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t. We study the performan
e of Low Density Parity Che
k(LDPC) error-
orre
ting 
odes using the methods of statisti
al physi
s.LDPC 
odes are based on the generation of 
odewords using Booleansums of the original message bits by employing two randomly-
onstru
tedsparse matri
es. These 
odes 
an be mapped onto Ising spin models andstudied using 
ommon methods of statisti
al physi
s. We examine var-ious regular 
onstru
tions and obtain insight into their theoreti
al andpra
ti
al limitations. We also brie
y report on results obtained for irreg-ular 
ode 
onstru
tions, for 
odes with non-binary alphabet, and on howa �nite system size e�e
ts the error probability.1 Introdu
tionModern tele
ommuni
ation relies heavily on error 
orre
ting me
hanisms to 
om-pensate for 
orruption due to noise during transmission. The information trans-mission 
ode rate, measured in the fra
tion of informative transmitted bits, playsa 
ru
ial role in determining the speed of 
ommuni
ation 
hannels. Rigorousbounds [1℄ have been derived for the maximal 
ode rate for whi
h 
odes, 
apableof a
hieving arbitrarily small error probability, 
an be found. However, thesebounds are not 
onstru
tive and most existing pra
ti
al error-
orre
ting 
odesare far from saturating them.Two 
ode families 
urrently a
hieve the highest information transmissionrates for a given 
orruption level, espe
ially in the high 
ode rate regime. Turbo
odes [2℄ have been introdu
ed less than a de
ade ago, and were followed by theredis
overy of Low Density Parity Che
k Codes (LPDC) [3℄. The latter have beenoriginally introdu
ed by Gallager [4℄ in 1962, and abandoned in favour of other
odes due to the limited 
omputing fa
ilities of the time. Both 
odes show ex
el-lent performan
e and re
ently dis
overed irregular LDPC 
onstru
tions nearlysaturate Shannon's bound for in�nite message size [5℄.LDPC 
odes are generally based on the introdu
tion of random sparse matri-
es for generating the transmitted 
odeword as well as for de
oding the re
eived
orrupted 
odeword. Two main types of matri
es have been studied: regular 
on-stru
tions, where the number of non-zero row/
olumn elements in these matri
es
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remains �xed; and irregular 
onstru
tions where it 
an vary from row to row or
olumn to 
olumn. Various de
oding methods have been su

essfully employed;we will mainly refer here to the leading de
oding te
hniques based on BeliefPropagation (BP) [6℄.Most analyses of LDPC 
odes have been obtained via methods of informationtheory, ba
ked up by numeri
al simulations. These rely on deriving upper andlower bounds for the performan
e of 
odes, with or without making assumptionsabout the 
ode used. These bounds represent a worst 
ase analysis, and may betight or loose depending on the a

ura
y and restri
tiveness of the assumptionsused, and the spe
i�
 di�eren
e between the worst and typi
al 
ases.The statisti
al physi
s based analysis takes a di�erent approa
h, analysingdire
tly the typi
al 
ase, making use of expli
it assumptions about the 
ode usedand its ma
ros
opi
 
hara
teristi
s. Moreover, using methods adopted from sta-tisti
al physi
s of Ising spin systems, one 
an a
tually 
arry out averages overensembles of 
odes with the same ma
ros
opi
 properties to obtain exa
t per-forman
e estimates in the limit of in�nitely large systems. Two methods havebeen used in parti
ular, the repli
a method and the Bethe approximations [7℄,that is also linked to the Thouless-Anderson-Palmer (TAP) approa
h [8℄ to di-luted systems. In this paper we will review re
ent studies of LDPC 
odes, usinga statisti
al physi
s based analysis. We fo
us on two spe
i�
 
odes, Gallager'soriginal LDPC 
ode [4℄ and the MN 
ode [3℄ where messages are representedby binary ve
tors and are 
ommuni
ated through a Binary Symmetri
 Channel(BSC) where un
orrelated bit 
ips appear with probability p.A Gallager 
ode is de�ned by a binary matrix A = [A j B℄, 
on
atenatingtwo very sparse matri
es known to both sender and re
eiver, with B (of dimen-sionality (M�N)�(M�N)) being invertible - the matrix A is of dimensionality(M �N)�N .En
oding refers to the produ
tion of a M dimensional binary 
odeword t 2f0; 1gM (M > N) from the original message � 2 f0; 1gN by t = GT � (mod 2),where all operations are performed in the �eld f0; 1g and are modulo 2. Thegenerator matrix is G = [I j B�1A℄ (mod 2), where I is the N � N identitymatrix, implying that AGT = 0 (mod 2) and that the �rst N bits of t are set tothe message �. In regular Gallager 
odes the number of non-zero elements in ea
hrow of A is 
hosen to be exa
tly K̂. The number of elements per 
olumn is thenC = (1� R)K̂, where the 
ode rate is R = N=M (for unbiased messages). Theen
oded ve
tor t is then 
orrupted by noise represented by the ve
tor � 2 f0; 1gMwith 
omponents independently drawn with probability P (�) = (1 � p)Æ(�) +pÆ(� � 1). The re
eived ve
tor takes the form r = GT � + � (mod 2).De
oding is 
arried out by multiplying the re
eived message by the matrix Ato produ
e the syndrome ve
tor z = Ar = A� (mod 2) from whi
h an estimate�̂ for the noise ve
tor 
an be produ
ed. An estimate for the original message isthen obtained as the �rst N bits of r+ b� (mod 2). The Bayes optimal estimator(also known as marginal posterior maximiser, MPM) for the noise is de�ned asb�j = argmax�jP (�j j z), where �j 2 f0; 1g. The performan
e of this estimator
an be measured by the probability of bit error Pb = 1 � 1=M PMj=1 Æ[b�j ; �j ℄,



where Æ[; ℄ is Krone
ker's delta. Knowing the matri
es B and A, the syndromeve
tor z and the noise level p, it is possible to apply Bayes' theorem and 
omputethe posterior probabilityP (� j z) = 1Z� [z = A� (mod 2)℄P (� ); (1)where �[X ℄ is an indi
ator fun
tion providing 1 if X is true and 0 otherwise.To 
ompute the MPM one has to 
ompute the marginal posterior P (�j j z) =Pi6=j P (� j z), whi
h in general requires O(2M ) operations, thus be
omingimpra
ti
al for long messages. To solve this problem one 
an use the sparsenessof A to design algorithms that require O(M) operations to perform the sametask. One of these methods is the probability propagation algorithm, also knownas belief propagation (BP) [6℄.The MN 
ode has a similar stru
ture, ex
ept for the fa
t that the generatormatrix is G = B�1A. The randomly-sele
ted sparse matri
es A and B are ofdimensionality M�N and M�M respe
tively; these are 
hara
terized by Kand L non-zero unit elements per row and C and L per 
olumn respe
tively.Correspondingly, the 
ode rate be
omes R=N=M = K=C. De
oding is 
arriedout by taking the produ
t of the matrix B and the re
eived message z=GT �+�(mod 2). The equationz = A� +B� = AS +B� (mod 2); (2)is solved via the iterative methods of BP [3℄ to obtain the most probable Booleanve
tors S and � ; the posterior probability (1) be
omes slightly more elaborate,in
luding two sets of free variables S and � and two priors.2 Statisti
al physi
sTo fa
ilitate the statisti
al physi
s analysis we repla
e the f0; 1g representa-tion by the 
onventional Ising spin f1;�1g representation, and mod 2 sumsby produ
ts [9℄. For instan
e, in Gallager's 
ode, the syndrome ve
tor a
quiresthe form of a multi-spin 
oupling J� = Qj2L(�) �j where j = 1; � � � ;M and� = 1; � � � ; (M �N). The K̂ indi
es of nonzero elements in the row � of a matrixA, that is not ne
essarily a 
on
atenation of two matri
es (therefore de�ninga non-stru
tured Gallager 
ode), are given by L(�) = fj1; � � � ; jK̂g, and in a
olumn l are the C indi
es given by M(l) = f�1; � � � ; �Cg.The posterior (1) 
an be written as the Gibbs distribution [10℄:P (� j J ) = 1Z lim�!1 exp [��H�(� ;J )℄ (3)H�(� ;J ) = �M�NX�=1 J�0� Yj2L(�) �j � 11A� F� MXj=1 �j ;where H the Hamiltonian of the system.



The quantity that one 
on
entrates on, in the statisti
al physi
s based analy-sis, is the free energy whi
h is linked to the probability of �nding the system in aspe
i�
 
on�guration. In the thermodynami
 limit of in�nite system size, whi
his the main 
ase 
onsidered in this work, the state of the system is dominated by
on�gurations with the lowest free energy; �nite systems are more likely to befound in 
on�gurations with lower free energy, but may also be found in other
on�gurations with some probability.To investigate the typi
al properties of a model, we 
al
ulate the partitionfun
tion Z(A;J ) = Trf� g exp[��H℄ and the free energy hln[Z(A;J )℄iA;� byaveraging over the randomness indu
ed by the spe
i�
 
ode matrix A and thetrue noise ve
tor �. For 
arrying out these averages we use the repli
a method [10℄or the Bethe approximation [11℄; both methods provide the same results.The repli
a method makes use of the identity hlnZi = hlimn!0 1=n [Zn�1℄i,by 
al
ulating averages over a produ
t of partition fun
tion repli
a. Employingassumptions about repli
a symmetries and analyti
ally 
ontinuing the variablen to zero, one obtains solutions whi
h enable one to determine the state of thesystem. The Bethe approximation is based on a 
onsistent solution to a treebased expansion for 
al
ulating the free energy. Details of the te
hniques usedand of the 
al
ulations themselves 
an be obtained in [7℄ and in the 
orrespondingpapers [10℄ and [11℄.3 ResultsOn
e the free energy for the possible solutions is 
al
ulated, one 
an identifythe stable dominant solutions and their overlap m with the true noise/signalve
tors. In the 
ase of Gallager's 
ode we monitor m = 1=M PMj=1 Æ[b�j ; �j ℄,where b� is the noise ve
tor MPM estimate. In the 
ase of MN we 
al
ulatem = 1=N PNj=1 Æ[bSj ; �j ℄, estimating the signal ve
tor bS.One observes three types of solutions: perfe
t retrieval (ferromagneti
 solu-tion) m = 1; 
atastrophi
 failure (paramagneti
 solution) m = 0; and partialfailure (sub-optimal ferromagneti
 solution) 0 < m < 1.In ea
h 
ase one identi�es two main 
riti
al noise levels: the spinodal point ps,the noise level below whi
h only perfe
t (ferromagneti
) solutions exist; and pt,the noise level above whi
h the ferromagneti
 solution is no longer dominant. Theformer marks the pra
ti
al de
oding limit, as 
urrent pra
ti
al de
oding methodsfail above ps, while the latter marks the theoreti
al limits of the system.The results obtained for R = 1=4 Gallager 
ode are shown in Fig.1a, wherewe present the theoreti
al mean overlap between the a
tual noise ve
tor � andthe estimate b� as a fun
tion of the noise level p, as well as results obtained usingBP de
oding. In Fig.1b we show the thermodynami
 transition for K̂ = 6 andR = 1=2 
ompare with the theoreti
al upper bound, Shannon's bound and thetheoreti
al ps values.Results obtained for MN 
ode with variousK;L values are presented in Fig.2.On the left - a s
hemati
 des
ription of the free energy surfa
e for various K
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Fig. 1. (a) Mean normalized overlap between the a
tual noise ve
tor � and de
odednoise b� for K̂ = 4 and C = 3 (therefore R = 1=4). Theoreti
al values (squares), exper-imental averages over 20 runs for 
ode word lengths M = 5000 (�) and M = 100 (fullline). (b) Transitions for K̂ = 6. Shannon's bound (dashed line), information theorybased upper bound (full line) and thermodynami
 transition obtained numeri
ally (Æ).Theoreti
al (diamond) and experimental (+, M = 5000 averaged over 20 runs) BPde
oding transitions are also shown. In both �gures, symbols are 
hosen larger thanthe error bars.values; on the right a des
ription of the existing solutions for ea
h noise value pand their 
orresponding overlap m.For unbiased messages with K�3 and L>1. we obtain both the ferromag-neti
 and paramagneti
 solutions either by applying the TAP approa
h or bysolving the saddle point equations numeri
ally. The former was 
arried out atthe values of F� and Fs=0) whi
h 
orrespond to the true noise and input biaslevels (for unbiased messages Fs=0) and thus to Nishimori's 
ondition [12℄. Thelatter is equivalent to having the 
orre
t prior within the Bayesian framework [9℄.The most interesting quantity to examine is the maximal 
ode rate, for agiven 
orruption pro
ess, for whi
h messages 
an be perfe
tly retrieved. Thisis de�ned in the 
ase of K � 3 by the value of R = K=C = N=M for whi
hthe free energy of the ferromagneti
 solution be
omes smaller than that of theparamagneti
 solution, 
onstituting a �rst order phase transition. The 
riti
al
ode rate obtained R
=1�H2(p)=1+(p log2 p+(1� p) log2(1� p)) ; 
oin
ideswith Shannon's 
apa
ity.The MN 
ode for K � 3 seems to o�er optimal performan
e. However, themain drawba
k is rooted in the 
o-existen
e of the stable m = 1; 0 solutions,whi
h implies that from most initial 
onditions the system will 
onverge to theundesired paramagneti
 solution. Studying the ferromagneti
 solution numeri-
ally shows a highly limited basin of attra
tion, whi
h be
omes smaller as Kand L in
rease, while the paramagneti
 solution at m = 0 always enjoys a widebasin of attra
tion.Studying the 
ase of K = 2 and L> 1, indi
ates the existen
e of paramag-neti
, ferromagneti
 and sub-optimal ferromagneti
 solutions depi
ted in Fig.2b.For 
orruption probabilities p>ps one obtains either a dominant paramagneti
solution or a mixture of ferromagneti
 (m=�1) and paramagneti
 (m=0) so-
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Fig. 2. Left hand �gures show a s
hemati
 representation of the free energy land-s
ape while �gures on the right show the ferromagneti
, sub-optimal ferromagneti
and paramagneti
 solutions as fun
tions of the noise rate p; thi
k and thin lines denotestable solutions of lower and higher free energies respe
tively, dashed lines 
orrespondto unstable solutions. In all 
ases 
onsidered L > 1. (a) K � 3; the solid line in thehorizontal axis represents the phase where the ferromagneti
 solution (F, m = 1) isthermodynami
ally dominant, while the paramagneti
 solution (P, m = 0) be
omesdominant for the other phase (dashed line). The 
riti
al noise p
 denotes Shannon's
hannel 
apa
ity. (b) K = 2; the ferromagneti
 solution and its mirror image are theonly minima of the free energy over a relatively small noise level (the solid line in thehorizontal). The 
riti
al point,due to dynami
al 
onsiderations, is the spinodal pointps where sub-optimal ferromagneti
 solutions (F', m < 1) emerge. The thermodynami
transition point p3, at whi
h the ferromagneti
 solution loses its dominan
e, is belowthe maximum noise level given by the 
hannel 
apa
ity, whi
h implies that these 
odesdo not saturate Shannon's bound even if optimally de
oded. (
) K = 1; the solid linein the horizontal axis represents the range of noise levels where the ferromagneti
 state(F) is the only minimum of the free energy. The sub-optimal ferromagneti
 state (F')appears in the region represented by the dashed line. The spinodal point ps, where F'solution �rst appears, provides the highest noise value in whi
h 
onvergen
e to the fer-romagneti
 solution is guaranteed. For higher noise levels, the system be
omes bistableand an additional unstable solution for the saddle point equations ne
essarily appears.A thermodynami
al transition o

urs at the noise level p1 where the state F' be
omesdominant.



lutions. Reliable de
oding may only be obtained for p< ps, whi
h 
orrespondsto a spinodal point, where a unique ferromagneti
 solution emerges at m = 1(plus a mirror solution at m=�1). Initial 
onditions for BP de
oding 
an be
hosen randomly, with a slight bias in the initial magnetization. The resultsobtained point to the existen
e of a unique pair of global solutions to whi
hthe system 
onverges (below ps) from all initial 
onditions. Similarly, the 
aseof K = 1; L > 1 presented in Fig.2
 shows a dominant ferromagneti
 solutionbelow ps and the emergen
e of a sub-optimal ferromagneti
 solution above it,that be
omes dominant at p1.The main di�eren
es between the results obtained for Gallager and MN 
odesin the 
ase of unbiased messages are as follows. While Gallager's 
ode allows forsub-optimal pra
ti
al de
oding for any K̂ value, it saturates Shannon's boundonly in the limit of K̂ ! 1. On the other hand, MN 
odes 
an theoreti
allysaturate Shannon's limit for 
onstru
tions with K � 3, whi
h are of no pra
ti
alvalue, but they 
an only a
hieve suboptimal performan
e for regular 
on�gura-tions with K=1; 2.It should be pointed out that these results are valid only in the 
ase of unbi-ased signal ve
tors �. A di�erent pi
ture emerges in the 
ase of biased messages;this in
ludes the emergen
e of a spinodal point also in the 
ase of K � 3 MN
odes and a de
rease in the noise level of the thermodynami
 transition to belowShannon's limit.It has been shown that irregular LDPC 
onstru
tions 
an a
hieve better pra
-ti
al performan
e (e.g. [5, 13℄). In analyti
al studies, based on the same frame-work presented here [14℄ we investigated the position of both 
riti
al points psand pt with respe
t to Shannon's limit and their values in regular 
onstru
tions.We show that improved irregular 
onstru
tions 
orrespond to models with higherps values while the position of pt 
hanges only slightly. The possibility of em-ploying the statisti
al physi
s based analysis for providing a prin
ipled methodto optimise the 
ode 
onstru
tion is still an open question.4 Related studiesWe also studied the e�e
t of non-binary alphabet on the performan
e of LDPC
odes [15℄ as it seems to o�er improved performan
e in many 
ases [16℄. The al-phabet used in this study is de�ned over Galois �eldGF (q) [17℄. Our results showthat Gallager 
odes of this type saturate Shannon's limit as C !1 irrespe
tiveof the value of q. For �nite C, these 
odes exhibits two di�erent behaviours forC � 3 and C = 2. For C � 3, we show that the theoreti
al error 
orre
tingability of these 
odes is monotoni
ally improving as q in
reases, i.e., the value ofpt in
reases with q for a given 
on�guration. The pra
ti
al de
oding limit, deter-mined by the emergen
e of a suboptimal solution and the value of ps, de
reaseswith q. On the other hand, C = 2 
odes exhibit a 
ontinuous transition fromoptimal to sub-optimal solutions at a 
ertain noise level, below whi
h pra
ti
alBP de
oding 
onverges to the (unique) optimal solution. This 
riti
al noise levelmonotoni
ally in
reases with q and be
omes even higher than that of some 
odes



of 
onne
tivity C � 3, while the optimal de
oding performan
e is inferior to thatof C � 3 
odes with the same q value.The work des
ribed so far is limited to the 
ase of in�nite message length. In�nite systems there is some probability of �nding the system in a non-dominantstate, what translates to an error probability whi
h vanishes exponentially withthe systems size. Signi�
ant e�ort has been dedi
ated to bounding the reliabil-ity exponent in the information theory literature [18℄; we have also studied thereliability exponent [19℄ by 
arrying out dire
t averages over ensembles of Gal-lager 
odes, 
hara
terised by �nite and in�nite K̂ values. In the limit of in�nite
onne
tivity our result 
ollapses onto the best general random 
oding exponentsreported in the IT literatures, the random 
oding exponent and the expurgatedexponent for high and low R values respe
tively. The method provides one ofthe only tools available for examining 
odes of �nite 
onne
tivity, and predi
tsthe tightest estimate of the zero error noise level threshold to date for Gallager
odes. It 
an be easily extended to investigate other linear 
odes of a similartype and is 
learly of high pra
ti
al signi�
an
e.Finally, insight gained from the analysis led us to suggest the potential useof a similar system as a publi
-key 
ryptosystem [20℄. The 
ryptosystem is basedon an MN 
ode where the matrix G and a 
orruption level p < ps play the roleof the publi
 key and the matri
es used to generate G play the role of the se
retkey and are known only to the authorised user.In the suggested 
ryptosystem, a plaintext represented by an N dimensionalBoolean ve
tor � 2 (0; 1)N is en
rypted to theM dimensional Boolean 
iphertextJ using a predetermined Boolean matrix G, of dimensionality M � N , and a
orruptingM dimensional ve
tor �, whose elements are 1 with probability p and0 otherwise, in the following manner J = G � + � ; where all operations are(mod 2). The 
orrupting ve
tor � is 
hosen at the transmitting end. The matrixG, whi
h is at the heart of the en
ryption/de
ryption pro
ess is 
onstru
tedby 
hoosing two randomly-sele
ted sparse matri
es A (M �N) and B (M �M), and a dense matrix D (N �N), de�ning G = B�1AD (mod 2) : Thematri
es A and B are similar to those used in other MN 
onstru
tions; thedense invertible Boolean matrix D is arbitrary and is added for improving thesystem's se
urity. Authorised de
ryption follows a similar pro
edure to de
oding
orrupted messages in LDPC 
odes (i.e., using BP), while an unauthorised userwill �nd the de
ryption to be 
omputationally hard [20℄.5 Con
lusionsWe showed how the methods of statisti
al physi
s 
an be employed to investigateerror-
orre
ting 
odes and related areas, by studying the typi
al 
ase 
hara
ter-isti
s of a given system. This approa
h provides a unique insight by examiningma
ros
opi
 properties of sto
hasti
 systems, 
arrying out expli
it averages overensembles of 
odes that share the same ma
ros
opi
 properties.The results obtained shed light on the properties that limit the theoreti
aland pra
ti
al performan
e of parity 
he
k 
odes, explain the di�eren
es between



Gallager and MN 
onstru
tions, explores the role of irregularity, �nite size e�e
tsand non-binary alphabets in LDPC 
onstru
tions.We believe that methods developed over the years in the statisti
al physi
s
ommunity 
an make a signi�
ant 
ontribution also in other areas of informationtheory. Resear
h in some of these areas, su
h as CDMA and image restorationis 
urrently underway.Support by Grants-in-aid, MEXT (13680400) and JSPS (YK), The Royal So
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