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ABSTRACT
Digital watermarking aims at embedding information in
digital data. The watermark is usually required to be im-
perceptible, unremovable and to have a high information
content. Unfortunately, these three requirements are con-
tradicting. For example, having a more robust watermark
makes it either more perceptible or/and less informative.
For Gaussian data and additive white Gaussian noise, an
optimal but also impractical scheme has already be devised.
Since then, many practical schemes have tried to approach
the theoretical limits. This paper investigate improvements
to current state-of-the-art embedding schemes.
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1 Introduction

Digital media have become very popular over the last
decade. The development of efficient compression algo-
rithms, such as MPEG [9], JPEG [11], or JPEG2000 [1]
has made it easy to distribute data over the Internet but has
also increased their vulnerability to illicit distribution or re-
tailing. Interest in watermarking techniques has grown sig-
nificantly in the past few years, mainly due to the need to
protect intellectual property rights of these products [4].

For Gaussian data, Costa proposed [3] a scheme
(Ideal Costa Scheme, ICS), already in 1983, which the-
oretically achieves the channel capacity. However, the
latter is impractical, and several suboptimal but practi-
cal schemes [7, 2, 10] based on Costa’s idea have been
proposed since. The current state-of-the-art embedding
method, named Scalar Costa Scheme (SCS), relies on a
structured codebook. In this paper, we investigate and dis-
cuss the performances of several structured codebooks for
SCS. One of the studied codebooks was found to be supe-
rior, in terms of capacity, to the codebook proposed by [6].

2 Watermarking Problem

Let us consider the communication problem depicted in
Fig. 1. We wish to send a messageM 2 f0; :::;m� 1g to
the receiver inn uses of the channel. The communication
channel has an original stateS known to the encoder. The
encoded messageW is determined and sent through the
channel. The decoder receivesY = S +W +N , whereN
represents the channel noise. In [8], Gel’fand and Pinsker
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Figure 1. Communication with side information.

have shown that the capacity of a memoryless channel with
random stateS known to the encoder (Fig. 1) is given byC = maxp(u;xjs) I(Y; U)� I(U; S) ; (1)

where the maximum is over all joint distributions of the
form p(s)p(u; xjs)p(yjx; s), whereU is a finite alphabet
auxiliary random variable representing the codebook used
at the encoding and decoding, andx, s andy are realisa-
tions of the random variablesX , S andY , respectively.
In [3], Costa extended this result to memoryless channels
with discrete time and continuous alphabets and derived an
explicit expression of the capacity (Eq. 3) in a particular
case. In his derivation,S andN are supposed normal i.i.d.
with respective variances�2S and�2N . Furthermore,W is
power constrained (Eq.2) with parameter�2W .1n nXi=1W 2i � �2W : (2)

The codeword used is of the formU = X + �S, where� = �2W =(�2W + �2N ). This restrictive form of the code-
word was also shown to be optimal. The derived capacityCICS of this channel cannot exceedmaxp(xjs) I(X;Y jS).
Indeed, the latter is the capacity of the channel whenS is
known to both encoder and decoder,CICS = 12 log�1 + �2W�2N � : (3)

Unfortunately, Costa’s framework as it was proposed is im-
practical. The huge random codebook involved makes it in-
feasible for typical applications because of the search cost
and memory requirements.

3 Scalar Costa scheme

Recently, many practical systems [2, 5, 10] based on an
information theoretical background have been proposed.
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Figure 2. Typical SCS embedding rule, with� = 0:6 andm = 1.

The SCS watermarking scheme [5], based on Costa’s ideal
framework, is to the best of our knowledge, state-of-the-art
in this field. It relies on a suboptimal structured codebook;
a formal definition can be found in [6]. In the following, we
shall focus on the resulting embedding rule (Eq. 5, Fig. 2).q = QIM(s;�;m) ; (4)x = (1� �)s+ �q ; (5)

QIM(s;�;m) = �
round

� s� � m4 �+ m4 �� ; (6)

wherem 2 f�1; 1g is the message to encode, QIM (Eq. 6)
is the Quantisation Index Modulation function introduced
in [2], � the quantisation step, which represents the mini-
mum distance between two bin centres encoding the same
messagem; s is the host data,q the quantised data, while� is a parameter in℄0; 1℄.

The considered codebook is therefore parametrised
by ��, which is related by Eq. 7 to a fixed embedding
distortion�W . � = �Wp12� : (7)

For this codebook, the capacity of this schemeCSCS
(Eq. 8) can be written as the maximum over� of the mutual
information between the received dataY and the messageM . CSCS = max� I(Y;M) ; (8)= H(Y )�H(Y jM) : (9)

However, in order to evaluate it, further assumptions
have to be made about the distribution of the host dataS.
The latter is assumed to be uniformly distributed over sev-
eral quantiser bins. With the introduced assumptions, the
shape of one period ofp(xjm = �1) (Fig. 3) can be easily
derived from the embedding rule (Eq. 5).p(xjm = �1) = 1�(1� �) rect

� s� q�(1� �)� ; (10)

where rect(a)=1 for jaj < 0:5.
Eggers and Girod [6] point out that this assumption is

reasonable in most of the watermarking applications, where
the host data power is much stronger than the watermark
power (�2W � �2S). This assumption may not be valid for
small� since it induces a large� (Eq. 7).

4 Other codebooks

As pointed out in [6] , the SCS codebook is suboptimal.
However, its structure makes it computationally efficient
and the provided performance is usually regarded as good.
Finding the optimal ‘practical’ codebook may be a hard
task and is still to be found. In this context, the scheme
capacities depend merely onp(xjm; s) ‘shape’. In the fol-
lowing, we investigate four embedding rules (Table 1) and
codebooks yielding to different mass density distribution
for p(xjm; s).

Embedding formula
CB1 : x = q + �2 tanh �� s�q�=2� ;
CB2 : x = q + �� arsin �� s�q�=2� ;
CB3 : x = � x ; if jx� qj < 12 (1� �) ;12 (1� �); otherwise,

CB4 : x = ( q + ��2 arsin� s�q�=2�; if jxj � jsj < 0 ;x ; otherwise.

Table 1. Embedding formula for various codebooks, plots
of the functions are represented in Fig. 4.

Motivations for these particular codebooks are found
in their simple implementation and the diversity of the
mass density distribution forp(xjm; s) given by the vari-
ous codebooks depending on the single parameter�. Of
particular interest are CB3 and CB4, which leave the host
data unchanged on non vanishing interval length for certain
values of�. While CB1 and CB2, unlike SCS, yield un-
even distribution ofp(xjm; s) density (when not null) over
the bin. Plots of the obtained p.d.f. can be found in Fig. 3.

The chosen rules are similar to the one used by SCS
in the sense that they all depends on a parameter�, related
to �, over which the mutual information betweenY andM has to be maximised in order to calculate the capacity
of the scheme. All of them are non-linear functions giving
different slope top(xjm; s) shown in Fig. 3.

One of the main advantage of SCS over previous
schemes, such as dither modulation (DM) proposed in [2],
is to allow the optimisation of� according to the WNR as
defined in Eq. 11.

WNR = 20 log10 �W�N dB : (11)

Note that this is a simplification of the maximisa-
tion defined by Eq. 1. Searching for the optimal ‘feasi-
ble’ (structured) codebook may be intractable in practice;
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Figure 3. Optimal scaledp(xjm; s), for a WNR=1 dB,
for (a) SCS with � = 0:57 and � = 11:9, (b) CB1
with � = 0:47 and � = 12:2, (c) CB2 with � = 0:63
and � = 11:7, (d) CB3 with � = 0:74 and � = 10:6,
(e) CB3 with � = 0:36 and � = 11:7. Solid lines
representp(xjm = 1; s) and dashed-dot lines representp(xjm = �1; s).
enriching the structure of the embedding function may en-
able a higher capacity, but it also makes the maximisation
more complicated. Optimal, embedding will require some
insights into the dependency between practical scheme ca-
pacities and their codebooks, that we investigate in this pa-
per.

5 Results and discussion

Figure 5 and 6 show respectively the relative performance
of different codebooks with respect to the Costa’s capacity
and with respect to the capacity of SCS. In both plots, the
ratio of the capacities are taken over a range of WNR from
-20 dB to 20 dB. The results are presented and discussed
from high WNR to low WNR in the following.

As shown by Fig. 5 and 6, for high WNR (> 5 dB),
all proposed codebooks perform similarly. In fact, they all
converge to the codebook proposed in [2] when the WNR
increases. Note that the DM encoding rule is a particular
case of SCS for� = 1.

For low WNR (< �5 dB), CB1 and CB3 have very

−0.25 0 0.25 0.5 0.75
−0.25

0

0.25

0.5

0.75

x/
∆

−0.25 0 0.25 0.5 0.75
−0.25

0

0.25

0.5

0.75

−0.25 0 0.25 0.5 0.75
−0.25

0

0.25

0.5

0.75

s/∆

x/
∆

−0.25 0 0.25 0.5 0.75
−0.25

0

0.25

0.5

0.75

s/∆

(a) (b) 

(c) (d) 

Figure 4. Typical embedding rule for one period, withm = 1, for (a) CB1 with� = 0:95, (b) CB2 with� = 0:99,
(c) CB3 with� = 0:5, (d) CB4 with� = 0:85.

poor performance compared to SCS. Both CB1 and CB3
yield probability density functions (p.d.f.) forp(xjm; s)
(Fig. 3b and 3d), which concentrate significant mass of the
p.d.f. at the edges (when P(xjm; s > 0)). We conjecture
that codebooks yielding such p.d.f. also give poor perfor-
mance in term of capacity.
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Figure 5. Relative performance of the codebooks with re-
spect to Costa scheme.

All CB2, CB4 and SCS yield p.d.f. which have high
mass around the centre of the bin. They show equivalent
performances for WNR greater than�5 dB. However, the
capacity of the scheme based on CB2 decreases signifi-
cantly at lower WNR values. The value of�, which is
typically adapted in order to keep a� large enough for
low WNR, is saturated at 1 for CB2 (Fig 7a and 7b) from
WNR=�6 dB, explaining the significant decay of CB2 per-
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Figure 6. Relative performance of the codebooks with re-
spect to SCS.

formance. Note that the saturation WNR matches the peak
of the gain of CB2 over SCS.
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Figure 7. (a) � for SCS, CB2 and CB5 for
WNR2 [�10;�5℄ dB, (b) � for SCS, CB2 and CB5 for
WNR2 [�10;�5℄ dB.

For very strong attack (WNR< �15 dB), CB4 shows
a significant improvement over SCS, the ratio of their ca-
pacities being between 1.2 and 1.4. Figure 8 shows the
optimum p.d.f. ofx givenm ands for a WNR=�12 dB for
SCS and CB4. For both, the encoding area form = �1
andm = 1 are either completely overlapping for CB4 or
nearly for SCS. From Fig. 8, one can see that the over-
lapping area for SCS are completely non informative sincep(xjm = �1) = p(xjm = 1).

The width of the informative region for SCS (Fig. 9a),
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Figure 8. Optimal scaledp(xjm; s), for a WNR=�12 dB,
for (a) SCS with� = 0:14 and� = 10:43, (b) CB2 with� = 1:00 and � = 5:75, (c) CB4 with � = 0:76 and� = 10:99. Solid lines representp(xjm = 1; s) and dot
lines representp(xjm = �1; s).
prior to the attack, is2�� for a period. CB4 has only over-
lapping areas but all are more or less informative (Fig. 9b).
Furthermore, note that unlike SCS, which spreads evenly
the allowed embedding distortion�2W over the whole range
of s, CB4 concentrates it in the area close to the centre of
the bin, while sacrificing the area near the centre of the bin
coding the opposite message.

The CB4 based scheme performs better than SCS on
overall and should be preferred for most applications.

6 Conclusion

Proposed by Eggers and Girod [6], the SCS watermark-
ing scheme uses an embedding rule which is linear in each
coding bin. Though not optimal, SCS provides good per-
formance and relies on optimising the embedding parame-
ter to best resist a given attack strength. In this sense, it is
much more efficient than the widely used DM embedding,
since the latter can be considered as a SCS watermarking
scheme with a fixed embedding parameter. Modifying the
embedding function, and thus changing the corresponding
codebook, can lead to further performance improvement,
as shown in section 5. These experiments can be extended
towards modelling of an optimal embedding rule with re-
spect to different types of attacks.
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Figure 9. jp(xjm = �1; s)� p(xjm = 1; s)j for
WNR=�12 dB, (a) SCS,� = 0:14, � = 10:43, (b)
CB4,� = 0:76, � = 10:99.

A Codebook characteristics.

In Tab. 2, relation between� and� for a given embedding
distortion�W , and p(xjm; s) of the studied codebook are
reported.
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