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tThe 
on
ept of entropy rate is well de�ned in dynami
al systems theory butis impossible to apply it dire
tly to �nite real world data sets. With this inmind, Pin
us developed Approximate Entropy (ApEn) [9℄, whi
h uses ideasfrom E
kmann and Ruelle [3℄ to 
reate a regularity measure based on entropyrate that 
an be used to determine the in
uen
e of 
haoti
 behaviour in a realworld signal. However, this measure was found not to be robust and so animproved formulation known as the Sample Entropy (SampEn) was 
reatedby Ri
hman and Moorman [10℄ to address these issues. We have developed anew, related, regularity measure whi
h is not based on the theory provided byE
kmann and Ruelle and proves a more well-behaved measure of 
omplexitythan the previous measures whilst still retaining a low 
omputational 
ost.2 Ba
kgroundTo understand the di�eren
es between the entropy formulations, we need toexplore the theory behind them.2.1 Entropy RateApEn was originally based on the Kolmogorov-Sinai (K-S) invariant h(�) where� is an ergodi
 probability measure. The K-S invariant (or entropy) 
an be seenas the mean rate of 
reation of information [3℄. It is worth noting that althoughthis invariant is often 
alled `entropy', it is di�erent from the information entropyof the system [11℄.If A = fa1; a2; : : : ; a�g is the �nite alphabet of a fun
tion f de�ned onsample spa
e 
 we 
an 
onsider a partition Q = fQi; i = 1; 2; : : : ; �g de�nedby Qi = f! : f(!) = aig = f�1(faig) [4℄. We 
an then write the entropy as afun
tion of the partition de�ned by the disjoint sets of the points that f mapsto the alphabet A as 1
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H�(Q) = � �Xi=1 �(Qi) log �(Qi); (1)where we also de�ne u logu = 0 if u = 0. So H�(Q) is the information 
ontentof the partition with respe
t to state �.We de�ne the notation f� as the fun
tion 
omposed � times. The inversefun
tions f�� 
an be partitioned in a similar way to above, denoted Q� , andthus 
an be used do des
ribe the partition due to time evolution asQ� = Q0 [ Q1 [ : : : [ Q��1: (2)We 
an also write the 
omponents of this partition asP �k = Q0i1 \Q1i2 \ : : : \Q��1i� ; (3)where ij 2 f1; 2; : : : ; �g and k 2 f1; 2; : : : ; ��g. Therefore, the information
ontent of an interval of time period of length � with respe
t to the state � 
anbe written as H(Q� ) = � ��Xk=1 �(P �k ) log �(P �k ): (4)As we observe the system iterating, we 
an determine the gain in informationby observing 
onse
utive iterates � and � + 1 as the di�eren
e between theentropies thus H(Q�+1)�H(Q� ):The rate of information 
reation [8℄ is the gain of information per iterate and isthe the limit h(�;A) = lim�!1[H(Q�+1)�H(Q� )℄: (5)2.2 Approximate EntropyEquation 5 
annot be applied to real world appli
ations as the data series isalways of �nite length and so the limit � ! 1 
annot be 
al
ulated when thedynami
al equations governing the system are unknown. Pin
us noted thateven an approximation of this may have intrinsi
 interest in determining thenature of a dynami
al system and developed the approximate entropy (ApEn)to investigate this.If we have a signal x = fx(1); x(2); : : : ; x(N)g then we 
an de�ne a distan
emeasure as the maximum Eu
lidean distan
e between m 
onse
utive valuesstarting at value xi and the respe
tive values starting at value xjd[xm(i);xm(j)℄ = max���xm(i+ k)� xm(j + k)��	;2



for k = 0; 1; : : : ;m� 1. If we introdu
e a radius r, we 
an �nd the number ofxm(j); j = f0; 1; : : : ; N � m + 1g that lie within a ball of radius r 
entred atxm(i). Nmi (r) = Number of d[xm(i);xm(j)℄ � r; (6)then we 
an 
al
ulate the probability that a 
onse
utive sequen
e repeats itselfin the series (within the toleran
e value) thusCmi (r) = Nmi (r)N �m+ 1 : (7)It is now possible to estimate h(�) dire
tly [3℄. If we de�ne�m(r) = 1N �m+ 1 N�m+1Xi=1 logCmi (r); (8)then, using Equation 5, we 
an sayh(�) = limr!0 limm!1 limN!1[�m+1(r) � �m(r)℄: (9)As this is still intra
table for �nite data sets, further re�nements need to bemade. Approximate entropy (ApEn) is essentially Equation 9 but with �xed mand r, and a �xed number (N) of data points. It is de�ned asApEn(m; r;N) = �m+1(r)� �m(r): (10)Although ApEn is derived from and resembles Equation 5, it is worth notingthat it is not intended to 
al
ulate it and should be 
onsidered as a separatestatisti
 in its own right [9℄.2.3 Sample EntropyApproximate entropy has been used to a large degree of su

ess in a wide varietyof studies. However, it has been shown that ApEn is inherently biased [10℄,therefore sample entropy was developed to address this bias and provide a morerigorous 
omplexity measure.One sour
e of su
h bias is the ne
essity of assuring a non-zero value forEquation 6, so the logarithm taken in Equation 7 is well-de�ned. The method ofassuring that this 
onstraint is ful�lled in approximate entropy is by allowing i =j (known as `self-mat
hing' [10℄) in Equation 6. This means that d[xm(i)xm(i)℄is allowed to be 0 and therefore less than r so Nmi (r) will always be positive.We 
an see how this 
auses bias in the statisti
 by 
onsidering Nmi (r) andNm+1i (r). As approximate entropy 
an be 
onsidered as the log of the 
ondi-tional probability that Nmi (r) and Nm+1i (r) stay the same over time we 
anwrite it as ApEn(m; r;N) � 1N �m N�mXi=1 log Nmi (r)Nm+1i (r) : (11)3



Now, as neither Nmi (r) or Nm+1i (r) 
an be 0 for this to be de�ned, the self-mat
hing gives a positive value for the statisti
 whi
h 
auses bias, espe
ially insmall series. SampEn removes this bias by removing all self mat
hes.The formulation is also slightly di�erent. Only the �rst N � m values ofthe series were used when 
al
ulating Nmi (r) and Nm+1i (r) ensuring an equallength of series for ea
h value. Also, two new variables are de�ned, based onthe 
orrelation integral. The 
orrelation integral is simply the average over i ofCmi (r) de�ned in Equation 7,Cm(r) = 1N �m+ 1 N�m+1Xi=1 Cmi (r): (12)N 0mi (r) is de�ned to dis
ount the self mat
hes,N 0mi (r) = Number of d[xm(i);xm(j)℄ � r; (13)for j = 1; 2; : : : ;m; j 6= i. We now de�neUmi (r) = 1N �m� 1N 0mi (r); (14)and following from Equation 12,Um(r) = 1N �m N�mXi=1 Umi (r): (15)Um+1(r) is similarly de�ned for m+ 1N 0m+1i (r) = Number of d[xm(i);xm(j)℄ � r; (16)for j = 1; 2; : : : ;m; j 6= i. We now pro
eed as beforeUm+1i (r) = 1N �m� 1N 0m+1i (r); (17)Um+1(r) = 1N �m N�mXi=1 Um+1i (r): (18)The sample entropy is the negative logarithm of the ratio of these probabil-ities SampEn(m; r;N) = � log Um+1(r)Um(r) (19)We 
an see how this 
ompares to the approximate entropy given in Equation11 by noting that the 1=(N �m) and 1=N �m� 1 terms 
an
el so we 
an writeit as SampEn(m; r;N) = log N�mPi=1 N 0miN�mPi=1 N 0m+1i : (20)4



This is pre
isely the log of the sum of the 
onditional probability that twosequen
es that are 
lassi�ed as similar within a toleran
e of r for m pointsremain within r of ea
h other at the next point [10℄. For the 
ase when thedenominator is zero (i.e. ea
h point is more than r away from every other pointin the series) then the sample entropy is unde�ned.3 Kernel-Based Entropy MeasureThe entropy measures introdu
ed so far 
an be seen as phase spa
e re
on-stru
tion methods, as xm(k) is a delay ve
tor of size m.The set of these, fork = 1; 2; : : : ; N �m + 1, is the phase spa
e representation of the signal for di-mension m. The next step of the pro
ess is to estimate the probability that thispath in phase spa
e repeats itself. The 
al
ulation of this probability is basedon a binary 
lassi�
ation of whether two delay ve
tors are similar to ea
h otheror not, the degree of similarity allowed being within a toleran
e of r. However,although this is 
onventional in dynami
al systems theory, arguably the appli-
ation of a regularity measure su
h as this to a time series also falls in the signalpro
essing and pattern re
ognition domain where it is quite unusual; it is equiv-alent to estimating a probability density using a uniform noise model and doesnot 
onsider distan
es greater than r. In probability density estimation terms,this is a square kernel Parzen window around ea
h point xm(i) . The 
ommonnoise model assumption is that of additive white noise [1℄. The observed value,xi, is a 
ombination of the underlying latent value, yi, plus additive Gaussiannoise, � thus xi = yi + �: (21)One method to use for probability density fun
tion estimation under this as-sumption is a Gaussian kernel Parzen window.Using Gaussian kernels instead of square kernels would have obvious bene-�ts, for instan
e, a higher probability would be assigned to points 
loser to the�du
ial point. Also, it is easy to avoid the pitfalls asso
iated with log 0, as inmost density fun
tions, every point has a non-zero density. There is a 
omputa-tional issue if an outlier is so distant that the asso
iated probability falls below
omputer pre
ision but this 
an easily be dealt with if we are aware of it.There are some obvious drawba
ks with using Gaussian kernels too. Themain one is the 
omputational 
ost; one of the greatest bene�ts with using thesquare kernel method was it was very 
omputationally eÆ
ient. However, usingsome mathemati
al properties of Gaussians, we 
an show how the use of Gaus-sian kernels in an entropy formulation 
an be re
on
iled with 
omputationaleÆ
ien
y whilst still retaining a sound analyti
al justi�
ation.3.1 Parzen WindowA Parzen window is a type of probability density estimation s
heme that utiliseskernels. A kernel is a parametri
 density model su
h as a Gaussian whi
h is5



(a) Square Kernel (b) Gaussian KernelFigure 1: A graphi
al representation of the two kernel types for Parzen windowprobability density estimation.pla
ed on top of ea
h data point and the full density is evaluated as the sum ofthe kernels. In our appli
ation, we wish to determine the density fun
tion forthe point xi. Therefore, our density estimation model 
an be written asfP (xi) = 1N NXj=1K(xi � xj ; h); (22)where h is the window width parameter and K is the kernel fun
tion. As withany density fun
tion, it is 
onstrained soZ K(y; h)dy = 1: (23)We 
an see parallels with the methods employed in the entropy measures out-lined before. The kernel is the fun
tion d[xm(i);xm(j)℄ � r, whi
h in densityestimation notation would be written asK(y; r) = � 1 if max���y(j + k)�� : 0 � k � N	 � r0 otherwise (24)with r 
orresponding to the window width by h = 2r. This 
an be seen inFigure 1a.With a Gaussian kernel, the fun
tional form is given asG(y;�) = 1(2�)D2 j�j 12 exp��12yT��1y�; (25)where � is the 
ovarian
e matrix whi
h 
ontrols the window width. This kernelis shown in Figure 1b. 6



The Gaussian kernel has some important properties; in parti
ular, a 
onvo-lution of two Gaussians yields a Gaussian thusZ G(yi � yj ;�1)G(yi � yk ;�2) dy = G(yj � yk;�1 +�2): (26)We shall now show how this property 
an be in
orporated into an entropyformulation for 
omputational eÆ
ien
y whilst retaining analyti
al justi�
ation.3.2 Renyi EntropyThe family of Renyi entropies are de�ned asHR� = 11� � log Z p(x)� dx; (27)where � denotes the order of the entropy, � > 0. In the limit � ! 1, this isequivalent to the information entropy given in Equation 1.The use of the term `entropy' has always been rather loosely used in theapproximate entropy family of 
omplexity measures. When �m is 
al
ulatedin Equation 8, the measure is simply the logarithm of the probabilities ratherthan the information entropy or any other standard entropy measure. However,re
ently it has been noted that the approximate entropy, given in Equation 10,approximates the Renyi entropy of order 1 (the information entropy) and thesample entropy, given in Equation 19, approximates the Renyi entropy of order2 whi
h is an unbiased estimator [2℄.We use the Renyi entropy of order 2 whi
h is termed the quadrati
 entropyas it uses on the se
ond power of the probabilities [12℄. Cal
ulating the integralof a squared Gaussian normally would not be 
omputationally feasible for anyreal world data sets. However, if we use Gaussian kernels in the quadrati
entropy, we 
an use the property from Equation 26 to provide a mu
h more
omputationally tra
table result. For simpli
ity, we assume that the Gaussiansare spheri
al (� = �2I)HR2 = � log Z p(y)2 dyi= � log Z 1n2� nXi=1 nXj=1G(yi � yj ; �2I)G(yi � yk; �2I)� dy= � log 1n2 nXi=1 nXj=1G(yj � yk; 2�2I): (28)This means that we 
an pre
isely 
al
ulate the quadrati
 Renyi entropy fora probability density estimated using Gaussian kernels with a pairwise sums.This has signi�
ant 
omputational bene�ts and is theoreti
ally sound.7



4 Renyi Entropy RateThe quadrati
 Renyi entropy 
an easily be in
orporated into the entropy rateframework by using these quadrati
 Renyi estimates in Equation 5,hR2(�;A) = lim�!1[HR2(Q�+1)�HR2(Q� )℄: (29)For 
al
ulating the statisti
 from �nite data, we need to determine the times
ale, m, as before, and the width of the Gaussian distribution �. We 
an thende�ne an approximation of the Renyi entropy rate as(m;�) = limN!1[Hm+1R2 (r) �HmR2(r)℄; (30)whi
h, when estimated for �nite data is de�ned as(m;�;N) = Hm+1R2 (r)�HmR2(r): (31)We term this theKernel Entropy to distinguish it from other forms of entropyand to highlight the importan
e of the Gaussian kernels in its formulation.The Renyi entropy rate has been dis
ussed in a very re
ent paper to quan-tify the Gaussianity present in heart rates under various 
onditions [5℄. Theapproa
h to estimating the probabilities is based on the method used for thesample entropy in Equation 19, rather than utilising the properties of Gaussiankernels as we have. The paper does provide an interesting insight into proper-ties and appli
ations of the Renyi entropy rate as opposed to the informationentropy rate and independently suggests the use of Gaussian kernels would havebene�
ial properties.4.1 Sele
tion of the ParametersOf 
ourse, for use on real data, appropriate values of m and � need to befound. For m, the problem is no di�erent to that in the 
hoi
e of the parameterfor the other entropy approa
hes. Therefore, for our purposes, we adopt thestandard approa
h of using m = 2. However, as there may be bene�ts inworking with di�erent m values, the method should be appli
able to as manyvalues as possible.The same 
annot be said for the window width parameter (often referredto as the bandwidth). The � value is greatly di�erent to the r threshold andso a 
ompletely new value must be sele
ted for this formulation to perform
orre
tly. Fortunately, there are a number of bandwidth estimation s
hemesavailable, although most of them are inappropriate for multivariate problemssu
h as ours as the 
omputation be
omes in
reasingly prohibitive, espe
ially forhigher dimensional delay ve
tors. Be
ause of this, we use a Bayesian approa
husing Markov Chain Monte Carlo (adapted from [13℄).
8
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Figure 2: A plot showing the 
ontour probabilities using a Gaussian kernelParzen window (blue) and the normal referen
e rule (green) to 
hoose thebandwidth. The 1000 data points (red) are sampled from a two dimensionalGaussian.4.1.1 Bayesian Bandwidth Sele
tionThe Bayesian approa
h in [13℄ to bandwidth sele
tion treats the 
omponents of� as parameters and aims to obtain the posterior density of the 
omponentsof � by sampling with the Markov 
hain Monte Carlo (MCMC) method. Asour model assumes that the noise is spheri
al Gaussian, we 
an also assumethat the bandwidth matrix is diagonal, so � = �I . Using MCMC is bene�
ialas we want our method to be 
exible and the sampling algorithm used 
an beapplied to data of any dimension so we 
an determine reliable estimates for thebandwidth whatever the value of m is.The method utilises the Kullba
k-Leibler (KL) information whi
h is a non-symmetri
 distan
e measure between two densities. The aim is to minimise thedistan
e from the target density f(x) to the approximated density f̂(x). TheKL information is de�ned asDKL(f; f̂�) = Z log" f(x)f̂H(x)#f(x)dx (32)= Z log f(x)f(x)dx � Z log f̂�(x)f(x)dx; (33)9
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PSfrag repla
ements x t(b) Randomly shu�ed x values of theLorentz seriesFigure 3: The x value of the Lorentz series 
al
ulated for 1000 iterations andthe same values in a random order to remove any time 
orrelation.whi
h is nonnegative. As the �rst term in Equation 33 is 
onstant and we donot know the target density, the minimisation of DKL(f; f̂�) is the equivalent tothe maximisation of R log f̂�(x)f(x)dx. Using a kernel approximation, K�(y)this 
an be written asÊ log[f̂�℄ = nXi=1 log f̂�(xi) = nXi=1 log" 1n nXj=1K�(xi � xj)#: (34)As the maximisation of this dire
tly leads to a bandwidth matrix of zeros,a leave-one-out 
ross validation estimator f̂�;i(xi) must be used for the 
ostfun
tion in the MCMC method. We start by de�ningf̂�;i(xi) = 1n� 1 nXj=1j 6=i j�I j� 12K�[�I ℄� 12 (xi � xj)�: (35)This forms the likelihood, L(x1;x2; : : : ;xnj�). However, as we are using aBayesian approa
h we need to �x a prior over �, whi
h in our 
ase is�(�k ; i) / 11 + ��2k ; (36)for k = 1; 2; : : : ;m and where � is a hyperparameter 
ontrolling the shape of theprior density. Therefore, from Bayes theorem, the posterior (up to a normalising
onstant) is given as�(�jx1;x2; : : : ;xn) / " mYk=1 11 + ��2k # nYi=1 f̂�;i(xi): (37)10
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Figure 4: The new entropy measure 
al
ulated for the Lorentz series (blue) andthe random ordered series (bla
k) for in
reasing noise varian
e. The bandwidthis 
al
ulated separately for ea
h noise value with the Bayesian MCMC approa
h.We sample from this distribution using the Metropolis-Hastings algorithm im-plemented in Netlab [7℄. The mean of these samples gives us the estimator forthe optimal bandwidth.Figure 2 shows a 
omparison of the Bayesian method the normal referen
erule whi
h is a method of 
hoosing the optimal bandwidth for Gaussian targetdistributions. The Bayesian method is very 
lose to the optimal bandwidthsuggested by the normal referen
e rule and shows its usefulness in determiningthe bandwidth. For distributions that are non-Gaussian, the referen
e rule is ofno use but the Bayesian method still determines a good approximation of theoptimal bandwidth.5 Evaluation5.1 ExperimentsBoth the kernel entropy and the sample entropy were 
al
ulated for the twoseries shown in Figure 3, the x value of the Lorentz series and the same serieswith the order randomly shu�ed to destroy any time 
orrelation.Figure 4 shows the result of the new entropy measure 
al
ulated for theLorentz series and the same values randomly reordered. As the noise level is11
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Figure 5: The entropy values for the sample entropy (red) and the kernel entropy(blue) for the Lorentz series with in
reasing noise.in
reased, the regularity of the series de
reases and therefore the entropy valueapproa
hes that of the randomly ordered series. The slight 
u
tuations that
an be seen in the 
urve are due to the bandwidth being 
hosen by the Bayesianmethod as that is based on a sto
hasti
 approa
h and su
h small irregularitiesare to be expe
ted.As 
omparison of the two entropy measures with arbitrary window widthvalues is meaningless due to the di�eren
es inherent in the two di�erent kernels,we 
ompared a wide range of the values for the series with in
reasing additivewhite noise.This is no real drawba
k as the statisti
 is still valid regardless of the s
aleand the s
enario 
an be avoided with 
orre
t sele
tion of � su
h as with theBayesian method.5.2 Dis
ussionThe �rst thing to noti
e is that when the kernel size is very small, both statisti
sbehave in an unusual manner as Figure 5 shows. The sample entropy 
urve isvery errati
, due to the small number of mat
hes as the toleran
e r is parti
ularlylow. In 
ontrast, the new entropy 
urve is smooth but it does start in a negativevalue, something whi
h is impossible using SampEn. This is be
ause for a small�, and low noise, the system is highly ordered and as points are so 
lose to ea
hother, a small 
u
tuation in their proximity (
aused by sampling rate or some12
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PSfrag repla
ements Noise varian
e �2Entropyvalue (b) Sample EntropyFigure 6: The two entropy measures 
al
ulated for ten bandwidths from 0.02to 2 for in
reasing noise.other external fa
tor) 
an leave them with a greatly di�erent value for returnedby the Parzen window. Then if the m+ 1th value is 
lose again, the Gaussianwill return a higher probability, hen
e a lower entropy, allowing the negativevalue to o

ur. This 
annot o

ur in SampEn as if one value is outside thethreshold r it has probability zero for m and m+ 1.Another point of interest is how in
reasing the bandwidth size a�e
ts thevalues given by the entropy measures as 
an be seen in Figure 6. With thesample entropy, a low 
hoi
e of the bandwidth parameter yields a high valuefor the output, whi
h is opposite in the the kernel entropy formulation. As thebandwidth size is in
reased, the sample entropy value gets smaller and the newentropy value gets larger. This is due to the di�ering nature of the kernels. Asthe square kernel grows larger it will eventually en
ompass all the points andso both entropy values for dimensions m and m+1 will be the same, giving anoverall sample entropy of 0.6 Con
lusionsA new method of approximating the entropy rate from real world data wasintrodu
ed. The theoreti
al justi�
ation behind the method was shown andhow to 
al
ulate values using �nite data series was suggested.One of the potential bene�ts of this method is that the toleran
e used inthe previous methods is repla
ed by the bandwidth of a kernel and a suitablemathemati
al pro
edure is employed to determine the optimal value. This pro-
edure has the advantage of being appli
able to any m value and avoids manyof the pitfalls asso
iated with the 
lassi
al and plug-in bandwidth estimators(whi
h are dis
ussed in more detail in [6℄). However, it is important to stressthat this method is largely untried and, as with any bandwidth estimator, it13



would be inadvisable to assume that it is e�e
tive on every dataset. However,as the kernel entropy is more robust to bandwidth 
hoi
e (it e�e
tively limitsthe s
ale) than the toleran
e in SampEn, the optimal 
hoi
e of bandwidth isnot as important.As this report is intended to introdu
e and provide insight into this newentropy formulation; it is only applied to the Lorentz series, whi
h despite theadded noise, is a very ordered system. It is therefore impossible to speak ofany bene�ts/drawba
ks in the appli
ation over the previous methods with any
ertainty. To fully judge the e�e
tiveness of the new method, one must applyit to a number of datasets, from real world data to fully deterministi
, fullysto
hasti
 and mixtures of the two. Any gain in performan
e would have to bebalan
ed with the 
omputational 
ost whi
h, espe
ially when using the Bayesianbandwidth sele
tion, is very high.Referen
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