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1 IntrodutionMost foreasting approahes try to predit the next value of a time seriesby assuming stationarity: i.e. the underlying generator of the data is glob-ally time invariant. In many real world appliations, this assumption is notvalid. Even non-linear regressors like neural networks are not e�etive inmodelling hanging temporal struture in the time series. For instane, oneof the obstales to the predition of exhange rates in the apital markets isa non-onstant onditional variane, known as heterosedastiity. GARCHmodels have been developed to estimate a time-dependent variane (Boller-slev, 1986).A speial form of non-stationarity, where the underlying generator swithesbetween (approximately) stationary regimes, seems a reasonable assumptionfor many pratial problems. In the last deade, hybrid approahes havebeen developed in order to model this behaviour. One example is the mix-ture of experts (Jaobs et al., 1991; Caiatore and Nowlan, 1994; Weigendet al., 1995) whih deomposes the global model into several (linear or non-linear) loal models known as experts, as eah speialises in modelling asmall region of input spae. One limitation of these models for time seriesanalysis is that the gating network whih ombines the loal models has nodynamis. It is ontrolled only by the urrent value of the time series.One way to address this limitation is to use a hidden Markov model(whih does have dynamis) to swith between loal models. For example,autoregressive hidden Markov models (ARHMMs) swith between autore-gressive models, where the preditions are a linear ombination of past values(Poritz, 1982). ARHMMs have been reintrodued in the mahine learningommunity under the name of hidden �lter HMMs (Fraser and Dimitriadis,1994) and have been reently applied to �nanial engineering in order tomodel high frequeny foreign exhange data (Shi and Weigend, 1997).From eonometris to ontrol, several similar hybrid models have beenproposed. Their main harateristi is the mixing of disrete and ontinuoushidden variables (Chang and Athans, 1977; Hamilton, 1989; Shumway andSto�er, 1991; Bar-Shalom and Li, 1993). A linear system with Markovian2



oeÆients, also alled a jump-linear system, assumes the existene of alinear dynamial system of the general form:xt = F (st)xt�1 + ut (1)yt = G(st)xt + vt (2)where xt is the state vetor, yt the measurement vetor, and st the un-known time-varying parameter. st is restrited to take values from a �niteset fq1; : : : ; qNg. In the simplest ase, this parameter follows a �rst-orderMarkov proess. The transition matrix governing the Markov hain andthe parameters of the model are usually assumed to be known. The mainproblem onsists thus of estimating the hidden state xt.Chang and Athans (1977) fous on the state estimation problem for asystem where the output matrix G is time independent. They show thatestimation of the exat distribution of the state requires a bank of elementalestimators whose size grows exponentially in time. Mazor et al. (1998)review the state estimation problem for the most general ase where both Fand G are allowed to depend on a swith variable st. They also show whyan optimal solution is not omputationally tratable and present tehniquesknown as `interating multiple models' that onsist of a bank of ooperatingKalman �lters: at eah time step t the state estimate is omputed undereah possible urrent model, with eah �lter using a di�erent ombination ofthe previous model-onditioned estimates (see also (Blom and Bar-Shalom,1988; Bar-Shalom and Li, 1993)).Shumway and Sto�er (1991) onsider the problem of learning the param-eters of a state spae model with a swithing output matrix G(st) whihis known in advane. They proposed an approximate EM algorithm wherethe E-step, whih would require the omputation of a mixture of Gaussianswith an exponentially inreasing number of omponents, is approximated ateah time step t by a single Gaussian.In this paper, we investigate swithing state spae models (SSSMs).These models onsist of N multiple linear/non-linear state spae modelsontrolled by a dynami swith and, in this sense are a generalisation ofjump-linear systems. They assume that the behaviour of the system an be3



haraterised by a �nite number of dynamial systems with hidden states,eah of whih traks the data in a di�erent regime. As disussed in (Ghahra-mani and Hinton, 1998), SSSMs an also be seen as a generalisation of themixture of experts model.A long-standing limitation for training these models is that the omplex-ity of the exat training algorithm grows exponentially with orderNT , whereN is the number of models and T is the length of the time sequene. Var-ious ad ho and not ompletely satisfatory approximations have been pro-posed, e.g. (Shumway and Sto�er, 1991). Reently, Ghahramani and Hin-ton (1998) reintrodued linear swithing state spae models in the mahinelearning ommunity and proposed an eÆient and prinipled approximatealgorithm for training these models in a maximum likelihood framework.In setion 2 we �rst present linear swithing state spae models (SSSMs)and show how to train these models using variational tehniques. In setion 3we present a new extension whih inorporates non-linear state spae modelsusing radial basis funtion (RBF) networks. Although linear SSSMs enableus to model piee-wise stationarity, they may have diÆulties in modellingnon-linear dependenies in the time series. As the initialisation step is ruialfor training mixture models due to the large number of loal minima, wepresent a novel algorithm whih addresses this problem in setion 4. We thenshow how to use these models for time series segmentation and probabilistidensity predition. The models are �nally tested on di�erent datasets andwe ompare their performane with other standard tehniques.2 Linear swithing state spae modelsHidden Markov models and state spae models are probabilisti models fortime series where the information about the past is represented througha random variable: the hidden state. Conditioned on this state, the pastand the future observations are independent. In the ase of HMMs, thestate variable is disrete and an be viewed as a swithing variable betweendi�erent proess regimes. For SSMs, the hidden state is ontinuous and isspei�ed by a linear dynamial equation.4



A linear swithing state spae model (linear SSSM) is a model thatombines HMMs and SSMs. More preisely, N di�erent linear dynamialsystems ompete in order to desribe the observation yt 2 Rd . Eah real-valued state vetor x(i)t 2 Rm evolves between time steps aording to thesystem equation: x(i)t = F ix(i)t�1 + ui; (3)where F i is the state transition matrix and ui � N (0;Qi) is a zero meanGaussian noise assoiated to model i. The initial state vetor is also assumedto be Gaussian: P (x(i)1 ) = N (���i;���i).A disrete variable St 2 fq1; : : : ; qNg, also represented by a vetor St =[S(1)t ; : : : ; S(N)t ℄, where S(i)t 2 f0; 1g, plays the role of a gate. When thesystem enters a spei� state i, i.e. St = qi (or S(i)t = 1), the observation isGaussian and is given by: yt = Gix(i)t + vi; (4)where Gi is the output matrix whih maps the hidden state to the observa-tion. The noise random variable vi � N (0;Ri) is also zero mean Gaussian.The disrete state variable St evolves aording to Markovian dynamis thatan be represented by a disrete transition matrix A = faijg,aij = P (St = qj jSt�1 = qi): (5)Therefore, an SSSM is essentially a mixture model, in whih informationabout the past is aptured in two types of random variables: one ontin-uous and one disrete. Using the Markov dependene relations, the jointprobability for the sequene of states and observations an be written asP (ST1 ;X T1 (1); : : : ; X T1 (N);YT1 ) = P (s1)QTt=2 P (stjst�1) (6)QNi=1 �P (x(i)1 )QTt=2 P (x(i)t jx(i)t�1)�QTt=1 P (ytjx(1)t ; : : : ;x(N)t ; st):The orresponding graphial model is shown in Figure 1.Given a sequene of observations YT1 , the learning problem onsists ofestimating the parameters � = fF i;Qi;Gi;Ri;���i;���ig1�i�N of eah Kalman5



�lter and the transition matrix A of the disrete state Markov proessin order to maximise the likelihood of the observations. An exat proe-dure to solve this maximum likelihood estimation ould be derived from theExpetation-Maximisation algorithm (Dempster et al., 1977). In the E-step,one omputes the posterior probabilities P (ST1 ;X T1 (1); : : : ;X T1 (N)jYT1 ;�) ofthe hidden states. The M-step uses the expeted values to re-estimate theparameters of the model.Unfortunately, it an be shown that exat inferene is not omputa-tionally tratable, sine it sales as NT . Even if P (x(i)1 jy1;�) is Gaussian,then P (x(i)t jyt1;�) is in general a mixture of Gaussians with an exponen-tially inreasing number of terms. Like the other models desribed in se-tion 1, the posterior distribution of the state variables x(i)t is a mixture ofGaussians with N t omponents. Although these variables are marginallyindependent, they beome onditionally dependent when the variable yt isobserved, namely beause of the disrete variable St whih ouples all thereal-valued state variables x(1)t ; : : : ;x(i)t at time step t.Several approximations have been proposed to irumvent this diÆulty.For example, in (Shumway and Sto�er, 1991), a pseudo-EM algorithm isderived for learning a single hidden state spae model with swithing out-put matries: at eah step, the mixture of Gaussians is approximated by asingle Gaussian. Reently Ghahramani and Hinton (1998) proposed a prin-ipled generalised EM algorithm. The idea is to make use of variationaltehniques in order to approximate the intratable true posterior distribu-tion by a tratable distribution Q, and to maximise the lower bound on thelog-likelihood:F(Q;�) =XST1 Z Q(ST1 ;X T1 ) log P (ST1 ;X T1 ;YT1 j�)Q(ST1 ;X T1 ) dX T1 ; (7)where we have used Jensen's inequality and X T1 denotes the whole sequeneof hidden states: X T1 = [X T1 (1); : : : ;X T1 (N)℄. It is easy to see that the di�er-ene between the left-hand side and the right-hand side of Equation (7) isnothing else than the KL-divergene between the approximating distributionQ and the true posterior P . The KL-divergene is a non-negative expressionand is minimised if and only if Q = P in whih ase it is zero and the bound6



beomes exat. However, this would not lead to any simpli�ation of theproblem.Using a judiious strutured variational approximation, the inferenestep an beome tratable (Saul and Jordan, 1996). Beause linear SSSMsare hybrid models ombining HMMs and SSMs for whih the E-step anbe solved exatly, it is best to use an approximation that makes use of theforward-bakward and Kalman smoother algorithms, whih are the relevantversions for the respetive E-step. The authors suggest the following ap-proximation:Q(ST1 ;X T1 (1); : : : ;X T1 (i)) = 1Z�(s1) TYt=2�(st�1; st) NYi=1�(x(i)1 ) TYt=1�(x(i)t�1;x(i)t )(8)whih orresponds to the graphial model shown in Figure B.0.4. Z is anormalisation fator ensuring that Q integrates to one.The motivation of suh an approximation is to destroy the interationbetween the hidden variables whih makes the inferene problem ompu-tationally intratable. Eah deleted edge in the graph is replaed by avariational parameter:�(s(i)1 ) = P (s(i)1 )q(i)1 (9)�(s(j)t�1; s(i)t ) = P (s(i)t j s(j)t�1)q(i)t (10)�(x(i)1 ) = P (x(i)1 ) hP (y1 jx(i)t ; s(i)1 )ih(i)1 (11)�(x(i)t�1;x(i)t ) = P (x(i)t jx(i)t�1) hP (yt jx(i)t ; s(i)t )ih(i)t : (12)By introduing these variational parameters, we deouple the state spaemodels but keep the Markov hain assumption for eah of them.The variational parameters q(i)t and h(i)t are obtained by minimising theKL-divergene between P and Q, whih orresponds to the E-step. Ghahra-mani and Hinton (1998) derived the �xed point equations for these param-eters. The parameters q(i)t play exatly the same role as the output prob-abilities P (yt jx(i)t ) would play in a regular hidden Markov model, and areobtained by omputing the expeted error under the distribution Q if state7



spae model i were used to generate the observation yt:q(i)t = exp��12h(yt �Gix(i)t )0Ri(yt �Gix(i)t )iQ� (13)We an see that this parameter is a funtion of x(i)tjT � hx(i)t iQ and V (i)tjT �hx(i)t x(i)t 0iQ. These expetations an be omputed by running the Kalmansmoother on state spae model i with the observation yt weighted by h(i)t(see Equation (11) and Equation (12)). The parameters h(i)t an be viewedas being the responsibility assigned to state spae model i at time t, and areobtained by omputing the expeted probability of being in state i at timet under the approximating distribution Q.h(i)t = hs(i)t iQ (14)We therefore see that the variational parameters are inter-related: thealulation of q(i)t needs h(i)t and vie-versa. Starting from some initial valuesfor q and h, the E-step onsists of running a Kalman smoother for eah statespae model with the output noise ovariane matrix Ri weighted by 1=h(i)t .This allows us to ompute q(i)t aording to Equation (13) and the requiredexpetations of eah real-valued variable x(i)t needed in the M-step. The h(i)tparameters are obtained by running a forward-bakward algorithm, whereeah hidden state is assoiated to the output probability density q(i)t . Theproess is iterated until onvergene of the KL-divergene. In pratie, thisis ahieved in no more than 10 iterations.The M-step onsists of re-estimating the parameters � of the model andis straightforward. Like in HMMs and SSMs, the parameters an be re-estimated analytially. Appendix A.1 gives the re-estimation equations.The whole proess (E and M steps) is iterated until onvergene of thelower bound on the log-likelihood.3 Non-linear swithing state spae modelsAlthough linear SSSMs are apable of modelling multi-modality, they mayhave diÆulties in modelling non-linear dependenies in the time series. We8



present here a new extension of dynamial loal models whih takes intoaount non-linearity in the output:yt = gi(x(i)t ) + vi; (15)where gi denotes now a non-linear funtion from the hidden state spaeto the observation spae. By introduing this non-linearity, the posteriorP (x(i)t jyT1 ) is no longer Gaussian and optimal smoothing annot be ahievedanalytially.In order to irumvent this problem, one solution ould be derived fromsequential Monte Carlo integration tehniques (Kitagawa, 1987; Gordon etal., 1993; Kitagawa, 1996). These tehniques have been applied for the in-ferene problem in non-linear state spae models, and the extension to thease of non-linear swithing state spae models ould be investigated. Inthese methods also known as bootstrap �lter or sequential important sam-pling, arbitrary non-Gaussian densities are approximated by many partilesthat an be onsidered realisations from the distribution. It is then pos-sible to derive a learning algorithm whih makes use of these partiles to�t the non-linear funtions. However, these tehniques are omputationallyexpensive as a huge number of partiles are needed at eah time step t tobe representative of the posterior distribution.If the funtion gi is suÆiently smooth, a suboptimal smoothing algo-rithm an be derived by onsidering the linearisation of the non-linear sys-tem. At every point x(i)tjT , the funtion gi is expanded as a �rst-order Taylorseries: gi(x) � gi(x(i)tjT ) +rxgi(x(i)tjT )(x� x(i)tjT ): (16)This approximate solution through linearisation around the urrent stateestimate reovers the Gaussian struture and leads to the �rst-order extendedKalman smoother whih is nothing else the exat Kalman smoother for thelinearised model: the equations of the Kalman smoother are still valid exeptthose involving the output matrix Gi whih is replaed by the Jaobianmatrix J (i)tjT = rxgi(x(i)tjT ).The seond ompliation arises in the M-step. In the ase of a linearmodel, it is easy to re-estimate the parameters exatly. If the funtions gi9



are not linear, it may be omputationally diÆult to re-estimate exatly theparameters of the funtion. For example, if gi is represented by a multilayerneural network, exat re-estimation annot be done and we must resort tonon-linear optimisation methods.To solve these two problems, we propose to model eah non-linear fun-tion with a radial basis funtion network:yt = KXk=1w(i)k  (i)k (x(i)t ) + vi =W (i)	(i)(x(i)t ) + vi; (17)whereW (i) = [w(i)1 ; : : : ; w(i)K ℄ are the weights (inluding the bias) and f (i)k g2�k�Kdenote the (K � 1) Gaussian basis funtions assoiated to model i (the biasis assoiated to a basis funtion whose ativation is equal to 1): (i)k (x(i)t ) = exp0��jjx(i)t �m(i)k jj22�(i)k 2 1A : (18)Note that non-Gaussian basis funtions ould be used although we did notinvestigate their implementation in this work.In that ase, with �xed basis funtions, the M-step is still tratable sinethe output funtion is linear with respet to the weight matrix W (i). Agood initialisation enables us to keep the entres and widths of the basisfuntions �xed during the learning algorithm and to re-estimate only theweights, for whih a fast and eÆient algorithm exists1. Appendix B givesthe re-estimation formulae for the weight matrix W (i).The number of basis funtions K ontrols the smoothness of the outputfuntion gi for eah state spae model. It is therefore possible to implementa non-linear SSSM with a number of basis funtions that are di�erent fromone state spae model to another. This an be quite useful if we believe,for example, that the underlying system is swithing from a pieewise linearregime to a highly non-linear regime.In terms of previous work, our model resembles that of (Kadirkamanathanand Kadirkamanathan, 1996), where the authors used modular RBF net-works for learning multiple modes. Given input-output observations zT1 =1If we want to learn these parameters, a generalised EM an be implemented.10



fxT1 ;yT1 g, their algorithm uses the Kalman �lter for supervised reursive es-timation of the weight vetors W (i), whih plays the role of the real-valuedhidden state: W (i)t = W (i)t�1 + ui (19)yt = W (i)t 	i(xt) + vi: (20)It is assumed that eah model i has an assoiated sore of being the urrentunderlying model for the given observation yt. The parameters of the globalmodel, for example the output noise ovariane matriesRi or the transitionmatrixA, are not learned but are assumed to be known in advane. Our non-linear model di�ers from the modular RBF network on two major points.Firstly, in our approah, the parameters of eah expert are learned in amaximum likelihood framework. Seondly, whereas the weight vetorsW (i)play the role of the hidden states in their model, they are onsidered asproper adaptive parameters of eah RBF network in our work. This leadsto a system where the hidden state is an input to the RBF network andkeeps therefore its intuitive interpretation of representing the underlyingdynamis we are trying to reover.4 InitialisationMixture models trained using the EM algorithm are guaranteed to reah aloal maximum likelihood solution. Beause there are many loal maxima,experiene has shown that SSSMs are partiularly sensitive to the initiali-sation. Therefore, the hoie of initial onditions is ruial and we prefer toinitialise the model arefully rather than a simple random initialisation.For swithing state spae models, the initialisation is an important partof the learning algorithm, as both the HMM and the dynamial systemsmust be initialised. The key point is to start with a good segmentation ofthe data set, where by segmentation we mean a partition of the data, witheah part modelled by a dynamial system. To address this problem, wehave developed an eÆient initialisation proedure.11



For the linear ase, we quikly2 train a ontinuous hidden Markov modelwith as many disrete states as our SSSM on the data set and run the Viterbialgorithm in order to obtain the most likely path, i.e. the sequene of hiddenstates whih `best' explains the observation sequene. Eah data point isassigned to the most probable hidden state and thus gives us a segmentationof the data. A simple linear dynamial system is then initialised for eahsegment. This seond phase an be done by estimating the ovariane ofthe observations whih allows us to initialise the output ovariane Ri. Thesystem noise ovariane Qi an be, without any restrition, onsidered as adiagonal matrix and is simply initialised to the identity matrix. Values forF i and Gi are then obtained by inverting the system.For the non-linear ase, it is ruial to initialise properly the entres andthe widths of eah radial basis funtion, as these parameters will not belearned during the training algorithm. We �rst perform the initialisation fora linear SSSM. For eah segment of the data where a linear dynamial systemhas been initialised, a orresponding sequene of hidden ontinuous states xtan be reovered by running the Kalman �lter. A Gaussian Mixture Modelis �tted to eah sequene, whih enables us to initialise the entres and thewidths of eah RBF network.The parameters aij of the disrete transition matrix A an also be ini-tialised by ounting the number of transitions from state i to state j anddividing it by the number of transitions from state i to any other state.We have notied that suh an initialisation proedure alleviates prob-lems ourring during the E-step. The KL-divergene an have several loalminima orresponding to di�erent values of the variational parameters. Thismeans that two signi�antly di�erent segmentations an lead to a similarlower bound on the log-likelihood. Ghahramani and Hinton (1998) addressedthis problem and modi�ed the training algorithm by using the tehnique ofdeterministi annealing (Ueda and Nakano, 1995): the approximation dis-tribution Q is broadened with a temperature parameter that is annealedover time. However, with this method a large portion of training runs stillonverge to poor loal minima.2In pratie, 5 iterations of the EM algorithm are suÆient.12



In order to illustrate how our proedure an lead to a signi�ant im-provement, we onsider the following syntheti problem involving a 2-statelinear swithing state spae model:x(1)t = 0:99x(1)t�1 + u1; u1 � N (0; 1) (21)x(2)t = 0:90x(2)t�1 + u2; u2 � N (0; 10) (22)The probability transition matrix A is suh that a11 = 0:99 and a22 = 0:98.The output observation is idential for eah model:yt = x(i)t + v; v � N (0; 0:1) 8i (23)We generated a sequene of T = 1000 points from this model and trainlinear SSSMs with the EM algorithm, onsidering three di�erent learningtehniques: our initialisation proedure, random initialisation without de-terministi annealing and, random initialisation with deterministi anneal-ing. For the deterministi annealing version, we follow Ueda and Nakano(1995): the variational parameters q and h are weighted by a dereasingtemperature T : starting with a relatively big value for T , say T = 100, thetemperature is iteratively updated, Ti = 12Ti�1 + 12 , during the E-step. Foreah tehnique, 20 linear SSSMs orresponding to di�erent random initialonditions were trained. We then evaluated the average mutual informationbetween the true segmentation and the one obtained by eah tehnique. Be-ause the variational parameters h are real (h(i)t 2 [0; 1℄), we �rst need toplae a threshold on these values to obtain a hard segmentation3.Table 1 reports the results. Comparing the two random initialisations,on average, the deterministi annealing proedure performs slightly better.Our initialisation signi�antly outperforms both methods. We also reportthe average log-likelihood (lower bound) per data point for eah tehnique.Compared to the likelihood obtained with the true model, eah tehniqueperforms reasonably well. This shows the diÆulty of omparing modelswhen the exat omputation of the likelihood is not tratable.Figure 3 plots the time series and typial segmentations we obtain withthe three approahes. Finding the true segmentation is atually very diÆ-3h(i)t = 1 if ht � 0:5, h(i)t = 0 otherwise. 13



ult. Even when the inferene is performed with the true model, an under-estimation of the swithing an our, leading to a segmentation where onlyone state spae model is ativated.5 Preditions and on-line model seletionIn this setion we show how to make one-step ahead preditions with dy-namial loal models. The algorithm makes use of Bayes' theorem at eahtime step t and is known as the multiple model approah (Bar-Shalom andLi, 1993).At eah time step t, we note that eah model ontributes to the expla-nation of the observation yt in the following way:P (yt j st;x(1)t ; : : : ;x(N)t ) = NYi=1[P (yt jx(i)t )℄s(i)t (24)Unfortunately the value of the swithing variable is not known in advane,but an expeted value an be derived by using Bayes' theorem:E[St = qi j Yt1℄ = P (yt jyt�11 ; St = qi)P (St = qi jyt�11 )P (yt j Yt�11 ) (25)The �rst term in the numerator is given by Equation (4). The seond termrepresents the predited probability of model i at time t given all the earlierobservations. As the disrete state St is a �rst-order Markov proess, thisprobability is given by:�t(i) � P (St = qi j Yt�11 ) = NXj=1 ajiP (St�1 = qj jyt�11 ) (26)The initial prior probabilities are assigned to be equal to 1=N . The denom-inator is the normalising term (also known as the evidene) and is givenby: P (yt j Yt�11 ) = NXi=1 �t(i)P (yt j Yt�11 ; St = qi) (27)Thus on-line estimations for eah model deouple naturally. The Kalman�lter reursive equations hold for eah model i with the only modi�ationthat the likelihood of the observation yt is weighted by �t(i).14



Depending on the ontext, hard and soft ompetition an be imple-mented (Kadirkamanathan and Kadirkamanathan, 1996). In hard ompe-tition, it is believed that only one model is responsible for desribing theobservation at time t. This is done by onsidering only the model i withthe highest predited probability �t(i). In that ase, �t(i) = 1 and �t(j) = 0for the other models. In soft ompetition, �t(i) = P (St = qi jyt�11 ) and eahmodel is allowed to adapt its parameters. This obviously leads to two dif-ferent types of segmentations.Thus the model inherits the properties from both HMMs and SSMs: the�rst-order Markov assumption for the disrete variable allows us to do on-line model seletion. The state spae model plays the role of the preditivemodel within eah regime. As the mean and the ovariane of the hiddenstates are updated on-line, the models allow us to obtain a full desriptionof the preditive distribution.6 Experimental resultsWe have assessed the performane of dynamial loal models on di�erentproblems. We �rst run simulations on syntheti data in order to evaluate andompare the performanes of linear and non-linear loal dynamial modelson data whih exhibit loal non-linearity. We �nally show promising resultsof both models for modelling �nanial time series.6.1 Syntheti dataWe generated data from a bimodal proess (Weigend et al., 1995):yt+1 = 8<:2(1� y2t )� 1 if st = 0,tanh(�1:2yt + �) if st = 1. (28)where � � N (0; 0:1). The �rst mode is a deterministi haoti proesswhereas the seond mode is a noisy non-haoti proess. The swithingobeys a �rst order Markov proess with diagonal entries aii = 0:98. Bothtraining and test datasets ontain 500 points.15



We trained both a linear and a non-linear swithing state spae model.The dimension of the hidden states x(i)t has been taken to be m = 1 anda RBF network with K = 3 hidden units has been used for the non-linearSSSM.Figure 4 plots the test dataset and the orresponding segmentationsobtained by the three models. Compared to the true segmentation, we ansee that both models apture the underlying regime well, but that the non-linear SSSM is slightly more suessful. Indeed, the orrelations betweenthe true segmentation and the ones obtained by the linear and non-linearSSSM are respetively 0:78 and 0:85.Figure 5 plots the auray of the two models under the determinis-ti haoti regime. Although the linear SSSM is able to apture the non-linearity, the non-linear SSSM seems to be more aurate4. This is partiu-larly signi�ant in the entral region where there is a perfet math betweenthe true underlying funtion and the output of the non-linear model.We have also trained linear and non-linear dynamial systems on thisdataset and we end this setion by omparing linear and non-linear SSSMswith these single mode systems. The hidden state dimension of the linearmodels and the number of RBF units for non-linear models have been takento be 3. Table B.0.4 reports the log-likelihood per datum and the normalisedmean squared error (NMSE) on the test set and shows the signi�ant im-provement of the swithing models. For eah model, we report the averageand the spread over 10 di�erent initial onditions. It is interesting to notethat an LDS of hidden state dimension 3 does not outperform the simpleLDS with an hidden state of dimension 1. This remark does not apply to lin-ear swithing state spae models: a linear SSSM of hidden state dimension1 gives rise on average to a likelihood of �0:60 and a NMSE of 0:025.6.2 Finanial dataBeause of the apability of state spae models for traking quasi-stationarityand the power of HMMs for unovering the hidden swithing between regimes,4This is more obvious in the next table whih reports the log-likelihood and the nor-malised mean squared error on the test dataset.16



we investigate their performane on �nanial data. An advantage of viewingthe model in a probabilisti framework is that we an also attah on�deneintervals to the preditions, as the ovariane matrix of the random variableXt is also estimated at eah time step t. One immediate and importantappliation in �nanial engineering is risk estimation. In addition, the valueof the disrete hidden variable St an be viewed as indiating the regimethat the market is in at time t: this gives us a segmentation of the data,whih is of value in its own right.We present here results of our simulations on DEM/USD and GBP/USDforeign exhange rate daily returns:rt = log pt � log pt�1 t pt � pt�1pt�1 (29)where pt is the losing daily exhange rate at time t. This quantity an beseen as the logarithm of the geometri growth and is known in �nane asontinuous ompounded returns.Figure 6 plots the datasets. The DEM/USD training set ontains 3000points from 29/09/1977 to 15/09/1989. The test set ontains 1164 pointsfrom 16/09/1989 to 05/11/1994. The GBP/USD training set ontains 2000points from 01/06/73 to 29/01/81 and the test set ontains 1164 from30/01/81 to 21/05/87.The �rst appliation of the model is to unover underlying regimes. Asan example, Figure 7 plots the segmentation obtained on the DEM/USDtest set with a simple 3-state non-linear SSSM (N = 3). The dimension ofeah state spae has simply been taken to m = 1 and the number of radialbasis funtions is K = 5. The �gure shows how the model is apable ofdeteting abrupt hanges in the time series struture. We an learly seethat the third model is responsible for the low volatility segments, the seondfor the higher volatility segments, and the �rst model is mainly responsiblefor the time period around t = 500 where the running mean is negative(rather than zero). In a simplisti view, the underlying regimes may berelated to some maro-eonomial variables. Other simulations on higherfrequeny data have shown strong orrelations between market movementsand external events during the day, and it is easier to identify suh regimes17



when dealing with intra day data. For example, it is well known that marketmovements are more volatile at the open or the lose of a trading day thanat noon. Another example onerns news during the day that perturbs the�nanial markets. This volatility segmentation is easier to trak during theday but there is no reason not to believe that daily losing prie time seriesbehave similarly on a lower frequeny.Another important appliation of dynamial loal models in �nane isthe possibility of obtaining on-line estimates of the ovariane of our pre-dition. Figure 8 shows a ontour plot for a small window of time where aregime transition ourred at time t = 35. The model moves progressivelyfrom a high volatility region to a relatively low volatility region and the pre-ditive distribution P (ytjYt�1) is learly a�eted by this hange. Of ourse,understanding the volatility regimes is important for priing of options.We end this setion by evaluating the performane of dynamial loalmodels using objetive measures and ompared them with other models. Wetrained autoregressive models (AR), GARCH models, MLP neural networks(NN) and autoregressive hidden Markov models (ARHMM) on the samedata sets. A GARCH model (Bollerslev, 1986) onsists of a linear AR modelfor the onditional mean and an exponential AR model for the onditionalvariane. They are very often used in �nane engineering for modellingquasi-stationarity. For AR, NN and ARHMM models, the input dimensionhas been simply taken to be 5 lagged values of the observations (whihrepresent the history of the previous week), although no areful analysis ofthe input dimension has been arried out. Similarly, the neural networkontains 10 hidden non-linear nodes and the ARHMM ontains, like ourmodels, 3 hidden states.We have omputed the log-likelihood per datum and the normal meansquared error (NMSE). For eah model, we report the average and the spreadover 10 di�erent initial onditions. Dynamial loal models have been ini-tialised by the proedure we presented in Setion 4.Table 3 reports the results. On average, the NLSSSM seems to be thebest model to desribe the data, as the likelihood suggests it. When om-paring the NMSE, we see that none of these models seem to outperform the18



naive predition, whih would onsist of making preditions based on themean of the training set. Note, for example, that the log-likelihood for suha naive model is equal to �1:1575 on the DEM/USD dataset.These simulations were intended to ompare dynamial loal modelswith other standard tehniques used in omputational �nane and on�rmthe fat that prediting the daily return is a very diÆult task. A betterunderstanding of �nanial markets ould be obtained by onsidering highfrequeny data. For example, Shi and Weigend (1997) modelled high fre-queny foreign exhange data with autoregressive hidden Markov modelsand showed promising results.7 DisussionIn this paper we have reviewed hybrid models that ombine hidden Markovmodels and state spae models. These models have emerged from di�erentsienti� ommunities beause of the neessity of modelling proesses wherethe assumption of global stationarity does not hold.We reviewed linear swithing state spae models and proposed a new ex-tension whih inorporates loal non-linearity. This is done by using a loalRBF network whih maps the hidden state spae to the observation spae5.The strutured variational approah allows us to perform a prinipled ap-proximate maximum likelihood estimation of the parameters. The inferenedeouples niely into the inferene algorithms for HMMs and SSMs. In thease of non-linear dynamial models, a linearisation of the loal funtionleads to the extended Kalman �lter.We also proposed an eÆient and fast initialisation algorithm whih al-leviates problems of multiple loal minima during the variational inferene.This proedure leads to a signi�ant improvement in the reliability of train-ing ompared to the deterministi annealing version.In ontrast to other hybrid models suh as mixture of experts or au-toregressive HMMs, dynami loal models provide a full desription of the5It must be emphasized that a Radial Basis Funtion network an be hardly seen as a`true' generative model. 19



preditive distribution. This is an important issue, espeially in �nanewhere robust error bars need to be developed.We evaluated the performane of the models on di�erent data sets andompared them to other standard tehniques. This was done by evaluatingthe log-likelihood per datum over a test set, as this measure allows diretomparisons between di�erent models. Another evaluation of the densityforeasts, based on the umulative probability distribution, ould omple-ment our omparisons. This tehnique was proposed by Diebold et al. (1998)and onsists of estimating the following random variable:Zt+1 = Z yt+1�1 P (� j Yt1) d�: (30)In order to assess the quality of the predition, the random variable is testedagainst the hypothesis of a uniform distribution, whih would orrespond toa good model for the true preditive distribution P �(yt+1 j Yt1). To testwhether Z is uniformly distributed, Diebold et al. (1998) refer to standardtehniques, the simplest of whih onsists of plotting the histogram.These models have been applied to �nanial time series to extrat twodi�erent types of information. Firstly, we an model the stohasti volatil-ity, outperforming a GARCH model by a small but statistially signi�antmargin. Seondly, we an segment the time series into di�erent regimes.This is important, as there is growing evidene that �nanial time series arebetter modelled by a ombination of loal models, eah of whih speialisesin a di�erent segment, than a single omplex global model.The variational inferene approah maximises a lower bound on the log-likelihood. An interesting problem onerns the quality of this bound whihis a urrent open question. Empirial simulations using a dynamial loalmodel ontaining a relatively small number of state spae models, say N = 2and a short time series, ould be done to evaluate this quality. In that ase,the exat estimation of the true posterior distribution of the hidden statesan be performed and ompared to the variational approximation.Another omparison ould be done by onsidering Monte Carlo integra-tion tehniques, suh as Gibbs sampling, whih provide a more auraterepresentation of the true posterior. This would also help us to evaluate20



the performane of the extended Kalman �lter for highly loal non-lineardynamis.Obviously, our models an be extended into several diretions. In ourwork we did not onsider exogenous variables as only a single time seriesis modelled. An immediate and straightforward extension onsists of on-sidering previous values of the time series as inputs in the dynamis of thehidden states: x(i)t = F ix(i)t�1 +H iyt�1t�q + ui; (31)where the vetor yt�1t�q = [yt�q; : : : ; yt�1℄ ontains, for example, the lastq � 1 observations. We also did not onsider non-linearities for the systemequation. This is also an immediate extension of the non-linear dynamialloal models, although we believe that the resulting algorithm would be tooomputationally ostly and omplex for pratial appliation.ReferenesBar-Shalom, Y. and X. R. Li (1993). Estimation and Traking. ArtehHouse, Boston, MA.Blom, H. A. P. and Y. Bar-Shalom (1988). The interative multiple modelalgorithm for systems with Markovian swithing oeÆients. IEEETransation on Automati Control 33 (8), 780{783.Bollerslev, T. (1986). Generalized autoregressive onditional het-eroskedastiity. Journal of Eonometris 31, 307{327.Caiatore, T. W. and S. J. Nowlan (1994). Mixtures of ontrollers forjump linear and non-linear plants. In J. D. Cowan, G. Tesauro, andJ. Alspetor (Eds.), Advanes in Neural Information Proessing Sys-tem, Volume 6, pp. 719{726. San Franiso: Morgan Kaufmann.Chang, C. B. and M. Athans (1977). State estimation for disrete systemswith swithing parameters. IEEE Transations on Aerospae and Ele-troni Systems 14 (2), 418{424.21
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A Implementation of dynamial loal modelsA.1 The EM algorithm for linear swithing state spae mod-elsA.1.1 The E-stepThe E-step involves the Kalman smoother for eah state spae model i wherethe output ovariane matrix Ri is weighted by 1=h(i)t at eah time stept. This allows to ompute the variational parameters q(i)t (Equation (13)).These parameters are then used in the forward-bakward algorithm as out-put density probabilities, and this enables us to estimate the responsibilityh(i)t of eah model. The whole proess is repeated until onvergene of theKL divergene, or similarly onvergene of the lower bound.A.1.2 The M-stepFor the M-step, we make use of the re-estimations formulae for HMMs andSSMs. The re-estimation equations for the transition matrix A and theinitial probabilities � are exatly the same as those obtained for an HMM.Conerning the re-estimation equations of eah linear dynamial �lter, theequations are also the same exept for the output matries Gi and theoutput noise ovariane matries Ri. We must indeed take into aount theresponsibility of eah state spae model. This responsibility is given by thevalue of the variational parameters h(i)t . It is easy to obtain:Gnewi =  TXt=1 h(i)t ytx(i)tjT 0! TXt=1 h(i)t V (i)tjT!�1 (32)Rnewi = TXt=1 h(i)t �yty0t � F newi x(i)tjTy0t� = TXt=1 h(i)t ; (33)where x(i)tjT and V (i)tjT are obtained by running the Kalman smoother on eahstate spae model.
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B The EM algorithm for non-linear swithing statespae modelsB.0.3 The E-stepThe E-step involves the linearisation of eah output funtion gi. This fun-tion is approximated by an RBF network:gi(xt) =W (i)	(i)(x(i)t ); (34)where W (i) = [w(i)1 ; : : : ; w(i)K ℄ represents the weights (inluding the bias)and 	(i) = [ (i)1 ; : : : ;  (i)K ℄ are the basis funtions. By linearising eah basisfuntion  (i)k , we get:h	(i)(x(i)t )iQ = 	(i)(x(i)tjT )h	(i)(x(i)t )	(i)(x(i)t )0iQ = 	(i)(x(i)tjT )	(i)(x(i)tjT )0 + J (i)tjTP tjTJ (i)tjT 0where J (i)tjT � � (i)k�x ����x(i)tjT is the Jaobian matrix.B.0.4 The M-stepBy taking the derivatives of the expeted log-likelihood and setting them tozero, re-estimation formulae for the parameters are easily obtained. Beausewe just introdue non-linearity in the output funtion, the equations are thesame as the ones for a linear swithing state spae model, exept the outputovariane matrix Ri. We get:W (i)new =  TXt=1 h(i)t yt	(i)(x(i)tjT )0!��1iRnewi = TXt=1 hh(i)t �yt �W (i)new	(i)(x(i)tjT )�y0ti = TXt=1 h(i)twith �i =PTt=1 h(i)t h	(i)(x(i)tjT )	(i)(x(i)tjT )0 + J (i)tjTP (i)tjTJ (i)tjT 0i.
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Figure 1: Graphial representation of a swithing state spae model. All thehidden variables have Markovian dynamis. At eah time t, N real-valued hiddenvariables ompete in order to explain the observation yt and the disrete variablest plays the role of a gate.
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Tehnique Mutual Info Log-likelihoodNo annealing 0:42 �2:26Annealing 0:49 �2:26Initialisation 0:77 �2:21True model 1:73 �2:17Table 1: Average mutual information and log-likelihood (lower bound) per datapoint when training linear dynamial model with and without initialisation. Forinformation, we report the results obtained with the true model: the entropy of thetrue segmentation is 1:73.
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Model Log-likelihood NMSEmean std mean stdLDS �0:8601 0:0001 0:0339 0:0001NLDS �0:8020 0:0040 0:0292 0:0003LSSSM �0:5667 0:0107 0:0228 0:0004NLSSSM �0:4523 0:0221 0:0183 0:0013Table 2: Average log-likelihood and NMSE on the test set for a simple lineardynamial system (LDS), a non-linear dynamial system (NLDS), a 2-state linearSSSM (m = 3) and a 2-state non-linear SSSM.
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DEM/USDModel Log-likelihood NMSEmean std mean stdAR �2:3957 | 1:0002 |GARCH �1:1488 | 1:0000 |NN �1:1950 0:0149 1:0190 0:0094ARHMM �1:0456 0:0020 0:9998 0:0000LDS �1:1574 0:0000 0:9997 0:0000NLDS �1:1366 0:0030 0:9997 0:0001LSSSM �1:1045 0:0154 0:9995 0:0004NLSSSM �1:0361 0:0111 0:9995 0:0003GBP/USDModel Log-likelihood NMSEmean std mean stdAR �2:5268 | 1:0020 |GARCH �1:2174 | 0:9994 |NN �1:2191 0:0316 1:0720 0:0188ARHMM �1:0730 0:0000 1:0030 0:0000LDS �1:2500 0:0000 0:9999 0:0000NLDS �1:2214 0:0020 0:9999 0:0001LSSSM �1:1362 0:0283 0:9996 0:0002NLSSSM �1:0581 0:0121 0:9996 0:0002Table 3: Average log-likelihood and normalised mean squared errors on theDEM/USD and GBP/USD test sets over 10 runs orresponding to di�erent ini-tial onditions.
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