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Magnetization enumerator of real-valued symmetric channels in Gallager error-correcting codes
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Using the magnetization enumerator method, we evaluate the practical and theoretical limitations of sym-
metric channels with real outputs. Results are presented for several regular Gallager code constructions.
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Error-correcting codes play a central role in modern co
munication, especially in noisy media such as in satellite
mobile communication. A broad range of error-correcti
codes is on offer: they vary significantly in their practical a
theoretical performance depending on the specific code
sen within a given code ensemble. Evaluating the limitatio
of specific code constructions is important for determin
the code efficiency and for optimizing channel performan
One of the leading code ensembles to date is the family
low density parity check codes@1,2#, which attracted signifi-
cant interest both within and outside of the informati
theory community.

Methods of statistical physics have been recently e
ployed to study the typical performance of various cod
schemes, most notably of low density parity check co
@3–8#. Such studies have led to precise estimations of crit
channel-noise levels~beyond which decoding is not possibl!
and also provided additional insight through the physical
terpretation of various decoding schemes. The emerging
ture for Gallager-type codes is that for sufficiently sm
noise levels, decoding is possible and the error-free~ferro-
magnetic! state is the only solution. For higher noise leve
one finds a transition to a regime where suboptimal soluti
are created~spinodal or dynamical transition! and where ex-
isting practical decoding algorithms fail to find the mo
probable solution. For higher noise levels, a second tra
tion occurs~thermodynamic transition! where the error-free
solution ceases to be dominant. This marks the upper th
retical bound for error-free communication using the co
specified. The number of equally plausible solutions to
decoding problem thereafter is exponential in the numbe
degrees of freedom. The thermodynamic transition
proaches Shannon’s limit with an increasing number of p
ity checks per bit.

One of the most important aspects in the decoding pr
lem is the enumeration of possible solutions, as it provide
direct indication of the practical and theoretical performan
of various decoding methods. A method for carrying out
analysis has been reported recently in Ref.@5#; the new ap-
proach generated interest in the application of the sa
method to other channel types characterized by real n
and real output values studied in this paper. In particular
study the cases of the Gaussian and Laplace channels w
are of high practical relevance, and are used as stan
benchmark channels for evaluating the performance
codes. We consider the channels to be symmetric, i.e.,
probabilitiesP(zoutuzin)5P(2zoutu2zin), wherezout and zin
are the input and output channel values, respectively. We
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consider information vectors representing binary messagt
P$0,1%N to be encoded via Gallager’s scheme.

A Gallager code is defined by the binary parity che
matrix A5@C1uC2# of dimensionality (M2N)3M , which
is a concatenation of two submatrices. Aregular (K,C) Gal-
lager code has a fixed numberK of nonzero elements per row
in A, and a fixed numberC of nonzero elements per column
It follows that C[K(M2N)/M .

The message vectortP$0,1%N is encoded to the codewor
x5GTtP$0,1%M prior to transmission, using the generat
matrix G5@ I u(C2

21C1)T#. This construction ensures tha
AGT50(mod2). Redundancy in the codeword, in the ca
of unbiased messages, is measured by the rateR[N/M51
2C/K. After transmission of the codeword through th
noisy channel, the following message is received:

y5x1nr , ~1!

wherenrPRM represents the real channel noise which, in
case of Gaussian and Laplace channels, has the distribu

Gaussian: P~ni
r !5

1

A2ps2
expF2

1

2s2
~ni

r !2G , ~2!

Laplace: P~ni
r !5

1

2l
expF2

uni
r u

l G , ~3!

per bit i. The channel-noise level is measured by the para
eterss andl, respectively.

Note that since the channel noise$ni
r% consists of real-

valued variables~unlike the binary symmetric channel stud
ied in Ref.@5#!, the channel outputy is also real valued and
the evaluation of the syndrome vector cannot be based
simple modulo 2 operations. Decoding is carried out by
plying the Bayes rule and the corresponding noise mode
calculateP(x561uy) for each bit. To bring the problem
back to a binary setting, we follow the procedure of Ref.@1#,
and consider a fictitious channel where the sent messagex is
corrupted by binary noisenfP$0,1%M:

r5x1nf ~mod 2!. ~4!

Without loss of generality, one can takenf5x such thatr
50 andP(nr)5P(yux)5P(yunf).

We denote the set of~fictitious! noise vectorsn that sat-
isfy the parity check equationsAn5Ar50 by Ipc5$nuAn
50%, the parity check set. To infer the original message o
needs to find the original fictitious noisenf from the parity
©2003 The American Physical Society01-1
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check set on the basis of its statistics. The conditional pr
abilities of the fictitious noise variables~that satisfy the par-
ity checks! follow from applying the Bayes rule~per bit i ):

P~ni uyi !5
P~yi uni !P~ni !

(
ni8

P~yi uni8!P~ni8!

. ~5!

It was shown~e.g., in Refs.@3,4#! that this problem can be
cast into a statistical mechanical formulation replacing
field ($0,1%,1mod 2) by the field ($1,21%,3) and by suit-
ably adapting the parity checks. Using the fact thatni are
Ising variables with priorP(ni)51/2, Eq. ~5! can now be
written asP(nuy)5exp@bH(n)# where theenergy H(n) is up
to a constant given by

H~n!5(
i

lnP~ni uyi !5
1

d (
i

nihi ,

hi[
d

2 (
tP$21,1%

t ln P~yi ut! ~6!

andb51 ~which corresponds to Nishimori’s condition@10#!.
To unify the notation for the Gaussian and the Laplace ch
nel, we denote the channel degradation parameter variab
d, whered5s2, l for the Gaussian and Laplace chann
respectively. With these definitions, for any symmetric ch
nel with real outputs, the local energies are staggered m
netizations along the fieldshi , the distribution of which fol-
lows from Eq. ~6! in combination with Eqs.~2! and ~3!,
respectively:

Gaussian: p~hi !5As2

2p
expF2

s2

2 S hi2
1

s2D 2G , ~7!

Laplace: p~hi !5
1

2
d~hi2l21!1

e22/l

2
d~hi1l21!

1Q@l212uhi u#
1

2
ehi2l21

, ~8!

whereQ@x# is the Heavyside function returning 1 ifx>0
and 0 if x,0.

The entropy of the solutions to the decoding problem w
a given magnetizationm(n;h)51/M( inihi5m is

M~m!5
1

M K ln (
nPIpc(n,nf ;A)

d@m2m~n;h!#L . ~9!

Averages in Eq.~9! are taken over the fields$hi% @Eqs.~7! or
~8!#, the parity check constructionsA, whereas the origina
fictitious noisenf is gauged away using the transformatio
ni→nini

f andyi→yini
f . In order to perform the averages, w

employ the replica identity: ^ ln M(m)&5 limn→01/
nln^M n(m)&. In the limit n→0 and within the replica sym
metric assumption~shown to be exact in this case for obtai
ing the theoretical critical noise levels@5#; for technical de-
tails also see, e.g., Refs.@3,9#!, we find that
03710
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M~m!5Extrp,p̂,m̂H 2m̂m2
C

K
ln 21

C

K
I 1@p#2CI2@p,p̂#

1I 3@p̂;m̂#J , ~10!

with

I 1@p#5E )
k51

K

$dxkp~xk!% lnF11)
k51

K

xkG , ~11!

I 2@p,p̂#5E dxdx̂ p~x!p̂~ x̂!ln~11xx̂!, ~12!

I 3@p̂;m̂#5E )
c51

C

$dx̂cp̂~ x̂c!%K ln (
t56

etm̂h)
c51

C

~11t x̂c!L
h

.

~13!

The functional extremization problem in Eq.~10! results in
the following saddle point equations:

p̂~ x̂!5E )
k51

K21

$dxkp~xk!%dFx2 )
k51

K21

xkG , ~14!

p~x!5E )
c51

C21

$dx̂cp̂~ x̂c!%K dFx2tanhF m̂h

1 (
c51

C21

atanh~ x̂c!G G L
h

, ~15!

m5E )
c51

C

$dx̂cp̂~ x̂c!%K h (
t56

tem̂th)
c

~11t x̂c!

(
t56

etm̂h)
c

~11t x̂c!
L

h

.

~16!

Equations~14! and~15! are the infinite system equivalent o
the so-called density-evolution equations@2#, and iteratively
converge to the stationary distributionsp* (x), p̂* (x).
Equations~10! and~16! are then evaluated for these statio
ary distributions. One should note that the solutionp̂* ( x̂)
5d@ x̂21# and p* (x)5d@x21# always exists, and has
magnetizationm05^h&h ~16! and zero entropy. This~ferro-
magnetic! solution corresponds to perfect retrieval (nf after
the gauge!, and should be compared to alternative solutio
if they exist, which correspond to the other~suboptimal!
noise candidates inIpc(n,A).

In the limit K,C→` ~while keeping the rateR finite! it is
possible to derive these alternative solutions for all values
m, analytically. This case is, however, of little practical i
terest, and will not be discussed in this paper.

For finite K,C, alternative analytic solutions can n
longer be obtained for both Gaussian and Laplace chann
and one has to solve the saddle point equations numeric
to obtainM(m).
1-2
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The critical noise values of the thermodynamic and sp
odal transitions now follow directly from the graphs
M(m), for different values ofd.

As explained in full detail in Ref.@5#, the theoretical criti-
cal degradation valued5dc is reached, formaximum a pos-
teriori and typical set decoding methods, when the magn
zation at which the entropy of the suboptimal solutio
vanishes, coincides with that of the ferromagnetic soluti
For finite temperature decoding at the Nishimori temperat
@10#, the critical noise value coincides with the thermod
namic transition at which the ferromagnetic solution cea
to be dominant, andM(m) has a slope]M(m)/]mum5^h&h

521/d at m5m05^h&h ~see Fig. 1!.
Of more practical interest is the limiting practical noi

level d5dd , above which practical algorithms such as de
sity evolution@2# break down. This transition is signaled b
the emergence of suboptimal solutions for Eqs.~14! and
~15!. These correspond to local minima of the free energy
which the algorithm gets trapped; this is known as a spino
point or dynamical transition. The noise leveld5dd can be

FIG. 1. The magnetization enumerator for the Gaussian~solid
curve! and the Laplace~dashed curve! channels for a (K,C)
5(6,3) code at the thermodynamic transition noise levels (sc

2

50.899, lc50.712). For both channels the maximum number
solutions isM(0)5R ln 2. The energy of solutions is given b
E(m)52(1/d)m, while their free energy at the Nishimori temper
ture @10# is up to a constant given by the orthogonal distance to
straight lines. At the thermodynamic transition point, these are
gents toM(m) at m!5m0 (51 and 0.665 for the two channels
respectively!.
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obtained fromM(m); it is the smallest positive valued for
which there exists a valuem* such that]M(m)/]mum* 5
21/d. This typically happens at a value ofm* for which
M(m* ),0, such that the practical transition point is upp
bounded by the thermodynamic transition point, which is,
turn, upper bounded by Shannon’s information-theore
limit, and the following inequalities hold:dd<dc<dS .

In Fig. 1 we present the magnetization enumerator for
Gaussian and Laplace channels for a (K,C)5(6,3) code at
the thermodynamic transition. The maximum number of
lutions to both channels depends only on the code rateR as
M(0)5R ln 2.

It should be noted that values ofM(m),0 are unphysi-
cal, and are an artifact of the replica symmetric assumpt
Nevertheless, this region turns out to be irrelevant for
determination of the dynamical~spinodal! transition. This
can be understood by the fact that the replica symme
fixed point equations are the exact infinite size equivalen
the practical density evolution equations@2#. Therefore, al-
though quantities related to theM(m),0 region are un-
physical and should be corrected by a refined replica s
metry ansatz, the regionM(m),0 and the fixed point
equations associated with it still allow us to determine
dynamical transition point.

The calculated critical noise levels are presented in
Table I for several code constructions and for the Gauss
and Laplace channels. These values are in excellent ag
ment with those obtained independently in Ref.@8# using a
different method, as well as with the corresponding practi
upper bounds of Ref.@2# obtained using density evolution
Note that we have also presented the critical degrada
values for different code constructions of identical rates
illustrate the opposite tendencies for the theoretical and p
tical critical values with increasingK and C. IncreasingK
andC ~keepingK/C fixed! pushes the thermodynamic crit
cal value closer to Shannon’s information-theoretic limit, b
adversely affects the practically admissible degradat
value. This is in agreement with the common belief that co
constructions with higher connectivity are less practical.

In this paper we have shown how the magnetization e
merator formalism@5# can be easily extended to real-value
channels, in order to obtain both theoretical and pract
critical values for the degradation parameter. Following
method presented in Ref.@1# we have mapped the rea

f

e
n-
sent

TABLE I. Values of the critical noise levels~spinodal and thermodynamic transitions! of the Gaussian and

Laplace channels for various regular (K,C) Gallager codes. For comparison, in the last column we pre
Shannon’s information-theoretic bound.

(K,C) R sd
2 sc

2 sS
2 (K,C) R ld lc lS

~6,3! 0.5 0.775 0.899 0.958 ~6,3! 0.5 0.651 0.712 0.752
~5,3! 0.4 1.017 1.253 1.321 ~5,3! 0.4 0.773 0.875 0.914
~6,4! 0.333 1.020 1.666 1.681 ~6,4! 0.333 0.782 1.045 1.055
~9,6! 0.333 0.379 1.679 1.681 ~9,6! 0.333 0.661 1.048 1.055
~4,3! 0.25 1.598 2.325 2.401 ~4,3! 0.25 1.018 1.260 1.298
~8,6! 0.25 0.880 2.396 2.401 ~8,6! 0.25 0.619 1.271 1.298
1-3
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BRIEF REPORTS PHYSICAL REVIEW E67, 037101 ~2003!
valued channel onto an equivalent fictitious binary chann
and employed methods of statistical physics to calculate
magnetization enumerator for the Gallager code ensem
The magnetization enumerator is instructive in the way
nicely links the various decoding schemes@5# and facilitates
the derivation of both practical and theoretical critical no
levels.

Using Nishimori’s gauge theory, the theoretical critic
noise levels can be shown to be exact, while our pract
critical degradation parameters are in excellent agreem
03710
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with those obtained known in the literature@8,2#, when avail-
able.

Studying the magnetization enumerator further, beyo
the practical limiting noise level, may provide additional i
sight into the decoding complexity the performance
Gallager-type codes.
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