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Abstract

We consider the problem of illusory or artefactual struetiitom the vi-
sualisation of high-dimensional structureless data. hiq@dar we ex-
amine the role of the distance metric in the use of topograpisippings
based on the statistical field of multidimensional scalie show that
the use of a squared Euclidean metric (i.e. the X smeasure) gives
rise to an annular structure when the input data is drawn fdngh-
dimensional isotropic distribution, and we provide a tketioal justifica-
tion for this observation.

1 Introduction

The discovery of meaningful patterns and relationshipsifilarge amounts of multivariate
data is a significant and challenging problem with closettiethe fields of pattern recog-
nition and machine learning, and important applicationthim areas of data mining and
knowledge discovery in databases (KDD).

For many real-world high-dimensional data sets (such deat@ns of images, or multi-
channel recordings of biomedical signals) there will gatigibe strong correlations be-
tween neighbouring observations, and thus we expect tleatidlta will lie on a lower
dimensional (possibly nonlinear) manifold embedded indtiginal data space. One ap-
proach to the aforementioned problem then is to fifalthful! representation of the data in
a lower dimensional space. Typically this space is chosée tiwvo- or three-dimensional,
thus facilitating the visualisation and exploratory as@yof the intrinsic low-dimensional
structure in the data (which would otherwise be masked byltimensionality of the data
space).

In this context then, an effective dimensionality reductadgorithm should seek to extract
the underlying relationships in the data with minimum lokmformation. Conversely, any
interesting patterns which are present in the visualieatfgace should be representative of
similar patterns in the original data space, andantefacts of the dimensionality reduction
process.

1By “faithful” we mean that the underlying geometric structure in the dataespahich charac-
terises the informative relationships in the data, is preserved in the vidigaispace.
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Although much effort has been focused on the former probléwmptmal structure elu-

cidation (see [7, 10] for recent approaches to dimensitynadiduction), comparatively
little work has been undertaken on the latter (and equalpoirtant) problem of artefactual
structure. This shortcoming was recently highlighted imatmoversial example of the ap-
plication of visualisation techniques to neuroanatomicainectivity data derived from the
primate visual cortex [12, 9, 13, 3].

In this paper we attempt to redress the balance by consgldravisualisation of high-
dimensionaktructureless data through the use of topographic mappings based on the sta
tistical field of multidimensional scaling (MDS). This is @amportant class of mappings
which have recently been brought into the neural networkaloifb], and have significant
connections to modern kernel-based algorithms such aslke@A [11].

The organisation of the remainder of this paper is as follolussection 2 we introduce
the technique of multidimensional scaling and relate thithe field of topographic map-
pings. In section 3 we show how under certain conditions snappings can give rise to
artefactual structure. A theoretical analysis of this@ffe then presented in section 4.

2 Multidimensional Scaling and Topographic Mappings

The visualisation of experimental data which is charaséetiby pairwise proximity val-
ues is a common problem in areas such as psychology, maldgalagy and linguistics.
Multidimensional scaling (MDS) is a statistical technigubich can be used to construct
a spatial configuration af points in a (typically) two- or three-dimensional spaceegia
matrix of pairwise proximity values betweenobjects. The proximity matrix provides a
measure of theimilarity or dissimilarity between the objects, and the geometric layout of
the resulting MDS configuration reflects the relationshigisueen the objects as defined by
this matrix. In this way the information contained withirethroximity matrix can be cap-
tured by a more succingpatial model which aids visualisation of the data and improves
understanding of the processes that generated it.

In many situations, the raw dissimilarities will not be repentative of actual inter-point
distances between the objects, and thus will not be suitablembedding in a low-
dimensional space. In this case the dissimilarities camarestormed into a set of values
more suitable for embedding through the use of an appregriansformation:

dij = f(d45)

where f represents the transformation function aﬁ;yjare the resulting transformed dis-
similarities (which are termed “disparities”). The aim oétric MDS then is that the trans-
formed dissimilarities?,;j should correspond as closely as possible to the inter-plisat
tancesd;; in the resulting configuration

Metric MDS can be formulated as a continuous optimisatiatl@m through the definition
of an appropriate error function. In particulbegst squares scaling algorithms directly seek
to minimise the sum-of-squares error between the disparind the inter-point distances.
This error, or SRESS measure, is given by:

1 R 2
STRESS= Z 82 Zzw” ((57] — dzy) (1)

6,7t i j>i

2This is in contrast to honmetric MDS which requires that only ehdering of the disparities
corresponds to the ordering of the inter-point distances (and thus édisgharities are some arbitrary
monotonically increasing function of the distances).

3STRESSIs an acronym for STandard REsidual Sum of Squares.



where the termi/ 3, 65 is a normalising constant which reduces the sensitivityhef t
measure to the number of points and the scaling of the disgsriand thew;; are the
weighting factors. It is straightforward to differentiatés STRESSmeasure with respect

to the configuration pointg; and minimise the error through the use of standard nonlinear
optimisation techniques.

An alternative and commonly used error function, which femed to as S8RESS is given
by:

1 T2 2 2
SSTRESS= 5 SN (5@- - dij) 2)

i,j i >

which represents the sum-of-squares error betvegaared disparities andquared dis-
tances. The primary advantage of theTB@S8ssmeasure is that it can be efficiently min-
imised through the use of an alternating least squares guoge[1].

Closely related to the field of Metric MDS is Sammon’s mappi8l which takes as its
input a set ofhigh-dimensional vectors and seeks to produce a set of lower dimensional
vectors such that the following error measure is minimised:

1 (di; — dij)?
Esammon = m Z Z T )

i J>i

where thed}; are the inter-point Euclidean distances in the data spgge= || x; — x; ||,
and thed;; are the corresponding inter-point Euclidean distancefiénfeature or map
spaced;; = ||y —y; ||

Ignoring the normalising constant, Sammon’s mapping is gquivalent to least squares
metric MDS with the disparities taken to be the raw intempdiistances in the data space
and the weighting factors given hy;; = 1/d;;. Lowe (1993) termed such a mapping

based on the minimisation of an error measure of the form (d;; — d;;)? atopographic
mapping, since this constraint “optimally preserves the geometriacture in the data” [5].

Interestingly the choice of theTRESSor SSTRESSmeasure in MDS has a more natural
interpretation when viewed within the framework of Samnsomapping. In particular,
STRESScorresponds to the use of the standard Euclidean distartce mkereas SERESS
corresponds to the use of teguared Euclidean distance metric. In the next section we
show that this choice of metric can lead to markedly differesults when the input data
is sampled from a high-dimensional isotropic distribution

3 Emergenceof Artefactual Structure

In order to investigate the problem of artefactual struetue consider the visualisation of
high-dimensional structureless data (where we use the“sractureless” to indicate that
the data density is equal in all directions from the mean ariks only gradually in any

direction). Such data can be generated by sampling froreotmopic distribution (such as

a spherical Gaussian), which is characterised by a covariaratrix that is proportional to

the identity matrix, and a skewness of zero.

We created four structureless data sets by randomly sagnpliiO i.i.d. points from unit
hypercubes of dimensions= 5, 10, 30 and 100. For each data set, we generated a pair

“The SSRESsmeasure now forms the basis of the ALSCAL implementation of MDS, which is
included as part of the SPSS software package for statistical dataianalys
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Figure 1: Final map configurations produced byrRE&Sssmappings of data uniformly ran-
domly distributed in unit hypercubes of dimensijan

of 2-D configurations by minimisimfgSTRESsand SSREsserror measures of the form
>l — dij)? and}_, (d;? — dz;)? respectively. The process was repeated fifty times
(for each individual error function and data set) usinged#ht initial configurations of the
map points, and the configuration with the lowest final erraswetained.

As previously noted, the choice of the®Essor SSTRESSerror measure is best viewed
as a choice of distance metric, whererR& sscorresponds to the standard Euclidean metric
and SSResscorresponds to thequared Euclidean metric. Figure 1 shows the resulting
configurations from the BREsSsmappings. It is clear that each configuration has captured
the isotropic nature of the associated data set, and thergaspurious patterns or clusters
evident in the final visualisation plots.

T
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Figure 2: Final map configurations produced byt88ss mappings of data uniformly
randomly distributed in unit hypercubes of dimension

Figure 2 shows the resulting configurations from ther88ssmappings. The configura-
tions exhibit significant artefactual structure, which eracterised by a tendency for the
map points to cluster in a circular fashion. Furthermore,dbgree of clustering increases
with increasing dimensionality of the data spacénd is clearly evident fop as low as
10).

Although the tendency for S&Essconfigurations to cluster in a circular fashion has been
noted in the MDS literature [2], the connection betweenfacteial structure and the choice
of distance metric has not been made. Indeed, in the nexbsewt show analytically that
the use of the squared Euclidean metric leads to a globallpnapsolution corresponding
to an annular structure.

To date, the most significant work on this problem is that afdkland Buhmann [4], who
proposed a novel transformation of the dissimilarities. @he squared inter-point distances

SWe used a conjugate gradients optimisation algorithm.



in the data space) such that “the final disparities are madtelde for Euclidean embed-
ding”. However this transformation assumes that the inpté dre drawn from a spherical
Gaussian distributidh which is inappropriate for most real-world data sets ofliast.

4 Theoretical Analysisof Artefactual Structure

In this section we present a theoretical analysis of thdaatigal structure problem. A

dimensional map configuration is considered to be the re$@tS STRESSmapping of a
data set ofV i.i.d. points drawn from & dimensional isotropic distribution (whepe> q).

The set of data points is given by théx p matrix X = (x1,X2,... ,xy)" and similarly
the set of map points is given by théx ¢ matrixY = (y1,y2,... ,¥yn)"

We begin by defining the derivative of the & sserror measuré’ = Z (d *2 dfj)2
with respect to a partlcular map vectpy.

=4 "(dj? —d¥) (yi — v;) (4)

J#£i

3y1

The inter-point distances’’ andd;; are given by:

A2 = |lx —x; * = (xi — %) (% — x5) =x,%; + X)x; — 2X]X;

Ay = llyi —yil> = (yi — ;) (yi = ¥;) =yiyi + Y5 — 2Y1¥;

Equation (4) can therefore be expanded to:

a Y43 dx — vy ) =4 (X% = ¥iys) Vi — )
Yi VED) Jj#i
=8 (yiyi)yi +8>_ (xix,)yi +8> _ (yivi)yi — 8> (Xix;)y
j#i VE) J#i J#i

We can immediately simplify some of these terms as follows:

S iy yi= Y yi(Yiy) =yivi Y

i i A
Z X X))y Zyt X;X;) in;ZXj
i A i

S iy yi =Dy (Vyi)=>_ (viv}) v
J#i J#i j#i

Z XiX;)y; = ZYJ X;X; ) Z(YjX;)X
J#i J#i J#i

Thus at a stationary point of the error (i%‘?—i = 0), we have:

1 1
(e = yiyi) | vi— 7 2095 |+ 7 2o (5% — ¥iys) (v — )
i i
®In this case the squared inter-point distances will folloy?adistribution.




- N2_ 1 Yz'XZ ij - yl‘sz' Zyj + Z (yjy;) Yi — Z (ij}) X; (5)

J#i J#i J#i J#i

Since the erroF is a function of the inter-point distances only, we can @btth the data
points and the map points on the origin without loss of gditgré&or large N we have:

1 1
N7 2~ O N7 2%~ O
J#i J#i
1 : 1 §
N_1 Zij]‘ ~ Yy —Nflzy‘jxj ~ Yyx
j#i j#i
1 1
J#i J#i

where0,, ,, is them x n zero matrix, X is the covariance matrix of the map vectors,x
is the covariance matrix of the map vectors and the data rcand tf-} is the matrix
trace operator.

Thus equation (5) reduces to:
1 1
(xixi —y;yi) yi + N_1 Z (Y}Yj) YiT N1 Z (X}Xj) Yj
J#i J#i
= 2 EYY@‘ -2 ny X; + (tr{zv} - tr{zx}) Yi (6)
This represents a general expression for the value of theve@pry; at a stationary point
of the SSRESSerror, regardless of the nature of the input data distribution. However we

are interested in the case where the input data is drawn frioighadimensionaisotropic
distribution.

If the data space is isotropic then a stationary point of ther evill correspond to a similarly
isotropic map space Thus, at a stationary point, we have for lage

Yy & O;Iq
Yyx = Ogp
tr{3y} —tr{Zx} =~ qaz —pol
wherel,, is theg X ¢ identity matrix, andr; ando;, are the variances in the map space and
the data space respectively.
Finally, consider the expression:
1 1
N_1 Z (Y}Yj) Yim N1 Z (X;Xj) Y;
J#i J#i

The first term is the third order moment, which is zero for anrigpic distribution [6]. For
high-dimensional data (i.e. largd the second term can be simplified to:

p 1& po?
N_lz(x}xﬂ)’jzN_lz<p2xjk>yj%N_xlzyjzo%l @)

J#i J#i k=1 J#i

"This is true regardless of the initial distribution of the map points, althoughtéyhign-uniform
initial configuration would take significantly longer to reach a local minimurtheferror function.



Thus the equation governing the stationary points of therR&ESserror is given by:
(xixi —yiyi +pos — (q+2)0}) yi = 041
At the minimum error configuration, we have:
X;Xi —y;yitpo, —(q+2)o, =0

Summing over all points, gives:

N

> (Xixi—yiyi+poi—(¢+2)0;) =0

1=1

1 N 1 N

T T 2 2 __

N;Xixi - N;yiyi +pol—(g+2)o, =0
tr{Ex} —tr{Ev} +po; —(¢+2)o;, =0
0_2 p 2

v 10 ®)

Thus, for largep, the variance of the map points is related to the varianceeflitita points
by a factor ofﬁ. Table 1 shows the values of the observed and predicted memeoas
for 1000 data points sampled randomly from uniform distiims in the interval0, 1]?
(i.e. 02 = 0.083) of dimensiong = 5, 10, 30, and 100. Clearly as the dimension of the
data spacg increases, so too does the accuracy of the approximatien biy equation (7),
and therefore the accuracy of equation (8).

Dimensionp | Number of pointsV | o, observed| o7 predicted| Percentage error
5 1000 0.166 0.139 16.4%
10 1000 0.303 0.278 8.1%
30 1000 0.864 0.835 3.4%
100 1000 2.823 2.783 1.4%

Table 1: A comparison of the predicted and observed mapnee@

We can show that this mismatch in variances in the two spassts in the map points
clustering in a circular fashion by considering the expgcquared distance of the map
points from the origin (i.e. the expectsquared radius R? of the annulus):

N

1 pq
EIR?Y = — Ty, = qo? = 52 9
{R7} N;:lyzy 10, = 1% 9)

In addition we can derive an analytic expression &giz*}. For simplicity, consider a
two-dimensional map spage= (y1,y2)". Then we have:

E{R'} = E{yi + 2yiys +ya}
= {1} +2&{ui (s} + E{ua)
— 40 (10)
where the expectation ovefys separates sincg andy3 will be uncorrelated due to the

isotropic nature ofy. In general for ag-dimensional map space we have tgtR*} =
¢ 0. Thus thevariance of R? is given by:

Var(R?) = E{R*} — (E{R*})* =0

Hence for largep the optimal configuration will be an annulus or ring shapeplaserved
in figure 2.



5 Conclusions

We have investigated the problem or artefactual or illustmycture from topographic map-
pings based upon least squares scaling algorithms fronidimuéinsional scaling. In partic-
ular we have shown that the use of a squared Euclidean déstaatric (i.e. the SERESS
measure) gives rise to an annular structure when the ingatidadrawn from a high-
dimensional isotropic distribution. A theoretical anadysf this problem was presented
and a simple relationship between the variance of the mapttendata points was de-
rived. Finally we showed that this relationship resultsrirogtimal configuration which is
characterised by the map points clustering in a circuldrifas
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