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1 Abstract

The concept of entropy rate is well defined in dynamical systems theory but
is impossible to apply it directly to finite real world data sets. With this in
mind, Pincus developed Approximate Entropy (ApEn) [9], which uses ideas
from Eckmann and Ruelle [3] to create a regularity measure based on entropy
rate that can be used to determine the influence of chaotic behaviour in a real
world signal. However, this measure was found not to be robust and so an
improved formulation known as the Sample Entropy (SampEn) was created
by Richman and Moorman [10] to address these issues. We have developed a
new, related, regularity measure which is not based on the theory provided by
Eckmann and Ruelle and proves a more well-behaved measure of complexity
than the previous measures whilst still retaining a low computational cost.

2 Background

To understand the differences between the entropy formulations, we need to
explore the theory behind them.

2.1 Entropy Rate

ApEn was originally based on the Kolmogorov-Sinai (K-S) invariant h(p) where
p is an ergodic probability measure. The K-S invariant (or entropy) can be seen
as the mean rate of creation of information [3]. It is worth noting that although
this invariant is often called ‘entropy’, it is different from the information entropy
of the system [11].

If A = {a1,as,...,a,} is the finite alphabet of a function f defined on
sample space Q@ we can consider a partition Q = {Q;;i = 1,2,...,a} defined
by Qi = {w: f(w) = a;} = f*({a;}) [4]. We can then write the entropy as a
function of the partition defined by the disjoint sets of the points that f maps
to the alphabet A as
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[e]3
H,(Q) = - p(Qi)log p(Qi), (1)
i=1
where we also define ulogu = 0 if v = 0. So H,(Q) is the information content
of the partition with respect to state p.
We define the notation f7 as the function composed 7 times. The inverse
functions f~7 can be partitioned in a similar way to above, denoted Q7, and
thus can be used do describe the partition due to time evolution as

0" =0Q°UQ'U...UQ™ . (2)

We can also write the components of this partition as

P=Q)nQ,n..nQI"", (3)
where i; € {1,2,..., a} and k € {1,2,...,a"}. Therefore, the information
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content, of an interval of time period of length 7 with respect to the state p can
be written as

a’

H(QT) = =S (P} log p(PY). (4)
k=1
As we observe the system iterating, we can determine the gain in information
by observing consecutive iterates 7 and 7 4+ 1 as the difference between the
entropies thus

H(QT-I-l) _ H(QT)

The rate of information creation [8] is the gain of information per iterate and is
the the limit

hp, A) = lim [H(Q™H) ~ H(Q)]. (5)

2.2 Approximate Entropy

Equation 5 cannot be applied to real world applications as the data series is
always of finite length and so the limit 7 — oo cannot be calculated when the
dynamical equations governing the system are unknown. Pincus noted that
even an approximation of this may have intrinsic interest in determining the
nature of a dynamical system and developed the approximate entropy (ApEn)
to investigate this.

If we have a signal x = {z(1),2(2),...,2(N)} then we can define a distance
measure as the maximum Euclidean distance between m consecutive values
starting at value z; and the respective values starting at value z;

d[xm (1), xm (§)] = max{|wm(i +k)—xn(j+ k)|},



for £k =0,1,...,m — 1. If we introduce a radius r, we can find the number of
xm(7),7 = {0,1,...,N — m + 1} that lie within a ball of radius r centred at

X (7).
N (r) = Number of d[xm (i), xm ()] <r, (6)

then we can calculate the probability that a consecutive sequence repeats itself
in the series (within the tolerance value) thus

N (r)
m —_ (3
e = @
It is now possible to estimate h(p) directly [3]. If we define
1 N—-—m+1
mpy = — - log O™
o) = ¥ ; og C1"(r), (8)

then, using Equation 5, we can say

T . . m+1 _m
h(p) = lim lim  lim [6™75(r) — o™ (r)]. 9)
As this is still intractable for finite data sets, further refinements need to be
made. Approximate entropy (ApEn) is essentially Equation 9 but with fixed m
and r, and a fixed number (N) of data points. It is defined as

ApEn(m,r,N) = " (r) — ¢™ (7). (10)

Although ApEn is derived from and resembles Equation 5, it is worth noting
that it is not intended to calculate it and should be considered as a separate
statistic in its own right [9].

2.3 Sample Entropy

Approximate entropy has been used to a large degree of success in a wide variety
of studies. However, it has been shown that ApEn is inherently biased [10],
therefore sample entropy was developed to address this bias and provide a more
rigorous complexity measure.

One source of such bias is the necessity of assuring a non-zero value for
Equation 6, so the logarithm taken in Equation 7 is well-defined. The method of
assuring that this constraint is fulfilled in approximate entropy is by allowing i =
J (known as ‘self-matching’ [10]) in Equation 6. This means that d[X, (i)X, (1)]
is allowed to be 0 and therefore less than r so N™(r) will always be positive.

We can see how this causes bias in the statistic by considering N/"(r) and
N{”H(r). As approximate entropy can be considered as the log of the condi-
tional probability that N™(r) and N/"*!(r) stay the same over time we can
write it as

N-m m
ApEn(m,r,N) = ! Z logM. (11)
SN & N



Now, as neither N/"(r) or N/"*!(r) can be 0 for this to be defined, the self-
matching gives a positive value for the statistic which causes bias, especially in
small series. SampEn removes this bias by removing all self matches.

The formulation is also slightly different. Only the first N — m values of
the series were used when calculating N/™(r) and N;"*!(r) ensuring an equal
length of series for each value. Also, two new variables are defined, based on
the correlation integral. The correlation integral is simply the average over i of
C™(r) defined in Equation 7,

1 N-—m+1
c"(r) = Nom+1 Z i (r). (12)

N;™(r) is defined to discount the self matches,

N,™(r) = Number of d[xm (i), xm(j)] <, (13)

for j =1,2,...,m,j # i. We now define
1 )

mpy=___ ~ N™ 14
UP ) = 5 N0, (14)
and following from Equation 12,
1 N—m
m(r) = m(r). 1
Un(r) N_m;m (r) (15)
U™+ (r) is similarly defined for m + 1
N,;™*1(r) = Number of d[xu (i), xm ()] < T, (16)
for j =1,2,...,m,j # i. We now proceed as before
1 /
m—+1 _ 'm+1
Ui (T) - N — m — 1Nl (7‘)7 (17)
1 N—m
m+1 _ m+1 1
U = o X U (18)

The sample entropy is the negative logarithm of the ratio of these probabil-
ities )
Uumi(r
S E ,7"N) = —log ———= 19
ampEn(m,r, N) g T ) (19)
We can see how this compares to the approximate entropy given in Equation
11 by noting that the 1/(N —m) and 1/N —m — 1 terms cancel so we can write

it as

“m
> N
SampEn(m,r,N) = log szli (20)

—m

Z N.,erl
i=1 !

N



This is precisely the log of the sum of the conditional probability that two
sequences that are classified as similar within a tolerance of r for m points
remain within r of each other at the next point [10]. For the case when the
denominator is zero (i.e. each point is more than r away from every other point
in the series) then the sample entropy is undefined.

3 Kernel-Based Entropy Measure

The entropy measures introduced so far can be seen as phase space recon-
struction methods, as x,(k) is a delay vector of size m.The set of these, for
k=1,2,...,N —m+ 1, is the phase space representation of the signal for di-
mension m. The next step of the process is to estimate the probability that this
path in phase space repeats itself. The calculation of this probability is based
on a binary classification of whether two delay vectors are similar to each other
or not, the degree of similarity allowed being within a tolerance of r. However,
although this is conventional in dynamical systems theory, arguably the appli-
cation of a regularity measure such as this to a time series also falls in the signal
processing and pattern recognition domain where it is quite unusual; it is equiv-
alent to estimating a probability density using a uniform noise model and does
not consider distances greater than r. In probability density estimation terms,
this is a square kernel Parzen window around each point x,,(i) . The common
noise model assumption is that of additive white noise [1]. The observed value,
x;, is a combination of the underlying latent value, y;, plus additive Gaussian
noise, € thus

T =Y; +e€. (21)

One method to use for probability density function estimation under this as-
sumption is a Gaussian kernel Parzen window.

Using Gaussian kernels instead of square kernels would have obvious bene-
fits, for instance, a higher probability would be assigned to points closer to the
fiducial point. Also, it is easy to avoid the pitfalls associated with log0, as in
most density functions, every point has a non-zero density. There is a computa-
tional issue if an outlier is so distant that the associated probability falls below
computer precision but this can easily be dealt with if we are aware of it.

There are some obvious drawbacks with using Gaussian kernels too. The
main one is the computational cost; one of the greatest benefits with using the
square kernel method was it was very computationally efficient. However, using
some mathematical properties of Gaussians, we can show how the use of Gaus-
sian kernels in an entropy formulation can be reconciled with computational
efficiency whilst still retaining a sound analytical justification.

3.1 Parzen Window

A Parzen window is a type of probability density estimation scheme that utilises
kernels. A kernel is a parametric density model such as a Gaussian which is
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(a) Square Kernel (b) Gaussian Kernel

Figure 1: A graphical representation of the two kernel types for Parzen window
probability density estimation.

placed on top of each data point and the full density is evaluated as the sum of
the kernels. In our application, we wish to determine the density function for
the point x;. Therefore, our density estimation model can be written as

fp(xi) = %ZK(XZ - xj,h), (22)

N
—1

J

where h is the window width parameter and K is the kernel function. As with
any density function, it is constrained so

/K(y,h)dy =1. (23)

We can see parallels with the methods employed in the entropy measures out-
lined before. The kernel is the function d[x,,(7),xm(j)] < r, which in density
estimation notation would be written as

1 if max{|y(j—|—k)|:0§k§N}§r
Kly.r) = { 0 otherwise

with r corresponding to the window width by h = 2r. This can be seen in
Figure 1a.
With a Gaussian kernel, the functional form is given as

(24)

1 1
Gy,L)= ——— ——yTy—! ) 25
(v, %) @Bt eXP( 5Y y (25)

where ¥ is the covariance matrix which controls the window width. This kernel
is shown in Figure 1b.



The Gaussian kernel has some important properties; in particular, a convo-
lution of two Gaussians yields a Gaussian thus

/G(yi -y Z1)G(Yi — Y&, X2) dy = G(y; — Y&, X1 + Z2). (26)

We shall now show how this property can be incorporated into an entropy
formulation for computational efficiency whilst retaining analytical justification.

3.2 Renyi Entropy
The family of Renyi entropies are defined as

= 1 os [ plo)” da. (21)

where a denotes the order of the entropy, @ > 0. In the limit & — 1, this is
equivalent to the information entropy given in Equation 1.

The use of the term ‘entropy’ has always been rather loosely used in the
approximate entropy family of complexity measures. When ¢™ is calculated
in Equation 8, the measure is simply the logarithm of the probabilities rather
than the information entropy or any other standard entropy measure. However,
recently it has been noted that the approximate entropy, given in Equation 10,
approximates the Renyi entropy of order 1 (the information entropy) and the
sample entropy, given in Equation 19, approximates the Renyi entropy of order
2 which is an unbiased estimator [2].

We use the Renyi entropy of order 2 which is termed the quadratic entropy
as it uses on the second power of the probabilities [12]. Calculating the integral
of a squared Gaussian normally would not be computationally feasible for any
real world data sets. However, if we use Gaussian kernels in the quadratic
entropy, we can use the property from Equation 26 to provide a much more
computationally tractable result. For simplicity, we assume that the Gaussians
are spherical (¥ = 21)
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This means that we can precisely calculate the quadratic Renyi entropy for
a probability density estimated using Gaussian kernels with a pairwise sums.
This has significant computational benefits and is theoretically sound.



4 Renyi Entropy Rate

The quadratic Renyi entropy can easily be incorporated into the entropy rate
framework by using these quadratic Renyi estimates in Equation 5,

hia(p. 4) = lim [Hp, (Q7) — Hp, Q)] (29)

For calculating the statistic from finite data, we need to determine the time
scale, m, as before, and the width of the Gaussian distribution 0. We can then
define an approximation of the Renyi entropy rate as

(m,o) = lim [Hg"'(r) — HE (r)], (30)

N—00

which, when estimated for finite data is defined as
(m,o,N) = Hp " (r) — Hg, (r). (31)

We term this the Kernel Entropy to distinguish it from other forms of entropy
and to highlight the importance of the Gaussian kernels in its formulation.

The Renyi entropy rate has been discussed in a very recent paper to quan-
tify the Gaussianity present in heart rates under various conditions [5]. The
approach to estimating the probabilities is based on the method used for the
sample entropy in Equation 19, rather than utilising the properties of Gaussian
kernels as we have. The paper does provide an interesting insight into proper-
ties and applications of the Renyi entropy rate as opposed to the information
entropy rate and independently suggests the use of Gaussian kernels would have
beneficial properties.

4.1 Selection of the Parameters

Of course, for use on real data, appropriate values of m and o need to be
found. For m, the problem is no different to that in the choice of the parameter
for the other entropy approaches. Therefore, for our purposes, we adopt the
standard approach of using m = 2. However, as there may be benefits in
working with different m values, the method should be applicable to as many
values as possible.

The same cannot be said for the window width parameter (often referred
to as the bandwidth). The o value is greatly different to the r threshold and
so a completely new value must be selected for this formulation to perform
correctly. Fortunately, there are a number of bandwidth estimation schemes
available, although most of them are inappropriate for multivariate problems
such as ours as the computation becomes increasingly prohibitive, especially for
higher dimensional delay vectors. Because of this, we use a Bayesian approach
using Markov Chain Monte Carlo (adapted from [13]).
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Figure 2: A plot showing the contour probabilities using a Gaussian kernel
Parzen window (blue) and the normal reference rule (green) to choose the
bandwidth. The 1000 data points (red) are sampled from a two dimensional
Gaussian.

4.1.1 Bayesian Bandwidth Selection

The Bayesian approach in [13] to bandwidth selection treats the components of
3 as parameters and aims to obtain the posterior density of the components
of ¥ by sampling with the Markov chain Monte Carlo (MCMC) method. As
our model assumes that the noise is spherical Gaussian, we can also assume
that the bandwidth matrix is diagonal, so ¥ = ¢I. Using MCMC is beneficial
as we want our method to be flexible and the sampling algorithm used can be
applied to data of any dimension so we can determine reliable estimates for the
bandwidth whatever the value of m is.

The method utilises the Kullback-Leibler (KL) information which is a non-
symmetric distance measure between two densities. The aim is to minimise the
distance from the target density f(x) to the approximated density f(x). The
KL information is defined as

Dir(f.fs) = [1og [ ]3;(2)] £ (x)dx (32)

/ log £ (x) f (x)dx — / log fr(x)f(x)dx,  (33)



(a) The z value of the Lorentz series (b) Randomly shuffled z values of the
Lorentz series

Figure 3: The z value of the Lorentz series calculated for 1000 iterations and
the same values in a random order to remove any time correlation.

which is nonnegative. As the first term in Equation 33 is constant and we do
not know the target density, the minimisation of Dgr,(f, f5) is the equivalent to
the maximisation of [ log f=(x)f(x)dx. Using a kernel approximation, K (y)
this can be written as

Elog fg Zlog fg (x;) Zlog[ ZKE - X; ] (34)

As the maximisation of this directly leads to a bandwidth matrix of zeros,
a leave-one-out cross validation estimator f,;(x;) must be used for the cost
function in the MCMC method. We start by defining

fri(xi) =—2\an K (lo17 (i = xy)). (35)

J#z

This forms the likelihood, L(x1,Xa,...,X,|0). However, as we are using a
Bayesian approach we need to fix a prior over ¢, which in our case is

1

T 36
e (36)

w(ok,1)

for k = 1,2,...,m and where X is a hyperparameter controlling the shape of the
prior density. Therefore, from Bayes theorem, the posterior (up to a normalising
constant) is given as

7 1

m(o|x1,Xa,. .., Xp) X Ll:[lm

H fm(xz’)- (37)
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Entropy value

Noise variance o2

Figure 4: The new entropy measure calculated for the Lorentz series (blue) and
the random ordered series (black) for increasing noise variance. The bandwidth
is calculated separately for each noise value with the Bayesian MCMC approach.

We sample from this distribution using the Metropolis-Hastings algorithm im-
plemented in NETLAB [7]. The mean of these samples gives us the estimator for
the optimal bandwidth.

Figure 2 shows a comparison of the Bayesian method the normal reference
rule which is a method of choosing the optimal bandwidth for Gaussian target
distributions. The Bayesian method is very close to the optimal bandwidth
suggested by the normal reference rule and shows its usefulness in determining
the bandwidth. For distributions that are non-Gaussian, the reference rule is of
no use but the Bayesian method still determines a good approximation of the
optimal bandwidth.

5 Evaluation

5.1 Experiments

Both the kernel entropy and the sample entropy were calculated for the two
series shown in Figure 3, the = value of the Lorentz series and the same series
with the order randomly shuffled to destroy any time correlation.

Figure 4 shows the result of the new entropy measure calculated for the
Lorentz series and the same values randomly reordered. As the noise level is

11



Entropy value

-1 I I I I )
0 0.5 1 15 2 25

Noise variance o2

Figure 5: The entropy values for the sample entropy (red) and the kernel entropy
(blue) for the Lorentz series with increasing noise.

increased, the regularity of the series decreases and therefore the entropy value
approaches that of the randomly ordered series. The slight fluctuations that
can be seen in the curve are due to the bandwidth being chosen by the Bayesian
method as that is based on a stochastic approach and such small irregularities
are to be expected.

As comparison of the two entropy measures with arbitrary window width
values is meaningless due to the differences inherent in the two different kernels,
we compared a wide range of the values for the series with increasing additive
white noise.

This is no real drawback as the statistic is still valid regardless of the scale
and the scenario can be avoided with correct selection of o such as with the
Bayesian method.

5.2 Discussion

The first thing to notice is that when the kernel size is very small, both statistics
behave in an unusual manner as Figure 5 shows. The sample entropy curve is
very erratic, due to the small number of matches as the tolerance r is particularly
low. In contrast, the new entropy curve is smooth but it does start in a negative
value, something which is impossible using SampEn. This is because for a small
o, and low noise, the system is highly ordered and as points are so close to each
other, a small fluctuation in their proximity (caused by sampling rate or some
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(a) Kernel Entropy (b) Sample Entropy

Figure 6: The two entropy measures calculated for ten bandwidths from 0.02
to 2 for increasing noise.

other external factor) can leave them with a greatly different value for returned
by the Parzen window. Then if the m + 1th value is close again, the Gaussian
will return a higher probability, hence a lower entropy, allowing the negative
value to occur. This cannot occur in SampEn as if one value is outside the
threshold r it has probability zero for m and m + 1.

Another point of interest is how increasing the bandwidth size affects the
values given by the entropy measures as can be seen in Figure 6. With the
sample entropy, a low choice of the bandwidth parameter yields a high value
for the output, which is opposite in the the kernel entropy formulation. As the
bandwidth size is increased, the sample entropy value gets smaller and the new
entropy value gets larger. This is due to the differing nature of the kernels. As
the square kernel grows larger it will eventually encompass all the points and
so both entropy values for dimensions m and m + 1 will be the same, giving an
overall sample entropy of 0.

6 Conclusions

A new method of approximating the entropy rate from real world data was
introduced. The theoretical justification behind the method was shown and
how to calculate values using finite data series was suggested.

One of the potential benefits of this method is that the tolerance used in
the previous methods is replaced by the bandwidth of a kernel and a suitable
mathematical procedure is employed to determine the optimal value. This pro-
cedure has the advantage of being applicable to any m value and avoids many
of the pitfalls associated with the classical and plug-in bandwidth estimators
(which are discussed in more detail in [6]). However, it is important to stress
that this method is largely untried and, as with any bandwidth estimator, it
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would be inadvisable to assume that it is effective on every dataset. However,
as the kernel entropy is more robust to bandwidth choice (it effectively limits
the scale) than the tolerance in SampEn, the optimal choice of bandwidth is
not as important.

As this report is intended to introduce and provide insight into this new
entropy formulation; it is only applied to the Lorentz series, which despite the
added noise, is a very ordered system. It is therefore impossible to speak of
any benefits/drawbacks in the application over the previous methods with any
certainty. To fully judge the effectiveness of the new method, one must apply
it to a number of datasets, from real world data to fully deterministic, fully
stochastic and mixtures of the two. Any gain in performance would have to be
balanced with the computational cost which, especially when using the Bayesian
bandwidth selection, is very high.
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