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h Group,Aston University,Birmingham B4 7ET, UKAbstra
t | The repli
a method, developed in sta-tisti
al physi
s, is employed in 
onjun
tion with Gal-lager's methodology to a

urately evaluate zero errornoise thresholds for Gallager 
ode ensembles. Our ap-proa
h generally provides more optimisti
 evaluationsthan those reported in the information theory liter-ature for sparse matri
es; the di�eren
e vanishes asthe parity 
he
k matrix be
omes dense.I. Introdu
tionRe
ent progress in the resear
h of error 
orre
ting 
odes hasrevealed that Gallager's original 
ode provides one of the besterror 
orre
tion performan
es to date [1, 2℄. A 
ode of thistype is de�ned by a randomly generated N(1�R)�N Booleansparse parity 
he
k matrix H, 
omposed of j and k non-zero(unit) elements per 
olumn and row, respe
tively. The 
odelength and 
ode rate are denoted by N and R. The de
od-ing error rate PE is a typi
al measure for the error 
orre
tionability of a given 
ode. Sin
e Gallager's 
odes are 
onstru
tedrandomly, an average error rate [PE℄H over a given ensemble,spe
i�ed by the parameters j and k, is introdu
ed to 
hara
-terize their typi
al performan
e [3℄; where [� � �℄H represents anaverage over the 
ode ensemble. For the maximum likelihoodde
oding and a binary symmetri
 
hannel (BSC), the aver-age error rate is de�ned as [PE℄H = �Pn0 P (n0)�H(n0)�H ;where P (n0) is the probability of a binary noise ve
tor n0being generated in the 
hannel; and �H(n0) denotes an indi-
ator fun
tion that returns 1 when the posterior probabilityof a noise ve
tor n given the syndrome Hn0(mod 2) is notmaximized at n0, and 0 otherwise.II. Repli
as in Gallager's MethodologyUnfortunately, dire
t evaluation of the average error rate isgenerally diÆ
ult. Instead, Gallager's methodology upper-bounds the average utilizing Cherno�'s inequality [4℄. In the
urrent 
ase, this approa
h provides a general bound[PE℄H�24Xn0 P (n0)0�Xn6=0 Æ (Hn) P�(n�n0)P�(n0) 1A�35H ; (1)where Æ (Hn) be
omes 1 when Hn=0 (mod 2) and vanishesotherwise; and � denotes the addition in modulo 2. Opti-mizing the parameters 0� �� 1 and �� 0 makes the boundtighter. Evaluating Eq.(1) is still diÆ
ult as it involves a non-integer moment [(� � �)�℄H . A standard strategy in su
h 
ases isto further upperbound this expression by employing Jensen'sinequality [(� � �)�℄H � ([� � �℄H)� with an additional 
onstraint� 2 [0; 1℄. As the bound is optimized by setting �=1=(1+�)for a given �, we 
an obtain two types of bounds, depending

on whether Jensen's inequality is employed (i) after substitut-ing �= 1=(1+�) or (ii) dire
tly to Eq.(1). We shall refer tothese strategies as J1 and J2, respe
tively. The repli
a method(RM), invented in statisti
al physi
s, o�ers another option for
al
ulating the bound. This s
heme evaluates Eq.(1) dire
tlyby analyti
ally 
ontinuing the expression obtained for a nat-ural number � = 1; 2; : : :, for whi
h analyti
al evaluation bythe saddle point method be
omes possible, to that of any realnumber �. Unfortunately, the validity of the repli
a methodhas not been proved in general, as well as that of the repli
asymmetry assumption used here [5℄. Nevertheless, it 
an beshown that no known self-
onsistent 
ondition is broken in the
urrent 
ase, whi
h implies that the results obtained are likelyto be 
orre
t [6℄. For a BSC, 
hara
terized by a 
ip probability0<p< 1=2, [PE℄H vanishes for N!1 below a 
riti
al noiselevel pth termed the zero error noise threshold [3, 7℄. Lowerbounds of pth, obtained by several methods and for variousparameters, are 
ompared in the Table below, where TP andSL denote the typi
al pairs analysis [3℄ and Shannon's limit,respe
tively. One 
an �nd that RM o�ers the most optimisti
evaluation in all 
ases examined.(j; k) J1 J2 RM TP SL(3; 6) 0.0678 0.0915 0.0998 0.0915 0.109(4; 6) 0.1705 0.1709 0.173 0.1709 0.174(2; 4) 0 0.0286 0.0286 0.0286 0.109A
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