
1Hierar
hi
al GTM: 
onstru
ting lo
alizednon-linear proje
tion manifolds in aprin
ipled wayPeter Ti�no Ian NabneyAbstra
tIt has been argued that a single two-dimensional visualization plot may not be suÆ
ient to 
aptureall of the interesting aspe
ts of 
omplex data sets, and therefore a hierar
hi
al visualization system isdesirable. In this paper we extend an existing lo
ally linear hierar
hi
al visualization system PhiVis[1℄ in several dire
tions: (1) We allow for non-linear proje
tion manifolds. The basi
 building blo
k isthe Generative Topographi
 Mapping (GTM). (2) We introdu
e a general formulation of hierar
hi
alprobabilisti
 models 
onsisting of lo
al probabilisti
 models organized in a hierar
hi
al tree. Generaltraining equations are derived, regardless of the position of the model in the tree. (3) Using tools fromdi�erential geometry we derive expressions for lo
al dire
tional 
urvatures of the proje
tion manifold.Like PhiVis, our system is statisti
ally prin
ipled and is built intera
tively in a top-down fashion usingthe EM algorithm. It enables the user to intera
tively highlight those data in the an
estor visualizationplots whi
h are 
aptured by a 
hild model. We also in
orporate into our system a hierar
hi
al, lo
allysele
tive representation of magni�
ation fa
tors and dire
tional 
urvatures of the proje
tion manifolds.Su
h information is important for further re�nement of the hierar
hi
al visualization plot, as well as for
ontrolling the amount of regularization imposed on the lo
al models. We demonstrate the prin
iple ofthe approa
h on a toy data set and apply our system to two more 
omplex 12- and 18-dimensional datasets. KeywordsHierar
hi
al probabilisti
 model, Generative Topographi
 Mapping, data visualization, EM algorithm,density estimation, dire
tional 
urvature.I. Introdu
tionMOST data visualization algorithms proje
t the data onto a two-dimensional vi-sualization spa
e. However, a single two-dimensional proje
tion, even if it isThis work was supported by the BBSRC grant BIO/12093 and P�zer Resear
h. The authors are with the NeuralComputation Resear
h Group, Aston University, Aston Triangle, Birmingham. B4 7ET, UK. Correspondingauthor: PT, p.tino�aston.a
.uk.
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2non-linear, may not be suÆ
ient to 
apture all of the interesting aspe
ts of the data. Thismotivated Bishop and Tipping [1℄ to develop a hierar
hi
al model involving multiple lineartwo-dimensional visualization spa
es. The intuition behind their approa
h is that the la
kof 
exibility of individual models 
an be 
ompensated for by the overall 
exibility of the
omplete hierar
hy. However, there are situations where using a hierar
hy of non-linearmodels 
an lead to more natural and parsimonious data representations. Consider, forexample, a set of points 
lose to the two-dimensional manifold shown in �gure 1. The set
ould be 
overed by a large number of linear two-dimensional sheets, but in this 
ase, a
olle
tion of four simple non-linear \humps" is a more natural alternative. Of 
ourse, asdis
ussed in this paper, on
e we allow for non-linear lo
al proje
tions, we need an e�e
tiveme
hanism to 
ontrol the \amount of non-linearity" in the proje
tion manifolds. To thisend, we visualize in a hierar
hi
al and intera
tive way the lo
al magni�
ation fa
tors anddire
tional 
urvatures of the proje
tion manifolds.
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Fig. 1. A two-dimensional manifold in three-dimensional Eu
lidean spa
e.When investigating a data set through low-dimensional proje
tions in a hierar
hi
alway, one usually �rst 
onstru
ts a top-level plot and then 
on
entrates on lo
al regionsof interest by re
ursively building the 
orresponding sub-proje
tions. The sub-models areorganized in a hierar
hi
al tree and should ideally form a 
onsistent probabilisti
 model ofthe data, as with the hierar
hi
al lo
ally linear model of Bishop and Tipping [1℄. Here, wepresent a 
onsistent probabilisti
 model of the data that performs non-linear lo
al dataproje
tions.The basi
 building blo
k of our hierar
hi
al model is the Generative Topographi
 Map-



3ping (GTM) introdu
ed by Bishop, Svens�en and Williams [2℄. It is a probabilisti
 re-formulation of the self-organizing map (SOM) [3℄ and o�ers many advantages 
omparedwith the standard SOM [4℄, prin
ipally that it de�nes an expli
it probability density modelof the data. This enables us to apply the 
onsistent and statisti
ally prin
ipled frameworkused in [1℄ to formulate hierar
hi
al non-linear visualization trees. Also, unlike SOMs,lo
al GTMs form smooth two-dimensional manifolds on whi
h quantities useful for moni-toring the \amount of non-linearity", like magni�
ation fa
tors [5℄, or 
urvatures, 
an be
omputed analyti
ally. Approa
hes to hierar
hi
al data visualization that in
orporatedSOM [6℄ [7℄ [8℄ partitioned data in a \hard" fashion, while our approa
h permits \soft"partitioning in whi
h, at any level of hierar
hy, data points 
an e�e
tively belong to morethan one lo
al model.In a 
losely related �eld of data 
lustering Williams proposed a probabilisti
 mixturemodel that generates data in a hierar
hi
al tree-stru
tured manner [9℄. The tree stru
tureis inferen
ed from data using Markov Chain Monte Carlo (MCMC) methods. MCMC isused to sample from the posterior distribution over trees of variable size, given the datapoints and a prior over trees expressed as a Markovian model for numbers of nodes atdi�erent levels of the tree.The paper has the following organization: In se
tion II we give a general formulation ofprobabilisti
 models organized in hierar
hi
al trees. Se
tion III brie
y introdu
es the basi
building blo
k of our visualization system { the Generative Topographi
 Mapping [2℄. Inse
tion IV we derive equations for an EM algorithm that �ts GTMs in the hierar
hy tothe data. Using tools of di�erential geometry, we show in se
tion V how to 
ompute lo
aldire
tional 
urvatures of the GTM proje
tion manifold and brie
y mention previous workon magni�
ation fa
tors. Se
tion VI des
ribes details of the implemented hierar
hi
alvisualization system and se
tion VII presents the experiments on a toy three-dimensionaldata set and two more 
omplex 12- and 18-dimensional data 
olle
tions. The dis
ussionin se
tion VIII highlights the experimental �ndings and 
ompares our system with thelinear hierar
hi
al visualization tool of Bishop and Tipping [1℄. Se
tion IX 
on
ludes thepaper by summarizing the key 
ontributions of this study.



4II. Hierar
hi
al probabilisti
 modelsIn this se
tion, we give a general outline of hierar
hi
al probabilisti
 models that 
onsistof lo
al probabilisti
 models M organized in hierar
hi
al trees. Ea
h model M de�nes adistribution P (tj M) on a data spa
e D, t 2 D. First, we introdu
e notation that re
e
tsthe fa
t that hierar
hi
al trees are spe
ial 
ases of graphs.A. Hierar
hi
al TreesFor the sake of simpli
ity, we illustrate the 
on
epts on an example, generalization isstraightforward.

Level 3

Level 1

Level 2
[1,2] [2,2] [N(2),2]

[a,2]

[2,3] [b,3][1,3] [N(3),3]

Root=[1,1]

Fig. 2. An example of a hierar
hi
al tree.Consider a hierar
hi
al tree T shown in �gure 2. We introdu
e the following fun
tionsoperating on nodes (probabilisti
 models on the data spa
e D) M of T :� Parent(M) | the �rst-generation an
estor of MParent([a; 2℄) = Root, Parent([b; 3℄) = [a; 2℄.� Children(M) | the set of �rst-generation des
endants of MChildren(Root) = f[1; 2℄; [2; 2℄; :::; [N(2); 2℄g, Children([a; 2℄) = f[1; 3℄; [2; 3℄; :::; [N(3); 3℄g.� Level(M) | level of M in TLevel(Root) = 1, Level([a; 2℄) = 2, Level([b; 3℄) = 3.� Nodes(`) | the set of nodes at level `,Nodes(`) = fMj Level(M) = `g = SM2Nodes(`�1) Children(M)Nodes(1) = fRootg, Nodes(2) = f[1; 2℄; [2; 2℄; :::; [N(2); 2℄g.� Path(M) |N -tuple of nodes de�ning the path fromRoot toM, where N = Level(M)Path(Root) = (Root), Path([a; 2℄) = (Root; [a; 2℄), Path([b; 3℄) = (Root; [a; 2℄; [b; 3℄),



5writing element-wise: Path([b; 3℄)1 = Root, Path([b; 3℄)2 = [a; 2℄, Path([b; 3℄)3 = [b; 3℄.Leaves(T ) is the set of leaves of the tree T , i.e. the set of nodes without 
hildren.B. Model formulationThe hierar
hi
al probabilisti
 model is obtained by interpreting the nodes of the hier-ar
hi
al tree T as probabilisti
 models on the data spa
e.Ea
h model M in the hierar
hy, ex
ept for Root, has an asso
iated parent-
onditionalmixture 
oeÆ
ient, or prior �(Mj Parent(M)): (1)The priors are non-negative and satisfy the 
onsisten
y 
ondition:� for any model N having 
hildren,XM2Children(N )�(Mj N ) = 1: (2)Un
onditional priors for the models are re
ursively 
al
ulated as follows:� prior for Root is unity �(Root) = 1; (3)� and for all other models�(M) = Level(M)Yi=2 �(Path(M)ij Path(M)i�1): (4)Now, we are ready to write the distribution P (tj T ) given by the hierar
hi
al model; itis a mixture of models at the leaves of the tree T ,P (tj T ) = XM2Leaves(T ) �(M) P (tj M): (5)Models 
orresponding to internal (i.e. non-leaf) nodes of T play their role only in thepro
ess of 
reating the hierar
hi
al model. On
e the hierar
hy is trained and mixture
oeÆ
ients (4) are established, we need the internal models only if we wish to extend orretrain the hierar
hi
al model stru
ture in the future.



6III. Generative Topographi
 MappingThe Generative Topographi
 Mapping belongs to a family of latent spa
e models thatmodel a probability distribution in the (observable) data spa
e by means of latent, orhidden variables. The latent spa
e is used to visualize the data, and is usually a boundedsubset of the two-dimensional Eu
lidean spa
e, su
h as the unit square, or the (two-dimensional) interval [�1; 1℄� [�1; 1℄.Consider an L-dimensional latent spa
e H � <L of a GTM M and represent points inH as 
olumn ve
tors x = (x1; x2; :::; xL)T . We dis
retize the latent spa
e by introdu
inga regular array of latent spa
e 
entres xMi 2 H, labelled by the index i = 1; 2; :::; KM.Latent spa
e 
entres are analogous to the nodes of SOM.Let the data spa
e be the D-dimensional Eu
lidean spa
e <D. We de�ne a non-lineartransformation fM : H ! <D from the latent spa
e to the data spa
e using a radial basisfun
tion network (see e.g. [10℄). To this end, we 
over the latent spa
e with a set ofMM � 1 �xed non-linear basis fun
tions �j : H ! <, j = 1; 2; :::;MM � 1, whi
h forma non-orthogonal basis set. In this paper, as usual in the GTM literature, we 
hoose towork with spheri
al Gaussian fun
tions of the same width �, although other 
hoi
es arepossible and require simple modi�
ations. The 
entres of the Gaussian basis fun
tions �jare positioned in the latent spa
e on a regular grid. This is be
ause the basis fun
tionsshould model the latent spa
e density (see [10℄) whi
h is de�ned to be uniform. To a

ountfor the bias term, we introdu
e an additional 
onstant basis fun
tion �MM(x) = 1, for allx 2 H. Given a point x 2 H, the values given by the basis fun
tions at x are summarizedby a 
olumn ve
tor �M(x) = (�1(x); �2(x); :::; �MM(x))T ; (6)and the image of x under the map fM is 
omputed asfM(x) =WM �M(x); (7)where WM is a D �MM matrix of weights.GTM 
reates a generative probabilisti
 model in the data spa
e by pla
ing a radially-symmetri
 Gaussian with zero mean and inverse varian
e �M around images, under fM,



7of the latent spa
e 
entres xMi 2 H, i = 1; 2; :::; KM:P (tj xMi ;WM; �M) =  �M2� !D=2 exp(��M2 kf(xMi )� tk2) : (8)De�ning a uniform prior over xMi , the density model in the data spa
e provided by theGTM M is then P (tj M) = 1KM KMXi=1 P (tj xMi ;WM; �M): (9)Given a data set � = ft1; t2; :::; tNg of i.i.d. points in the data spa
e, the adjustableparametersWM and �M of the modelM 
an be �tted to the data by maximum likelihood.The log likelihood fun
tion is given byL(WM; �M) = NXn=1 lnP (tnj M): (10)The log likelihood 
an be maximized using a gradient-based pro
edure, or the expe
tation-maximization (EM) algorithm [11℄. A derivation of the EM algorithm for GTM 
an befound in [2℄.For the purpose of data visualization, we use Bayes' theorem to invert the transfor-mation fM from the latent spa
e H to the data spa
e D. Sin
e we 
hoose to work witha prior distribution on H that e�e
tively dis
retizes the latent spa
e into the grid xMi ,i = 1; 2; :::; KM, the posterior distribution on H, given a data point tn 2 D, is a sum ofdelta fun
tions 
entered at xMi , with 
oeÆ
ients given by the responsibilitiesRMi;n = P (tnj xMi ;WM; �M)PKMj=1 P (tnj xMj ;WM; �M) : (11)The responsibilityRMi;n is the posterior probability that the Gaussian P (tnj xMi ;WM; �M)generated the point tn in the data spa
e. When used for data visualization, GTM Mproje
ts points tn from the data spa
e into the low-dimensional latent spa
e H. Thelatent spa
e representation of the point tn is taken to be the meanKMXi�1 RMi;n xMi ; (12)or the mode xi�; i� = argmaxfig RMi;n (13)of the posterior distribution on H.



8The fM{image of the latent spa
e H,
 = fM(H) = ffM(x) 2 <Dj x 2 Hg; (14)forms an L-dimensional manifold in the data spa
e. We refer to the manifold 
 as theproje
tion manifold of GTM M.IV. Training the hierar
hy of GTMsTraining of a hierar
hy of GTMs pro
eeds in a re
ursive fashion. First, a root GTMis trained and used to visualize the data. Then the user identi�es interesting regions onthe visualization plot that they would like to model in a greater detail. These \regionsof interest" are then transformed into the data spa
e and form the basis for building a
olle
tion of new, 
hild GTMs. After seeing the lower level visualization plots, the usermay de
ide to pro
eed further and model in a greater detail some portions of the lowerlevel plots, et
.In the following, we assume that we have already trained a hierar
hy of GTMs up to level` of a hierar
hi
al tree T . The purpose of this se
tion is to formulate the EM algorithmthat �ts 
hild GTMsM, of models N at level `, to the data set � = ft1; t2; :::; tNg. ChildGTMs of models at level ` are GTMs at level `+ 1. The 
urrent stage of the hierar
hi
alGTM 
onstru
tion is shown in �gure 3.

Level l+1

Level l
N

M

Level 2

Level 1
Root

Fig. 3. A stage in the hierar
hi
al GTM 
onstru
tion. All GTMs up to level ` have been built. Now,
hild GTMsM at level `+ 1 of the parent GTMs N at level ` are being 
onstru
ted.



9A. The EM algorithmGiven the training data � = ft1; t2; :::; tNg, the likelihood fun
tion of the hierar
hy Tof GTMs is L = NXn=1 lnP (tnj T ); (15)where P (tj T ) is given by (5).We �t 
hildren of the parent GTMs N at level ` to the training set by maximizing thelikelihood fun
tion L. At the 
urrent stage, the 
hildren of the models N are leaves ofthe hierar
hi
al tree T , and so the distribution P (tj T ) given by the hierar
hi
al model
an be rewritten asP (tj T ) = XM2Leaves(T ) �(M) P (tj M) = QT nNodes(`+1)(t) + QNodes(`+1)(t); (16)where QT nNodes(`+1)(t) = XM2Leaves(T )nNodes(`+1) �(M) P (tj M) (17)and QNodes(`+1)(t) = XM2Nodes(`+1) �(M) P (tj M): (18)Sin
e all GTMs in the hierar
hy, ex
ept for the re
ently added models in Nodes(`+1),are �xed, the likelihood fun
tion L is maximized by maximizing the restri
ted likelihoodfun
tion 
on�ned only to the GTMs at level `+ 1,L(`+1) = NXn=1 lnQNodes(`+1)(tn): (19)From (4), the mixture 
oeÆ
ients �(M) of a GTM M at level `+ 1 are given by,�(M) = �(Mj Parent(M)) �(Parent(M)); (20)and so (18) be
omesQNodes(`+1)(t) = XM2Nodes(`+1) �(Mj Parent(M)) �(Parent(M)) P (tj M); (21)giving the restri
ted likelihood fun
tionL(`+1) = NXn=1 ln8<: XM2Nodes(`+1) �(Mj Parent(M)) �(Parent(M)) P (tnj M)9=; : (22)



10If we knew, before adding 
hildren to GTMs at level `, whi
h GTM at level ` generatedwhi
h point in the data set � = ft1; t2; :::; tNg, we would be able to rewrite (22) asL(`+1) = NXn=1 XN2Nodes(`) �n;N ln8<: XM2Children(N ) �(Mj N ) �(N ) P (tnj M)9=; ; (23)where the assignment variables �n;N are 1, if GTM N was responsible for generating thepoint tn, and 0 otherwise.In reality, we do not know the values of the assignments �n;N , but we do know theposterior probabilities P (Nj tn) that GTM N generated tn. We also refer to theseposteriors as the responsibilities of N for generating tn. These were 
al
ulated in theprevious stage of the training and are now �xed. We will later show how to 
al
ulate theposteriors P (Mj tn) for models M at level `+ 1.Taking the expe
tation of (23), we arrive at expe
ted restri
ted likelihood fun
tion formodels at level `+ 1,DL(`+1)E = NXn=1 XN2Nodes(`)P (Nj tn) ln8<:�(N ) XM2Children(N ) �(Mj N ) P (tnj M)9=; : (24)Now, imagine that given information that a parent model N was indeed responsiblefor generating a point tn, we knew whi
h of its 
hildren M generated tn. We representthis (hypotheti
al) situation by assignment variables �n;MjN . In reality, we are only ableto 
ompute (parent-
onditional) responsibilities P (Mj N ; tn).Our probabilisti
 models are GTMs that model probability distribution in the dataspa
e in terms of hidden variables (see se
tion III). Suppose for a moment that we knewwhi
h latent spa
e 
entre xMi 2 H, i = 1; 2; :::; KM, of the GTM M 
orresponded to theGaussian that generated tn (eq. (8)). Again, we represent this hypotheti
al situation byassignment variables zMn;i. Sin
e the latent variables xMi are hidden, we only have theresponsibilities RMi;n given by eq. (11).To re
apitulate, we have two types of hidden variables:� the assignment variables �n;MjN that group 
hildren M of the GTM N in a mixturemodel� the assignment variables zMn;i formulating GTM M as a 
onstrained1 mixture of Gaus-1GTM is 
onsidered a 
onstrained mixture of Gaussians, be
ause the means of the Gaussians (8) are 
onstrainedto lie on the fM{image of the latent spa
e (i.e. on the proje
tion manifold of the GTM M), whi
h is a low-dimensional manifold in the data spa
e.



11sians.If we knew the values of the assignment variables, the expe
ted restri
ted likelihoodfun
tion (24) 
ould be written as the 
omplete-data likelihood restri
ted to models atlevel `+ 1, L(`+1)C = NXn=1 XN2Nodes(`) P (Nj tn) XM2Children(N ) �n;MjNKMXi=1 zMn;i lnn�(N ) �(Mj N ) P (tn;xMi )o : (25)Taking expe
tation over both types of hidden variables we arrive at the expe
ted re-stri
ted 
omplete-data likelihoodDL(`+1)C E = NXn=1 XN2Nodes(`) P (Nj tn) XM2Children(N )P (Mj N ; tn)KMXi=1 RMi;n lnn�(N ) �(Mj N ) P (tn;xMi )o : (26)Sin
e P (tn;xMi ) = P (tj xMi ;WM; �M) P (xMi );where P (tj xMi ;WM; �M) is given by (8), and P (xMi ) is a uniform priorP (xMi ) = 1KM ;to maximize DL(`+1)C E, we need to 
onsider only two terms:NXn=1 XN2Nodes(`) P (Nj tn) XM2Children(N )P (Mj N ; tn) ln�(Mj N ) (27)andNXn=1 XN2Nodes(`) P (Nj tn) XM2Children(N )P (Mj N ; tn) KMXi=1 RMi;n lnP (tnj xMi ;WM; �M):(28)The remaining term NXn=1 XN2Nodes(`) P (Nj tn) ln�(N )is 
onstant with respe
t to the adjustable parameters of GTMs at level `+ 1.The M-step of the EM algorithm involves maximizing (27) with respe
t to the parent-
onditional mixture 
oeÆ
ients �(Mj N ) and maximizing (28) with respe
t to the GTMs'parameters WM and �M.



12The maximization of (27) with respe
t to �(Mj N ) must take a

ount of the 
onstraintXM2Children(N )�(Mj N ) = 1:This 
an be a
hieved by introdu
ing a Lagrange multiplier �N (see [1℄ [10℄) and maximizingNXn=1 P (Nj tn) XM2Children(N )P (Mj N ; tn) ln�(Mj N ) + �N 0� XM2Children(N )�(Mj N )1A :After a straightforward 
al
ulation, we obtain�(MjParent(M)) = PNn=1 P (Mj tn)PNn=1 P (Parent(M)j tn) ; (29)where P (Mj tn) = P (Mj Parent(M); tn) P (Parent(M)j tn): (30)Maximizing (28) with respe
t to WM, using (6), (7) and (8), we obtainNXn=1P (Mj tn) KMXi=1 RMi;n �WM �M(xMi )� tn� �TM(xMi ) = 0: (31)The responsibilities RMi;n are 
al
ulated with the 
urrent (\old") weight and inverse vari-an
e parameters of the 
hild GTMs M.Written in matrix notation, we have to solve(�TM BM �M) WTM = �TM RM T (32)for WM.The above system of linear equations involves the following matri
es:� �M is a KM �MM matrix with elements (see eq. (6))(�M)ij = �j(xMi ); (33)� T is a N �D matrix storing the data points t1; t2; :::; tN as rows,� RM is a KM � N matrix 
ontaining, for ea
h latent spa
e 
entre xMi , and ea
h datapoint tn, s
aled responsibilities (RM)in = P (Mj tn) RMi;n (34)
omputed using (30) and (11),



13� BM is a KM �KM diagonal matrix with diagonal elements 
orresponding to responsi-bilities of latent spa
e 
entres for the whole data sample � = ft1; t2; :::; tNg,(BM)ii = NXn=1P (Mj tn) RMi;n: (35)The GTM mapping fM 
an be regularized by adding a regularization term to thelikelihood (10). Bishop, Svens�en and Williams [4℄ suggest to use a quadrati
 regularizerof the form 12 �M kve
(WTM)k2; (36)where ve
(WTM) is a 
olumn ve
tor 
onsisting of the 
on
atenation of the su

essive
olumns of the weight matrixWM, and �M is the regularization 
oeÆ
ient. In
lusion ofthe regularizer (36) modi�es eq. (32) to"�TM BM �M + �M�M I# WTM = �TM RM T (37)where I is the MM �MM identity matrix.Finally, maximizing (28) with respe
t to �M leads to the re-estimation formula (see(7), (11), and (30))1�M = PNn=1 P (Mj tn) PKMi=1 RMi;n kWM �(xMi )� tnk2D PNn=1 P (Mj tn) ; (38)where WM is the \new" weight matrix 
omputed by solving (32) in the last step.In the E-step of the EM algorithm we estimate the latent spa
e responsibilities RMi;nwithin individual GTMs (eq. (11)), model responsibilities P (Mj tn) (eq. (30)), andparent-
onditional model responsibilitiesP (Mj Parent(M); tn) = �(Mj Parent(M)) P (tnj M)PN2[M℄ �(Nj Parent(M)) P (tnj N ) ; (39)where [M℄ = Children(Parent(M)): (40)B. Summary of the EM algorithmHierar
hi
al GTM is trained using EM to maximize its likelihood with respe
t to thedata sample � = ft1; t2; :::; tNg. The hierar
hy is trained in a top-down fashion, startingwith the root model, then 
ontinuing with its 
hildren, then with 
hildren of the 
hildren,



14et
. At ea
h stage of hierar
hi
al GTM 
onstru
tion, the EM algorithm alternates betweenthe E- and M-steps until 
onvergen
e is satisfa
tory (typi
ally after 10{20 iterations). Toavoid numeri
al problems arising from multipli
ation of small probabilities and to speedup the training pro
ess, the GTMs on lover levels are trained only on data points forwhi
h the parent model has responsibility greater than some pre-set threshold �. In ourexperiments � = 10�5.To make expressions for training individual models 
onsistent throughout the hierar
hy,we introdu
e a virtual model Parent(Root) by postulating�(Rootj Parent(Root)) = 1;Children(Parent(Root)) = fRootg;P (Parent(Root)j tn) = 1: (41)We also set P (Rootj tn) = 1: (42)B.1 E-stepIn the E-step, we estimate posterior over all hidden variables, using the \old" values ofGTM parameters.� Given a data point tn 2 <D, (39) is used to 
ompute the model responsibilities 
orre-sponding to the 
ompetition among models belonging to the same parent.� The un
onditional (on parents) model responsibilities are re
ursively determined by(30).� Responsibilities of the latent spa
e 
entres xMi , i = 1; 2; :::; KM, 
orresponding to the
ompetition among the latent spa
e 
entres in ea
h model M are 
al
ulated using (11).B.2 M-stepIn the M-step, we estimate the parameters using the posterior over hidden variables
omputed in the E-step.� Parent-
onditional mixture 
oeÆ
ients are determined by (29).� Weight matri
esWM are 
al
ulated by solving (32) using standard inversion te
hniquesbased on singular value de
omposition [12℄ to allow for possible ill-
onditioning.� The inverse varian
es are re-estimated using (38).



15C. Parameter initializationHaving trained GTMs up to level ` of the hierar
hi
al tree T , we pi
k a parent modelN at level ` and, based on its visualization plot, we sele
t regions of interest for 
hildGTMs M at level ` + 1. The regions of interest are sele
ted as follows: The user �rstsele
ts points 
i 2 H, i = 1; 2; :::; A, in the latent spa
e that 
orrespond to \
entres" ofthe subregions they are interested in. The points 
i are then transformed via the mapfN , de�ned by the parent GTM, to the data spa
e (eq. (7))fN (
i) =WN �N (
i):The regions of interest are given by the Voronoi 
ompartments [13℄ in the data spa
e
orresponding to the points fN (
i), i = 1; 2; :::; A:Vi = �t 2 <Dj d (t; fN (
i)) = minj d (t; fN (
j))� ; (43)where d(�; �) is the Eu
lidean distan
e in <D. All points in Vi are allo
ated2 to the \
entre"fN (
i).We initialize the parametersWM of 
hild GTMsM, so that ea
h GTM initially approx-imates prin
ipal 
omponent analysis (PCA) of training data in the 
orresponding Voronoi
ompartment. For GTM M 
orresponding to a 
ompartment Vi, we �rst evaluate the
ovarian
e matrix of training points in Vi and obtain the �rst L prin
ipal eigenve
tors.Next, we determine WM by minimizing the errorE = 12 KMXj=1 kWM �M(xMj ) � U xMj k2; (44)where the 
olumns ofU are the �rst L prin
ipal eigenve
tors of the data 
ovarian
e matrix(see [2℄).Following [2℄, the parameter �M is initialized to be the larger of the L + 1 eigenvaluefrom PCA, that represents the varian
e of the data away from the PCA manifold3, andthe square of half of the grid spa
ing of the PCA-proje
ted latent spa
e 
entres xMj inthe data spa
e.2Ties, as events of measure zero (points that land exa
tly on the border between the 
ompartments), are brokena

ording to index order.3Alternatively, one 
an 
ompute the sum of the D � L smallest eigenvalues of the data 
ovarian
e matrix,divided by D � L. This represents the average varian
e \lost" per dis
arded dimension and 
an be shown to bethe maximum likelihood estimator for the (isotropi
) noise varian
e in the probabilisti
 PCA [14℄.



16V. Geometri
 properties of GTM proje
tion manifoldsWe have mentioned in the introdu
tion that allowing for non-linear lo
al proje
tions inthe hierar
hi
al visualization system should be a

ompanied by a set of tools for moni-toring the \amount of non-linearity" in the proje
tion manifolds.Bishop, Svens�en and Williams [5℄ [15℄ 
omputed lo
al magni�
ation fa
tors of GTMmodels. The magni�
ation fa
tors des
ribe how small regions of the (low-dimensional)latent spa
e are stret
hed or 
ompressed when mapped to the (possibly high-dimensional)data spa
e. Similar issues were investigated in the 
ontext of SOM e.g. in [16℄ [17℄ [18℄,but su
h studies are inevitably hampered by the dis
retized nature of the SOM proje
tionmanifold. On the other hand, GTM proje
tion manifold is a smooth fun
tion of the latentspa
e 
oordinates, and so te
hniques from di�erential geometry 
an be used to 
al
ulateits geometri
 properties in a prin
ipled way.Magni�
ation fa
tors represent the extent to whi
h the areas are magni�ed on proje
-tion to the data spa
e. However, when inje
ting a low dimensional latent spa
e into ahigh dimensional data spa
e, the proje
tion manifold may form 
ompli
ated folds that
annot be dete
ted by using magni�
ation fa
tors alone. To provide the user with a toolfor monitoring the amount of folding in the proje
tion manifold, we need se
ond-orderquantities, su
h as lo
al 
urvatures. This in turn, as we shall see in se
tion VII, may beuseful for 
hoosing regions of interest when 
onstru
ting 
hild GTMs, or for updating theregularization parameter of the GTM mapping (see eq. (37)).In this se
tion, we show how to 
ompute lo
al dire
tional 
urvatures of the GTMproje
tion manifold and then brie
y explain the 
on
ept of magni�
ation fa
tors for GTM,as developed in [5℄ [15℄.A. Lo
al dire
tional 
urvaturesThe idea of dire
tional 
urvature is explained in �gure 4. The visualization surfa
e
 of a GTM M (see eq. (14)) is the fM{image of the latent spa
e H and forms anL-dimensional manifold in the data spa
e.Consider a point x0 2 H. Let x(b), b 2 <, be a straight line passing through x0 alonga unit dire
tional ve
tor h = (h1; h2; :::; hL)T . The parametri
 form of x(b) is given byx(b) = x0 + bh; b 2 <: (45)
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Fig. 4. An explanation of lo
al dire
tional derivative of the proje
tion manifold. A straight line x(b)passing through the point x0 in the latent spa
e H is mapped via fM to the 
urve �(b) = fM(x(b))in the data spa
e. Curvature of � at fM(x0) = �(0) is related to the dire
tional 
urvature of theproje
tion manifold fM(H) with respe
t to the dire
tion h. The tangent ve
tor _�(0) to � at �(0)lies in Tx0 (dashed re
tangle), the tangent plane of the manifold fM(H) at �(0).As the parameter b varies, the image of the line x(b) generates the 
urve�(b) = fM(x(b)) (46)in the proje
tion manifold 
, 
alled a lifted line. The tangent to this 
urve at fM(x0) =�(0) is _�(0) = "d �(b)d b #b=0= " LXr=1 �fM(x)�xr d xr(b)d b #x=x0;b=0= LXr=1�(1)r hr (47)= �(1) h; (48)where �(1)r is a (
olumn) ve
tor of partial derivatives of the fun
tionfM = (f 1M; f 2M; :::; fDM)T ; (49)with respe
t to the r-th latent spa
e variable at x0 2 H, and �(1) is the D � L matrix�(1) = [�(1)1 ;�(1)2 ; :::;�(1)L ℄: (50)



18The ve
tors �(1)r , r = 1; 2; :::; L, are 
al
ulated as follows:�(1)r =WM 	(1)r (x0) =WM  ��1(x0)�xr ; ��2(x0)�xr ; :::; ��MM(x0)�xr !T : (51)The tangent ve
tor _�(0) to the lifted line �(b) is a linear 
ombination of the 
olumnsof �(1), and so the range of the matrix �(1) is the tangent plane Tx0 of the proje
tionmanifold 
 at fM(x0) = �(0). Orthogonal proje
tion onto Tx0 is a linear operatordes
ribed by the proje
tion matrix� = �(1) ��(1)�+ ; (52)where ��(1)�+ = ���(1)�T �(1)��1 ��(1)�T (53)is the Moore-Penrose generalized inverse of �(1) (see e.g. [19℄).The se
ond dire
tional derivative [20℄ of �(b) at �(0) is��(0) = " LXs=1 ��xs ( LXr=1 �fM(x)�xr hr) d xs(b)d b #x=x0;b=0= " LXr=1 LXs=1 �2fM(x)�xr�xs hrhs#x=x0= LXr=1 LXs=1�(2)r;s hr hs: (54)where �(2)r;s is a 
olumn ve
tor of se
ond-order partial derivatives of fM with respe
t tothe r-th and s-th latent spa
e variables,�(2)r;s =WM 	(2)r;s =WM  �2�1(x0)�xr�xs ; �2�2(x0)�xr�xs ; :::; �2�MM(x0)�xr�xs !T : (55)The derivatives are 
omputed at x0 2 H.We de
ompose the se
ond dire
tional derivative ��(0) of fM into two orthogonal 
ompo-nents, one lying in the tangent spa
e Tx0, the other lying in its orthogonal 
omplementT?x0 , ��(0) = ��k(0) + ��?(0); ��k(0) 2 Tx0 ; ��?(0) 2 T?x0: (56)The 
omponent ��k(0) des
ribes 
hanges in the �rst-order derivatives due to \varyingspeed of parameterization". Changes in the �rst-order derivatives that are responsible for
urving of the proje
tion manifold 
 are des
ribed by the 
omponent ��?(0).



19By (53) and (54), ��?(0) = (I��) ��(0)= �I � �(1) ��(1)�+� " LXr=1 LXs=1�(2)r;s hr hs# ; (57)where I is the D �D identity matrix.The ve
tor ��?(0) measures the degree to whi
h the visualization manifold 
 (lo
ally)\
urves" in the data spa
e manifold D [21℄, or speaking in terms of di�erential geometry(see e.g. [22℄), ��?(0) expresses the degree to whi
h 
 is not (lo
ally) autoparallel in D.��?(0) is the embedding 
urvature of 
 � D at fM(x0), evaluated with respe
t to thelatent spa
e dire
tion h.B. Lo
al magni�
ation fa
torsFor a GTMM, the lo
al magni�
ation fa
tor 
orresponding to a point x0 in the latentspa
e H is the Ja
obian JM(x) of the GTM map fM (eq. (7)),JM(x) = qdet(GM(x0)); (58)where GM(x0) is the (lo
al) metri
 tensorGM(x0) = ��(1)�T �(1); (59)with �(1) de�ned by (50) and (51). For more details, see [5℄, [15℄.VI. The hierar
hi
al GTM visualization implementationWe organize the plots 
orresponding to the hierar
hy T of GTMs in a hierar
hi
al treewith the same topology as T . In non-leaf plots, we show the latent spa
e points 
i thatwere 
hosen to be the \
entres" of the regions of interest for the 
hild GTMs (see se
tionIV); these are shown as 
ir
les labeled by numbers. The numbers determine the order ofthe 
orresponding 
hild GTM sub-plots (left-to-right).We adopt the strategy, suggested in [1℄, of plotting all the data points on every plot,but modifying the intensity in proportion to the responsibility P (Mj tn) (see equations(30), (39) and (40)) whi
h ea
h plot (sub-model M) has for the data point tn. Pointsthat are not well 
aptured by a parti
ular plot will appear with low intensity.



20The user 
an visualize the regions 
aptured by a parti
ular 
hild GTM M, by mod-ifying the plot of its parent, Parent(M), so that instead of the parent responsibilities,P (Parent(M)j tn), the responsibilities of the model M, P (Mj tn), are used. In oursoftware, this is done by simply 
li
king with a mouse on a 
hosen 
hild GTM plot. Alter-natively, the user 
an modulate with responsibilities P (Parent(M)j tn) all the an
estorplots up to Root, i.e. all plots appearing in Path(Parent(M)) (see se
tion II)4. The
hosen 
hild plot is highlighted by a bold red frame. The an
estor plots appear in boldgreen frames. The rest of the plots show data proje
tions as low-intensity gray points.As will be shown in se
tion VII, su
h a modulation of an
estor plots is an important toolto help the user relate 
hild plots to their parents.The hierar
hi
al stru
ture used for plotting the GTMs' proje
tions is also used to showthe magni�
ation fa
tors of GTMs in the hierar
hy. For every GTM M, we evaluate thelo
al magni�
ation fa
tor JM(x) (eq. (58)) in ea
h latent spa
e 
entre xMi , i = 1; 2; :::; KM(see se
tion III). The intensities with whi
h the magni�
ation fa
tors are shown are s
aledwith respe
t to the minimal and maximal magni�
ation fa
tors in the whole hierar
hy.The s
ale is shown as a 
olor bar near the top visualization plot 
orresponding to theroot GTM. The user 
an get a lo
ally s
aled plot of magni�
ation fa
tors by 
li
king ona 
hosen plot 
orresponding to a lo
al GTM M. Magni�
ation fa
tors of the GTM Mare then shown s
aled with respe
t to the minimal and maximal magni�
ation fa
tors ofM. A lo
al s
aled 
olor bar is also provided.Finally, the philosophy for showing the lo
al dire
tional 
urvatures is the same as thatfor showing the magni�
ation fa
tors. First, the number Nh of di�erent latent spa
e dire
-tions h, with respe
t to whi
h the 
urvatures will be 
omputed is determined (see se
tionV-A). In the 
ase of two-dimensional latent spa
e, the dire
tions hj, j = 1; 2; :::; Nh,
orrespond to the Nh equidistant points on the unit 
ir
le, subje
t to the 
onstraint thatthe �rst dire
tion is (1; 0). For every GTM M, we evaluate the (Eu
lidean) norm of thedire
tional 
urvature ��?(0) (eq. (57)) at ea
h latent spa
e 
entre xMi , with respe
t toall dire
tions hj, j = 1; 2; :::; Nh. In the �nal plot, we show, for ea
h latent spa
e 
en-tre xMi , the maximal norm of the 
urvature a
ross the di�erent \probing" dire
tions hj,j = 1; 2; :::; Nh. The dire
tion of the maximal 
urvature 
orresponding to a latent spa
e4Thanks to one of the reviewers for this suggestion.
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entre xMi is shown as a bla
k line of length proportional to the 
urvature's norm. As inthe 
ase of magni�
ation fa
tors, the intensity of 
urvatures in the hierar
hy of GTMs iss
aled by the minimal and maximal 
urvatures found in the whole hierar
hy. A lo
allys
aled plot of 
urvatures 
an be obtained by 
li
king on a 
hosen plot 
orresponding to alo
al GTM.The software has been written in Matlab and is available fromhttp://www.n
rg.aston.a
.uk/netlab/.VII. ExperimentsIn this se
tion we illustrate the hierar
hi
al GTM visualization algorithm on a toy dataset and two more 
omplex data 
olle
tions.Although the algorithm is derived in a general setting in whi
h individual GTMs Min the hierar
hy 
an have di�erent sets of latent spa
e 
entres xMi , i = 1; 2; :::; KM, andbasis fun
tions �j, j = 1; 2; :::;MM, in the experiments reported here, we used a 
ommonGTM 
on�guration for all models in the hierar
hy. In parti
ular, the latent spa
e H wastaken to be the two-dimensional interval H = [�1; 1℄ � [�1; 1℄, the latent spa
e 
entresxMi 2 H were positioned on a regular 15�15 square grid and there were 16 basis fun
tions�j 
entered on a regular 4 � 4 square grid. The basis fun
tions were spheri
al Gaussianfun
tions of the same width � = 1:0. We a

ount for a bias term by using an additional
onstant basis fun
tion �17(x) = 1, for all x 2 H. The regularization 
oeÆ
ient �M wasset to 0:1.For ea
h model M in the hierar
hy, the dire
tional 
urvatures (57) were evaluated inall latent spa
e 
entres xMi along Nh = 16 \probing" dire
tions hj (see se
tion VI).A. Toy dataThe �rst experiment was 
ondu
ted with a toy data set of 3000 points t = (t1; t2; t3)Tlying on a two-dimensional manifold in the three-dimensional spa
e. The manifold isshown in �gure 1 and is des
ribed byt3 = 2 X
1;
22f�2;2g exp n�(t1 � 
1)2 � (t2 � 
2)2o ; (t1; t2) 2 [�4; 4℄2: (60)To demonstrate the hierar
hi
al GTM algorithm, we asso
iated the points in the four\humps" with four di�erent 
lasses, Ci, i = 1; 2; 3; 4. After training a top level GTM, we
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onstru
ted a mixture of GTMs on four regions of interest 
entered at the four humps.Ea
h GTM in the mixture was supposed to �t the distribution of the 
orresponding hump
lass. Figure 5 shows proje
tion manifolds 
orresponding to the mixture of four GTMs.
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a bFig. 5. Proje
tion manifolds in data spa
e of the se
ond-level GTMs trained on the toy data. Shown isa 
olle
tion of all se
ond-level proje
tion manifolds (b), as well as the proje
tion manifold of a singlemixture 
omponent modeling the \hump" 
entred at (t1; t2) = (2; 2) (a).Data proje
tions realized by the hierar
hy are presented in �gure 6. By 
li
king onthe third se
ond-level model M, point intensities in the visualization plot of its parent,Parent(M) = Root, are modulated by the se
ond-level model responsibilities P (Mj tn)(see se
tion VI).
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a bFig. 6. (a) { The 
omplete visualization plot for the toy data. (b) { Points 
aptured by the third modelat the se
ond level of the hierar
hy are shown in the top-level plot.



23Magni�
ation fa
tors and 
urvatures of the hierar
hy of GTMs are shown in �gures 7(a)and 7(b), respe
tively. In this 
ase, the magni�
ation fa
tors and 
urvatures are almost
omplementary. When mapped into the proje
tion manifold, the latent spa
e is mostlystret
hed in the Root model, while the dominant 
urvatures were dete
ted at the se
ondlevel of the hierar
hy. Note how the 
urvature near the edges and at the \peak" of these
ond-level models (see �gure 5) is re
e
ted in the 
urvature plot (�gure 7 (b)).
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a bFig. 7. Magni�
ation fa
tors (a) and 
urvatures (b) 
omputed on proje
tion manifolds of the hierar
hi
alGTM trained on the toy data.B. Oil 
ow dataThe oil 
ow data set5 was used to demonstrate the lo
ally linear hierar
hi
al visualiza-tion algorithm of Bishop and Tipping [1℄, 
alled PhiVis6. This 12-dimensional data setarises from a physi
s-based simulation of non-invasive monitoring system, used to deter-mine the quantity of oil in a multi-phase pipeline 
ontaining a mixture of oil, water andgas. The data set 
onsists of 1000 points obtained syntheti
ally by simulating the physi
alpro
ess in the pipe. Points in the data set are 
lassi�ed into three di�erent multi-phase
ow 
on�gurations, namely homogeneous, annular and laminar. Data is distributed innumerous distin
t 
lusters and is expe
ted to have (lo
ally) an intrinsi
 dimensionality oftwo [1℄.A hierar
hy of GTMs up to level 4 was trained on this data set and the �nal visualization5The oil 
ow data set 
an be obtained from http://www.n
rg.aston.a
.uk/GTM/3PhaseData.html.6A MATLAB 
ode for PhiVis is publi
ly available at http://www.n
rg.aston.a
.uk/PhiVis/.
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Fig. 8. A 
omplete visualization plot for the oil 
ow data given by the hierar
hy of GTMs. Theproje
tions are 
olored a

ording to the 
lass of the 
orresponding data points: homogeneous { red,annular { blue, laminar { yellow.plot 
an be seen in �gure 8. The 
orresponding magni�
ation fa
tor and dire
tional
urvature plots are shown in �gures 10 and 12, respe
tively. The 
urvature plot of the rootGTM reveals that the two-dimensional proje
tion manifold folded three times in order to\
apture" the distribution of points in the 12-dimensional spa
e. Interestingly, the threemulti-phase 
ow 
on�gurations seem to be roughly separated by the folds (
ompare thetop level visualization plot in �gure 8 with the 
orresponding 
urvature plot in �gure 12).We 
on�rmed this hypothesis by 
onstru
ting three lo
al se
ond-level visualization plotsinitiated in the regions between the folds. Curvature and magni�
ation fa
tor plots of thelower level GTMs reveal that, 
ompared with the root GTM, the lower level proje
tionmanifolds do not signi�
antly stret
h/
ontra
t and are almost 
at. Figure 11 was obtainedby 
li
king on the �rst plot at level three of the hierar
hy and shows a detailed portraitof lo
al magni�
ation fa
tors of the sele
ted model.By 
li
king on the �rst level-four GTM M modeling laminar 
ow points, we 
an tra
ethe position of points lo
ally 
aptured by M in the visualization plots of all its an
estors
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Homogeneous
Annular    
Laminar    

Fig. 9. A hierar
hi
al visualization plot for the oil 
ow data, in whi
h the set of points 
aptured by the�rst GTM at level 4 of the hierar
hy (red border) is highlighted in the visualization plots of all itsan
estors (green borders).(see �gure 9). Cli
king on sub-plots in the visualization hierar
hy T and 
omparing the
hild-modulated an
estor plots (see se
tion VI) with the full visualizations in �gure 8is a valuable tool for understanding the relationship among the individual plots in thehierar
hy T .For 
omparison, we show in �gure 13 a 
omplete four-level hierar
hi
al visualizationplot for the lo
ally linear system PhiVis. When the plot 
orresponds to a leaf model,PhiVis 
opies the plot to lower levels. In addition to data proje
tions, visualization plotsof models that have 
hildren show the orthogonal proje
tions of the 
hild visualizationplanes onto the parent visualization plane.In the hierar
hi
al GTM visualization, we get an almost perfe
t separation of pointsinto the three 
lasses even in the top level plot. Indeed, looking at �gures 10 and 12 wesee that most stret
hing and folding is dete
ted in the Root GTM. The lower level GTMsinje
t their latent spa
e into the data spa
e without mu
h deformation, suggesting thatthe lo
al distribution of points is roughly two-dimensional and 
at. This 
on�rms theintuition that led Bishop and Tipping to use the oil 
ow data to demonstrate the PhiVis
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Fig. 10. A visualization plot of magni�
ation fa
tors in the hierar
hy of GTMs �tted on the oil 
owdata.
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Fig. 11. A hierar
hi
al visualization of magni�
ation fa
tors showing a detailed portrait of lo
al magni-�
ation fa
tors of the �rst GTM at level 3.



27
5

10

15

20

Fig. 12. A hierar
hi
al visualization of lo
al 
urvatures in the hierar
hy of GTMs �tted on the oil 
owdata.
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Fig. 13. A hierar
hi
al visualization of the oil 
ow data given by the lo
ally linear system PhiVis.



28visualization system [1℄.C. Image segmentation dataIn the last experiment we visualize image segmentation data7 obtained by randomlysampling pat
hes of 3x3 pixels from a database of 7 outdoor images. The pat
hes are
hara
terized by 18 
ontinuous attributes and are 
lassi�ed into 7 
lasses: bri
kfa
e, sky,foliage, 
ement, window, path and grass. The data set 
ontains 2310 18-dimensionalpoints, 330 instan
es per 
lass. We merged the original seven 
lasses into four 
omposite
lasses: 
ement + path, bri
kfa
e + window, grass + foliage and sky.We trained a four-level hierar
hy of GTMs on the image segmentation data and theresulting proje
tion, magni�
ation fa
tor and 
urvature plots are presented in �gures 14,16 and 17, respe
tively.
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Fig. 14. A hierar
hi
al GTM visualization plot of image segmentation data.A hierar
hi
al visualization of the image segmentation data given by PhiVis is shownin �gure 18.In 
ontrast to the the oil 
ow experiment, the image segmentation data is diÆ
ult to
apture using PhiVis. As seen in �gures 16 and 17, very strong lo
al stret
hings and highly7The image segmentation data set 
an be downloaded from the Delve repositoryhttp://www.
s.utoronto.
a/�delve/data/datasets.html.



29
Cement + Path     
Brickface + Window
Grass + Foliage   
Sky               

Fig. 15. A hierar
hi
al GTM visualization plot of image segmentation data in whi
h the set of points
aptured by the �rst level-four GTM (red border) is highlighted in the visualization plots of itsan
estor GTMs (green borders).
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Fig. 16. Magni�
ation fa
tors in a hierar
hy of GTMs �tted on image segmentation data.
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Fig. 17. Lo
al 
urvatures of proje
tion manifolds in a hierar
hy of GTMs trained on image segmentationdata.
1

2
3 4

Cement + Path     
Brickface + Window
Grass + Foliage   
Sky               

1

2

12

1 2

3

1

2

1

2

1

2
1

2 1

2

Fig. 18. A hierar
hi
al visualization of the image segmentation data given by PhiVis.
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urved visualization surfa
es throughout the hierar
hy of GTMs are needed to 
apture thedata 
hara
terized by higher intrinsi
 dimensionality and the presen
e of \outliers". Notethe highly non-linear nature of the sequen
e of GTMs on the path from the �rst level-fourmodel to the Root. The Root GTM had to stret
h a long way in order to 
apture thegrass+foliage points appearing near the top left 
orner of the Root visualization plot in�gure 14. A
tually, these points 
aused most of the linear data proje
tions in the toplevel PhiVis plot to 
luster near the bottom of the plot.Looking at �gures 16 and 17 we 
an see dominant stret
hings and foldings in the se
ondlevel-two GTM, fourth level-three GTM and the �rst GTM on level four. The areas of highmagni�
ation and 
urvature in these plots 
orrespond to the areas 
ontaining proje
tionsof the \outlier" grass+foliage points dete
ted in the top level plot. This is 
on�rmedby the 
hild-modulated an
estor plot te
hnique, illustrated in �gure 15, highlighting theposition of points 
aptured by the �rst level-four GTM in its an
estor plots.VIII. Dis
ussionWe have extended the lo
ally linear hierar
hi
al visualization system PhiVis proposedin [1℄ to allow for non-linear proje
tion manifolds. Our system is statisti
ally prin
ipledand is built using the EM algorithm in a top-down fashion. The authors of PhiVisemphasize that there is no obje
tive measure of quality in data visualization, but arguethat a hierar
hi
al visualization model 
an be a very useful tool for the visualization andexploratory analysis of data in many appli
ations [1℄.Our experiments suggest that by allowing for non-linearity in the proje
tion manifolds,we 
an indeed 
reate more detailed and parsimonious visualization plots. While Prin
ipalComponent Analysis (PCA) 
an introdu
e in the visualization plot only \global" stret
h-ings along the prin
ipal axes, the non-linear proje
tion manifold of GTMs 
an lo
allystret
h and fold in the data spa
e. This enables our system to make full use of the latentspa
e when des
ribing the lo
al distributions of points. As a result, the PhiVis plots areoften 
hara
terized by dense isolated 
lusters. This phenomenon is not seen in our system.Of 
ourse, we 
an always \reasonably" 
over the low-dimensional non-linear data man-ifold by using enough lo
al linear pat
hes, but, as we saw in the last se
tion, this 
anoften lead a visualization hierar
hy that is mu
h more 
omplex and diÆ
ult to read. This



32in turn makes it diÆ
ult for the user to grasp and understand the overall layout of datapoints in a high-dimensional spa
e. Non-linearity in the proje
tion manifolds allows usto 
onstru
t more parsimonious visualization hierar
hy, but there is a pri
e to pay. Itis no longer possible to relate 
hildren plots to the 
orresponding parent plots simplyby showing proje
tions of the image of the 
hildren latent spa
e in the parents' latentspa
e, as we have seen in the linear system PhiVis. One 
ould 
onsider proje
ting theimage of the latent grid of the 
hildren GTMs onto the latent spa
e of the parent, but,multi-modalities in the posterior distribution over the parent latent spa
e would makeinterpretation of su
h plots problemati
8.There are several tools implemented in our hierar
hi
al non-linear visualization systemthat 
an help the user to understand the visualization plots and, if needed, further re�nethe visualization hierar
hy:1. The user 
an highlight in the an
estor plots the data points whi
h are under respon-sibility of a sele
ted 
hild plot. This illustrates the history of proje
tions in higher levelplots of points 
aptured by a lower level plot.2. Although not reported here, we have extended our system to identify points, e.g. bytheir index in the data set, by 
li
king on their proje
tions in a 
hosen plot. This way theuser 
an relate lower level plots with their an
estors in a more detailed manner.3. The smooth 
hara
ter of the GTM mapping from the latent spa
e to the data spa
emakes it possible to 
al
ulate lo
al stret
hing and folding 
hara
teristi
s of the non-linearproje
tion manifolds. The low dimensional proje
tion manifold 
an form 
ompli
ated foldsand/or signi�
ant 
ontra
tions/stret
hings in the high-dimensional data spa
e. Consid-ering the proje
tion plot alone, it is diÆ
ult to judge the a
tual \layout" of points inthe data spa
e. For example, regions of high 
ontra
tion of the visualization manifoldoften 
orrespond to regions of dense 
lusters in the data spa
e, whereas highly stret
hedareas usually �ll the spa
e between the 
lusters [15℄. Without this additional information,the users may not realize that the almost homogeneous group of points they see on thevisualization plot a
tually 
omes from several well-separated 
lusters. Also, lo
al 
urva-ture patterns in the proje
tion manifold provide information about dominant folds. This,together with the 
ontra
tion/expansion 
hara
terization of the manifold, 
an be helpful8We are thankful to one of the reviewers for bringing up this point.



33in determining the \regions of interest" for 
onstru
ting lo
al sub-plots in the hierar
hyof visualization plots.It should be mentioned that GTM requires the spe
i�
ation of the hyperparameters� (width of the Gaussian basis fun
tions) and � (regularization 
oeÆ
ient for weightsW). Both hyperparameters determine the \sti�ness" of the proje
tion manifold. Inthis study we follow re
ommendation of [2℄ to set � to � = 2s, where s is the distan
ebetween two neighboring 
entres of the basis fun
tions. Bayesian inferen
e of the GTMhyperparameters, introdu
ed in [4℄, would enormously prolong training of lo
al modelsin our visualization hierar
hy. However, sin
e we do not rely on a single \top-level"visualization plot, as long as the proje
tion manifolds are \reasonably" smooth, and we
an monitor the amount of stret
hing and folding by inspe
ting the lo
al magni�
ationfa
tor and dire
tional 
urvature plots, one expe
ts to obtain good representations of thelo
al data distributions at lower levels of the visualization hierar
hy.Our hierar
hi
al GTM visualization system works in an intera
tive way: based onlower level proje
tions, regions of interest for higher level models are determined by theuser. Algorithms for self-
onsistent �tting of the hierar
hi
al tree 
an be easily 
reatedby employing some form of hierar
hi
al 
lustering, e.g. hierar
hi
al 
lustering of data bydeterministi
 annealing [23℄. However, the user-driven 
onstru
tion of the hierar
hi
alvisualization plot is a natural 
andidate for investigation of the data via low-dimensionalproje
tions. IX. Con
lusionThe main 
ontributions of the paper 
an be summarized as follows:1. We have extended the lo
ally linear hierar
hi
al visualization system PhiVis proposedby Bishop and Tipping [1℄ to allow for non-linear proje
tion manifolds. Like PhiVis, oursystem is statisti
ally prin
ipled and is built intera
tively in a top-down fashion using theEM algorithm.2. We further extended the work presented in [1℄ by introdu
ing a general formulation ofa hierar
hi
al probabilisti
 model 
onsisting of lo
al probabilisti
 models organized in ahierar
hi
al tree. General training equations are derived, regardless of the position of themodel in the tree.



343. We have exploited the smooth 
hara
ter of GTM proje
tion manifold to derive expres-sions for the lo
al dire
tional 
urvatures of the manifold.4. We have built an intera
tive system for non-linear hierar
hi
al data visualization thatenables the user to(a) better understand the visualization hierar
hy by highlight the data in the an
estorvisualization plots that are 
aptured by a 
hild GTM;(b) visualize the magni�
ation fa
tor stru
ture a
ross the hierar
hy of GTMs, as well asto intera
tively 
he
k a detailed magni�
ation fa
tor layout of a 
hosen lo
al model;(
) visualize in a similar manner the stru
ture of lo
al dire
tional 
urvatures of theproje
tion manifolds.Su
h information 
an useful for further re�nement of the hierar
hi
al visualization plot,as well as for 
ontrolling the amount of regularization imposed on lo
al models.A
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