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Abstract 

 

The performance of most operations systems is significantly affected by the interaction of 

human decision-makers.  A methodology, based on the use of visual interactive simulation 

(VIS) and artificial intelligence (AI), is described that aims to identify and improve human 

decision-making in operations systems.  The methodology, known as 'knowledge based 

improvement' (KBI), elicits knowledge from a decision-maker via a VIS and then uses AI 

methods to represent the decision-making.  By linking the VIS and AI representation it is 

possible to predict the performance of the operations system under different decision-making 

strategies and to search for improved strategies.  The KBI methodology is applied to the 

decision-making surrounding unplanned maintenance operations at a Ford Motor Company 

engine assembly plant. 
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Knowledge Based Improvement: Simulation and Artificial Intelligence for Identifying 

and Improving Human Decision-Making in an Operations System 

 

Introduction 

 

Most operations systems include significant elements of human decision-making and 

interaction.  A manufacturing plant may involve any number of manual processes and many 

aspects of the plant’s operation such as scheduling of production and maintenance operations 

may involve human decision-making.  The situation is normally more exaggerated in service 

operations where service personnel interact with customers.  Meanwhile, these decisions and 

interaction may have a great impact on the performance of the operations system [Baines and 

Kay, 2002]. 

 

Simulation is often used to model operations systems, but normally this either overlooks the 

effects of human decision-making or adopts a very simplistic approach.  This is probably 

because modelling these elements of an operations system presents a number of challenges.  

Most simulation tools do not provide a full set of functions that would be useful for 

modelling human decisions.  A more fundamental challenge is determining the decision-

making strategies adopted by individuals within the operations system.  Further to this, the 

purpose of the simulation exercise may be to establish if the human decision-making process 

could be improved.  This requires a methodology for determining, modelling and looking for 

improvements in human interaction. 

 

The purpose of this paper is to outline a methodology aimed at identifying and improving 

human decision-making within operations systems.  The methodology, known as ‘knowledge 

based improvement’ (KBI), is based on the use of visual interactive simulation (VIS) with 

artificial intelligence (AI).  KBI is tested on an engine assembly line at a Ford Motor 

Company plant in Wales, by investigating the decision-making surrounding unplanned 

maintenance operations. 

 

The paper starts with a brief review of previous work in which simulation and AI have been 

linked for various purposes, including the representation of human decision-making.  The 

KBI methodology is then described.  Following this, the background to the case study is 

outlined before describing in detail the application of the methodology.  The paper concludes 
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with a discussion on some issues surrounding the KBI methodology and continuing research 

work. 

 

Artificial Intelligence in the Life-Cycle of Simulation Studies 

 

It has been proposed that AI could aid the development and use of simulations throughout the 

life-cycle of a simulation study 1.  Indeed, there are examples of AI being applied at every 

stage of a simulation study, from model conception to experimentation and the analysis of 

results.  An early attempt at automating the development of conceptual models can be found 

in Doukidis and Paul 2.  Later, however, it is conceded that intelligent front ends probably 

provide a less rigid and, therefore, more useful approach 1(XXX renumber). 

 

Input data modelling provides a role for AI in the simulation life-cycle.  Hurrion3  trains a 

neural network with an empirical distribution and proposes that the approach might be used 

to generate random variates for a simulation model. 

 

In terms of model development, there have been attempts at using AI to automatically 

generate simulation program code, for instance, CASM 4 and Mathewson 5.  AI have also 

been used for model verification and validation.  Doukidis 6 uses an expert system, SIPDES, 

to help locate and resolve compilation errors in simulation programs.  Deslanders and 

Pierreval 7 develop a system with limited capability for aiding model validation. 

 

As an aid to experimentation and results analysis, there is considerable scope for applying AI.  

For instance, Hurrion 8 uses an expert system to aid the design of experiments.  He also 

employs a neural network to analyse a simulation model’s output 9, 10 [Hurrion, 2000] and as 

a basis for simulation optimisation 11.  AI can also be used to select experimental scenarios.  

Pierreval [1992], for instance, uses an expert system to select priority rules for a flexible 

manufacturing system, testing the rules through a simulation. 

 

Some have used AI as a means for representing human decision-making in 

simulations12,13,14,15 [Moffat, 2000].  AI, representing a human decision-maker, is linked to a 

simulation model.  When a point in the simulation run is reached at which a decision needs to 

be taken, the AI is invoked.  The resulting decision is then implemented in the simulation 

model and the run continued.   
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It would seem that the presence of human decision-making within simulation models presents 

two problems to the simulation modeller.  First, it is necessary to determine the way in which 

the decisions are made by the people involved.  This is not straightforward, as decision-

makers are not always able to articulate their decision-making process.  Second, simulation 

software does not provide a natural environment for expressing decision-making logic.  Most 

of the work in this area has focused on the second problem by linking a simulation with AI.  

There has been only limited attention paid to the former issue.  Indeed, neither is there much 

concentration in the AI literature on how examples are obtained and used in the process of 

knowledge elicitation [Kidd, 1987].  This paper attempts to redress this balance by describing 

a methodology for eliciting knowledge and improving decision-making, applying the 

concepts to an industrial setting. 

  

Knowledge Based Improvement (KBI) 

 

The prime motivation of KBI is to elicit knowledge on how decision-makers make decisions 

in an operations system (decision-making strategies) and to identify ways of improving their 

decision-making.  The motivation is not to develop a more detailed simulation model, albeit 

that this is one outcome of the methodology.  More detailed models are not necessarily better 

models [Pidd, 2003] nor are they always more accurate [Robinson, 1994].  The increase in 

detail required for KBI is aimed firstly at knowledge elicitation and secondly at being able to 

represent the consequences of alternative decision-making strategies.  Neither is the 

motivation to develop an AI system that replaces the decision-makers in the operations 

system.  It is recognised that the simulation from which knowledge is elicited is a simplified 

representation of the real system.  The full complexity of the real system and the decision-

making scenarios is not (and cannot) be represented.  Therefore, the knowledge elicited is 

imperfect.  As such it would be a mistake to assume that any AI system developed from the 

methodology could fully replace a decision-maker.  Instead, the aim is to facilitate improved 

decision-making by identifying improvements to the decision-making strategies employed. 

 

The KBI methodology is outlined in figure 1 and consists of five stages: 

 

• Understanding the decision-making process 
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• Data collection 

• Determining the decision-makers’ decision-making strategies 

• Determining the consequences of the decision-making strategies 

• Seeking improvements 

 

Although the stages are generally performed in a linear manner, there is some level of 

iteration between them.  Each of the stages is now described in some detail. 

 

Figure 1  Knowledge Based Improvement 
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Stage 1: Understanding the Decision-Making Process 

The first step in determining the decision-makers strategies is to identify the component parts 

of the decision-making process: decision variables, decision options, decision attributes and 

attribute levels.  For instance, in the case of a machine failure on a manufacturing line, the 

decision-maker might have two decisions to make (decision variables), when to repair the 

machine and who to ask to repair the machine.  For each decision variable there might be two 

decision options: the machine might be repaired immediately or left until the end of the shift; 

an operator might be asked to repair the machine or a skilled engineer.  Assume, for the 

simplicity of the example, that the decisions are determined taking into account an estimate 

of the repair time and the type of fault.  It is clear that there are two decision attributes in the 

decision-making process.  The range of estimated repair times and the number of fault types 

define the attribute levels. 

 

A decision-making process can be represented as two row vectors.  The first vector 

corresponds to the decision, with each element representing a decision variable (d).  The 

second vector corresponds to the attributes of the decision, with each element representing a 

decision attribute (a).  In the context of the simple maintenance scheduling example 

described above, the decision-making process can be represented as follows:  

 

 ( )ijji f AD =,     
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[ ]
[ ]21

21,

aa
dd

i

ji

=

=

A
D

    

 

The subscript i indicates the sequence in which the decision was taken and the subscript j 

indicates the decision-maker that took the decision.  The function fj(Ai) represents the 

decision-making strategy of the individual decision-maker, taking into account the attributes 

of the vector Ai.  The purpose of stages 1 to 3 of the methodology is to determine the 

function fj(Ai) by applying AI techniques to a set of collected example decisions. 
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The aim of the first stage of the methodology is to identify the decision variables, decision 

options, decision attributes and attribute levels.  Although interviews and discussion with the 

decision-makers can reveal some information about the decision-making process, usually the 

decision-maker cannot explicitly identify and list the decision-making components.  To do so 

the modeller should observe the human decision-makers as they take decisions.  In addition, 

in order to build a complete model of the decision-making process the modeller may need to 

make assumptions by considering other rational decisions that can be taken by the decision-

maker and attributes that might be considered (hypothesizing).  Later in the methodology the 

decision-makers are asked to interact with the simulation model.  This too can reveal further 

information on the variables and attributes of the decision-making process. 

Stage 2: Data Collection 

Having identified the component parts of the decision-making process, the next step is to 

collect example decisions from the decision-makers.  Each example in the data set should 

include the value of each decision option and attribute level.  The data takes the form of two 

matrices: Dj and A.  Dj represents the decisions made by decision-maker j under specific 

attribute levels (identified in A).  Each row of the matrix Dj corresponds to the row vector 

Di,j, that is, the decisions taken at decision point i.  Each column in the matrix Dj corresponds 

to a decision variable.  Each row of the matrix A includes the attribute levels at a particular 

decision point (i).  Each column corresponds to a decision attribute.   

 

For the simple decision-making process outlined above, the data set to be used in determining 

the decision-making strategy of decision-maker j would have the following form: 
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One method of collecting these data would be through observation of the decision-makers at 

work.  This, however, would be extremely time consuming, particularly if the elapsed time 

between decision points is large.  It would also be difficult to record the full set of many 

attribute values at a specific moment in time, and because the values are likely to change 
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continuously, inaccuracies would occur if there were any delay.  As a result, the methodology 

uses a VIS.  The decision-maker interacts with a visual simulation of the system in question.  

The simulation model stops at a decision point and reports the values of the relevant decision 

attributes.  The decision-maker is then prompted to enter his/her decision to the model.  The 

model records the value of each decision variable and decision attribute to a data file.  As a 

result a set of values for the matrices Dj and A are collected.  Separate Dj matrices can be 

generated for each decision-maker by presenting them with the same set of scenarios A. 

Stage 3: Determining the Decision-Makers’ Decision-Making Strategies 

Having collected a series of examples using the VIS, the next step is to use the data in the 

matrices Dj and A to determine the decision-making strategies of the individual decision-

makers.  Various AI approaches might be used to determine the decision-making strategies 

from the example decisions, for instance, rule-based expert systems, regression analysis and 

artificial neural networks.  Rule based systems, that provide a decision tree, are favoured, 

since they not only represent a decision-making strategy, but they also have greater 

explanatory power.  Expert systems software is capable of constructing a decision tree from a 

set of examples.  One such method for constructing a decision tree is Quinlan’s ID3 

algorithm; see, for example, Mingers (1986).  The algorithm prioritises the attributes 

according to the degree to which they match the data set with the correct decisions.  A 

separate decision tree needs to be derived for each decision-maker. 

Stage 4: Determining the Consequences of the Decision-Making Strategies 

Having determined the decision-making strategies, that is, a decision model fj(Ai) for each 

decision-maker j, the next step in KBI is to assess and compare the performance of each 

decision-maker.  A decision-maker's performance can be assessed on the basis of the 

simulation result when the model is controlled by his/her decision-making strategy.  This can 

be achieved by linking the AI representation of a decision-maker with the VIS [Robinson et 

al, 2003].  The AI representation is used in place of a decision-maker to interact with the 

simulation.  Each time the simulation reaches a decision point the simulation stops and the AI 

representation is invoked.  The value of each decision attribute is passed from the simulation 

to the AI representation.  In turn, the AI representation returns the values of the decision 

variables to the simulation before the simulation run is continued.   
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The best strategy can be identified by comparing the results of the simulation when it is run 

under each decision-making strategy.  Of course the strategy identified as 'best' is simply the 

best from among those decision-makers from whom knowledge has been elicited.  Other 

decision-makers may employ better strategies and the 'best' strategy could probably be 

improved upon, which is the purpose of the final stage of the methodology.  

Stage 5: Seeking Improvements 

The last stage in the methodology uses the identified decision-making strategies, particularly 

of the best decision-makers, as a starting point to search for improved strategies.  The search 

can be made informally by discussion with the decision-makers and by combining strategies 

and making incremental changes.  Alternatively, heuristic search methods could be 

implemented, in order to seek for improvements.  In each case, the alternative strategies can 

be tested by running them with the VIS in order to determine their effectiveness. 

 

Case Study: Unplanned Maintenance at a Ford Engine Assembly Plant 

 

The Ford engine plant at Bridgend is one of the main production facilities for the Zetec petrol 

engine.  The plant consists of a number of transfer lines (Ladbrook, 1998) that feed the main 

engine assembly line.  In engine assembly, blocks are placed on a 'platten' and pass through a 

series of automated and manual processes.  From time-to-time automated machines 

breakdown and require repair (unplanned maintenance).  It is the decisions surrounding what 

happens when a machine fails that are the focus of this research.  The plant works to three 

shifts over five days.  In order to limit the scale of the work, only the first section of the line 

was investigated.  This involves about a quarter of the total operations in the engine assembly 

process. 

 

Prior to this research one of the authors (Ladbrook) had already developed a simulation 

model of the complete engine assembly facility.  The model, developed in the Witness 

simulation software [Lanner Group, 2003], was used to identify bottlenecks and to determine 

viable operating alternatives.  The maintenance logic in the model assumed that when a 

machine fault occurred, the decision would be to make an immediate repair.  Random 

sampling was used to determine the skill level of the engineer required to service the fault.  
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These assumptions were considered to be adequate for the purposes of the study that was 

performed. 

 

Application of the KBI Methodology to the Ford Engine Plant 

Stage 1: Understanding the Decision-Making Process 

As already stated, the KBI methodology has been implemented by considering only the first 

section of the engine assembly line.  In this section a team of five engineers (two skilled, two 

semi-skilled and one unskilled engineer) perform the unplanned maintenance, as well as a 

number of other tasks.  One of the skilled engineers acts as group leader for that part of the 

line.  One of his duties is to decide what to do when a machine breaks down.  When a failure 

occurs a message is received via a pager that is carried at all times.  The message reports the 

name of the equipment and a short description of the fault.  After an inspection of the 

machine the group leader decides what action is the most appropriate.  It is at this point that 

the original simulation model assumed the machine would be repaired immediately.  The 

reality, however, is quite different.   

 

In the early stages of the research one of the authors (Alifantis) spent some time observing 

the production facility and in discussion with the plant engineers.  Although the obvious 

action to take when a machine breaks down is to repair it immediately this may not always be 

the most appropriate action for a variety of reasons.  For instance, if there is a long queue of 

parts downstream from the machine requiring repair, then immediate repair may not be the 

most appropriate action, and the maintenance engineers may be better deployed elsewhere.  

Repairing a machine takes time.  Meanwhile the rest of the production facility continues to 

process parts.  This means that during the repair of the machine queues may occur upstream, 

while downstream the process will be starved of parts.  Simply repairing the machine may be 

insufficient to reach target throughput.  Sometimes it may not be possible to repair the 

machine immediately since all the maintenance engineers are busy.  There is always the 

option to interrupt the repair of another machine to release one of the engineers, but this may 

not be the best course of action.  Further to this, on occasions spare parts required for the 

repair of the machine may not be available. 
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From the above it is clear that apart from repairing immediately (RI) other policies should be 

considered when a machine breaks down.  One option is to stand-by (SB).  In this case an 

engineer processes the parts manually and pushes them to the next machine through the 

conveyor.  In general it is not possible to repair the machine at the same time as stand-by is 

being operated because of space restrictions.  The type of fault, the extent of queues and 

labour availability, among other attributes, are the key determinants of this decision.  Another 

option is to simply switch-off (SO) the machine and leave the repair until, say, the end of the 

shift. 

 

Having decided what course of action to take, the group leader decides who must act.  The 

engineers who can be asked to repair a machine are as follows: group leader (L1), second 

skilled engineer (L2), first semiskilled engineer (L3), second semiskilled engineer (L4) or 

unskilled engineer (L5).  On occasions the group leader finds it necessary to seek advice from 

the production manager (ask production manager – APM). 

 

Apart from determining what to do and who should do it, there is a third level of decision: 

whether to plan a repair.  Sometimes repairs provide temporary fixes and more thorough 

maintenance is required to fully rectify the problem.  Also, when a similar fault keeps 

recurring, a thorough investigation may be required.  Often this type of work is carried out 

over the weekend as part of the preventative maintenance work.  The group leader can flag 

the need for more thorough maintenance by specifying a planned repair (PR) and when the 

planned repair (WPR) should take place. 

 

Given the above, the row vector Di,j in this particular decision-making process includes the 

following elements:  

 

Di,j = [RI  SB  SO  L1  L2  L3  L4  L5  APM  PR  WPR] 

 

With the exception of WPR, each element of the above vector represents a decision variable 

that can take the value 0 or 1. Zero means that the decision-maker is not taking the particular 

action or that the particular resource is not being asked to act.  On the contrary, 1 means that 

the decision-maker is taking that particular action or he has decided to ask the particular 

engineer to act.  So, for example, if the group leader (j=1) in his first decision decides to 
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repair immediately, and he also decides that the person who should do this is the second 

skilled engineer, then the row vector D1,1 would be as follows: 

 

 D1,1 = [1  0  0  0  1  0  0  0  0  0  0] 

 

The decision variables were identified through discussions with the plant manager and the 

maintenance team, and through observation of working practices.  The list of variables was 

refined by obtaining feedback from sessions in which the group leaders (one from each shift) 

interacted with the simulation model (stage 2 of the methodology).  After three iterations of 

simulation model interaction, followed by enhancements to the model and the interface, an 

agreed list of decision variables as explained above was reached. 

 

A similar procedure was used to identify the decision attributes.  These attributes were as 

follows: 

 

• Type of fault 

• Estimated repair time 

• Machine number 

• Time of day 

• Number of engines produced so far this shift 

• Engines waiting on the conveyor before the machine 

• Number of heads in the buffer 

• Number of breakdowns on this machine today 

• Number of breakdowns on this machine this month 

• Number of breakdowns of this type on this machine today 

• Number of breakdowns of this type on this machine this month 

 

The number of heads in the buffer attribute refers to the feed of cylinder heads from a sub-

assembly line that joins the main engine assembly line.  The group leaders appear to take 

account of the number of cylinder heads queuing for assembly to an engine in making 

maintenance decisions. 
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The attributes listed above are the elements of the attribute vector Ai.  So, for example, 

assuming that at the first decision point the system has the following attribute levels: 

 

• The fault type code is 300 

• The estimated repair time is 5 minutes  

• Machine 1130 has broken down,  

• The time is 13:23 

• The number of engines produced this shift is 549 

• There are 3 engines on the conveyor before the machine 

• There are 9 heads in the buffer 

• There have been no breakdowns on this machine today 

• There have been 2 breakdowns on this machine this month 

• There have been no breakdowns of this type on this machine today 

• There have been no breakdowns of this type on this machine this month 

 

the attribute vector A1 would be as follows: 

 

 A1 = [300  5  1130  13.23  549  3  9  0  2  0  0] 
   

Although it is possible to identify the types of decisions the group leaders might make via 

observation and discussion, it is another matter to determine how those decisions are taken.  

In determining what course of action to take the group leaders rely upon their knowledge and 

experience (tacit knowledge).  Direct questioning of the group leaders showed they are 

unable to directly express this knowledge.  This is a well-known problem in knowledge 

management, summed up in Polanyi’s comment “we know more than we can tell” [Polanyi, 

1966].  Any method for knowledge elicitation has to address this issue [Kidd, 1987]. Here 

this issue is tackled in stage 2 of the methodology. 

Stage 2: Data Collection 

Having identified the components of the decision-making process, the next step is to collect 

example decisions from the decision-makers via the simulation model.  As already stated, the 

original simulation model assumed that when a machine breaks down the decision is to repair 
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it immediately.  As a result, the model required modification to enable alternative decisions to 

be entered and implemented within the simulation.   

 

The new version of the simulation stopped when a decision point was reached, that is, when a 

machine breaks down.  A Visual Basic front end was invoked and informed the user about 

the state of the system by reporting all the relevant attributes.  The front end is shown in 

figure 2.  The left hand window provides information on the decision attributes, the right 

hand window asks for input regarding the decisions that are to be taken.  The model user can 

also view the status of the model via the visual display of the production facility. 

 

Figure 2  Visual Basic Front End for the Ford Engine Assembly Model 

XXX spelling error - 'waiting' - Thanos 

 

 
 

The user enters his/her decision and clicks on the ‘proceed’ button.  The simulation then 

continues with the decision being implemented within the model.  At each decision point (i) 

the simulation records the decision attributes (Ai) and the decision variables (Di,j) in a data 

file. 
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Because the engine plant has automatic monitoring systems, it was possible to obtain a trace 

of historic data on machine failures and repairs over a three-month period.  Initially this trace 

of data was used to drive the simulation model.  It was found, however, that the decision-

maker soon became bored when interacting with the simulation since the trace contained 

many repetitive decision scenarios.  As a result the trace was adjusted by removing repetitive 

examples.  This meant that the decision-maker was presented with fewer more interesting and 

extreme examples. 

 

The slow run-speed of the simulation also led to decision-maker fatigue as he would have to 

wait for some time between each decision point.  Further to this, it had been observed that the 

decision-makers made no reference to the simulation display, but simply to the Visual Basic 

front end.  From this it was assumed that the front end contained all the information they 

required.  As a result, the simulation was used to generate a series of decision scenarios up-

front, which were then presented to the decision-makers through the front end without the 

simulation.  This had the benefit of speeding the process of data collection and reducing 

decision-maker fatigue. 

 

Knowledge elicitation sessions were carried out with three decision-makers (DM1, DM2, 

DM3); the group leaders for this section of the line from each shift.  Each decision-maker 

was presented with 63 scenarios. 

Stage 3: Determining the Decision-Makers’ Decision-Making Strategies 

Four AI approaches were applied to the data collected from stage 2.  These were: artificial 

neural networks [Bigus, 1996], logistic regression [Pampel, 1996] and two rule induction 

methods (ID3 [Mingers 1986, 1987] and CART [Breiman et al., 1984]).  The analysis 

focused only on the first decision, what to do (RI, SB, SO).  Table 1 summarises the results of 

the analysis, showing the number of decisions that were not correctly classified using each AI 

method.  The software in which the AI method was implemented is also noted. 

 

Table 1  Number of Example Decisions Correctly Classified by the Four AI Methods 

 

  Decision-maker 

AI Method Software used DM1 DM2 DM3 
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Artificial neural network Matlab 44/63 53/63 51/63 

Logistic regression SPSS 63/63 63/63 63/63 

ID3 XpertRule 63/63 63/63 63/63 

CART SPlus 58/63 59/63 60/63 

 

The artificial neural network performed particularly badly, misclassifying up to one third of 

the decisions.  This is not unexpected since it is known that neural networks perform poorly 

when there are a limited number of examples [XXX Bigus, 1996].  A number of 

combinations of layers and nodes were tried, eventually settling upon a three layer network.  

Although further experimentation with the network structure may have given a better fit 

(fewer misclassifications), this was not carried out since the network was performing so 

poorly. 

 

Logistic regression was used instead of standard multiple regression analysis because the 

decision variables are binary.  This regression gave a perfect fit.  After investigating 

alternative combinations of independent variables, the best fit was obtained with just five 

decision attributes: estimated repair time, machine number, number of engines produced so 

far this shift, engines waiting on the conveyor before the machine and number of heads in the 

buffer. 

 

Of the two rule induction methods the ID3 algorithm achieved the best result in terms of 

correct classification.  After trying different combinations of decision variables it was found 

that, depending on the decision-maker, two or three variables were required to be able to 

classify all the example decisions.  The decision variables involved were: estimated repair 

time, machine number, and number of heads in the buffer. 

 

As a result of this investigation the three decision trees (one for each decision-maker) 

obtained from the ID3 algorithm were selected for implementation in stage 4.  These were 

selected on the basis of their success in classifying the example decisions, their ease of 

interpretation and their explanatory power.  It was felt that although the logistic regression 

gave the same success in classifying the examples it did not perform so well on the later two 

elements. 
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Stage 4: Determining the Consequences of the Decision-Making Strategies 

The simulation model in Witness [Lanner Group, 2003] was linked to the expert systems 

software XpertRule [Attar Software, 2000] as described by Robinson et al [2003].  When a 

machine failure occurs in the simulation model, the simulation stops and the expert system is 

invoked.  The decision is returned to the simulation model and the run continued 

implementing the decision that has been taken.   

 

The simulation was run for a period of 112 days, giving 111 days of data after a warm-up 

period of one day.  The daily throughput results (assuming only one shift per day) for the 

three decision-makers and the original logic (base) used in the model, always repair 

immediately, are shown in figure 3.  The data have been scaled by a multiplier for reasons of 

confidentiality. 

 

Figure 3  Results of Simulation Linked to Expert System Representation of Decision-Makers 

 

 

 

 

 

 

 

 

 

 

 

 

Albeit difficult to interpret the time-series in figure 3, the key point to note is that the series 

are different for each decision-maker, showing that the decision-making strategies have an 

impact on plant performance.  It is notable that there are a number of days on which the 
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0

50

100

150

200

250

300

350

400

450

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111

Day

Th
ro

ug
hp

ut

DM1 DM2 DM3 Base



 18 

Two statistical tests are performed on the data in figure 3.  The first is a comparison of the 

mean differences in daily throughput between each decision-maker and between the decision-

makers and the base model.  The second is a regression analysis aimed at determining 

whether the time-series are correlated or whether there are differences in the throughputs 

achieved on a daily basis. 

 

Table 2(a) shows the mean and standard deviation of the daily throughput for the four 

simulation runs.  This suggests that DM1 and DM2 might perform slightly better than DM3 

and the base model.  It is notable that the standard deviation in throughput is much lower for 

DM2, which is likely to be preferred. 

 

Table 2(b) shows paired-t confidence intervals for the differences between the results for the 

three decision-makers.  According to the Bonferroni inequality a significance level of 1.67% 

(5%/3) should be used to give an overall confidence level of 95%, because three confidence 

intervals are being calculated [Law and Kelton, 2000].  Further to this, the data in the time-

series have been batched in order to assure independence.  Using Fishman's procedure 

[Fishman, 1978], a batch size of two is sufficient to assure a reasonable level of 

independence.  The results show that the differences in the results for the three decision-

makers are not significant. 

 

Meanwhile, the results in table 2(c) show the paired-t confidence intervals for the differences 

between the results for each decision-maker and the base model.  These are calculated using 

the same procedure as above.  What this shows is a significant difference between both DM1 

and DM2 and the base model.  In both cases, the decision-makers outperform the decision-

making strategy in the base model.  This suggests that in a simulation model of the engine 

assembly plant that aims to assess plant performance in the face of machine failures, an 

appropriate representation of maintenance strategies is important. 
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Table 2  Comparison of Mean Performance for each Decision-Making Strategy 

 

(a) Mean Daily Throughput and Standard Deviation 

 DM1 DM2 DM3 Base 

Mean daily throughput 325.53 325.15 318.87 312.06 

Standard deviation 36.28 28.54 34.34 39.58 

 

(b) 98.33% Paired-t Confidence Intervals for Differences in Daily Throughput between each 

Decision-Making Strategy 

 DM2 DM3 

DM1 -8.43, 9.19 

(no sig. difference) 

-3.80, 17.11 

(no sig. difference) 

DM2  -2.11, 14.66 

(no sig. difference) 

 

(c) 98.33% Paired-t Confidence Intervals for Differences in Daily Throughput between each 

Decision-Making Strategy and the Base Model 

 Base 

DM1 0.84, 26.10 

(DM1>Base) 

DM2 1.21, 24.98 

(DM2>Base) 

DM3 -4.04, 17.66 

(no sig. difference) 

 

Table 3 shows the results of regression analyses comparing the daily throughput achieved by 

each decision-maker.  If there is a direct correspondence between two decision-makers, then 

it would be expected that the R-squared and beta (slope) values would both be 1.  The results 

show the R-squared value for each comparison and confidence intervals for the beta values.  

Again, significance levels of 1.67% have been used, giving an overall level of confidence of 

95%.  Not only is there merely a moderate correlation in the data with all R-squared values 

being less than 0.5, but also the beta values suggest that there is not a direct correspondence 

between the throughput achieved by each decision-maker on a daily basis. 
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Table 3  Comparison of Throughput Performance on a Daily Basis: Regression Analysis 

 

 DM2 DM3 

DM1 R-squared 

98.33% CI 

0.49 

0.52, 0.83 

R-squared 

98.33% CI 

0.47 

0.49, 0.81 

DM2   R-squared 

98.33% CI 

0.47 

0.51, 0.85 

 

The extent to which these results show differences between the decision-makers may be 

limited because the decision-making on only one section of the line has been represented.  If 

the decision-makers on the other three sections were also represented, the differences may be 

much more marked. 

Stage 5: Seeking Improvements 

No formal methods were used in this case example for seeking improvements in the decision-

making strategies.  There may be some improvement if all group leaders adopted the 

strategies of DM1 or DM2.  Any thorough search for improvements would have to look at 

decision-making across all sections of the assembly line.  Without knowledge of the 

strategies that are employed on the rest of the assembly line, this was not possible. 

 

One unexpected way in which the methodology helped to improve decision-making came 

about during data collection (stage 2).  During a data collection exercise one of the group 

leaders who was relatively new to the role sought advice from other members of the team.  In 

this way he was able to learn alternative approaches for dealing with specific situations.  As 

such, the interactive simulation acted as a training tool. 

 

Further work needs to investigate methods for seeking improvements.  This should include 

informal approaches, such as comparing strategies and making incremental changes.  It could 

also include a more formal search using, say, heuristic methods, or the use of rule induction 

to choose between different strategies. 
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Concluding Discussion 

 

In applying the KBI methodology a number of strengths and weaknesses have been 

identified.  The use of VIS for knowledge elicitation has a number of benefits.  First, it is less 

time consuming than observation of the real system because the simulation runs much faster 

than real time.  Second, because the simulation stops at a decision point, it is possible to 

capture all attribute values at that moment in time.  A third benefit is that a simulation run can 

be replicated exactly, enabling the system-state to be interrogated further at a later date, 

should this be required.  For instance, it may become apparent that the decision-maker takes 

into account attributes that have not previously been identified.  This also provides the benefit 

that different decision-makers can be presented with the same series of decision situations.  

Finally, because the modeller has control over the decision scenarios that are presented to the 

decision-maker, it is possible to guarantee that decisions are recorded for a wide range of 

scenarios.  Should important scenarios be overlooked during data collection, it is always 

possible to perform further knowledge elicitation sessions in which those scenarios are 

presented. 

 

Of course the use of VIS as a data collection method is not free of problems.  Three specific 

difficulties arise.  First, the model needs to contain and report all the key attributes in the 

decision-making process.  This probably requires a very detailed model which in itself could 

be time consuming to develop.  Accurate data, required to support such a detailed model, may 

not be available either.  In some circumstances the simulation may not be capable of 

reporting all of the decision attributes.  In the Ford case the group leaders took the physical 

condition of the machine into account when determining what course of action to take.  This 

attribute is all but impossible to simulate in a model of this nature.  Fortunately it was 

possible to use the estimated repair time as a meta-attribute that would in practice include 

knowledge of the machine's condition. 

 

A second problem is the need to involve the human decision-maker in entering decisions to 

the model.  A very large number of example decisions may be required to obtain a full set of 

data, which in itself could be time consuming.  A third problem is whether the human 

decision-makers are likely to take realistic decisions in a simulated environment.  It is quite 

likely that they will take greater risks, as there are no real consequences to their decisions. 
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Beyond the use of VIS for knowledge elicitation (stage 2) there are many other issues that 

need further investigation.  Could a more formal process be employed for understanding the 

decision-making process (stage 1)?  Perhaps soft OR methods might be applicable at this 

stage.  Which AI approaches are most effective for learning, representing and improving 

decision-making strategies (stage 3)?  Perhaps different methods should be used for different 

purposes.  The validation of the AI representation also needs to be investigated.  When 

running the simulation linked to AI, what should happen if a scenario occurs for which there 

is no decision logic (stage 4)?  How would such an occurrence be identified?  Could some 

form of interpolation be used to fill holes in the decision-logic (for a decision tree, this would 

require the identification of a further supporting model)?  Finally, there is the need to 

investigate stage 5 of the methodology in greater detail than has so far been possible. 

 

A second research project is under way which is investigating in more detail the knowledge 

elicitation aspects of the methodology.  Again based at a Ford engine assembly plant, the 

methodology is being applied to a hot test area.  The objective is to compare alternative 

mechanisms for eliciting knowledge from decision-makers using VIS in terms of their 

efficiency and effectiveness.  Specific issues to be addressed are the level of visual display, 

the nature of the interactive interface and the methods for generating decision scenarios. 
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