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Graphical models provide a powerful framework for modelling statistical dependencies between
variables [1]. Message passing techniques are typically used for inference in graphical models that can
be represented by a sparse graph. Iterative message passing is guaranteed to converge to the globally
correct estimate when the system is tree-like; there are no such guarantees for systems with loops.

Two inherent limitations seem to prevent the use of message passing techniques in densely con-
nected systems: 1) Their high connectivity implies an exponentially growing computational cost. 2)
The existence of an exponential number of loops that render the method inconsistent. However, a new
approach was suggested [2] for extending Belief Propagation (BP) techniques to densely connected
systems. In this approach, messages are grouped together, giving rise to macroscopic random variables
drawn from a different Gaussian distribution of varying mean and variance for each of the nodes.

In a separate development [3], BP was extended to Survey Propagation (SP). This new algorithm
has succeeded in solving hard computational problems [3], far beyond other existing approaches.

Inspired by the extension of BP to SP we have extended the approach of [2], designed for inference
in densely connected systems, in a similar manner by including an average over multiple pure states.
However, for highlighting the advantages with respect to the original method [2], we apply it to the
problem of signal detection in CDMA.

Code Division Multiple Access [4] is based on spreading the signal by using K individual random
binary spreading codes of spreading factor N . We consider the large-system limit N → ∞, K → ∞
with β = K/N ∼ O(1). The received aggregated, modulated and corrupted signal is of the form:

yµ =
1√
N

K∑

k=1

sµkbk + σ0nµ

where bk is the bit transmitted by user k, sµk is the binary spreading chip value, nµ is the Gaussian noise
variable drawn from N (0, 1), and yµ the received message. The goal is to get an accurate estimate of
the vector b for all users given the received message vector y by approximating the posterior P (b|y).

A solution can be obtained by averaging over the various solutions, inferred from the same data, in
a similar manner to the SP approach. Meanwhile, the messages in the current case are more complex.

Using Bayes rule one obtains the BP equations:

P t+1(yµ|bk, {yν 6=µ}) ∝
∑

bl6=k

P (yµ|B)
∏

l 6=k

P t (bl| {yν 6=µ})

P t (bl| {yν 6=µ}) ∝
∏

ν 6=µ

P t (yν |bl , {yσ 6=ν}) . (1)

An explicit expression for the likelihood is required for deriving the posterior

P (B |y) =

∏N
µ=1

P (yµ |B)

Tr{B}
∏N

µ=1
P (yµ |B)

. (2)

The latter is derived from the noise model (assuming zero mean and variance σ2)

P (yµ |B) =
1√

2πσ2
exp

{

−(yµ − ∆µ)T I (yµ − ∆µ)

2σ2

}

, (3)

where yµ = yµu, uT ≡
n︷ ︸︸ ︷

(1, 1, · · · , 1) and ∆µ ≡ 1√
N

∑K
k=1

sµkbk. Understanding the correlation between

the replicated solutions is at the heart of the new approach. An explicit expression for the statistical
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dependence between solutions is required for obtaining a closed set of update equations. We assume
a dependence of the form

P t (bk | {yν 6=µ}) ∝ exp




ht
µk

n∑

a=1

ba
k +

1

2n
gt
µk

(
n∑

a=1

ba
k

)2



 , (4)

Using Eqs.(1), one can then calculate the expected value of ba
k

m̂t+1

µk =
(
σ2+β

(
1−Qt

)
+βRt

)−1

(
yµsµ√

N
− β (Pµ−I/K)mt

µ

)

k

(5)

mt
µk = tanh




∑

ν 6=µ

artanh
(
m̂t

νk

)


 mt
k ≃ tanh




N∑

µ=1

m̂t
µk



 (6)

where Pµ ≡ (1/K)sµksµl , I ≡ δkl, mt
µk are the messages at time t from b nodes to y nodes and m̂t

µk

are the messages at time t from y nodes to b nodes, respectively. The variables Qt and Rt are related
to the diagonal and off-diagonal elements of the covariance matrix of the macroscopic messages ∆µ.

The main difference between equation (5) and the equivalent equation in [2] is the emergence of an
extra term in the prefactor, βRt, reflecting correlations between different solutions groups (replica).
This extra degree of freedom can be used to minimise the bit error probability at each time step.
The bit error probability is the mean value of the discrepancy between the true bits sent (bk) and
the estimates (sgn

(
mt

k

)
). When the bit error probability is optimised with respect to Rt one obtains

straightforwardly that Rt =(σ2
0−σ2)/β. If the noise estimate is identical to the true noise, the term

vanishes and one retrieves the expression of [2]; otherwise, an estimate of the difference between the
two noise values is required for computing the prefactor of Eq. (5). Using the received signal to
calculate the variance of the noise we can rewrite the update equation for m̂µk, equation (5), as

m̂t+1

µk =





1

N

N∑

µ=1

y2
µ − βQt






−1(
yµsµ√

N
− β

(
Pµ − K−1

I
)

mt
µ

)

k

(7)

where no estimate on σ0 is required.
This transforms the inference algorithm into a highly practical technique as it obviates the need

for a prior belief of the noise level. The inference algorithm merely requires an iterative update of
equations (7,6) and converges to a reliable estimate of the signal. The computational complexity of
the algorithm is of O(NK2) (reducing back to O(K2) once the noise has been estimated).

To test the performance of our algorithm we studied the CDMA signal detection problem under
typical conditions. Error probability of the inferred signals has been calculated for a system load
β = 0.25, where the true noise level is σ2

0 = 0.25 and the estimated value is σ2 = 0.01, as shown in
Figure 1(a). In this scenario we expect the original algorithm [2] to fail due to the discrepancy between
the two noise levels. The solid line represents the expected theoretical results, knowing the exact values
of σ2

0 and σ2, while circles represent simulation results obtained via the suggested practical algorithm,
where no such knowledge is assumed. The results presented are based on 105 trials per point and a
system size N =2000 and are superior to those obtained using the original algorithm [2].

Another performance measure one should consider is Dt ≡ 1

K

∣∣mt − mt−1
∣∣2. It provides an indica-

tion to the stability of the solutions obtained. In the inset of Figure 1(a) we see that results obtained
using our algorithm show convergence to a reliable single solution in stark contrast to the results
obtained by the original algorithm [2]. The physical interpretation of the difference between the two
results is related to a replica symmetry breaking phenomena.

To analyse the critical properties of the system we studied the asymptotic regime of the error
per bit probability Pb, for different values of σ2

0 (Figure 1(b)). For low values of the noise variance
and large values of β, Pb is a decreasing function of β−1. For a given value of βC

(
σ2

0

)
there is a
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Figure 1: (a) Error probability of the inferred solution as a function of time. The system load β=0.25,
true and estimated noise levels σ2

0 =0.25 and σ2 =0.01, respectively. Squares represent results obtained
by the original algorithm [2], solid line the dynamics obtained from our equations; circles represent
results obtained from the suggested practical algorithm. Variances are smaller than the symbol size.
In the insetset we present the measure of convergence D of the obtained solutions, as a function of
time. (b) Error probability as a function of β−1 for several values of σ2

0. Below σ2
0 ≃ 0.15 all curves

are discontinuous for a critical value β−1

C . The number of iterrations needed to reach the steady state
at the criticality diverges, as it is shown in the inset (I) for σ2

0 = 0.1. For values of σ2
0 > 0.15 all curves

are analytical. The critical points
(
β−1

c , σ2
0

)
are presented in the inset (II).

discontinuity in Pb. At this point, the number of iterations needed to reach the steady state diverges
(Figure 1(b), inset (I)). There is a last value of σ2

0 ≃ 0.15 for which there is a non-analytical point in
Pb. At this value of the noise parameter, Pb becomes a continuous curve with a singularity in its first
derivative. The critical points

(
β−1

C , σ2
0

)
are presented in the inset (II) of the Figure 1(b).
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