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Abstract

Iterative multiuser joint decoding based on exact Beligijagation (BP) is analyzed in
the large system limit by means of the replica method. It sshthat performance can be
improved by appropriate power assignment to the users. pti@om power assignment
can be found by linear programming in most technically rah\cases.

The performance of BP iterative multiuser joint decodingampared to suboptimum
approximations based on Interference Cancellation (IG)il&NC receivers show a signif-
icant loss for equal-power users, they yield performanasecto BP under optimum power
assignment.

1 Introduction

The complexity of optimum multiuser joint decoding is expatial in both the code block-
length (constraint length for convolutional codes) and ninenber of users [6]. Since this
complexity is often considered infeasible, iterative noelhhave been proposed. In particular,
the general framework of Belief-Propagation (BP) [11] camapplied to the coded multiuser
channel [19, 2]. BP is known to yield optimum performancevpted that theBayesian net-
work associated with the multiuser decoding problem is free op$o[9]. Even though the
Bayesian network representing to multiuser decoding prolitas cycles any case of interest
(for more than one user and when user codes are non-tridralgn by the fact that BP proved
to yield excellent results also in the presence of cyclesthid application of BP to multiuser
decoding is a heuristically sound approach.

*The research of T. Tanaka was performed during his visit &mBniversity, Birmingham, U.K. and sup-
ported by EPSRC research grant GR/N00562.
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A straightforward implementation of BP is no longer expararin the product of the
blocklength (or constraint length) and the number of udarspnly exponential in their max-
imum. However, exponential complexity in the number of asaay still be too costly for
many applications. Therefore, several approximationsxateBP have been proposed, many
of which being based on interference cancellation (IC) fpdgdollowed by linear MMSE
filtering (see [2] and references therein).

Recently, other approaches for approximating the exactd&gBdakr have gained increasing
attention. In particular, by exploiting the analogy betweeultiuser detection and minimum-
distance decoding of lattices, soft-output versions of3pbere-Decoder [18] have been pro-
posed [17, 8]. When the number of users is not larger thanghreading gain, the Sphere-
Decoder has polynomial complexity in the number of usersymarable to that of post-IC
linear MMSE filtering. However, the quantification of the potial gain achievable by using
more complicated BP approximation methods than post-1€alitMMSE filtering in iterative
multiuser joint decoding remains unclear.

This work provides an answer to this question by analyzimgpérformance of the exact
BP decoder for random spreading in the large system limie Sthndard tool to analyze the
limit performance of iterative decoding algorithms is Dign&volution (DE) [12]. In [2, 4],
the large-system limit of IC-based iterative multiusenjodecoding was obtained by using
DE in conjunction withby-now classical results on the large-system limit of linear multiuser
detection [14]. In this work, we shall use DE in conjunctioithwesults of statistical mechanics
and the replica method [13, 7].

In addition to just providing an analysis of the performan€éhe BP decoder in the large
system limit, our analysis also allows to solve the probldroggsimum power assignment to
the users in many cases of technical interest.

2 Synchronous CDMA system model

We consider the real-valued discrete-time channel model
Y =SWX + N (1)
originated by sampling at the chip-rate a synchronous CDlgesn [16], where:

1. Y,N ¢ R"™¥ are the matrices of received chip-rate samples and thespwnding
AWGN samples- N(0, o2);

2. S € RY*K contains the user spreading sequences by columns;

3. W = diagwy, ..., wg) contains the user amplitudes which are assumed to obey the
normalizationtrace(W?) = K without loss of generality;

4. X € {+1,-1}%*N is the matrix of the users’ binary modulation symbols. The ro
x* of X is the code word transmitted by user The columnx,, of X is the vector of
symbols transmitted by all users at the same timyeh(symbol interval);

5. L, K andN denote the spreading factor, the number of users and thebtodkelength,
respectively.

Spreading sequences are random with i.i.d. Gaussian elemvgh mean 0, variance/ L,
and thek-th userreceived SNR isy;, = w? /o?. Users send information messages in the form of



binary uniformly distributed vectons,, of lengthB. For the sake of simplicity, we assume that
all users employ the same binary convolutional c8de {+1, —1}" but each user employs
a different random interleaver. The user coding rate isrgibweR = B/N bit/symbol and the
system spectral efficiency is given by= aR, wherea = K /L (users per chip) is thgystem
load.

We avoid addressing the complex valued AWGN channel in otialéeeep notation at a
reasonable level of complication. Extending the resultaioled for the real-valued channel to
the complex-valued one is a tedious but straightforwardase.

3 lterativedecoding algorithms
For a binary variable with pmf (Pr(c = +1), Pr(c = —1)) we define its log-ratio by

A, Pr(c=+41)
&= log Pr(c = —1)
The BP algorithm approximates iteratively the Iog-rat[dﬁ;; corresponding to the marginals
of the a posteriori joint pmPr(by, ..., bg|Y). After a given number of iterations, a symbol-
by-symbol decision is made according to the threshold?k,g)e: sign(Lp").

The main building blocks of the BP iterative multiuser joilgcoder are the SISO decoders

and the individually optimum MAP multiuser detector (I0-ND) SISO decoding is formally
expressed by

> exp (% > cjﬁgf;ld)
=41

€Cpicn j#
L5 = log —— - )
> exp (% > Cj%f}’d)
c€Cricn=—1 j#n

where&g};‘d is the message (log-ratio) sent by the IO-MUD for useelative to coded symbol
cr,; and Lg% is the so called decoder “extrinsic information”. For coluimnal codes, (2)
is efficiently implemented by the forward-backward algomt The same forward-backward
algorithm can compute the Iog-rati({)s}gf; : j = 1,..., B} for the user information bit while
computing (2).

IO-MUD consists of calculating the log-ratios

_ dec dec dec dec
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Unfortunately, there is no efficient way to perform this cééddion, in general. However, the
quality of the log-ratios can be analyzed in the large systerhusing the replica method.



4 Performance of |O-MUD with non-uniform prior

The derivation of the performance is based on the replichadetvhich is a common tool in
statistical mechanics [10]. It was introduced into the gsial of multi-user systems in [13].
The analysis presented here makes use of the generalizatianbitrary powers in [7] and
further generalizes the results to arbitrary non-unifornaky priors.

The distribution at the channel output at time instartonditioned on the signature se-
guences is proportional to

Z(yn,S) = > Pr(x,) exp (—#|yn — SWxn|2) (5)
if the fictious noise variance?® is set to the true noise varianeg. Moreover (5) is independent
of n since the input is assumed to be stationary. Thus, the tiohexin is dropped and: is
used for different purpose. In statistical mechanics thantjty

is called thefree energy. One of the fundamental principles of statistical mechargchat the
free energy is self-averaging in the large system limit.tThat is identical to its average over
the spreading sequences and the noise for almost all reatiza

. . A
Aim Fx(y,8) = lim E 5 logZ(y,S) = F. (7)

A standard trick in statistical mechanics is to re-write filee energy in the following way

F = lim —hm ~log (E Z"(y,S)) (8)

K—)ooK

with the advantage that the expectation operator has mawethe argument of the logarithm.
Now, the free energy is evaluated for integeand the results is assumed to generalize to
positive realn. This procedure is called the replica method. Though itilslatking rigorous
mathematical justification, it is a standard technique atistical physics, see [10, 13] for
further discussion.

Let z;, denote thex'" replica of userk’s binary symbol. Define\, = L;‘fg andt, =
tanh(\;z/2). Then, itis shown in [13, 7] that the free energy can be exqa@by the following
supremum

sup {Oz_lG(m, q) — I(m, q)} ®
m,q
where (1+3(1—q)!
1 +=5(1—q) ™"
G 22 5 10
(m. q) 2 BT T 51 —q) + &(02+a(l—2m+q)) 4o
and

I(m,q) 2 sup {nEm +3n(n—1)Fq+2%2F — 11m = Z log My (wiE, w,%F)} (11)
E,F —00
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With the following property of the Gaussian measiire £ exp(—2%/2)/V2ndz
exp (F %) = [exp <:|:\/FZS) Dz (13)

VS € R, we get

MyEF) = [ Y T[] Pr(ee) {%exp [(zﬁ—i—E) anlxk} (14)

{zgq,a=1,...,n} a=1

b exp [— (z\/F + E) anl xk} } Dz.

Since
£, 2 3 [T Pr(zka) exp [(zﬁ+ E) > xka] (15)
{zra,a=1,...,n} a=1 a=1
= > Pr(gn)fn1€xp [(zﬁ + E) xlm} (16)
Tkn
cosh(z\/f—I—E'—I—/\k/Q) cosh™ (z\/f—I—E—I—)\k/Q)
- f"*1 cosh(Ag/2) - cosh™ (A /2) ’ (17)
we find . .
M, (E, F) _ J(14t5) cosh™ (z\/f—I—E'—I—Tk)—i—(l—tk)cosh" (z\/F—I—E'—Tk)Dz (18)

2 cosh™ (AT’“)

Following the further development in [13], that is takingidatives with respect tan, ¢, E, F’
to find the supremum points, taking derivatives with respeetand lettingn — 0, we find

m = Euw [ %tanh <2wﬁ+ w?E + %) + %tanh <zw\/F+ wE — %) Dz
A,w

¢ = Ew [ tanh? (zw\/F + w?E + %) + & tanh? (zw\/F + w?FE — %) Dz
Aw
_ 1 _ o2+a(1-2m+q)
E = v = e (19)

and the free energy becomes

2

—I—%log(l—tQ)—Em—@—ilog(l—}—@) —i%ﬁgq).

F = E Vlf % log cosh (zw\/ﬁ—}— w?E + %) + % log cosh (zw\/ﬁ%— w?E — 3) Dz
A,w

(20)
Since we are interested in the individually optimum detest@ let the fictious noise variance
approach the true noise variance— o, and find~E = F andm = q.

Note that in context of iterative decoding the priors aretnat priors in the sense that the
transmission of zeros and ones were not equally likely. éitérative decoding process the
priors are conditional priors. They are conditioned on thgot of the last iteration step and
refer to a particular time instant and particular obseoratiat other time instances only. Since
only extrinsic information is propagated, the priors afffee interfering users only. Thus,
the performance of all users with identical powers is id=itdue to the symmetry of the
interference in the large system limit. Moreover, it can heven in the same way as in [7]
that the asymmetry in performance vanishes, if perform@&oeasured in terms of multiuser
efficiency. In the same way as in [13], it can be shown thatetheran equivalent AWGN



superchannel and the impact of the other users is fully cheniaed by the multiuser efficiency
which is given by
n=olE. (21)

Thus, the system (19) gives
= 1l+a [% —AEﬂf%tanh (2 M+ m+ %) + Sttanh (2, + v — 3) Dz

0
1— h (z,/
v (1-#) / fan gz ) g (22)
1 — 2 tanh® (2,/77 + 1n)

In terms of multiuser efficiency, the free energy can be rrrtimplified to read

1
o p b
t77

+ tlog[cosh (z4/4M + ) + tsinh (2y/0 + yn)] Dz — yn +

1
n

=14+aE
1294

! log [(1 — %) cosh? (24/71 + 1) + ] (23)

log(n) —n
2av '

The fixed-point equation (22) may have either one or thredipesolutions. When there
are three solutions, all three solutions are extremum paihthe free energy. One of them is
the global maximum of the free energy. One is a local maximéithe free energy, and one
is a local minimum of the free energy. Two of these three smhstcan be found by iterating
the fixed-point equation (22) setting the initial value fbetmultiuser efficiency to 0 and 1,
respectively.

One of these two solutions globally maximizes the free en€?@). It is the multiuser
efficiency of the individually optimum multiuser detectd) (vhich requires the summation of
at leas2~"! terms. It is proven that this task cannot be performed inmpamtyial time [16].

The solution corresponding to initial valug = 0 is the multiuser efficiency of a non-
linear gradient based iterative search approximating greamplete detector (4). It may be
different from the solution maximizing the free energy @tf In such cases it gives smaller
multiuser efficiency than the solution obtained for initraluern, = 1. In exchange for this, it
can be achieved with polynomial time complexity using Stastit Hopfield Neural Networks
(SHNN).

All three solutions coincide for a wide range of parametévad, noise variance, prior
distribution). In this case, the performances of the gratdsearch-based detector with poly-
nomial complexity and the np-complete individually optimaletector (4) coincide, too. At
first glance, this seems to contradict the np-completerfabg individually optimum detector.
Note, however, that previous considerations hold for amitefiuser population only.

5 Density evolution and Gaussian approximation

For finite number of users, the messaggy andL{ are random variables whose joint pdf
is induced by the joint probability measure of the usersrimation bits, of the channel noise,
of the users’ spreading sequences, and of the random enerkeof the user codes.

The DE approach to the analysis of message-passing iedgnoding algorithms consists
of propagating from iteration to iteration the pdf of the s&ges [12]. The bit-error probability
performance of the decoder can be derived by the limitinggbdhe messages after a large
number of iterations. Under mild conditions, & — oo a general concentration result [12]
ensures that the messages arriving at each node are mstadikyically independent, and their



marginal pdfs converge in probability to the marginal pdisnputed on a cycle-free average
graph, where in our case “averaging” is with respect to thaplgrstructure defined by the
bit-interleavers, the random information bits and the clenoise.

In order to remove the randomness due to the random seleatitre users spreading
sequences, and information messages, we study the 10-MUbeitarge-system limit and
make use of the self-averaging property of the free eneriypti¢e the order of the limits:
first we let N — oo and then,, K — oc). We assume that the users are grouped into a
finite number.J of classes of cardinality<,, ..., K;, where K = ijl K, with received
SNR levelsy,. ..., g;, 1.€.,7; = g, if userk belongs to clasg, and we assume that the ratio
a; = K;/L remains fixed for allj, asL — oc.

The prior distribution of the information bit of usérat time instant: is uniquely char-
acterized by the parametayr,, = tanh(L{% /2). By following in the footsteps of [2] we can
show that, at any iteratiom, the empirical distribution of the, ,’s over all users: in class

j converges to a given deterministic distributiﬁ}‘(") (t), asK — oco. Thus, the fixed point
equation for the multiuser efficiency (22) at decoder iieratn can be expressed as

4 1~ tanh (2y/gn + g™ )
1 J j
—y = 1D a5, / / (1-¢) DzdF™(1). (24)
U j=1 1 — #2 tanh? (z\/gjn(”ﬂ + 9j77(m>>

Thus, the conditional distribution df;"s? givency,, = 0 is N(2g;7™, 4¢;1™), for userk in
classj, in the large system limit. Hence, the DE is completely egpeel by the evolution of
the single parametef™, form =0,1,2,.. ..

For general linear convolutional codes, the SISO decod&rasomplicated to compute
the pdf of Li% from the pdf of L;":¢ in closed form. A semianalytic technique to the DE
consists of approximating the pdf df‘gj‘g by a Monte Carlo generated histogram, obtained
directly by the forward-backward algorithm applied to ramdy generated i.i.d. input log-
ratiosCad ~ N(2g;n™ . 4g;1™™). A simpler approach consists of a Gaussian Approximation
(GA) of the SISO output messages [5, 3, 2]. Here, we make ubedGaussian tail matching”
approximation of [2]. Lek denote the symbol-error rate (SER) at the SISO decoder putpu
given by' € = Pr (sign(L§%) # cx,n). ASSUmIngLi® ~ N(2u, 4u1) thene = Q(+/11/2). For
a given convolutional code over AWGN, the SERs a known function of the decoder input
SNR, which in our case is given byn™) for a user in clasg at iterationm. Hence, the
pdf of the log-ratios at the output of its SISO decoder (uriderGA assumption) is uniquely
identified by the single parameter

2

i (1) 2 [Q7" (e(gin™))] (25)

By putting (24) and (25) together, we can express the full®&by a one-dimensional dy-
namic system in the form™+!) = ¥(g, o, (™)), with initial conditionn® = 0, where the
mapping functionl' (g, a, ), is obtained implicitly by solving the equation

L +> o / (1 ol (mer“j(n))) (1 — tanh (Z\/QT‘I’JF%‘I’))
v = 793 1 — tanh? (y\/m+ Nj(n)) tanh? (z\/ﬁ+ gj\If)

R2

J

for all € [0, 1].

INotice that SER refers to decisions based on extrinsic inéion, not on a posteriori probabilities of the
SISO decoders.



6 Optimal received power distribution

Within the limits of the assumptions made in order to obtam DE-GA, the decoder perfor-
mance is completely characterized by the fixed points of yiséesn defined by the mapping
function ¥(g, a, 7). This is continuous and non-decreasingjinwith ¥(g, o, 0) > 0 and
¥U(g, a, 1) < 1. Then, the trajectory with initial conditioffi® = 0 converges to the fixed point
given by the smallest solution of the equation

U(g, a,n) =n, nel01] (27)

Next, we optimize the system spectral efficiency with resfethe received power distribution,
defined by(g, a). We fix a target maximum BER, to be achieved by all users in yistes.
This implies that for all users, after the iterative decodas converged to a stationary point,
the SINR at the SISO decoder inputs must be not smaller tharea threshold value SINR,
which depends on the code and on the target BER. We discitb&z8NR values such that
g < g2 < --- < gy, for some integer/, we select a desired channel loada constraint
interval? [6;,d,] C [0,1) and a margihe > 0. Then, we solve the following constrained
optimization problem with respect

J ‘I’(g:aﬂ?) 277+57 v 776 [61:52}
minimize Z a;g; subject t ijl aj = a, (28)
J=1 Qs > O, v ]

The solutiona* can be accepted if the fixed point, i.e., the smallest solution of the equation
U(g,a*,n) = nforn € [0,1], is such thay;n* > SINR;,. Otherwise, the program is run
again by changing the SNR valugsnd the design paramete¥s d,.

The program (28) is linear for the SHNN solution of the fixednpaequation for the
multiuser efficiency (22), as we show in the following. Theealive function, the non-
negativity constraint and the equality constraint are obsiy linear. The inequality constraint
U(g,a,n) >n+e, YV neld,d)isalsolinearin.

Though there is no explicit expression fB(g, o, ), we can use the same argument as for
post-IC linear MMSE filtering in [4]. Let = G, (V) be the fixed point equation (26) yielding
¥ as a function ofy, and let¥* be the smallest non-negative solution—this is the solution
corresponding to the SHNN solution—fgfixed. Then, the following implication holds:

U< U = U <G (0). (29)

Hence, we conclude that the inequality > 7 is equivalent ta) < G, (n), which yields the
linear constraint

zJ: | / (1 — tanh® (y+/p;(n) + Nj(”))) (1 — tanh(z,/g;7 + gjn)> by - _1
e oz]g]R2 1 — tanh®(y+/p;(n) + pj(n)) tanh? (z\/g]_n + g;1) Y= n+e
(30)

for n € [01,0-] to be used in (28). However, if the free energy does not faversmallest
solution of the fixed point equation (22), we find that (29) slaet hold. Fortunately, the free
energy favors the SHNN solution for convolutional codesaalones demands for extremely
low bit error rates (typicallyt0~1° or below) with weak codes.

2The contraint interval should be a subset of the unit infesivee it is sufficient for the fixed-point multiuser
efficiency to be close to 1. Forcing it to approach unity aduily close would result in a huge degradation in
power efficiency. It is also reasonable to exclideom the contraint interval for numerical reasons.

3The margire is trading number of iterations against power efficiency.
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Figure 1:Bit error rate for constant power profile (left hand side) apdctral efficiency for optimized
power profile (right hand side) of iterative multiuser deiogd I0-MUD and MMSE-IC are marked by
circles and crosses, respectively. The power optimizaiges the parameter= 10~2. The target bit

error rate for plotting the spectral efficiencylig™>.

7 Results

First, we compare the performance of iterative multiusesodeng employing 10-MUD to
MMSE-IC without power profile optimization. The respectivi¢ error rates for rate? = 3
convolutional codes with 64 states are depicted on the kfidhside of Fig. 1 for several
system loads. It can be observed that for increasing load the gap widehst i5s MMSE-
IC becomes more and more suboptimum. At a moderate load-ef2.5 corresponding to a
spectral efficiency op = 1.25 bit/s/Hz, the penalty due to MMSE-IC is 2.75 dB compared to
the exact belief propagation algorithm.

It is worth to remark that the figure remains unchanged, fi@éUD is replaced by the
SHNN solution, since phase transitions occur only for th&lgaal-to-noise ratios which lead
to bit error rates below0—1°.

The significant gap between MMSE-IC and 10-MUD becomes awmrsgibly small, when
the power profile of the users is optimized. This is illuschdn the right hand side of Figure 1.
For the same half rate convolutional code with 64 statesigad 2.75 dB loss without power
profile optimization, a loss of only 0.5 dB occurs after powptimization. For large spectral
efficiency the gap slightly increases, but still remains lkmido phase transitions could be
found for the optimized power profiles at the target bit erade of10->.

The narrowing gap for optimized power profile is quite intathaving in mind the result of
reference [15] which shows that for infinite length randorde®and optimized power profile
among the users MMSE-IC incurs no suboptimality. Thus, we egect that for stronger
codes the gap continues to shrink.

8 Summary and conclusions

A fixed point equation for the large system multiuser efficieof the 10-MUD with non-

uniform priors has been derived. In general, the fixed pajuagion has multiple solutions.
For the smallest solution, power profile optimization hasrbshown to be a linear program.
For a wide range of practical parameter settings in itegatialtiuser decoding, the fixed point



eguation has a unique solution and phase transitions dacoat.o

For optimized power profile, the gap between exact beliepagation and the approxi-

mation of the I0-MUD by MMSE-IC is considerably small. Thubkere is only little left to
be gained in performance due to multiuser detection algostwith higher complexity than
MMSE-IC, e.g. sphere decoding based algorithms as propogad, 8].
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