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Abstract

In the analysis and prediction of many real-world time series, the as-
sumption of stationarity is not valid. A special form of non-stationarity,
where the underlying generator switches between (approximately) sta-
tionary regimes, seems particularly appropriate for financial markets.
We introduce a new model which combines a dynamic switching (con-
trolled by a hidden Markov model) and a non-linear dynamical system.
We show how to train this hybrid model in a maximum likelihood ap-
proach and evaluate its performance on both synthetic and financial
data.
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1 Introduction

Most forecasting approaches try to predict the next value of a time series
by assuming stationarity: i.e. the underlying generator of the data is glob-
ally time invariant. In many real world applications, this assumption is not
valid. Even non-linear regressors like neural networks are not effective in
modelling changing temporal structure in the time series. For instance, one
of the obstacles to the prediction of exchange rates in the capital markets is
a non-constant conditional variance, known as heteroscedasticity. GARCH
models have been developed to estimate a time-dependent variance (Boller-
slev, 1986).

A special form of non-stationarity, where the underlying generator switches
between (approximately) stationary regimes, seems a reasonable assumption
for many practical problems. In the last decade, hybrid approaches have
been developed in order to model this behaviour. One example is the mix-
ture of experts (Jacobs et al., 1991; Cacciatore and Nowlan, 1994; Weigend
et al., 1995) which decomposes the global model into several (linear or non-
linear) local models known as experts, as each specialises in modelling a
small region of input space. One limitation of these models for time series
analysis is that the gating network which combines the local models has no
dynamics. It is controlled only by the current value of the time series.

One way to address this limitation is to use a hidden Markov model
(which does have dynamics) to switch between local models. For example,
autoregressive hidden Markov models (ARHMMSs) switch between autore-
gressive models, where the predictions are a linear combination of past values
(Poritz, 1982). ARHMMs have been reintroduced in the machine learning
community under the name of hidden filter HMMs (Fraser and Dimitriadis,
1994) and have been recently applied to financial engineering in order to
model high frequency foreign exchange data (Shi and Weigend, 1997).

From econometrics to control, several similar hybrid models have been
proposed. Their main characteristic is the mixing of discrete and continuous
hidden variables (Chang and Athans, 1977; Hamilton, 1989; Shumway and
Stoffer, 1991; Bar-Shalom and Li, 1993). A linear system with Markovian



coefficients, also called a jump-linear system, assumes the existence of a

linear dynamical system of the general form:

Ty = F(St)$t—1+Ut (1)
Yy = G(st)a:t-l-'vt (2)

where x; is the state vector, y, the measurement vector, and s; the un-
known time-varying parameter. s; is restricted to take values from a finite
set {q1,...,qn}. In the simplest case, this parameter follows a first-order
Markov process. The transition matrix governing the Markov chain and
the parameters of the model are usually assumed to be known. The main
problem consists thus of estimating the hidden state x;.

Chang and Athans (1977) focus on the state estimation problem for a
system where the output matrix G is time independent. They show that
estimation of the exact distribution of the state requires a bank of elemental
estimators whose size grows exponentially in time. Mazor et al. (1998)
review the state estimation problem for the most general case where both F
and G are allowed to depend on a switch variable s;. They also show why
an optimal solution is not computationally tractable and present techniques
known as ‘interacting multiple models’ that consist of a bank of cooperating
Kalman filters: at each time step ¢ the state estimate is computed under
each possible current model, with each filter using a different combination of
the previous model-conditioned estimates (see also (Blom and Bar-Shalom,
1988; Bar-Shalom and Li, 1993)).

Shumway and Stoffer (1991) consider the problem of learning the param-
eters of a state space model with a switching output matrix G(s;) which
is known in advance. They proposed an approximate EM algorithm where
the E-step, which would require the computation of a mixture of Gaussians
with an exponentially increasing number of components, is approximated at
each time step ¢ by a single Gaussian.

In this paper, we investigate switching state space models (SSSMs).
These models consist of N multiple linear/non-linear state space models
controlled by a dynamic switch and, in this sense are a generalisation of

jump-linear systems. They assume that the behaviour of the system can be



characterised by a finite number of dynamical systems with hidden states,
each of which tracks the data in a different regime. As discussed in (Ghahra-
mani and Hinton, 1998), SSSMs can also be seen as a generalisation of the
mixture of experts model.

A long-standing limitation for training these models is that the complex-
ity of the exact training algorithm grows exponentially with order N7, where
N is the number of models and T is the length of the time sequence. Var-
ious ad hoc and not completely satisfactory approximations have been pro-
posed, e.g. (Shumway and Stoffer, 1991). Recently, Ghahramani and Hin-
ton (1998) reintroduced linear switching state space models in the machine
learning community and proposed an efficient and principled approximate
algorithm for training these models in a maximum likelihood framework.

In section 2 we first present linear switching state space models (SSSMs)
and show how to train these models using variational techniques. In section 3
we present a new extension which incorporates non-linear state space models
using radial basis function (RBF) networks. Although linear SSSMs enable
us to model piece-wise stationarity, they may have difficulties in modelling
non-linear dependencies in the time series. As the initialisation step is crucial
for training mixture models due to the large number of local minima, we
present a novel algorithm which addresses this problem in section 4. We then
show how to use these models for time series segmentation and probabilistic
density prediction. The models are finally tested on different datasets and

we compare their performance with other standard techniques.

2 Linear switching state space models

Hidden Markov models and state space models are probabilistic models for
time series where the information about the past is represented through
a random variable: the hidden state. Conditioned on this state, the past
and the future observations are independent. In the case of HMMs, the
state variable is discrete and can be viewed as a switching variable between
different process regimes. For SSMs, the hidden state is continuous and is

specified by a linear dynamical equation.



A linear switching state space model (linear SSSM) is a model that
combines HMMs and SSMs. More precisely, N different linear dynamical
systems compete in order to describe the observation y, € R?. Each real-
valued state vector mgi) € R™ evolves between time steps according to the

system equation:
:cii) = szgl_)l + u;, (3)

where F; is the state transition matrix and uw; ~ N (0,Q;) is a zero mean
Gaussian noise associated to model ¢. The initial state vector is also assumed
to be Gaussian: P(m(li)) =N(p;, X;).

A discrete variable S; € {q1,...,qn}, also represented by a vector S; =
[Sgl), e ,St(N)], where St(i) € {0,1}, plays the role of a gate. When the
system enters a specific state i, i.e. Sy = ¢; (or Slgi) = 1), the observation is

Gaussian and is given by:
y, = Giz}” +v;, (4)

where G; is the output matrix which maps the hidden state to the observa-
tion. The noise random variable v; ~ A (0, R;) is also zero mean Gaussian.
The discrete state variable S; evolves according to Markovian dynamics that

can be represented by a discrete transition matrix A = {a;;},
aij = P(St = q; | Si-1 = ). (5)

Therefore, an SSSM is essentially a mixture model, in which information
about the past is captured in two types of random variables: one contin-
uous and one discrete. Using the Markov dependence relations, the joint

probability for the sequence of states and observations can be written as

1
(st ar, 2™ Yl = P(s) T, Plsilsi-1) (6)
1Y (P T, P |=2) T, Plydet”. . 2f™, s0).
The corresponding graphical model is shown in Figure 1.

Given a sequence of observations le , the learning problem consists of

estimating the parameters @ = {F;, Q;, G;, R;, t;, X;}1<i< n of each Kalman



filter and the transition matrix A of the discrete state Markov process
in order to maximise the likelihood of the observations. An exact proce-
dure to solve this maximum likelihood estimation could be derived from the
Expectation-Maximisation algorithm (Dempster et al., 1977). In the E-step,
one computes the posterior probabilities P(S7, XIT(I), e XIT(N)DJIT, 0) of
the hidden states. The M-step uses the expected values to re-estimate the
parameters of the model.

Unfortunately, it can be shown that exact inference is not computa-
tionally tractable, since it scales as N”. Even if P(mgi)\yl,a) is Gaussian,
then P(mgi)\yﬁ, @) is in general a mixture of Gaussians with an exponen-
tially increasing number of terms. Like the other models described in sec-
tion 1, the posterior distribution of the state variables mgi) is a mixture of
Gaussians with N’ components. Although these variables are marginally
independent, they become conditionally dependent when the variable y, is
observed, namely because of the discrete variable Sy which couples all the
real-valued state variables a:gl), o ,a:gi) at time step t.

Several approximations have been proposed to circumvent this difficulty.
For example, in (Shumway and Stoffer, 1991), a pseudo-EM algorithm is
derived for learning a single hidden state space model with switching out-
put matrices: at each step, the mixture of Gaussians is approximated by a
single Gaussian. Recently Ghahramani and Hinton (1998) proposed a prin-
cipled generalised EM algorithm. The idea is to make use of variational
techniques in order to approximate the intractable true posterior distribu-
tion by a tractable distribution (), and to maximise the lower bound on the
log-likelihood:

F@.0)=3 [ (sl a1 oe LAl
- Q(ST, 1)

Xy, (7)

where we have used Jensen’s inequality and XIT denotes the whole sequence
of hidden states: X = [XlT(l), ey XIT(N)]. It is easy to see that the differ-
ence between the left-hand side and the right-hand side of Equation (7) is
nothing else than the KL-divergence between the approximating distribution
Q@ and the true posterior P. The KL-divergence is a non-negative expression

and is minimised if and only if () = P in which case it is zero and the bound



becomes exact. However, this would not lead to any simplification of the
problem.

Using a judicious structured variational approximation, the inference
step can become tractable (Saul and Jordan, 1996). Because linear SSSMs
are hybrid models combining HMMs and SSMs for which the E-step can
be solved exactly, it is best to use an approximation that makes use of the
forward-backward and Kalman smoother algorithms, which are the relevant
versions for the respective E-step. The authors suggest the following ap-

proximation:

T N T
i 1
Q(ST, XIT(U, e XIT(Z)) = E(I)(sl) H D(s4-1,8¢) H H O a:t l,mt
=1 t=1

t=2
(8)

which corresponds to the graphical model shown in Figure B.0.4. 7 is a
normalisation factor ensuring that () integrates to one.

The motivation of such an approximation is to destroy the interaction
between the hidden variables which makes the inference problem compu-
tationally intractable. Each deleted edge in the graph is replaced by a

variational parameter:

o(s) = P(s{")q" (9)

o(st sy = P(s{|s7))g" (10)
(i (i CIRCNLS
o) = P@) [Py e, s (11)
i i i i 5 @aht”
ol 2f’) = P 2l) [Py l2 s . (12

By introducing these variational parameters, we decouple the state space
models but keep the Markov chain assumption for each of them.

The variational parameters qu') and hgi) are obtained by minimising the
KL-divergence between P and (), which corresponds to the E-step. Ghahra-
mani and Hinton (1998) derived the fixed point equations for these param-
eters. The parameters qﬁi) play exactly the same role as the output prob-
abilities P(y, | mgz)) would play in a regular hidden Markov model, and are

obtained by computing the expected error under the distribution Q if state



space model ¢ were used to generate the observation y;:
. 1 N .
g = exp {—5((% - Giz)) Ri(y, - Gmi“))cz} (13)
We can see that this parameter is a function of mi‘z)T = (mgi))Q and Vg‘Z)T =
(wgi)mgi) )o. These expectations can be computed by running the Kalman

(4)

smoother on state space model ¢ with the observation y, weighted by h;
(see Equation (11) and Equation (12)). The parameters hgi) can be viewed
as being the responsibility assigned to state space model 7 at time ¢, and are
obtained by computing the expected probability of being in state 7 at time

t under the approximating distribution Q).
h = (") (14)

We therefore see that the variational parameters are inter-related: the
calculation of qﬁi) needs hgi) and vice-versa. Starting from some initial values
for ¢ and h, the E-step consists of running a Kalman smoother for each state
space model with the output noise covariance matrix R; weighted by 1/h£i).
This allows us to compute qu') according to Equation (13) and the required
expectations of each real-valued variable mgi) needed in the M-step. The hgi)
parameters are obtained by running a forward-backward algorithm, where
each hidden state is associated to the output probability density qu'). The
process is iterated until convergence of the KL-divergence. In practice, this
is achieved in no more than 10 iterations.

The M-step consists of re-estimating the parameters 6 of the model and
is straightforward. Like in HMMs and SSMs, the parameters can be re-
estimated analytically. Appendix A.1 gives the re-estimation equations.

The whole process (E and M steps) is iterated until convergence of the

lower bound on the log-likelihood.

3 Non-linear switching state space models

Although linear SSSMs are capable of modelling multi-modality, they may

have difficulties in modelling non-linear dependencies in the time series. We



present here a new extension of dynamical local models which takes into

account non-linearity in the output:

Yy = gi(wgi)) + v, (15)

where g; denotes now a non-linear function from the hidden state space
to the observation space. By introducing this non-linearity, the posterior
P(mgi) lyT) is no longer Gaussian and optimal smoothing cannot be achieved
analytically.

In order to circumvent this problem, one solution could be derived from
sequential Monte Carlo integration techniques (Kitagawa, 1987; Gordon et
al., 1993; Kitagawa, 1996). These techniques have been applied for the in-
ference problem in non-linear state space models, and the extension to the
case of non-linear switching state space models could be investigated. In
these methods also known as bootstrap filter or sequential important sam-
pling, arbitrary non-Gaussian densities are approximated by many particles
that can be considered realisations from the distribution. It is then pos-
sible to derive a learning algorithm which makes use of these particles to
fit the non-linear functions. However, these techniques are computationally
expensive as a huge number of particles are needed at each time step ¢ to
be representative of the posterior distribution.

If the function g; is sufficiently smooth, a suboptimal smoothing algo-
rithm can be derived by considering the linearisation of the non-linear sys-

(1)

11 the function g; is expanded as a first-order Taylor

tem. At every point x

series:

gi(x) ~ gi(2\(}) + Vagi(e!)) (@ — ). (16)

This approximate solution through linearisation around the current state
estimate recovers the Gaussian structure and leads to the first-order extended
Kalman smoother which is nothing else the exact Kalman smoother for the
linearised model: the equations of the Kalman smoother are still valid except
those involving the output matrix G; which is replaced by the Jacobian

(4)
t\T)'

The second complication arises in the M-step. In the case of a linear

matrix jt(‘lT) = Vazgi(x

model, it is easy to re-estimate the parameters exactly. If the functions g;



are not linear, it may be computationally difficult to re-estimate exactly the
parameters of the function. For example, if g; is represented by a multilayer
neural network, exact re-estimation cannot be done and we must resort to
non-linear optimisation methods.

To solve these two problems, we propose to model each non-linear func-

tion with a radial basis function network:
vi =Y w9 @) +vi = WO @f)) 4 v, (a7)
k=1

where W) = | gi), . ,w(l?] are the weights (including the bias) and {wlgi)}QSkSK
denote the (K — 1) Gaussian basis functions associated to model i (the bias

is associated to a basis function whose activation is equal to 1):

e = m)

7 (18)

20,(;
Note that non-Gaussian basis functions could be used although we did not
investigate their implementation in this work.

In that case, with fixed basis functions, the M-step is still tractable since
the output function is linear with respect to the weight matrix we. A
good initialisation enables us to keep the centres and widths of the basis
functions fixed during the learning algorithm and to re-estimate only the
weights, for which a fast and efficient algorithm exists'. Appendix B gives
the re-estimation formulae for the weight matrix W,

The number of basis functions K controls the smoothness of the output
function g; for each state space model. It is therefore possible to implement
a non-linear SSSM with a number of basis functions that are different from
one state space model to another. This can be quite useful if we believe,
for example, that the underlying system is switching from a piecewise linear
regime to a highly non-linear regime.

In terms of previous work, our model resembles that of (Kadirkamanathan
and Kadirkamanathan, 1996), where the authors used modular RBF net-

works for learning multiple modes. Given input-output observations z? =

'Tf we want to learn these parameters, a generalised EM can be implemented.

10



{xT,yT}, their algorithm uses the Kalman filter for supervised recursive es-
timation of the weight vectors W(i), which plays the role of the real-valued
hidden state:

wi = w4 (19)
y, = W(x)) + v (20)

It is assumed that each model ¢ has an associated score of being the current
underlying model for the given observation y,. The parameters of the global
model, for example the output noise covariance matrices R; or the transition
matrix A, are not learned but are assumed to be known in advance. Our non-
linear model differs from the modular RBF network on two major points.
Firstly, in our approach, the parameters of each expert are learned in a
maximum likelihood framework. Secondly, whereas the weight vectors w )
play the role of the hidden states in their model, they are considered as
proper adaptive parameters of each RBF network in our work. This leads
to a system where the hidden state is an input to the RBF network and
keeps therefore its intuitive interpretation of representing the underlying

dynamics we are trying to recover.

4 Initialisation

Mixture models trained using the EM algorithm are guaranteed to reach a
local maximum likelihood solution. Because there are many local maxima,
experience has shown that SSSMs are particularly sensitive to the initiali-
sation. Therefore, the choice of initial conditions is crucial and we prefer to
initialise the model carefully rather than a simple random initialisation.
For switching state space models, the initialisation is an important part
of the learning algorithm, as both the HMM and the dynamical systems
must be initialised. The key point is to start with a good segmentation of
the data set, where by segmentation we mean a partition of the data, with
each part modelled by a dynamical system. To address this problem, we

have developed an efficient initialisation procedure.

11



For the linear case, we quickly? train a continuous hidden Markov model
with as many discrete states as our SSSM on the data set and run the Viterbi
algorithm in order to obtain the most likely path, i.e. the sequence of hidden
states which ‘best’ explains the observation sequence. Each data point is
assigned to the most probable hidden state and thus gives us a segmentation
of the data. A simple linear dynamical system is then initialised for each
segment. This second phase can be done by estimating the covariance of
the observations which allows us to initialise the output covariance R;. The
system noise covariance @, can be, without any restriction, considered as a
diagonal matrix and is simply initialised to the identity matrix. Values for
F; and G; are then obtained by inverting the system.

For the non-linear case, it is crucial to initialise properly the centres and
the widths of each radial basis function, as these parameters will not be
learned during the training algorithm. We first perform the initialisation for
a linear SSSM. For each segment of the data where a linear dynamical system
has been initialised, a corresponding sequence of hidden continuous states x;
can be recovered by running the Kalman filter. A Gaussian Mixture Model
is fitted to each sequence, which enables us to initialise the centres and the
widths of each RBF network.

The parameters a;; of the discrete transition matrix A can also be ini-
tialised by counting the number of transitions from state ¢ to state 57 and
dividing it by the number of transitions from state 7 to any other state.

We have noticed that such an initialisation procedure alleviates prob-
lems occurring during the E-step. The KL-divergence can have several local
minima corresponding to different values of the variational parameters. This
means that two significantly different segmentations can lead to a similar
lower bound on the log-likelihood. Ghahramani and Hinton (1998) addressed
this problem and modified the training algorithm by using the technique of
deterministic annealing (Ueda and Nakano, 1995): the approximation dis-
tribution ) is broadened with a temperature parameter that is annealed
over time. However, with this method a large portion of training runs still

converge to poor local minima.

2In practice, 5 iterations of the EM algorithm are sufficient.
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In order to illustrate how our procedure can lead to a significant im-
provement, we consider the following synthetic problem involving a 2-state

linear switching state space model:

2V = 099z 4wy, up ~N(0,1) (21)
2P = 0902, +us,  up ~N(0,10) (22)

The probability transition matrix A is such that a;; = 0.99 and a9y = 0.98.

The output observation is identical for each model:
w=2"+v,  v~N(0,01) Vi (23)

We generated a sequence of T' = 1000 points from this model and train
linear SSSMs with the EM algorithm, considering three different learning
techniques: our initialisation procedure, random initialisation without de-
terministic annealing and, random initialisation with deterministic anneal-
ing. For the deterministic annealing version, we follow Ueda and Nakano
(1995): the variational parameters ¢ and h are weighted by a decreasing
temperature T starting with a relatively big value for T, say 7 = 100, the
temperature is iteratively updated, 7; = %7;_1 + %, during the E-step. For
each technique, 20 linear SSSMs corresponding to different random initial
conditions were trained. We then evaluated the average mutual information
between the true segmentation and the one obtained by each technique. Be-
cause the variational parameters h are real (hgi) € [0,1]), we first need to
place a threshold on these values to obtain a hard segmentation®.

Table 1 reports the results. Comparing the two random initialisations,
on average, the deterministic annealing procedure performs slightly better.
Our initialisation significantly outperforms both methods. We also report
the average log-likelihood (lower bound) per data point for each technique.
Compared to the likelihood obtained with the true model, each technique
performs reasonably well. This shows the difficulty of comparing models
when the exact computation of the likelihood is not tractable.

Figure 3 plots the time series and typical segmentations we obtain with

the three approaches. Finding the true segmentation is actually very diffi-

3h{) = 1if hy > 0.5, h{") = 0 otherwise.
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cult. Even when the inference is performed with the true model, an under-
estimation of the switching can occur, leading to a segmentation where only

one state space model is activated.

5 Predictions and on-line model selection

In this section we show how to make one-step ahead predictions with dy-
namical local models. The algorithm makes use of Bayes’ theorem at each
time step ¢ and is known as the multiple model approach (Bar-Shalom and
Li, 1993).

At each time step ¢, we note that each model contributes to the expla-

nation of the observation y, in the following way:

N
i)y15()
Ply, | seal.... .2") = [[[P(y, | 2] (24)
i=1

Unfortunately the value of the switching variable is not known in advance,

but an expected value can be derived by using Bayes’ theorem:

Py, |yl .S = a)P(Si=ailyi ")
Py, | yf_l)

The first term in the numerator is given by Equation (4). The second term

E[S; = ¢i| V1] = (25)

represents the predicted probability of model i at time ¢ given all the earlier
observations. As the discrete state S; is a first-order Markov process, this

probability is given by:
N
pe(i) = P(Sy=qi | V7)) =D aiP(Sio1 = q; |yi") (26)
j=1

The initial prior probabilities are assigned to be equal to 1/N. The denom-
inator is the normalising term (also known as the ewvidence) and is given
by:

N
Py, | Y7 = > mi(i) Py, | V171,80 = i) (27)

i=1
Thus on-line estimations for each model decouple naturally. The Kalman
filter recursive equations hold for each model ¢ with the only modification

that the likelihood of the observation y, is weighted by p;(7).

14



Depending on the context, hard and soft competition can be imple-
mented (Kadirkamanathan and Kadirkamanathan, 1996). In hard compe-
tition, it is believed that only one model is responsible for describing the
observation at time ¢. This is done by considering only the model 7 with
the highest predicted probability p:(i). In that case, p:(i) =1 and p;(j) =0
for the other models. In soft competition, p;(i) = P(S; = ¢; | y% ') and each
model is allowed to adapt its parameters. This obviously leads to two dif-
ferent types of segmentations.

Thus the model inherits the properties from both HMMs and SSMs: the
first-order Markov assumption for the discrete variable allows us to do on-
line model selection. The state space model plays the role of the predictive
model within each regime. As the mean and the covariance of the hidden
states are updated on-line, the models allow us to obtain a full description

of the predictive distribution.

6 Experimental results

We have assessed the performance of dynamical local models on different
problems. We first run simulations on synthetic data in order to evaluate and
compare the performances of linear and non-linear local dynamical models
on data which exhibit local non-linearity. We finally show promising results

of both models for modelling financial time series.

6.1 Synthetic data

We generated data from a bimodal process (Weigend et al., 1995):

2(1 —y?) - 1 if s, =0,
Ytr1 = (28)

tanh(—1.2y; +¢) if s, = 1.
where € ~ N(0,0.1). The first mode is a deterministic chaotic process
whereas the second mode is a noisy non-chaotic process. The switching

obeys a first order Markov process with diagonal entries a; = 0.98. Both

training and test datasets contain 500 points.
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We trained both a linear and a non-linear switching state space model.
The dimension of the hidden states mgi) has been taken to be m = 1 and
a RBF network with K = 3 hidden units has been used for the non-linear
SSSM.

Figure 4 plots the test dataset and the corresponding segmentations
obtained by the three models. Compared to the true segmentation, we can
see that both models capture the underlying regime well, but that the non-
linear SSSM is slightly more successful. Indeed, the correlations between
the true segmentation and the ones obtained by the linear and non-linear
SSSM are respectively 0.78 and 0.85.

Figure 5 plots the accuracy of the two models under the determinis-
tic chaotic regime. Although the linear SSSM is able to capture the non-
linearity, the non-linear SSSM seems to be more accurate*. This is particu-
larly significant in the central region where there is a perfect match between
the true underlying function and the output of the non-linear model.

We have also trained linear and non-linear dynamical systems on this
dataset and we end this section by comparing linear and non-linear SSSMs
with these single mode systems. The hidden state dimension of the linear
models and the number of RBF units for non-linear models have been taken
to be 3. Table B.0.4 reports the log-likelihood per datum and the normalised
mean squared error (NMSE) on the test set and shows the significant im-
provement of the switching models. For each model, we report the average
and the spread over 10 different initial conditions. It is interesting to note
that an LDS of hidden state dimension 3 does not outperform the simple
LDS with an hidden state of dimension 1. This remark does not apply to lin-
ear switching state space models: a linear SSSM of hidden state dimension

1 gives rise on average to a likelihood of —0.60 and a NMSE of 0.025.

6.2 Financial data

Because of the capability of state space models for tracking quasi-stationarity

and the power of HMMs for uncovering the hidden switching between regimes,

*This is more obvious in the next table which reports the log-likelihood and the nor-

malised mean squared error on the test dataset.
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we investigate their performance on financial data. An advantage of viewing
the model in a probabilistic framework is that we can also attach confidence
intervals to the predictions, as the covariance matrix of the random variable
X, is also estimated at each time step ¢. One immediate and important
application in financial engineering is risk estimation. In addition, the value
of the discrete hidden variable S; can be viewed as indicating the regime
that the market is in at time ¢: this gives us a segmentation of the data,
which is of value in its own right.

We present here results of our simulations on DEM/USD and GBP/USD

foreign exchange rate daily returns:

ry = logps — logpi—1 = Pt~ Pi-1 (29)
Dt—1

where p; is the closing daily exchange rate at time ¢. This quantity can be
seen as the logarithm of the geometric growth and is known in finance as
continuous compounded returns.

Figure 6 plots the datasets. The DEM/USD training set contains 3000
points from 29/09/1977 to 15/09/1989. The test set contains 1164 points
from 16/09/1989 to 05/11/1994. The GBP/USD training set contains 2000
points from 01/06/73 to 29/01/81 and the test set contains 1164 from
30/01/81 to 21/05/87.

The first application of the model is to uncover underlying regimes. As
an example, Figure 7 plots the segmentation obtained on the DEM/USD
test set with a simple 3-state non-linear SSSM (N = 3). The dimension of
each state space has simply been taken to m = 1 and the number of radial
basis functions is K = 5. The figure shows how the model is capable of
detecting abrupt changes in the time series structure. We can clearly see
that the third model is responsible for the low volatility segments, the second
for the higher volatility segments, and the first model is mainly responsible
for the time period around ¢ = 500 where the running mean is negative
(rather than zero). In a simplistic view, the underlying regimes may be
related to some macro-economical variables. Other simulations on higher
frequency data have shown strong correlations between market movements

and external events during the day, and it is easier to identify such regimes
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when dealing with intra day data. For example, it is well known that market
movements are more volatile at the open or the close of a trading day than
at noon. Another example concerns news during the day that perturbs the
financial markets. This volatility segmentation is easier to track during the
day but there is no reason not to believe that daily closing price time series
behave similarly on a lower frequency.

Another important application of dynamical local models in finance is
the possibility of obtaining on-line estimates of the covariance of our pre-
diction. Figure 8 shows a contour plot for a small window of time where a
regime transition occurred at time ¢ = 35. The model moves progressively
from a high volatility region to a relatively low volatility region and the pre-
dictive distribution P(y,|};—1) is clearly affected by this change. Of course,
understanding the volatility regimes is important for pricing of options.

We end this section by evaluating the performance of dynamical local
models using objective measures and compared them with other models. We
trained autoregressive models (AR), GARCH models, MLP neural networks
(NN) and autoregressive hidden Markov models (ARHMM) on the same
data sets. A GARCH model (Bollerslev, 1986) consists of a linear AR model
for the conditional mean and an exponential AR model for the conditional
variance. They are very often used in finance engineering for modelling
quasi-stationarity. For AR, NN and ARHMM models, the input dimension
has been simply taken to be 5 lagged values of the observations (which
represent the history of the previous week), although no careful analysis of
the input dimension has been carried out. Similarly, the neural network
contains 10 hidden non-linear nodes and the ARHMM contains, like our
models, 3 hidden states.

We have computed the log-likelihood per datum and the normal mean
squared error (NMSE). For each model, we report the average and the spread
over 10 different initial conditions. Dynamical local models have been ini-
tialised by the procedure we presented in Section 4.

Table 3 reports the results. On average, the NLSSSM seems to be the
best model to describe the data, as the likelihood suggests it. When com-

paring the NMSE, we see that none of these models seem to outperform the

18



naive prediction, which would consist of making predictions based on the
mean of the training set. Note, for example, that the log-likelihood for such
a naive model is equal to —1.1575 on the DEM /USD dataset.

These simulations were intended to compare dynamical local models
with other standard techniques used in computational finance and confirm
the fact that predicting the daily return is a very difficult task. A better
understanding of financial markets could be obtained by considering high
frequency data. For example, Shi and Weigend (1997) modelled high fre-
quency foreign exchange data with autoregressive hidden Markov models

and showed promising results.

7 Discussion

In this paper we have reviewed hybrid models that combine hidden Markov
models and state space models. These models have emerged from different
scientific communities because of the necessity of modelling processes where
the assumption of global stationarity does not hold.

We reviewed linear switching state space models and proposed a new ex-
tension which incorporates local non-linearity. This is done by using a local
RBF network which maps the hidden state space to the observation space®.
The structured variational approach allows us to perform a principled ap-
proximate maximum likelihood estimation of the parameters. The inference
decouples nicely into the inference algorithms for HMMs and SSMs. In the
case of non-linear dynamical models, a linearisation of the local function
leads to the extended Kalman filter.

We also proposed an efficient and fast initialisation algorithm which al-
leviates problems of multiple local minima during the variational inference.
This procedure leads to a significant improvement in the reliability of train-
ing compared to the deterministic annealing version.

In contrast to other hybrid models such as mixture of experts or au-

toregressive HMMs, dynamic local models provide a full description of the

It must be emphasized that a Radial Basis Function network can be hardly seen as a

‘true’ generative model.
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predictive distribution. This is an important issue, especially in finance
where robust error bars need to be developed.

We evaluated the performance of the models on different data sets and
compared them to other standard techniques. This was done by evaluating
the log-likelihood per datum over a test set, as this measure allows direct
comparisons between different models. Another evaluation of the density
forecasts, based on the cumulative probability distribution, could comple-
ment our comparisons. This technique was proposed by Diebold et al. (1998)
and consists of estimating the following random variable:

yt+!

Zen= [ Pl an (30)

In order to assess the quality of the prediction, the random variable is tested
against the hypothesis of a uniform distribution, which would correspond to
a good model for the true predictive distribution P*(y;1|V!). To test
whether Z is uniformly distributed, Diebold et al. (1998) refer to standard
techniques, the simplest of which consists of plotting the histogram.

These models have been applied to financial time series to extract two
different types of information. Firstly, we can model the stochastic volatil-
ity, outperforming a GARCH model by a small but statistically significant
margin. Secondly, we can segment the time series into different regimes.
This is important, as there is growing evidence that financial time series are
better modelled by a combination of local models, each of which specialises
in a different segment, than a single complex global model.

The variational inference approach maximises a lower bound on the log-
likelihood. An interesting problem concerns the quality of this bound which
is a current open question. Empirical simulations using a dynamical local
model containing a relatively small number of state space models, say N = 2
and a short time series, could be done to evaluate this quality. In that case,
the exact estimation of the true posterior distribution of the hidden states
can be performed and compared to the variational approximation.

Another comparison could be done by considering Monte Carlo integra-
tion techniques, such as Gibbs sampling, which provide a more accurate

representation of the true posterior. This would also help us to evaluate
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the performance of the extended Kalman filter for highly local non-linear
dynamics.

Obviously, our models can be extended into several directions. In our
work we did not consider exogenous variables as only a single time series
is modelled. An immediate and straightforward extension consists of con-
sidering previous values of the time series as inputs in the dynamics of the

hidden states:
mgi) = FZ:B,SZ_)1 + Hiyijé + u;, (31)

where the vector yi:; = [Yt—qs--- s Yi—1) contains, for example, the last
q — 1 observations. We also did not consider non-linearities for the system
equation. This is also an immediate extension of the non-linear dynamical
local models, although we believe that the resulting algorithm would be too

computationally costly and complex for practical application.

References

Bar-Shalom, Y. and X. R. Li (1993). Estimation and Tracking. Artech
House, Boston, MA.

Blom, H. A. P. and Y. Bar-Shalom (1988). The interactive multiple model
algorithm for systems with Markovian switching coefficients. IEEFE

Transaction on Automatic Control 33 (8), 780-783.

Bollerslev, T. (1986). Generalized autoregressive conditional het-

eroskedasticity. Journal of Econometrics 31, 307-327.

Cacciatore, T. W. and S. J. Nowlan (1994). Mixtures of controllers for
jump linear and non-linear plants. In J. D. Cowan, G. Tesauro, and
J. Alspector (Eds.), Advances in Neural Information Processing Sys-
tem, Volume 6, pp. 719-726. San Francisco: Morgan Kaufmann.

Chang, C. B. and M. Athans (1977). State estimation for discrete systems
with switching parameters. IEEE Transactions on Aerospace and Elec-
tronic Systems 14 (2), 418-424.

21



Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum like-
lihood from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society 39 (1), 1-38.

Diebold, F. X., T. A. Gunther, and A. S. Tay (1998). Evaluating den-
sity forecasts, with evaluation to risk management. International Fco-

nomic Review.

Fraser, A. M. and A. Dimitriadis (1994). Forecasting probability densities
by using hidden Markov models with mixed states. In A. S. Weigend
and N. A. Gershenfeld (Eds.), Time Series Prediction: Forecasting the
Future and Understanding the Past, pp. 264-281. Addison-Wesley.

Ghahramani, Z. and G. E. Hinton (1998). Switching state-space mod-
els. Technical report, Department of Computer Science, University of

Toronto.

Gordon, N. J., D. J. Salmon, and A. F. M. Smith (1993). Novel approach
to nonlinear/non-Gaussian Bayesian state estimation. In Proceedings
of the IEEE, Volume 140, pp. 107-113.

Hamilton, J. D. (1989). A new approach to the economic analysis of non-

stationary time series and the business cycle. Econometrica 57, 357—
384.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton (1991).
Adaptive mixture of experts. Neural Computation 3, 79-87.

Kadirkamanathan, V. and M. Kadirkamanathan (1996). Recursive es-
timation of dynamic modular RBF networks. In G. Tesauro, D. S.
Touretsky, and T. K. Leen (Eds.), Advances in Neural Information
Processing Systems, Volume 8, pp. 239-245. MIT Press.

Kitagawa, G. (1987), December. Non-Gaussian state-space modeling of
nonstationary time series. Journal of the American Statistical Associ-

ation 82 (400), 1032-1063.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian

nonlinear state space models. Journal of Computational and Graphical

Statistics 5, 1-25.

22



Mazor, E., A. Averbush, Y. Bar-Shalom, and J. Dayan (1998), January.
Interacting multiple model methods in target tracking: a survey. IEEE

Transactions on Aerospace and Electronic Systems 38 (1), 103-123.

Poritz, A. B. (1982), May. Linear predictive hidden Markov models and
the speech signal. In Proceedings of ICASSP, pp. 1291-1294.

Saul, L. K. and M. I. Jordan (1996). Exploiting tractable substructures
in intractable networks. In D. S. Touretsky, M. C. Mozer, and M. E.
Hasselmo (Eds.), Advances in Neural Information Processing Systems,

Volume 8, pp. 486-492. Cambridge, MA: MIT Press.

Shi, S. and A. S. Weigend (1997), March. Taking time seriously: hidden
Markov experts applied to financial engineering. In Proceedings of the
IEEE/IAFE Conference on Computational Intelligenge for Financial
Engineering.

Shumway, R. H. and D. S. Stoffer (1991). Dynamic linear models with
switching. Journal of the American Statistical Association 86, 763—

769.

Ueda, N. and R. Nakano (1995). Deterministic annealing variant of the
EM algorithm. In G. Tesauro, D. S. Touretsky, and J. Alspector (Eds.),
Advances in Neural Information Processing Systems, Volume 7, pp.

545-552. Morgan Kaufmann.

Weigend, A. S., M. Mangeas, and A. N. Srivastava (1995). Nonlinear gated
experts for time series. International Journal of Neural Systems 3,

373-399.

23



A TImplementation of dynamical local models

A.1 The EM algorithm for linear switching state space mod-

els
A.1.1 The E-step

The E-step involves the Kalman smoother for each state space model 7 where
the output covariance matrix R; is weighted by 1 /hgi) at each time step
t. This allows to compute the variational parameters qgi) (Equation (13)).
These parameters are then used in the forward-backward algorithm as out-
put density probabilities, and this enables us to estimate the responsibility
hgi) of each model. The whole process is repeated until convergence of the

KL divergence, or similarly convergence of the lower bound.

A.1.2 The M-step

For the M-step, we make use of the re-estimations formulae for HMMs and
SSMs. The re-estimation equations for the transition matrix A and the
initial probabilities II are exactly the same as those obtained for an HMM.
Concerning the re-estimation equations of each linear dynamical filter, the
equations are also the same except for the output matrices G; and the
output noise covariance matrices R;. We must indeed take into account the
responsibility of each state space model. This responsibility is given by the
(4)

value of the variational parameters h;

T T -1
Gi" = (Z t YT tT) <Zh§z tT) (32)

. It is easy to obtain:

T T
R = Z ) (wewt - Frvaliyyl) /S b, (33)
t=1 t=1

where mi‘%, and Vi‘%,

state space model.

are obtained by running the Kalman smoother on each
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B The EM algorithm for non-linear switching state

space models

B.0.3 The E-step

The E-step involves the linearisation of each output function g;. This func-

tion is approximated by an RBF network:
gil@e) = WO e (@), (34)

where W () = [wy),...,w([?] represents the weights (including the bias)
and ¥ = Wy), e ,z/)g?] are the basis functions. By linearising each basis
function 1/),(:), we get:

(@) = e

@D (@O (@) = O@))eD (@) + TPy T

(i) _ opt) . . .
where jt‘T = 8; is the Jacobian matrix.
€2
Ty

B.0.4 The M-step

By taking the derivatives of the expected log-likelihood and setting them to
zero, re-estimation formulae for the parameters are easily obtained. Because
we just introduce non-linearity in the output function, the equations are the
same as the ones for a linear switching state space model, except the output

covariance matrix R;. We get:
. T
w ) — (Z ht y, ¥ t)T)’) Ai_l
t=1
T . T
R = 32 [0 (w - WO RO @) ] /3 ne
t=1 t=1

with A; = 37, h(Y) [\Il( (i) @O (@) + Jt(\T)Pi\)TJt(\T)}
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Figure 1: Graphical representation of a switching state space model. All the

hidden variables have Markovian dynamics. At each time ¢, N real-valued hidden
variables compete in order to explain the observation y, and the discrete variable

s¢ plays the role of a gate.
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Figure 2: Structured variational approximation of a switching state space model.
We have uncoupled the state space models but kept the Markov chain for each

hidden variables. Exact inference for each hidden variable is now tractable.
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Figure 3: Synthetic time series (top) and segmentations (bottom) obtained with
linear SSSMs compared to the true one (solid line): random initialisation without
annealing (dotted line), random initialisation with annealing (dash dotted line) and

initialisation (dashed line).
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Figure 4: Test data and model probabilities for true (solid), linear (dash dotted)

and non-linear (dashed) models.
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Figure 5: Accuracy of the linear (a) and the non-linear (b) SSSMs in the chaotic

regime. The solid line is the true function.

30



Al
)

]O 1000 2000 3000 4000
0.1
0
-0.1 - - -
0 1000 2000 3000 4000

0'LO 500 1000 1500 2000 2500 3000 3500

Relative returns Price (GBP/USD) Relative returns Price (DEM/USD

S
o'—\

500 1000 1500 2000 2500 3000 3500
Time (days)

Figure 6: DEM/USD and GBP/USD training and test datasets used for evaluating

dynamical local models.
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Figure 7: Predictive model probabilities P(s;|Yi™') obtained by a non-linear
dynamical local model on the DEM/USD test set.

32



ol
S —

1} =———

0 (==

_l, .———_'—_”

ol

% 10 20 30 40 50 60

Time

Figure 8: Contour plot of the predictive distribution P(y,|YV¢—1). The model
switches from one state to another one, corresponding to a change of volatility.

The distribution is clearly more sharply peaked after the switch.
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Technique Mutual Info | Log-likelihood
No annealing 0.42 —2.26
Annealing 0.49 —2.26
Initialisation 0.77 -2.21
True model 1.73 —-2.17

Table 1: Average mutual information and log-likelihood (lower bound) per data
point when training linear dynamical model with and without initialisation. For
information, we report the results obtained with the true model: the entropy of the

true segmentation is 1.73.
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Log-likelihood NMSE

Model

mean std mean std
LDS —0.8601 | 0.0001 | 0.0339 | 0.0001
NLDS —0.8020 | 0.0040 | 0.0292 | 0.0003

LSSSM —0.5667 | 0.0107 | 0.0228 | 0.0004
NLSSSM | —0.4523 | 0.0221 | 0.0183 | 0.0013

Table 2: Average log-likelihood and NMSE on the test set for a simple linear
dynamical system (LDS), a non-linear dynamical system (NLDS), a 2-state linear
SSSM (m = 3) and a 2-state non-linear SSSM.
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DEM/USD

Model Log-likelihood NMSE
mean std mean std
AR —2.3957 — 1.0002 —
GARCH | —1.1488 — 1.0000 —
NN —1.1950 | 0.0149 | 1.0190 | 0.0094
ARHMM | —1.0456 | 0.0020 | 0.9998 | 0.0000
LDS —1.1574 | 0.0000 | 0.9997 | 0.0000
NLDS —1.1366 | 0.0030 | 0.9997 | 0.0001
LSSSM —1.1045 | 0.0154 | 0.9995 | 0.0004
NLSSSM | —1.0361 | 0.0111 | 0.9995 | 0.0003
GBP/USD
Model Log-likelihood NMSE
mean std mean std
AR —2.5268 — 1.0020 —
GARCH | —1.2174 — 0.9994 —
NN —1.2191 | 0.0316 | 1.0720 | 0.0188
ARHMM | —1.0730 | 0.0000 | 1.0030 | 0.0000
LDS —1.2500 | 0.0000 | 0.9999 | 0.0000
NLDS —1.2214 | 0.0020 | 0.9999 | 0.0001
LSSSM —1.1362 | 0.0283 | 0.9996 | 0.0002
NLSSSM | —1.0581 | 0.0121 | 0.9996 | 0.0002

Table 3: Average log-likelihood and normalised mean squared
DEM/USD and GBP/USD test sets over 10 runs corresponding to different ini-

tial conditions.
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