Newton-Raphson algorithm. This isnormally not a good idea since it is easy to over-shoot the maximum, but for the logistic modelthere are two special features that make it work well in practise. First L has a single maximumand second it is possible to initialise w reasonably close to that maximum.For the logistic model the Hessian is equal to ��TD�, where D is a diagonal weight matrix whoseelements are �n(1� �n). The gradient is equal to �TDe where the nth row of e is given byen = (tn � �n)=f 0 (80)where f 0 is the derivative of the link function, which is �n(1� �n) for the logistic model. We cannow write the linearisation of the link function around the mean to be zr = �Twr + e and theupdate formula (79) changes into (�TD�)wr+1 = �TDrzr (81)which is the normal format equation for an input matrix �TD1=2r and dependent variable D1=2r zr.The weights D change each iteration, since they are a function of w. The algorithm is known asiteratively re-weighted least squares (IRLS).For the initial step we set �n = (tn +0:5)=2 as a �rst estimate of �n and this enables us to derivethe other quantities required.For the multiple class case things are a bit more complicated. If we assume independence of theoutputs we achieve the same update rule for the logistic case, but this is a poor approximationof the Hessian. It is however good enough for the initialisation step, with the small modi�cationthat the initial values of the �n should now be �n = (tn +)=2 where is a constant vector ofthe same dimension as �n with all elements equal to 1=M where M is the number of classes andfor this case the gradient and the Hessian for a single pattern are given by@L@wik = (�i � tnk)�nk (82)@2L@wjl@wik = (�n�ij � �ni �nj)�nk�nl : (83)

Regularisation of Mixture Density Networks 21Without the independence assumption the Hessian normally becomes very ill-conditioned but usingsingular value decomposition it is still possible to solve the Fisher score equations. The expressionfor the gradient and Hessian can be found in Nabney (1998), together with more details on thesoftmax case.

Regularisation of Mixture Density Networks 223 Regularisation of MDNs with Fixed KernelsIn this section I present a procedure for regularising Mixture Density Networks under the constraintthat the mean and variance of the spherical Gaussian kernels are �xed. Under this assumption Ishow how to derive an expression for the error function and how the regularisation hyperparameterscan be estimated following the evidence framework. I then give guidelines for setting sensible valuesfor the mean and variance of each kernel in the Gaussian Mixture, which is required if the modelis to perform well. Finally I describe how to modify the results for the case when a RBF networkgenerates the mixture coe�cients.3.1 Modifying the Mixture Density Network Model.Let us assume that the output mixturemodel consists ofM normalisedGaussians, f�1; �2; : : : ; �Mgfor which the mean and variance are known and �xed. This assumption simpli�es the optimisa-tion task compared with the MDN from section 2.1 where these parameters were also found byoptimisation at the same time as the mixing coe�cients.The likelihood, with respect to the network weights w, is nowp(Djw) = G = NYn=1 MXi=1 �i(xn;w)�i(tn) (84)where the mixing coe�cients �i(xn;w) have been normalised with the `softmax' transformation(Bridle, 1990) as in (8).The di�erence between (84) and the corresponding likelihood for the standard MDN is that thekernels �i(tn) are no longer dependent on the input vector or the network parameters w.Our task is now to infer the most probable network parameters, wMP , by using the evidenceprocedure from Section 2.2 with the new objective function G from (84).3.1.1 The New Mis�t FunctionIf we assume a Gaussian prior on the weights as in (17), with � as the hyperparameter controllingthe distribution, and use (84) as the likelihood function the mis�t function from (41) becomesM(w) = �wEW � lnG = �EW (w) � NXn=1 ln MXi=1 �ni �ni ! (85)Minimising (85) will give us the locally most probable weights wMP .The update formula for the hyperparameter � is still given by (31) where is calculated from theHessian of the modi�ed mis�t function.3.1.2 Initialisation of the Fixed ParametersAs mentioned earlier, the MDN optimises all parameters in the Mixture Model but when we �xthe mean and variance of each kernel we need to determine them in the initialisation step. If wedo not choose these values sensibly the model will not be able to adjust the mixing coe�cients inorder to model the data well. We need to �nd guidelines on how to set these values in order toensure good general approximation abilities.

Regularisation of Mixture Density Networks 23In theory we would like to use an in�nite number of kernels and truly have a mixture that couldmodel any density to arbitrary precision. The number of kernels needed grows exponentially withthe dimension of the target space and this is an example of the `curse of dimensionality'. In practicewe can only a�ord to use a small number of kernels, even with state-of-the-art computers since thecomputational task becomes very expensive. In the following section a simple and general way ofinitialising the mean and variance is presented.The Means Here my suggestion is to place the kernels equidistantly in the range of the targets.The only prior knowledge needed is in what range the targets reside. Computationally, this is avery cheap solution.One alternative would be to use some clustering algorithm, as we used to initialise the second layerbias weights for the standard MDN in Section 2.1.4. This will distribute the kernels according tothe density of the targets. It is however not clear that we can always represent multiple branches inthe whole of the target space since the number of kernels are �nite, and in practice only relativelyfew kernels can be used before the model gets too computationally demanding. The real drawbackis that we have to set the variance of each kernel independently since the distance between kernelsvaries. I believe that if this kind of advanced initialisation is needed it is probably better to use aMDN with movable kernels and optimise the mean and variance for each kernel.The Variances The problem of setting the variance can best be described with a Swedish word,`lagom', which means not too much nor too little, but just the right amount. Strangely enoughmany languages do not have this word but following sections will describe a procedure to set thevariance of the kernels to `lagom' values.If the variance is set to too small a value we will get very sharp peaks at the kernel means but ifwe attempt to move the peak to an arbitrary point between two kernels by changing the mixingcoe�cients it goes wrong. Instead of getting one single peak in the middle we get two peaks, one ateach kernel's mean. The variance has to be set large enough to generate one single peak anywherein the interval between the kernels and this value serves as a lower bound on the choice of sigma.On the other hand; what happens for too large a variance value? This is not as serious as toosmall a value since it will always generate a single peak. What can happen is that peak becomesatter, which will decrease the likelihood and this gives a (soft) upper limit on the variance.Between the lower and upper limit there ought to be an optimum choice. The criterion for thisoptimum is found by maximising the curvature for the point between the kernels with the lowestcurvature. Figure 3.1.2 illustrates this.To calculate the optimum variance we introduce f(�; x; �1; �2; �) to be a mixture of two Gaussianswith the same variance as followsf(x; �; �1; �2; �) = � 1(2�)1=2� exp �jjx� �1jj22�2 !+ (1� �) 1(2�)1=2� exp �jjx� �2jj22�2 ! 0 � � � 1(86)where � is the mixing coe�cient. In these calculations �1 = 0 and �2 = 1 will be used but thecalculations can be carried out for arbitrary kernel means.Di�erentiating f two times with respect to x gives the curvature of f which we denoteh = @2f@x2 = 12p2���exp�� x22�2 ��3 + x2 exp�� x22�2 ��5 � exp�� (x�1)22�2 ��3 + (x� 1)2 exp�� (x�1)2�2 ��5 �(87)The point with the lowest curvature is the point exactly in the middle between the kernels andthat means that to calculate the optimal variance we can set x = (�1 + �2)=2 = 0:5 and � = 0:5.

Regularisation of Mixture Density Networks 24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

pr
ob

ab
ili

ty

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

pr
ob

ab
ili

ty

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

pr
ob

ab
ili

ty

(c)Figure 7: The �gure illustrates the e�ect di�erent choices of the variance �2 have on a mixtureof two Gaussians. In (a) the variance is half of the optimum. In (b) the variance isthe optimum value, � = 0:674 and in (c) twice the optimal value.

Regularisation of Mixture Density Networks 25By using these values for � and x and di�erentiating (87) with respect to the variance we get@h@� = 132 exp�� 18�2 ��48�4 � 24�2 + 1� (88)The optimal variance can now be calculated by solving (88). This gives two solutions where the�rst, �2 = (3�p6)=12 can be discarded because it is below the lower limit of the variance. Thesecond, �2 = (3 +p6)=12, is the optimal solution.To conclude, for a mixture of two kernels the maximum curvature for the point with the minimumcurvature is achieved with a variance of �2 = ((�1 + �2)=2)2(3 + p6)=12 and this is the onlymaximum where the constraint that the two mixing coe�cients sum to unity holds and we have asingle peak solution.The result is adequate for more than two kernels because we can always choose to set all but twomixing coe�cients to zero which will lead us back to the special case but the analysis cannot becarried out in full detail for more than two kernels.3.1.3 Using a RBF Network to Generate the Mixture Coe�cients.The theory in Section 3.1 does not make any assumptions about the structure of the network usedto generate the remaining parameters for the mixture model. We have however chosen to use anRBF network instead of theMLP network that was originally used in theMDN. One reason for thisis that the calculations for the Hessian and gradient with respect to the (second layer) weights canbe carried out analytically without the use of back propagation. It will also give us the possibilityto initialise our weights a lot closer to the solution than with the MLP case.For the non-linear optimisation of the mis�t function (85) we need the gradient, and the new partis the gradient of G which, for a pattern n, is@G@wir = 	r��i � �i�; (89)where � denotes the posterior distribution from (14) and 	 is a N �M matrix where each element	ij is the activation of kernel j for pattern i. r ranges over all hidden units and i over all kernels.Note that the dependencies on n have been left out. The Hessian for one pattern n is given byH = @2G@wjs@wir = 	r	s��ij(�i � �i)� �i�j + �i�j�; (90)which is for the re-estimation of �. The full derivations of the gradient and the Hessian can befound in Appendix A. Note that the Hessian, H, is not positive semi-de�nite and caution has to beexercised when calculating the number of e�ective parameters, . We have chosen to set negativeeigenvalues to zero in order to ensure H is positive semi-de�nite.3.1.4 Initialisation of the Second Layer WeightsOne advantage of using RBF networks inMDN is that we can use the linear structure of the secondlayer to get much better initialisation than for the originalMDN with an MLP network. In section2.5 we looked at a way to do this initialisation, but this technique does not take any penalty termsfor regularisation into account. It is not possible to use this method directly since it will normallylead to weights with a large magnitude. This solution is in most cases far from the minimum ofthe cost function we are trying to optimise.Since we are developing an initialisationmethod the result does not have to be exact; it will only beused as a �rst estimate of the weights. For this reason we approximate the softmax transformationof the network outputs with independent logistic output functions to simplify the procedure.

Regularisation of Mixture Density Networks 26Under these assumptions the expressions for the gradient and the Hessian have an additional termcorresponding to the weight decay term of the cost function. The gradient changes into �De andthe Hessian is equal to ��TD�.Substituting the expression for the gradient and the Hessian into (79) yieldsw = (1 + �)w0 + ��TD�+ �I��1�TDe; (91)where w denotes the weights after the initialisation and w0 is the initial value of the weights.This is no longer the normal form equations and we have to carry out a full inversion of (�TD�+�I)in order to solve for w. However, the fact that � is positive and adds to the diagonal improves thecondition number of the matrix which will to some extent reduces the numerical errors that areintroduced by the matrix inversion. By substituting z = �Tw + e into (91) we obtainw = ��TD� + �I��1�TD(z + ��w0) + (1 + �)�w0: (92)The value of w0 is set to w0 = �ya where a denotes the activations of the outputs (since a = �w0).The initial estimate of the outputs used in section 2.5 is su�cient to derive the activations.Due to a mistake in the algebra, (92) was not used in the experiments. Insteadw = ��TD�+ �I��1�TDz: (93)In (93) some terms were omitted. The e�ect of this error is small for � close to 0 and in theexperiments small � values have been used during the initialisation. For example, the di�erence inthe cost function M between the two solutions, for a network with 18 kernels and 36 hidden unitswith a single regularisation class was less than �ve percent. After training the network parametersthe e�ect of the error ought to be even smaller since it does not a�ect the training in any way.I believe the �nal performance of the networks was not su�ciently a�ected by this mistake tomotivate a complete re-run of the experiments.

Regularisation of Mixture Density Networks 274 Experimental ResultsIn this Section the regularisation method presented in the previous section is tested on two datasets. The �rst data set is a synthetic set and the second is a real life data set. I compare theregularised and unregularised case and discuss the results.4.1 The S-curve experiment4.1.1 The Data SetThe data used in this experiment comes directly from (Bishop, 1994) The data was generated bythe following model x = t+ 0:3 sin(2�t) + 0:2�; (94)where � is Gaussian noise with zero mean and unit variance. The training and validation setsconsist of 300 patterns each and the test set of 900 patterns. This is a multi-valued function, sincefor some x values the conditional density p(tjx) has up to three separate modes.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

Figure 8: A scatter plot of the 300 data points in the training data that was generated withx = t+0:3 sin(2�t)+0:2� where � is Gaussian noise with zero mean and unit variance.For some x values there exists multiple t values, for example, x = 0:6 gives twodi�erent modes of the posterior distribution, one at t � 0:35 and one at t � 0:8.4.1.2 Con�gurationsThe models are divided into three di�erent categories that will be compared with each other inthe results section.MDN(MLP) The �rst category is the standard MDN as described by (Bishop, 1994). Networkswere trained with 3 kernels and di�erent numbers of hidden units (5, 10 and 15). The training wasdone with the quasi-Newton optimiser for up to 2000 iterations with `early stopping'. This wasrepeated three times with di�erent random seeds resulting in a total of 9 networks.MDN(RBF, single-reg) In the second category the kernel means and variances were �xed. Themeans were positioned uniformly in the interval from 0 to 1 and the variance was calculated as in

Regularisation of Mixture Density Networks 28Section 3.1.2. For this model, it is interesting to vary, in addition to the hidden units and randomseed, the number of kernels (10, 30, 50). In total 27 networks were trained with the quasi-Newtonoptimiser for up to 300 iterations or until the error function converged with a change smallerthan 0:0001. In the RBF networks thin plate spline (TPS) activation functions were used, andtheir positions determined by 20 iterations of the EM-algorithm. The second layer weights wereinitialised with the method described in section 3.1.4 for � = 0:05. The regularisation consistsof one parameter class for all second layer weights, with the biases excluded, which were updatedevery 4 iterations with the modi�ed evidence procedure using the update rule which requires theHessian to be calculated. Note that when the number of ops is given the actual calculation of theHessian is excluded since this part is written in C for e�cency reasons.MDN(RBF, multi-reg) The �nal category is a small modi�cation of the previous category wherethere is now one regularisation class for each network output, i.e. each mixing coe�cient.4.1.3 ResultsAfter training the networks their performance was evaluated on the test set with the objectivecriteria that will be explained later in this section. The best network of each type was chosen andwill represent its type in all plots in this section. The parameters for the best networks of eachtype can be seen below.Model Type Hidden units Kernels RunMDN(MLP) 15 3 1MDN(RBF, single-reg) 10 30 1MDN(RBF, multi-reg) 10 30 1The following subsections discuss interesting features of the results and the main di�erences be-tween the di�erent categories.Errors The error for the di�erent partitions of the data set can be seen in Figure 9.In (a) we can see that the network reaches a point where the validation and test errors stop decreas-ing but the training error continue to decrease. Interestingly enough this does not lead to muchpoorer generalisation, even if the validation error has some strange behaviour, probably becausethe data set only consits of 300 data points. The test set error has much smaller uctuations.(b) shows the characteristic signs of a regularised network where all errors are well correlated andthe di�erence between the training error and the test set error is small. The frequent updates of theregularisation constant cause small variations in the regularisation constant and these uctuationspropagate forward into the error function. A large amount of the total computation time is spenton a phase where these uctuations prevents the convergence criterion to be met, with very smallimpact on the log likelihood and this is the reason for the di�erent scale on the x axis comparedwith (a) and (c).(c) has well correlated errors but the shape is somewhat odd. The whole error function doeshave the normal monotonic decreasing form. This means that the balance between ED and EWchanges during training and this causes the non-monotonic behaviour of ED . It looks like thenetwork has not converged when the optimisation criteria is reached but this is the network withthe best performance of its category | and other runs of the same network converge on similarlog likelihoods.

Regularisation of Mixture Density Networks 29

0 1 2 3 4 5 6 7

x 10
8

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

flops

−
 N

or
m

 lo
g

lik
el

ih
oo

d

(a) MDN(MLP)

0 2 4 6 8 10 12

x 10
9

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

flops

−
 N

or
m

 lo
g

lik
el

ih
oo

d

(b) MDN(RBF, single-reg)

0 2 4 6 8 10 12

x 10
8

−1.2

−1

−0.8

−0.6

−0.4

−0.2

flops

−
N

or
m

 lo
g

lik
el

ih
oo

d

(c) MDN(RBF, multi-reg)Figure 9: Figure of the data part of the error for the training (solid), and the test (dashed) setduring the training. For (a) the validation (dot-dashed) error has also been plotted.

Regularisation of Mixture Density Networks 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(a) MDN(MLP) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

η

(b) MDN(RBF, single-reg)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

η

(c) MDN(RBF, multi-reg) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

η

(d) Single kernel from (b)Figure 10: (a), (b) and (c) shows the mixing coe�cients for the categories. In (d) a singlekernel from (b) is plotted. Note that the mixing coe�cient is turned on in a regonclose to x = 1 which is from the kernels `responsibility' since the mean of the kernelis 0:0345.Mixing coe�cients Figure 10 shows the mixing coe�cients for all categories. They all more orless look as expected and the only thing to point out is the behaviour at the edges of the interval.(d) is a plot of a single kernel, with its mean at 0:0345, from (b). We would expect the kernelto have a non-zero mixing coe�cient only for x values that corresponds to small t values. Theresult is however di�erent; the kernel has a non-zero mixing coe�cient for both small x values closeto zero and large x values near 1 which is as far as possible from its `responsibility' area. Thisinaccuracy is caused by the small number of data points that are actually close to the end points ofthe interval and therefore ED is only marginally e�ected by this `error' while the extra magnitudeof the weights required to avoid the `error' will be penalised in EW .The Conditional Probability Density Contour plots of the conditional probability densityhave been plotted in Figure 11.The major di�erence between the plots is the preference for continous functions for the movingkernel models. They imply a belief that if a kernel �ts some data well it is likely that the positionfor new data outside the range of the training data can be extrapolated by assuming that the kernelmeans are a smooth function. This is illustrated in Figure 12 where the means of the kernels have

Regularisation of Mixture Density Networks 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(a) MDN(MLP)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(b) MDN(RBF, single-reg)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(c) MDN(RBF, multi-reg)Figure 11: The plot shows the conditional probability density for the networks. (a) hasvery smooth contours but the mixing coe�cients have not `turned o�' unneces-sary branches enough everywhere. (b) and (c) on the other hand have �tted theprobability density well but have more ragged contours.

Regularisation of Mixture Density Networks 32

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 12: The kernel means for a MDN(MLP) are superimposed on the training data. Notethat the means for x values outside the region of 0 and 1 have been extrapolatedwithout any training data in that region.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

Figure 13: The plot shows the conditional probability density for a MDN(RBF, single-reg)that has only been initialised and is still to be trained with non-linear optimisationtechniques. Most of the probability is well correlated with the density of the trainingset but some of it is smeared out in other areas of the target space.been superimposed on the original data set for x values ranging from �0:3 to 1:3. (b) and (c)do not exhibit this behaviour. The mixing coe�cients are optimised to �t the data well withoutany constraints on continuity for �xed kernels. However this approach also has its problems; twosmall islands of probability appear in the upper left and lower right corner. This can be seen asover-�tting at the edge of the interval where the data points are sparse for the reasons given in thediscussion about the mixture coe�cients earlier in this section.E�ects of initialisation The networks with �xed centres were initialised with the algorithmdescribed in Section 3.1.4 and the results for the MDN(RBF, single-reg) is in Figure 13. The resultof the initialisation is very good. To train a MDN(MLP) to the same stage of the training wouldtake quite a few iterations. Note that some probability mass is more di�use and the S-shape ofthe density is not as sharp as for a network that has been optimised | but for an initialisation,the result is surprisingly good.Weight Decay Parameters The regularisation constants are updated as described in section3.1.1. Figure 14 (a) shows a text book example of how we want the parameters to evolve | avery quick convergence to the �nal value. The results for the multiple regularisation classes in (b)are surprisingly di�erent from the single regularisation classes case in (a). Since we now have one

Regularisation of Mixture Density Networks 33

0 50 100 150 200 250 300
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

iterations

α

(a) MDN(RBF, single-reg) 0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

iterations

α

(b) MDN(RBF, multi-reg)Figure 14: The �gure shows how the regularisation constants change during the training. Theregularisation constant was re-estimated every fourth iteration. For (a) it quicklystabilises close to the �nal value where in (b) it starts to oscillate for a few of the 30regularisation classes. More and more classes seem to get involved in this oscillationregularisation class per kernel, the most likely explanation is that for kernels responsible only fora few patterns, the evidence framework breaks down as there are too few patterns compared withthe number of parameters. However, increasing the size of the training data set from 300 patternsto 1000 did not help. The phenomenon remained and the oscillation occured for most networksindependently of the number of kernels and hidden units. The problem did not occur for a singleregularisation class. The other explanation I can think of is a software problem but I have notbeen able to identify any such problem.Making Predictions with the Model Since the output from the model is a whole distributionthere are several possible methods for making predictions. In many cases we are however restrictedto just making a prediction of a single point in target space and the normal choice is then to choosethe most probable value. For the plots in Figure 15 non-linear optimisation on the one-dimensionalconditional distribution p(tjx) has been used to �nd the most probable value, the highest mode,which has been plotted together with the training data set.For (a) the predictions seem like a logical choice, whereas the predictions of (b) and (c) are notequally obvious. Movable kernel models are more likely to produce interpretable results becauseof their preference for continuous functions. For the �xed kernel centres the predictions are simplywhere the model has allocated the highest probability. This leads to quanti�cation into a fewdiscrete output values, whereas the movable kernel models produce smoother outputs where almostevery t value can be generated for a suitable input vector. This raises the question whether largervariances should be used for the kernels to increase the smoothness inspite of the results in thetheory. However if we look back at the initialisation in Figure 13 this plot is very smooth andshows that the variances are su�ciently big for smooth output distributions. This suggests thatthe problem is the value of the second layer weights and that the likelihood is greater for thequantised case.Error Residuals By constructing histograms of the residuals of the prediction error of the testset and the true targets, (y � t) we can study the error distribution. The residuals are plottedin �gure 4.1.3. The sub-plot in (c) shows that most of the predictions are a solution but it issometimes the wrong solution | which is inevitable, and this is why the residual distribution hasthree modes. For the two �xed centre models this tri-modal structure is very clear.

Regularisation of Mixture Density Networks 34

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(a) MDN(MLP)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(b) MDN(RBF, single-reg)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(c) MDN(RBF, multi-reg)Figure 15: The plots shows the most probable t-value (highest peak of the output distribution).(a) represents the original function well. (b) and (c) on the other hand producesgood predictions but without preference for continuous functions.

Regularisation of Mixture Density Networks 35

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(y−t)

fr
ac

tio
n

of
 p

at
te

rn
s

(a) MDN(MLP)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(y−t)

fr
ac

tio
n

of
 p

at
te

rn
s

(b) MDN(RBF, single-reg)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(y−t)

fr
ac

tio
n

of
 p

at
te

rn
s

(c) MDN(RBF, multi-reg)Figure 16: Histograms of the test set residuals (y � t).

Regularisation of Mixture Density Networks 36Model Hid. Units Kernels Avg. Norm. RMS (opt) Avg. RMS (max�)MDN(MLP) 15 3 0:00458 0:00548MDN(RBF, single-reg) 10 30 0:00073 0:00096MDN(RBF, multi-reg) 5 30 0:00130 0:00150Table 1: Normalised RMS test set error averaged over the di�erent runs with the same con�gu-ration for the best networks out of each the category. The �rst column of RMS errorsis when the predictions are based on the highest mode, where the second is based onthe largest mixing coe�cient (the kernel with most probability mass).Root Mean Square error (RMS) The drawback with the method of error residual histogramsis that it requires someone to look at the graphs, and sometimes it is hard to tell which networkis performing best. What we would like to have is an objective criterion that measures the per-formance as a single �gure. The criterion should encourage models with multiple solutions andpenalise models that only predict the average of the individual solutions. When we have accessto the true generator function of the data this can be used to achieve the criteria by transformingthe predictions back to the input space and then calculating the RMS error (and normalise it bydividing by the number of patterns).This �gure does not, however, say anything about how good the second and third solutions are,because we are always using the �rst (most probable) solution in the calculation of the error.The normalised rms error was calculated for all the networks in each category on the test set,which consists of three times more data points than the training set. The full tables are availablein Appendix B.1 and a summary can be seen in table 1 where the best average error out ofeach category has been selected. The two models with �xed centres perform slightly better thanthe adaptable kernel models. One reason for this could be that the number of branches of thedata varies, which is better modelled by the con�gurations with �xed kernels since they have lesspreference for continuous functions. The di�erences are however marginal; all models are workingwell.4.1.4 DiscussionFixed or Adaptive Kernels? A key question is whether the kernels should be �xed or adap-tive? There are advantages with both but there are some key points to consider. An adaptivekernel model will model the variance directly and this can easily be extracted; the accuracy ofthese estimates is however questionable since the maximum likelihood principle encourages smallvariances for unregularised models. These models also have a strong preference for continuousfunctions and that can a�ect the decision of which model to use. If, for example, we want topredict a time series, a moving kernel approach would probably do well where a �xed centre onewould fail miserably.One of the problems with the �xed kernel approach is that the number of parameters in the modelgrows rapidly. For a network with 10 hidden units and 30 kernels, which is what performed beston this problem, the model already has 340 weights. Out of these weights 300 are in the secondlayer, if we exclude the biases, leaving us with a Hessian consisting of 90000 elements! To getthe recommended ratio between the number of parameters and the patterns in the training setmentioned in the evidence framework we need a training set at least three times as big as thecurrent one. The e�ect of increasing the size of the training set that much is likely to also improvethe results for the unregularised model, which for 10 hidden units and 3 kernels only has 119parameters. What we would like is to combine the e�ect of regularisation with adaptive kernels soas to reduce the number of model parameters.

Regularisation of Mixture Density Networks 37

500 km aft
beam

mid
beam

fore
beam

sa
te

lli
te

 tr
ack

ERS-1

785 km

50km

incidence angle

Figure 17: Scatterometer measurement process.Consistency Another important issue is consistency. Since only three di�erent seeds have beenused it is hard to draw any de�nite conclusions. It does seem as though the MDN(RBF, single-reg)has smaller variations of the performance due to di�erences in the initialisation. For example, ifwe look at the best MDN(MLP) it has a normalised RMS error of 0:00060 while a di�erent seedproduces an normalised RMS error of 0:01158, approximately 20 times worse performance. Forthe best MDN(RBF, single-reg) the di�erence in performance between the best and the worst seedwas only 0:00031. We need to train networks with several more seeds in order to evaluate theconsistency with better accuracy.4.2 Application to Radar Scatterometer DataThis is a geophysical application where the �nal goal is to improve weather predictions. This iscurrently done by a numeric weather prediction (NWP) model that, given the current `state' (i.e.measurements of relevant variables), estimates weather conditions for the future. One of these statevariables is the wind �eld near the ocean surface. It is not feasible to measure these winds directlyand we have to resort to indirect measurements. This is done by measuring radar backscatter witha scatterometer on the ERS-1 satellite. These measurements have been shown to be correlatedwith the wind vector near the sea surface. Our task is to build the inverse mapping from thescatterometer data back to wind speed and direction that can be used by the NWP. Figure 17shows a sketch of how the data is collected. The satellite samples a swathe of the ocean surfacein a single pass. Each swathe is divided into nineteen tracks. For each track we receive a streamof three-tuples, one sample from each scatterometer, per cell. A sample from one scatterometercorresponds to to the average wind speed and direction in that cell. Each tuple is denoted �0n.The target data comes from a NWP model. (This is very computationally intensive to run andgenerates overly smooth wind �elds | hence the interest in using satellite data for more directmeasurement.)Handling Aliases in the Wind Direction The main problem is that the measurements fromthree di�erent antennae on the satellite are ambiguous, i.e. certain measurements do not have aone-to-one correspondence with a unique wind vector. The problem exists for the wind directionand we often get one or more aliases, often 180 degrees from the true wind direction; this isillustrated in Figure 18. This ambiguity leads to a multi-modal posterior distribution and is the

Regularisation of Mixture Density Networks 38

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

Angle a

p(
a|

σ0)

Figure 18: Sketch illustrating the ambiguity of the posterior distribution. The x axis corre-sponds to the angle and the y axis corresponds to the conditional probability of theangle given a speci�c �0 value. Peaks with dashed lines going through them corre-spond to the true wind direction whereas the others correspond to alias directions.Note that the posterior is periodic with period 2�.reason why a MDN is used to model the inverse mapping, instead of a simpler network.The Data Set For training and model evaluation we need labelled data and for this data setthe labelling was made using NWP models. This means that the target may not correspond to thebackscatter �0 because of errors in the model. According to Dr Cornford (personal communication)there exists a substantial number of outliers in this data set and in future work these will beremoved to improve the quality of the data. A further restriction on the data is that all patternscorresponding to wind speeds below 4 meters per second have been removed. The greatest windspeed is around 25 meters per second.In this study the training set consisted of 3000 patterns from track 11, which is a track of averagedi�culty. For the training set and the validation set (consisting of 1000 patterns) the number ofpatterns with high wind speeds was increased because they are rarer than low wind speeds and theyare also of more interest for meteorologists. The test set also consisted of 1000 patterns but wassampled from the natural distribution. The data used is exactly the same data set as in (Evans,1998b). Note that the test set was only used to measure the model performance and it was notused in any way during the training.Other Relevant Research Three di�erent approaches have been used in earlier work. The �rstapproach was to model the wind speed and direction separately. The speed was modelled with aMLP network under a Gaussian noise assumption and the angle was modelled with a MDN usingseveral di�erent kernel functions (Evans, 1998a).The second is to model wind vectors with components u and v (Evans, 1998b). From this vectorthe speed and angle can easily be calculated. Both these methods use only one output predictionfor each pattern and relies on an independence assumption between samples.The third approach relies on these sample correlations and uses the values from eight surroundingcells in addition to the current cell for making predictions (Richaume et al., 1998). The predictionsare made separately for the speed and direction in this model and there is one model for each track.This is di�erent from the wind vector approach where one single model can be trained on data

Regularisation of Mixture Density Networks 39from all tracks and make predictions for the whole swathe.In this study we are only going to model the wind direction since the wind speed is well modelledby conventional MLPs and we do this in the same way as the �rst approach described. TheGaussian kernels we have used earlier are not appropriate for periodic functions; we need to lookat a di�erent kernel that is better suited to this problem.4.2.1 Modelling Probability Distributions for Periodic FunctionsIn order to make predictions in direction space we have to take the periodicity of the targetvariable into account. We choose to do this by using Circular Normal (also known as von Misesdistribution) kernels (Mardia, 1972). These kernel functions can be motivated by considering atwo dimensional vector v for which the probability distribution p(v) is a symmetric Gaussian. Byusing the transformation vx = jjvjj cos(�) and vy = jjvjj sin(�) the conditional distribution of thedirection �, given the vector magnitude, is equal to�(�jx) = 12�I0(m) expfm cos(� � ')g (95)where ' is the centre of each kernel which corresponds to the mean and m corresponds to theinverse variance of a traditional Gaussian distribution. I0(m) is a zeroth order modi�ed Besselfunction of the �rst kind. The m and ' can now be initialised in an analogous way as for kernelsof Gaussians. Because I0(m) is asymptotically an exponential function of m, care must be takento avoid numerical problems with overow in the result of intermediate calculations. The methodpresented in section 3 can now be used to estimate the mixing coe�cients.4.2.2 Con�gurationsFor this experiment we are using three di�erent models on the scatterometer data set. Two of themodels are regularised with a single regularisation class was used and one unregularised model wasincluded for comparison.Unregularised MDN with Early Stopping To see how regularisation a�ects the performanceof the �nal model we have trained a few networks with early stopping for comparison. The networkshad 15; 25 or 40 centres in RBF network and 36 Circular Normal kernels equidistantly positionedin the range from �� to �. The variance was set using a similar method to that described insection 3.1.2 to ensure a su�cient overlap between the kernels. The validation set was used todetermine the stopping criteria and the results evaluated on the test set. The centres of the RBFnetwork were initialised with a maximum of 100 iterations with the EM-algorithm. The remainingweights in the second layer were initialised using the method described in Section 2.5.Regularised MDN Using to Re-estimate the Regularisation Constant This model isthe computationally most expensive because the Hessian needs to be evaluated in order to estimate which will in turn be used to re-estimate the regularisation parameter �. The mean and varianceof the kernels were initialised as for the unregularised case. The initial value of � was subjectivelychosen to a low value 0:001. � was re-estimated every 20 iterations. The models had 15 or 25centres and 18 or 36 kernels, giving a total of four networks. The initialisation of the second layerweights now uses the modi�ed method from Section 3.1.4. Note that when the number of ops isgiven the actual calculation of the Hessian is excluded since this part is written in C for e�ciencyreasons.Regularised MDN with Approximate Re-estimation of the Regularisation ConstantThe only di�erence between this and the previously described model is that the Hessian is no longer

Regularisation of Mixture Density Networks 40needed for the update of �, since we no longer distinguish between well and poorly determinedparameters (see Section 2.2.1). Since the update is now computationally cheap � was updated everyother iteration. The models had 15; 25 or 40 hidden units permutated with 18 and 36 kernels. Foreach combination two di�erent random seeds were used for initialisation of the model parameters.For the regularised models the validation set was not used and the performance was evaluated onthe test set as for the unregularised models. The training was done with up to 2000 iterations withthe quasi-Newton optimiser. These modelss will be referred to as MDN(RBF, unreg), MDN(RBF,Hess-reg) and MDN(RBF, noHess-reg) respectively.4.2.3 ResultsThe Normalised Error for the Data Set. Since the likelihood depends on the width of thekernel functions, it is hard to compare the performance of models with di�erent numbers of kernels.To illustrate the e�ect regularisation has on the di�erent models we look at Figure 19. This �gurecontains the result of training the di�erent models with 25 centres and 36 kernels. We see that theinitialisation gives us a good start; for all the models the likelihood of the test set only decreasesby approximately 10 percent over the whole training period. For the unregularised network we cansee the characteristic u-shaped curve showing how the network over�ts the data causing decreasedgeneralisation performance.In the plots it also seems like training has not �nished since the training error is still decreasing butthis is not the case. The optimisation algorithm has not reached its convergence criteria and thecause is likely to be that it gets stuck in a local minimum. For the regularised networks no increasein the test error can be detected with time. The small uctuations are due to the relatively smallsize of the test sets, just one third of the training set. A better size would probably be at least 6000patterns (Having the test set to be at least twice the training set size was mentioned by (MacKay,1992b). Note that the model using the analytical Hessian has slightly better performance.The regularisation causes a big increase in the computation time when the Hessian needs to beevaluated. For a network with 36 kernels and 25 centres it takes approximately 50 minutes ofCPU time 1 to calculate the Hessian in Matlab when the most computationally expensive code iswritten in C. The approximate update seem to provide a computationally cheap solution (basicallyone extra evaluation of M that takes less than 5 seconds to calculate), together with an objectivestopping criteria that can replace `early stopping'. If the performance is critical or the modelcomplexity is mis-matched the update rule requiring the Hessian normally performs better.Convergence of the Regularisation Constant Another interesting aspect of the regularisa-tion is how the regularisation parameter � changes over time; see Figure 20. For the majority ofthe models the value of � evolves roughly along the dashed line in Figure 20 and the variationsfor a given model with di�erent seeds are small and they mostly converge to the same value. Onereason for the slightly odd behaviour of the model using the analytical Hessian may well be thatthe number of parameters in the model is getting too large in comparison with the size of thetraining set. In this case the model had 936 parameters for a training set of 3000 patterns whichis on the limit of where the evidence approximation may break down according to MacKay. Formodels with fewer parameters the behaviour of the regularisation constant is more predictable.The Posterior Distribution It is important that the posterior distribution of the wind directionis a good approximation because all our predictions originate from it. For �ve di�erent models ofall categories we plotted the posterior distribution for the same 6 patterns, which were chosen atrandom from the test set. Two of these plots can be seen in �gure 21 and the rest of them can befound in Section B.2. The shape of the posterior seems to depend more on the number of kernelsthan on the regularisation method.1Using a 200 MHz R10000 Silicon Graphics Challenge.

Regularisation of Mixture Density Networks 41

0 2 4 6 8 10 12

x 10
10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

flops

−
 N

or
m

 lo
g

lik
el

ih
oo

d

(a) MDN(RBF, unreg)

0 2 4 6 8 10

x 10
10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

flops

−
 N

or
m

 lo
g

lik
el

ih
oo

d

(b) MDN(RBF, noHess-reg)

0 2 4 6 8 10 12 14

x 10
10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

flops

−
 N

or
m

 lo
g

lik
el

ih
oo

d

(c) MDN(RBF, Hess-reg)Figure 19: The Normalised Log Likelihood for the di�erent categories with 25 hidden unitsand 36 kernels. The unregularised model starts to `over-�t' the test set. In (b) theregularisation prevents over-�tting but the results are not as good as for the modelusing the analytical Hessian in (c).

Regularisation of Mixture Density Networks 42

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x25 iterations

α

Figure 20: The value of the regularisation constant over time for the MDN(RBF, Hess-reg)(solid) and MDN(RBF, noHess-reg) (dashed) line.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 7.27 and angle 2.37

(a) MDN(RBF, unreg) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 7.27 and angle 2.37

(b) MDN(RBF, noHess-reg)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 7.27 and angle 2.37

(c) MDN(RBF, Hess-reg) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 7.27 and angle 2.37

(d) MDN(RBF, Hess-reg)Figure 21: The e�ect of regularisation on the posterior distribution for the four models with 25hidden units and 36 kernels except (d) which has only 18 kernels. The dashed linecorresponds to the true target. The regularised model in (d) with fewer kernels givesa posterior close to what we believe is the true posterior with a bimodal structure.The other models have more modes and the e�ect of regularisation seem to be smallwhen the number of kernels is too large.

Regularisation of Mixture Density Networks 43

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prior for Kernel
P

ro
ba

bi
lit

y

Figure 22: The mixing coe�cients generated by the network for the same pattern as in �gure21. Some kernels between kernels with a high prior have a low prior themselveswhich seems sub-optimal.Figure 22 shows the mixing coe�cients for the same pattern as Figure 21. We can see that mixingcoe�cients corresponding to kernels between kernels with large mixing coe�cients may have a lowmixing coe�cient themselves. This is not the behaviour we would expect. It is worrying that theregularisation does not solve this problem. It could either imply that the optimisation is stuck ina local minimum or that the di�erence in likelihood between the expected smooth curve and theactual result is very small. If we decrease the number of kernels to 18 this problem disappears andthe posterior distribution becomes bimodal. This network has a slightly lower likelihood than the36 kernel network and this indicates that the likelihood alone is not enough to compare modelswith di�erent numbers of kernels since the variance depends on the number of kernels and thelikelihood depends on the variance of the kernels.The posteriors for the MDN(RBF) look very similar to posterior distributions in previous work(Cornford et al., 1997) with MDN(MLP) that used the same kernel function. This indicatesthat replacing the MLP network with a RBF network does not signi�cantly a�ect the modelsperformance on this data set.Comparing the Results with Previous Research One of the benchmarks used in previouswork to compare di�erent approaches is to measure the percentage of predictions that fall within�20 degrees of the solution. The problem with this is how to resolve which mode that is the truesolution from the multi modal distribution, a process called disambiguation. The normal approachwhen evaluting model performance is to pick the best solution out of the most probable modes inthe posterior distribution which is normally referred to as perfect disambiguation. The motivationfor this `cheating' is that we want to see how well our model performs without being a�ected bythe disambiguation procedure.In this study the two most probable modes were found by optimisation; for each kernel the startingpoint was set to its mean and the optimisation was carried out. From the resulting extreme valuesthe most probable one was chosen. The second was then calculated by taking the second mostprobable under the condition that it was at least at 0:1 radians from the �rst solution. No checkswere made to ensure that the two solutions were approximately 180 degrees apart and this mayhave a�ected the results for two solutions because sometimes the estimated posterior distributionhad more than two modes.Table 2 contains the results for the unregularised networks for reference. Table 3 and 4 shows theresult for the two regularised con�gurations. These tables show that there is a slight improvementfor the regularised models but that the type of regularisation does not make a big di�erence withrespect to this criteria. Since only one or two networks with the same parametrisation have beentrained it is hard to estimate how much the performance depends on the values of the initialweights.

Regularisation of Mixture Density Networks 44
Percentage of predictions within 20 degrees.Network Parameters Seed 2Centres Kernels 1 Solution 2 Solutions15 36 48:8 70:525 36 53:6 72:240 36 52:8 73:8Table 2: Results from MDN(RBF, unreg) networks trained with `early stopping' for three dif-ferent con�gurations. The �rst solution is the maximum of the posterior. For 2solutions the solution closest to the true target was chosen.
Percentage of predictions within 20 degrees.Network Parameters Seed 2Centres Kernels 1 Solution 2 Solutions15 18 52:9 70:815 36 51:2 71:925 18 54:9 70:925 36 56:3 72:2Table 3: Results after training a MDN(RBF) with single class regularisation where the regu-larisation constant was updated every twenty iterations with the analytical Hessian.The columns have been calculated in the same way as for Table 2.
Percentage of predictions within 20 degrees.Network Parameters Seed 2 Seed 3Centres Kernels 1 Solution 2 Solutions 1 Solution 2 Solutions15 18 48:1 65:8 47:6 68:315 36 49:3 69:0 49:6 71:425 18 53:8 67:9 55:0 71:425 36 56:8 73:7 55:6 74:140 18 56:3 70:7 55:6 69:840 36 56:2 75:0 56:1 73:6Table 4: Results from unregularised MDN(RBF) networks trained with `early stopping' forthree di�erent con�gurations. The �rst solution is the maximum of the posterior. For2 solutions the solution closest to the true target was chosen.

Regularisation of Mixture Density Networks 45Percentage of predictions within 20 degrees.Nr Model description 1 Solution 2 Solutions1 MDNa 53:0 72:02 MDNb, 4 net committee 53:8 74:23 MDNc, trained per trace in (u; v) space � 75:74 MDNd, trained on all traces in (u; v) space � 76:55 A-NN5 e � 87:86 MDN(RBF), Unregularised. 52:8 73:87 MDN(RBF), Regularised with analytical Hessian 56:3 72:28 MDN(RBF), Regularised with approximative re-estimation 56:2 75:0Table 5: The table contains previously published results together with the best results usingMDN(RBF). Note that con�guration only con�guration 3; 4; 6; 7 and 8 have beentrained on the same data set. A-NN5 uses the surrounding patterns in additions tothe current sample to make predictions, i.e. it is doing some smoothing and disam-biguation.a(Cornford et al., 1997)b(Cornford et al., 1997)c(Evans, 1998b)d(Evans, 1998b)e(Richaume et al., 1998)A comparison of the results with earlier published results is given in table 5. We can see that theregularised models performs at about the same level as all other networks using a single sampleonly for predictions. The A-NN5 model is superior because it uses the spatial correlation betweensamples which e�ectively does some smoothing and disambiguation. Once again note that thereare no error bars on this �gures and the results may change depending on the initialisation of theweights. Note that di�erent test sets were used for the di�erent methods (di�erent samples anddi�erent data set size).4.2.4 DiscussionRegularisation provides an alternative to `early stopping' The experiment has showedthat this regularisation method is an alternative to `early stopping' with similar results, where wecan use our data more e�ectively since we do not have to allocate a validation set. It does howevernot really present an alternative to training a whole set of networks with systematically varyingnumber of hidden units and kernels because having a more complex network than is actually neededgives big computational cost, especially for the regularisation using the analytical Hessian, due tothe fact that we need a large number of kernels in order to represent the posterior distributionwith to same precision as in the case with adaptable kernels. The results suggests that even largernetworks may give better performance.But is it not wrong to sample the training and test set from di�erent distribution?This was something I found strange when I �rst learned about the current research of wind vectorretrieval. Strictly speaking, it is wrong. The network should be optimised on the same distributionas it will be operating on. In this case there are three factors behind the choice to have di�erentdistributions.Firstly, meteorologists are most interested in high wind speeds because they are the ones that cancause damage and create weather conditions that it is important to predict well in advance.Secondly, these high wind speeds are quite rare in the atmosphere and in order to predict themaccurately we need a very large data set if we don't manipulate the distribution to increase thefraction of high wind speeds. The models are computationally demanding to train this is a way todecrease it a bit.

Regularisation of Mixture Density Networks 46Lastly, the signal to noise ratio is relatively low for low wind speeds. It is still possible to infer thewind speed but the wind angle is very di�cult to infer at 4 meters per second.How often should the regularisation constants be re-estimated? This is a di�cult ques-tion with several factors to consider� There is no point in �ne tuning network weights if the regularisation constant is going tochange much.� Changing the regularisation constant will change the curvature and this a�ects the estimateof the inverse Hessian that quasi-Newton uses for the optimisation and we can expect worseperformance until the estimate has adapted to the changes in the error function.� Calculating the analytical Hessian is very computationally expensive and we have to balancethis against how much it changes with time.I do not have any objective criteria for �nding a balance to this delicate problem. When using theapproximate, cheap updates, it can be done frequently without cost and every two iterations seemplausible, giving smooth changes in the error function. For the expensive update rules one ideacould be to ensure it is updated approximately 10 times during the progress of the training to giveit a `fair chance' of converging without calculating it too often.Software All the experiments were carried out with Matlab 5.1 using the Netlab neural networktoolbox 2 for which we wrote additional software to implement the theory in this technical report.Only one part, the computationally intensive calculation of the Hessian, was written in C.

2Available from http://www.ncrg.aston.ac.uk.

Regularisation of Mixture Density Networks 475 DiscussionIn this section I briey summarise the project and try to clarify a few of the key points. I reviewhow the project has ful�lled the initial objectives and conclude by discussing a few possible directionsfor future research.5.1 SummaryThis work builds on theMDN, which in its standard form used anMLP to generate the parametersfor a Gaussian Mixture Model and gives us a conditional Gaussian Mixture Model which modelsan arbitrary (possibly multi-modal) distribution without assuming Gaussian noise.In the other corner we have the evidence framework, which provides a means of regularising net-works where the posterior weight distribution can be approximated reasonably well with a singleGaussian and the noise is assumed to be additive Gaussian.To make the uni�cation of these methods easier we �xed the mean and variance of each kernel.This requires some additional initialisation for the �xed parameters and we have presented anadequate solution for this problem.We then applied the evidence framework to this simpli�ed model. The form of the error functionis such that some integrals in the evidence framework cannot be calculated analytically but needto be approximated.The method was applied to two data sets. For the synthetic data the regularised networks per-formed better than the MDN because they `turned o�' unnecessary kernels more accurately. Sincethe variance is �xed it cannot be decreased as for the MDN to increase the likelihood instead of�ne tuning the mixture coe�cients. For the second data set the regularised and unregularisedresults were similar but `early stopping' can be replaced by an objective criterion. We detected aproblem where some mixture coe�cients were `turned o�' even if its `neighbours' had large values.This indicated that some other form of regularisation is needed. A regulariser that penalises largedi�erences between adjacent kernels could be appropriate for �xed kernels. This regularisationwould however be di�cult to generalise to moving kernels where the order of kernels can change.We have not investigated this further yet, and it is unclear if it is feasible at all.In the experiments an RBF network was used to generate the Mixture Model parameters be-cause they can be initialised much closer to the solution. We developed a method for taking theregularisation parameter into account in the initialisation.5.2 ConclusionsCan the Fixed Kernel Approach Be Used in Practice? One problem with �xed kernels isthe `curse of dimensionality'. All experiments in this technical report are done on one dimensionaltargets for this reason. I briey looked at the robot arm kinematics problem (Bishop, 1994) wherethe targets are two dimensional. To achieve similar performance as a standard MDN at least100 kernels were needed to model a bi-modal distribution. Even so, it did not quite match theperformance of an adaptive kernel model even though the training cost was far higher.But if we restrict ourselves to one-dimensional targets the method has similar computational costto the standard MDN and has the advantage of an objective criterion for when to stop trainingwhich I believe makes the method feasible to use in practice.

Regularisation of Mixture Density Networks 48Making Predictions with the Model During the experiments, predictions were made froma maximum a posteri (MAP) parameter estimates where each maximum was found by nonlinearoptimisation for each posterior distribution. This is not a fully Bayesian procedure but the focusin this project was on regularisation, not prediction. MacKay (1992c) introduced the concept ofmoderated outputs where we take the weight uncertainty into account when making predictionssince the MAP is usually over con�dent.The Number of Parameters in the Model One obvious problem with this approach is thatthe number of parameters to optimise grows very quickly when we increase the model complexity,namely as M(H + 1) where M is the number of kernels and H is the number of hidden units. Ifwe have M = 30 and H = 30, which is not unreasonable, the weight vector will be 900 elementslong and the Hessian will be 900� 900. This makes the Hessian very expensive to compute.How Often Should the Regularisation Constants Be Updated? This problem was dis-cussed in 4.2.4 but I mention it again here since I believe it to be a key issue. The choice of thefrequency and the method for re-estimation of the regularisation constant will greatly inuenceboth the result and the computational demand. I have tried to initialise the regularisation constantto a relatively small value to enable the initialisation to �t the data well and not get too constrainedby the penalty term, and this seemed to work well in practice. Unfortunately the data set andthe model complexity inuences the update frequency. This area certainly could be investigatedfurther in order to achieve more e�ective regularisation.Reviewing the Objectives of This Project As stated in the introduction, there were twomain objectives. It is possible to train models with about 10000 patterns for a reasonably com-plex network if the approximate, non-Hessian update rule is used since this hardly requires anyextra computation, though changing � (and therefore changing the cost function) probably doesdelay convergence. The regularisation itself provides an alternative to `early stopping' with goodperformance. The drawback is that the number of parameters grows rapidly and this slows downthe training and makes the method infeasible for other than one-dimensional targets.5.3 Some possible directions for future workExtending the Theory to Adaptive Kernels The next step is certainly to loosen the restric-tion on the kernels and �nd the mean and variance by optimisation as in the original model. Themain advantage is that this is a way to lessen the e�ect of the `curse of dimensionality' and toreduce the number of parameters in the model.A reduction in the number of parameters would shrink the Hessian, which in addition can be splitinto three parts, for the mean, variances and mixing coe�cients, by using di�erent regularisationclasses for each group. The eigenvalues and inversion could be computed separately which willdecrease computational cost.Some preliminary experiments with adaptive kernels where all parameters are optimised simul-taneously indicate that the variance is underestimated, which leads to a high likelihood but notnecessarily to good density estimations. When the variances do `collapse' to small values, changesin the parameters related to the mixture coe�cients and the mean are only causing small changesin the likelihood in comparison with the big increase in the likelihood caused by the decrease invariance of the kernels. Changes in these parameters are therefore only marginally e�ecting thelikelihood; further improvements on the likelihood can only be made by decreasing the varianceeven more. This can partly be avoided by setting the regularisation parameter for the varianceto a large value during the early stages of the training until the mean and mixing coe�cientshave started to converge we have noticed improvement in the results where the variances does notcollapse as frequently. Further investigation is needed to clarify this.

Regularisation of Mixture Density Networks 49If we have a data set for which we can estimate which data points are going to belong to each centreand we use a RBF network the kernel means can also be initialised e�ectively. For an example,consider using the adaptive kernel approach for the wind data in (u; v) space. Assuming that thedistribution is bimodal, which we model with two kernels, we can partition the data set in twoparts: One part that has positive u components, and one with the negative u components. Foreach of these data subsets we calculate the design matrix and for the second layer weights of theRBF the corresponding kernel weights can then be solved with a matrix pseudo-inverse to give usan initial estimate of the means. This gives us an input dependent initialisation compared withthe MDN where the initialisation only uses the unconditional mean of the targets,Another advantage with adaptive kernels is that the variances are once again modelled explicitlyand they can be used in the next step, prediction.Semi-Adaptive Kernels One idea to overcome this overestimation of the likelihood is to dividethe training into two steps� Optimise the mixing coe�cients keeping the mean and variance of the kernels �xed.� Use the mixing coe�cient calculated in the previous step, which are now �xed, to weighteach pattern and train each kernel separately with the method described in Section 2.3 whichprovides regularisation for the mean and variance but needs to be modi�ed to take theweighting into account.This model will not optimise the mean and variance jointly whereas in the more straightforwardgeneralisation to adaptive kernels all parameters are optimised at the same time. It seems likelythat the convergence rate is di�erent for the di�erent type of parameters, for example the meansoften converge faster than the variances and with this approach this can be taken in to accountfor e�ciency. It also seems possible to develop e�cient initialisation for this approach.

Regularisation of Mixture Density Networks 50ReferencesBaldi, P. and Y. Chauvin 1991. Temporal evaluation of generalisation during learning in linearnetworks. Neural Computation 4 (3), pp589{603.Bishop, C. M. 1994. Mixture Density Networks. Technical report, Department of ComputerScience and Applied Mathematics, Aston University, UK.Bishop, C. M. 1995. Neural Networks for Pattern Recoginition. Oxford Press.Bishop, C. M. and C. S. Qazaz 1997. Regression with Input-Dependent Noise: A Bayesiantreatment. Advances in Neural Information Processing Systems .Bridle, J. S. 1990. Probabilistic interpretation of feedforward classi�cation network outputs, withrelationships to statistical pattern recognition. Neurocomputing: Algorithms, Architecturesand Applications Ed. F Fogelman Souli�e and J H�erault, Springer-Verlag , pp. 227{236.Cornford, D., I. T. Nabney, and C. M. Bishop 1997. Neural Network BasedWind Vector Retrievalfrom Satellite Scatterometer Data. Technical report, Neural Computing Research Group,Aston University, Birmingham B4 7ET, UK.Evans, D. J. 1998a. Mixture Density Network Training by Computation in Parameter Space.Technical report, Neural Computing Research Group, Aston University, Birmingham B47ET, UK. NCRG/98/016.Evans, D. J. 1998b. Neural Networks for Extracting Wind Vectors from Satellite ScatterometerData. Master's thesis, Neural Computing Research Group, Aston University, BirminghamB4 7ET, UK.MacKay, D. J. C. 1992a. Bayesian Interpolation. Neural Computation 4 (3), 415{447.MacKay, D. J. C. 1992b. Bayesian Methods for Adaptive Models. Ph.D. thesis, California Insti-tute of Technology, Pasadena, California.MacKay, D. J. C. 1992c. The Evidence Framework Applied to Classi�cation Networks. NeuralComputation 4 (5), 698{714.MacKay, D. J. C. 1992d. A Practical Bayesian Framework for Backpropagation Networks. NeuralComputation 4 (3), 448{472.Mardia, K. V. 1972. Statistics of Directional Data. Academic Press, London.McCullagh, P. and J. A. Nelder 1983. Generalized Linear Models. London:Chapman and Hall.McLachlan, G. J. and K. E. Basford 1988. Mixture Models: Inference and Applications to clus-tering. Marcel Dekker, New York.Nabney, I. T. 1998. E�cient training of RBF Networks for Classi�cation. to be published.Nix, A. D. and A. S. Weigend 1994. Estimating the Mean and Variance of the Target ProbabilityDistribution. In Proceeding of the IEEEE International Conference on Neural Networks, pp.pp 55{60. IEEE.Press, W. H., A. S. Teukolsky, T. W. Vetterling, and B. P. Flemming 1992. Numerical Recipesin C (Second ed.). Cambridge University Press.Qazaz, C. S. 1996. Bayesian Error Bars for Regression. Ph.D. thesis, Aston University.Richaume, P., F. Badran, M. Crepon, C. Mejia, H. Roquet, and S. Thiria 1998. Neural Net-work Wind Retrieval from ERS-1 Scatterometer Data. Submitted to: Journal of GeophysicalResearch.Tikhonov, A. N. and V. Y. Arsenin 1977. Solutions of Ill-Posed Problems. Washington DC: V.H. Winston.Williams, P. M. 1994. Bayesian Regularisation and Pruning using a Laplace Prior. Technicalreport, School of Cognitive and Computing Sciences, University of Sussex.Williams, P. M. 1996. Using Neural Networks to Model Conditional Multivariate Densities.Neural Computation 8, 843{854.

Regularisation of Mixture Density Networks 51A CalculationsThe calculations in this section are for Mixture Density Networks with spherical Gaussian kernelsde�ned as followsDe�nition 1When the covariance matrix of a Gaussian can be written as a constant times the unit matrix(� = �I) it is called spherical and for d dimensions it can be written as�(x) = 1(2�)d=2�d exp �jjx� �jj22�2 !where � is a d dimensional vector with the means and �2 is the variance.We start by calculating the gradient and then we continue to calculate the Hessian for RBFnetworks with �xed centres. The gradients are however valid for allMDNs with spherical Gaussiankernels.A.1 Calculating the gradientThe error function for one pattern isEn = � ln MXi=1 �(xn)�i(tnjxn): (96)For convenience and clarity the dependence on xn and tn will be omitted. �i(xn) will be writtenas �i, 	i(xn) as 	i and �i(tnjxn) as �i.The gradient with respect to the means Expanding the error function (96) with the chainrule gives @E@z�ik = @E@�i @�i@�ik @�ik@z�ik : (97)The �rst factor can be calculated by applying the quotient rule on (96):@E@�i = � �iPmj0=1 �j0�j0 (98)The second factor is the derivative of De�nition 1 with respect to the mean as follows@�(x)@�k = �(x) (xk � �k)�2 for k = 1; 2; : : : ; d. (99)The last factor of (97) is 1 since �ik = z�ik. Substituting these three equations into (97) gives@E@z�ik = � �i�iPmj0=1 �j0�j0 (�ik � tk)�2i � 1 (100)It is now suitable to de�ne the posterior �i, for kernel i to be�i = �i�iPmj0=1 �j0�j0 for i = 1; 2; : : : ;M . (101)and to substitute this into (100) and get the following Lemma.

Regularisation of Mixture Density Networks 52Lemma 1The gradient with respect to the network outputs for the means are@E@z�ik = �i (�ik � tk)�2i : (102)for all components i = 1; 2; : : : ;M over all dimensions in target space k = 1; 2; : : : ; d.The gradient with respect to the standard deviations Applying the chain rule on the errorfunction in (96) gives @E@z�i = @E@�i @�i@�i @�i@z�i : (103)The second factor is found by di�erentiating De�nition 1 with respect to the standard deviationwhich gives @�(x)@� = �(x)� jjt� �jj2�3 � d�� (104)and the third factor is @�i@z�i = exp(z�i) = �i: (105)Substituting (98), (104) and (105) into (103) gives@E@z�i = � �iPmj0=1 �j0�j0 �i� jjt� �ijj2�3i � d�i��i (106)This can be simpli�ed by using the de�nition of � from (101) to get the following lemma:Lemma 2The gradient with respect to the network outputs for the standard deviation parameters are@E@z�i = ��i jjt� �ijj2�2i � d!:for all mixtures i = 1; 2; : : : ;M .The gradient with respect to the mixing coe�cients Expanding (96) with the chain rulegives @E@z�i = MXm=1 @E@�m @�m@z�i (107)Di�erentiating of the �rst factor with the quotient rule gives@E@�m = � �mPmj0=1 �j0�j0 �m�m = ��m�m (108)The second term of (107) is a bit more complicated and we start by recalling the de�nition of themixing coe�cients to be �m = exp(z�m)PMj=1 exp(z�j) : (109)

Regularisation of Mixture Density Networks 53Di�erentiating this expression when m = i gives@�m@z�i = exp(z�m)PMj=1 exp(z�j)� exp(z�m) exp(z�i)�PMj=1 exp(z�j �2= exp(z�m)PMj=1 exp(z�j) � exp(z�m)PMj=1 exp(z�j) exp(z�i)PMj=1 exp(z�j) = �m � �m�i (110)and for m 6= i we get@�m@z�i = � exp(z�m) exp(z�i)�PMj=1 exp(z�j)�2 = ��m�i: (111)(112)Combining the cases together gives us this lemma:Lemma 3The derivative of the network output with respect to the mixing coe�cient is:@�m@z�i = �mi�m � �m�ifor all m; i = 1; 2; : : : ;M .Using this Lemma and (108) to substitute into (107) gives@E@z�i = � MXm=1 �m�m ��mi�m � �m�i� = ��i�i �i + MXm=1 �m�m �m�i (113)= ��i + �i MXm=1�m| {z }=1 = ��i + �i (114)where we have used the property that the posterior should sum up to one in the last step. Thisgives the �nal expression for the gradient.Lemma 4The gradient with respect to the network outputs for the mixing coe�cients are@E@z�i = �i � �ifor all mixtures i = 1; 2; : : : ;M .The gradient with respect to the second layer weights Lemma 1, 2 and 4 give the deriva-tive with respect to the network outputs. This far the results are independent on the network inthe MDN. If the network is a MDN(MLP) the gradient with respect to the network weights arecalculated by back-propagation. When we have a RBF network with �xed centres the situation isa bit di�erent and we can calculate the gradients for the second layer weights analytically. (Thederivative of the �rst layer weights are zero for �xed centres.)Since all hidden units are of the same type this can be done for all second layer weights in onestep. The network output is:zi = RXr=1	rwri where R is the number of hidden units. (115)

Regularisation of Mixture Density Networks 54Di�erentiating this gives @zi@wir = 	r (116)for all three kinds of outputs.Using lemma 1, 2 4 and (116) the gradient can be expressed as the following proposition:Proposition 1The gradient for the MDN(RBF) is a vector G = fG�;G� ;G�g where each component can bewritten as G�ikr = 	r�i (�ik � tk)�2i (117)G�ir = �	r�i jjt� �ijj2�2i � d! (118)G�ir = 	r��i � �i� (119)for i = 1; 2; : : : ;M , k = 1; 2; : : : ; d and r = 1; 2; : : : ; R.A.2 Calculating the HessianThe Hessian for the means Expanding (117) gives@G�ikr@wjls = @G�ikr@z�jl @z�jl@wjls : (120)Calculating the �rst term @G�ikr@z�jl = 	r" @�i@z�jl (�ik � tk)�2i + �i�2i @�ik@z�jl # (121)where we �rst need to calculate the following derivative@�i@z�jl = @�i@�j @�j@z�jl (122)Di�erentiating (101) with respect to �i, starting with the case where i = j@�i@�j = �i(Pmj0=1 �j0�j0)� �i�i�j�Pmj0=1 �j0�j0�2 = �iPmj0=1 �j0�j0 � �j�iPmj0=1 �j0�j0 (123)otherwise, when i 6= j@�i@�i = � �i�i�j�Pmj0=1 �j0�j0�2 = � �j�iPmj0=1 �j0�j0 (124)The cases are combined back together with a Kronecker delta.@�i@�i = �ij �iPmj0=1 �j0�j0 � �i �jPmj0=1 �j0�j0 (125)The second factor of equation (122) is @�j@z�jl = �j (�jl � tk)�2 (126)

Regularisation of Mixture Density Networks 55Equation (125) and (126) can now be substituted into (122) to give@�i@z�jl = ��ij �iPmj0=1 �j0�j0 � �i �jPmj0=1 �j0�j0 ��j (�jl � tk)�2 = �ij�i � �i�j (127)which in turn can be substituted into (121) as follows@G�ikr@z�jl = 	r"��ij�i � �i�j� (�jl � tl)�2j (�ik � tk)�2i � �ij�kl �i�2i # (128)Substituting this expression and (116) into (119) gives the �nal expression.Lemma 5The Hessian with respect to the second layer weights for outputs generating mean parameters inthe mixture model are@G�ikr@wjls = 	r	s"��ij�i � �i�j� (�jl � tl)�2j (�ik � tk)�2i � �ij�kl �i�2i #The Hessian for the standard deviations The second derivative can be written as@G�ik@w�jl = @G�ik@z�jl @z�jl@w�jl (129)The �rst term is the derivative for (118) can be calculated by splitting into two cases, �rst for i = j@G�ik@z�jl = �	r" @�i@z�jl jjt� �ijj2�2i � d!+ �i jjt� �ijj2�3i (�2) @�i@z�jk| {z }=�i #= �	r"��ij�i � �i�j� jjt� �j jj2�2j � d! jjt� �ijj2�2i � d!� 2�i jjt� �ijj2�3i # (130)and otherwise@G�ik@z�jl = �	r"��ij�i � �i�j� jjt� �j jj2�2j � d! jjt� �ijj2�2i � d!# (131)which can be combined into@G�ik@z�jl = �	r"��ij�i � �i�j� jjt� �j jj2�2j � d! jjt� �ijj2�2i � d!� 2�ij�i jjt� �ijj2�2i # (132)Substituting (132) and (116) into (129) gives us the following lemma:Lemma 6The Hessian with respect to the second layer weights for outputs generating variance parametersin the mixture model are@G�ik@w�jl = �	r	s"��ij�i � �i�j� jjt� �j jj2�2j � d! jjt� �ijj2�2i � d!� 2�ij�i jjt� �ijj2�2i #

Regularisation of Mixture Density Networks 56The Hessian for mixing coe�cients The expression for the Hessian is@G�ir@wjs = MXm=1 @Gn@�m @�m@zj @zj@wjs : (133)Starting with the �rst factor we get@Gn@�m = @@�m �	r(�k � �k)� = 	r� @�k@�m � @�k@�m�: (134)The derivative of �k with respect to m is only non-zero if k = m. This gives@Gn@�m = 	r��im + �i�m � �im�i�m �: (135)The next step is to calculate the sum from equation (133) by substitution from (135) and (3) whichyields MXm=1 @Gn@�m @�m@zj = MXm=1	r��im + �i�m � �im�i�m �(�mj�m � �m�j)= 	rh(�ij�i � �i�j) + �i� MXm=1 �m � �im�m (�mj � �j)�m�i= 	rh�ij�i � �i�j + �i� MXm=1�m�mj � �m�j � �im�mj + �im�j�i= 	r��ij�i � �i�j + �i(�j � �j � �ij + �j)�= 	r��ij�i � �i�j + �i�j � �i�ij�= 	r��ij(�i � �i)� �i�j + �i�j�:
(136)

Substituting (116) and (136) into (133) givesMXm=1 @Gn@�m @�m@zj @zj@wjs = 	r��ij(�i � �i)� �i�j + �i�j�	s= 	r	s��ij(�i � �i)� �i�j + �i�j�: (137)Lemma 7The Hessian with respect to the network outputs for the mixing coe�cients are@G�ir@wjs@wir = 	r	s��ij(�i � �i)� �i�j + �i�j�: (138)Proposition 2The Hessian with respect to the outputs for the di�erent kinds of outputs can be expressed as@2En@wki@wlj = �	r	s"��ij�i � �i�j� jjt� �j jj2�2j � d! jjt� �ijj2�2i � d!� 2�ij�i jjt� �ijj2�2i #; (means)@2En@wki@wlj = �	r	s"��ij�i � �i�j� jjt� �j jj2�2j � d! jjt� �ijj2�2i � d!� 2�ij�i jjt� �ijj2�2i #; (variances)@2En@wki@wlj = 	r	s��ij(�i � �i)� �i�j + �i�j�; (mixing coe�cients)Note that for the full Hessian several cross products need to be evaluated but they are not neededin the current application and have therefore been left out.

Regularisation of Mixture Density Networks 57B ResultsB.1 The S-curve ResultsB.1.1 Results for the standard MDNNetwork RMS (opt) for network RMS (max�) for networkCen Kern 1 2 3 Avg 1 2 3 Avg5 3 0:00204 0:00925 0:00664 0:00598 0:00209 0:00957 0:00740 0:0063510 3 0:00224 0:01832 0:00172 0:00743 0:00423 0:01833 0:00201 0:0081915 3 0:00060 0:00157 0:01158 0:00458 0:00025 0:00413 0:01205 0:00548(opt) means that the prediction was made from the mode of the posterior which was found bynon-linear optimisation. For the (max �) columns the prediction simply the mean of the kernelwith the largest mixing coe�cient.B.1.2 Results for MDN(RBF, single-reg)Network RMS (opt) for network RMS (max�) for networkCen Kern 1 2 3 Avg 1 2 3 Avg5 10 0:00972 0:00980 0:01016 0:00989 0:00539 0:00558 0:00584 0:0056010 10 0:02602 0:02562 0:02627 0:02597 0:02211 0:02149 0:02245 0:0220215 10 0:00639 0:02603 0:00585 0:01276 0:00214 0:02227 0:00192 0:008775 30 0:00081 0:00122 0:00101 0:00101 0:00113 0:00157 0:00145 0:0013810 30 0:00055 0:00078 0:00086 0:00073 0:00068 0:00090 0:00129 0:0009615 30 0:00234 0:00127 0:00251 0:00204 0:00293 0:00202 0:00334 0:002775 50 0:00444 0:00306 0:00587 0:00446 0:00492 0:00346 0:00527 0:0045510 50 0:00311 0:00273 0:00432 0:00339 0:00316 0:00268 0:00450 0:0034415 50 0:00303 0:00313 0:00610 0:00409 0:00316 0:00309 0:00630 0:00418B.1.3 Results for MDN(RBF, multi-reg)Network RMS (opt) for network RMS (max�) for networkCen Kern 1 2 3 Avg 1 2 3 Avg5 10 0:02363 0:00251 0:00264 0:00959 0:02047 0:00075 0:00487 0:0087010 10 0:02029 0:02818 0:02463 0:02437 0:01602 0:02586 0:02077 0:0208815 10 0:00348 0:01768 0:01717 0:01277 0:00051 0:01414 0:01516 0:009945 30 0:00028 0:00165 0:00196 0:00130 0:00056 0:00160 0:00233 0:0015010 30 0:00010 0:00393 0:00048 0:00150 0:00011 0:00417 0:00061 0:0016315 30 0:00393 0:00171 0:00229 0:00264 0:00406 0:00132 0:00238 0:002595 50 0:00704 0:00756 0:00157 0:00539 0:00619 0:00695 0:00161 0:0049210 50 0:00286 0:00351 0:00251 0:00296 0:00284 0:00353 0:00263 0:0030015 50 0:00525 0:00076 0:00441 0:00348 0:00496 0:00125 0:00432 0:00351B.2 The Wind Data ResultsExamples of the posterior distributionFrom the test set 6 di�erent patterns were selected and their posterior distribution calculated fornetworks, from all categories, with 25 hidden units and 18 or 36 kernels (not 18 for the unregularisednetwork). The posterior distributions are in �gure 23, 24, 25, 26 and 27.

Regularisation of Mixture Density Networks 58

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 4.16 and angle −1.23

(a) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 7.27 and angle 2.37

(b)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 5.55 and angle −0.15

(c) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 9.95 and angle −3.06

(d)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 14.80 and angle −1.82

(e) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 6.20 and angle −1.48

(f)Figure 23: Examples of the the posterior distribution for six random patterns from the testset for a MDN(RBF, unreg) with 25 hidden units and 36 kernels.

Regularisation of Mixture Density Networks 59

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 4.16 and angle −1.23

(a) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 7.27 and angle 2.37

(b)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 5.55 and angle −0.15

(c) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 9.95 and angle −3.06

(d)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 14.80 and angle −1.82

(e) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 6.20 and angle −1.48

(f)Figure 24: Examples of the the posterior distribution for six random patterns from the testset for a MDN(RBF, noHess-reg) with 25 hidden units and 18 kernels.

Regularisation of Mixture Density Networks 60

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 4.16 and angle −1.23

(a) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 7.27 and angle 2.37

(b)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 5.55 and angle −0.15

(c) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 9.95 and angle −3.06

(d)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 14.80 and angle −1.82

(e) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 6.20 and angle −1.48

(f)Figure 25: Examples of the the posterior distribution for six random patterns from the testset for a MDN(RBF, noHess-reg) with 25 hidden units and 36 kernels.

Regularisation of Mixture Density Networks 61

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 4.16 and angle −1.23

(a) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 7.27 and angle 2.37

(b)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 5.55 and angle −0.15

(c) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 9.95 and angle −3.06

(d)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 14.80 and angle −1.82

(e) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 6.20 and angle −1.48

(f)Figure 26: Examples of the the posterior distribution for six random patterns from the testset for a MDN(RBF, Hess-reg) with 25 hidden units and 18 kernels.

Regularisation of Mixture Density Networks 62

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 4.16 and angle −1.23

(a) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 7.27 and angle 2.37

(b)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 5.55 and angle −0.15

(c) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 9.95 and angle −3.06

(d)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 14.80 and angle −1.82

(e) −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Wind angle a

p(
a|

σ0)

Target wind speed 6.20 and angle −1.48

(f)Figure 27: Examples of the the posterior distribution for six random patterns from the testset for a MDN(RBF, Hess-reg) with 25 hidden units and 36 kernels.

