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Abstract. – An improved inference method for densely connected systems is presented. The
approach is based on passing condensed messages between variables, representing macroscopic
averages of microscopic messages. We extend previous work that showed promising results in
cases where the solution space is contiguous to cases where fragmentation occurs. We apply
the method to the signal detection problem of Code Division Multiple Access (CDMA) for
demonstrating its potential. A highly efficient practical algorithm is also derived on the basis
of insight gained from the analysis.

Graphical models (Bayes belief networks) provide a powerful framework for modelling
statistical dependencies between variables [1–3]. They play an essential role in devising a
principled probabilistic framework for inference in a broad range of applications from medical
expert systems to decoders in telecommunication systems.

Message passing techniques are typically used for inference in graphical models that can be
represented by a sparse graph. They are aimed at obtaining posterior-based estimates of the
system’s variables by iteratively passing messages (locally calculated conditional probabilities)
between variables. Iterative message passing of this type is guaranteed to converge to the
globally correct estimate when the system is tree-like; there are no such guarantees for systems
with loops, although message passing techniques have been successfully used in loopy systems.
A clear link has been established between certain message passing algorithms and well-known
methods of statistical mechanics [4] such as the Bethe approximation [5, 6].

Two inherent limitations seem to prevent the use of message passing techniques in densely
connected systems: 1) Their high connectivity implies an exponentially growing computational
cost. 2) The existence of an exponential number of loops that render the method inconsistent.
However, an exciting new approach was recently suggested [7] for extending Belief Propa-
gation (BP) techniques [1–3] to densely connected systems. In this approach, messages are
grouped together, giving rise to macroscopic random variables drawn from a different Gaus-
sian distribution of varying mean and variance for each of the nodes. The technique has been
successfully applied to signal detection in Code Division Multiple Access (CDMA) problems
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Fig. 1 – (a) Signal detection in CDMA. (b) Replicated solutions B=(b1, b2, . . . , bK) for given data.

and the results reported are competitive with those of other state-of-the-art techniques. How-
ever, the current approach shows some inherent limitations [7], presumably of a similar nature
to those of the replica-symmetric solution in equivalent Ising spin models [8, 9].

In a separate recent development [10], the replica-symmetric-equivalent BP was extended
to Survey Propagation (SP), which corresponds to one-step replica symmetry breaking in
diluted systems. This new algorithm, motivated by a theoretical physics interpretation of the
space of solutions, has been highly successful in solving hard computational problems [10],
far beyond other existing approaches. In addition, it has facilitated theoretical studies of the
corresponding physical system and has contributed to our understanding of it [11].

Inspired by the extension of BP to SP we have extended the approach of [7], designed
for inference in densely connected systems, in a similar manner by including an average over
multiple pure states. In this letter we outline the derivation of this extension, which is general
and can be applied to a broad range of inference problems. However, for giving a specific
example and for highlighting the advantages with respect to the original method [7], we apply
it to the problem of signal detection in CDMA and devise a practical algorithm based on
insight gained from the analysis. Other applications will be presented elsewhere.

Multiple access communication refers to the transmission of multiple messages to a single
receiver. The scenario we study here is that of K users transmitting independent messages
over an additive white Gaussian noise (AWGN) channel of zero mean and variance σ2

0 . Various
methods are in place for separating the messages, in particular Time, Frequency and Code
Division Multiple Access [12]. The latter, is based on spreading the signal by using K indi-
vidual random binary spreading codes of spreading factor N . We consider the large-system
limit, in which the number of users K tends to infinity while the system load β ≡ K/N is kept
to be O(1). We focus on a CDMA system using binary phase shift keying (BPSK) symbols,
shown schematically in fig. 1(a), where signals are modulated (spread) using K random binary
modulation sequences, and will assume the power to be completely controlled to unit energy.
The received aggregated, modulated and corrupted signal is of the form

yµ =
1√
N

K∑
k=1

sµkbk + σ0nµ ,

where bk is the bit transmitted by user k, sµk is the binary spreading chip value, nµ is the
Gaussian noise variable drawn from N (0, 1), and yµ the received message. The goal is to
get an accurate estimate of the vector b for all users given the received message vector y by
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approximating the posterior P (b|y). A method for obtaining a good estimate of the posterior
probability in the case where the noise level is accurately known was presented in [7]. However,
the derivation is based on inferring a single set of system variables in the presence of multiple
solutions and is therefore bound to fail, as has been observed, when the solution space becomes
fragmented. This occurs, for instance, when the noise level is unknown.

The reason for the failure in this case can be qualitatively understood by the same ar-
guments as in the case of sparse graphs. The existence of competing solutions gives rise to
conflicting messages that prevent the algorithm from converging to an accurate estimate. An
improved solution can be obtained by averaging over the various solutions, inferred from the
same data, in a similar manner to the SP approach. The main difference is that the messages
in the current case are more complex.

Figure 1(b) shows the CDMA signal detection problem we aim to solve as a bipartite graph
where B = (b1, b2, . . . , bK) the set of binary vectors, bk = (b1k, b

2
k, . . . , b

n
k ), where n is the

solution (replica) index. Using Bayes rule one obtains the BP equations:

P t+1(yµ|bk, {yν �=µ}) = ât+1
µk

∑
bl �=k

P (yµ|B)
∏
l �=k

P t (bl| {yν �=µ}) ,

P t (bl| {yν �=µ}) = at
µk

∏
ν �=µ

P t (yν |bl , {yσ �=ν}) , (1)

where ât+1
µk and at

µk are normalization constants. An explicit expression for the likelihood is
required for deriving the posterior

P (B |y) =
∏N

µ=1 P (yµ |B)
Tr{B}

∏N
µ=1 P (yµ |B)

. (2)

The latter is derived from the noise model (assuming zero mean and variance σ2)

P (yµ |B) = 1√
2πσ2

exp

[
− (yµ − ∆µ)

T
I (yµ − ∆µ)

2σ2

]
, (3)

where yµ = yµu, uT ≡
n︷ ︸︸ ︷

(1, 1, · · · , 1) and ∆µ ≡ 1√
N

∑K
k=1 sµkbk. Understanding the cor-

relation between the replicated solutions is at the heart of the new approach. An explicit
expression for the statistical dependence between solutions is required for obtaining a closed
set of update equations. We assume a dependence of the form

P t (bk | {yν �=µ}) ∝ exp
[
htT

µk bk +
1
2
bT

k Qt
µk bk

]
, (4)

where ht
µk is a vector representing an external field and Qt

µk the matrix of cross-replica
interaction. Furthermore, we assume the following symmetry between replica:(

Qt
µk

)ab = δ ab qt
µk +

(
1− δ ab

)
pt

µk ,

ht
µk = ht

µku. (5)

An explicit expression for eq. (4) immediately follows.
We expect the free energy to be self-averaging and obtain the scaling behavior of the various

parameters: h, q0∼O(1), p0, σ
2
q ∼O(n−1), and σ2

p ∼O(n−3). These will be instrumental later
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on for expanding expressions to leading order. More specifically, in the remainder of the paper
we will rescale the off-diagonal elements of Qt

µk to gt
µk/n, where gt

µk∼O(1). The marginalized
posterior at time (iteration step) t takes the form

P t(bk| {yν �=µ}) =

∫∞
−∞ dx exp

[
−n

(x−ht
µk)

2

2gt
µk

+x
∑n

a=1b
a
k

]
2n
∫∞
−∞ dx exp

[
−nΦ

(
x; ht

µk, g
t
µk

)] ,

Φ
(
x; ht

µk, g
t
µk

)
= −

(
x− ht

µk

)2

2gt
µk

+ln (cosh(x)) . (6)

Equation (6) is similar to expressions obtained using the cavity approach (e.g., for the SK
model) in the case of 1-step replica symmetry breaking [8]; but differ both in the value assumed
for the variable n and its interpretation.

To find the dominant solutions in the case of large n, one studies the maxima of Φ(x; h, g).
The main contribution comes from a regime where gt

µk > 1 and 0 < ht
µk/g

t
µk � 1, in which

Φ(x; h, g) takes the form of an almost symmetric pair of Gaussians located at

xt
±,µk  ±xt

0,µk +
gt

µk

gt
µk +

(
xt

0,µk

)2

−
(
gt

µk

)2h
t
µk , (7)

where ±x0 are the positions of the peaks at zero field. To calculate the correlations between
replicas we expand P (yµ |B) in the large-N limit (eq. (3)), as in [7], to obtain

P (yµ |B) 
(

1√
2πσ2

)n

exp

[
− (yµ − ∆µk)

T (yµ − ∆µk)
2σ2

][
1 +

sµk√
Nσ2

(yµ − ∆µk)
T

bk

]
, (8)

where ∆µk = 1√
N

∑
l �=k sµlbl. However, to use eq. (8) for deriving an explicit update rule in

eq. (1) we need to obtain the distribution P (∆µk).
For large n, and using the marginalized distribution (6), the mean values of 〈bak〉, 〈bakbbk〉

and the corresponding covariance matrix can be obtained explicitly as functions of at
±,µk,

at
±,µk  exp

[±nmt
µkh

t
µk

]
/
[
exp

[
nmt

µkh
t
µk

]
+ exp

[−nmt
µkh

t
µk

]]
, (9)

where mt
µk≡tanh(xt

0,µk)=xt
0,µk/g

t
µk. From the previously obtained scaling behavior we define

at
±,µk up to a free parameter that will prove to be essential for deriving the new algorithm.
To calculate the Gaussian distribution P (∆µk) = N (〈∆a

µk〉,χt,ab
µk ), one uses the mean

values of 〈bak〉, 〈bakbbk〉 and the corresponding covariance matrix to obtain:〈
∆a

µk

〉
=

1√
N

∑
l �=k

sµlm
t
µl ,

(
χt

µk

)ab ≡ 〈
∆a

µk∆
b
µk

〉− 〈
∆a

µk

〉 〈
∆b

µk

〉
= δabβ

(
1−Qt

µk

)
+
(
1− δab

)
β Rt

µk , (10)

where Qt
µk and Rt

µk can be approximated using the law of large numbers as

Qt
µk ≡ 1

K

∑
l �=k

(
at
+,µk tanh

(
xt

+,µk

)
+ at

−,µk tanh
(
xt
−,µk

))2  1
K

∑
l �=k

(
mt

µk

)2
,

Rt
µk ≡ 2

K

∑
l �=k

at
+,µka

t
−,µk tanh

(
xt

+,µk

)
tanh

(
xt
−,µk

)  2
K

∑
l �=k

at
+,µka

t
−,µk

(
mt

µk

)2 ≡ 1
n
Υ t

µk .
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Having obtained the distribution P (∆µk), and using eqs. (1) and (8), one can then calculate
the expected value of bak at time t+1:

m̂t+1
µk =

(
σ2+β

(
1−Qt

µk

)
+βΥ t

µk

)−1
(
yµsµ√

N
− β (Pµ−I/K)mt

µ

)
k

, (11)

where Pµ ≡ (1/K)sµksµl and I ≡ δkl, respectively. We assume that the macroscopic variables
are self-averaging and omit the µ, k indices.

The main difference between eq. (11) and the equivalent equation in [7] is the emergence of
an extra term in the prefactor, βΥ t, reflecting correlations between different solutions groups
(replica). More importantly, there is a remaining degree of freedom in the choice of the cross-
replica covariance matrix Υ t, which one can exploit to minimize the bit error probability at
each time step. To calculate the bit error probability, one follows ref. [7] to obtain

P t
b ≡ 1

2K

K∑
k=1

(
bk − sgn

(
mt

k

))
=
∫ −Et/

√
F t

−∞
Dz (12)

with mt
k  tanh

(
N∑

µ=1

m̂t
µk

)
, (13)

where Dz≡dz exp[−z2/2]/
√
2π. We also define several macroscopic correlation measures:

M t ≡ 1
NK

N∑
µ=1

K∑
k=1

bkm
t
µk=

∫
Dz tanh

(√
F tz+Et

)
,

Qt ≡ 1
NK

N∑
µ=1

K∑
k=1

(
bkm

t
µk

)2=∫ Dz tanh2
(√

F tz+Et
)

(14)

and

Et+1 ≡ 1
K

N∑
µ=1

K∑
k=1

bkm̂
t+1
µk =

1
σ2 + β (1−Qt + Υ t)

,

F t+1 ≡
N∑

µ=1

 1
K

K∑
k=1

(
bkm̂

t+1
µk

)2

− 1
K2

(
K∑

k=1

bkm̂
t+1
µk

)2


≈ [
β
(
1− 2M t +Qt

)
+ σ2

0

] (
Et+1

)2
. (15)

Optimizing P t
b with respect to Υ t, one obtains straightforwardly that Et=F t and Qt=M t.

In principle, the optimization can be done globally [13] but is of a limited practical value.
This implies that Υ t=(σ2

0−σ2)/β is just a constant. However, it holds the key to obtaining
improved inference results and an efficient inference algorithm of significant practical value.
If the noise estimate is identical to the true noise, the term vanishes and one retrieves the
expression of [7]; otherwise, an estimate of the difference between the two noise values is
required for computing Et. Exploiting the result obtained from the optimization of (12), one
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Fig. 2 – (a) Error probability of the inferred solution as a function of time. The system load β=0.25,
true and estimated noise levels σ2

0 = 0.25 and σ2 = 0.01, respectively. Squares represent results
obtained by the original algorithm [7], the solid line the dynamics obtained from our equations;
circles represent results obtained from the suggested practical algorithm. Variances are smaller than
the symbol size. (b) The measure of convergence D of the obtained solutions, as a function of time;
symbols are as in (a).

obtains an explicit expression for Et+1 that does not depend on σ2:

Et+1  1
K

N∑
µ=1

m̂t+1
µ · m̂t+1

µ =
[

1
σ2+β (1−Qt+Υ t)

]2
[
1
N

N∑
µ=1

y2
µ−β

(
2M t−Qt

)]

=
(
Et+1

)2 [ 1
N

N∑
µ=1

y2
µ−βQt

]
=

[
1
N

N∑
µ=1

y2
µ−βQt

]−1

. (16)

This enables us to rewrite the update equation for m̂µk, eq. (11), as

m̂t+1
µk =

{
1
N

N∑
µ=1

y2
µ − βQt

}−1(
yµsµ√

N
− β

(
Pµ −K−1I

)
mt

µ

)
k

(17)

where no estimate on σ0 is required.
This transforms the inference algorithm into a highly practical technique as it obviates

the need for a prior belief of the noise level. The inference algorithm merely requires an
iterative update of eqs. (16), (17), (13) and converges to a reliable estimate of the signal. The
computational complexity of the algorithm is of O(NK2) (reducing back to O(K2) once the
noise has been estimated).

To test the performance of our algorithm we studied the CDMA signal detection problem
under typical conditions. The error probability of the inferred signals has been calculated for
a system load β = 0.25, where the true noise level is σ2

0 = 0.25 and the estimated value is
σ2 =0.01, as shown in fig. 2(a). In this scenario we expect the original algorithm [7] to fail
due to the discrepancy between the two noise levels. The solid line represents the expected
theoretical results (density evolution), knowing the exact values of σ2

0 and σ2, while circles
represent simulation results obtained via the suggested practical algorithm, where no such
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knowledge is assumed. The results presented are based on 105 trials per point and a system
size N=2000 and are superior to those obtained using the original algorithm [7].

Another performance measure one should consider is Dt ≡ 1
K |mt − mt−1|2. It provides

an indication to the stability of the solutions obtained; when the algorithm converges to a
single stable solution one would expect a vanishing D value, while fluctuating solutions will
maintain a finite D value. In fig. 2(b) we see that results obtained using our algorithm show
convergence to a reliable single solution in stark contrast to the results obtained by the original
algorithm [7]. The physical interpretation of the difference between the two results is related
to a replica-symmetry-breaking phenomenon.

In summary, we present a new algorithm for using message passing in densely connected
systems that enables one to obtain reliable solutions even when the solution space is frag-
mented. It represents an extension of an existing algorithm similar to the extension of BP to
SP. In addition, a method for estimating the true noise level emerges naturally, making the
algorithm highly relevant for practitioners. The algorithm has been tested on the signal detec-
tion problem in CDMA and has provided superior results to other existing algorithms [7](1).

Further research is required to fully determine the potential of the new approach and its
applicability for a variety of problems. Applications to other densely connected problems,
such as the Ising perceptron parameter estimation and lossy compression, are underway.
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