
A New Entropy Measure Based On The RenyiEntropy Rate Using Gaussian KernelsD Woodok and I T NabneyAston University, UKFebruary 24, 20061 AbstratThe onept of entropy rate is well de�ned in dynamial systems theory butis impossible to apply it diretly to �nite real world data sets. With this inmind, Pinus developed Approximate Entropy (ApEn) [9℄, whih uses ideasfrom Ekmann and Ruelle [3℄ to reate a regularity measure based on entropyrate that an be used to determine the inuene of haoti behaviour in a realworld signal. However, this measure was found not to be robust and so animproved formulation known as the Sample Entropy (SampEn) was reatedby Rihman and Moorman [10℄ to address these issues. We have developed anew, related, regularity measure whih is not based on the theory provided byEkmann and Ruelle and proves a more well-behaved measure of omplexitythan the previous measures whilst still retaining a low omputational ost.2 BakgroundTo understand the di�erenes between the entropy formulations, we need toexplore the theory behind them.2.1 Entropy RateApEn was originally based on the Kolmogorov-Sinai (K-S) invariant h(�) where� is an ergodi probability measure. The K-S invariant (or entropy) an be seenas the mean rate of reation of information [3℄. It is worth noting that althoughthis invariant is often alled `entropy', it is di�erent from the information entropyof the system [11℄.If A = fa1; a2; : : : ; a�g is the �nite alphabet of a funtion f de�ned onsample spae 
 we an onsider a partition Q = fQi; i = 1; 2; : : : ; �g de�nedby Qi = f! : f(!) = aig = f�1(faig) [4℄. We an then write the entropy as afuntion of the partition de�ned by the disjoint sets of the points that f mapsto the alphabet A as 1
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H�(Q) = � �Xi=1 �(Qi) log �(Qi); (1)where we also de�ne u logu = 0 if u = 0. So H�(Q) is the information ontentof the partition with respet to state �.We de�ne the notation f� as the funtion omposed � times. The inversefuntions f�� an be partitioned in a similar way to above, denoted Q� , andthus an be used do desribe the partition due to time evolution asQ� = Q0 [ Q1 [ : : : [ Q��1: (2)We an also write the omponents of this partition asP �k = Q0i1 \Q1i2 \ : : : \Q��1i� ; (3)where ij 2 f1; 2; : : : ; �g and k 2 f1; 2; : : : ; ��g. Therefore, the informationontent of an interval of time period of length � with respet to the state � anbe written as H(Q� ) = � ��Xk=1 �(P �k ) log �(P �k ): (4)As we observe the system iterating, we an determine the gain in informationby observing onseutive iterates � and � + 1 as the di�erene between theentropies thus H(Q�+1)�H(Q� ):The rate of information reation [8℄ is the gain of information per iterate and isthe the limit h(�;A) = lim�!1[H(Q�+1)�H(Q� )℄: (5)2.2 Approximate EntropyEquation 5 annot be applied to real world appliations as the data series isalways of �nite length and so the limit � ! 1 annot be alulated when thedynamial equations governing the system are unknown. Pinus noted thateven an approximation of this may have intrinsi interest in determining thenature of a dynamial system and developed the approximate entropy (ApEn)to investigate this.If we have a signal x = fx(1); x(2); : : : ; x(N)g then we an de�ne a distanemeasure as the maximum Eulidean distane between m onseutive valuesstarting at value xi and the respetive values starting at value xjd[xm(i);xm(j)℄ = max���xm(i+ k)� xm(j + k)��	;2



for k = 0; 1; : : : ;m� 1. If we introdue a radius r, we an �nd the number ofxm(j); j = f0; 1; : : : ; N � m + 1g that lie within a ball of radius r entred atxm(i). Nmi (r) = Number of d[xm(i);xm(j)℄ � r; (6)then we an alulate the probability that a onseutive sequene repeats itselfin the series (within the tolerane value) thusCmi (r) = Nmi (r)N �m+ 1 : (7)It is now possible to estimate h(�) diretly [3℄. If we de�ne�m(r) = 1N �m+ 1 N�m+1Xi=1 logCmi (r); (8)then, using Equation 5, we an sayh(�) = limr!0 limm!1 limN!1[�m+1(r) � �m(r)℄: (9)As this is still intratable for �nite data sets, further re�nements need to bemade. Approximate entropy (ApEn) is essentially Equation 9 but with �xed mand r, and a �xed number (N) of data points. It is de�ned asApEn(m; r;N) = �m+1(r)� �m(r): (10)Although ApEn is derived from and resembles Equation 5, it is worth notingthat it is not intended to alulate it and should be onsidered as a separatestatisti in its own right [9℄.2.3 Sample EntropyApproximate entropy has been used to a large degree of suess in a wide varietyof studies. However, it has been shown that ApEn is inherently biased [10℄,therefore sample entropy was developed to address this bias and provide a morerigorous omplexity measure.One soure of suh bias is the neessity of assuring a non-zero value forEquation 6, so the logarithm taken in Equation 7 is well-de�ned. The method ofassuring that this onstraint is ful�lled in approximate entropy is by allowing i =j (known as `self-mathing' [10℄) in Equation 6. This means that d[xm(i)xm(i)℄is allowed to be 0 and therefore less than r so Nmi (r) will always be positive.We an see how this auses bias in the statisti by onsidering Nmi (r) andNm+1i (r). As approximate entropy an be onsidered as the log of the ondi-tional probability that Nmi (r) and Nm+1i (r) stay the same over time we anwrite it as ApEn(m; r;N) � 1N �m N�mXi=1 log Nmi (r)Nm+1i (r) : (11)3



Now, as neither Nmi (r) or Nm+1i (r) an be 0 for this to be de�ned, the self-mathing gives a positive value for the statisti whih auses bias, espeially insmall series. SampEn removes this bias by removing all self mathes.The formulation is also slightly di�erent. Only the �rst N � m values ofthe series were used when alulating Nmi (r) and Nm+1i (r) ensuring an equallength of series for eah value. Also, two new variables are de�ned, based onthe orrelation integral. The orrelation integral is simply the average over i ofCmi (r) de�ned in Equation 7,Cm(r) = 1N �m+ 1 N�m+1Xi=1 Cmi (r): (12)N 0mi (r) is de�ned to disount the self mathes,N 0mi (r) = Number of d[xm(i);xm(j)℄ � r; (13)for j = 1; 2; : : : ;m; j 6= i. We now de�neUmi (r) = 1N �m� 1N 0mi (r); (14)and following from Equation 12,Um(r) = 1N �m N�mXi=1 Umi (r): (15)Um+1(r) is similarly de�ned for m+ 1N 0m+1i (r) = Number of d[xm(i);xm(j)℄ � r; (16)for j = 1; 2; : : : ;m; j 6= i. We now proeed as beforeUm+1i (r) = 1N �m� 1N 0m+1i (r); (17)Um+1(r) = 1N �m N�mXi=1 Um+1i (r): (18)The sample entropy is the negative logarithm of the ratio of these probabil-ities SampEn(m; r;N) = � log Um+1(r)Um(r) (19)We an see how this ompares to the approximate entropy given in Equation11 by noting that the 1=(N �m) and 1=N �m� 1 terms anel so we an writeit as SampEn(m; r;N) = log N�mPi=1 N 0miN�mPi=1 N 0m+1i : (20)4



This is preisely the log of the sum of the onditional probability that twosequenes that are lassi�ed as similar within a tolerane of r for m pointsremain within r of eah other at the next point [10℄. For the ase when thedenominator is zero (i.e. eah point is more than r away from every other pointin the series) then the sample entropy is unde�ned.3 Kernel-Based Entropy MeasureThe entropy measures introdued so far an be seen as phase spae reon-strution methods, as xm(k) is a delay vetor of size m.The set of these, fork = 1; 2; : : : ; N �m + 1, is the phase spae representation of the signal for di-mension m. The next step of the proess is to estimate the probability that thispath in phase spae repeats itself. The alulation of this probability is basedon a binary lassi�ation of whether two delay vetors are similar to eah otheror not, the degree of similarity allowed being within a tolerane of r. However,although this is onventional in dynamial systems theory, arguably the appli-ation of a regularity measure suh as this to a time series also falls in the signalproessing and pattern reognition domain where it is quite unusual; it is equiv-alent to estimating a probability density using a uniform noise model and doesnot onsider distanes greater than r. In probability density estimation terms,this is a square kernel Parzen window around eah point xm(i) . The ommonnoise model assumption is that of additive white noise [1℄. The observed value,xi, is a ombination of the underlying latent value, yi, plus additive Gaussiannoise, � thus xi = yi + �: (21)One method to use for probability density funtion estimation under this as-sumption is a Gaussian kernel Parzen window.Using Gaussian kernels instead of square kernels would have obvious bene-�ts, for instane, a higher probability would be assigned to points loser to the�duial point. Also, it is easy to avoid the pitfalls assoiated with log 0, as inmost density funtions, every point has a non-zero density. There is a omputa-tional issue if an outlier is so distant that the assoiated probability falls belowomputer preision but this an easily be dealt with if we are aware of it.There are some obvious drawbaks with using Gaussian kernels too. Themain one is the omputational ost; one of the greatest bene�ts with using thesquare kernel method was it was very omputationally eÆient. However, usingsome mathematial properties of Gaussians, we an show how the use of Gaus-sian kernels in an entropy formulation an be reoniled with omputationaleÆieny whilst still retaining a sound analytial justi�ation.3.1 Parzen WindowA Parzen window is a type of probability density estimation sheme that utiliseskernels. A kernel is a parametri density model suh as a Gaussian whih is5



(a) Square Kernel (b) Gaussian KernelFigure 1: A graphial representation of the two kernel types for Parzen windowprobability density estimation.plaed on top of eah data point and the full density is evaluated as the sum ofthe kernels. In our appliation, we wish to determine the density funtion forthe point xi. Therefore, our density estimation model an be written asfP (xi) = 1N NXj=1K(xi � xj ; h); (22)where h is the window width parameter and K is the kernel funtion. As withany density funtion, it is onstrained soZ K(y; h)dy = 1: (23)We an see parallels with the methods employed in the entropy measures out-lined before. The kernel is the funtion d[xm(i);xm(j)℄ � r, whih in densityestimation notation would be written asK(y; r) = � 1 if max���y(j + k)�� : 0 � k � N	 � r0 otherwise (24)with r orresponding to the window width by h = 2r. This an be seen inFigure 1a.With a Gaussian kernel, the funtional form is given asG(y;�) = 1(2�)D2 j�j 12 exp��12yT��1y�; (25)where � is the ovariane matrix whih ontrols the window width. This kernelis shown in Figure 1b. 6



The Gaussian kernel has some important properties; in partiular, a onvo-lution of two Gaussians yields a Gaussian thusZ G(yi � yj ;�1)G(yi � yk ;�2) dy = G(yj � yk;�1 +�2): (26)We shall now show how this property an be inorporated into an entropyformulation for omputational eÆieny whilst retaining analytial justi�ation.3.2 Renyi EntropyThe family of Renyi entropies are de�ned asHR� = 11� � log Z p(x)� dx; (27)where � denotes the order of the entropy, � > 0. In the limit � ! 1, this isequivalent to the information entropy given in Equation 1.The use of the term `entropy' has always been rather loosely used in theapproximate entropy family of omplexity measures. When �m is alulatedin Equation 8, the measure is simply the logarithm of the probabilities ratherthan the information entropy or any other standard entropy measure. However,reently it has been noted that the approximate entropy, given in Equation 10,approximates the Renyi entropy of order 1 (the information entropy) and thesample entropy, given in Equation 19, approximates the Renyi entropy of order2 whih is an unbiased estimator [2℄.We use the Renyi entropy of order 2 whih is termed the quadrati entropyas it uses on the seond power of the probabilities [12℄. Calulating the integralof a squared Gaussian normally would not be omputationally feasible for anyreal world data sets. However, if we use Gaussian kernels in the quadratientropy, we an use the property from Equation 26 to provide a muh moreomputationally tratable result. For simpliity, we assume that the Gaussiansare spherial (� = �2I)HR2 = � log Z p(y)2 dyi= � log Z 1n2� nXi=1 nXj=1G(yi � yj ; �2I)G(yi � yk; �2I)� dy= � log 1n2 nXi=1 nXj=1G(yj � yk; 2�2I): (28)This means that we an preisely alulate the quadrati Renyi entropy fora probability density estimated using Gaussian kernels with a pairwise sums.This has signi�ant omputational bene�ts and is theoretially sound.7



4 Renyi Entropy RateThe quadrati Renyi entropy an easily be inorporated into the entropy rateframework by using these quadrati Renyi estimates in Equation 5,hR2(�;A) = lim�!1[HR2(Q�+1)�HR2(Q� )℄: (29)For alulating the statisti from �nite data, we need to determine the timesale, m, as before, and the width of the Gaussian distribution �. We an thende�ne an approximation of the Renyi entropy rate as(m;�) = limN!1[Hm+1R2 (r) �HmR2(r)℄; (30)whih, when estimated for �nite data is de�ned as(m;�;N) = Hm+1R2 (r)�HmR2(r): (31)We term this theKernel Entropy to distinguish it from other forms of entropyand to highlight the importane of the Gaussian kernels in its formulation.The Renyi entropy rate has been disussed in a very reent paper to quan-tify the Gaussianity present in heart rates under various onditions [5℄. Theapproah to estimating the probabilities is based on the method used for thesample entropy in Equation 19, rather than utilising the properties of Gaussiankernels as we have. The paper does provide an interesting insight into proper-ties and appliations of the Renyi entropy rate as opposed to the informationentropy rate and independently suggests the use of Gaussian kernels would havebene�ial properties.4.1 Seletion of the ParametersOf ourse, for use on real data, appropriate values of m and � need to befound. For m, the problem is no di�erent to that in the hoie of the parameterfor the other entropy approahes. Therefore, for our purposes, we adopt thestandard approah of using m = 2. However, as there may be bene�ts inworking with di�erent m values, the method should be appliable to as manyvalues as possible.The same annot be said for the window width parameter (often referredto as the bandwidth). The � value is greatly di�erent to the r threshold andso a ompletely new value must be seleted for this formulation to performorretly. Fortunately, there are a number of bandwidth estimation shemesavailable, although most of them are inappropriate for multivariate problemssuh as ours as the omputation beomes inreasingly prohibitive, espeially forhigher dimensional delay vetors. Beause of this, we use a Bayesian approahusing Markov Chain Monte Carlo (adapted from [13℄).
8
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Figure 2: A plot showing the ontour probabilities using a Gaussian kernelParzen window (blue) and the normal referene rule (green) to hoose thebandwidth. The 1000 data points (red) are sampled from a two dimensionalGaussian.4.1.1 Bayesian Bandwidth SeletionThe Bayesian approah in [13℄ to bandwidth seletion treats the omponents of� as parameters and aims to obtain the posterior density of the omponentsof � by sampling with the Markov hain Monte Carlo (MCMC) method. Asour model assumes that the noise is spherial Gaussian, we an also assumethat the bandwidth matrix is diagonal, so � = �I . Using MCMC is bene�ialas we want our method to be exible and the sampling algorithm used an beapplied to data of any dimension so we an determine reliable estimates for thebandwidth whatever the value of m is.The method utilises the Kullbak-Leibler (KL) information whih is a non-symmetri distane measure between two densities. The aim is to minimise thedistane from the target density f(x) to the approximated density f̂(x). TheKL information is de�ned asDKL(f; f̂�) = Z log" f(x)f̂H(x)#f(x)dx (32)= Z log f(x)f(x)dx � Z log f̂�(x)f(x)dx; (33)9
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PSfrag replaements x t(b) Randomly shu�ed x values of theLorentz seriesFigure 3: The x value of the Lorentz series alulated for 1000 iterations andthe same values in a random order to remove any time orrelation.whih is nonnegative. As the �rst term in Equation 33 is onstant and we donot know the target density, the minimisation of DKL(f; f̂�) is the equivalent tothe maximisation of R log f̂�(x)f(x)dx. Using a kernel approximation, K�(y)this an be written asÊ log[f̂�℄ = nXi=1 log f̂�(xi) = nXi=1 log" 1n nXj=1K�(xi � xj)#: (34)As the maximisation of this diretly leads to a bandwidth matrix of zeros,a leave-one-out ross validation estimator f̂�;i(xi) must be used for the ostfuntion in the MCMC method. We start by de�ningf̂�;i(xi) = 1n� 1 nXj=1j 6=i j�I j� 12K�[�I ℄� 12 (xi � xj)�: (35)This forms the likelihood, L(x1;x2; : : : ;xnj�). However, as we are using aBayesian approah we need to �x a prior over �, whih in our ase is�(�k ; i) / 11 + ��2k ; (36)for k = 1; 2; : : : ;m and where � is a hyperparameter ontrolling the shape of theprior density. Therefore, from Bayes theorem, the posterior (up to a normalisingonstant) is given as�(�jx1;x2; : : : ;xn) / " mYk=1 11 + ��2k # nYi=1 f̂�;i(xi): (37)10
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Figure 4: The new entropy measure alulated for the Lorentz series (blue) andthe random ordered series (blak) for inreasing noise variane. The bandwidthis alulated separately for eah noise value with the Bayesian MCMC approah.We sample from this distribution using the Metropolis-Hastings algorithm im-plemented in Netlab [7℄. The mean of these samples gives us the estimator forthe optimal bandwidth.Figure 2 shows a omparison of the Bayesian method the normal referenerule whih is a method of hoosing the optimal bandwidth for Gaussian targetdistributions. The Bayesian method is very lose to the optimal bandwidthsuggested by the normal referene rule and shows its usefulness in determiningthe bandwidth. For distributions that are non-Gaussian, the referene rule is ofno use but the Bayesian method still determines a good approximation of theoptimal bandwidth.5 Evaluation5.1 ExperimentsBoth the kernel entropy and the sample entropy were alulated for the twoseries shown in Figure 3, the x value of the Lorentz series and the same serieswith the order randomly shu�ed to destroy any time orrelation.Figure 4 shows the result of the new entropy measure alulated for theLorentz series and the same values randomly reordered. As the noise level is11
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Figure 5: The entropy values for the sample entropy (red) and the kernel entropy(blue) for the Lorentz series with inreasing noise.inreased, the regularity of the series dereases and therefore the entropy valueapproahes that of the randomly ordered series. The slight utuations thatan be seen in the urve are due to the bandwidth being hosen by the Bayesianmethod as that is based on a stohasti approah and suh small irregularitiesare to be expeted.As omparison of the two entropy measures with arbitrary window widthvalues is meaningless due to the di�erenes inherent in the two di�erent kernels,we ompared a wide range of the values for the series with inreasing additivewhite noise.This is no real drawbak as the statisti is still valid regardless of the saleand the senario an be avoided with orret seletion of � suh as with theBayesian method.5.2 DisussionThe �rst thing to notie is that when the kernel size is very small, both statistisbehave in an unusual manner as Figure 5 shows. The sample entropy urve isvery errati, due to the small number of mathes as the tolerane r is partiularlylow. In ontrast, the new entropy urve is smooth but it does start in a negativevalue, something whih is impossible using SampEn. This is beause for a small�, and low noise, the system is highly ordered and as points are so lose to eahother, a small utuation in their proximity (aused by sampling rate or some12
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