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Abstract — The replica method, developed in sta-
tistical physics, is employed in conjunction with Gal-
lager’s methodology to accurately evaluate zero error
noise thresholds for Gallager code ensembles. Our ap-
proach generally provides more optimistic evaluations
than those reported in the information theory liter-
ature for sparse matrices; the difference vanishes as
the parity check matrix becomes dense.

I. INTRODUCTION

Recent progress in the research of error correcting codes has
revealed that Gallager’s original code provides one of the best
error correction performances to date [1, 2]. A code of this
type is defined by a randomly generated N(1—R) x N Boolean
sparse parity check matrix H, composed of j and k non-zero
(unit) elements per column and row, respectively. The code
length and code rate are denoted by N and R. The decod-
ing error rate Pg is a typical measure for the error correction
ability of a given code. Since Gallager’s codes are constructed
randomly, an average error rate [Pr], over a given ensemble,
specified by the parameters j and k, is introduced to charac-
terize their typical performance [3]; where [- - -] ; represents an
average over the code ensemble. For the maximum likelihood
decoding and a binary symmetric channel (BSC), the aver-
age error rate is defined as [Pg], = [Zno P(nO)AH(nO)] o
where P(n”) is the probability of a binary noise vector n°
being generated in the channel; and Az (n°) denotes an indi-
cator function that returns 1 when the posterior probability
of a noise vector m given the syndrome Hn°(mod 2) is not
maximized at n°, and 0 otherwise.

II. REPLICAS IN GALLAGER’S METHODOLOGY

Unfortunately, direct evaluation of the average error rate is
generally difficult. Instead, Gallager’s methodology upper-
bounds the average utilizing Chernoff’s inequality [4]. In the
current case, this approach provides a general bound
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where ¢ (Hn) becomes 1 when Hn =0 (mod 2) and vanishes
otherwise; and @ denotes the addition in modulo 2. Opti-
mizing the parameters 0 <A< 1 and p > 0 makes the bound
tighter. Evaluating Eq.(1) is still difficult as it involves a non-
integer moment [(---)?] ;. A standard strategy in such cases is
to further upperbound this expression by employing Jensen’s
inequality [(---)?]y < ([---]m)” with an additional constraint
p € [0,1]. As the bound is optimized by setting A=1/(1+p)
for a given p, we can obtain two types of bounds, depending
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on whether Jensen’s inequality is employed (i) after substitut-
ing A=1/(1+p) or (ii) directly to Eq.(1). We shall refer to
these strategies as J1 and J2, respectively. The replica method
(RM), invented in statistical physics, offers another option for
calculating the bound. This scheme evaluates Eq.(1) directly
by analytically continuing the expression obtained for a nat-
ural number p =1,2,..., for which analytical evaluation by
the saddle point method becomes possible, to that of any real
number p. Unfortunately, the validity of the replica method
has not been proved in general, as well as that of the replica
symmetry assumption used here [5]. Nevertheless, it can be
shown that no known self-consistent condition is broken in the
current case, which implies that the results obtained are likely
to be correct [6]. For a BSC, characterized by a flip probability
0<p<1/2, [Pg], vanishes for N — oo below a critical noise
level p;, termed the zero error noise threshold [3, 7]. Lower
bounds of p;,, obtained by several methods and for various
parameters, are compared in the Table below, where TP and
SL denote the typical pairs analysis [3] and Shannon’s limit,
respectively. One can find that RM offers the most optimistic
evaluation in all cases examined.

G.k) | Il 72 RM | TP | SL
(3,6) | 0.0678 | 0.0915 | 0.0998 | 0.0915 | 0.109
(4,6) | 0.1705 | 0.1709 | 0.173 | 0.1709 | 0.174
(2,4) [ 0 | 0.0286 | 0.0286 | 0.0286 | 0.109
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