
Using Diretional Curvatures to VisualizeFolding Patterns of the GTM ProjetionManifoldsPeter Ti�no, Ian Nabney, and Yi SunNeural Computing Researh Group, Aston University,Aston Triangle, Birmingham B4 7ETUnited Kingdomftinop,nabneyit,sunyg�aston.a.ukhttp://www.nrg.aston.a.uk/Abstrat. In data visualization, haraterizing loal geometri proper-ties of non-linear projetion manifolds provides the user with valuableadditional information that an inuene further steps in the data anal-ysis. We take advantage of the smooth harater of GTM projetionmanifold and analytially alulate its loal diretional urvatures. Cur-vature plots are useful for deteting regions where geometry is distorted,for hanging the amount of regularization in non-linear projetion man-ifolds, and for hoosing regions of interest when onstruting detailedlower-level visualization plots.1 IntrodutionMost visualization algorithms projet points from a high-dimensional data spaeonto a two-dimensional projetion spae. Loosely speaking, algorithms like self-organizing maps (SOM) [7℄ or the Generalized Topographi Mapping (GTM) [6℄,a probabilisti reformulation of the SOM, identify the omputer sreen with atwo-dimensional \rubber sheet" that is injeted into the high-dimensional dataspae. The sheet is supposed to \over" the loud of data points by loallystrething, ontrating and urving. The visualization plot is obtained by �rstprojeting the data points onto the rubber sheet and then letting the rubbersheet relax to its original form of the omputer sreen. We refer to the injeted(possibly urved and strethed) two-dimensional rubber sheet in the data spaeas the projetion manifold.Besides the visualization plot itself, the user is often interested in addi-tional information about the struture of the projetion manifold in the high-dimensional data spae. For example, loal magni�ation fators desribe howsmall regions on the omputer sreen are strethed or ompressed when mappedto the data spae. Magni�ation fators an be used for deteting (on the visu-alization plot) separate lusters in the data spae (see [4℄).SOM disretizes the \rubber sheet" into a grid of \nodes" and represents theprojetion manifold only by a grid of nodes mapped to the data spae (ode-book
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2 Peter Ti�no et al.vetors). On the other hand, GTM forms a smooth two-dimensional projetionmanifold. This allows us to use tehniques of di�erential geometry to analytiallydesribe (loal) geometri properties anywhere on the manifold. Loal magni�a-tion fators of GTM models were analytially omputed by Bishop, Svens�en andWilliams in [4℄ [5℄. In SOM, the magni�ation fators an only be approximatedby distanes between the ode-book vetors.Magni�ation fators represent the extent to whih the areas are magni�edon projetion to the data spae. However, when injeting a two-dimensionalrubber sheet into a high dimensional data spae, the projetion manifold mayform ompliated folds that annot be deteted by using magni�ation fatorsalone. To provide the user with a tool for monitoring the amount of foldingand neighborhood preservation in the projetion manifold, we need seond-orderquantities, suh as loal urvatures. Neighborhood preservation and folding is-sues in the ontext of SOM were studied e.g. in [2℄ [11℄. Suh studies presentlargely heuristi tehniques for omputing higher-order geometri properties ofthe SOM projetion manifold based on a disrete grid of ode-book vetors (rep-resenting the manifold) in the data spae. In ontrast, as shown in this paper,the smooth nature of the GTM projetion manifold allows us to analytiallyompute diretional urvatures in any point on the manifold.2 Generative Topographi MappingThe Generative Topographi Mapping (GTM) belongs to a family of latent spaemodels that model a probability distribution in the (observable) data spae bymeans of latent, or hidden variables. For the purposes of data visualization, weidentify the visualization spae (i.e. the \rubber sheet") with the latent spae.The latent spae is usually a bounded subset of the two-dimensional Eulideanspae, suh as the (two-dimensional) interval [�1; 1℄� [�1; 1℄.Consider an L-dimensional latent spae H � <L and represent points in Has olumn vetors x = (x1; x2; :::; xL)T . We allow H to be overed by an arrayof K latent spae entres xi 2 H, i = 1; 2; :::;K.Let the data spae D be the D-dimensional Eulidean spae <D. We de�nea non-linear transformation f : H ! D from the latent spae to the data spaeusing a radial basis funtion network (see e.g. [3℄). To this end, we over thelatent spae with a set of M �xed non-linear basis funtions �j : H ! <,j = 1; 2; :::;M . As usual in the GTM literature, we hoose to work with spherialGaussian funtions of the same width �, although other hoies are possible andrequire only simple modi�ations1. Usually, the entres of the Gaussian basisfuntions �j are positioned in the latent spae on a regular grid. Given a pointx 2 H in the latent spae, its image under the map f is2f(x) =W �(x); (1)1 GTM with other hoies of basis funtions an be easily onstruted using NETLABavailable from http://www.nrg.aston.a.uk/netlab/2 We assume that the data set has been normalized to zero mean. Equivalently, weould inlude a onstant basis funtion �0(x) = 1.



Diretional Curvatures of the GTM manifolds 3whereW is aD�M matrix of weight parameters and �(x) = (�1(x); :::; �M (x))T .GTM reates a generative probabilisti model in the data spae by plainga radially-symmetri Gaussian with zero mean and inverse variane � aroundimages, under f , of the latent spae entres xi 2 H, i = 1; 2; :::;K:P (tj xi;W; �) = � �2��D=2 exp���2 kf(xi)� tk2� : (2)De�ning a uniform prior over xi, the density model in the data spae providedby the GTM is P (tjW; �) = 1=K KXi=1 P (tj xi;W; �): (3)Given a data set � = ft1; t2; :::; tNg of independently generated points in thedata spae, the adjustable parameters W and � of the model an be �tted tothe data by maximum likelihood using the expetation-maximization algorithm[6℄. For the purpose of data visualization, we use Bayes' theorem to invert thetransformation f from the latent spae H to the data spae D. The posteriordistribution onH, given a data point tn 2 D, is a sum of delta funtions enteredat entres xi, with oeÆients equal to the posterior probability Rin that thei-th Gaussian (orresponding to the latent spae entre xi, eq. (2)) generated tn[6℄. The latent spae representation of the point tn, i.e. the projetion of tn, istaken to be the mean PKi�1 Rin xi of the posterior distribution on H.The f{image of the latent spae H,
 = f(H) = ff(x) 2 <Dj x 2 Hg; (4)forms a smooth L-dimensional manifold in the data spae. We refer to the man-ifold 
 as the projetion manifold of the GTM.3 Loal Diretional CurvaturesThe idea of diretional urvature is explained in �gure 1.Consider a point x0 2 H. Let x(b), b 2 <, be a straight line passing throughx0 along a unit diretional vetor h = (h1; h2; :::; hL)T :x(b) = x0 + bh; b 2 <: (5)As the parameter b varies, the image of the line x(b) generates on 
 the urve�(b) = f(x(b)): (6)The tangent to this urve at f(x0) = �(0) is_�(0) = �d �(b)d b �b=0 = " LXr=1 �f(x)�xr d xr(b)d b #x=x0;b=0= LXr=1�(1)r hr = �(1) h; (7)
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Fig. 1. An explanation of loal diretional derivative of the visualization manifold. Astraight line x(b) passing through the point x0 in the latent spae H is mapped viaf to the urve �(b) = f(x(b)) in the data spae D. Curvature of � at f(x0) = �(0)is related to the diretional urvature of the projetion manifold f(H) with respet tothe diretion h. The tangent vetor _�(0) to � at �(0) lies in Tx0 (dashed retangle),the tangent plane of the manifold f(H) at �(0).where �(1)r =W���1(x0)�xr ; ��2(x0)�xr ; :::; ��M (x0)�xr �T (8)is a (olumn) vetor of partial derivatives of the GTM map f (at x0 2 H) withrespet to the r-th latent spae variable xr , and �(1) is the D � L matrix�(1) = [�(1)1 ;�(1)2 ; :::;�(1)L ℄: (9)The tangent vetor _�(0) to the lifted line �(b) is a linear ombination of theolumns of �(1), and so the range of the matrix �(1) is the tangent plane Tx0of the projetion manifold 
 at f(x0) = �(0).The seond diretional derivative [9℄ of �(b) at �(0) is��(0) = " LXs=1 ��xs ( LXr=1 �f(x)�xr hr) d xs(b)d b #x=x0;b=0= " LXr=1 LXs=1 �2f(x)�xr�xs hrhs#x=x0 = LXr=1 LXs=1�(2)r;s hr hs; (10)where �(2)r;s is a olumn vetor of seond-order partial derivatives of f (at x0 2 H)with respet to the r-th and s-th latent spae variables,�(2)r;s =W��2�1(x0)�xr�xs ; �2�2(x0)�xr�xs ; :::; �2�M (x0)�xr�xs �T : (11)



Diretional Curvatures of the GTM manifolds 5We deompose ��(0) into two orthogonal omponents, one lying in the tangentspae Tx0 , the other lying in its orthogonal omplement T?x0 ,��(0) = ��k(0) + ��?(0); ��k(0) 2 Tx0 ; ��?(0) 2 T?x0 : (12)The omponent ��k(0) desribes hanges in the �rst-order derivatives due to\varying speed of parameterization", while the diretion of the �rst-order deriva-tives remains unhanged. Changes in the �rst-order derivatives that are respon-sible for urving of the projetion manifold 
 are desribed by the omponent��?(0).Orthogonal projetion onto Tx0 is a linear operator desribed by the proje-tion matrix � = �(1) ��(1)�+, where ��(1)�+ is the Moore-Penrose generalizedinverse of �(1) (see e.g. [8℄). So, ��?(0) = (I ��) ��(0), where I is the D � Didentity matrix.The diretional urvature at �(0) assoiated with the latent spae diretionh is the (Eulidean) norm of the vetor ��?(0). It measures the degree to whihthe visualization manifold 
 (loally) \urves" in the data spae D [1℄. It is theembedding urvature of 
 � D at f(x0), evaluated with respet to the latentspae diretion h.4 ExperimentsIn the experiments reported here, the GTM latent spae H was the square H =[�1; 1℄ � [�1; 1℄, the latent spae entres xi 2 H were positioned on a regular15�15 square grid and there were 16 basis funtions �j entered on a regular 4�4square grid. The basis funtions were spherial Gaussian funtions of the samewidth � = 0:44. Magni�ation fators and diretional urvatures were evaluatedat eah latent spae entre xi.In the �rst experiment we randomly generated 2000 points in <3 lying onthe two-dimensional manifold shown in �gure 2a. As expeted, after training,the GTM projetion manifold shown in �gure 2b losely followed the two-dimensional distribution of the data points. Latent spae layouts of loal mag-ni�ation fators and diretional urvatures are shown in �gures 2 and 2d,respetively. The magni�ation fator at a entre xi, whih is the Jaobian ofthe GTM map f at xi [4℄, is represented by the degree of shading of the orre-sponding path. In the urvature plot, we show for eah latent spae entre xi,the diretion h yielding the maximal norm of ��?(0). The length of the diretionline and the degree of shading of the orresponding path are proportional tothe maximal norm of ��?(0).The urvature and expansion patterns in the projetion manifold (�gure 2b)are learly reeted in the magni�ation fator and urvature plots (�gures 2,d).The form of the projetion manifold an be approximately guessed on the basisof its loal �rst- and seond-order haraterizations.In the seond experiment, we trained GTM on an oil ow data set3. This12-dimensional data set arises from a physis-based simulation of a non-invasive3 http://www.nrg.aston.a.uk/GTM/3PhaseData.html
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(d) CurvaturesFig. 2. Toy data experiment.monitoring system, used to determine the quantity of oil in a multi-phase pipelineontaining a mixture of oil, water and gas. The data set onsists of 1000 pointsobtained synthetially by simulating the physial proess in the pipe. Points inthe data set are lassi�ed into three di�erent multi-phase ow on�gurations,namely homogeneous, annular and laminar.The top level urvature plot in �gure 3b reveals that the two-dimensionalprojetion manifold folded three times in order to \apture" the distributionof points in the 12-dimensional spae. Interestingly, the three multi-phase owon�gurations seem to be roughly separated by the folds (ompare the top levelvisualization plot in �gure 3a with the orresponding urvature plot). We on-�rmed this hypothesis by onstruting three loal lower level visualization plotsinitiated in the regions between the folds. The lower level plots orrespond to amixture of GTMs (see [10℄) and are shown in �gure 3a. The lower level plots arenumbered left-to-right and were initiated in points shown as irles in the toplevel plot (the number inside eah irle indiates the index of the orrespondinglower level plot). Curvature plots of the lower level GTMs reveal that, omparedto the top level GTM, the lower level projetion manifolds are almost at. We



Diretional Curvatures of the GTM manifolds 7do not show the magni�ation fator plots here, but there are no signi�antexpansive/ontrative tendenies in the lower level projetion manifolds. In thisexample the use of urvature information is ruial to suessful modeling.5 ConlusionCompared to linear projetion methods suh as PCA, non-linear visualizationtehniques are more apable of revealing the nature of data distribution in a high-dimensional spae. Charaterization of loal geometri properties of the non-linear projetion manifolds provides user with a valuable additional informationthat an inuene further steps in the data analysis.In this paper, we extended the work of Bishop, Svens�en and Williams [4℄ [5℄on magni�ation fators in GTM desribing loal expansion tendenies of theprojetion manifold. We analytially alulate and graphially represent loaldiretional urvatures of the GTM manifold. Curvature plots are useful for de-teting regions where geometry is distorted, for hanging the amount of regular-ization in non-linear projetion manifolds and, as illustrated in our experiment,for hoosing regions of interest when onstruting detailed lower-level visualiza-tion plots.Referenes1. Bates, D.M., Watts, D.G.: Relative urvature measures of nonlinearity (with Dis-ussion). J. R. Stat. So. B 42 (1980) 1{252. Bauer, H.U., Pawelzik, K.: Quantifying the neighborhood preservation of self-organizing feature maps. IEEE Transations on Neural Networks 3 (1992) 570{5793. Bishop, C.M.: Neural Networks for Pattern Reognition. Oxford University Press,Oxford, UK (1995)4. Bishop, C.M., Svens�en, M., Williams, C.K.I.: Magni�ation Fators for the SOMand GTM Algorithms. In: Proeedings 1997 Workshop on Self-Organizing Maps,Helsinki, Finland. (1997)5. Bishop, C.M., Svens�en, M., Williams, C.K.I.: Magni�ation Fators for the GTMAlgorithm. In: Proeedings IEE Fifth International Conferene on Arti�ial NeuralNetworks. IEE, London (1997) 64{696. Bishop, C.M., Svens�en, M., Williams, C.K.I.: GTM: The Generative TopographiMapping. Neural Computation 1 (1998) 215{2357. Kohonen, T.: The self{organizing map. Proeedings of the IEEE 9 (1990) 1464{14798. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cam-bridge, England (1985)9. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. John Wiley and Sons, New York,NY (1989)10. Ti�no, P., Nabney, I.: Construting loalized non-linear projetion manifolds in aprinipled way: hierarhial Generative Topographi Mapping. Tehnial ReportNCRG/2000/011, Neural Computation Researh Group, Aston University, UK.(2000)11. Willmann, T., Der, R., Martinez, T.: A new quantitative measure of topologypreservation in Kohonen's feature maps. In: ICNN'94 Proeedings. IEEE ServieCenter (1994) 645{648



8 Peter Ti�no et al.
1

2

3

Homogeneous

Annular    

Laminar    

(a) Data projetions
2

4

6

8

10

12

14

16

18

20

22

(b) CurvaturesFig. 3. Oil data experiment.


