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tIn the analysis and predi
tion of many real-world time series, the as-sumption of stationarity is not valid. A spe
ial form of non-stationarity,where the underlying generator swit
hes between (approximately) sta-tionary regimes, seems parti
ularly appropriate for �nan
ial markets.We introdu
e a new model whi
h 
ombines a dynami
 swit
hing (
on-trolled by a hidden Markov model) and a non-linear dynami
al system.We show how to train this hybrid model in a maximum likelihood ap-proa
h and evaluate its performan
e on both syntheti
 and �nan
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1 Introdu
tionMost fore
asting approa
hes try to predi
t the next value of a time seriesby assuming stationarity: i.e. the underlying generator of the data is glob-ally time invariant. In many real world appli
ations, this assumption is notvalid. Even non-linear regressors like neural networks are not e�e
tive inmodelling 
hanging temporal stru
ture in the time series. For instan
e, oneof the obsta
les to the predi
tion of ex
hange rates in the 
apital markets isa non-
onstant 
onditional varian
e, known as heteros
edasti
ity. GARCHmodels have been developed to estimate a time-dependent varian
e (Boller-slev, 1986).A spe
ial form of non-stationarity, where the underlying generator swit
hesbetween (approximately) stationary regimes, seems a reasonable assumptionfor many pra
ti
al problems. In the last de
ade, hybrid approa
hes havebeen developed in order to model this behaviour. One example is the mix-ture of experts (Ja
obs et al., 1991; Ca

iatore and Nowlan, 1994; Weigendet al., 1995) whi
h de
omposes the global model into several (linear or non-linear) lo
al models known as experts, as ea
h spe
ialises in modelling asmall region of input spa
e. One limitation of these models for time seriesanalysis is that the gating network whi
h 
ombines the lo
al models has nodynami
s. It is 
ontrolled only by the 
urrent value of the time series.One way to address this limitation is to use a hidden Markov model(whi
h does have dynami
s) to swit
h between lo
al models. For example,autoregressive hidden Markov models (ARHMMs) swit
h between autore-gressive models, where the predi
tions are a linear 
ombination of past values(Poritz, 1982). ARHMMs have been reintrodu
ed in the ma
hine learning
ommunity under the name of hidden �lter HMMs (Fraser and Dimitriadis,1994) and have been re
ently applied to �nan
ial engineering in order tomodel high frequen
y foreign ex
hange data (Shi and Weigend, 1997).From e
onometri
s to 
ontrol, several similar hybrid models have beenproposed. Their main 
hara
teristi
 is the mixing of dis
rete and 
ontinuoushidden variables (Chang and Athans, 1977; Hamilton, 1989; Shumway andSto�er, 1991; Bar-Shalom and Li, 1993). A linear system with Markovian2




oeÆ
ients, also 
alled a jump-linear system, assumes the existen
e of alinear dynami
al system of the general form:xt = F (st)xt�1 + ut (1)yt = G(st)xt + vt (2)where xt is the state ve
tor, yt the measurement ve
tor, and st the un-known time-varying parameter. st is restri
ted to take values from a �niteset fq1; : : : ; qNg. In the simplest 
ase, this parameter follows a �rst-orderMarkov pro
ess. The transition matrix governing the Markov 
hain andthe parameters of the model are usually assumed to be known. The mainproblem 
onsists thus of estimating the hidden state xt.Chang and Athans (1977) fo
us on the state estimation problem for asystem where the output matrix G is time independent. They show thatestimation of the exa
t distribution of the state requires a bank of elementalestimators whose size grows exponentially in time. Mazor et al. (1998)review the state estimation problem for the most general 
ase where both Fand G are allowed to depend on a swit
h variable st. They also show whyan optimal solution is not 
omputationally tra
table and present te
hniquesknown as `intera
ting multiple models' that 
onsist of a bank of 
ooperatingKalman �lters: at ea
h time step t the state estimate is 
omputed underea
h possible 
urrent model, with ea
h �lter using a di�erent 
ombination ofthe previous model-
onditioned estimates (see also (Blom and Bar-Shalom,1988; Bar-Shalom and Li, 1993)).Shumway and Sto�er (1991) 
onsider the problem of learning the param-eters of a state spa
e model with a swit
hing output matrix G(st) whi
his known in advan
e. They proposed an approximate EM algorithm wherethe E-step, whi
h would require the 
omputation of a mixture of Gaussianswith an exponentially in
reasing number of 
omponents, is approximated atea
h time step t by a single Gaussian.In this paper, we investigate swit
hing state spa
e models (SSSMs).These models 
onsist of N multiple linear/non-linear state spa
e models
ontrolled by a dynami
 swit
h and, in this sense are a generalisation ofjump-linear systems. They assume that the behaviour of the system 
an be3




hara
terised by a �nite number of dynami
al systems with hidden states,ea
h of whi
h tra
ks the data in a di�erent regime. As dis
ussed in (Ghahra-mani and Hinton, 1998), SSSMs 
an also be seen as a generalisation of themixture of experts model.A long-standing limitation for training these models is that the 
omplex-ity of the exa
t training algorithm grows exponentially with orderNT , whereN is the number of models and T is the length of the time sequen
e. Var-ious ad ho
 and not 
ompletely satisfa
tory approximations have been pro-posed, e.g. (Shumway and Sto�er, 1991). Re
ently, Ghahramani and Hin-ton (1998) reintrodu
ed linear swit
hing state spa
e models in the ma
hinelearning 
ommunity and proposed an eÆ
ient and prin
ipled approximatealgorithm for training these models in a maximum likelihood framework.In se
tion 2 we �rst present linear swit
hing state spa
e models (SSSMs)and show how to train these models using variational te
hniques. In se
tion 3we present a new extension whi
h in
orporates non-linear state spa
e modelsusing radial basis fun
tion (RBF) networks. Although linear SSSMs enableus to model pie
e-wise stationarity, they may have diÆ
ulties in modellingnon-linear dependen
ies in the time series. As the initialisation step is 
ru
ialfor training mixture models due to the large number of lo
al minima, wepresent a novel algorithm whi
h addresses this problem in se
tion 4. We thenshow how to use these models for time series segmentation and probabilisti
density predi
tion. The models are �nally tested on di�erent datasets andwe 
ompare their performan
e with other standard te
hniques.2 Linear swit
hing state spa
e modelsHidden Markov models and state spa
e models are probabilisti
 models fortime series where the information about the past is represented througha random variable: the hidden state. Conditioned on this state, the pastand the future observations are independent. In the 
ase of HMMs, thestate variable is dis
rete and 
an be viewed as a swit
hing variable betweendi�erent pro
ess regimes. For SSMs, the hidden state is 
ontinuous and isspe
i�ed by a linear dynami
al equation.4



A linear swit
hing state spa
e model (linear SSSM) is a model that
ombines HMMs and SSMs. More pre
isely, N di�erent linear dynami
alsystems 
ompete in order to des
ribe the observation yt 2 Rd . Ea
h real-valued state ve
tor x(i)t 2 Rm evolves between time steps a

ording to thesystem equation: x(i)t = F ix(i)t�1 + ui; (3)where F i is the state transition matrix and ui � N (0;Qi) is a zero meanGaussian noise asso
iated to model i. The initial state ve
tor is also assumedto be Gaussian: P (x(i)1 ) = N (���i;���i).A dis
rete variable St 2 fq1; : : : ; qNg, also represented by a ve
tor St =[S(1)t ; : : : ; S(N)t ℄, where S(i)t 2 f0; 1g, plays the role of a gate. When thesystem enters a spe
i�
 state i, i.e. St = qi (or S(i)t = 1), the observation isGaussian and is given by: yt = Gix(i)t + vi; (4)where Gi is the output matrix whi
h maps the hidden state to the observa-tion. The noise random variable vi � N (0;Ri) is also zero mean Gaussian.The dis
rete state variable St evolves a

ording to Markovian dynami
s that
an be represented by a dis
rete transition matrix A = faijg,aij = P (St = qj jSt�1 = qi): (5)Therefore, an SSSM is essentially a mixture model, in whi
h informationabout the past is 
aptured in two types of random variables: one 
ontin-uous and one dis
rete. Using the Markov dependen
e relations, the jointprobability for the sequen
e of states and observations 
an be written asP (ST1 ;X T1 (1); : : : ; X T1 (N);YT1 ) = P (s1)QTt=2 P (stjst�1) (6)QNi=1 �P (x(i)1 )QTt=2 P (x(i)t jx(i)t�1)�QTt=1 P (ytjx(1)t ; : : : ;x(N)t ; st):The 
orresponding graphi
al model is shown in Figure 1.Given a sequen
e of observations YT1 , the learning problem 
onsists ofestimating the parameters � = fF i;Qi;Gi;Ri;���i;���ig1�i�N of ea
h Kalman5



�lter and the transition matrix A of the dis
rete state Markov pro
essin order to maximise the likelihood of the observations. An exa
t pro
e-dure to solve this maximum likelihood estimation 
ould be derived from theExpe
tation-Maximisation algorithm (Dempster et al., 1977). In the E-step,one 
omputes the posterior probabilities P (ST1 ;X T1 (1); : : : ;X T1 (N)jYT1 ;�) ofthe hidden states. The M-step uses the expe
ted values to re-estimate theparameters of the model.Unfortunately, it 
an be shown that exa
t inferen
e is not 
omputa-tionally tra
table, sin
e it s
ales as NT . Even if P (x(i)1 jy1;�) is Gaussian,then P (x(i)t jyt1;�) is in general a mixture of Gaussians with an exponen-tially in
reasing number of terms. Like the other models des
ribed in se
-tion 1, the posterior distribution of the state variables x(i)t is a mixture ofGaussians with N t 
omponents. Although these variables are marginallyindependent, they be
ome 
onditionally dependent when the variable yt isobserved, namely be
ause of the dis
rete variable St whi
h 
ouples all thereal-valued state variables x(1)t ; : : : ;x(i)t at time step t.Several approximations have been proposed to 
ir
umvent this diÆ
ulty.For example, in (Shumway and Sto�er, 1991), a pseudo-EM algorithm isderived for learning a single hidden state spa
e model with swit
hing out-put matri
es: at ea
h step, the mixture of Gaussians is approximated by asingle Gaussian. Re
ently Ghahramani and Hinton (1998) proposed a prin-
ipled generalised EM algorithm. The idea is to make use of variationalte
hniques in order to approximate the intra
table true posterior distribu-tion by a tra
table distribution Q, and to maximise the lower bound on thelog-likelihood:F(Q;�) =XST1 Z Q(ST1 ;X T1 ) log P (ST1 ;X T1 ;YT1 j�)Q(ST1 ;X T1 ) dX T1 ; (7)where we have used Jensen's inequality and X T1 denotes the whole sequen
eof hidden states: X T1 = [X T1 (1); : : : ;X T1 (N)℄. It is easy to see that the di�er-en
e between the left-hand side and the right-hand side of Equation (7) isnothing else than the KL-divergen
e between the approximating distributionQ and the true posterior P . The KL-divergen
e is a non-negative expressionand is minimised if and only if Q = P in whi
h 
ase it is zero and the bound6



be
omes exa
t. However, this would not lead to any simpli�
ation of theproblem.Using a judi
ious stru
tured variational approximation, the inferen
estep 
an be
ome tra
table (Saul and Jordan, 1996). Be
ause linear SSSMsare hybrid models 
ombining HMMs and SSMs for whi
h the E-step 
anbe solved exa
tly, it is best to use an approximation that makes use of theforward-ba
kward and Kalman smoother algorithms, whi
h are the relevantversions for the respe
tive E-step. The authors suggest the following ap-proximation:Q(ST1 ;X T1 (1); : : : ;X T1 (i)) = 1Z�(s1) TYt=2�(st�1; st) NYi=1�(x(i)1 ) TYt=1�(x(i)t�1;x(i)t )(8)whi
h 
orresponds to the graphi
al model shown in Figure B.0.4. Z is anormalisation fa
tor ensuring that Q integrates to one.The motivation of su
h an approximation is to destroy the intera
tionbetween the hidden variables whi
h makes the inferen
e problem 
ompu-tationally intra
table. Ea
h deleted edge in the graph is repla
ed by avariational parameter:�(s(i)1 ) = P (s(i)1 )q(i)1 (9)�(s(j)t�1; s(i)t ) = P (s(i)t j s(j)t�1)q(i)t (10)�(x(i)1 ) = P (x(i)1 ) hP (y1 jx(i)t ; s(i)1 )ih(i)1 (11)�(x(i)t�1;x(i)t ) = P (x(i)t jx(i)t�1) hP (yt jx(i)t ; s(i)t )ih(i)t : (12)By introdu
ing these variational parameters, we de
ouple the state spa
emodels but keep the Markov 
hain assumption for ea
h of them.The variational parameters q(i)t and h(i)t are obtained by minimising theKL-divergen
e between P and Q, whi
h 
orresponds to the E-step. Ghahra-mani and Hinton (1998) derived the �xed point equations for these param-eters. The parameters q(i)t play exa
tly the same role as the output prob-abilities P (yt jx(i)t ) would play in a regular hidden Markov model, and areobtained by 
omputing the expe
ted error under the distribution Q if state7



spa
e model i were used to generate the observation yt:q(i)t = exp��12h(yt �Gix(i)t )0Ri(yt �Gix(i)t )iQ� (13)We 
an see that this parameter is a fun
tion of x(i)tjT � hx(i)t iQ and V (i)tjT �hx(i)t x(i)t 0iQ. These expe
tations 
an be 
omputed by running the Kalmansmoother on state spa
e model i with the observation yt weighted by h(i)t(see Equation (11) and Equation (12)). The parameters h(i)t 
an be viewedas being the responsibility assigned to state spa
e model i at time t, and areobtained by 
omputing the expe
ted probability of being in state i at timet under the approximating distribution Q.h(i)t = hs(i)t iQ (14)We therefore see that the variational parameters are inter-related: the
al
ulation of q(i)t needs h(i)t and vi
e-versa. Starting from some initial valuesfor q and h, the E-step 
onsists of running a Kalman smoother for ea
h statespa
e model with the output noise 
ovarian
e matrix Ri weighted by 1=h(i)t .This allows us to 
ompute q(i)t a

ording to Equation (13) and the requiredexpe
tations of ea
h real-valued variable x(i)t needed in the M-step. The h(i)tparameters are obtained by running a forward-ba
kward algorithm, whereea
h hidden state is asso
iated to the output probability density q(i)t . Thepro
ess is iterated until 
onvergen
e of the KL-divergen
e. In pra
ti
e, thisis a
hieved in no more than 10 iterations.The M-step 
onsists of re-estimating the parameters � of the model andis straightforward. Like in HMMs and SSMs, the parameters 
an be re-estimated analyti
ally. Appendix A.1 gives the re-estimation equations.The whole pro
ess (E and M steps) is iterated until 
onvergen
e of thelower bound on the log-likelihood.3 Non-linear swit
hing state spa
e modelsAlthough linear SSSMs are 
apable of modelling multi-modality, they mayhave diÆ
ulties in modelling non-linear dependen
ies in the time series. We8



present here a new extension of dynami
al lo
al models whi
h takes intoa

ount non-linearity in the output:yt = gi(x(i)t ) + vi; (15)where gi denotes now a non-linear fun
tion from the hidden state spa
eto the observation spa
e. By introdu
ing this non-linearity, the posteriorP (x(i)t jyT1 ) is no longer Gaussian and optimal smoothing 
annot be a
hievedanalyti
ally.In order to 
ir
umvent this problem, one solution 
ould be derived fromsequential Monte Carlo integration te
hniques (Kitagawa, 1987; Gordon etal., 1993; Kitagawa, 1996). These te
hniques have been applied for the in-feren
e problem in non-linear state spa
e models, and the extension to the
ase of non-linear swit
hing state spa
e models 
ould be investigated. Inthese methods also known as bootstrap �lter or sequential important sam-pling, arbitrary non-Gaussian densities are approximated by many parti
lesthat 
an be 
onsidered realisations from the distribution. It is then pos-sible to derive a learning algorithm whi
h makes use of these parti
les to�t the non-linear fun
tions. However, these te
hniques are 
omputationallyexpensive as a huge number of parti
les are needed at ea
h time step t tobe representative of the posterior distribution.If the fun
tion gi is suÆ
iently smooth, a suboptimal smoothing algo-rithm 
an be derived by 
onsidering the linearisation of the non-linear sys-tem. At every point x(i)tjT , the fun
tion gi is expanded as a �rst-order Taylorseries: gi(x) � gi(x(i)tjT ) +rxgi(x(i)tjT )(x� x(i)tjT ): (16)This approximate solution through linearisation around the 
urrent stateestimate re
overs the Gaussian stru
ture and leads to the �rst-order extendedKalman smoother whi
h is nothing else the exa
t Kalman smoother for thelinearised model: the equations of the Kalman smoother are still valid ex
eptthose involving the output matrix Gi whi
h is repla
ed by the Ja
obianmatrix J (i)tjT = rxgi(x(i)tjT ).The se
ond 
ompli
ation arises in the M-step. In the 
ase of a linearmodel, it is easy to re-estimate the parameters exa
tly. If the fun
tions gi9



are not linear, it may be 
omputationally diÆ
ult to re-estimate exa
tly theparameters of the fun
tion. For example, if gi is represented by a multilayerneural network, exa
t re-estimation 
annot be done and we must resort tonon-linear optimisation methods.To solve these two problems, we propose to model ea
h non-linear fun
-tion with a radial basis fun
tion network:yt = KXk=1w(i)k  (i)k (x(i)t ) + vi =W (i)	(i)(x(i)t ) + vi; (17)whereW (i) = [w(i)1 ; : : : ; w(i)K ℄ are the weights (in
luding the bias) and f (i)k g2�k�Kdenote the (K � 1) Gaussian basis fun
tions asso
iated to model i (the biasis asso
iated to a basis fun
tion whose a
tivation is equal to 1): (i)k (x(i)t ) = exp0��jjx(i)t �m(i)k jj22�(i)k 2 1A : (18)Note that non-Gaussian basis fun
tions 
ould be used although we did notinvestigate their implementation in this work.In that 
ase, with �xed basis fun
tions, the M-step is still tra
table sin
ethe output fun
tion is linear with respe
t to the weight matrix W (i). Agood initialisation enables us to keep the 
entres and widths of the basisfun
tions �xed during the learning algorithm and to re-estimate only theweights, for whi
h a fast and eÆ
ient algorithm exists1. Appendix B givesthe re-estimation formulae for the weight matrix W (i).The number of basis fun
tions K 
ontrols the smoothness of the outputfun
tion gi for ea
h state spa
e model. It is therefore possible to implementa non-linear SSSM with a number of basis fun
tions that are di�erent fromone state spa
e model to another. This 
an be quite useful if we believe,for example, that the underlying system is swit
hing from a pie
ewise linearregime to a highly non-linear regime.In terms of previous work, our model resembles that of (Kadirkamanathanand Kadirkamanathan, 1996), where the authors used modular RBF net-works for learning multiple modes. Given input-output observations zT1 =1If we want to learn these parameters, a generalised EM 
an be implemented.10



fxT1 ;yT1 g, their algorithm uses the Kalman �lter for supervised re
ursive es-timation of the weight ve
tors W (i), whi
h plays the role of the real-valuedhidden state: W (i)t = W (i)t�1 + ui (19)yt = W (i)t 	i(xt) + vi: (20)It is assumed that ea
h model i has an asso
iated s
ore of being the 
urrentunderlying model for the given observation yt. The parameters of the globalmodel, for example the output noise 
ovarian
e matri
esRi or the transitionmatrixA, are not learned but are assumed to be known in advan
e. Our non-linear model di�ers from the modular RBF network on two major points.Firstly, in our approa
h, the parameters of ea
h expert are learned in amaximum likelihood framework. Se
ondly, whereas the weight ve
torsW (i)play the role of the hidden states in their model, they are 
onsidered asproper adaptive parameters of ea
h RBF network in our work. This leadsto a system where the hidden state is an input to the RBF network andkeeps therefore its intuitive interpretation of representing the underlyingdynami
s we are trying to re
over.4 InitialisationMixture models trained using the EM algorithm are guaranteed to rea
h alo
al maximum likelihood solution. Be
ause there are many lo
al maxima,experien
e has shown that SSSMs are parti
ularly sensitive to the initiali-sation. Therefore, the 
hoi
e of initial 
onditions is 
ru
ial and we prefer toinitialise the model 
arefully rather than a simple random initialisation.For swit
hing state spa
e models, the initialisation is an important partof the learning algorithm, as both the HMM and the dynami
al systemsmust be initialised. The key point is to start with a good segmentation ofthe data set, where by segmentation we mean a partition of the data, withea
h part modelled by a dynami
al system. To address this problem, wehave developed an eÆ
ient initialisation pro
edure.11



For the linear 
ase, we qui
kly2 train a 
ontinuous hidden Markov modelwith as many dis
rete states as our SSSM on the data set and run the Viterbialgorithm in order to obtain the most likely path, i.e. the sequen
e of hiddenstates whi
h `best' explains the observation sequen
e. Ea
h data point isassigned to the most probable hidden state and thus gives us a segmentationof the data. A simple linear dynami
al system is then initialised for ea
hsegment. This se
ond phase 
an be done by estimating the 
ovarian
e ofthe observations whi
h allows us to initialise the output 
ovarian
e Ri. Thesystem noise 
ovarian
e Qi 
an be, without any restri
tion, 
onsidered as adiagonal matrix and is simply initialised to the identity matrix. Values forF i and Gi are then obtained by inverting the system.For the non-linear 
ase, it is 
ru
ial to initialise properly the 
entres andthe widths of ea
h radial basis fun
tion, as these parameters will not belearned during the training algorithm. We �rst perform the initialisation fora linear SSSM. For ea
h segment of the data where a linear dynami
al systemhas been initialised, a 
orresponding sequen
e of hidden 
ontinuous states xt
an be re
overed by running the Kalman �lter. A Gaussian Mixture Modelis �tted to ea
h sequen
e, whi
h enables us to initialise the 
entres and thewidths of ea
h RBF network.The parameters aij of the dis
rete transition matrix A 
an also be ini-tialised by 
ounting the number of transitions from state i to state j anddividing it by the number of transitions from state i to any other state.We have noti
ed that su
h an initialisation pro
edure alleviates prob-lems o

urring during the E-step. The KL-divergen
e 
an have several lo
alminima 
orresponding to di�erent values of the variational parameters. Thismeans that two signi�
antly di�erent segmentations 
an lead to a similarlower bound on the log-likelihood. Ghahramani and Hinton (1998) addressedthis problem and modi�ed the training algorithm by using the te
hnique ofdeterministi
 annealing (Ueda and Nakano, 1995): the approximation dis-tribution Q is broadened with a temperature parameter that is annealedover time. However, with this method a large portion of training runs still
onverge to poor lo
al minima.2In pra
ti
e, 5 iterations of the EM algorithm are suÆ
ient.12



In order to illustrate how our pro
edure 
an lead to a signi�
ant im-provement, we 
onsider the following syntheti
 problem involving a 2-statelinear swit
hing state spa
e model:x(1)t = 0:99x(1)t�1 + u1; u1 � N (0; 1) (21)x(2)t = 0:90x(2)t�1 + u2; u2 � N (0; 10) (22)The probability transition matrix A is su
h that a11 = 0:99 and a22 = 0:98.The output observation is identi
al for ea
h model:yt = x(i)t + v; v � N (0; 0:1) 8i (23)We generated a sequen
e of T = 1000 points from this model and trainlinear SSSMs with the EM algorithm, 
onsidering three di�erent learningte
hniques: our initialisation pro
edure, random initialisation without de-terministi
 annealing and, random initialisation with deterministi
 anneal-ing. For the deterministi
 annealing version, we follow Ueda and Nakano(1995): the variational parameters q and h are weighted by a de
reasingtemperature T : starting with a relatively big value for T , say T = 100, thetemperature is iteratively updated, Ti = 12Ti�1 + 12 , during the E-step. Forea
h te
hnique, 20 linear SSSMs 
orresponding to di�erent random initial
onditions were trained. We then evaluated the average mutual informationbetween the true segmentation and the one obtained by ea
h te
hnique. Be-
ause the variational parameters h are real (h(i)t 2 [0; 1℄), we �rst need topla
e a threshold on these values to obtain a hard segmentation3.Table 1 reports the results. Comparing the two random initialisations,on average, the deterministi
 annealing pro
edure performs slightly better.Our initialisation signi�
antly outperforms both methods. We also reportthe average log-likelihood (lower bound) per data point for ea
h te
hnique.Compared to the likelihood obtained with the true model, ea
h te
hniqueperforms reasonably well. This shows the diÆ
ulty of 
omparing modelswhen the exa
t 
omputation of the likelihood is not tra
table.Figure 3 plots the time series and typi
al segmentations we obtain withthe three approa
hes. Finding the true segmentation is a
tually very diÆ-3h(i)t = 1 if ht � 0:5, h(i)t = 0 otherwise. 13




ult. Even when the inferen
e is performed with the true model, an under-estimation of the swit
hing 
an o

ur, leading to a segmentation where onlyone state spa
e model is a
tivated.5 Predi
tions and on-line model sele
tionIn this se
tion we show how to make one-step ahead predi
tions with dy-nami
al lo
al models. The algorithm makes use of Bayes' theorem at ea
htime step t and is known as the multiple model approa
h (Bar-Shalom andLi, 1993).At ea
h time step t, we note that ea
h model 
ontributes to the expla-nation of the observation yt in the following way:P (yt j st;x(1)t ; : : : ;x(N)t ) = NYi=1[P (yt jx(i)t )℄s(i)t (24)Unfortunately the value of the swit
hing variable is not known in advan
e,but an expe
ted value 
an be derived by using Bayes' theorem:E[St = qi j Yt1℄ = P (yt jyt�11 ; St = qi)P (St = qi jyt�11 )P (yt j Yt�11 ) (25)The �rst term in the numerator is given by Equation (4). The se
ond termrepresents the predi
ted probability of model i at time t given all the earlierobservations. As the dis
rete state St is a �rst-order Markov pro
ess, thisprobability is given by:�t(i) � P (St = qi j Yt�11 ) = NXj=1 ajiP (St�1 = qj jyt�11 ) (26)The initial prior probabilities are assigned to be equal to 1=N . The denom-inator is the normalising term (also known as the eviden
e) and is givenby: P (yt j Yt�11 ) = NXi=1 �t(i)P (yt j Yt�11 ; St = qi) (27)Thus on-line estimations for ea
h model de
ouple naturally. The Kalman�lter re
ursive equations hold for ea
h model i with the only modi�
ationthat the likelihood of the observation yt is weighted by �t(i).14



Depending on the 
ontext, hard and soft 
ompetition 
an be imple-mented (Kadirkamanathan and Kadirkamanathan, 1996). In hard 
ompe-tition, it is believed that only one model is responsible for des
ribing theobservation at time t. This is done by 
onsidering only the model i withthe highest predi
ted probability �t(i). In that 
ase, �t(i) = 1 and �t(j) = 0for the other models. In soft 
ompetition, �t(i) = P (St = qi jyt�11 ) and ea
hmodel is allowed to adapt its parameters. This obviously leads to two dif-ferent types of segmentations.Thus the model inherits the properties from both HMMs and SSMs: the�rst-order Markov assumption for the dis
rete variable allows us to do on-line model sele
tion. The state spa
e model plays the role of the predi
tivemodel within ea
h regime. As the mean and the 
ovarian
e of the hiddenstates are updated on-line, the models allow us to obtain a full des
riptionof the predi
tive distribution.6 Experimental resultsWe have assessed the performan
e of dynami
al lo
al models on di�erentproblems. We �rst run simulations on syntheti
 data in order to evaluate and
ompare the performan
es of linear and non-linear lo
al dynami
al modelson data whi
h exhibit lo
al non-linearity. We �nally show promising resultsof both models for modelling �nan
ial time series.6.1 Syntheti
 dataWe generated data from a bimodal pro
ess (Weigend et al., 1995):yt+1 = 8<:2(1� y2t )� 1 if st = 0,tanh(�1:2yt + �) if st = 1. (28)where � � N (0; 0:1). The �rst mode is a deterministi
 
haoti
 pro
esswhereas the se
ond mode is a noisy non-
haoti
 pro
ess. The swit
hingobeys a �rst order Markov pro
ess with diagonal entries aii = 0:98. Bothtraining and test datasets 
ontain 500 points.15



We trained both a linear and a non-linear swit
hing state spa
e model.The dimension of the hidden states x(i)t has been taken to be m = 1 anda RBF network with K = 3 hidden units has been used for the non-linearSSSM.Figure 4 plots the test dataset and the 
orresponding segmentationsobtained by the three models. Compared to the true segmentation, we 
ansee that both models 
apture the underlying regime well, but that the non-linear SSSM is slightly more su

essful. Indeed, the 
orrelations betweenthe true segmentation and the ones obtained by the linear and non-linearSSSM are respe
tively 0:78 and 0:85.Figure 5 plots the a

ura
y of the two models under the determinis-ti
 
haoti
 regime. Although the linear SSSM is able to 
apture the non-linearity, the non-linear SSSM seems to be more a

urate4. This is parti
u-larly signi�
ant in the 
entral region where there is a perfe
t mat
h betweenthe true underlying fun
tion and the output of the non-linear model.We have also trained linear and non-linear dynami
al systems on thisdataset and we end this se
tion by 
omparing linear and non-linear SSSMswith these single mode systems. The hidden state dimension of the linearmodels and the number of RBF units for non-linear models have been takento be 3. Table B.0.4 reports the log-likelihood per datum and the normalisedmean squared error (NMSE) on the test set and shows the signi�
ant im-provement of the swit
hing models. For ea
h model, we report the averageand the spread over 10 di�erent initial 
onditions. It is interesting to notethat an LDS of hidden state dimension 3 does not outperform the simpleLDS with an hidden state of dimension 1. This remark does not apply to lin-ear swit
hing state spa
e models: a linear SSSM of hidden state dimension1 gives rise on average to a likelihood of �0:60 and a NMSE of 0:025.6.2 Finan
ial dataBe
ause of the 
apability of state spa
e models for tra
king quasi-stationarityand the power of HMMs for un
overing the hidden swit
hing between regimes,4This is more obvious in the next table whi
h reports the log-likelihood and the nor-malised mean squared error on the test dataset.16



we investigate their performan
e on �nan
ial data. An advantage of viewingthe model in a probabilisti
 framework is that we 
an also atta
h 
on�den
eintervals to the predi
tions, as the 
ovarian
e matrix of the random variableXt is also estimated at ea
h time step t. One immediate and importantappli
ation in �nan
ial engineering is risk estimation. In addition, the valueof the dis
rete hidden variable St 
an be viewed as indi
ating the regimethat the market is in at time t: this gives us a segmentation of the data,whi
h is of value in its own right.We present here results of our simulations on DEM/USD and GBP/USDforeign ex
hange rate daily returns:rt = log pt � log pt�1 t pt � pt�1pt�1 (29)where pt is the 
losing daily ex
hange rate at time t. This quantity 
an beseen as the logarithm of the geometri
 growth and is known in �nan
e as
ontinuous 
ompounded returns.Figure 6 plots the datasets. The DEM/USD training set 
ontains 3000points from 29/09/1977 to 15/09/1989. The test set 
ontains 1164 pointsfrom 16/09/1989 to 05/11/1994. The GBP/USD training set 
ontains 2000points from 01/06/73 to 29/01/81 and the test set 
ontains 1164 from30/01/81 to 21/05/87.The �rst appli
ation of the model is to un
over underlying regimes. Asan example, Figure 7 plots the segmentation obtained on the DEM/USDtest set with a simple 3-state non-linear SSSM (N = 3). The dimension ofea
h state spa
e has simply been taken to m = 1 and the number of radialbasis fun
tions is K = 5. The �gure shows how the model is 
apable ofdete
ting abrupt 
hanges in the time series stru
ture. We 
an 
learly seethat the third model is responsible for the low volatility segments, the se
ondfor the higher volatility segments, and the �rst model is mainly responsiblefor the time period around t = 500 where the running mean is negative(rather than zero). In a simplisti
 view, the underlying regimes may berelated to some ma
ro-e
onomi
al variables. Other simulations on higherfrequen
y data have shown strong 
orrelations between market movementsand external events during the day, and it is easier to identify su
h regimes17



when dealing with intra day data. For example, it is well known that marketmovements are more volatile at the open or the 
lose of a trading day thanat noon. Another example 
on
erns news during the day that perturbs the�nan
ial markets. This volatility segmentation is easier to tra
k during theday but there is no reason not to believe that daily 
losing pri
e time seriesbehave similarly on a lower frequen
y.Another important appli
ation of dynami
al lo
al models in �nan
e isthe possibility of obtaining on-line estimates of the 
ovarian
e of our pre-di
tion. Figure 8 shows a 
ontour plot for a small window of time where aregime transition o

urred at time t = 35. The model moves progressivelyfrom a high volatility region to a relatively low volatility region and the pre-di
tive distribution P (ytjYt�1) is 
learly a�e
ted by this 
hange. Of 
ourse,understanding the volatility regimes is important for pri
ing of options.We end this se
tion by evaluating the performan
e of dynami
al lo
almodels using obje
tive measures and 
ompared them with other models. Wetrained autoregressive models (AR), GARCH models, MLP neural networks(NN) and autoregressive hidden Markov models (ARHMM) on the samedata sets. A GARCH model (Bollerslev, 1986) 
onsists of a linear AR modelfor the 
onditional mean and an exponential AR model for the 
onditionalvarian
e. They are very often used in �nan
e engineering for modellingquasi-stationarity. For AR, NN and ARHMM models, the input dimensionhas been simply taken to be 5 lagged values of the observations (whi
hrepresent the history of the previous week), although no 
areful analysis ofthe input dimension has been 
arried out. Similarly, the neural network
ontains 10 hidden non-linear nodes and the ARHMM 
ontains, like ourmodels, 3 hidden states.We have 
omputed the log-likelihood per datum and the normal meansquared error (NMSE). For ea
h model, we report the average and the spreadover 10 di�erent initial 
onditions. Dynami
al lo
al models have been ini-tialised by the pro
edure we presented in Se
tion 4.Table 3 reports the results. On average, the NLSSSM seems to be thebest model to des
ribe the data, as the likelihood suggests it. When 
om-paring the NMSE, we see that none of these models seem to outperform the18



naive predi
tion, whi
h would 
onsist of making predi
tions based on themean of the training set. Note, for example, that the log-likelihood for su
ha naive model is equal to �1:1575 on the DEM/USD dataset.These simulations were intended to 
ompare dynami
al lo
al modelswith other standard te
hniques used in 
omputational �nan
e and 
on�rmthe fa
t that predi
ting the daily return is a very diÆ
ult task. A betterunderstanding of �nan
ial markets 
ould be obtained by 
onsidering highfrequen
y data. For example, Shi and Weigend (1997) modelled high fre-quen
y foreign ex
hange data with autoregressive hidden Markov modelsand showed promising results.7 Dis
ussionIn this paper we have reviewed hybrid models that 
ombine hidden Markovmodels and state spa
e models. These models have emerged from di�erents
ienti�
 
ommunities be
ause of the ne
essity of modelling pro
esses wherethe assumption of global stationarity does not hold.We reviewed linear swit
hing state spa
e models and proposed a new ex-tension whi
h in
orporates lo
al non-linearity. This is done by using a lo
alRBF network whi
h maps the hidden state spa
e to the observation spa
e5.The stru
tured variational approa
h allows us to perform a prin
ipled ap-proximate maximum likelihood estimation of the parameters. The inferen
ede
ouples ni
ely into the inferen
e algorithms for HMMs and SSMs. In the
ase of non-linear dynami
al models, a linearisation of the lo
al fun
tionleads to the extended Kalman �lter.We also proposed an eÆ
ient and fast initialisation algorithm whi
h al-leviates problems of multiple lo
al minima during the variational inferen
e.This pro
edure leads to a signi�
ant improvement in the reliability of train-ing 
ompared to the deterministi
 annealing version.In 
ontrast to other hybrid models su
h as mixture of experts or au-toregressive HMMs, dynami
 lo
al models provide a full des
ription of the5It must be emphasized that a Radial Basis Fun
tion network 
an be hardly seen as a`true' generative model. 19



predi
tive distribution. This is an important issue, espe
ially in �nan
ewhere robust error bars need to be developed.We evaluated the performan
e of the models on di�erent data sets and
ompared them to other standard te
hniques. This was done by evaluatingthe log-likelihood per datum over a test set, as this measure allows dire
t
omparisons between di�erent models. Another evaluation of the densityfore
asts, based on the 
umulative probability distribution, 
ould 
omple-ment our 
omparisons. This te
hnique was proposed by Diebold et al. (1998)and 
onsists of estimating the following random variable:Zt+1 = Z yt+1�1 P (� j Yt1) d�: (30)In order to assess the quality of the predi
tion, the random variable is testedagainst the hypothesis of a uniform distribution, whi
h would 
orrespond toa good model for the true predi
tive distribution P �(yt+1 j Yt1). To testwhether Z is uniformly distributed, Diebold et al. (1998) refer to standardte
hniques, the simplest of whi
h 
onsists of plotting the histogram.These models have been applied to �nan
ial time series to extra
t twodi�erent types of information. Firstly, we 
an model the sto
hasti
 volatil-ity, outperforming a GARCH model by a small but statisti
ally signi�
antmargin. Se
ondly, we 
an segment the time series into di�erent regimes.This is important, as there is growing eviden
e that �nan
ial time series arebetter modelled by a 
ombination of lo
al models, ea
h of whi
h spe
ialisesin a di�erent segment, than a single 
omplex global model.The variational inferen
e approa
h maximises a lower bound on the log-likelihood. An interesting problem 
on
erns the quality of this bound whi
his a 
urrent open question. Empiri
al simulations using a dynami
al lo
almodel 
ontaining a relatively small number of state spa
e models, say N = 2and a short time series, 
ould be done to evaluate this quality. In that 
ase,the exa
t estimation of the true posterior distribution of the hidden states
an be performed and 
ompared to the variational approximation.Another 
omparison 
ould be done by 
onsidering Monte Carlo integra-tion te
hniques, su
h as Gibbs sampling, whi
h provide a more a

uraterepresentation of the true posterior. This would also help us to evaluate20



the performan
e of the extended Kalman �lter for highly lo
al non-lineardynami
s.Obviously, our models 
an be extended into several dire
tions. In ourwork we did not 
onsider exogenous variables as only a single time seriesis modelled. An immediate and straightforward extension 
onsists of 
on-sidering previous values of the time series as inputs in the dynami
s of thehidden states: x(i)t = F ix(i)t�1 +H iyt�1t�q + ui; (31)where the ve
tor yt�1t�q = [yt�q; : : : ; yt�1℄ 
ontains, for example, the lastq � 1 observations. We also did not 
onsider non-linearities for the systemequation. This is also an immediate extension of the non-linear dynami
allo
al models, although we believe that the resulting algorithm would be too
omputationally 
ostly and 
omplex for pra
ti
al appli
ation.Referen
esBar-Shalom, Y. and X. R. Li (1993). Estimation and Tra
king. Arte
hHouse, Boston, MA.Blom, H. A. P. and Y. Bar-Shalom (1988). The intera
tive multiple modelalgorithm for systems with Markovian swit
hing 
oeÆ
ients. IEEETransa
tion on Automati
 Control 33 (8), 780{783.Bollerslev, T. (1986). Generalized autoregressive 
onditional het-eroskedasti
ity. Journal of E
onometri
s 31, 307{327.Ca

iatore, T. W. and S. J. Nowlan (1994). Mixtures of 
ontrollers forjump linear and non-linear plants. In J. D. Cowan, G. Tesauro, andJ. Alspe
tor (Eds.), Advan
es in Neural Information Pro
essing Sys-tem, Volume 6, pp. 719{726. San Fran
is
o: Morgan Kaufmann.Chang, C. B. and M. Athans (1977). State estimation for dis
rete systemswith swit
hing parameters. IEEE Transa
tions on Aerospa
e and Ele
-troni
 Systems 14 (2), 418{424.21



Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum like-lihood from in
omplete data via the EM algorithm. Journal of theRoyal Statisti
al So
iety 39 (1), 1{38.Diebold, F. X., T. A. Gunther, and A. S. Tay (1998). Evaluating den-sity fore
asts, with evaluation to risk management. International E
o-nomi
 Review .Fraser, A. M. and A. Dimitriadis (1994). Fore
asting probability densitiesby using hidden Markov models with mixed states. In A. S. Weigendand N. A. Gershenfeld (Eds.), Time Series Predi
tion: Fore
asting theFuture and Understanding the Past, pp. 264{281. Addison-Wesley.Ghahramani, Z. and G. E. Hinton (1998). Swit
hing state-spa
e mod-els. Te
hni
al report, Department of Computer S
ien
e, University ofToronto.Gordon, N. J., D. J. Salmon, and A. F. M. Smith (1993). Novel approa
hto nonlinear/non-Gaussian Bayesian state estimation. In Pro
eedingsof the IEEE, Volume 140, pp. 107{113.Hamilton, J. D. (1989). A new approa
h to the e
onomi
 analysis of non-stationary time series and the business 
y
le. E
onometri
a 57, 357{384.Ja
obs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton (1991).Adaptive mixture of experts. Neural Computation 3, 79{87.Kadirkamanathan, V. and M. Kadirkamanathan (1996). Re
ursive es-timation of dynami
 modular RBF networks. In G. Tesauro, D. S.Touretsky, and T. K. Leen (Eds.), Advan
es in Neural InformationPro
essing Systems, Volume 8, pp. 239{245. MIT Press.Kitagawa, G. (1987), De
ember. Non-Gaussian state-spa
e modeling ofnonstationary time series. Journal of the Ameri
an Statisti
al Asso
i-ation 82 (400), 1032{1063.Kitagawa, G. (1996). Monte Carlo �lter and smoother for non-Gaussiannonlinear state spa
e models. Journal of Computational and Graphi
alStatisti
s 5, 1{25. 22



Mazor, E., A. Averbush, Y. Bar-Shalom, and J. Dayan (1998), January.Intera
ting multiple model methods in target tra
king: a survey. IEEETransa
tions on Aerospa
e and Ele
troni
 Systems 38 (1), 103{123.Poritz, A. B. (1982), May. Linear predi
tive hidden Markov models andthe spee
h signal. In Pro
eedings of ICASSP, pp. 1291{1294.Saul, L. K. and M. I. Jordan (1996). Exploiting tra
table substru
turesin intra
table networks. In D. S. Touretsky, M. C. Mozer, and M. E.Hasselmo (Eds.), Advan
es in Neural Information Pro
essing Systems,Volume 8, pp. 486{492. Cambridge, MA: MIT Press.Shi, S. and A. S. Weigend (1997), Mar
h. Taking time seriously: hiddenMarkov experts applied to �nan
ial engineering. In Pro
eedings of theIEEE/IAFE Conferen
e on Computational Intelligenge for Finan
ialEngineering.Shumway, R. H. and D. S. Sto�er (1991). Dynami
 linear models withswit
hing. Journal of the Ameri
an Statisti
al Asso
iation 86, 763{769.Ueda, N. and R. Nakano (1995). Deterministi
 annealing variant of theEM algorithm. In G. Tesauro, D. S. Touretsky, and J. Alspe
tor (Eds.),Advan
es in Neural Information Pro
essing Systems, Volume 7, pp.545{552. Morgan Kaufmann.Weigend, A. S., M. Mangeas, and A. N. Srivastava (1995). Nonlinear gatedexperts for time series. International Journal of Neural Systems 3,373{399.

23



A Implementation of dynami
al lo
al modelsA.1 The EM algorithm for linear swit
hing state spa
e mod-elsA.1.1 The E-stepThe E-step involves the Kalman smoother for ea
h state spa
e model i wherethe output 
ovarian
e matrix Ri is weighted by 1=h(i)t at ea
h time stept. This allows to 
ompute the variational parameters q(i)t (Equation (13)).These parameters are then used in the forward-ba
kward algorithm as out-put density probabilities, and this enables us to estimate the responsibilityh(i)t of ea
h model. The whole pro
ess is repeated until 
onvergen
e of theKL divergen
e, or similarly 
onvergen
e of the lower bound.A.1.2 The M-stepFor the M-step, we make use of the re-estimations formulae for HMMs andSSMs. The re-estimation equations for the transition matrix A and theinitial probabilities � are exa
tly the same as those obtained for an HMM.Con
erning the re-estimation equations of ea
h linear dynami
al �lter, theequations are also the same ex
ept for the output matri
es Gi and theoutput noise 
ovarian
e matri
es Ri. We must indeed take into a

ount theresponsibility of ea
h state spa
e model. This responsibility is given by thevalue of the variational parameters h(i)t . It is easy to obtain:Gnewi =  TXt=1 h(i)t ytx(i)tjT 0! TXt=1 h(i)t V (i)tjT!�1 (32)Rnewi = TXt=1 h(i)t �yty0t � F newi x(i)tjTy0t� = TXt=1 h(i)t ; (33)where x(i)tjT and V (i)tjT are obtained by running the Kalman smoother on ea
hstate spa
e model.
24



B The EM algorithm for non-linear swit
hing statespa
e modelsB.0.3 The E-stepThe E-step involves the linearisation of ea
h output fun
tion gi. This fun
-tion is approximated by an RBF network:gi(xt) =W (i)	(i)(x(i)t ); (34)where W (i) = [w(i)1 ; : : : ; w(i)K ℄ represents the weights (in
luding the bias)and 	(i) = [ (i)1 ; : : : ;  (i)K ℄ are the basis fun
tions. By linearising ea
h basisfun
tion  (i)k , we get:h	(i)(x(i)t )iQ = 	(i)(x(i)tjT )h	(i)(x(i)t )	(i)(x(i)t )0iQ = 	(i)(x(i)tjT )	(i)(x(i)tjT )0 + J (i)tjTP tjTJ (i)tjT 0where J (i)tjT � � (i)k�x ����x(i)tjT is the Ja
obian matrix.B.0.4 The M-stepBy taking the derivatives of the expe
ted log-likelihood and setting them tozero, re-estimation formulae for the parameters are easily obtained. Be
ausewe just introdu
e non-linearity in the output fun
tion, the equations are thesame as the ones for a linear swit
hing state spa
e model, ex
ept the output
ovarian
e matrix Ri. We get:W (i)new =  TXt=1 h(i)t yt	(i)(x(i)tjT )0!��1iRnewi = TXt=1 hh(i)t �yt �W (i)new	(i)(x(i)tjT )�y0ti = TXt=1 h(i)twith �i =PTt=1 h(i)t h	(i)(x(i)tjT )	(i)(x(i)tjT )0 + J (i)tjTP (i)tjTJ (i)tjT 0i.
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Figure 1: Graphi
al representation of a swit
hing state spa
e model. All thehidden variables have Markovian dynami
s. At ea
h time t, N real-valued hiddenvariables 
ompete in order to explain the observation yt and the dis
rete variablest plays the role of a gate.
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e models but kept the Markov 
hain for ea
hhidden variables. Exa
t inferen
e for ea
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Te
hnique Mutual Info Log-likelihoodNo annealing 0:42 �2:26Annealing 0:49 �2:26Initialisation 0:77 �2:21True model 1:73 �2:17Table 1: Average mutual information and log-likelihood (lower bound) per datapoint when training linear dynami
al model with and without initialisation. Forinformation, we report the results obtained with the true model: the entropy of thetrue segmentation is 1:73.
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Model Log-likelihood NMSEmean std mean stdLDS �0:8601 0:0001 0:0339 0:0001NLDS �0:8020 0:0040 0:0292 0:0003LSSSM �0:5667 0:0107 0:0228 0:0004NLSSSM �0:4523 0:0221 0:0183 0:0013Table 2: Average log-likelihood and NMSE on the test set for a simple lineardynami
al system (LDS), a non-linear dynami
al system (NLDS), a 2-state linearSSSM (m = 3) and a 2-state non-linear SSSM.
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DEM/USDModel Log-likelihood NMSEmean std mean stdAR �2:3957 | 1:0002 |GARCH �1:1488 | 1:0000 |NN �1:1950 0:0149 1:0190 0:0094ARHMM �1:0456 0:0020 0:9998 0:0000LDS �1:1574 0:0000 0:9997 0:0000NLDS �1:1366 0:0030 0:9997 0:0001LSSSM �1:1045 0:0154 0:9995 0:0004NLSSSM �1:0361 0:0111 0:9995 0:0003GBP/USDModel Log-likelihood NMSEmean std mean stdAR �2:5268 | 1:0020 |GARCH �1:2174 | 0:9994 |NN �1:2191 0:0316 1:0720 0:0188ARHMM �1:0730 0:0000 1:0030 0:0000LDS �1:2500 0:0000 0:9999 0:0000NLDS �1:2214 0:0020 0:9999 0:0001LSSSM �1:1362 0:0283 0:9996 0:0002NLSSSM �1:0581 0:0121 0:9996 0:0002Table 3: Average log-likelihood and normalised mean squared errors on theDEM/USD and GBP/USD test sets over 10 runs 
orresponding to di�erent ini-tial 
onditions.
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