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Magnetization enumerator of real-valued symmetric channels in Gallager error-correcting codes
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Using the magnetization enumerator method, we evaluate the practical and theoretical limitations of sym-
metric channels with real outputs. Results are presented for several regular Gallager code constructions.
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Error-correcting codes play a central role in modern com—onsider information vectors representing binary messtages
munication, especially in noisy media such as in satellite and: {0,1}" to be encoded via Gallager’s scheme.
mobile communication. A broad range of error-correcting A Gallager code is defined by the binary parity check
codes is on offer: they vary significantly in their practical andmatrix A=[C,|C,] of dimensionality ¥ —N)x M, which
theoretical performance depending on the specific code chads a concatenation of two submatricesteiyular (K,C) Gal-
sen within a given code ensemble. Evaluating the limitationdager code has a fixed numb€nf nonzero elements per row
of specific code constructions is important for determiningin A, and a fixed numbe€ of nonzero elements per column.
the code efficiency and for optimizing channel performancelt follows that C=K(M —N)/M.
One of the leading code ensembles to date is the family of The message vectoe {0,1}" is encoded to the codeword
low density parity check codd4,2], which attracted signifi- x=GTte{0,4M prior to transmission, using the generator
cant interest both within and outside of the informationmatrix G=[1|(C,*C;)"]. This construction ensures that
theory community. AG'=0(mod2). Redundancy in the codeword, in the case

Methods of statistical physics have been recently emof unbiased messages, is measured by theRatél/M = 1
ployed to study the typical performance of various coding— C/K. After transmission of the codeword through the

schemes, most notably of low density parity check codesoisy channel, the following message is received:

[3—8]. Such studies have led to precise estimations of critical

channel-noise levekbeyond which decoding is not possiple y=x+n", (1)

and also provided additional insight through the physical in- C o ) o
terpretation of various decoding schemes. The emerging picvheren’ € R™ represents the real channel noise which, in the
ture for Gallager-type codes is that for sufficiently small case of Gaussian and Laplace channels, has the distribution

noise levels, decoding is possible and the error-ffeeo-

magnetig state is the only solution. For higher noise levels, Gaussian: P(n')= 1 exd — i(n_r)z )
one finds a transition to a regime where suboptimal solutions ' Y \2ra? 202 |

are createdspinodal or dynamical transitiprand where ex-

isting practical decoding algorithms fail to find the most Ini|

probable solution. For higher noise levels, a second transi- Laplace: P(nj)= T €)

tion occurs(thermodynamic transitionwhere the error-free

solution ceases to be dominant. This marks the upper theger biti. The channel-noise level is measured by the param-

retical bound for error-free communication using the codegtersg and\, respectively.

specified. The number of equally plausible solutions to the Note that since the channel noiée{} consists of real-

decoding problem thereafter is exponential in the number ofjyed variablegunlike the binary symmetric channel stud-

degrees of freedom. The thermodynamic transition apreq in Ref.[5]), the channel output is also real valued and

proaches Shannon’s limit with an increasing number of paryhe eyaluation of the syndrome vector cannot be based on

ity checks per bit. _ _ simple modulo 2 operations. Decoding is carried out by ap-
One of the most important aspects in the decoding probpying the Bayes rule and the corresponding noise model to

lem is the enumeration of possible solutions, as it provides Ralculate P(x=*1|y) for each bit. To bring the problem

direct indication of the practical and theoretical performance,gck to a binary setting, we follow the procedure of R&f,

of various decoding methods. A method for carrying out the;ng consider a fictitious channel where the sent messigye

analysis has been reported recently in RBf; the new ap- corrupted by binary noisa e {0,1}™:

proach generated interest in the application of the same '

method to other channel types characterized by real noise r=x+nf (mod 2). (4)

and real output values studied in this paper. In particular we

study the cases of the Gaussian and Laplace channels whidMithout loss of generality, one can také=x such thatr

are of high practical relevance, and are used as standard0 and P(n")=P(y|x)=P(y|n).

benchmark channels for evaluating the performance of We denote the set dfictitious) noise vectors that sat-
codes. We consider the channels to be symmetric, i.e., thisfy the parity check equation&an=Ar=0 by Ipc={n|An
probabilitiesP(zyudzin) = P(— Zoul — zin) ,» Wherez,,; and z;, =0}, the parity check set. To infer the original message one
are the input and output channel values, respectively. We alsweeds to find the original fictitious noisé from the parity
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check set on the basis of its statistics. The conditional prob- . C C .
abilities of the fictitious noise variabldthat satisfy the par- M(m)= EXU#,;T,Fn{ —mm-— in2+ by m]=Cly[ 7, 7]
ity checks follow from applying the Bayes ruléper biti):

P(yiln)P(n;) +|3[7A7;f:ﬂ]], (10
P(ny)=—""""+. ®
2 P(yiln)P(n)) with
n;
K K
It was shown(e.g., in Refs[3,4]) that this problem can be |1[7-r]:f [T {dxem(x} Inf21+11 x|, (1D
cast into a statistical mechanical formulation replacing the k=1 k=1

field ({0,1},+mod 2) by the field {1,—1},X) and by suit-
ably adapting the parity checks. Using the fact thatare
Ising variables with prioP(n;)=1/2, Eq.(5) can now be
written asP(n|y) =exd BH(n) ] where theenergy Hn) is up
to a constant given by

|2[w,%]=f dxdx ar(x)m(x)IN(1+xX), (12)

C _~ C
|3[%;Fn]=f 1 {d?(c%(ic)}<ln72i e[ (1+T§<C)> .

1 h
H(m =20 InP(nily) =g 2 nihy, (13)
d The functional extremization problem in E(LO) results in
h,= > > rInP(yj7) (6)  the following saddle point equations:
re{—-1,1} 1 1
andB=1 (which corresponds to Nishimori’s conditi¢m0]). %(i):f IT {dxem(xtsl x— 1T x|, (14)
To unify the notation for the Gaussian and the Laplace chan- k=1 k=1
nel, we denote the channel degradation parameter variable by o1
d, whered=¢?, \ for the Gaussian and Laplace channel, A~ A
respectively. With these definitions, for any symmetric chan- m(X)= Cll {dxcm(Xo)}| 6| x—tanh) mh
nel with real outputs, the local energies are staggered mag-
netizations along the fields; , the distribution of which fol- c1 )
lows from Eq.(6) in combination with Eqs(2) and (3), + 21 atanhix) , (19
respectively: . h
) a? o2 1 2 mrh "
Gaussian: p(h;)= >80~ & h—=]| |, @ c h2+ 7€ 1:[ (1+7xc)
7 m= Hl {dxcm(Xc)} N R
1 g 2n . z eTth (14 7Xc)
Laplace: p(h)==d8h—\"1H+ S(hi+x"1) == G h
2 2
(16)
+®[)\*1—|hi|]3e A (8)  Equations(14) and(15) are the infinite system equivalent of
2 the so-called density-evolution equatidi2d, and iteratively
where ®[x] is the Heavyside function returning 1 #=0  converge to the stationary distributions™(x), 7*(x).
and 0 ifx<0. Equations(10) and(16) are then evaluated for these station-
The entropy of the solutions to the decoding problem withary distributions. One should note that the solutiofi(x)
a given magnetizatiom(n;h)=1/MZ;n;h;=m is =4§[x—1] and 7*(x)=48[x—1] always exists, and has a

magnetizatiormy=(h),, (16) and zero entropy. Thigerro-
M(m)= i In 2 sSim—m(n;h)]). (9) magneti¢ solution corresponds to perfect retrie.vamlf (afte(
M ne Tyo(nnf;A) the gaugg and should be compared to alternative solutions,
if they exist, which correspond to the othéuboptimal
Averages in Eq(9) are taken over the field$,} [Eqgs.(7) or  noise candidates i, (N,A).
(8)], the parity check constructions, whereas the original In the limit K,C— (while keeping the rat® finite) it is
fictitious noisen’ is gauged away using the transformationspossible to derive these alternative solutions for all values of
ni—>ninif andyi—>yinif. In order to perform the averages, we m, analytically. This case is, however, of little practical in-
employ the replica identity: {In M(m))=Ilim,_,1/  terest, and will not be discussed in this paper.
nin(M"(m)). In the limitn—0 and within the replica sym- For finite K,C, alternative analytic solutions can no
metric assumptiofishown to be exact in this case for obtain- longer be obtained for both Gaussian and Laplace channels,
ing the theoretical critical noise leve]s]; for technical de- and one has to solve the saddle point equations numerically
tails also see, e.g., Ref3,9]), we find that to obtain M(m).
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"l | obtained fromM(m); it is the smallest positive value for
1 which there exists a valum* such thatd M(m)/om|« =
03 | —1/d. This typically happens at a value af* for which
I M(m*)<0, such that the practical transition point is upper
M(m) oz} | bounded by the thermodynamic transition point, which is, in
I ) turn, upper bounded by Shannon’s information-theoretic
01 b i limit, and the following inequalities holddy=d.<ds.
In Fig. 1 we present the magnetization enumerator for the
0.0 Gaussian and Laplace channels forka €)= (6,3) code at
1 ] the thermodynamic transition. The maximum number of so-
0 [ SN P : lutions to both channels depends only on the code Retis
-10  -05 0.0 0.5 10 M(0)=RIn2.
m

It should be noted that values 8f{((m)<0 are unphysi-
FIG. 1. The magnetization enumerator for the Gausgatid  cal, and are an artifact of the replica symmetric assumption.
curve and the Laplace(dashed curve channels for a K,C) Nevertheless, this region turns out to be irrelevant for the
=(6,3) code at the thermodynamic transition noise levet ( determination of the dynamicabkpinodal transition. This
=0.899,A.=0.712). For both channels the maximum number ofcan be understood by the fact that the replica symmetric
solutions isM(0)=RIn2. The energy of solutions is given by fixed point equations are the exact infinite size equivalent of
E(m) = —(1/d)m, while their free energy at the Nishimori tempera- {ha practical density evolution equatiof&. Therefore, al-

ture[10] is up to a constant given by the orthogonal distance to th h h . :
; . . o ) ntities rel h&1(m)<0 region are un-
straight lines. At the thermodynamic transition point, these are tar:eE ough quantities related to th&1(m)<0 region are u

gents toM(m) atm,=mg (=1 and 0.665 for the two channels, physical and should be. corrected by a refineq replica. sym-

respectively. metry_ ansatz, the reg|gu\/!(m)-<0 and the fixed p_omt
equations associated with it still allow us to determine the
dynamical transition point.

The critical noise values of the thermodynamic and spin- The calculated critical noise levels are presented in the
odal transitions now follow directly from the graphs of Table | for several code constructions and for the Gaussian
M(m), for different values ofi. and Laplace channels. These values are in excellent agree-

As explained in full detail in Ref5], the theoretical criti- ment with those obtained independently in R&f using a
cal degradation valud=d, is reached, fomaximum a pos- different method, as well as with the corresponding practical
teriori and typical set decoding methods, when the magnetiupper bounds of Ref2] obtained using density evolution.
zation at which the entropy of the suboptimal solutionsNote that we have also presented the critical degradation
vanishes, coincides with that of the ferromagnetic solutionvalues for different code constructions of identical rates to
For finite temperature decoding at the Nishimori temperatur@ustrate the opposite tendencies for the theoretical and prac-
[10], the critical noise value coincides with the thermody-tical critical values with increasingl and C. IncreasingK
namic transition at which the ferromagnetic solution ceasegndc (keepingK/C fixed) pushes the thermodynamic criti-
to be dominant, and{(m) has a slop@?M(m)/dm[m_rm),  cal value closer to Shannon’s information-theoretic limit, but
=—1/d at m=my=(h), (see Fig. 1 adversely affects the practically admissible degradation

Of more practical interest is the limiting practical noise value. This is in agreement with the common belief that code
level d=dgy, above which practical algorithms such as den-constructions with higher connectivity are less practical.
sity evolution[2] break down. This transition is signaled by  In this paper we have shown how the magnetization enu-
the emergence of suboptimal solutions for E¢B4) and  merator formalisni5] can be easily extended to real-valued
(15). These correspond to local minima of the free energy irchannels, in order to obtain both theoretical and practical
which the algorithm gets trapped,; this is known as a spinodatritical values for the degradation parameter. Following the
point or dynamical transition. The noise lew+dy can be  method presented in Refl] we have mapped the real-

TABLE I. Values of the critical noise levelspinodal and thermodynamic transitigpi$ the Gaussian and
Laplace channels for various reguldt,C) Gallager codes. For comparison, in the last column we present
Shannon’s information-theoretic bound.

(K,C) R a5 ol ol (K,C) R Ng Ne \s
6,9 0.5 0.775 0.899  0.958 (6,3 0.5 0.651  0.712  0.752
(5,3 0.4 1.017 1253 1321 (53 0.4 0773 0.875  0.914

6.9 0.333 1.020 1.666 1.681 (6,4 0.333 0.782 1.045 1.055
(9.9 0.333 0.379 1.679 1.681 (9.6 0.333 0.661 1.048 1.055
43 0.25 1.598 2.325 2401 (43 0.25 1.018 1.260 1.298
(8.6 0.25 0.880 2.396 2401 (8,6 0.25 0.619 1.271 1.298
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valued channel onto an equivalent fictitious binary channelwith those obtained known in the literati& 2], when avail-
and employed methods of statistical physics to calculate thable.
magnetization enumerator for the Gallager code ensemble. Studying the magnetization enumerator further, beyond
The magnetization enumerator is instructive in the way itthe practical limiting noise level, may provide additional in-
nicely links the various decoding SChen[éiand facilitates S|ght into the decoding Comp|exity the performance of
;che (Ijerivation of both practical and theoretical critical noisegallager-type codes.
evels.
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