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Abstract. – A variation of low-density parity check (LDPC) error-correcting codes defined
over Galois fields (GF (q)) is investigated using statistical physics. A code of this type is
characterised by a sparse random parity check matrix composed of C non-zero elements per
column. We examine the dependence of the code performance on the value of q, for finite
and infinite C values, both in terms of the thermodynamical transition point and the practical
decoding phase characterised by the existence of a unique (ferromagnetic) solution. We find
different q-dependence in the cases of C = 2 and C ≥ 3; the analytical solutions are in agreement
with simulation results, providing a quantitative measure to the improvement in performance
obtained using non-binary alphabets.

Error correction mechanisms are essential for ensuring reliable data transmission through
noisy media. They play an important role in a wide range of applications from magnetic hard
disks to deep space exploration, and are expected to become even more important due to the
rapid development in mobile phones and satellite-based communication.

The error-correcting ability comes at the expense of information redundancy. Shannon
showed in his seminal work [1] that error-free communication is theoretically possible if the
code rate, representing the fraction of informative bits in the transmitted codeword, is below
the channel capacity. Here, we focus on the case of unbiased messages transmitted through a
Binary Symmetric Channel (BSC), characterized by a bit flip rate p. In this case, the maximal
code rate R = N/M which allows for an error-free communication satisfies R < 1 − H2(p),
when both lengths of the original message N and codeword M become infinite and H2(p)=
−p log2 p−(1−p) log2(1−p). The maximal rate is often termed Shannon’s limit. Unfortunately,
Shannon’s derivation is non-constructive and the quest for practical codes which saturate this
limit has been one of the central topics in information theory ever since.

Low-density parity check (LDPC) codes are based on the transmission of parity checks
on top of the message itself, from which errors, which occur during transmission, could be
identified and corrected. These codes were introduced by Gallager already in 1962 [2] but
have been only recently rediscovered [3] and suggested as practical high-performance codes.
They appear to offer the best performance to date and are likely to play an increasingly more
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Table I – (a) GF (4 = 2b) numbers can be expressed as b = 2 bits Boolean sequences or b − 1 degree
polynomials composed of Boolean coefficients. (b) Sum (left) and product (right) in GF (4).

(a)

GF (4) 0 1 2 3

Boolean 00 01 10 11

Polynomial 0 1 x x + 1

(b)⊕
0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

⊗
0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

important role in the future. Fortunately, these codes are amenable to statistical-mechanics–
based analysis, by mapping the code onto a diluted Ising spin system, which provides insight
into their typical properties and performance [4, 5].

One particularly powerful code is an irregular construction using a non-binary alphabet
based on Galois fields, which provides one of the best error correction performance to date [6].
This construction, based on improving the parity check matrix and the alphabet used by trial
and error, instigated the current work, aimed at clarifying the role played by the alphabet
used in obtaining this outstanding performance. To separate the effect of code irregularity
from that of the alphabet used we focus here on the dependence of regular constructions on the
chosen alphabet. To some extent this complements our previous investigation on the impact
of code irregularity on the system’s performance [5] in the case of binary alphabets. As there
is no directly equivalent physical model to the non-binary coding system under examination,
one should design a model specifically for this task, which makes the analysis more interesting.

A Galois field GF (q = 2b) represents a closed set of q elements {0, 1, . . . , q − 1} which can
be added and multiplied in modulo. Employing the binary representation, each element is
expressed as a sequence of b-bit Boolean number; this can be identified with a b − 1 degree
polynomial, the coefficients of which are defined by the Boolean elements of this number
(table I(a)). Over this set, the sum and product operations are defined by a b degree irreducible
polynomial which may be represented by Boolean coefficients. For instance, the irreducible
polynomial for GF (22 = 4) is x2 + x + 1. Then, employing the polynomial expression,
3 ⊕ 1 = (x + 1) + 1 (mod 2) = x = 2 and 3 ⊗ 2 = (x + 1) × x (mod 2) = x2 + x (mod 2) =
−1 (mod 2) = 1, setting x2 + x + 1 = 0 (mod 2), where modulo 2 operations are employed
for the Boolean coefficients. Table I(b) summarises the sum and product operations in the
Galois field GF (4). More details about Galois fields can be found in [7].

In a general scenario, a non-binary alphabet based on the Galois field GF (q) is used
to define an encoder and decoder as follows: The sender first converts the Boolean mes-
sage vector ξB of dimensionality N , where ξB

i ∈ (0, 1), ∀i, to an N/b-dimensional vector of
GF (q = 2b) elements, where each segment of b consecutive bits is mapped onto a GF (q) num-
ber(1). The GF (q) vector is then encoded to an M/b dimensional GF (q) codeword z0, in the
manner described below, which is then reconverted to an M -dimensional Boolean codeword
zB

0 , transmitted via a noisy channel. Corruption during transmission can be modelled by the
noise vector ζB, where corrupted bits are marked by the value 1 and all other bits are zero,
so that the received corrupted codeword takes the form zB = zB

0 + ζB (mod 2). The received
corrupted Boolean message is then converted back to a GF (q) vector z, and decoded in the
GF (q) representation; finally the message estimate is interpreted as a Boolean vector.

An LDPC code in the GF (q) representation is based on a randomly constructed sparse
parity check matrix A of dimensionality (M − N)/b × M/b. In regular codes, which we

(1)Binary vectors will be denoted by a superscript B; other vectors are in the GF (q) representation.
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focus on here, this matrix is characterised by fixed numbers C and K of non-zero GF (q)
elements per column/row. In irregular constructions the number of non-zero elements per
column/row may vary. The choice of C, K is linked to the code rate R, obeying the relation
C/K = 1−R. Non-zero elements in each row are independently and randomly selected from
a specific distribution that maximises the marginal entropy for each component of Aζ (all
vector operations in the GF (q) representation will be carried out as defined for this field;
for brevity we do not introduce different symbols to denote these operations) when ζ is the
GF (q) representation of the binary random noise vector ζB. Then, one constructs a dense
M/b × N/b generator matrix GT satisfying AGT = 0 [6].

Using the matrix G, encoding is carried out in the GF (q) representation by taking the
product z0 = GT ξ; decoding is performed by taking the product of the parity check matrix
A and the received corrupted message z = z0 + ζ, which yields the syndrome vector J =
Az = Aζ. The most probable estimate of the noise vector n is defined using the equation

An = J . (1)

Belief propagation (BP) [3] is widely used to find the most probable vector n. This has been
linked, in the case of Boolean codes, to the TAP (Thouless, Anderson, Palmer)-based solution
of a similar physical system [8], a relation which holds also in the case of GF (q) codes.

The noise vector estimate is then employed to remove the noise from the received codeword
and retrieve the original message ξ by solving the equation GT ξ = z − n.

The similarity between error-correcting codes and physical systems was first pointed out by
Sourlas [9], by considering a simple Boolean code, and by mapping the code onto well-studied
Ising spin systems. We recently extended his work, which focused on extensively connected
systems, to the case of finite connectivity [8]. Here, we generalise these connections to spin
systems in which the interaction is determined using the GF (q) algebra.

In order to facilitate the current investigation, we first map the problem to that of a “GF (q)
spin system” of finite connectivity. The syndrome vector J is generated by taking sums of the
relevant noise vector elements Jµ = Aµi1ζi1 + . . .+AµiK

ζiK
, where ζ = (ζi=1,...,M/b) represents

the true channel noise; the indices i1, . . . , iK correspond to the non-zero elements in the µ-th
row of the parity check matrix A = (Aνk). It should be noted that the noise components ζi

are derived from a certain distribution Ppr(ζi), representing the nature of the communication
channel; this will serve as our prior belief to the nature of the corruption process. This implies
that the most probable solution of eq. (1) corresponds to the ground state of the Hamiltonian

H(n)=
∑

〈i1,i2,...,iK〉
D〈i1,i2,...,iK〉

(
1−δ

[
J〈i1,i2,...,iK〉;Aµi1ni1 +. . .+AµiK

niK

])− 1
β

M/b∑
i=1

ln Ppr(ni),

(2)
in the zero-temperature limit β = 1/T → ∞. Elements of the sparse tensor D〈i1,i2,...,iK〉 take
the value 1 if all the corresponding indices of parity matrix A are non-zero in some row, µ,
and 0 otherwise. The last expression on the right relates to the prior probability of the noise
vector elements. Note that operations between vectors/elements in the GF (q) representation
(e.g., within the δ-function) are carried out as defined in this field.

The delta-function provides 1 if the contribution for the selected site Aµi1ni1+. . .+AµiK
niK

is in agreement with the corresponding syndrome value J〈i1,i2,...,iK〉, and 0 otherwise. Notice
that this term is not frustrated as there are M/b degrees of freedom while only (M − N)/b
constraints arise from eq. (1), and its contribution can therefore vanish at sufficiently low
temperatures. The choice of β → ∞ imposes the restriction (1), limiting the solutions to
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those for which the first term of (2) vanishes, while the second term, representing the prior
information about the noise, survives.

The optimal estimator, minimising the expectation of discrepancy per noise bit, is of the
form n̂i = argmaxa∈GF (q) 〈δ(ni, a)〉β→∞. This is known as the marginal posterior maximiser
(MPM) [10] and corresponds to the finite-temperature decoding at Nishimori’s temperature
studied in other codes [9,11,12]. Notice that here, due to the hard constraints imposed on the
dynamical variables, decoding at zero temperature is optimal, as the true posterior distribution
(given J) relates to the ground state of Hamiltonian (2), similar to other LDPC codes [4]. The
macroscopic quantity m = (b/M)

〈∑M/b
i=1 δ(n̂i, ζi)

〉
{D,A,ζ}

serves as the performance measure.

To eliminate the dependence of the syndrome J〈i1,...,iK〉 on the noise vector ζ we employ the
gauge transformation ni → ni + ζi, J〈i1,...,iK〉 → 0. Rewriting eq. (2) in this gauge moves the
dependence on ζ to the second term where it appears in a decoupled form (1/β) ln Ppr(ni+ζi).
The remaining difficulty comes from the complicated site dependence caused by non-trivial
GF (q) algebra in the first term. However, one can rewrite this dependence in the simpler
form

δ [0;Aµi1ni1 + . . . + AµiK
niK

] =
q−1∑

A1,...,AK ,a1,...,aK=0

δ [0;A1a1 + . . . + AKaK ] ×

× δ(A1, Aµi1) . . . δ(AK , AµiK
)×δ(a1, ni1) . . . δ(aK , niK

), (3)

by introducing Kroncker’s δ and the dummy variables A1, . . . , AK and a1, . . . , aK .
Since codes of this type are usually used for long messages with N = 103–105, it is

natural to analyse their properties using the methods of statistical mechanics. The random
selection of a sparse tensor D identifies the non-zero elements of A, and the noise vector
ζ introduces quenched disorder to the system. We then calculate the partition function
Z (D, A, ζ) = Trn exp [−βH] averaged over the disorder using the replica method [4,8]. Taking
β → ∞ gives rise to a set of order parameters

Qa1,a2,...,an
=

b

M

M/b∑
i=1

〈
Zi

n∏
α=1

〈δ (aα, niα)〉β→∞

〉
D,A,ζ

, (4)

where α = 1, . . . , n represents the replica index and aα runs from 0 to q− 1, and the variables
Zi come from enforcing the restriction of C connections per index i

δ

 ∑
〈i2,...,iK〉

D〈i,i2,...,iK〉 − C

 =
∮

dZ

2π
Z

∑
〈i2,...,iK〉 D〈i,i2,...,iK〉−(C+1)

. (5)

To proceed further, one has to make an assumption about the symmetry of order param-
eters. The assumption made here is that of replica symmetry reflected in the representation
of the order parameters and of the related conjugate variables:

Qa1,a2,...,an
= aQ

∫
dP π(P )

n∏
α=1

Paα
, Q̂a1,a2,...,an

= aQ̂

∫
dP̂ π̂(P )

n∏
α=1

P̂aα
, (6)

where aQ and aQ̂ are normalisation coefficients; π(P ) and π̂(P̂ ) represent probability distri-

butions for q-dimensional vectors P = (P0, . . . , Pq−1) and P̂ = (P̂0, . . . , P̂q−1), respectively.
Unspecified integrals are performed over the region P0 + . . . + Pq−1 = 1, Pa=0,...,q−1 ≥ 0 or
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P̂0 + . . .+ P̂q−1 = 1, P̂a=0,...,q−1 ≥ 0. Extremising the averaged expression with respect to the
probability distributions, one obtains the following free energy per spin:

− b

M
〈lnZ〉D,A,ζ = − Ext

{π,π̂}


∫ C∏

l=1

dP̂
l
π̂

(
P̂

l
) 〈

ln

(
q−1∑
a=0

C∏
l=1

P̂ l
a Ppr (a + ζ)

)〉
ζ

+

+
C

K

∫ K∏
l=1

dP lπ
(
P l

) 〈
ln

(
q−1∑

a1,...,aK=0

δ [0;A1a1 + . . . + AKaK ]
K∏

l=1

P l
al

)〉
A

−

− C

∫
dP dP̂ π (P ) π̂(P̂ ) ln

(
q−1∑
a=0

PaP̂a

)}
, (7)

where 〈·〉A and 〈·〉ζ denote averages over the distribution of non-zero units per row in con-
structing the matrix A and over Ppr(ζ), respectively. One calculates the free energy via the
saddle point method, as is done for the binary codes [4]. Solving the equations obtained by
varying eq. (7) is generally difficult. However, it can be shown analytically that a successful
solution

π(P ) = δ(P0 − 1)
q−1∏
a=1

δ(Pa), π̂(P̂ ) = δ(P̂0 − 1)
q−1∏
a=1

δ(P̂a), (8)

which implies perfect decoding m = 1, extremises the free energy for C ≥ 2. For C → ∞, an
unsuccessful solution, which provides m < 1, is also obtained analytically:

π(P ) =

〈
q−1∏
a=0

δ (Pa − Ppr(a + ζ))

〉
ζ

, π̂(P̂ ) =
q−1∏
a=0

δ

(
P̂a − 1

q

)
. (9)

Inserting these solutions into (7) it is found that the solution (8) becomes thermodynamically
dominant with respect to (9) for R < 1 − H2(p) independently of q; which implies that the
code saturates Shannon’s limit for C → ∞ as reported in the information theory literature [6].

Finding additional solutions analytically is difficult, we therefore resorted to numerical
methods. Approximating the distributions π(P ) and π̂(P̂ ) by 5× 103–3× 104 sample vectors
of P and P̂ we obtained solutions by updating the saddle point equations (100–500 iterations)
for codes of connectivity C = 2, . . . , 6 and GF (q) representation q = 2, 4, 8 and for both BSC
and Gaussian channels. Less than 50 iterations were typically sufficient for the solutions to
converge. Due to lack of space we present here results only for the case of the BSC; results
for the case of Gaussian channels are qualitatively similar and will be presented elsewhere.

Since the suggested properties are different for C ≥ 3 and C = 2, we describe the results
separately for the two cases. For C ≥ 3, it turns out that eq. (8) is always locally stable.
However, an unsuccessful solution, approaching (9) as C → ∞, becomes thermodynamically
dominant for a sufficiently large flip rate p. As the noise level is reduced, the solution (8)
becomes thermodynamically dominant at a certain flip rate p = pt, and remains dominant
until p → 0. This implies that perfect decoding m = 1 is feasible for p < pt. However, the
unsuccessful solution remains as well above a certain noise level (the spinodal point) ps(≤ pt).
Note that the entropy of this solution vanishes below pt, exhibiting replica symmetry breaking.
Nevertheless, the spinodal point ps obtained by this solution provides an accurate estimate to
the practical decoding limit when BP is employed for C ≥ 3, as is observed in [4].

As C → ∞, the transition point pt converges to Shannon’s limit pc = H−1
2 (1 − R) from

below, irrespective of the value of q. For finite C, pt monotonically increases with q but does
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Fig. 1 – Extremised free energies (7) obtained for q = 2, 4, 8 as functions of the flip rate p (a) for
connectivity C = 4 and (b) for C = 2 codes with the same code rate R = 1 − C/K = 1/2. In both
codes, broken lines represent free energies of solution (8) corresponding to decoding success, while
markers stand for failure solutions (m < 1). Monte Carlo methods with 5× 103–3× 104 samplings at
each step are employed for obtaining the latter with statistical fluctuations smaller than the symbol
size. For each q value, the solution having the lower free energy becomes thermodynamically dominant.
In (a), crossing points provide the critical flip rate for pt being 0.106, 0.108 and 0.109 (within the
numerical precision) for q = 2, 4 and 8, respectively, monotonically approaching Shannon’s limit
pc = H−1(1/2) = 0.109. The inset focuses on the spinodal points ps, which determine the limit of
successful practical decoding. This shows ps to decrease with increasing q. (b) shows that C = 2 codes
exhibit continuous transitions between the solutions of decoding success and failure. The critical flip
rate pb, pointed by arrows, increases with q, while it is still far from Shannon’s limit.

not saturate pc. This implies that the error-correcting ability of the codes when optimally
decoded is monotonically improving as q increases.

The behaviour of the spinodal point ps is quite different, as shown in fig. 1a, presenting the
dependence of pt and ps on q for connectivity C = 4. It appears that ps is generally decreasing
with respect to q (except for pathological cases), which indicates a lower practical corruption
limit for which BP/TAP decoding will still be effective. Above this limit BP/TAP dynamics
is likely to converge to the unsuccessful solution due to its dominant basin of attraction [4].
In contrast, C = 2 codes exhibit a different behaviour; the solution (8) becomes the unique
minimum of free energy (7) for sufficiently small noise levels, which implies that practical
decoding dynamics always converges to the perfect solution. However, as the noise level
increases, the solution loses its stability and bifurcates to a stable suboptimal solution. Unlike
the case of C ≥ 3, this bifurcation point pb, which monotonically increases with q, determines
the limit of practical BP/TAP decoding. The practical limit obtained is considerably lower
than both Shannon’s limit and the thermodynamic transition point pt for other C ≥ 3 codes
with the same q value (fig. 1b). Therefore, the optimal decoding performance of C = 2 codes
is the worst within this family of codes.

However, pb can become closer to, and even higher than, the spinodal point ps of other
C ≥ 3 codes for large q values (table II), implying that the practical decoding performance of
C = 2 codes is not necessarily inferior to that of C ≥ 3 codes. This is presumably due to the
decreasing solution numbers to eq. (1) for C = 2 as q increases, compared to the moderate
logarithmic increase in the information content, tipping the balance in favour of the perfect
solution. This may shed light on the role played by C = 2 elements in irregular constructions.

In summary, we have investigated the properties of LDPC codes defined over GF (q) within
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Table II – The critical noise level, below which BP/TAP-based decoding works successfully, for dif-
ferent connectivity values C in the case of q = 8 and R = 1 − C/K = 0.5. This is determined as the
spinodal point ps and the bifurcation point pb for C ≥ 3 and C = 2, respectively. The critical noise
for C = 2 becomes higher than that of C ≥ 5.

C 2 3 4 5 6

Critical noise 0.072 0.088 0.073 0.062 0.050

the framework of statistical mechanics. Employing the replica method, one can evaluate
the typical performance of codes in the limit of infinite message length. It has been shown
analytically that codes of this type saturate Shannon’s limit as C → ∞ irrespective of the
value of q, in agreement with results reported in the information theory literature [6]. For
finite C, numerical calculations suggest that these codes exhibit two different behaviours for
C ≥ 3 and C = 2. For C ≥ 3, we show that the error-correcting ability of these codes, when
optimally decoded, is monotonically improving as q increases, while the practical decoding
limit, determined by the emergence of a suboptimal solution, deteriorates. On the other
hand, C = 2 codes exhibit a continuous transition from optimal to suboptimal solutions at
a certain noise level, below which practical decoding dynamics based on BP/TAP methods
converges to the (unique) optimal solution. This critical noise level monotonically increases
with q and becomes even higher than that of some codes of connectivity C ≥ 3, while the
optimal decoding performance is inferior to that of C ≥ 3 codes with the same q value. This
may elucidate the role played by C = 2 components in irregular constructions.

Future directions include extending the analysis to irregular Gallager codes as well as to
regular and irregular MN code [3, 4] in the Galois representation.
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