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Abstract

Exploratory analysis of data in all sciences seeks to find common pat-
terns to gain insights into the structure and distribution of the data. Typ-
ically, visualisation methods like principal components analysis are used
but these methods are not easily able to deal with missing data nor can
they capture non-linear structure in the data. One approach to discovering
complex, non-linear structure in the data is through the use of multivariate
statistics,linked plots, or brushing, while deleting or ignoring the missing
data. In this technical report we discuss a complementary approach based
on a non-linear probabilistic model. The generative topographic mapping
enables the visualisation of the effects of very many variables on a single
plot, which is able to incorporate far more structure than a two dimensional
principal components plot could, and deal at the same time with missing
data. We show that using the generative topographic mapping provides
us with an optimal method to explore the data while being able to replace
missing values in a dataset, particularly where a large proportion of the
data is missing.
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1 Introduction

In all sciences the amount of available data is steadily growing. Increasing ca-
pabilities of the analysis methods used and decreasing costs for the capture,
processing and storage of data is likely to further enhance this trend in the
future. For example, modern technologies allow samples in chemistry and ge-
ology to be analysed for chemical composition or biomarkers in great detail. In
molecular biology microarray analyses allow access to large quantities of data
either stored in the DNA of living organisms or in terms of the reactivity of
new found biologically active compounds.

To make use of these data one needs to explore their structure and try to
find common patterns to generalise trends or infer further information from
them. To find these patterns, visual inspection using a single plot is only
an option in three dimensions (3D). Arguably this can be extended to 6D by
adding colour, marker size and marker type to a 3D plot, however this can be
very difficult to interpret. Linked plots and sub-setting methods can be further
employed, however discovering non-trivial relationships in high dimensional
complex data remains an open problem. To address this issue one can use visu-
alisation of high dimensional data and map, or project, the high dimensional
data onto a low dimensional representation while preserving as much infor-
mation about the structure, in the high dimensional space, as possible. This
low dimensional representation is usually 2D to be representable on screen or
paper. Employing this 2D representation allows the human analyst to explore
the data and discern structure more easily and naturally and a good example
for this is Principal Components Analysis (PCA) [6].

The task of exploring and analysing data gets even more complicated if one
has to deal with missing values. These represents a challenge in many scien-
tific fields. Many existing analysis and visualisation methods like PCA cannot
cope with missing values. The standard options that are typically employed in-
clude the deletion of samples with missing values or replacing missing values
with the averages of columns and rows. Using these methods one looses a lot
of information in the best case or changes the data distributions affecting the
analysis in the worst. Thus finding a good method for the imputation of missing
values is important in obtaining better and more reliable results across a range
of analyses. In addition this should make the visualisation and interpretation
easier and more reproducible.

In this technical report,we compare PCA, which is a widely employed method
and provides a benchmark, with the Generative Topographic Mapping (GTM)
[1] which is a more complex, flexible model. GTM offers a significant advan-
tage over many other visualisation methods as its probabilistic formulation
allows the natural incorporation of methods to deal with missing and uncer-
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tain data. We start with an overview of PCA and GTM and a discussion of
their functionalities and limitations, illustrated on a toy data set. To illustrate
the potential of the GTM model to provide a natural framework for replacing
missing values we compare it against other imputation methods on another
toy data set. We conclude with a summary of the benefits and limitations of
GTM, and provides some suggestions for areas requiring further research.

2 Data Visualisation

To address visualisation of high dimensional data is to map, or project, the
high dimensional data onto a low dimensional representation while preserving
as much information about the structure in the high dimensional space as is
possible. This low dimensional representation is usually 2D to be representable
on screen or paper and will be referred to as the latent space. Employing a 2D
latent space allows the human analyst to explore the data and discern structure
more easily and naturally. There are a many possible ways to obtain such a low
dimensional representation. Context will often guide the approach, together
with the manner in which the latent space representation will be employed.

Some methods such as PCA and factor analysis [3] linearly transform the
data space and project the data onto the lower dimension space while retain-
ing the maximum information 1. Other methods like Kohonen, or Self Or-
ganising, Maps [8] and the Generative Topographic Mapping (GTM) [1] try to
capture the topology2 of the data. Geometry preserving methods like multi-
dimensional scaling and Neuroscale [10] try to find a representation in latent
space which preserves the geometric distances between the data points.

2.1 PCA

The most used and traditional method for dimension reduction and thus
visualising is the direct orthogonal projection of a point in <D onto a hyper-
plane in <L ⊂ <D with L ≤ D. Principal component analysis [6] takes a data
set T = t1, ..., tN and finds a new orthonormal basis u1, ..., uD with its axes or-
dered in such a manner that the first axis explains the largest variance in T.
The second axis is orthogonal to the first and accounts for a maximum of the
remaining variance in the data and the subsequent axes follow this by iteration.

1Strictly the 1st principal component explains the maximum variance, which in a Gaussian
setting equates to information in the entropic sense.

2A topological mapping is one that seeks to preserve local neighbour relations; two points that
are neighbours in the data space should also be neighbours in the latent space.
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Figure 1: PCA: The plot shows a random data set together with the 2 principal
components (v1,v2).

Given that the set of observations are centered, ∑N
n tn = 0, PCA will find

the principal components by diagonalising the covariance matrix,

C =
1
N

N

∑
n=1

tntT
n (1)

and then finding its eigen-structure

CU = UΛ (2)

U is a D × D matrix which has the unit length eigenvectors,u1, ..., uD, as its
columns and Λ is a diagonal matrix with the corresponding eigenvalues,λ1, ..., λD,
along the diagonal. The eigenvectors are the principal components and the
eigenvalues are the corresponding variances.

This technique may be used to project higher dimensional data onto a two-
dimensional hyperplane to visualise it on a screen or to cut down the dimen-
sionality to three or more dimensions. Commonly the first two principal com-
ponents are used for the projection since they explain most of the original infor-
mation as they preserve the most variance from the full data set. The property
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that the PCA defines a linear transformation gives it fast and stable compu-
tational characteristics, but it is also its main draw back since any non-linear
structures in the data cannot be captured.

2.2 Generative Topographic Mapping

Figure 2: The non-linear function Θ(x, W) defines a manifold S embedded
in the data space given by the image of the latent variable space under the
mapping x → y. (C.M. Bishop,1997)

The essence of GTM is to try and fit a density model, which is constrained to
lie on a 1 or 2 dimensional manifold, to the data in order to capture the structure
in the high dimensional data space. This can be visualised as a flexible rubber
sheet, typically 2 dimensional, which is being bent and stretched in the high
dimensional space to best fit the data points. This rubber sheet consist of a grid
of points in the latent space which are connected via a non-linear mapping
function to a contorted grid in the data space. To learn the intrinsic structure
in the data, the rubber sheet is distorted by learning the non-linear mapping
function using an Expectation Maximisation (EM) [4] so that the model best
explains the data.

In contrast to many other latent variable models the GTM algorithm is not
defined in terms of a mapping from the data space into the latent space, but
rather it defines a mapping from latent to data space and applies Bayes theorem
to induce a posterior distribution in the latent space given some new data.

First one considers a function y = Θ(x, W) which maps points x in the
L-Dimensional latent space into an L-dimensional non-Euclidean manifold S
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embedded within the D-Dimensional data space onto the points y, shown for
L = 2 and D = 3 in Figure 3.

Defining a probability distribution p(x) for the data points in the latent
space will induce a corresponding distribution p(y|W) in the data space. Since
in reality the data will not sit directly on the manifold, it is reasonable to include
a noise model for the data y. The distribution of y is chosen to be a radially-
symmetric Gaussian centered on Θ(x, W) having variance β−1, for given x and
W, so that

p(y|x, W, β) = (
β

2π
)D/2 exp{− β

2
‖ Θ(x, W)− y ‖2} (3)

where one should note that it is possible to use other models for p(y|x) like
Bernoulli for binary variables or a combination of different models if necessary.
For a given value of W, the distribution is obtained by integration over the x-
distribution

p(y|W, β) =
∫

p(y|x, W, β)p(x)dx . (4)

For a given data set Y = (y1, ..., yN) of N data points, the parameter matrix
W and the inverse variance β is obtained through the maximum likelihood
method. This can be done via maximising the log likelihood, given by

L(W, β) = ln
N

∏
n=1

p(yn|W, β) . (5)

After determining the prior distribution p(x) and the functional form of
the mapping Θ(x, W) it is in principle possible to determine β and W by max-
imising L(W, β). But the integral over x in (4) will, in general, be analytically
intractable. Also one might wish to use a non-linear function Θ(x, W). There-
fore a specific form of p(x) is considered, where p(x) is given by a sum of delta
functions centered on the nodes of a regular grid in latent space

p(x) =
1
K

K

∑
i=1

δ(x− xi) (6)

in which case the integral in (3) can be evaluated analytically. Now every point
xi is mapped to a corresponding point Θ(xi, W) in the data space, where it
builds the center of a Gaussian density function. Combining (4) and (6) the
distribution function in the data space takes the form

p(y|W, β) =
1
K

K

∑
i=1

p(y|xi, W, β) (7)
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and the corresponding log likelihood becomes

L(W, β) =
N

∑
n=1

ln{ 1
K

K

∑
i=1

p(yn|xi, W, β)} . (8)

Since the model consists of a mixture of distributions it is possible to find
the optimal solution via the EM algorithm for β and W, after choosing the
particular form of Θ(x, W). To derive the EM algorithm for the GTM model
Θ(x, W) is chosen to be a linear in parameters regression model of the form

Θ(x, W) = WΦ(x) (9)

with the elements of Φ(x) consisting of M fixed radial basis functions [2] Φj(x)
and W being a D × M matrix.

In the case under consideration it is assumed that the hidden variable i
from (6) tells which component generated each data point yn. Therefore the EM
algorithm can be formulated as follows. Assuming that Wold and βold are given
one can use the E-step to evaluate the posterior probabilities of each Gaussian
component i for every data point yn using Bayes theorem

Rin(Wold, βold) = p(xi|yn, Wold, βold) (10)

= p(xi |yn ,Wold ,βold)
∑K

j=1 p(xj |yn ,Wold ,βold)
. (11)

Then the expectation of the complete-data log likelihood has the form

〈Lcomp(W, β)〉 =
K

∑
n=1

N

∑
i=1

Rin(Wold, βold) ln{p(yn|xi, W, β)} . (12)

Maximising (12) with respect to W and using (3) and (9) one gets

K

∑
n=1

N

∑
i=1

Rin(Wold, βold){WnewΦ(xi)− yn}ΦT(xi) . (13)

This can be written in matrix notation

ΦTGoldΦWT
new = ΦTRY (14)

with Φ being a K × M matrix with elements Φij = Φj(xi), Y being a N × D
matrix with elements ynk, R being a K × N matrix with elements Rin andG
being a K × K diagonal matrix with elements

Gii =
N

∑
n=1

Rin(Wold, βold) . (15)
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Figure 3: Fitting a GTM with a 20x20 grid in 2D latent space to 3D S-shaped
data. Plotted is the result after 50 iterations with the EM algorithm.

Equation (14) can be solved for Wnew using standard matrix inversion tech-
niques. In similar steps to maximise (12) with respect β one obtains the follow-
ing formula

1
βnew

=
1

ND

N

∑
n=1

N

∑
i=1

Rin(Wold, β)||WnewΦ(xi)− yn||2 . (16)

The EM algorithm alternates between the E-step,given by evaluating 10,
and the M-Step,evaluating Wnew and βnew, until it converges to a (local) maxi-
mum and can be written like that:

E-Step:

• Set Wold = Wnew and βold = βnew

• Calculate Rin(Wold, βold)

M-Step:

• Calculate Wnew with Rin

• Calculate βnew with Rin

2.2.1 Data Visualisation using GTM

The data visualisation can be achieved using Bayes theorem to invert the trans-
formation from latent space to data space. Following the choice of the prior
distribution given by (6) one gains again a posterior distribution as a sum of
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Figure 4: The projection of the 3D data onto the GTM manifold.

delta functions with coefficients given by the responsibilities Rin. These can
be used to create a (posterior) responsibility map for single data points in the
two-dimensional latent space. Since looking at the distribution of each data
point is impossible and unreasonable for large data sets it is often convenient
to summarise the posterior distribution by the mean given by

〈x|yn, W∗, β∗〉 =
∫

p(x|yn, W∗, β∗)xdx (17)

= ∑K
i=1 Rinxi . (18)

However this can be misleading if one deals with a posterior distribution
which is multi-modal. Therefore one should also asses the mode of the distri-
bution

imax = arg max
i

Rin . (19)

2.3 Comparing PCA and GTM on 2D Toy Data

To compare PCA and GTM we created a 2D toy data set which is given by the
function t2 = t1 + 2.25 sin(2t1) in the interval [0, 3]. Then we cut the data into
3 classes according to the intervals from [0, 1],[1, 2] and [2, 3]. In Figure 5(a) one
can see how first principal components in PCA tries to align itself to the direc-
tion of the biggest variance, though since it is not able to deal with the non-
linearity it aligns itself orthogonal to the direction in which the actual classes
are distributed. GTM, however, is able to adapt to the non-linear structure in
the simple synthetic data set, and thus capture the class boundaries between
the three classes. PCA, due to the linear nature of the mapping, is not able
to separate the classes in this case as we can see on the projection in Figure
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(a) The function t2 = t1 + 2.25 sin(2t1) is divided into
three classes, depending on the value of t1.
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(b) The projection of t1, t2 using PCA and GTM, with
class labels

Figure 5: A simple example to contrast PCA and GTM when applied to non-
linearly structured data.

5(b), even though the problem is a very simple one. If PCA based visualisation
was the only method employed in this case an incorrect judgement about the
separability of the classes might have been made.

3 Missing Data

Missing Data represent a general problem in many scientific fields [5] but are
critical in environments where one has only small data sets with highly valu-
able samples. Usually the missing data can not be ignored since most analysis
tools can not cope with them and a good imputation of these will give better
and more reliable results.

In general we assume that the data set T = t1, ..., tN can be divided into an
observed component Xo and a missing component Tm. Also every point tn =
[to

n, tm
n ] can be split into an observed and an missing component. Assuming

a missing indicator Matrix M = (Mij) the missing-data mechanism can be
characterised by the conditional distribution of M given T with p(M|T, θ), with
θ being an unknown parameter. Given this, three types of missing data can be
distinguished:

• Missing completely at random (MCAR)

p(M|T, θ) = p(M|θ) (20)
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If the missing data depend only on the unknown parameter θ.

• Missing at random (MAR)

p(M|T, θ) = p(M|To, θ) (21)

If the missing data only depend on other observed data.

• Not missing at random (NMAR)

p(M|T, θ) = p(M|T, θ) (22)

If the missing data depend on observed and other missing data.

Generally most existing imputation methods based on moments and esti-
mation equations give unbiased results only on MCAR data, while likelihood
methods can also deal with MAR data. There is no unbiased approach to deal
with NMAR data, unless the missing data mechanism is completely known.

There are different standard methods to deal with missing data:

• The simplest approach is called complete-case analysis and confines at-
tention to only those cases where all D variables are available. The ad-
vantage is that one can use all the standard statistical analyses without
modification. The disadvantage is that one wastes a lot of information
and in addition, if the MCAR assumption does not hold, a bias will be
introduced to the imputation.

• Another approach is the Available-case [9] analysis where every variable
is treated differently and one uses all the information for each variable
to estimate the parameters of the data distribution for example the mean
and variance. The advantage here is that one uses information from the
incomplete cases but the disadvantage is that there are now different
sample sizes for each variable. This makes analysis with more sophis-
ticated methods quite complex and in addition it also has problems with
bias and comparability across variables if the MCAR assumption does
not hold.

In the following discussion a range of different methods for the imputa-
tion of missing values will presented where the advantages and draw backs of
each will be discussed. In the subsequent chapter we present a benchmark to
compare the different methods with each other.
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3.1 Mean Imputation

In this very simple approach the missing values are replaced by the mean of
the known values.

tn(m) =
1

No

No

∑
j=1

to
j (m) (23)

with No being the number of observed components for the variable (= dimension)
in question and m being the index for the missing dimension in the point tn.
This method suffers from a lot of drawbacks which can be illustrated with the
following MCAR example:
Lets assume we have 5 patients where we measure the height x in cm and the
weight y in kg if the patient is under 190 cm. This results in an incomplete data
set [x, y]
x = [55, 60, 63, m] , where m = 90kg
y = [170, 173, 172, 193]
Using mean imputation we would impute 59.3 and

• Introduce a serious bias to the produced results since MCAR assumption
does not hold true: E(x) = 59.3 while the true value is 67.

• Estimation of covariance matrix is biased since we are reducing the correla-
tion between the variables.

• Estimation of variance is to small since we are reducing the values with devi-
ate from the mean.

• Also the approach is clearly inappropriate for categorical variables.

3.2 Weighted Mean Imputation

Inspired through the KNN-based imputation in Bioinformatics [11] we devel-
oped another imputation method where we select points which are similar,
based on a Euclidean norm, to the point of interest with the missing dimen-
sion(s) and use these to impute the missing value. The algorithm itself is there-
fore relatively simple:

1. Do a mean imputation to create the data set C

2. Compute the Euclidean distance between all the data points in C

3. Impute the missing components of tn by calculating the average over all
the data points in T which observed these components with the inverse
distance to tn as weight.
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The algorithm exploits the local structure of the data space and does well
in densely sampled areas of the data space while only doing as well as nor-
mal mean imputation in sparse populated areas of the data space, as might be
expected.

3.3 Sequential Multiple Regression Imputation

Multiple Regression in general is used to approximate the linear relation be-
tween multiple variables in a data set T. Hence assume than the values of one
variable can be obtained through a linear combination of the others:

ti ≈ ai
0 + ai

1t1 + .. + ai
i−1ti−1 + ai

iti+1 + .. + ai
d−1td . (24)

Sequential Multiple Regression Imputation (SRI) [7] was introduced for the
handling missing data in surveys. We tested a simplified version using only
a linear multiple regression since the data we focus on are usually continuous
rather than discrete. The algorithm is:

Part 1: 1. Order the variables t1:d using the number of missing values t̂1:d

2. Impute the missing values in t̂1 with mean imputation, if there are
any

3. Iteratively estimate the regression factors between the complete vari-
ables and the next incomplete variable with the least amount of
missing values and use them to fill the missing values until

4. Iterate to Part2 until all values filled

Part 2: 1. Estimate the coefficients aj = [aj
0, ..., aj

d−1] of the linear regression
model for all variables

2. Use these to refill the missing values

3. Assess whether the algorithm has converged; if not go to step 1 (Part
2)

This algorithm exploits the linear structures in the data but in general is
vulnerable to outliers or data sets with very small variations. Furthermore the
initialisation in Part 1 relatively important since it presumes a linear relation-
ship in all the variables.

3.4 Multiple Regression Imputation with Mean initialisation
and Correlation Cut

The SRI algorithm was designed for data sets where only a minority of the
columns have missing data. This assumption may be true for surveys, where
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people do not wish to answer certain questions, but in general sciences we
experience missing data in almost all the columns. This leads to problems on
some of the real data sets we have used, though we will not explore this in this
technical report.

However, to have a more stable linear imputation using the SRI we created
a tuned multiple regression imputation. This method differers from the SRI be-
cause it is initialised with a mean imputation to permit the use of the complete
data matrix and make it more robust against outliers. We also use the corre-
lation coefficient between the dimensions as a quality cut to further improve
stability in the regression models. The correlation coefficient tells us about the
linear relation ship between two dimensions and if this is not sufficiently high
it makes no sense to use this dimension in the calculation for the regression.

In our case we want to use this to estimate missing values but since we as-
sume that all variables have missing values and that we may have data sets
with a lot of missing values we will combine it with the mean imputation algo-
rithm to obtain enough data to learn the coefficients aj = [aj

0, ..., aj
d−1] directly at

the beginning. First we construct a complete data set C using the mean impu-
tation on the incomplete data set T. Then we learn the regression factors aj on
this data set and after this we will use these regression factors to re-estimate the
missing values in T while using them on the complete data matrix C. Therefore
the algorithm is:

0. Perform a mean imputation to create a complete data set, keeping track
of the missing value locations.

1. Compute the correlation coefficient between the variables on the com-
plete data set.

2. Estimate the regression factors aj = [aj
0, ..., aj

d−1] on the dimensions where
the correlation coefficient is sufficiently high for stability.

3. Use the regression model to recompute the missing values and create a
new complete data set.

4. Check that none of the imputed values is outside the range of the known
values and thus unreasonable (this sanity check is required because even with
only including well correlated variables, linear multiple regression can become
unstable when large numbers of values are missing).

5. Assess whether the algorithm has converged; if not go to step 1.

This algorithm exploits the linear structures in the data while still being able
to cope with a large amount of missing data though we still expect singularities
if the amount of missing data gets too high.
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3.5 Extension of GTM for Missing Data

The EM algorithm with missing data can be extended to the GTM model [12] to
deal with missing data. The error function given by the negative log-likelihood
from (5) can be written as

Ecomp = −
N

∑
n=1

K

∑
k=1

zkn ln p(tn|θk) . (25)

For the GTM model with a spherical covariance matrix this term can be ex-
panded to

Ecomp = −∑N
n=1 ∑K

k=1 zkn[ 1
2 ln |Σk|+ D

2 ln 2π (26)

+ 1
2 (to

n − µo
k)

TΣ−1,oo
k (to

n − µo
k) (27)

+ 1
2 (tm

n − µm
k )TΣ−1,mm

k (tm
n − µm

k )] (28)

where µk and Σk denote the means and covariance of the kth Gaussian respec-
tively. The superscripts, for example, (−1, oo) denotes inverse followed by

submatrix operations where Σk is divided into
(

Σoo
k 0
0 Σmm

k

)
corresponding to

t =
(

to

tm

)
. The expected value is now taken with respect to both sets of miss-

ing variables. After taking the expectation one ends up with 2 unknown terms
zkntm

n and zkntm
n tmT

n , so one must calculate the expectation for these terms. To
compute these expectations, variables t̂m

kn are introduced,

t̂m
kn ≡ 〈tm

n |zkn = 1, to
n, θk〉 = (ym

k )old (29)

which are the linear least-squares regression between tm
n and to

n predicted by
the kth Gaussian, where the superscript ’old’ denotes the result from the last
M-step: (ym

k )old = (W oldΦ(xk))m.

• E-step: The expectation of zkn is 〈zkn|to
n, θk〉 = Rkn, with

Rkn =
β

2π

D/2
exp{− β

2 ||y(xk; W)− tn||2}

∑k
j

β
2π

D/2
exp{− β

2 ||y(xj; W)− tn||2}
(30)

measured only on the observed dimensions to
n of tn.

• M-step: The weights are updated to Wnew as in equation (14) for
complete training data:

ΦTGoldΦW T
old = ΦT RoldT (31)
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where the missing data are filled in with the posterior means

〈tm
n |to

m, θold〉 =
K

∑
k=1

Rkn t̂m
kn . (32)

Then the inverse variance is updated as follows

1
beta

=
1

ND

N

∑
n=1

N

∑
i=1

Rin(||to
n − yo

k||
2 + 〈zkn||tm

n − ym
n ||

2〉) (33)

where

〈zkn||tm
n − ym

n ||
2〉 = nm(β−1)old + (t̂m

kn)T t̂m
kn − 2(t̂m

kn)Tym
k + (ym

k )Tym
k (34)

and nm is the number of missing values in data point tn. A more
detailed derivation can be found in [12].

3.6 Performance Indicators

To compare the different imputation methods a measure of performance is
needed. The following error measures account for the difference in the orig-
inal ti values and the imputed yi values and give an idea about how well the
imputation has performed.

Error (bias)

ER =
N

∑
i=1

ti − yi

This measure is generally referred to as the bias of the method and should
be zero.

Root Mean Square Error

RMSE = (
1
N

N

∑
i=1

[ti − yi]2)
1
2

The RMSE is an approximation to the standard deviation of the residuals
(errors) from the predictions. It can be sensitive to outliers since it is a
second moment statistic.

4 Benchmarking the Imputation Methods

To compare the different imputation methods we created a high dimensional
data set which is generated from a 2 dimensional data set. The 2 dimensional
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Parameters Value

Base domain of data set [-4,4]
Number of Samples in the data set 100

Dimension of base data set 2
Projection Function RBF

Number of RBF functions 9
Set of the weights Random

Dimension of the projected data 15

Table 1: Summary of the toy data

data set is composed of 4 distinct classes. We looked at the performance of the
imputations methods on pi = [0.1, .., 0.6] proportion of missing values where
we generated 100 random missing data patterns for each pi to average the re-
sults of the performance indicators and get a representative value with respect
to the missing data pattern. To get an idea about the overall usability of all the
algorithms and to compare PCA against GTM we looked at samples of the vi-
sualisation on these imputed data sets to determine whether they still allowed
a visual distinction between the 4 classes.

4.1 Toy Data

To simulate a high dimensional data set which has non-linear relations between
the variables we created a toy data set. We used a two-dimensional base data
set and transformed it into a 15 dimensional data set via a Gaussian RBF map-
ping function. The summery of the procedure can be seen in Table 1. First we
created 100 random data points in the domain [-4,4] in 2 dimensions consisting
of 4 partially different classes with 25 points in each class. Then we used a RBF
network with 9 hidden layers to project these data onto a 15 dimensional data
space. The RBF network was initialized with random weights thus no prior
information or restrictions were enforced on the mapping of the data.
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4.2 Imputation Results

The results on the performance indicators show a similar trend when averaged
over all the dimensions. The most widely employed missing data imputation
method of using MI is always the worst alternative and should not be used.
The WMI always performs better then the MI and is more stable at very high
rates of missing data (> 0.6). WMI has low computational cost and the sim-
ple implementation may make it interesting for some applications. Also WMI
would be expected to perform better on larger data sets. The MRI algorithm
is slightly better then WMI algorithm but never gets close to the performance
of the SRI or GTMI on the test data but nevertheless its stability might prove
useful for future benchmarks.

GTMI performs slightly worse then SRI on missing data patterns with a low
proportion of missing values (< 0.2) but proves to be more stable once there
are higher proportions of values missing as shown in Figure 4.2.

To further analyse the results of the behavior of the imputation methods
we looked at the scatter plot of true versus estimated value for the missing
test points and the RMSE on the first dimension, the results being shown in
Figure 4.2. As expected the RMSE shows the same patterns as the average
over all the dimensions and the scatter plot reveals how the performance of
the different imputation methods varies. The SRI and GTM fit closely to the
line of the original values, while the MRI is a little more scattered around it.
The WMI is superior to the MI algorithm in the densely populated areas but is
only able to infer structure data locally and can not grasp general trends.

4.3 Projection Results

Measuring imputation algorithms with performance indicators will inform one
about the proportional difference in the rating of the algorithms but it does not
provide a lot of evidence about their use in data exploration. For the applied
scientist it is important to know when an imputation algorithm might still help
to reveal the hidden structure of the data and when it is unlikely to make much
of a difference.

To find an indicator about the usability and to compare the projection of
PCA and GTM we plotted the PCA projection on missing data patterns with
a pi of [0.15, 0.3, 0.45, 0.6] of missing values, while imputing missing data with
MI. The results in Figure 4.3 indicate that the it is already hard to distinguish
different structures with only a proportion of 0.15 of missing values and it be-
comes impossible if this rises to 0.45. Then on the same missing data patterns
we performed a GTMI before using the PCA and there it is possible to dis-
tinguish all the 4 different classes to up to a proportion of 0.6 missing values
when using PCA, 4.3. For an applied scientist this are good news since they
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Figure 6: The RMSE on the toy data reveals that GTMI is far more stable at
high rates of missing data, while being only slightly worse a low rates of miss-
ing data. Further all the imputation methods produce an essentially unbiased
result on the simple test data.
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(b) Scatter Plot

Figure 7: The error and the scatter plot of the first dimension on a missing
data pattern with pi = 0.2 reveal how the different imputation methods fit the
missing data.

can use very sparse data sets as long as there is a strong structure in the data
set. These results become even more evident when looking at the projections
in Figure 4.3 where we show the results of the GTM projection learnt in the
GTMI, which makes it possible to easily distinguish between all the classes,
except some small outliers at pi = 0.6.

5 Summary

The GTM model maps complex, high dimensional data onto a low dimension,
typically 2D, representation and enables exploration of both the linear and non-
linear relations between different samples and variables in a data set, on a sin-
gle plot. This helps us to understand the data and draw conclusions from it, in
conjunction with other visual and analytic methods.

GTM successfully copes with missing values in the data, due to its prob-
abilistic formulation and can therefore make use of all the information that is
available from the given data set. We have shown that GTM remains relatively
robust even when a high proportion of data is missing. This suggests GTM
might also have a very useful role in the replacement of missing values in a
data set, particularly where the proportion of missing values is large.

21



−8 −6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

5

pc 2

pc
 1

 

 

(a) p=0.15

−6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

pc 2

pc
 1

 

 

(b) p=0.30

−6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

pc 2

pc
 1

 

 

(c) p=0.45

−5 −4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

pc 2

pc
 1

 

 

(d) p=0.60

Figure 8: PCA on toy data with Mean Imputation, where the p value denotes
the proportion of missing data. The class boundaries become indistinct as soon
as the proportion of missing data raises.
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Figure 9: PCA on toy data with GTMI, where the p value denotes the propor-
tion of missing data. The class boundaries are easy to distinguish even with a
high amount of missing data.

23



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t 1

t 2

(a) p=0.15

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t 1

t 2
(b) p=0.30

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t 1

t 2

(c) p=0.45

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t 1

t 2

(d) p=0.60

Figure 10: The direct GTM mapping on the toy data. The class boundaries are
easy to distinguish even with a high amount of missing data.
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6 Future Work

Future work in this area will aim to integrate the knowledge of experts within
GTM via the structure of the covariance matrix which is very simple in the
present work. It is also interesting to assess whether the definition of metrics
or measures to assign a value to the quality of the visualisation can be imple-
mented successfully in a commercial setting where automation and simplicity
are crucial to successful deployment. It is planned to further extend GTM to
deal with missing data using a ’multiple imputation’ approach to be able to
assign a value for the uncertainty (variance) of the missing data estimates.
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