
Probability Distribution Modelling to Improve 
Stability in Nonlinear MIMO Control 

Randa Hena l l ah  
NCRG, Aston University, UK 
tmail:herzarom@aston.ac.uk 

A b s r r a b  We consider the direct adaptive inverse control of 
nonlinear multivariable systems with different delays between 
every input-output pair. In direct adaptive inverse control, the 
inverse mapping is learned from examples of input-output pairs. 
This makes the obtained controller sub optimal, since the network 
may have to learn the response of the plant over a larger oper- 
ational range than necessary. Moreover, in certain applications, 
the control problem can be redundant, implying that the inverse 
problem is ill posed. In this paper we propose a new algorithm 
which allows estimating and exploiting uncertainty in nonlinear 
multivariable control systems. This approach allows us to model 
strongly non-Gaussian distribution of control signals as well as 
processes with hysteresis. The proposed algorithm circumvents 
the dynamic programming problem by using the predicted neural 
network uncertainty to localise the possible control solutions to 
consider. 

I .  INTRODUCTION 

Recently, several authors have used neural networks for the 
identification and control of unknown nonlinear multivariable 
processes [7], 181. Because of the nonlinearity of the plant, 
and the fact that the delays between input-output pairs can 
be different, the identification and control of multivariable 
systems is substantially more complex than that of (SISO) 
systems. 

When the parameters of the plant are unknown, adaptive 
control is assumed. Indirect control architectures for multi- 
variable systems, have been proposed in 171, 181, assuming 
exact models for identifier and controller. The most recent 
research interest is now to go  beyond the classical methods for 
identification and control by accounting for model uncertainty. 
In [ I ]  a systematic procedure that accounts for the Structured 
uncertainty in the neural network model has been developed. 
It has been shown in this work that for the overall linear closed 
loop system, the propagation through the control loop of the 
structured uncertainty from the neural network parameters 
enables the construction of a polytopic uncertainty description. 
This in turn can provide a Lyapunov function for the uncertain 
system, and therefore proving robust stability of the overall 
control system. A new approach for adaptive output feedback 
control of uncertain nonlinear (MIMO) system has been in- 
troduced in [6]. In this approach an observer for the output 
tracking error rather than a state observer in the classical 
approaches has been proposed under the assumption that the 
system is feedback linearisable. A simple linear observer for 
the tracking error and a multi-layer perceptron neural network 
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is used to cancel the modelling errors. Ultimate boundness 
of the error signals was shown through Lyapunov stability 
analysis. 

An inversion based neurocontroller for solving control prob- 
lems of uncertain nonlinear (SISO) systems has been presented 
in (31, [4]. The controller is designed to predict conditional 
distributions of control signals. A sampling approach is then 
used to search for a better value of control. The stability 
analysis for the updating rule of the control law was proven 
in [3]. The approach in [3], [4] is based on the assumption 
that the estimated distributions of control signals are Gaussian. 
A more general approach for sampling from non Gaussian 
distributions is discussed in [SI. 

In this paper we extend the approaches of [4], [ 5 ]  to MIMO 
systems, which have different delays between every input- 
output pair. We show that the same computational procedure 
can be used except that the samples for searching for a better 
control law need to be generated from the estimated distribu- 
tion of control signals in each dimension. This means that the 
number of samples grows exponentially with the dimension 
of control variables. A comparison between sampling from 
different distributions is also provided. 

1 1 .  DISTRIBUTION MODELLING OF CONTROL SIGNALS 

In classical inverse control the challenge is to build a neural 
network that will take past values of the input and output of 
the plant z ( t )  = [y ( t - l )  ,...., y(t-n),u(t-2) ,...., u(t-m)] 
and the desired output value y?( t )  as an input, and outputs the 
control signals U ( <  - d) (assuming d relative degree), which 
will move the plant output to the desired value. In this work 
the basic goal is to model the statistical properties of the 
control signals, u ( t  -d),  expressed in terms of the conditional 
distribution functionp(u(t-d)Is(t)). Here s(t) = [z(t),y&)] 
is the input vector to the neural inverse model. For dynamical 
systems it is reasonable to assume that the output ofthe system 
y(t) is function f of its input u(t - d)  and the delayed vector 
z ( t ) .  Furthermore in the case of a one-to-one mapping, and 
only in this case, the inverse of the function denoted by f-' 
can be introduced. In this case a feed-forward neural network 
trained using the sum of the square error function (between 
the input of the system and the actual output of the controller) 
can perform well. For this case the distribution of the target 
data can be described by a Gaussian function with an input- 
dependent mean (given by the outputs of the trained network), 
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and an input-dependent variance (given by the residual error 
value). However, if the inverse of the function f can not be 
defined uniquely, then the direct inverse mapping f-' found 
by minimising the sum of the square error can not be used 
to tell us how to choose the control signal u(t - d) so as 
to reach the desired response yv ( t ) .  Therefore, assuming a 
Gaussian distribution can lead to a very poor representation 
of the control signal. In this case a more general framework 
for modelling conditional probability distributions is required. 
This general framework is based on the use of the mixture 
density network. 

A .  Gaussian Distriburion icludelling 

If a neural network has been used to model the adaptive 
inverse controller, it can also model the conditional distri- 
bution of the target data (the control signal) by modelling 
the conditional uncertainty involved in its own predictions. 

. In this work the predictive error bar method reported in [4] 
will be used. This approach is based on the important result 
that for a network trained on minimum square error the 
optimum network output approximates the conditional mean 
of the target data, or f&,i(s(t)) =< u(t - d ) / s ( t )  >, and 
that the local variance of the target data can he estimated as 

If this variance is used as a target value for another neural 
network, then the optimum output of this second network is 
again the conditional mean ofthat variance. As reported in [4], 
in the implementation of predictive error bars two correlated 
neural neural networks are used. Each network shares the same 
input and hidden nodes, hut has different final layer links 
which are estimated to give the approximated conditional mean 
of the target data in the first network, and the approximated 
conditional mean of the variance in the second network. Thus 
the second network predicts the noise variance of the predicted 
mean by the first network. This architecture is shown in 
figure 1. Optimisation of the weights is a two stage process: 
The first stage determines the weights ?ul conditioning the 
regression on the mapping surface. Once these weights have 
been determined, the network approximations to the target 
values are known, and hence so are the conditional error values 
on the training examples. In the second stage the inputs to the 
network remain exactly as before, but now the target outputs of 
the network are the error values. This second pass determines 
the weights wz which condition the second set of output noise 
to the squared error values u2(s(t)) .  

Ilu@ - 4 - f&(t))l12. 

. 

Fig. I .  The architecture of the predictive eror bar network. 

We will demonstrate the use of this noise (in a control 
architecture) soon, but first we discuss a more general method 
for distribution modelling which we need for multimodal and 
non-Gaussian control problems. 

8. Mixture Densip Nefwork 

For multi-valued functions, Mixture Density Networks 
(MDNs) [2] provide a general. framework for modelling 
conditional probability density functions p(u(t - d) ls( t ) )  for 
the inverse mapping. The distribution of the outputs, u(t - d) ,  
is described by a parametric model whose parameters are 
determined by the output of a neural network, which takes 
s ( t )  as inputs. The general conditional distribution function is 
given by 

M 

P(4t - 4Idt))  = Caj(S(tN4M - M t ) )  (1) 
j=1 

where aj(s(t)) represents the mixing coefficients, and can 
be regarded as prior probabilities (which depend on s ( t ) ) ,  
4j(u(t - d)ls(t)) are the kernel distributions of the mixture 
model (whose parameters are also conditioned on s(t)) ,  and 
M is the number of kernels in the mixture model. Various 
choices are available for the kemel functions, but in this paper 
the choice will be restricted to sphcrical Gaussians of the form 

where pj(s( t ) )  represents the centre of the j th kemel, with 
components p j k .  A spherical Gaussian assumption can be re- 
laxed in a very straightforward way, by using a full covariance 
matrix for each Gaussian kernel. However this complication is 
not necessary, because in principle a Gaussian Mixture Model 
(GMM) with sufficiently many kernels of the type given by 
(2) can approximate any given density function arbitrarily 
accurately providing that the mixing coefficients and the 
Gaussian parameters are correctly chosen [ 2 ] .  It follows then 
that for any given value of s(t) ,  the mixture model (I) provides 
a general formalism for modelling the conditional density 
function p(u(t  - d)(s(t)).  To achieve this the parameters of 
the mixture model, namely the mixing coefficients a j ( s ( t ) ) ,  
the means p j ( s ( t ) )  and the variance u ] (s ( t ) )  are taken to 
he general continuous functions of s(t) .  These functions are 
modelled by the outputs of a feed-fonvard neural network that 
takes s(t) as input. 

The neural network element of the (MDN) is implemented 
with a standard multi-layer perceptron network ( M L P )  of 
tmh functions. The output vector from the M L P ,  2, retums 
the parameters that define the Gaussian mixture model. For M 
components in the mixture model ( I )  the network will have 
(c + 2) x M outputs, namely A4 outputs denoted by .z," which 
determines the mixing coefficients a j ,  M outputs denoted by 
23" which determine the kernel width uj, and A4 x c outputs 
denoted by z$ which determine the components ( ~ j k  of the 
kemel centres p j .  This is compared with the usual c outputs 
for a M L P  network used with a sum-of squares error function. 
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The outputs of the M D N  undergo some transformations to 
satisfy the constraints of the mixture model [2], [SI. In order 
to optimise the parameters in a M D N ,  an error function is 
required that provides an indication of how well the model 
represents the underlying generating function of the training 
data. The error function of the mixture density network is 
motivated from the principle of maximum likelihood [Z]. The 
likelihood of the training data set, {s(t),u(t - d)}, can be 
written as 

C = n d u n ( t  -d)lsn(t))~(sn(f)) ' (3) 
n 

where here the assumption has been made that each data point 
has been drawn independently from the same distribution, 
and so the likelihood is a product of  probabilities. Generally 
one wishes to maximise the likelihood function. However, in 
practice, it is often more convenient to consider the negative 
logarithm of the likelihood function. These are equivalent 
procedures, since the negative logarithm is a monotonically 
decreasing function. The negativc log likelihood can be re- 
garded as an error function, E 

In order to minimise the error function, the derivatives of the 
e r ro rE  with respect to the weights in the neural networks must 
be calculated. Providing that the derivatives can be computed 
with respect to the outputs of the network, the errors at the 
network inputs may be calculated using the back-propagation 
procedure [2], [SI. By first defining the posterior probability 
of the j th  kernel, using Bayes theorem 

the analysis of the error derivativcs with respect to the network 
outputs is simplified. The computation of the error can further 
be simplified by considering the error derivative with respect 
to each training pattern, n. The total error, E,  is defined as 
a summation of the error, E,, for each training pattern. E = 
EYE" , where 

J 

Each of the derivatives o f  E" arc considered with respect to 
the outputs of the networks and their respective labels for the 
mixing coefficients, z;, variance parameters, zy and centres 
or position parameters The derivatives are as follows 

(7) 

for full derivation see [2]. Once the network has been trained 
it can predict the conditional density function ofthe target data 
for any given value of the input vector. This conditional density 
represents a complete description of the generator of the data. 
More specific quantities can be calculated from this density 
function which may be of interest in different applications. 
An example of these quantities is the mean, corresponding to 
the conditional average of the target data. This corresponds 
to the mean computed by a standard network trained by 
least squares. However, in control applications where unique 
solutions cannot be found, and where the distribution of 
the target data will consist of different numbers of distinct 
branches, this is a not valid solution. In such cases one may 
be interested in finding an output value corresponding to the 
most probable branch. Since each component of the mixture 
model is normalised, $j(u(t - d))s(t))du(t - d)  = 1, the 
most probable branch is given by axg m+x{aj(s(t))}. The 

required value of u(t - d) is then given by the corresponding 
centre p j .  

3 

111. PROBLEM FORMULATION A N D  SOLUTION 
DEVELOPMENT 

Dynamic programming is a powerful tool in stochastic 
control problems. However, it performs poorly when the 
order of the system increases. The algorithm proposed here 
is based on incorporating the uncenainty knowledge from 
the neural network to avoid the computational requirements 
for the dynamic programming solution for nonlinear control 
problems. In contrast to the classical control approaches, 
suppose that the control vectors are generated from some 
probability distribution p(u(t - d)), and the output vectors 
evolve with time according y ( t )  = f(z(t),u(t - d)). The 
objective in control problems is then to find the optimal control 
variables from the probability distribution p(u(t-d))  such that 
when applied to the system, the output o f  the system should 
be equal to a predetermined desired value y,.(t). This means. 
that we are looking for an optimal control vector u(t - d) ,  
obtained from the distribution p(u(t - d ) )  such that 

P[lY(t) - v,(t)l > 01 = 0 (10) 

However this cannot be applied directly to real world problem, 
because we need to observe the effect of each control variable 
from the distribution p(u(t - d ) )  on the real world system. 
Since we can only apply one decision input to the real system 
which is supposed to be optimal, the real world system needs 
to be replaced by an estimation y(t). Consequently this implies 
that the solution provided in Eq I O  never occurs in practice 
because it requires that the estimator G(t) for y ( t )  contains 
no error. Moreover to  satisfy this condition we need to know 

'the true probability distribution p(u(t - d)). where in practice 
we can only estimate p(u(t - d)). In this work we do not 
consider this kind of uncertainty. Further development will be 
based on the assumption that the estimated distributions are 
accurate. Providing that we have a valid estimation for the 
true distribution p(u(t  - d))  and the estimator of the forward 
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model, the statistical control optimisation problem proposed 
in this work can be stated as follows. Given: 

A set U, consisting of all possible decisions U E U 
obtained from the probability density functionp(u(t-d)) . A performance criterion J which provides an evaluation 
of a given decision variable . A set Y ,  the space of the output variables y, consisting of 
all possible outputs y E Y that may result from different 
decision variables 

find the optimal control law that minimises or maximises the 
performance criterion J at each instant of time. 

Based on the estimated distribution of control signals we can 
construct the following algorithm incorporating uncertainty 
directly. 

I) Incorporating Uncertain@ For the Gaussian Distribution 
Function: 

1) Based on the pre-collected input-output data, an accuratc 
model of the process is constructed and trained off line. 
It i s  assumed to be described by G(t) = f ( t ( t ) ,u ( t -d) )  

2)  An accurate inverse model of the plant should also be 
constructed, and trained off line to approximate the con- 
ditional mean of the control vector and the conditional 
variance. It is assumed to be described by the following 
neural network 

h(1) = f - ' ( y ( t ) , z ( t ) )  (1 1) 

where C ( t  - d)  = k(l)ur,, ~ a r ~ ( ~ - - ,  = h(t)wz, and 
where h(1)  is the predicted hidden variable from the 
neural network at each instant of time t ,  w1 is the weight 
of the linear layer estimated to predict the conditioned 
mean of the control signal, and w2 is the weight of 
the linear layer estimated to predict the variance of the 
predicted control signal. 

3) At each instant of time t the desired output is calcu- 
lated from the reference model output, which should be 
chosen to have the same relative degree as that of the 
plant. 

4) Bring the control network on line and at each time 1 es- 
timate the appropriate control signal from the controller 
and the variance of that control signal. The control signal 
distribution is then assumed to be Gaussian and given 
by 

where a2 is the variance of the control signal war,(t-_,. 
5) GCnerdte a vector of samples from the control signal 

distribution. For example for a two dimensional problem 
a vector of samples need to be generated from the dis- 
tribution of each control signal. The admissible control 
values at each instant of time is then generated using 
a two dimensional grid to represent the error surface. 
The state however, does not need to be tracked since 
we consider that the neural network has been optimised 
off line to predict the control values and the uncertainty 

of the control values at each instant of time. This gives 
an advantage over the dynamic programming approach. 
The number of samples in each dimension can be chosen 
in two ways:(l)based on the value of the predicted 
variance of the control signal numberof samples = 
K x u a ~ ~ ~ ~ ~ ~ , .  This equation determines the number 
of samples based on the confidence of the controller 
about the predicted mean value of the control signal. 
So more samples are generated for larger variance. (2)a 
fixed number of samples can be used. 

6) Based on the effect of each sample on the output of the 
model, the most likely control value is taken, which is 
assumed to be the value that minimises the following 
cost function. 

J ( t )  = %;$[(%(t) - Y 7 ( t ) ) 2 1  (12) 

where U is a vector containing the sampled values from 
the control signal distribution, E is the expected value 
of the cost function over the random noise variable B .  
Because we are using a neural network to model the 
system, and because the neural network predicts the 
mean value for the output of the model averaged over the 
noise on the data, the above function can be optimised 
directly. 

2) Incorporating Uncertainty For the Mixture Densit?, Net- 
work: Since we have covered a lot of ground of the proposed 
algorithm in our discussion for incorporating uncertainty for 
the Gaussian function case, we summarise here the main 
differences between the two approaches: 

I) The conditional distribution of the inverse model of the 
plant in step 2 for the Gaussian distribution function, i s  
assumed to be described by a mixture density network 
given by equation (1). 

2 )  For the non-sampling case, in the mixture density net- 
work the value of the control signal is assumed to be 
given by the centre & of the most probable branch, 
where the most probable branch is given by 

a g  mJv{aj(s(t))l (13) 

While the predicted value of the control signal for 
the Gaussian distribution function is assumed to be 
equivalent to the mean of that distribution. 

3) The admissible values of the control signal at each 
instant of time for the Gaussian distribution case are 
assumed to be sampled from that distribution, as in 
point 5. The admissible values of the control signal 
for the mixture density network, are assumed to be 
sampled from a mixture density network. Since we are 
using Gaussian kernel functions the samples can be 
generated from each kcmel function randomly. This can 
be done by retrieving the components pjk of the kernel 
centres f i j ,  and the kemel width uj of each kemel 
function. The number of samples from each component 
is determined randomly with more samples generated 
from the component with larger prior. 
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1V. SIMULATION STUDY 
A. Introduction 

In order to illustrate the validity of the theoretical develop- 
ments for MlMO systems, we consider a third order system 
with two inputs and two outputs described by the following 
state equation : 

z,(t + 1) = 0.9z,(t) S i n [ X Z ( t ) ]  

z 3 ( t )  
1 + $(t)  zz(t + 1) = z3(t){l + sin[4z3(t)]} + - 

z3(t + 1) = 13 + sin[2z,(t)]}uz(t) 
Yl(t) = z1(t) YZ(t) = X Z ( t )  (14) 

where s(t) = [ 2 1 ( t ) , z 2 ( i ) , 2 3 ( t ) ]  is the state, u(t) = 
[ u ~ ( t ) , u ~ ( t ) ]  is the control variable, and y(t) = [y~(t),yz(t)] 
is the output. This model has been used in [SI to illustrate 
theoretical developments for the indirect adaptive controller. 
In this system the delay~from the inputs U,, and U% to y, is 
unity, and the delay to yz is three from ul, while it is two 
from u2. The plant has been considered to be described by 
equation (14). Although one neural network could be sufficient 
to identify the outputs of the plant, two neural networks 
have been used in this work following the procedure used in 
Narendra's, one model for each output. An input-output model 
described &(t + 1) = Nfl(y(t), y(t - l ) ,y ( t  - Z), u(t), u(t- 

l),u(t - 2)) was chosen to find the forward model of the 
first and second outputs respectively, where Nfl, and N f z  
are multi-layer neural networks. These neural network models 
were trained using the scaled conjugate gradient optimisation 
algorithm, based on input output data measurements taken 
from the plant with sampling time of Is. The inputs u1 and u2 
to the plant and the model were generated uniformly over the 
intervals [- l .~,  1.51 and [-O.J, 0.51 respectively. The single 
optimal structure for the neural network found by applying the 
cross validation method consisted of 21 hidden units for the 
first model and 17 hidden units for the second model. Similarly 
.an input output model described by 8(t) = N,(y(t),y(t - 

chosen to find the inverse model of the plant, where N, is 
a multilayer neural network. The training data was the same 
as in the forward model. A neural network with 7 hidden units 
was found to be the best model by cross validation. 

B. Clussical inverse Control Approach 
After training the inverse controller off line, the control 

network is brought on line and the control signal is calculated 
at each instant of time from the control neural network and 
by setting the two outputs yl(t + l ) ,  yz(t + 2) equal to the 
desired values yvl(t + 1) = r l ( t ) ,  and y?.z(t + 2) = rz ( t )  
respectively. Here n( t )  = 0.6ssin[%$] + 0.6ssin[%], and 

l),u(t-2)),62(t+2) = Nfz(Y(t),l/(t-l),Y(t-2),U(t),u(t- 

l ) ,y( t  - 2 ) , 4  - 1),u(t - 2),[yL(t + 1),yZ(t + 211) was 

( 4  
Fig. 2. 
the plant. (b) the second output of the plant. 

Performance of the classical control approach (a) the fint output of 

2.5 

~ I 
so 1 0 0  200 250 300 

(b) 
Fig. 3. 
of the plant. (b) the second output of the plant. 

Performance of the proposed control approach (a) the first output 

T 2 ( t )  = 0 . 6 5 s i n [ s ]  + 0 .65s in [g ] .  The predicted mean 
value from the neural network was forwarded to the plant. 
The control result is shown in Fig. 2. The performance of the 
classic controller was seen to be poor with large overshoots 
around the desired response in the second output yz(t). 

C. Sampling from Gaussian distribution 

In our new approach, the full distribution of the control 
signal was estimated. In the first experiment, the distribution of 
the control signal was estimated by Gaussian distribution. Fol- 
lowing the procedure presented earlier, the best control signal 
was found and forwarded to the plant. Firstly 20 samples have 
been generated from the Gaussian distribution of each control 
signal. However the number of samples used to search for 
optimal control law was 212, including the mean value from 
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0.8 

each distribution. The overall performance of the plant under 
the proposed method is shown in Fig. 3. The performance 
of the proposed controller is seen to he significantly better 
than the classic controller. However, because the model of the 
second output was found to he more inaccurate than for the 
first output, larger errors in the second output can be seen. 

determination of the number of samples still an open question. 

optimal control strategy will he discussed in the next section. 

B 
Y 

Although in this experiment we have used 212 samples, the 

The effect of the number of samples on the accuracy for the 

0 2  

1 0  20 30 40 50 BO 
NO. at-smll,s* 

Fig. 4. The tracking error from sampling different distribution functions. 

D. Samplingfrom Other Distributions 

In this section we are considering the problem of de- 
termining an appropriate number of samples. In addition, 
sampling from other distributions such as uniform and non- 
Gaussians will he considered. Firstly several experiments have 
been performed with different numbers of samples from the 
Gaussian distribution. The dashed curve in figure 4 shows the 
result. It is clear from this figure that the tracking error has 
dropped very quickly using only a small number of samples. 
Increasing the number of samples however, does not help 
in reducing the tracking error once the minimum has been 
reached. 

Following the discussion in section Ii-B, the conditional 
distribution of control signals has been estimated by a mixture 
of Gaussians. A mixture density network with 2 components 
and 7 hidden units was found to be the best model using 
cross validation. The result of determining the optimal control 
law by sampling from non Gaussian function and for different 
number of samples is given by the solid curve in figure 4. 
A slights improvement compared to the Gaussian case has 
been achieved in this particular problem. The tracking error 
using the mixture density network is less than that obtained in 
the Gaussian case. In addition, sampling from a non-Gaussian 
function results in reducing the tracking error quicker than the 
Gaussian case. 

Although we are suggesting estimating the distribution of 
the control signals and then sampling from that distribution 
to find the optimal control law, one may think of defining an 
arbitrary lower and upper bound around the control signals 
and searching uniformly for the optimal control values in that 
range. lndeed this can he done, but has several disadvantages. 
First, several experiments need to be done to find the right 
hounds for sampling. In addition, severe instability problems 
result if the control signal happens to be outside the operating 
range which may result because of sampling from the wrong 
distribution. Figure 4 shows several curves with different 
bounds for uniform sampling. It has been noticed during 
running these experiments that although the overall tracking 
error can he better than using the mean value from the 
estimator, the result of the controller can he verv had around 

V. CONCLUSION 
Incorporating uncertainty estimation to improve the per- 

formance of controllers for multivariable control problems 
is considered in this paper. A method that uses uncertainty 
around the predicted mean value of the control signal was 
proposed. The proposed method allows for the control signal to 
be adapted from its distribution, to obtain a better estimate of 
the control signal than the mean. The proposed control strategy 
in this work chooses the optimal control value almost in the 
same way as in dynamic programming. However, the proposed 
method is computationally more efficient and is not based on 
the use of the recurrence relation as in dynamic programming. 
This is because the estimated mean and variance are predicted 
from a neural network which is supposed to be optimised on 
the input output data and so constrains the sampling space 
just to the feasible region. By predicting the full distribution 
of the control signal from the neural nehvork, searching for 
a better value of the control signal than the mean can be 
performed only in this region in which the optimal solution 
is expected to lie. Simulation experiments demonstrated the 
successful application of the proposed strategy to improve the 
controller performance for multivariable problems. 
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