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Abstract

Iterative multiuser joint decoding based on exact Belief Propagation (BP) is analyzed in
the large system limit by means of the replica method. It is shown that performance can be
improved by appropriate power assignment to the users. The optimum power assignment
can be found by linear programming in most technically relevant cases.

The performance of BP iterative multiuser joint decoding iscompared to suboptimum
approximations based on Interference Cancellation (IC). While IC receivers show a signif-
icant loss for equal-power users, they yield performance close to BP under optimum power
assignment.

1 Introduction

The complexity of optimum multiuser joint decoding is exponential in both the code block-
length (constraint length for convolutional codes) and thenumber of users [6]. Since this
complexity is often considered infeasible, iterative methods have been proposed. In particular,
the general framework of Belief-Propagation (BP) [11] can be applied to the coded multiuser
channel [19, 2]. BP is known to yield optimum performance provided that theBayesian net-
work associated with the multiuser decoding problem is free of loops [9]. Even though the
Bayesian network representing to multiuser decoding problem has cycles any case of interest
(for more than one user and when user codes are non-trivial),driven by the fact that BP proved
to yield excellent results also in the presence of cycles [1], the application of BP to multiuser
decoding is a heuristically sound approach.�The research of T. Tanaka was performed during his visit at Aston University, Birmingham, U.K. and sup-
ported by EPSRC research grant GR/N00562.
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A straightforward implementation of BP is no longer exponential in the product of the
blocklength (or constraint length) and the number of users,but only exponential in their max-
imum. However, exponential complexity in the number of users may still be too costly for
many applications. Therefore, several approximations of exact BP have been proposed, many
of which being based on interference cancellation (IC) possibly followed by linear MMSE
filtering (see [2] and references therein).

Recently, other approaches for approximating the exact BP decoder have gained increasing
attention. In particular, by exploiting the analogy between multiuser detection and minimum-
distance decoding of lattices, soft-output versions of theSphere-Decoder [18] have been pro-
posed [17, 8]. When the number of users is not larger than the spreading gain, the Sphere-
Decoder has polynomial complexity in the number of users, comparable to that of post-IC
linear MMSE filtering. However, the quantification of the potential gain achievable by using
more complicated BP approximation methods than post-IC linear MMSE filtering in iterative
multiuser joint decoding remains unclear.

This work provides an answer to this question by analyzing the performance of the exact
BP decoder for random spreading in the large system limit. The standard tool to analyze the
limit performance of iterative decoding algorithms is Density Evolution (DE) [12]. In [2, 4],
the large-system limit of IC-based iterative multiuser joint decoding was obtained by using
DE in conjunction withby-now classical results on the large-system limit of linear multiuser
detection [14]. In this work, we shall use DE in conjunction with results of statistical mechanics
and the replica method [13, 7].

In addition to just providing an analysis of the performanceof the BP decoder in the large
system limit, our analysis also allows to solve the problem of optimum power assignment to
the users in many cases of technical interest.

2 Synchronous CDMA system model

We consider the real-valued discrete-time channel modelY = SWX+N (1)

originated by sampling at the chip-rate a synchronous CDMA system [16], where:

1. Y;N 2 RL�N , are the matrices of received chip-rate samples and the corresponding
AWGN samples� N(0; �20);

2. S 2 RL�K contains the user spreading sequences by columns;

3. W = diag(w1; : : : ; wK) contains the user amplitudes which are assumed to obey the
normalizationtra
e(W2) = K without loss of generality;

4. X 2 f+1;�1gK�N is the matrix of the users’ binary modulation symbols. The rowxk of X is the code word transmitted by userk. The columnxn of X is the vector of
symbols transmitted by all users at the same time (n-th symbol interval);

5. L;K andN denote the spreading factor, the number of users and the codeblock length,
respectively.

Spreading sequences are random with i.i.d. Gaussian elements with mean 0, variance1=L,
and thek-th userreceived SNR is
k = w2k=�20. Users send information messages in the form of



binary uniformly distributed vectorsbk of lengthB. For the sake of simplicity, we assume that
all users employ the same binary convolutional codeC � f+1;�1gN but each user employs
a different random interleaver. The user coding rate is given byR = B=N bit/symbol and the
system spectral efficiency is given by� = �R, where� = K=L (users per chip) is thesystem
load.

We avoid addressing the complex valued AWGN channel in orderto keep notation at a
reasonable level of complication. Extending the results obtained for the real-valued channel to
the complex-valued one is a tedious but straightforward exercise.

3 Iterative decoding algorithms

For a binary variable
 with pmf (Pr(
 = +1);Pr(
 = �1)) we define its log-ratio byL �= log Pr(
 = +1)Pr(
 = �1)
The BP algorithm approximates iteratively the log-ratiosLbitk;j corresponding to the marginals
of the a posteriori joint pmfPr(b1; : : : ;bK jY). After a given number of iterations, a symbol-
by-symbol decision is made according to the threshold rulebbk;j = sign(Lbitk;j).

The main building blocks of the BP iterative multiuser jointdecoder are the SISO decoders
and the individually optimum MAP multiuser detector (IO-MUD). SISO decoding is formally
expressed by Lde
k;n = log P
2Ck:
n=+1 exp 12 Pj 6=n 
jLmudk;j !P
2Ck:
n=�1 exp 12 Pj 6=n 
jLmudk;j ! (2)

whereLmudk;j is the message (log-ratio) sent by the IO-MUD for userk relative to coded symbol
k;j andLde
k;n is the so called decoder “extrinsic information”. For convolutional codes, (2)
is efficiently implemented by the forward-backward algorithm. The same forward-backward
algorithm can compute the log-ratiosfLbitk;j : j = 1; : : : ; Bg for the user information bit while
computing (2).

IO-MUD consists of calculating the log-ratiosLmudk;n = log Pr(xk;n = +1jyn;Lde
1;n; : : : ;Lde
k�1;n;Lde
k+1;n; : : : ;Lde
K;n)Pr(xk;n = �1jyn;Lde
1;n; : : : ;Lde
k�1;n;Lde
k+1;n; : : : ;Lde
K;n) (3)

= log Px2f�1gK :xk=+1 exp0�� 12�20 �����yn � KPj=1wjsjxj�����2 + 12 Pj 6=k xjLde
j;n1APx2f�1gK :xk=�1 exp0�� 12�20 �����yn � KPj=1wjsjxj�����2 + 12 Pj 6=k xjLde
j;n1A (4)

Unfortunately, there is no efficient way to perform this calculation, in general. However, the
quality of the log-ratios can be analyzed in the large systemlimit using the replica method.



4 Performance of IO-MUD with non-uniform prior

The derivation of the performance is based on the replica method which is a common tool in
statistical mechanics [10]. It was introduced into the analysis of multi-user systems in [13].
The analysis presented here makes use of the generalizationto arbitrary powers in [7] and
further generalizes the results to arbitrary non-uniform binary priors.

The distribution at the channel output at time instantn conditioned on the signature se-
quences is proportional toZ(yn;S) =Pxn Pr(xn) exp �� 12�2 jyn � SWxnj2� (5)

if the fictious noise variance�2 is set to the true noise variance�20. Moreover (5) is independent
of n since the input is assumed to be stationary. Thus, the time indexn is dropped andn is
used for different purpose. In statistical mechanics the quantityFK(y;S) = 1K logZ(y;S) (6)

is called thefree energy. One of the fundamental principles of statistical mechanics is that the
free energy is self-averaging in the large system limit. That is, it is identical to its average over
the spreading sequences and the noise for almost all realizationslimK!1FK(y;S) = limK!1E 1K logZ(y;S) �= F: (7)

A standard trick in statistical mechanics is to re-write thefree energy in the following wayF = limK!1 1K limn!0 ��n log (EZn(y;S)) (8)

with the advantage that the expectation operator has moved into the argument of the logarithm.
Now, the free energy is evaluated for integern and the results is assumed to generalize to
positive realn. This procedure is called the replica method. Though it is still lacking rigorous
mathematical justification, it is a standard technique in statistical physics, see [10, 13] for
further discussion.

Let xka denote theath replica of userk’s binary symbol. Define�k = Lde
k;n and tk =tanh(�k=2). Then, it is shown in [13, 7] that the free energy can be expressed by the following
supremum supm;q ���1G(m; q)� I(m; q)	 (9)

where G(m; q) �= 12 log (1 + ��2 (1� q))1�n1 + ��2 (1� q) + n�2 (�20 + �(1� 2m+ q)) (10)

andI(m; q) �= supE;F �nEm + 12 n(n� 1)Fq + n2 F � limK!1 1K KPk=1 logMk(w2kE;w2kF )� (11)

with Mk(E; F ) �= Pfxka;a=1;:::;ng nQa=1Pr(xka)(1+tk2 exp"E nPa=1 xka + F2 � nPa=1 xka�2#
(12)1�tk2 exp"�E nPa=1 xka + F2 � nPa=1 xka�2#) :



With the following property of the Gaussian measureDz �= exp(�z2=2)=p2�dzexp�F S22 � = R exp ��pFzS�Dz (13)8S 2 R, we getMk(E; F ) = R Pfxka;a=1;:::;ng nQa=1Pr(xka)�1+tk2 exp ��zpF + E� nPa=1 xka� (14)1�tk2 exp ���zpF + E� nPa=1 xka��Dz:
Since fn �= Pfxka;a=1;:::;ng nQa=1Pr(xka) exp ��zpF + E� nPa=1 xka� (15)= Pxkn Pr(xkn)fn�1 exp h�zpF + E� xkni (16)= fn�1 
osh(zpF+E+�k=2)
osh(�k=2) = 
oshn(zpF+E+�k=2)
oshn(�k=2) ; (17)

we find Mk(E; F ) = R (1+tk) 
oshn�zpF+E+�k2 �+(1�tk) 
oshn�zpF+E��k2 �Dz2 
oshn��k2 � (18)

Following the further development in [13], that is taking derivatives with respect tom; q; E; F
to find the supremum points, taking derivatives with respectto n and lettingn! 0, we findm = E�;ww2 R 1+t2 tanh�zwpF + w2E + �2� + 1�t2 tanh�zwpF + w2E � �2�Dzq = E�;ww2 R 1+t2 tanh2 �zwpF + w2E + �2�+ 1�t2 tanh2 �zwpF + w2E � �2�DzE = 1�2+�(1�m) ; F = �20+�(1�2m+q)[�2+�(1�m)℄2 (19)

and the free energy becomesF = E�;w 
0 R 1+t2 log 
osh�zwpF + w2E + �2�+ 1�t2 log 
osh�zwpF + w2E � �2�Dz+ 12 log(1� t2)� Em� F (1�q)2 � 12� log�1 + �(1�m)�2 �� 12� �20+�(1�2m+q)�2+�(1�q) :
(20)

Since we are interested in the individually optimum detector, we let the fictious noise variance
approach the true noise variance� ! �0 and findE = F andm = q.

Note that in context of iterative decoding the priors are nottrue priors in the sense that the
transmission of zeros and ones were not equally likely. In the iterative decoding process the
priors are conditional priors. They are conditioned on the output of the last iteration step and
refer to a particular time instant and particular observations at other time instances only. Since
only extrinsic information is propagated, the priors affect the interfering users only. Thus,
the performance of all users with identical powers is identical due to the symmetry of the
interference in the large system limit. Moreover, it can be shown in the same way as in [7]
that the asymmetry in performance vanishes, if performanceis measured in terms of multiuser
efficiency. In the same way as in [13], it can be shown that there is an equivalent AWGN



superchannel and the impact of the other users is fully characterized by the multiuser efficiency
which is given by � = �20E: (21)

Thus, the system (19) gives1� = 1 + � � 1�20 � E�;
 
 R 1+t2 tanh �zp
� + 
� + �2�+ 1�t2 tanh �zp
� + 
� � �2 �Dz�= 1 + � Et;
 "
 �1� t2� Z 1� tanh �zp
� + 
��1� t2 tanh2 �zp
� + 
�� Dz# : (22)

In terms of multiuser efficiency, the free energy can be further simplified to readF = Et;
 Z 1 + t2 log ��1� t2� 
osh2 (zp
� + 
�) + t2� (23)+ t log [
osh (zp
� + 
�) + t sinh (zp
� + 
�)℄Dz � 
� + log(�)� �2� :
The fixed-point equation (22) may have either one or three positive solutions. When there

are three solutions, all three solutions are extremum points of the free energy. One of them is
the global maximum of the free energy. One is a local maximum of the free energy, and one
is a local minimum of the free energy. Two of these three solutions can be found by iterating
the fixed-point equation (22) setting the initial value for the multiuser efficiency to 0 and 1,
respectively.

One of these two solutions globally maximizes the free energy (23). It is the multiuser
efficiency of the individually optimum multiuser detector (4) which requires the summation of
at least2K�1 terms. It is proven that this task cannot be performed in polynomial time [16].

The solution corresponding to initial value�0 = 0 is the multiuser efficiency of a non-
linear gradient based iterative search approximating the np-complete detector (4). It may be
different from the solution maximizing the free energy globally. In such cases it gives smaller
multiuser efficiency than the solution obtained for initialvalue�0 = 1. In exchange for this, it
can be achieved with polynomial time complexity using Stochastic Hopfield Neural Networks
(SHNN).

All three solutions coincide for a wide range of parameters (load, noise variance, prior
distribution). In this case, the performances of the gradient search-based detector with poly-
nomial complexity and the np-complete individually optimum detector (4) coincide, too. At
first glance, this seems to contradict the np-completeness of the individually optimum detector.
Note, however, that previous considerations hold for an infinite user population only.

5 Density evolution and Gaussian approximation

For finite number of users, the messagesLmudk;n andLde
k;` are random variables whose joint pdf
is induced by the joint probability measure of the users information bits, of the channel noise,
of the users’ spreading sequences, and of the random interleavers of the user codes.

The DE approach to the analysis of message-passing iterative decoding algorithms consists
of propagating from iteration to iteration the pdf of the messages [12]. The bit-error probability
performance of the decoder can be derived by the limiting pdfof the messages after a large
number of iterations. Under mild conditions, asN ! 1 a general concentration result [12]
ensures that the messages arriving at each node are mutuallystatistically independent, and their



marginal pdfs converge in probability to the marginal pdfs computed on a cycle-free average
graph, where in our case “averaging” is with respect to the graph structure defined by the
bit-interleavers, the random information bits and the channel noise.

In order to remove the randomness due to the random selectionof the users spreading
sequences, and information messages, we study the IO-MUD inthe large-system limit and
make use of the self-averaging property of the free energy. (Notice the order of the limits:
first we letN ! 1 and thenL;K ! 1). We assume that the users are grouped into a
finite numberJ of classes of cardinalityK1; : : : ; KJ , whereK = PJj=1Kj, with received
SNR levelsg1; : : : ; gJ , i.e.,
k = gj if userk belongs to classj, and we assume that the ratio�j = Kj=L remains fixed for allj, asL!1.

The prior distribution of the information bit of userk at time instantn is uniquely char-
acterized by the parametertk;n = tanh(Lde
k;n=2). By following in the footsteps of [2] we can
show that, at any iterationm, the empirical distribution of thetk;n’s over all usersk in classj converges to a given deterministic distributionF (m)j (t), asK ! 1. Thus, the fixed point
equation for the multiuser efficiency (22) at decoder iterationm can be expressed as1�(m) = 1 + JXj=1 �jgj Z Z (1� t2) 1� tanh�zpgj�(m) + gj�(m)�1� t2 tanh2 �zpgj�(m) + gj�(m)� Dz dF (m)j (t): (24)

Thus, the conditional distribution ofLmudk;n given
k;n = 0 isN(2gj�(m); 4gj�(m)), for userk in
classj, in the large system limit. Hence, the DE is completely expressed by the evolution of
the single parameter�(m), for m = 0; 1; 2; : : :.

For general linear convolutional codes, the SISO decoder istoo complicated to compute
the pdf ofLde
k;n from the pdf ofLmudk;n in closed form. A semianalytic technique to the DE
consists of approximating the pdf ofLde
k;n by a Monte Carlo generated histogram, obtained
directly by the forward-backward algorithm applied to randomly generated i.i.d. input log-
ratiosLmudk;n � N(2gj�(m); 4gj�(m)). A simpler approach consists of a Gaussian Approximation
(GA) of the SISO output messages [5, 3, 2]. Here, we make use ofthe “Gaussian tail matching”
approximation of [2]. Let� denote the symbol-error rate (SER) at the SISO decoder output,
given by1 � = Pr �sign(Lde
k;n) 6= 
k;n�. AssumingLde
k;n � N(2�; 4�) then� = Q(p�=2). For
a given convolutional code over AWGN, the SER� is a known function of the decoder input
SNR, which in our case is given bygj�(m) for a user in classj at iterationm. Hence, the
pdf of the log-ratios at the output of its SISO decoder (underthe GA assumption) is uniquely
identified by the single parameter�j ��(m)� �= �Q�1(�(gj�(m)))�2 (25)

By putting (24) and (25) together, we can express the full DE-GA by a one-dimensional dy-
namic system in the form�(m+1) = 	(g;�; �(m)), with initial condition�(0) = 0, where the
mapping function	(g;�; �), is obtained implicitly by solving the equation1	 = 1 + JXj=1 �jgj ZR2 �1� tanh2 �yp�j(�) + �j(�)���1� tanh �zpgj	+ gj	��1� tanh2 �yp�j(�) + �j(�)� tanh2 �zpgj	+ gj	� DzDy:

(26)
for all � 2 [0; 1℄.

1Notice that SER refers to decisions based on extrinsic information, not on a posteriori probabilities of the
SISO decoders.



6 Optimal received power distribution

Within the limits of the assumptions made in order to obtain the DE-GA, the decoder perfor-
mance is completely characterized by the fixed points of the system defined by the mapping
function	(g;�; �). This is continuous and non-decreasing in�, with 	(g;�; 0) > 0 and	(g;�; 1) � 1. Then, the trajectory with initial condition�(0) = 0 converges to the fixed point
given by the smallest solution of the equation	(g;�; �) = �; � 2 [0; 1℄ (27)

Next, we optimize the system spectral efficiency with respect to the received power distribution,
defined by(g;�). We fix a target maximum BER, to be achieved by all users in the system.
This implies that for all users, after the iterative decoderhas converged to a stationary point,
the SINR at the SISO decoder inputs must be not smaller than a given threshold value SINRth,
which depends on the code and on the target BER. We discretizethe SNR values such thatg1 < g2 < � � � < gJ , for some integerJ , we select a desired channel load�, a constraint
interval2 [Æ1; Æ2℄ � [0; 1) and a margin3 " > 0. Then, we solve the following constrained
optimization problem with respect to�minimize JXj=1 �jgj subject to

8<: 	(g;�; �) � � + "; 8 � 2 [Æ1; Æ2℄PJj=1 �j = �;�j � 0; 8 j (28)

The solution�? can be accepted if the fixed point�?, i.e., the smallest solution of the equation	(g;�?; �) = � for � 2 [0; 1℄, is such thatg1�? � SINRth. Otherwise, the program is run
again by changing the SNR valuesg and the design parametersÆ1; Æ2.

The program (28) is linear for the SHNN solution of the fixed point equation for the
multiuser efficiency (22), as we show in the following. The objective function, the non-
negativity constraint and the equality constraint are obviously linear. The inequality constraint	(g;�; �) � � + "; 8 � 2 [Æ1; Æ2℄ is also linear in�.

Though there is no explicit expression for	(g;�; �), we can use the same argument as for
post-IC linear MMSE filtering in [4]. Let	 = G�(	) be the fixed point equation (26) yielding	 as a function of�, and let	? be the smallest non-negative solution—this is the solution
corresponding to the SHNN solution—for� fixed. Then, the following implication holds:	 � 	? () 	 � G�(	): (29)

Hence, we conclude that the inequality	? � � is equivalent to� � G�(�), which yields the
linear constraintJXj=1 �jgj ZR2 �1� tanh2�yp�j(�) + �j(�)���1� tanh�zpgj� + gj���1� tanh2�yp�j(�) + �j(�)� tanh2�zpgj� + gj�� DzDy � 1� + "�1:

(30)
for � 2 [Æ1; Æ2℄ to be used in (28). However, if the free energy does not favor the smallest
solution of the fixed point equation (22), we find that (29) does not hold. Fortunately, the free
energy favors the SHNN solution for convolutional codes unless ones demands for extremely
low bit error rates (typically10�10 or below) with weak codes.

2The contraint interval should be a subset of the unit interval since it is sufficient for the fixed-point multiuser
efficiency to be close to 1. Forcing it to approach unity arbitrarily close would result in a huge degradation in
power efficiency. It is also reasonable to exclude0 from the contraint interval for numerical reasons.

3The margin" is trading number of iterations against power efficiency.
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Figure 1:Bit error rate for constant power profile (left hand side) andspectral efficiency for optimized
power profile (right hand side) of iterative multiuser decoding. IO-MUD and MMSE-IC are marked by
circles and crosses, respectively. The power optimizationuses the parameter" = 10�2. The target bit
error rate for plotting the spectral efficiency is10�5.
7 Results

First, we compare the performance of iterative multiuser decoding employing IO-MUD to
MMSE-IC without power profile optimization. The respectivebit error rates for rateR = 12
convolutional codes with 64 states are depicted on the left hand side of Fig. 1 for several
system loads�. It can be observed that for increasing load the gap widens. That is MMSE-
IC becomes more and more suboptimum. At a moderate load of� = 2:5 corresponding to a
spectral efficiency of� = 1:25 bit/s/Hz, the penalty due to MMSE-IC is 2.75 dB compared to
the exact belief propagation algorithm.

It is worth to remark that the figure remains unchanged, if theIO-MUD is replaced by the
SHNN solution, since phase transitions occur only for thosesignal-to-noise ratios which lead
to bit error rates below10�10.

The significant gap between MMSE-IC and IO-MUD becomes considerably small, when
the power profile of the users is optimized. This is illustrated on the right hand side of Figure 1.
For the same half rate convolutional code with 64 states leading to 2.75 dB loss without power
profile optimization, a loss of only 0.5 dB occurs after poweroptimization. For large spectral
efficiency the gap slightly increases, but still remains small. No phase transitions could be
found for the optimized power profiles at the target bit errorrate of10�5.

The narrowing gap for optimized power profile is quite intutive having in mind the result of
reference [15] which shows that for infinite length random codes and optimized power profile
among the users MMSE-IC incurs no suboptimality. Thus, we can expect that for stronger
codes the gap continues to shrink.

8 Summary and conclusions

A fixed point equation for the large system multiuser efficiency of the IO-MUD with non-
uniform priors has been derived. In general, the fixed point equation has multiple solutions.
For the smallest solution, power profile optimization has been shown to be a linear program.
For a wide range of practical parameter settings in iterative multiuser decoding, the fixed point



equation has a unique solution and phase transitions do not occur.
For optimized power profile, the gap between exact belief propagation and the approxi-

mation of the IO-MUD by MMSE-IC is considerably small. Thus,there is only little left to
be gained in performance due to multiuser detection algorithms with higher complexity than
MMSE-IC, e.g. sphere decoding based algorithms as proposedin [17, 8].
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