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t. In data visualization, 
hara
terizing lo
al geometri
 proper-ties of non-linear proje
tion manifolds provides the user with valuableadditional information that 
an in
uen
e further steps in the data anal-ysis. We take advantage of the smooth 
hara
ter of GTM proje
tionmanifold and analyti
ally 
al
ulate its lo
al dire
tional 
urvatures. Cur-vature plots are useful for dete
ting regions where geometry is distorted,for 
hanging the amount of regularization in non-linear proje
tion man-ifolds, and for 
hoosing regions of interest when 
onstru
ting detailedlower-level visualization plots.1 Introdu
tionMost visualization algorithms proje
t points from a high-dimensional data spa
eonto a two-dimensional proje
tion spa
e. Loosely speaking, algorithms like self-organizing maps (SOM) [7℄ or the Generalized Topographi
 Mapping (GTM) [6℄,a probabilisti
 reformulation of the SOM, identify the 
omputer s
reen with atwo-dimensional \rubber sheet" that is inje
ted into the high-dimensional dataspa
e. The sheet is supposed to \
over" the 
loud of data points by lo
allystret
hing, 
ontra
ting and 
urving. The visualization plot is obtained by �rstproje
ting the data points onto the rubber sheet and then letting the rubbersheet relax to its original form of the 
omputer s
reen. We refer to the inje
ted(possibly 
urved and stret
hed) two-dimensional rubber sheet in the data spa
eas the proje
tion manifold.Besides the visualization plot itself, the user is often interested in addi-tional information about the stru
ture of the proje
tion manifold in the high-dimensional data spa
e. For example, lo
al magni�
ation fa
tors des
ribe howsmall regions on the 
omputer s
reen are stret
hed or 
ompressed when mappedto the data spa
e. Magni�
ation fa
tors 
an be used for dete
ting (on the visu-alization plot) separate 
lusters in the data spa
e (see [4℄).SOM dis
retizes the \rubber sheet" into a grid of \nodes" and represents theproje
tion manifold only by a grid of nodes mapped to the data spa
e (
ode-book
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2 Peter Ti�no et al.ve
tors). On the other hand, GTM forms a smooth two-dimensional proje
tionmanifold. This allows us to use te
hniques of di�erential geometry to analyti
allydes
ribe (lo
al) geometri
 properties anywhere on the manifold. Lo
al magni�
a-tion fa
tors of GTM models were analyti
ally 
omputed by Bishop, Svens�en andWilliams in [4℄ [5℄. In SOM, the magni�
ation fa
tors 
an only be approximatedby distan
es between the 
ode-book ve
tors.Magni�
ation fa
tors represent the extent to whi
h the areas are magni�edon proje
tion to the data spa
e. However, when inje
ting a two-dimensionalrubber sheet into a high dimensional data spa
e, the proje
tion manifold mayform 
ompli
ated folds that 
annot be dete
ted by using magni�
ation fa
torsalone. To provide the user with a tool for monitoring the amount of foldingand neighborhood preservation in the proje
tion manifold, we need se
ond-orderquantities, su
h as lo
al 
urvatures. Neighborhood preservation and folding is-sues in the 
ontext of SOM were studied e.g. in [2℄ [11℄. Su
h studies presentlargely heuristi
 te
hniques for 
omputing higher-order geometri
 properties ofthe SOM proje
tion manifold based on a dis
rete grid of 
ode-book ve
tors (rep-resenting the manifold) in the data spa
e. In 
ontrast, as shown in this paper,the smooth nature of the GTM proje
tion manifold allows us to analyti
ally
ompute dire
tional 
urvatures in any point on the manifold.2 Generative Topographi
 MappingThe Generative Topographi
 Mapping (GTM) belongs to a family of latent spa
emodels that model a probability distribution in the (observable) data spa
e bymeans of latent, or hidden variables. For the purposes of data visualization, weidentify the visualization spa
e (i.e. the \rubber sheet") with the latent spa
e.The latent spa
e is usually a bounded subset of the two-dimensional Eu
lideanspa
e, su
h as the (two-dimensional) interval [�1; 1℄� [�1; 1℄.Consider an L-dimensional latent spa
e H � <L and represent points in Has 
olumn ve
tors x = (x1; x2; :::; xL)T . We allow H to be 
overed by an arrayof K latent spa
e 
entres xi 2 H, i = 1; 2; :::;K.Let the data spa
e D be the D-dimensional Eu
lidean spa
e <D. We de�nea non-linear transformation f : H ! D from the latent spa
e to the data spa
eusing a radial basis fun
tion network (see e.g. [3℄). To this end, we 
over thelatent spa
e with a set of M �xed non-linear basis fun
tions �j : H ! <,j = 1; 2; :::;M . As usual in the GTM literature, we 
hoose to work with spheri
alGaussian fun
tions of the same width �, although other 
hoi
es are possible andrequire only simple modi�
ations1. Usually, the 
entres of the Gaussian basisfun
tions �j are positioned in the latent spa
e on a regular grid. Given a pointx 2 H in the latent spa
e, its image under the map f is2f(x) =W �(x); (1)1 GTM with other 
hoi
es of basis fun
tions 
an be easily 
onstru
ted using NETLABavailable from http://www.n
rg.aston.a
.uk/netlab/2 We assume that the data set has been normalized to zero mean. Equivalently, we
ould in
lude a 
onstant basis fun
tion �0(x) = 1.



Dire
tional Curvatures of the GTM manifolds 3whereW is aD�M matrix of weight parameters and �(x) = (�1(x); :::; �M (x))T .GTM 
reates a generative probabilisti
 model in the data spa
e by pla
inga radially-symmetri
 Gaussian with zero mean and inverse varian
e � aroundimages, under f , of the latent spa
e 
entres xi 2 H, i = 1; 2; :::;K:P (tj xi;W; �) = � �2��D=2 exp���2 kf(xi)� tk2� : (2)De�ning a uniform prior over xi, the density model in the data spa
e providedby the GTM is P (tjW; �) = 1=K KXi=1 P (tj xi;W; �): (3)Given a data set � = ft1; t2; :::; tNg of independently generated points in thedata spa
e, the adjustable parameters W and � of the model 
an be �tted tothe data by maximum likelihood using the expe
tation-maximization algorithm[6℄. For the purpose of data visualization, we use Bayes' theorem to invert thetransformation f from the latent spa
e H to the data spa
e D. The posteriordistribution onH, given a data point tn 2 D, is a sum of delta fun
tions 
enteredat 
entres xi, with 
oeÆ
ients equal to the posterior probability Rin that thei-th Gaussian (
orresponding to the latent spa
e 
entre xi, eq. (2)) generated tn[6℄. The latent spa
e representation of the point tn, i.e. the proje
tion of tn, istaken to be the mean PKi�1 Rin xi of the posterior distribution on H.The f{image of the latent spa
e H,
 = f(H) = ff(x) 2 <Dj x 2 Hg; (4)forms a smooth L-dimensional manifold in the data spa
e. We refer to the man-ifold 
 as the proje
tion manifold of the GTM.3 Lo
al Dire
tional CurvaturesThe idea of dire
tional 
urvature is explained in �gure 1.Consider a point x0 2 H. Let x(b), b 2 <, be a straight line passing throughx0 along a unit dire
tional ve
tor h = (h1; h2; :::; hL)T :x(b) = x0 + bh; b 2 <: (5)As the parameter b varies, the image of the line x(b) generates on 
 the 
urve�(b) = f(x(b)): (6)The tangent to this 
urve at f(x0) = �(0) is_�(0) = �d �(b)d b �b=0 = " LXr=1 �f(x)�xr d xr(b)d b #x=x0;b=0= LXr=1�(1)r hr = �(1) h; (7)
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Fig. 1. An explanation of lo
al dire
tional derivative of the visualization manifold. Astraight line x(b) passing through the point x0 in the latent spa
e H is mapped viaf to the 
urve �(b) = f(x(b)) in the data spa
e D. Curvature of � at f(x0) = �(0)is related to the dire
tional 
urvature of the proje
tion manifold f(H) with respe
t tothe dire
tion h. The tangent ve
tor _�(0) to � at �(0) lies in Tx0 (dashed re
tangle),the tangent plane of the manifold f(H) at �(0).where �(1)r =W���1(x0)�xr ; ��2(x0)�xr ; :::; ��M (x0)�xr �T (8)is a (
olumn) ve
tor of partial derivatives of the GTM map f (at x0 2 H) withrespe
t to the r-th latent spa
e variable xr , and �(1) is the D � L matrix�(1) = [�(1)1 ;�(1)2 ; :::;�(1)L ℄: (9)The tangent ve
tor _�(0) to the lifted line �(b) is a linear 
ombination of the
olumns of �(1), and so the range of the matrix �(1) is the tangent plane Tx0of the proje
tion manifold 
 at f(x0) = �(0).The se
ond dire
tional derivative [9℄ of �(b) at �(0) is��(0) = " LXs=1 ��xs ( LXr=1 �f(x)�xr hr) d xs(b)d b #x=x0;b=0= " LXr=1 LXs=1 �2f(x)�xr�xs hrhs#x=x0 = LXr=1 LXs=1�(2)r;s hr hs; (10)where �(2)r;s is a 
olumn ve
tor of se
ond-order partial derivatives of f (at x0 2 H)with respe
t to the r-th and s-th latent spa
e variables,�(2)r;s =W��2�1(x0)�xr�xs ; �2�2(x0)�xr�xs ; :::; �2�M (x0)�xr�xs �T : (11)



Dire
tional Curvatures of the GTM manifolds 5We de
ompose ��(0) into two orthogonal 
omponents, one lying in the tangentspa
e Tx0 , the other lying in its orthogonal 
omplement T?x0 ,��(0) = ��k(0) + ��?(0); ��k(0) 2 Tx0 ; ��?(0) 2 T?x0 : (12)The 
omponent ��k(0) des
ribes 
hanges in the �rst-order derivatives due to\varying speed of parameterization", while the dire
tion of the �rst-order deriva-tives remains un
hanged. Changes in the �rst-order derivatives that are respon-sible for 
urving of the proje
tion manifold 
 are des
ribed by the 
omponent��?(0).Orthogonal proje
tion onto Tx0 is a linear operator des
ribed by the proje
-tion matrix � = �(1) ��(1)�+, where ��(1)�+ is the Moore-Penrose generalizedinverse of �(1) (see e.g. [8℄). So, ��?(0) = (I ��) ��(0), where I is the D � Didentity matrix.The dire
tional 
urvature at �(0) asso
iated with the latent spa
e dire
tionh is the (Eu
lidean) norm of the ve
tor ��?(0). It measures the degree to whi
hthe visualization manifold 
 (lo
ally) \
urves" in the data spa
e D [1℄. It is theembedding 
urvature of 
 � D at f(x0), evaluated with respe
t to the latentspa
e dire
tion h.4 ExperimentsIn the experiments reported here, the GTM latent spa
e H was the square H =[�1; 1℄ � [�1; 1℄, the latent spa
e 
entres xi 2 H were positioned on a regular15�15 square grid and there were 16 basis fun
tions �j 
entered on a regular 4�4square grid. The basis fun
tions were spheri
al Gaussian fun
tions of the samewidth � = 0:44. Magni�
ation fa
tors and dire
tional 
urvatures were evaluatedat ea
h latent spa
e 
entre xi.In the �rst experiment we randomly generated 2000 points in <3 lying onthe two-dimensional manifold shown in �gure 2a. As expe
ted, after training,the GTM proje
tion manifold shown in �gure 2b 
losely followed the two-dimensional distribution of the data points. Latent spa
e layouts of lo
al mag-ni�
ation fa
tors and dire
tional 
urvatures are shown in �gures 2
 and 2d,respe
tively. The magni�
ation fa
tor at a 
entre xi, whi
h is the Ja
obian ofthe GTM map f at xi [4℄, is represented by the degree of shading of the 
orre-sponding pat
h. In the 
urvature plot, we show for ea
h latent spa
e 
entre xi,the dire
tion h yielding the maximal norm of ��?(0). The length of the dire
tionline and the degree of shading of the 
orresponding pat
h are proportional tothe maximal norm of ��?(0).The 
urvature and expansion patterns in the proje
tion manifold (�gure 2b)are 
learly re
e
ted in the magni�
ation fa
tor and 
urvature plots (�gures 2
,d).The form of the proje
tion manifold 
an be approximately guessed on the basisof its lo
al �rst- and se
ond-order 
hara
terizations.In the se
ond experiment, we trained GTM on an oil 
ow data set3. This12-dimensional data set arises from a physi
s-based simulation of a non-invasive3 http://www.n
rg.aston.a
.uk/GTM/3PhaseData.html
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(d) CurvaturesFig. 2. Toy data experiment.monitoring system, used to determine the quantity of oil in a multi-phase pipeline
ontaining a mixture of oil, water and gas. The data set 
onsists of 1000 pointsobtained syntheti
ally by simulating the physi
al pro
ess in the pipe. Points inthe data set are 
lassi�ed into three di�erent multi-phase 
ow 
on�gurations,namely homogeneous, annular and laminar.The top level 
urvature plot in �gure 3b reveals that the two-dimensionalproje
tion manifold folded three times in order to \
apture" the distributionof points in the 12-dimensional spa
e. Interestingly, the three multi-phase 
ow
on�gurations seem to be roughly separated by the folds (
ompare the top levelvisualization plot in �gure 3a with the 
orresponding 
urvature plot). We 
on-�rmed this hypothesis by 
onstru
ting three lo
al lower level visualization plotsinitiated in the regions between the folds. The lower level plots 
orrespond to amixture of GTMs (see [10℄) and are shown in �gure 3a. The lower level plots arenumbered left-to-right and were initiated in points shown as 
ir
les in the toplevel plot (the number inside ea
h 
ir
le indi
ates the index of the 
orrespondinglower level plot). Curvature plots of the lower level GTMs reveal that, 
omparedto the top level GTM, the lower level proje
tion manifolds are almost 
at. We
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tional Curvatures of the GTM manifolds 7do not show the magni�
ation fa
tor plots here, but there are no signi�
antexpansive/
ontra
tive tenden
ies in the lower level proje
tion manifolds. In thisexample the use of 
urvature information is 
ru
ial to su

essful modeling.5 Con
lusionCompared to linear proje
tion methods su
h as PCA, non-linear visualizationte
hniques are more 
apable of revealing the nature of data distribution in a high-dimensional spa
e. Chara
terization of lo
al geometri
 properties of the non-linear proje
tion manifolds provides user with a valuable additional informationthat 
an in
uen
e further steps in the data analysis.In this paper, we extended the work of Bishop, Svens�en and Williams [4℄ [5℄on magni�
ation fa
tors in GTM des
ribing lo
al expansion tenden
ies of theproje
tion manifold. We analyti
ally 
al
ulate and graphi
ally represent lo
aldire
tional 
urvatures of the GTM manifold. Curvature plots are useful for de-te
ting regions where geometry is distorted, for 
hanging the amount of regular-ization in non-linear proje
tion manifolds and, as illustrated in our experiment,for 
hoosing regions of interest when 
onstru
ting detailed lower-level visualiza-tion plots.Referen
es1. Bates, D.M., Watts, D.G.: Relative 
urvature measures of nonlinearity (with Dis-
ussion). J. R. Stat. So
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ognition. Oxford University Press,Oxford, UK (1995)4. Bishop, C.M., Svens�en, M., Williams, C.K.I.: Magni�
ation Fa
tors for the SOMand GTM Algorithms. In: Pro
eedings 1997 Workshop on Self-Organizing Maps,Helsinki, Finland. (1997)5. Bishop, C.M., Svens�en, M., Williams, C.K.I.: Magni�
ation Fa
tors for the GTMAlgorithm. In: Pro
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