
Dimensionality Reduction in Complex Models

A. Boukouvalas, D. M. Maniyar and D. Cornford

Neural Computing Research Group
Aston University

Aston Street, Birmingham B4 7EG, UK
Tel. +44-121-204-3652, Fax. +44-121-204-3685

Email: boukouva, maniyard, d.cornford @aston.ac.uk

Abstract

As a part of the Managing Uncertainty in Complex Models (MUCM) project, research at Aston
University will develop methods for dimensionality reduction of the input and/or output spaces of
models, as seen within the emulator framework. Towards this end this report describes a framework
for generating toy datasets, whose underlying structure is understood, to facilitate early investigations
of dimensionality reduction methods and to gain a deeper understanding of the algorithms employed,
both in terms of how effective they are for given types of models / situations, and also their speed in
applications and how this scales with various factors. The framework, which allows the evaluation of
both screening and projection approaches to dimensionality reduction, is described. We also describe
the screening and projection methods currently under consideration and present some preliminary
results. The aim of this draft of the report is to solicit feedback from the project team on the dataset
generation framework, the methods we propose to use, and suggestions for extensions that should
be considered.

Technical Report NCRG/2007/001

May 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78877837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Within MUCM, Aston has the role of tackling high dimensional data sets. In order to allow the Aston
MUCM team to gain increased familiarity with various aspects of the dimension reduction problem, we
have created a series of ‘toy data sets’. These have been designed to simulate some of the key features
of the sorts of problems we aim to address within MUCM. The generative formulation requires us to
address issues such as, how do we think the high dimensional data we might see from ‘real models ’ might
have been generated? The actual data sets also allow us to experiment with the methods we intend to
apply in a problem setting where the correct solution is known, which will not generally be the case in
real model situations.

To help us understand both the screening and projection approaches to dimension reduction we have
generated two series of data sets. For the screening examples we take an initial set of inputs, pass these
through a function (our simulator), then augment the input space with correlated and/or uncorrelated
covariates, as described in Section 2. We then seek to determine, using a range of screening methods,
the relevant inputs and apply these in an emulator of the simulator. We attempt this over a range of
functions (simulators) with a variety of non-linear behaviours, as described in Section 3. When dealing
with dimension reduction using projection, we generate a random non-linear projection into a high
dimensional feature space, and attempt to recover a mapping to an appropriate low dimensional space,
in which we again construct an emulator.

Within all these experiments we have to take some care to explore the generic aspects of the problem
and not simply the given noise realisation, thus wherever a random element enters into the equations are
careful to sample repeatedly over this distribution to find the average ability of the methods to recover
the correct sub-space of the inputs/outputs and the variability of this over the noise realisations. Since
the effect of noise is likely to be quite simple (we consider additive, independent noise models), we do
not anticipate having to create huge numbers of realisations.

2 The data generation framework

Figure 1: The data generation framework.

For both, screening and projection methods, the first part of the data generation framework is shared
to generate base data (relevant inputs and their simulator outputs with desired levels of noise). In the
first part we,

• Sample N base vectors, x, of dimensionality d using a Latin hypercube sampling from uniform
distribution [11]. All dimensions have the same domain [l, u]. We are aware that experimental
design is relevant to dimension reduction methods in general and screening in particular and are
seeking guidance in this area.

• Normalise all vectors x such that they have zero mean and unit variance by applying the transform
x = x−µx

σx
. This step simplifies subsequent analysis.

1

• Obtain noiseless model outputs using a desired simulator (see section 3).

• Corrupt the model output with independent identically distributed Gaussian noise

y = g(x) + η, (1)

where x is a d dimensional input vector, g(x) is the generative function selected previously and η
is distributed as zero mean additive Gaussian noise. The variance of the noise term η is set to be
1
10 th

of the signal variance, i.e. 0.1× V ar(g(x)). 1

The last step to obtain toy datasets to evaluate the screening and projection methods in the emulator
setting is described in Section 2.1 and Section 2.2 respectively.

2.1 Screening

For screening the last step in the generation of the dataset involves augmentation with extra ‘noise
dimensions’. Assuming a specified number of extra dimensions dextra and a base input data matrix X,
with N examples in dimension d, a noise design matrix can be constructed as

X̃ =
[

X
BXτ + ε

]
, (2)

where X̃ is the noise design matrix of dimension (dextra +d)×N ,B is a correlation determination matrix
with dimensions dextra × d and ε is distributed as zero mean Gaussian noise N(0, I). The form of the
matrix B determines the correlation, if any, between noise and model variables:

• B = 0 constructs noise variables that are uncorrelated to the model variables.

• B = col − rank(k) where col − rank refers to linearly independent columns and k = 0.5× dextra.
Thus k of the noise variables are linearly correlated to single model variables. The k noise variables
are assigned randomly to model variables. The exact correlation coefficient is determined by the
B matrix element bj where 1 ≤ j ≤ k and for framework simplicity is fixed {bj} = {+0.5}

• B is a full matrix. Rather than generating a random matrix with large number of model vari-
ables interacting, we limit the number of interacting model variables to two. Thus at most
two elements in each row of B are non zero. The coefficients are selected randomly from a set
{bj} = {−0.2,−0.5,+0.5,+0.7}. The number of rows selected is k = 0.8× dextra.

2.2 Projection

The final step to generate datasets to evaluate the use of projection methods (described in Section 4.2)
to dimensionality reduction is to artificially project the base input data (X), living in lower dimension
d, into a higher dimensional space q. The artificial projection can be linear or non-linear. This can be
described as:

X̃ = WΦ(X), (3)

where X̃, the resulting data projected into higher dimensions q, is a q × N matrix. W is a q × d
weight matrix and Φ(·) are basis functions which are responsible for introducing non-linearity into the
projection. A typical choice that we will employ for such projective mappings is to use Radial Basis
Functions (RBF). Specific examples of such projections will be discussed in Section 5 as and when we
use them.

3 Simulator functions

Various functions (simulators) are considered. For screening, the initial goal is to demonstrate the
weakness of simple methods such as forward selection or backward elimination by introducing interaction

1Thus this system is ergodic since the µη = µx = 0 and ση = cσx where c is a constant.

2

terms between inputs. We expect that a number of functions might be added to the list of functions we
use in time, as different issues arise in the real model settings we will explore.

The proposed generative functions are grouped below by the number of input dimensions they operate
on.

1-D

•
f(x) = x(sin(

1
2
x)) + 1/(x2 + x + .001), (4)

where the function output landscape is not homogeneous (see figure 2(a)).

2-D

•
f(x) = sin(x1x2), (5)

which has the interaction term within a non-linear function.

• Rosenbrock’s function
f(x) = (1− x1)2 + 100(x2 − x2

1)
2, (6)

which is often used to test optimisation routines due to the long narrow valley near the global
minimum at [1, 1](see figure 2(b)).

3-D

• The function
f(x) = 1 + x1 + x2

1 + x1x2 + 2x1x2x3, (7)

where x2 and x3 only appear in interaction terms and are unlikely to be relevant unless used in
conjunction with x1 and x2. This function is used in [2] to generate simulated data.

18-D

• The function

f(x) =
5x12

1 + x1
+ 5(x4 − x20)2 + x5 + 40x3

19 − 5x19 + .05x2 + .08x3 − .03x6 + .03x7 − .09x9

− .01x10 − .07x11 + .25x2
13 − .04x14 + .06x15 − .01x17 − .03x18

(8)

which contains small effects factors,non-linear effects and interactions. This function is used in [8]
to generate simulated data along with two augmented noise variables.

N-D

•
f(x) = sin(xτ)b, (9)

where b is vector of coefficients for predictor variables. See figure2(d) for an example.

• Inverted Schwefel function:

f(x) = 418.98288× n +
n∑

i=1

−xi sin(
√
|xi|), (10)

where n is the dimensionality of x (see figure 2(c)). This function is non-stationary.

4 Dimensionality reduction methods

In this section we briefly describe the initial set of screening and projection methods we employ.

3

(a) f(x) = x(sin(1
2
x)) + 1/(x2 + x + .001) (b) Contour plot Rosenbrock’s function f(x) = (1−x1)2 +

100(x2 − x2
1)2

(c) Inverted Schwefel function for one dimension (d) sin(x1)+redundant x2

Figure 2: Simulator functions

4.1 Screening methods

Figure 1 provides an overview of variable selection within the wider context of dimensionality reduction
in an emulator setting. Variable selection methods have been broadly categorised in three categories([5]):

• Variable Ranking. Input variables are ranked according to the prediction accuracy of each x̂i

calculated against the emulator output t. A commonly used metric is the Pearson correlation
coefficient

R(i) =
cov(x̂i, t)√

var(x̂i)var(t)
. (11)

• Wrapper methods. The emulator is used to assess the predictive power of subsets of variables. As
is suggested in [5] the algorithm to generate subsets needs to be defined, as well as the method used
to assess the prediction performance of the emulator to guide the search and halt it. Typical search
strategies are forward selection where variables are progressively incorporated in larger and larger
subsets and exhaustive search where all possible subsets are considered. Performance assessments
are typically performed using a validation set, cross-validation or in a Bayesian setting employing
model evidence.

• Embedded methods. For both variable ranking and wrapper methods, the emulator is considered
a perfect black box. In embedded methods, the variable selection is done as part of the training
of the emulator. An embedded method commonly employed in the context of Gaussian Processes

4

is Automatic Relevance Determination (ARD) where the characteristic length scales λi determine
the input relevance ([13]):

k(xp,xq) = σ2
fexp(−1

2
(xp − xq)τdiag(λ)−2(xp − xq)) + σ2

nδpq, (12)

where σn is the variance of the assumed i.i.d Gaussian noise and σf is the signal variance.

4.2 Projection methods

As it is shown in Figure 1, we propose to use projection methods, as a pre-processing step, to reduce
the dimensionality of the input space before developing an emulator. In this section we briefly introduce
some of the projection methods under consideration. Future work will consider how we might incorporate
dimension reduction into the emulator inference framework directly, in a sequential setting, but at present
these ideas remain speculative, and are not developed herein.

4.2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a multivariate procedure which rotates the data such that max-
imum variance is projected onto the principal axes. Essentially, a set of correlated variables are trans-
formed into a set of uncorrelated variables which can be ordered by reducing variance. The uncorrelated
variables, often called principal components, are linear combinations of the original variables, and in
many cases the last few of these principal components can be removed with minimum loss of informa-
tion, since these are often, but not always essentially noise variables. If the data covariance matrix has
full rank, there can be as many principal components as there are variables.

Given a set of observations x̃n ∈ RQ, n = 1, . . . , N , which are centred,
∑N

n=1 x̃n = 0, in PCA we find
the principal components by diagonalising the covariance matrix given by:

C =
1
N

N∑
n=1

x̃nx̃>n , (13)

which is achieved in practice using an eigen-decomposition:

CU = UΛ, (14)

where U is a Q × Q matrix which has the unit length eigenvectors with columns u1,. . . ,uQ and Λ is
a diagonal matrix with the corresponding eigenvalues, λ1,. . . ,λQ. The eigenvectors are the principal
components and the eigenvalues are the corresponding variances.

PCA is the most commonly used of the projection method. The fact that PCA defines a linear,
orthogonal sub-space gives it favourable computational properties, but it is also its main limitation since
any non-linear relationship between variables will not be captured.

4.2.2 Neuroscale

Neuroscale [7] is a neural network based implementation of Sammon’s mapping. It is a projection method
which attempts to preserve relative ‘similarity’ (in this case characterised by Euclidean distance) between
points in the higher-dimensional input space (X̃) and lower-dimensional projection space (X̂), as shown
in Figure 3.

The distance-preserving nature of the transformation is imposed by the ‘stress’ term which accounts
for the preservation of inter-point similarity

E =
N∑
i

N∑
j>i

(d∗ij − dij)2 , (15)

where
d∗ij =‖ x̃i − x̃j ‖ , (16)

5

Figure 3: Schematic representation of the Neuroscale model (adapted from [12]).

and
dij =‖ x̂i − x̂j ‖ . (17)

Points are projected from the data space onto the latent (projection) space by means of a Radial
Basis Function (RBF) neural network. The RBF parameters are defined by minimising the ‘stress’ term,
rather than the traditional residual error minimisation that might be employed in a regression setting.
The high dimensional targets are projected onto the low dimensional representation using the RBF:

X̂ = Wφ(X̃), (18)

where W is a weight matrix and φ(·) are the basis functions.

4.2.3 Generative Topographic Mapping

The Generative Topographic Mapping (GTM) models a constrained probability distribution in the high-
dimensional data space, Q ⊂ RQ, by means of low-dimensional latent, or hidden, variables [1]. The data
is projected / visualised in the latent space, H ⊂ RL.

As demonstrated in Figure 4 (adapted from [1]), we cover the latent space, H, with an array of M
latent space centres, zi ∈ H, i = 1, 2, ...,M . The non-linear GTM transformation, f : H ⇒ Q, from the
latent space to the data space is defined using a RBF network. We define in the latent space with a set
of K fixed non-linear basis functions (we use Gaussian functions of the same width σ), φ : H ⇒ R, on a
regular grid in the latent space. Given a point z ∈ H in the latent space, its image under the map f is

f(zi,W) = φ(zi)W, (19)

where φ(zi) = (φ1(zi), ..., φK(zi))T and W is a K ×Q matrix of weight parameters.
GTM defines a generative probabilistic model in the data space by placing a radially symmetric

multi-variate Gaussian with zero mean and inverse variance β around images, under f , of the latent
space centres zi ∈ H, i = 1, 2, ...,M . We refer to the Gaussian density associated with the centre zi by
p(x̃ | zi,W, β). Defining a uniform prior over zi, the density model in the data space provided by the
GTM is

p(x̃ | W, β) =
1
M

M∑
i=1

p(x̃ | zi,W, β). (20)

6

Figure 4: Schematic representation of the GTM model.

For the purpose of data projection, we use Bayes’ theorem to invert the transformation f from the latent
space H to the data space Q. The posterior distribution on H, given a data point x̃n ∈ Q, is a sum of
delta functions centred at centres zi, with coefficients equal to the posterior probability Ri,n that the
i-th Gaussian (corresponding to the latent space centre zi) generated x̃n:

Ri,n =
p(x̃n | zi,W, β)∑M

j=1 p(x̃n | zj ,W, β)
. (21)

The latent space representation of the point x̃n, i.e. the projection of x̃n, is taken to be the mean,∑M
i=1 Rinzi of the posterior distribution on H. The parameters of the GTM (weights W and inverse

variance β) are inferred from data using a variant of the Expectation Maximisation (EM) algorithm.
The f–image of the latent space H,Ω = f(H) = {f(z) ∈ RQ | z ∈ H}, forms a smooth L-dimensional
manifold in the data space. We refer to the manifold Ω as the projection manifold of the GTM.

5 Experimental results

5.1 Screening methods

The generative function(7) was used to generate the data. The dataset configuration is shown in table 1.

Parameter Value
Input domain [-1,1]
Number of observations 200
Relevant dimensions 3
Extra dimensions 3
Output noise ratio 0.1

Table 1: Screening dataset configuration

All the Gaussian Processes (GP) used in the experimental set-ups were implemented using using the
Netlab toolkit [9] with a squared exponential covariance function (although Dan is not totally happy
about this!). The hyperparameters of the covariance function are estimated to determine their Maximum
A Posteriori value (MAP). The hyperprior for all parameters is a single spherical Gaussian with unit
mean and variance. The optimization was performed using the scaled conjugate descent optimisation
algorithm with maximum number of iterations set to 50.

7

Two measures are presented: the root mean square error (RMSE) to show the accuracy of the selected
subset when used in an emulator setting, and the wall-clock elapsed time to measure the computational
cost, derived from Matlab. The RMSE was computed as:

RMSE =

√√√√ 1
n

n∑
j=1

(t− y(x))2 . (22)

There was no stopping rule used in the algorithms, rather the number of relevant dimensions was
assumed to be known and equal to 3; hence each algorithm was targeted to find the best subset of three
variables. In future work we will generalise this approach.

The following algorithms were used in the experiments

• BaseRelevant: Baseline run using the relevant dimensions only. The RMSE was obtained by
training a GP on the relevant dimensions. This value can be interpreted as the optimal RMSE
value, given the problem design.

• BaseAll: Baseline run using all the dimensions, i.e. relevant + extra. Again the RMSE was
obtained by training a GP on this set. The difference BaseAll-BaseRelevant is a measure of the
effect of the extra variables on the predictive accuracy of the GP.

• CorrCoef: Pearson Correlation Coefficient. A variable ranking is performed using the formulae 11
and the top 3 variables are selected and used to train a GP.

• LinFS: Employ a forward subset selection strategy using a multivariate linear regression model.
The RMSE is obtained from evaluating the GP using the subset selected by the multiple linear
regression model.

• GPFS: Again employ forward selection to generate subsets but use a GP rather than a linear
model.

• ARD: Employ the ARD method to rank the input variables and select the top 3 to train a GP
model.

In the first experiment no correlation was introduced between the noise and the true variables, i.e.
the B matrix in 2 was zero. Note that the first three variable (1,2,3) are the true relevant variables. The
results are shown in Table 2.

In the second experiment a simple correlation was introduced between a subset of the noise variables
and a single relevant variable, i.e. the second case for matrix B in equation 2. The matrix B was

B =

 0 0.5 0
0.5 0 0
0 0 0

 (23)

. The results are shown in table 3.
The final experiment was performed with some noise variables being linearly correlated to two relevant

variables, i.e. the full matrix case for matrix B in equation 2. The matrix B was

B =

−0.2 −0.2 0
0.5 0.5 0
0 0 −0.5

 (24)

. The results are shown in table 4.
In all experiments ten realisations of the toy data were used. Also note that the elapsed time

includes the training of the final GP used to validate the variable selection. In the ARD case all
realisations provided identical rankings demonstrating the robustness of the algorithm. For the other
algorithms however we see a substantial difference in the variables selected across different realisations.
The CorrCoef and LinFS methods are computationally inexpensive but provide unreliable results. The
GPFS method is nearly as robust as the ARD method but at least three times as computationally
expensive.

We conclude that from the methods examined, the ARD method provides the best trade-off in terms
of prediction accuracy and computational cost for the datasets examined.

8

Algorithm Variables Selected Realisations RMSE Elapsed time
BaseRelevant 1,2,3 10 0.2789 19.1049
BaseAll 1,2,3,4,5,6 10 0.2787 26.1944
CorrCoef 1,4,6,5,3,2 2 0.6575 27.9474
CorrCoef 1,3,4,6,5,2 1 0.5833 25.6385
CorrCoef 1,3,2,6,5,4 1 0.3228 13.603
CorrCoef 1,4,2,3,6,5 1 0.5126 18.8505
CorrCoef 1,5,6,4,2,3 2 0.6595 24.4191
CorrCoef 1,6,3,5,4,2 2 0.6130 28.0526
CorrCoef 1,2,6,5,4,3 1 0.4462 40.7532
LinFS 1,4,5 4 0.6722 22.9228
LinFS 1,3,2 1 0.3228 17.9054
LinFS 1,2,4 1 0.5126 16.7976
LinFS 1,3,5 1 0.7405 15.2841
LinFS 1,4,6 2 0.4461 38.8922
LinFS 1,2,5 1 0.4462 45.9387
GPFS 1,2,3 9 0.2790 220.9582
GPFS 1,6,3 1 0.5151 168.947
ARD 1,2,3 10 0.2790 51.7983

Table 2: Results with uncorrelated extra 3 dimensions averaged over 10 realisations

Algorithm Variables Selected Realisations RMSE Elapsed time
BaseRelevant 1,2,3 10 0.2789 22.0401
BaseAll 1,2,3,4,5,6 10 0.2785 26.013
CorrCoef 1,5,4,6,3,2 2 0.6684 30.0411
CorrCoef 1,5,3,4,6,2 2 0.6011 28.9543
CorrCoef 1,6,2,3,4,5 1 0.4902 67.4304
CorrCoef 1,6,5,3,4,2 3 0.6169 31.2259
CorrCoef 1,5,2,6,4,3 1 0.4462 48.4542
CorrCoef 1,5,6,2,4,3 1 0.5765 26.033
LinFS 1,4,5 4 0.6686 23.2702
LinFS 1,3,2 1 0.3228 14.4951
LinFS 1,2,4 2 0.4921 31.8163
LinFS 1,3,5 1 0.7384 18.138
LinFS 1,2,5 1 0.4468 36.8765
LinFS 1,2,6 1 0.5003 24.6934
GPFS 1,2,3 9 0.2790 279.9373
GPFS 1,6,2 1 0.5151 160.051
ARD 1,2,3 10 0.2790 50.0986

Table 3: Results with extra dimensions correlated to a single relevant variable averaged over 10 realisa-
tions

9

Algorithm Variables Selected Realisations RMSE Elapsed time
BaseRelevant 1,2,3 10 0.2619 14.2409
BaseAll 1,2,3,4,5,6 10 0.2615 25.743
CorrCoef 1,5,6,3,4,2 3 0.6607 30.8615
CorrCoef 1,5,3,4,6,2 2 0.6060 27.3796
CorrCoef 1,5,2,3,4,6 2 0.4924 36.7053
CorrCoef 1,2,3,6,4,5 1 0.2750 21.1654
CorrCoef 1,5,4,2,6,3 2 0.5715 19.9939
LinFS 1,4,5 3 0.6609 34.6243
LinFS 1,2,6 1 0.5269 25.8873
LinFS 1,2,4 3 0.5126 21.4676
LinFS 1,3,5 1 0.7405 25.2757
LinFS 1,4,6 1 0.7305 24.2757
LinFS 1,2,5 1 0.5226 23.4676
GPFS 1,2,3 10 0.2926 237.8997
ARD 1,2,3 10 0.2750 44.3431

Table 4: Results with noise dimension correlated with two relevant variables averaged over 10 realisations

5.2 Projective methods

In this section we present the results of using the projective methods, discussed in Section 4.2, to reduce
the dimensionality of input space prior to constructing an emulator.

5.2.1 Toy dataset 1: RBF projection

To generate this dataset we use the generative function (9). Table 5 summarises the dataset configuration.

Parameter Value
Input domain [-1,1]
Number of observations 200
Dimensions of the base data (X ; the relevant inputs) 2
Projection function RBF
Dimensions of the projected data in higher-dimensions (X̃) 15
Simulator function g(x) = sin(xτ)b
Output noise ratio 0.1

Table 5: Summary of the projection dataset 1

As summarised in Table 5, the two-dimensional base dataset was transformed into a 15-dimensional
dataset (X̃) using an RBF mapping function with the basis functions, φ, chosen to be ‘Gaussian’ and the
output error function were kept as ‘neuroscale’ to obtain a non-linear projection in the higher-dimensional
space.

We labelled the observations into 4 different classes according to their locations in the base dataset
so that the output from the projection methods can be compared intuitively. Figure 5(a) shows a scatter
plot of the base data with the observations coloured and marked according to the class information.
Note that the class information is just used for visualisation purpose, it is not used in the construction
of the emulators or training the projection methods.

Then, as a pre-processing step, the projective methods, described in Section 4.2, were applied to
project the 15-dimensional input data, X̃, onto a 2-dimensional manifold. Note that here we chose
the latent space to be a 2-dimensional space so that we can visualise the projection obtained using the
projection methods applied. One of the very important questions in applying projection methods for
dimensionality reduction purpose is to decide the dimensionality of the latent space. We aim to address

10

(a) Base data (b) Projected data using PCA

(c) Projected data using Neuroscale (d) Projected data using GTM

Figure 5: Base data scattered plot and the projections obtained using PCA, Neuroscale and GTM.

11

this issue in near future. Figure 5(b), Figure 5(c) and Figure 5(d) show the 2D projections obtained
using PCA, Neuroscale and GTM respectively.

After the pre-processing step we have following five input datasets:

Base data : the base data (X).

High-dimensional data : the data obtained in 15-dimensions using an RBF projection (X̃).

PCA projection data : Projection of the high-dimensional data, X̃, onto a 2-dimensional space using
PCA (X̂PCA).

Neuroscale projection data : Projection of the high-dimensional data, X̃, onto a 2-dimensional space
using Neuroscale (X̂NS).

GTM projection data : Projection of the high-dimensional data, X̃, onto a 2-dimensional space using
GTM (X̂GTM).

Each of these datasets were divided into a training and a test set (50% each). A separate Gaussian
process model with a squared exponential covariance function structure was constructed for each of the
training sets. The results on the corresponding test sets are presented in Table 6.

Dataset RMSE Emulator training time (in seconds)
Base data 0.2388 1.7486
High-dimensional data 0.2420 2.3081
PCA projection data 0.2393 1.7545
Neuroscale projection data 0.2474 1.7960
GTM projection data 0.2526 1.6894

Table 6: Results on the test sets

The similar RMSE values in Table 6 suggests that using the projection methods as a pre-processing
step to reduce dimensionality in emulator setting gives comparable results. As expected, emulator
training time for the base and projected datasets took less time then constructing an emulator on a
high-dimensional data. Though this time difference is not significant, it becomes important when we
apply these methods in a sequential setting.

6 Discussion and future work

In this report we have presented the dataset generation framework along with a brief overview of screening
and projection methods thus far considered. Our preliminary experimental work has obtained promising
results of the methods described applied to different forms of generated data. The screening results
highlight the effectiveness of the ARD method. In the future we plan to investigate a wider range of
methods such as principal variables [3] and Least Angle Regression [4].

The emulators developed using the projection methods as a pre-processing step gave as good RMSE
as other an emulator developed without any pre-processing step, see Table 6 although the ratio of
dimension to observation set size was very favourable. To further realise the potential of the use of
projection methods to reduce dimensionality prior to constructing an emulator, we require to evaluate
these techniques for more complex simulator functions and in higher dimensions. In future, we aim to
employee other projection methods from Kernel-family such as Kernel-PCA [10] and Gaussian Process
Latent Variable Model (GP-LVM) [6]. We also aim to address the issue of determining the intrinsic
dimensionality of a higher dimensional data.

We are also considering extensions to the data generation framework such as using different noise
models, introducing non-linear interactions of noise variables with true variables and multiple output
functions.

12

References

[1] C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: The generative topographic mapping.
Neural Computation, 10:215–234, 1998.

[2] Enrique Castillo, Noelia Sanchez-Marono, Amparo Alonso-Betanzos, and Carmen Castillo. Func-
tional Network Topology Learning and Sensitivity Analysis Based on ANOVA Decomposition. Neu-
ral Comp., 19(1):231–257, 2006.

[3] J. A. Cumming and D. A. Wooff. Dimension reduction via principal variables. Computationa
Statistics & Data Analysis, 2007.

[4] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Technical report,
Department of Statistics, Stanford University, 2002.

[5] Andr Elisseeff Isabelle Guyon. An Introduction to Variable and Feature Selection. Journal of
Maching Learning Research, 3:1157–1182, 2003.

[6] N. D. Lawrence. Probabilistic non-linear principal component analysis with gaussian process latent
variable models. Journal of Machine Learning Research, 6:1783–1816, 2005.

[7] D. Lowe and M. E. Tipping. Neuroscale: Novel topographic feature extraction with radial basis
function networks. Advances in Neural Information Processing Systems, 9:543–549, 1997.

[8] William J. Welch; Robert J. Buck; Jerome Sacks; Henry P. Wynn; Toby J. Mitchell; Max D. Morris.
Screening, predicting, and computer experiments. Technometrics,, 34(1):15–25, 1992.

[9] I. T. Nabney. Netlab: Algorithms for Pattern Recognition. Springer, London, 2001.

[10] B. Schölkopf, S. Mika, A. Smola, G. Rätsch, and K.-R. Müller. Kernel PCA pattern reconstruction
via approximate pre-images. In L. Niklasson, M. Bodén, and T. Ziemke, editors, Proceedings of the
8th International Conference on Artificial Neural Networks, pages 147–152, Berlin, 1998. Springer
Verlag.

[11] M. L. Stein. Large sample properties of simulations using latin hypercube sampling. Technometrics,
29:143–151, 1987.

[12] M. E. Tipping and D. Lowe. Shadow targets: A novel algorithm for topographic projections by
radial basis functions. Neurocomputing, 19:211–222, 1998.

[13] Christopher K. I. Williams and Carl Edward Rasmussen. Gaussian processes for regression. In
David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Proc. Conf. Advances in
Neural Information Processing Systems, NIPS, volume 8. MIT Press, 1995.

13

