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Abstract

Visualising data for exploratory analysis is a big challenge in scientific and engineering domains
where there is a need to gain insight into the structure and distribution of the data. Typically, visual-
isation methods like principal component analysis and multi-dimensional scaling are used, but it is
difficult to incorporate prior knowledge about structure of the data into the analysis.
In this technical report we discuss a complementary approach based on an extension of a well known
non-linear probabilistic model, the Generative Topographic Mapping. We show that by including
prior information of the covariance structure into the model, we are able to improve both the data
visualisation and the model fit.
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1 Introduction

Data visualisation is widely recognised as a key task in exploring and understanding data sets. In-
cluding prior knowledge from experts into probabilistic models for data exploration is important
since it constrains models, which usually leads to more interpretable results. As measurement be-
comes cheaper, datasets are becoming steadily higher dimensional. This is not true for the number
of samples which might stay quite low since it is quite costly for example to include more patients in
clinical trials or do more drills in the oil exploration industry. These high dimensional data sets poses
a great challenge when using probabilistic models since the training time and the accuracy of these
models depends on the number of free parameters. A common fix for gaussian models is to reduce
the number of parameters and to ensure sparsity in the model is to constrain the covariance matrix
to be either diagonal, or spherical in the most restricted case. These constraints exclude valuable
information about the data structure, especially in cases where there is some understanding of the
structure of the covariance matrix.

A good example can be seen in chemical analysis like Gas Chromatography-Mass Spectrometry (GC-
MS). When one examines the results of GC-MS run over different samples, one knows that certain
compounds are highly correlated with each other. Incoperating this information into the model will
result in a block matrix covariance structure. Theoretically this will help to reduce the number of free
parameters without loosing too much valuable information. In this technical report we will look at a
common probabilistic model for data exploration and imputation called the Generative Topographic
Mapping (GTM) [1]. The standard GTM uses a spherical covariance matrix and we will modify this
algorithm to work with a informative block covariance matrix.

The technical report has the following structure. In Section 2 we briefly review common data explo-
ration algorithms and describe in more detail problems with assessing unsupervised learning tasks
like data visualisation. In Section 3 we introduce the standard GTM model, extend it to the case of a
block covariance matrix and describe how GTM can deal with missing data. In Section 4 we present
some experiments on artificial data, where we compare the normal GTM against the block version
and show where the advantages of both models lie. Finally in Sections 5 and 6 we conclude the report
and point out further areas of research.

2 Data Exploration

2.1 Data Visualisation

A fundamental requirement for visualisation of high-dimensional data is to be able to map, or project,
the high-dimensional data onto a low-dimensional representation while preserving as much infor-
mation about original the structure in the high-dimensional space as possible. This low-dimensional
representation is usually 2D so that the projected data can be shown on screen or paper and will be
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referred to as the latent space. Employing a 2D latent space allows the human analyst to explore the
data and discern structure more easily and naturally.

There are many possible ways to obtain such a low-dimensional representation. Context will of-
ten guide the approach, together with the manner in which the latent space representation will be
employed. Some methods such as PCA and factor analysis [4] linearly transform the data space and
project the data onto the lower-dimensional space while retaining the maximum information 1. Other
methods like the Kohonen, or Self Organising, Maps [9] and the Generative Topographic Mapping
(GTM) [1] try to capture the topology2 of the data. Another recent topology-preserving method,
the Gaussian Process Latent Variable Model (GP-LVM) [10] utilises a Gaussian Process prior over
the mapping function and obtains the latent space projection by directly optimising the latent point.
Geometry-preserving methods like multi-dimensional scaling [2] and Neuroscale [11] try to find a
representation in latent space which preserves the geometric distances between the data points. The
later approach can even be extended through a technique called Locally Linear Embedding [12, 7],
which defines another metric to calculate the geometric distances, one uses to optimise the mapping
function. In this technical report we will focus on the classical Generative Topographic Mapping
(GTM) and an extension which we will call Block Generative Topographic Mapping (B-GTM).

2.2 Assessing Unsupervised Learning

The dimensionality reduction methods discussed in this report are all examples of unsupervised
learning. Thus we cannot tell a priori what is the expected or desired target. This makes it very
difficult to judge which method is the best in the sense of telling us the most about a certain dataset.
In the simple case of artificial data one can use prior knowledge about the structure of the data in the
original space to quantify the error on the projection. For the more complex case of real data there
are various approaches to this problem ranging from different resampling methods [13] to a Bayesian
approach using the GP-LVM [6].

In this technical report we are going to focus mainly on the following measures of the quality of a
projection:

Nearest Neighbour Label Error: The nearest neighbour label error can only be computed on la-
belled data, where we know the class of each data point. The idea is to consider the projected data
and calculate for each point how many of the k nearest points are in the same class. Then we average
the fraction of k-nearest neighbours in the same class over all the points. Finally we average over all
the classes as well.

1Strictly the 1st principal component explains the maximum variance, which in a Gaussian setting equates to informa-
tion in the Fisher entropic sense.

2A topological mapping is one that seeks to preserve local neighbour relations; two points that are neighbours in the
data space should also be neighbours in the latent space.
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Model Likelihood: The model likelihood is the likelihood that the actual data in the observation
space were created given the actual model. This quantity can be calculated for every probabilistic or
generative projection model as long as it induces a density in the data space.

GP-LVM model selection likelihood: The GP-LVM likelihood as described in [6] is calculated in
two steps. We first take an GP-LVM model and fix the latent space to the projection we want to
evaluate. We then optimise the hyperparameters for the GP-LVM and calculate the data likelihood
afterwards. The idea is that the GP-LVM, since it is based on a Gaussian Process, should be flexible
enough to model most possible mapping functions and thus give a comparable estimate of how well
the actual latent space is representing the given data space.

3 Block GTM

3.1 Standard GTM

Figure 1: The non-linear function Θ(x, W) defines a manifold S embedded in the data space given
by the image of the latent variable space under the mapping x → t.

The essence of GTM is to try and fit a density model, which is constrained to lie on 2-dimensional
manifold, to the data in order to capture the structure in the high dimensional data space. This can
be visualised as a flexible rubber sheet, which is bent and stretched in the high-dimensional space
to best fit the data points. This rubber sheet consist of a grid of points in the latent space which are
connected via a non-linear mapping function to a contorted grid of Gaussian centres in the data space.
Thus the GTM may be described as a mixture of Gaussians constrained to lie on a manifold. To learn
the intrinsic structure in the data, the rubber sheet is distorted by learning the non-linear mapping
function using an Expectation Maximisation (EM) algorithm [5] to maximise the data likelihood.

In contrast to many other latent variable models, the GTM algorithm is not defined in terms of a
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mapping from the data space into the latent space, but rather it defines a mapping from latent to data
space and applies Bayes’ theorem to induce a posterior distribution in the latent space given some
new data.

First one considers a function t = Θ(x, W) which maps points x in the L-Dimensional latent space
into an L-dimensional non-Euclidean manifold S embedded within the D-Dimensional data space
onto the points t, shown for the case L = 2 and D = 3 in Figure 3.1.

Defining a probability distribution p(x) for the data points in the latent space will induce a corre-
sponding distribution p(t|W) in the data space. Since in reality the data will not sit precisely on the
manifold, it is reasonable to include a noise model for the data t. The distribution of t is chosen to be
a radially-symmetric Gaussian centered on Θ(x, W) with variance β−1, for given x and W, so that

p(t|x, W, β) =
(

β

2π

)D/2

exp{−β

2
‖ Θ(x, W)− t ‖2} , (1)

where one should note that it is possible to use other distributions for p(t|x), such as a Bernoulli
for binary variables . For a given value of W, the distribution is obtained by integration over the
distribution p(x)

p(t|W, β) =
∫

p(t|x, W, β)p(t) dx . (2)

For a given data set T = (t1, ..., tN) of N data points, the parameter matrix W and the inverse variance
β are obtained through by optimising the data set log likelihood

L(W, β) = ln
N

∏
n=1

p(tn|W, β) . (3)

After determining the prior distribution p(x) and the functional form of the mapping Θ(x, W) it is in
principle possible to determine β and W by maximising L(W, β). But the integral over x in (2) will,
in general, be analytically intractable. Also one might wish to use a non-linear function Θ(x, W).
Therefore a specific form of p(x) is considered, where p(x) is given by a sum of delta functions
centred on the nodes of a regular grid in latent space

p(x) =
1
K

K

∑
i=1

δ(x − xi) (4)

in which case the integral in (1) can be evaluated analytically and reduces to a sum of distributions.
Now every point xi is mapped to a corresponding point Θ(xi, W) in the data space, where it builds
the center of a Gaussian density function. Combining (2) and (4) the distribution function in the data
space takes the form

p(t|W, β) =
1
K

K

∑
i=1

p(t|xi, W, β) (5)
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and the corresponding log likelihood becomes

L(W, β) =
N

∑
n=1

ln

{
1
K

K

∑
i=1

p(tn|xi, W, β)

}
. (6)

Since the model consists of a mixture of distributions it is possible to find the optimal solution via an
EM algorithm for β and W, after choosing the particular form of Θ(x, W). To derive the EM algorithm
for the GTM model Θ(x, W) is chosen to be a linear-in-parameters regression model of the form

Θ(x, W) = WΦ(x) , (7)

with the elements of Φ(x) consisting of M fixed radial basis functions [3] and W being a D × M
matrix.

In the case under consideration it is assumed we have a hidden variable zin which tells us which
component from (4) generated data point tn. If the i-th component generated data point tn then
zin = 1. Since we don’t know zin we are using taking the expectations which are the responsibilities
of the Gaussian components in the algorithm. Therefore the EM algorithm can be formulated as
follows. Assuming that Wold and βold are given one can use the E-step to evaluate the responsibilities
of each Gaussian component i for every data point tn using Bayes’ theorem

Rin(Wold, βold) = p(xi|tn, Wold, βold) (8)

= p(tn|xi ,Wold,βold)
∑K

j=1 p(tn|xj,Wold,βold)
. (9)

Then the expectation of the complete-data log likelihood has the form

〈Lcomp(W, β)〉 =
N

∑
n=1

K

∑
i=1

Rin(Wold, βold) ln{p(tn|xi, W, β)} . (10)

Maximising (10) with respect to W and using (1) and (7) one gets

N

∑
n=1

K

∑
i=1

Rin(Wold, βold){WnewΦ(xi)− tn}ΦT(xi) . (11)

This can be written in matrix notation

ΦTGoldΦWT
new = ΦTRT , (12)

with Φ being a K × M matrix with elements Φij = Φj(xi), T being a N × D matrix with elements tnk,
R being a K × N matrix with elements Rin andG being a K × K diagonal matrix with elements

Gii =
N

∑
n=1

Rin(Wold, βold) . (13)

Equation (12) can be solved for Wnew using standard linear algebra techniques. By a similar argu-
ment, to maximise (10) with respect to β one obtains the following formula

1
βnew

=
1

ND

N

∑
n=1

K

∑
i=1

Rin(Wold, β)||WnewΦ(xi)− tn||2 . (14)
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The EM algorithm alternates between the E-step,given by evaluating 8, and the M-Step,evaluating
Wnew and βnew, until it converges to a (local) maximum as follows:

E-Step:

• Set Wold = Wnew and βold = βnew.

• Calculate Rin(Wold, βold).

M-Step:

• Calculate Wnew with Rin.

• Calculate βnew with Rin.

3.2 Extension to Block GTM

A novel approach to include prior information about the correlations of variables into the model is
to use a full covariance matrix in the GTM noise model and to enforce a block structure onto it. This
still results in a relatively sparse covariance matrix but keeps the number of unknown parameters
at an acceptable level while helping the model to fit the data including prior information about its
structure. After ordering the variables by their known groups, the covariance matrix will have the
following structure:

Σ =


Σ1 0 . . . 0

0 Σ2
. . .

...
...

. . . . . . 0
0 . . . 0 Σp

 (15)

with Σ1 to Σp being the submatrices of correlated group of variables. We further assume that there
is no correlation between variables in distinct groups. The extension of the learning algorithm is
straightforward since the only changes occur in the computation of R in the E-step and of Σ in the M-
step. In the E-Step the computation of the posterior probabilities of each Gaussian component index
by i changes since the Gaussian is no longer spherical but rather has the block covariance matrix Σ:

Rin(Wold, Σold) = p(xi|tn, Wold, Σold) (16)

= p(tn|xi ,Wold,Σold)
∑K

j=1 p(tn|xj,Wold,Σold)
. (17)

For the M-step we have to derive the update for the full covariance matrix Σ. Taking the derivative
of the negative log likelihood with respect to Σ we get:

−∂L(W, Σ)
∂Σ

= −
N

∑
n=1

D
2

Σ−1 − 1
2

N

∑
n=1

K

∑
k=1

RinΣ−1aknaT
knΣ−1 , (18)
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Figure 2: The fit and projection of a 15x15 GTM with 16 RBF centres to S-shaped test data after 50
iterations with the EM algorithm and initialisation with PCA.
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where akn = (Θ(xk, W)− tn). Setting the derivative to zero we obtain

Σ =
1

ND

N

∑
n=1

K

∑
k=1

RinaknaT
kn , (19)

which can be described as the average empirical covariance calculated over all the Gaussians.
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4 Experiments On Artificial Data

To explore the behaviour of block GTM in comparison to spherical (i.e. standard) GTM, full GTM,
as well as PCA, several experiments were carried out. The data were sampled from a GTM with a
8 × 8 grid in the latent space. The grid was projected into a higher dimensional space using a 2 × 2
RBF network. The weights were randomly sampled from a normal distribution with zero mean and
standard deviation one. Since the RBF was chosen with random weights the restriction to a 2 × 2
RBF ensured a non-linear but smooth and realistic mapping. The GTM used to generate the data had
a block diagonal covariance matrix and experiments were conducted with varying levels of variance
and correlation. The overall variance of the data varied from 6.45 to 7.55, with covariances around
the single Gaussians varying from 2 to 20. In each experiment 100 data points were sampled from
this GTM and each experiment was conducted 20 times, with a different randomly generated GTM
each time. Further the 8 × 8 grid was split into 4 classes with the 16 Gaussians building one corner
of the grid being defined as one class. The data projection models were all fitted to the same data set
and their performance was evaluated.

To check if the block GTM yields any advantage over the other methods through the knowledge
of the block structure, a set of experiments were conducted on block sizes ranging from 2 to 5. To
see how the block GTM performed when being misspecified a shuffle experiment on 24-dimensional
data sets was conducted where a certain percentage of the correlations were “shuffled” into another
block. The other block was randomly selected. Therefore one has to keep in mind that variables
might end up in the same group; in the case of just two groups this is always the case. In all cases the
fitted GTM (spherical, block and full) was chosen to have a 4 × 4 RBF and a 15 × 15 grid to provide
sufficient flexibility to fit the data.

4.1 Results

As expected the results for the different experiments vary greatly depending on the variance one
chooses for the generating GTM. This can be seen in Figure 3 where the average NNL Error for 20
experiments was plotted for different overall variances in the generated data. The data set in this
case was always 20-dimensional. The variance correlates strongly with the enforcement of the block
structure in the data. It also has to be said, that the average was only taken until the block GTM
algorithm broke down. The block GTM algorithm breaks down, once a certain data dimensionality
is reached. The reason for this has yet to be determined. The exact breakdown points can be seen
in the later experiments. The experiment shows nicely that the performance of the block GTM stays
relatively constant regardless of the noise level in the data, while the spherical GTM and the PCA
perform worse with increasing variance. This leads to an advantage in the case where 2, 3 or 4 blocks
are present, while in the case where we have 5 blocks or more it takes a certain level of variance
before the block version performs better. In the following sections we first look at 3 cases, where we
enforced the block structure to different levels (weakly, moderately and highly). Then we look at the
performance when the block structure is misspecified.
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Figure 3: Average NNL Error for different levels of variance in the data.
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4.2 Weakly structured data

As an example for low structured cases we have chosen the covariances to be 2 around the single
Gaussians from which we sample in the grid, which results in an overall variance of 6.45 in the data
set. Figures (4 to 7) show how the NNL Error varies with increasing dimensionality of the data set.
The NNL Error calculated for k = 1 : 4 shows congruent behaviour for different choices of k. The
results are similar for all block sizes running from 2 to 5.

Block GTM performs as well as or slightly better than the other methods until the data dimensionality
reaches 20. Looking at the range from 20 to 38 dimensions, the performance is slightly worse and it
completely breaks down when 40 dimensions are reached. The full GTM model has no advantage in
this case and breaks down even earlier than the block GTM. PCA and spherical GTM are performing
constantly at the same good level and are not affected by the increase in dimensionality.

Figure (8) shows the average GP-LVM likelihood of the GTM cases over increasing dimensionality
in the data set. The results are harder to distinguish but congruent with the results of the NNL Error
until the data dimensionality reaches 44. The trend for a breakdown of block GTM and full GTM is
not as strong as in the NNL Error case but is still present. Strangely, after going beyond 44 dimensions
the likelihood for the block and full GTM drops radically.

Figure (9) shows the model negative log likelihood of the different GTMs over increasing dimension-
ality in the data set. The spherical GTM exhibits a slow linear increase in likelihood with increasing
dimensionality. The same is true for the block GTM, which also perform slightly better than spherical
GTM until it starts to break down. The breakdown levels are different for the different block sizes
but increase with an increasing number of blocks. The full GTM model always performs the worst
and exhibits a near-exponential increase in its negative log likelihood.
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Figure 4: Comparing the different methods with 2 blocks in the covariance. The NNL Error is cal-
culated for different values of k.

Figure 5: Comparing the different methods with 3 blocks in the covariance. The NNL Error is cal-
culated for different values of k.
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Figure 6: Comparing the different methods with 4 blocks in the covariance. The NNL Error is cal-
culated for different values of k.

Figure 7: Comparing the different methods with 5 blocks in the covariance. The NNL Error is cal-
culated for different values of k.
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Figure 8: Comparing the different methods using the GP-LVM selection likelihood. The different
block sizes in the covariance matrix range from 2 to 5.

Figure 9: Comparing the different methods using the average model log likelihood. The different
block sizes in the covariance matrix range from 2 to 5.
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Figure 10: Comparing the different methods with 2 blocks in the covariance. The NNL Error is
calculated for different values of k.

4.3 Moderately structured data

As an example for medium structured cases we have chosen the covariances to be 10 around the
single Gaussian, which results in an overall standard deviation of 7 in the data set. Figures (10 to
13) show how the NNL Error changes with increasing dimensionality of the data set. Compared
to the low structured the case the results differ a little depending on the block size. Block GTM
always performs better than the other methods until the dimensionality reaches 36 and then quickly
breaks down when 40 dimensions are reached. The full GTM model performs worse than block
GTM but also outperforms the spherical GTM and PCA. However depending on the group size,the
full GTM loses its advantage relatively quickly until it breaks down at a dimensionality of about
36. PCA constantly performs worse than spherical GTM but comes closer to the performance of
spherical GTM with increasing dimensionality. It is also interesting to note that the performance
of both PCA and spherical GTM increases up to a dimensionality of 20–26 and then stays constant.
Figure (14) shows the average GP-LVM likelihood which shows the same strange behaviour as in the
low structure case. Figure (15) shows the model log likelihood of the different GTMs over increasing
dimensionality in the data set. The results correspond to the findings in the low structure case but
they exhibit a bit more strongly the advantage of the block GTM especially when dealing with data
between 16 and 30 dimensions.
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Figure 11: Comparing the different methods with 3 blocks in the covariance. The NNL Error is
calculated for different values of k.

Figure 12: Comparing the different methods with 4 blocks in the covariance. The NNL Error is
calculated for different values of k.

Copyright (c) Aston University 2008



NCRG/2008/006 Block GTM: Incorporating Prior Knowledge of Covariance Structure in Data
Visualisation 19

Figure 13: Comparing the different methods with 5 blocks in the covariance. The NNL Error is
calculated for different values of k.

Figure 14: Comparing the different methods using the GP-LVM selection likelihood. The different
block sizes in the covariance matrix range from 2 to 5.
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Figure 15: Comparing the different methods using the average model log likelihood. The different
block sizes in the covariance matrix range from 2 to 5.

Copyright (c) Aston University 2008



NCRG/2008/006 Block GTM: Incorporating Prior Knowledge of Covariance Structure in Data
Visualisation 21

Figure 16: Comparing the different methods with 2 blocks in the covariance. The NNL Error is
calculated for different values of k.

4.4 Highly structured data

As an example for high structured cases we have chosen the covariances to be 20 around the single
Gaussian, which results in an overall standard deviation of 7.55 in the data set. Figures (16 to 19)
show how the NNL Error changes with increasing dimensionality of the data set. The results in the
high structure case separate the methods clearly. Block GTM performs better than the other methods
until the breakdown at 40 dimensions. The full GTM model only performs better then the spherical
GTM at very low dimensionality and with increasing number of blocks the effect diminishes. PCA
always performs worse than all the other methods until these break down but again is approximating
the performance of spherical GTM with increasing block size and dimensionality. Figures (20) and
(21) show essentially the same behaviour as in the previous experiments.
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Figure 17: Comparing the different methods with 3 blocks in the covariance. The NNL Error is
calculated for different values of k.

Figure 18: Comparing the different methods with 4 blocks in the covariance. The NNL Error is
calculated for different values of k.
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Figure 19: Comparing the different methods with 5 blocks in the covariance. The NNL Error is
calculated for different values of k.

Figure 20: Comparing the different methods using the GP-LVM selection likelihood. The different
block sizes in the covariance matrix range from 2 to 5.
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Figure 21: Comparing the different methods using the average model log likelihood. The different
block sizes in the covariance matrix range from 2 to 5.
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Figure 22: Shuffle Experiment to compare the different methods with 2 blocks in the covariance.
The NNL Error is calculated for different values of k

4.5 Shuffle Experiment

The shuffle experiment was conducted on a 24-dimensional highly structured data set and thus it has
a covariance of 20 for the blocks in the single Gaussian and a standard deviation of 7.55 for the whole
data set. Figures (22 to 24) show the results for block sizes from 2 to 4. With 0 percent shuffle, block
GTM is first, spherical GTM second, full GTM third and PCA performs worst. The performance of
the last three models stays constant as expected, only being altered by the random effects due to the
small size of repetitions when rerunning the experiment with different random shuffle patterns. The
performance of the block GTM however deteriorates as the number of shuffled variables increases, as
expected. Interestingly, the performance tends towards the level of spherical GTM or slightly worse.
Similar behaviour can be seen for the log likelihood in Figure (25), with the only exception that block
GTM has a worse likelihood than spherical GTM in the case of 2 blocks. In this case the likelihood
approaches a constant level as well, which is slightly higher than the one for spherical GTM. The
GP-LVM likelihood in Figure (26) is again somewhat hard to interpret though the general trend is the
same; however it indicates an even stronger advantage for the block GTM.
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Figure 23: Shuffle Experiment to compare the different methods with 3 blocks in the covariance.
The NNL Error is calculated for different values of k

Figure 24: Shuffle Experiment to compare the different methods with 4 blocks in the covariance.
The NNL Error is calculated for different values of k
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Figure 25: Shuffle Experiment to compare the different methods using the average model log like-
lihood. The different block sizes in the covariance matrix range from 2 to 4.

Figure 26: Shuffle Experiment to compare the different methods using the GP-LVM selection likeli-
hood. The different block sizes in the covariance matrix range from 2 to 4.
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5 Conclusions

The experiments show that the block GTM is very promising. The main limitation is the abrupt
breakdown when the data set dimensionality is too great. Empirical results not shown in this report
indicate that the sample size of the data does not change the boundary at 40 dimensions. If one has
40 or fewer dimensions it better to include information about the grouping of the variables. In the
worst cases, when there is no strong expression of this grouping in the data or a misspecification of
the grouping, the block GTM will perform at the same level as spherical GTM. The experiments also
show that the use of the GP-LVM framework to assess the quality of the model has to be consid-
ered very carefully. It failed to detect when the methods break down and essentially project all the
data onto one point. This seems to be optimal for fitting the GP-LVM framework to the data, when
optimising the hyper parameters and thus causes the rapid decrease in likelihood. It also seems to
be very prone to slight fluctuation in the data since the sample size was not large enough to correct
for random effects in case of the shuffle experiments. However it is one of the few helpfull tools to
assess unsupervised learning, especially when one cannot engineer synthetic data to test the method
or wants to compare against non-probabilistic data projection methods.

6 Future Work

Future work in this area will be aimed at assessing the possibility of including methods like Bayesian
Correlation Estimation [8] into the algorithm in order to learn the correlation structure rather than
rely on it being imposed a priori. This would require a variational formulation of the GTM algorithm.
It would also be interesting to find out what part of the algorithm is causing the break down of
performance at 40 dimensions, since this does not seem to be related to the sample size. Further we
had severe problems when trying to extend the algorithm for block GTM to handle missing data. The
EM algorithm became highly unstable and we are currently investigating this problem.
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