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Abstract

We consider the problem of illusory or artefactual structure from the vi-
sualisation of high-dimensional structureless data. In particular we ex-
amine the role of the distance metric in the use of topographic mappings
based on the statistical field of multidimensional scaling.We show that
the use of a squared Euclidean metric (i.e. the SSTRESSmeasure) gives
rise to an annular structure when the input data is drawn froma high-
dimensional isotropic distribution, and we provide a theoretical justifica-
tion for this observation.

1 Introduction

The discovery of meaningful patterns and relationships from large amounts of multivariate
data is a significant and challenging problem with close tiesto the fields of pattern recog-
nition and machine learning, and important applications inthe areas of data mining and
knowledge discovery in databases (KDD).

For many real-world high-dimensional data sets (such as collections of images, or multi-
channel recordings of biomedical signals) there will generally be strong correlations be-
tween neighbouring observations, and thus we expect that the data will lie on a lower
dimensional (possibly nonlinear) manifold embedded in theoriginal data space. One ap-
proach to the aforementioned problem then is to find afaithful1 representation of the data in
a lower dimensional space. Typically this space is chosen tobe two- or three-dimensional,
thus facilitating the visualisation and exploratory analysis of the intrinsic low-dimensional
structure in the data (which would otherwise be masked by thedimensionality of the data
space).

In this context then, an effective dimensionality reduction algorithm should seek to extract
the underlying relationships in the data with minimum loss of information. Conversely, any
interesting patterns which are present in the visualisation space should be representative of
similar patterns in the original data space, and notartefacts of the dimensionality reduction
process.

1By “faithful” we mean that the underlying geometric structure in the data space, which charac-
terises the informative relationships in the data, is preserved in the visualisation space.
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Although much effort has been focused on the former problem of optimal structure elu-
cidation (see [7, 10] for recent approaches to dimensionality reduction), comparatively
little work has been undertaken on the latter (and equally important) problem of artefactual
structure. This shortcoming was recently highlighted in a controversial example of the ap-
plication of visualisation techniques to neuroanatomicalconnectivity data derived from the
primate visual cortex [12, 9, 13, 3].

In this paper we attempt to redress the balance by considering the visualisation of high-
dimensionalstructureless data through the use of topographic mappings based on the sta-
tistical field of multidimensional scaling (MDS). This is animportant class of mappings
which have recently been brought into the neural network domain [5], and have significant
connections to modern kernel-based algorithms such as kernel PCA [11].

The organisation of the remainder of this paper is as follows: In section 2 we introduce
the technique of multidimensional scaling and relate this to the field of topographic map-
pings. In section 3 we show how under certain conditions suchmappings can give rise to
artefactual structure. A theoretical analysis of this effect is then presented in section 4.

2 Multidimensional Scaling and Topographic Mappings

The visualisation of experimental data which is characterised by pairwise proximity val-
ues is a common problem in areas such as psychology, molecular biology and linguistics.
Multidimensional scaling (MDS) is a statistical techniquewhich can be used to construct
a spatial configuration ofn points in a (typically) two- or three-dimensional space given a
matrix of pairwise proximity values betweenn objects. The proximity matrix provides a
measure of thesimilarity or dissimilarity between the objects, and the geometric layout of
the resulting MDS configuration reflects the relationships between the objects as defined by
this matrix. In this way the information contained within the proximity matrix can be cap-
tured by a more succinctspatial model which aids visualisation of the data and improves
understanding of the processes that generated it.

In many situations, the raw dissimilarities will not be representative of actual inter-point
distances between the objects, and thus will not be suitablefor embedding in a low-
dimensional space. In this case the dissimilarities can be transformed into a set of values
more suitable for embedding through the use of an appropriate transformation:

δ̂ij = f(δij)

wheref represents the transformation function andδ̂ij are the resulting transformed dis-
similarities (which are termed “disparities”). The aim of metric MDS then is that the trans-
formed dissimilaritieŝδij should correspond as closely as possible to the inter-pointdis-
tancesdij in the resulting configuration2.

Metric MDS can be formulated as a continuous optimisation problem through the definition
of an appropriate error function. In particular,least squares scaling algorithms directly seek
to minimise the sum-of-squares error between the disparities and the inter-point distances.
This error, or STRESS3 measure, is given by:

STRESS=
1

∑

i,j δ̂ 2

ij

∑

i

∑

j>i

wij

(

δ̂ij − dij

)2

(1)

2This is in contrast to nonmetric MDS which requires that only theordering of the disparities
corresponds to the ordering of the inter-point distances (and thus that the disparities are some arbitrary
monotonically increasing function of the distances).

3STRESSis an acronym for STandard REsidual Sum of Squares.



where the term1/
∑

i,j δ̂ 2

ij is a normalising constant which reduces the sensitivity of the
measure to the number of points and the scaling of the disparities, and thewij are the
weighting factors. It is straightforward to differentiatethis STRESSmeasure with respect
to the configuration pointsyi and minimise the error through the use of standard nonlinear
optimisation techniques.

An alternative and commonly used error function, which is referred to as SSTRESS, is given
by:

SSTRESS=
1

∑

i,j δ̂ 2

ij

∑

i

∑

j>i

(

δ̂ 2

ij − d 2

ij

)2

(2)

which represents the sum-of-squares error betweensquared disparities andsquared dis-
tances. The primary advantage of the SSTRESSmeasure is that it can be efficiently min-
imised through the use of an alternating least squares procedure4 [1].

Closely related to the field of Metric MDS is Sammon’s mapping[8], which takes as its
input a set ofhigh-dimensional vectors and seeks to produce a set of lower dimensional
vectors such that the following error measure is minimised:

Esammon =
1

∑

i,j d∗ij

∑

i

∑

j>i

(d∗ij − dij)
2

d∗ij
(3)

where thed∗ij are the inter-point Euclidean distances in the data space:d∗ij = ‖xi − xj ‖,
and thedij are the corresponding inter-point Euclidean distances in the feature or map
space:dij = ‖yi − yj ‖.

Ignoring the normalising constant, Sammon’s mapping is thus equivalent to least squares
metric MDS with the disparities taken to be the raw inter-point distances in the data space
and the weighting factors given bywij = 1/d∗ij . Lowe (1993) termed such a mapping
based on the minimisation of an error measure of the form

∑

i,j(d
∗
ij − dij)

2 a topographic
mapping, since this constraint “optimally preserves the geometricstructure in the data” [5].

Interestingly the choice of the STRESSor SSTRESSmeasure in MDS has a more natural
interpretation when viewed within the framework of Sammon’s mapping. In particular,
STRESScorresponds to the use of the standard Euclidean distance metric whereas SSTRESS
corresponds to the use of thesquared Euclidean distance metric. In the next section we
show that this choice of metric can lead to markedly different results when the input data
is sampled from a high-dimensional isotropic distribution.

3 Emergence of Artefactual Structure

In order to investigate the problem of artefactual structure we consider the visualisation of
high-dimensional structureless data (where we use the term“structureless” to indicate that
the data density is equal in all directions from the mean and varies only gradually in any
direction). Such data can be generated by sampling from anisotropic distribution (such as
a spherical Gaussian), which is characterised by a covariance matrix that is proportional to
the identity matrix, and a skewness of zero.

We created four structureless data sets by randomly sampling 1000 i.i.d. points from unit
hypercubes of dimensionsp = 5, 10, 30 and 100. For each data set, we generated a pair

4The SSTRESSmeasure now forms the basis of the ALSCAL implementation of MDS, which is
included as part of the SPSS software package for statistical data analysis.
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Figure 1: Final map configurations produced by STRESSmappings of data uniformly ran-
domly distributed in unit hypercubes of dimensionp.

of 2-D configurations by minimising5 STRESSand SSTRESSerror measures of the form
∑

i,j(d
∗
ij − dij)

2 and
∑

i,j(d
∗2

ij − d 2

ij)
2 respectively. The process was repeated fifty times

(for each individual error function and data set) using different initial configurations of the
map points, and the configuration with the lowest final error was retained.

As previously noted, the choice of the STRESSor SSTRESSerror measure is best viewed
as a choice of distance metric, where STRESScorresponds to the standard Euclidean metric
and SSTRESScorresponds to thesquared Euclidean metric. Figure 1 shows the resulting
configurations from the STRESSmappings. It is clear that each configuration has captured
the isotropic nature of the associated data set, and there are no spurious patterns or clusters
evident in the final visualisation plots.
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Figure 2: Final map configurations produced by SSTRESS mappings of data uniformly
randomly distributed in unit hypercubes of dimensionp.

Figure 2 shows the resulting configurations from the SSTRESSmappings. The configura-
tions exhibit significant artefactual structure, which is characterised by a tendency for the
map points to cluster in a circular fashion. Furthermore, the degree of clustering increases
with increasing dimensionality of the data spacep (and is clearly evident forp as low as
10).

Although the tendency for SSTRESSconfigurations to cluster in a circular fashion has been
noted in the MDS literature [2], the connection between artefactual structure and the choice
of distance metric has not been made. Indeed, in the next section we show analytically that
the use of the squared Euclidean metric leads to a globally optimal solution corresponding
to an annular structure.

To date, the most significant work on this problem is that of Klock and Buhmann [4], who
proposed a novel transformation of the dissimilarities (i.e. the squared inter-point distances

5We used a conjugate gradients optimisation algorithm.



in the data space) such that “the final disparities are more suitable for Euclidean embed-
ding”. However this transformation assumes that the input data are drawn from a spherical
Gaussian distribution6, which is inappropriate for most real-world data sets of interest.

4 Theoretical Analysis of Artefactual Structure

In this section we present a theoretical analysis of the artefactual structure problem. Aq
dimensional map configuration is considered to be the resultof a SSTRESSmapping of a
data set ofN i.i.d. points drawn from ap dimensional isotropic distribution (wherep ≫ q).
The set of data points is given by theN x p matrix X = (x1,x2, . . . ,xN )T and similarly
the set of map points is given by theN x q matrixY = (y1,y2, . . . ,yN )T.

We begin by defining the derivative of the SSTRESSerror measureE =
∑

i,j(d
∗2

ij − d 2

ij)
2

with respect to a particular map vectoryi:

∂E

∂yi

= −4
∑

j 6=i

(d ∗2

ij − d 2

ij) (yi − yj) (4)

The inter-point distancesd ∗2

ij andd 2

ij are given by:

d ∗2

ij = ‖xi − xj ‖
2 = (xi − xj)

T(xi − xj) = xT
ixi + xT

jxj − 2 xT
ixj

d 2

ij = ‖yi − yj ‖
2 = (yi − yj)

T(yi − yj) = yT
iyi + yT

jyj − 2 yT
iyj

Equation (4) can therefore be expanded to:

∂E

∂yi

= − 4
∑

j 6=i

(xT
ixi − yT

iyi) (yi − yj) − 4
∑

j 6=i

(

xT
jxj − yT

jyj

)

(yi − yj)

− 8
∑

j 6=i

(yT
iyj)yi + 8

∑

j 6=i

(xT
ixj)yi + 8

∑

j 6=i

(yT
iyj)yj − 8

∑

j 6=i

(xT
ixj)yj

We can immediately simplify some of these terms as follows:
∑

j 6=i

(yT
iyj)yi =

∑

j 6=i

yi (yT
iyj) =yiy

T
i

∑

j 6=i

yj

∑

j 6=i

(xT
ixj)yi =

∑

j 6=i

yi (xT
ixj) =yix

T
i

∑

j 6=i

xj

∑

j 6=i

(yT
iyj)yj =

∑

j 6=i

yj

(

yT
jyi

)

=
∑

j 6=i

(

yjy
T
j

)

yi

∑

j 6=i

(xT
ixj)yj =

∑

j 6=i

yj

(

xT
jxi

)

=
∑

j 6=i

(

yjx
T
j

)

xi

Thus at a stationary point of the error (i.e.∂E
∂yi

= 0), we have:

(xT
ixi − yT

iyi)



yi −
1

N − 1

∑

j 6=i

yj



+
1

N − 1

∑

j 6=i

(

xT
jxj − yT

jyj

)

(yi − yj)

6In this case the squared inter-point distances will follow aχ
2 distribution.



=
2

N − 1



yix
T
i

∑

j 6=i

xj − yiy
T
i

∑

j 6=i

yj +
∑

j 6=i

(

yjy
T
j

)

yi −
∑

j 6=i

(

yjx
T
j

)

xi



 (5)

Since the errorE is a function of the inter-point distances only, we can centre both the data
points and the map points on the origin without loss of generality. For largeN we have:

1

N − 1

∑

j 6=i

yj ≈ 0q,1

1

N − 1

∑

j 6=i

xj ≈ 0p,1

1

N − 1

∑

j 6=i

yjy
T
j ≈ ΣY

1

N − 1

∑

j 6=i

yjx
T
j ≈ ΣYX

1

N − 1

∑

j 6=i

yT
jyj ≈ tr{ΣY}

1

N − 1

∑

j 6=i

xT
jxj ≈ tr{ΣX}

where0m,n is them x n zero matrix,ΣY is the covariance matrix of the map vectors,ΣYX

is the covariance matrix of the map vectors and the data vectors, and tr{·} is the matrix
trace operator.

Thus equation (5) reduces to:

(xT
ixi − yT

iyi)yi +
1

N − 1

∑

j 6=i

(

yT
jyj

)

yj −
1

N − 1

∑

j 6=i

(

xT
jxj

)

yj

= 2ΣYyi − 2ΣYX xi + (tr{ΣY} − tr{ΣX})yi (6)

This represents a general expression for the value of the mapvectoryi at a stationary point
of the SSTRESSerror,regardless of the nature of the input data distribution. However we
are interested in the case where the input data is drawn from ahigh-dimensionalisotropic
distribution.

If the data space is isotropic then a stationary point of the error will correspond to a similarly
isotropic map space7. Thus, at a stationary point, we have for largeN :

ΣY ≈ σ2

yIq

ΣYX ≈ 0q,p

tr{ΣY} − tr{ΣX} ≈ q σ2

y − p σ2

x

whereIq is theq x q identity matrix, andσ2

y andσ2

x are the variances in the map space and
the data space respectively.

Finally, consider the expression:

1

N − 1

∑

j 6=i

(

yT
jyj

)

yj −
1

N − 1

∑

j 6=i

(

xT
jxj

)

yj

The first term is the third order moment, which is zero for an isotropic distribution [6]. For
high-dimensional data (i.e. largep) the second term can be simplified to:

1

N − 1

∑

j 6=i

(

xT
jxj

)

yj =
p

N − 1

∑

j 6=i

(

1

p

p
∑

k=1

x2

jk

)

yj ≈
p σ2

x

N − 1

∑

j 6=i

yj ≈ 0q,1 (7)

7This is true regardless of the initial distribution of the map points, although a highly non-uniform
initial configuration would take significantly longer to reach a local minimum ofthe error function.



Thus the equation governing the stationary points of the SSTRESSerror is given by:
(

xT
ixi − yT

iyi + p σ2

x − (q + 2)σ2

y

)

yi = 0q,1

At the minimum error configuration, we have:
xT

ixi − yT
iyi + p σ2

x − (q + 2)σ2

y = 0

Summing over all pointsi, gives:
N
∑

i=1

(

xT
ixi − yT

iyi + p σ2

x − (q + 2)σ2

y

)

= 0

∴

1

N

N
∑

i=1

xT
ixi −

1

N

N
∑

i=1

yT
iyi + p σ2

x − (q + 2)σ2

y = 0

∴ tr{ΣX} − tr{ΣY} + p σ2

x − (q + 2)σ2

y = 0

∴ σ2

y =
p

q + 1
σ2

x (8)

Thus, for largep, the variance of the map points is related to the variance of the data points
by a factor of p

q+1
. Table 1 shows the values of the observed and predicted map variances

for 1000 data points sampled randomly from uniform distributions in the interval[0, 1]p

(i.e. σ2

x = 0.083) of dimensionsp = 5, 10, 30, and 100. Clearly as the dimension of the
data spacep increases, so too does the accuracy of the approximation given by equation (7),
and therefore the accuracy of equation (8).

Dimensionp Number of pointsN σ2

y observed σ2

y predicted Percentage error
5 1000 0.166 0.139 16.4%
10 1000 0.303 0.278 8.1%
30 1000 0.864 0.835 3.4%
100 1000 2.823 2.783 1.4%

Table 1: A comparison of the predicted and observed map variances.

We can show that this mismatch in variances in the two spaces results in the map points
clustering in a circular fashion by considering the expected squared distance of the map
points from the origin (i.e. the expectedsquared radius R2 of the annulus):

E{R2} =
1

N

N
∑

i=1

yT
iyi = q σ2

y =
p q

q + 1
σ2

x (9)

In addition we can derive an analytic expression forE{R4}. For simplicity, consider a
two-dimensional map spacey = (y1, y2)

T. Then we have:

E{R4} = E{y4
1 + 2y2

1y2
2 + y4

2}

= E{y4
1} + 2 E{y2

1}E{y
2
2} + E{y4

2}

= 4σ4

y (10)

where the expectation overy2
1y2

2 separates sincey2
1 andy2

2 will be uncorrelated due to the
isotropic nature ofy. In general for aq-dimensional map space we have thatE{R4} =
q2 σ4

y. Thus thevariance of R2 is given by:

V ar(R2) = E{R4} − (E{R2})2 = 0

Hence for largep the optimal configuration will be an annulus or ring shape, asobserved
in figure 2.



5 Conclusions

We have investigated the problem or artefactual or illusorystructure from topographic map-
pings based upon least squares scaling algorithms from multidimensional scaling. In partic-
ular we have shown that the use of a squared Euclidean distance metric (i.e. the SSTRESS
measure) gives rise to an annular structure when the input data is drawn from a high-
dimensional isotropic distribution. A theoretical analysis of this problem was presented
and a simple relationship between the variance of the map andthe data points was de-
rived. Finally we showed that this relationship results in an optimal configuration which is
characterised by the map points clustering in a circular fashion.
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