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AbstratCurrent methods for retrieving near surfae winds from satterometer observations over theoean surfae require a foward sensor model whih maps the wind vetor to the measuredbaksatter. This paper develops a hybrid neural network forward model, whih retains thephysial understanding embodied in Cmod4, but inorporates greater exibility, allowing abetter �t to the observations. By introduing a separate model for the mid-beam and using aommon model for the fore- and aft-beams, we show a signi�ant improvement in loal windvetor retrieval. The hybrid model also �ts the satterometer observations more losely. Themodel is trained in a Bayesian framework, aounting for the noise on the wind vetor inputs.We show that adding more high wind speed observations in the training set improves wind vetorretrieval at high wind speeds without ompromising performane at medium or low wind speeds.
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21. IntrodutionObtaining wind vetors over the oean is importantto Numerial Weather Predition (NWP) sine theability to produe a foreast of the future state of theatmosphere depends ritially on knowing the urrentstate aurately [Haltiner and Williams, 1980℄. How-ever, the observation network over the oeans (par-tiularly in the southern hemisphere) is very limited[Daley, 1991℄. Thus it is hoped that the global over-age of oean wind vetors provided by satellite bornesatterometers [OÆler, 1994℄ will improve the au-ray of weather foreasts by providing better initialonditions for NWPmodels [Loren et al., 1993℄. Thesatterometer data also o�ers the ability to improvewind limatologies over the oeans [Levy, 1994℄ andthe possibility of studying, at high resolution, inter-esting meteorologial features suh as ylones [Dik-inson and Brown, 1996℄.This study uses satterometer data from the ERS-2 satellite; the on-board vertially polarised, mi-rowave radar operates at 5.3 GHz and measuresthe baksatter from gravity-apillary waves on theoean surfae of around 5 m wavelength. Measuredbaksatter from the oean surfae is given as the nor-malised radar ross setion, generally denoted by �o,and has units of deibels1. A 500 km wide swatheis swept by the satellite to the right of the trak ofits polar orbit, with nineteen ells sampled aross theswathe, eah ell having dimensions of roughly 50 by50 km. Thus there is some overlap between ells.Eah ell is sampled from three di�erent diretionsby the fore, mid, and aft beams respetively, giving atriplet, �o = (�of ; �om; �oa). This �o triplet, togetherwith the inidene and azimuth angles of the beams(whih vary aross the swathe) is related to the aver-age wind vetor, (u; v), within the ell [OÆler, 1994℄.We assume that the stability of the lower boundarylayer and the e�ets of longer sea waves are largelyrelated to wind speed and thus their impat is im-pliitly inluded in the empirial models. Other geo-physial parameters suh as rain, sea ie are believedto also have a small a�et on the baksatter [Stof-felen 1998a℄; however these are treated as additionalnoise soures in this paper sine we have no indepen-dent measurements of them.Setion 2 reviews the urrent satterometer for-1We shall always assume we are working in deibel (or log)spae where we write �o or �odB if the distintion is important.We use �olin to denote the raw measurement spae, �o = �odB =10 log10(�olin).

ward models, while the neural network forward mod-els are introdued in Setion 3. The e�et of traininga non-linear model while aounting for noise on theinputs, (u; v), is disussed, as is data seletion fortraining the model and the estimation method itself.Setion 4 ompares the performane of the neural net-work models with Cmod4 (the urrent operationalmodel) using visualisation, distane to one and windretrieval. The results are summarised in Setion 5and onlusions are given in Setion 6.2. Satterometer Forward ModelsUnderstanding the theoretial relation between �oand (u; v) is essential to retrieving wind vetors fromsatterometer observations [OÆler, 1994℄. The re-lation has been modelled based on both on studiesof the physial proesses that govern baksatteringfrom water surfaes [Ebuhi et al., 1993; Janssen etal., 1998℄ and statistial analysis of the relation be-tween wind vetors (both buoy observed and NWPderived) and satterometer measurements [Sto�elenand Anderson, 1997a℄. From these studies empirialforward models relating �o and (u; v) have been es-tablished of the general form:�olin � b0(s; �) + b1(s; �) os(�)+ b2(s; �) os(2�) (1)where the wind vetor (relative to the satellite az-imuth angle) is given in terms of wind speed, s, andrelative wind diretion, �. � denotes the beam ini-dene angle. Sine there are three �o measurementsfor eah observation, this funtional form implies adouble skinned one-like response in �o spae. Con-sidering a point on the surfae of the one, the dis-tane along the axis of the one is largely related towind speed, while the loation around the one isrelated to wind diretion. The os(2�) term domi-nates and, together with the presene of noise, is thesoure of the diretion ambiguities in the solutions.The most widely used operational forward model isknown as Cmod4 [Sto�elen and Anderson, 1997a℄and has the form:�olin = B0(s; �)[1 +B1(s; �) os(�)+B3(s; �) tanh(B2(s; �)) os(2�)℄1:6 (2)where the result is raised to the power 1.6 in order tomake the dependene of �olin on � a funtion of os(�)and os(2�) only.This paper presents results whih show improvedperformane of the neural network forward models



3both in terms of wind vetor retrieval and of their rep-resentation of the observation manifold in �o spae. Ifthe forward models are to be used diretly in a varia-tional data assimilation system (that is assimilate �orather than retrieved (u; v)) both attributes will beimportant.Cmod4 is the operational model and, as suh, pro-vides the benhmark by whih other models may bemeasured. However, operationally Cmod4 is used to-gether with some empirial orretions; for instanethe UK Meteorologial OÆe inrease the retrievedwind speed by �ve perent. The VIERS-1 physiallybased theoretial oean baksatter model [Janssenet al., 1998℄ is shown to improve upon wind vetorretrieval at high wind speeds when ompared withCmod4, although it does not �t the observed�o man-ifold as well as Cmod4. The VIERS-1 model was notavailable to us for omparison.3. Neural Network SatterometerForward ModelsOne of the reasons that Cmod4 �ts the �o obser-vations poorly at high wind speeds is the restritivefuntional form imposed by the use of up to seondorder Legendre polynomials in the parameterisationof B�(s; �) in Equation 2. We relax the restritionsimposed by the funtional form and produe an alter-native model using a Multi-Layer Pereptron (MLP)with the Cmod4 funtional form to produe a moreexible, hybrid model.3.1. Neural NetworksNeural networks are universal, non-linear funtionapproximators whih an approximate any ontinu-ous mapping to arbitrary auray, given suÆienthidden units. The MLP used is a non-linear statisti-al model, whih has the advantage of being eÆientto train, due to the bak-propagation method for de-termining derivatives of the outputs (and thus theost funtion) with respet to the weights [Bishop,1995℄. The MLP parameters are generally referredto as weights an be determined using standard gra-dient based algorithms to minimise a ost funtion.More details of the implementation are given below.Further details on neural networks an be found inBishop [1995℄.3.2. Hybrid modelIn order to make use of existing knowledge on thephysis of baksattering we imposed onstraints on

the funtional form of the neural network model. Aobvious funtional form for the hybrid model is:�olin =a0(1 + 0:37 tanh(a1) os(�)+ 0:62 tanh(a2) os(2�))p ; (3)where p, a0, a1, and a2 are funtions of the modelinputs and tanh(�) is used to ensure the expressionremains real for all inputs. The values 0.37 and 0.62are simply saling parameters hosen so as to sum toa value less than one. Their relative values have littleimportane as the network weights allow resaling.Now, �odB an be written in log spae:�odB = 10ln(10)�a0 + p ln �1 + 0:1 tanh(a1) os(�)+ 0:8 tanh(a2) os(2�)�� ; (4)this model being referred to as Nn2Cmod. Themodel is shown graphially in Figure 1. The MLPtakes the wind speed and sine of the beam inideneangle as inputs. The inputs were hosen to keepthe mapping as simple as possible. The outputs are[a0; a1; a2; p℄ whih, together with the relative winddiretion, �, are then used with Equation (4) to yieldthe baksatter measurement in deibels. We havehosen to use �o in deibels at all times sine this ren-ders the multipliative noise on �olin additive on �odB.There remains the question on the form of the noisedistribution in �odB spae, whih is disussed later.3.3. Multi-beam modelDuring model validation (see Setion 4, Figures 4and 5) it beame apparent that the mid-beam an-tenna �o value was not being well modelled by eitherCmod4 or Nn2Cmod. This was not due to the in-ability of the models to represent the relation between�o and � at low inidene angles, this being veri�edby the use of a more exible neural network with 12hidden units, whih exhibited the same features. Al-though there is no physial basis for this, a three beammodel was onstruted, with two Nn2Cmod modelswith four hidden units in the MLP, one for the mid-beam and one for both fore- and aft-beams. Thismodel, denoted Nn3Cmod, has the advantage thatduring the training proess three �o measurementsare used to infer the `true' wind vetor, as opposed toone during the training of Nn2Cmod.3.4. Bayesian Parameter Estimation in thePresene of Input NoiseNn2Cmod depends upon weights, w, whih aredetermined from the training data. We adopt a prag-



4mati Bayesian approah for the estimation of theweight vetor in the presene of input noise, detailsof whih an be found in Cornford et al., [1999b℄ andWright [1998℄. If the input noise is not properly a-ounted for then non-linear models will learn a biasedestimate of the true underlying funtion.Using Bayes' theorem the posterior distribution ofthe weights given the noisy training data, p(w jD),an be expanded as:Z~xnYn p(tn j ~xn;w)| {z }p1 p(xn j ~xn)| {z }p2 p(~xn)| {z }p3 p(w)| {z }p4 d~xn ;(5)where D is the noisy training set, D = ftn;xng, tnare the (noisy) targets in the training data, xn arethe orresponding noisy inputs, and ~xn are the asso-iated noiseless inputs. Training the network onsistsof determining the maximum a posteriori probability(MAP) weight vetor and noiseless inputs, by min-imising the negative logarithm of Equation (5). Herewe are making a sub-optimal hoie sine ideally weshould sample w from the distribution p(w jD) anduse the samples to approximate the preditive inte-gral:p(t� j x�) = Zw p(t� j x�;w)p(w jD) dw ; (6)where x� is a new noise-free input and t� is the or-responding predited target. However in operationaluse this fully Bayesian approah would be too timeonsuming.In order to evaluate the maximum a posterioriprobability value of p(w jD), we ompute four errorsEi = � ln(pi), derived from Equation (5). Writingtn = f�og, xn = fs; �; �g and ~xn = f~s; ~�; �g theseterms beome:E1 = � ln(Qn p1(�oj~s; ~�; �;w)), the error of themodel, alulated using the observed satellite mea-surements and modi�ed wind vetors (~s; ~�) whihtend to the noise free (`true') values during training.The distribution of p1 is assumed to be Gaussian in�odB spae, thus:E1 =12 �log(2�) + log(�2t )�+X (f(~s; ~�; �;w)� tn)2 =(2�2t ) ; (7)where the sum is over all patterns in the training set,�2t is the variane of the errors in the tn (target) mea-surements and f(~s; ~�; �;w) is the output obtained by

propagating the noise free inputs (~s; ~�) and � throughthe model. Note when training Nn3Cmod this willbe the sum of three suh terms, one for eah antenna.E2 = � ln(Qn p2(s; �j~s; ~�)), the error due to thenoise free wind vetors di�ering from the orrespond-ing noisy wind vetor. The distribution p2 is assumedto be spherially Gaussian with variane �2u:E2 = log(2�) + log(�2u) +X�(~u� u)2 + (~v � v)2� =(2�2u) ; (8)the summation being over the patterns. Note ~u =~s sin(~�), ~v = �~s os(~�) following the meteorologi-al onvention. This omponent of the ost fun-tion ould also represent the disrepany between theECMWF 10 m wind vetor and the loal surfaestress vetor, whih is what atually generates theoean surfae ripples [Sto�elen 1998a℄.E3 = � ln(p3(~s; ~�)), the assumed prior distributionof noise free wind vetors in the training set. In pra-tie we rarely know the true distribution of the windvetors so in this ase we assume a onstant prior dis-tribution (that is a uniform distribution in wind speedand diretion). This is a reasonable assumption be-ause of the data seletion method used, but futurework ould investigate the e�et of this assumption.E4 = � ln(p4(w)) is the prior over the weightswhih ontrols the omplexity of the MLP [Bishop,1995℄. The weight deay prior:E4 =Xw w2=(2�2w) (9)is used, where �2w is the variane of the weights, whihwere �xed on the basis of experimentation to be 0.005for the weights and 0.1 for the biases. The e�et ofthis term is to produe smoother network mappingsas the weight variane is dereased.This is very similar to the ost funtion used todetermine the parameters of Cmod4 in Sto�elen andAnderson [1997a℄, with the addition of a prior modelfor the distribution of the true wind vetors and aprior model for the weight vetor. Finding the MAPsolution is essentially the same as a variational deter-mination of the weights. We used 20,000 iterations ofsaled onjugate gradient optimisation to determinethe MAP weight values to ensure onvergene, parti-ularly in the estimation of the noise free input values.3.5. Data SeletionWhen using data driven models, the quality of thetrained model is only as good as the data used to



5train it. It is possible to bring additional informationto model determination, suh as using ertain modellasses, within the Bayesian framework adopted, butwe still depend ritially on areful data seletion.We have used ERS-2 data olleted over the pe-riod Marh 1996 to January 1998 in the North-ern Hemisphere to reate our training sets. TheERS-2 data was olloated with European Centrefor Medium Range Weather Foreasting (ECMWF)10m wind vetors by the Frenh Researh Institutefor the Exploitation of the Sea (IFREMER)2. TheECMWF wind vetors assimilated CMOD4 retrievedsatterometer winds. If the data assimilation systemof the ECMWF model is working well then this willonly improve the quality of the (u; v) data in the train-ing set. To further improve the quality of the data setwe arefully orreted the �o observations to aountfor alibration hanges over the data aquisition pe-riod. We also insisted that the signal to noise ratio inthe satterometer observations was less than 7%.We make the usual assumption that the observa-tions in the training set are independent, thus we se-leted the observations so that they are separated inspae by at least 300 km. This distane was hosen toahieve a ompromise between independene and ob-taining suÆient samples at high wind speeds. A �lteromputed the variane of the wind �eld within a ir-le of 1 degree of latitude or longitude. If the summedvariane of the wind omponents was greater than 2.5m2s�2 the entral wind vetor was not seleted, to re-due the impat of inorretly positioned fronts andylones in the ECMWF model on the quality of thewind vetors in the training set. This variane washosen on the basis of experimentation.3.5.1. Outlier Removal. We further `lean'the training data using an interative, manual outlierremoval proedure. We know that the noise on the �oobservations is small thus visualisation in �o spaean quikly identify outliers in terms of �o, whih wehave found to be present in pratie. As the assumed�o variane is very small these an have a very largee�et on the trained models. By using three linkedplots it was possible to eliminate the extreme �o out-liers present in the dataset. A further two linked plotsallowed us to examine outliers in wind speed and di-retion.We onsidered eah �xed the mid-beam inideneangle separately and plotted �of against �oa , �of against2See http://www.ifremer.fr/ersat/ACTIVITE/E CERACT.HTMfor details.

�om and �oa against �om in �odB spae. We also plottedNWP wind speed against (�of +�om+�oa)=3 and NWPwind diretion against �of � �oa . To help �nd dire-tional errors we highlighted those points for whih(�of + �om + �oa)=3 >min(�of + �om + �oa)=3 + 8, sinethese are the points with higher wind speeds and thusshould have a more onsistent relation to wind dire-tion. During outlier removal 1:9% of the training datawas rejeted.3.6. Parameter EstimationWe used estimates in Sto�elen and Anderson [1997a℄to set the error varianes on the �o and the wind ve-tors. We used values of �2t = 0.04 dB2 and �2u = 2.25m2s�2 in our training (see Equations (7) and (8)).To verify these assumptions we trained models usingthese values and looked at their performane on an in-dependent validation set, whih had also undergonethe proess of outlier removal.4. Validation of Forward ModelsThere are several measures whih one might usewhen determining the performane of the various for-ward models. The natural hoie, related to the errorfuntion used during training, is the root mean squareerror (RMSE) of the �o observations, given the `true'wind vetor. However the requirement for auratewind vetor retrieval means that the vetor RMSE ofthe retrieved (u; v) observations is more important.Other measures inlude biases in the models, au-ray of the �rst (most probable) solution or the soalled Figure of Merit, as proposed by David OÆlerof the UK Meteorologial OÆe (UKMO) [Cornfordet al., 1999℄. We present a wide range of performaneindiators to allow a omplete assessment of the mod-els. In ommon with standard pratie, sine we areinterested in the quality of the loal models, whenomputing error measures in (u; v) spae, we pik thewind vetor (from the 2 to 4 returned) that is los-est to the NWP winds [OÆler, 1994℄. We employedthree validation methods for our models: visualisa-tion, quantitative measures in �o spae and qualityof loally retrieved winds.4.1. VisualisationThis setion qualitatively assesses the degree towhih the models �t the �o observations. This hasproved to be a powerful tool for the rapid examina-tion of forward models, and an be instrutive in sug-gesting where improvements may be neessary. The



6results an be seen in Figures 3 and 4, where the out-line of the model manifolds are plotted over the range2{28 ms�1, viewed from above (in the plane �of , �oa)and the side (in the plane (�of +�oa)/2, �om). Every�o observation from an independent validation set ofERS-2 observations is also plotted for the given ini-dene angle, whih thus �ll the `entre' of the models.Cmod4 an be seen to �t the �o observations wellat larger inidene angles, but is not suÆiently ex-ible at low inidene angles. The model extends be-yond the regions within whih �o is observed, mainlyat higher winds speeds, whih orrespond to greater�o values. Nn2Cmod �ts the �o observation well athigher wind speeds, but does not �t well at lower windspeeds. This is related to the di�erene between thebehaviour of the mid-beam ompared with the fore-and aft-beams. Nn3Cmod, whih uses separate mod-els for these beams, �ts the �o observations very well.4.2. Distane to Model Cone - Validation in�o SpaeIn order to obtain quantitative results on the �t ofthe models in �o spae we have looked at the distaneto the one for a validation set whih has the same dis-tribution in wind speed and diretion as the trainingset. The results an be seen in Table 1 where the Jao-bians of the models were used to determine the exatminimum distane to the one using a saled onju-gate gradient minimisation algorithm. The minimumdistane to the one, whih orresponds to the mini-mum distane of the �o observation from the modelmanifold shows that Nn3Cmod �ts the one moretightly than Cmod4 and Nn2Cmod. The distanefrom the point on the one orresponding to the re-trieved wind vetor losest to the NWP wind vetor,denoted dist(best) also shows the improvement givenby Nn3Cmod. The varianes of the �o errors on theindividual beams were also alulated for the threemodels.In Table 1 this shows that the fore- and aft-beamshave smaller noise levels than the mid-beam, for allmodels. For Cmod4 and Nn2Cmod, Figure 5 showsthis is related to the poor �tting (bias) of the mod-els to �o at small inidene angles (the mid-beam in-idene angles are generally smaller). However forNn3Cmod the mid-beam �o still has a higher vari-ane, despite an unbiased �t to the �o observations(Figure 5). Figure 5 shows no evidene of a sys-temati dependene on �, rather there seems to bea distintly di�erent variane for the mid-beam �o.This suggests that it would is preferable to have a

separate model for the mid-beam and a joint modelfor the fore- and aft-beams, as done in Nn3Cmod.Figure 6 shows the mis�t of models in �o spaeplotted as a funtion of retrieved wind speed. Cmod4shows a great deal more satter than the neural net-work models, partiularly at wind speeds above 8ms�1. The results for Nn3Cmod (Figure 6) sug-gest that the variane of the �o observations dereaseswith inreasing wind speed, however referene to Fig-ure 3 suggests this may partly reet the poor �t ofall models at low �o values, whih orrespond to lowerwind speeds. The mis�t in �o spae as a funtion ofretrieved relative wind diretion an be seen in Fig-ure 7 and show that all models are relatively insensi-tive to wind diretion, with Nn3Cmod exhibiting thelosest �t to the data.4.3. Loal Wind Retrieval - Validation in(u; v) SpaeSine the forward models will ultimately be usedfor wind vetor retrieval, it is this evaluation mea-sure that is the most important from a user perspe-tive. In this setion we present the results of the lo-al retrieval of wind vetors using the forward mod-els. The models are inverted using their Jaobiansas done on the validation set. As the ECMWF windvetors used in training the models already have someinuene from Cmod4, an independent test set of �omeasurements was used. This test set used UK Me-teorologial OÆe (UKMO) �rst guess at appropri-ate time winds as targets. These are uni�ed modelzero to six hour foreast winds [Andrews and Bell,1998℄, interpolated to the �o observation loations.Three days of global satterometer observations from10/6/98, 25/1/99 and 7/2/99 were randomly subsam-pled, to provide the test set of 60,000 measurements,with a distribution similar to that observed in theatmosphere.Table 2 shows the results on the test set. Therehas been no seletion of the data whih is olletedin both Northern and Southern hemispheres. TheVRMSE of the Cmod4+5% retrieval is larger thanthat of the neural network models by some 0.5 ms�1whih is a large margin, and ertainly statistially sig-ni�ant with over �fty thousand observations. This�gure must be interpreted arefully sine on averageCmod4+5% returned 2.24 solutions per �o observa-tion, while Nn2Cmod returned 2.36 and Nn3Cmod2.33. A negative bias in wind speed remains inCmod4+5% despite the 5% orretion applied to thewind speed. The bias of the neural network models



7is small, suggesting that the parameterisations of thelower boundary layers in the ECMWF and UKMOnumerial models are similar, and thus our modelsould be used onsistently with the UKMO uni�edmodel or the ECMWF model.The diretion biases are similar and small for allmodels, but Cmod4+5% has a larger diretion stan-dard deviation. Both neural network models onsis-tently have muh better performane in terms of get-ting the �rst (most probable) solution within 20Æ ofthe NWP wind vetor ompared with Cmod4+5%.This is probably related to the lower RMSE in �ospae, and illustrates that a better �tting in �o spaeis important for (u; v) retrieval, partiularly in ambi-guity removal. This measure will not be a�eted bythe number of solution returned. The Figure of Merit,whih an be used to assess di�erent models on manyriteria, shows that Nn2Cmod and Nn3Cmod arevery similar in overall performane on wind vetorretrieval and better by 20% than Cmod4+5%.5. DisussionWhen tuning a non-linear model, data seletionand quality ontrol is very important. Although inter-ative data manipulation demands aneessitated largeamount of user time, it an greatly improve the mod-elling exerise. The more exible the model, the moreimportant is data integrity. Despite this redution oferrors in the (u; v) inputs, it was neessary to trainthe neural network models, using a Bayesian proe-dure to learn both the forward model parameters andthe `true' (u; v) values. If standard training was usedon the neural network models (that is disregardinginput noise) the results, both in terms of �t to the �oobservations and (u; v) retrieval were very poor.The �t of the models in �o spae shows thatNn3Cmod �ts better than bothNn2Cmod andCmod4whih is attributed to the use of a di�erent model ofthe mid-beam in Nn3Cmod. This is on�rmed byvisualisation, where it an be seen that Nn3Cmod�ts the �o observations well, although there remainsroom for improvement at low wind speeds, whihould be investigated in further work.Loal wind vetor retrieval is improved using theneural network models. This is related to their abil-ity to �t the �o observations better but an belargely attributed to the Bayesian training proedureused to minimise the impat of input noise on themodel parameters. Although Nn3Cmod �ts muhbetter in �o spae ompared with Nn2Cmod, the re-

trieval in (u; v) spae is only marginally better. How-ever,Nn3Cmod has greater skill in determining whihof the ambiguous solutions is the `true' solution. Dataassimilation systems whih assimilate �o rather than(u; v) will be more aurate if the �o �t of the modelis more aurate. Even for data assimilation systemswhih assimilate retrieved (u; v), the aurate �t ofNn3Cmod will improve the estimation of (u; v) di-retly but also improve the estimate of the probabil-ity of eah ambiguous solution whih an be fed tothe data assimilation system (or ambiguity removalalgorithm).Figure 8 shows the e�et of using di�erent dis-tributions of wind speed in the training set. ThreeNn3Cmodmodels where trained using di�erent train-ing sets. The results illustrate that models trainedwith a near uniform distribution in wind speed (thatis with more ases in the higher wind speed range)perform better when retrieving winds at higher windspeeds, but slightly worse when retrieving lower speedwinds. It is also lear that mixing the training setsallows the model to learn well at both high and lowwind speeds without ompromising performane else-where. This suggests that on-line learning strategiesould be used to enhane these models performaneat high wind speeds, whih is urrently limited bydata availability. The error for Cmod4+5% is alsoshown, illustrating the improvement in performaneof Nn3Cmod espeially at higher wind speeds.6. ConlusionsThis paper has disussed two novel neural networkbased satterometer forward models. An interativeoutlier removal method was used with areful data se-letion but this still the use of a training method thataounted for the input noise in the `leaned' NWPwind vetors. Visualisation was used in a preliminaryassessment of model auray in �o spae, and in in-terpreting later results.Using the model Jaobians we have shown that theneural network models �t the �o observations betterthan Cmod4. We also show that the mid-beam an-tenna has a di�erent response to the fore- and aft-beams. This strongly suggests that a di�erent modelis required for the mid-beam �o measurements, al-though a joint model an be used for the fore- andaft-beams, as implemented in Nn3Cmod.The neural network models are shown to be moreaurate for wind vetor retrieval. The neural net-work models are unbiased with respet to wind speed
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9Table 1. Fit of the models in �o spae on a validation set of 15000 observa-tions between 4 and 24 ms�1 whih have undergone the manual outlier removalproedure. �o variane for beamdist(min)a dist(best)b fore mid aftdB dB dB2 dB2 dB2Cmod4 0.29 0.48 0.104 0.181 0.105Nn2Cmod 0.31 0.45 0.056 0.152 0.056Nn3Cmod 0.22 0.29 0.025 0.096 0.025aMean minimum distane to the one for all ambiguous wind vetors retrieved.bMean distane to the one for the wind vetor losest to the NWP wind.



10Table 2. Performane of the models on the UKMO test set with an atmospheri distribution inwind speed and diretion and 50,720 observations in the range 4{24 ms�1. Wind speed is in ms�1and wind diretion is in degrees.vetor RMSE s bias s stda � bias � stda ONETb FoMCmod4+5% 3.26 �0:44 1.75 �0:9 22.4 32.0 1.07Nn2Cmod 2.76 �0:09 1.73 0:6 16.7 44.7 1.27Nn3Cmod 2.71 �0:19 1.71 0:7 16.3 51.1 1.29aStandard deviation.bPerentage of the most likely solutions within 20Æ of the NWP wind vetor.The Figure of Merit as proposed by David OÆler of the UK Meteorologial OÆe. This is unit-less, avalue of 1 indiating that the satterometer meets its design spei�ations, larger values reeting betterperformane.
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Figure 3. Visualising Cmod4 (left), Nn2Cmod (middle) and Nn3Cmod (right) using the `top view' at mid-beaminidene angles of 18:0Æ (top), 33:4Æ (middle) and 45:4Æ (bottom). The solid line shows the model manifold for4{24 ms�1, the dotted line for 2{28 ms�1. The small dots show every point in the validation set.
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Figure 4. Visualising Cmod4 (left), Nn2Cmod (middle) and Nn3Cmod (right) using the `side view' at mid-beaminidene angles of 18:0Æ (top), 33:4Æ (middle) and 45:4Æ (bottom). The solid line shows the model manifold for4{24 ms�1, the dotted line for 2{28 ms�1. The small dots show every point in the validation set.
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()Figure 5. The residuals Æ�o = �opredited��oobserved plotted for every tenth point in the validation set as a funtionof inidene angle for a) Cmod4, b) Nn2Cmod and ) Nn3Cmod. The solid line gives the running mean, thedotted line � one standard deviation. The thiker lines to the left are the mid-beam statistis, the thinner line tothe right, the ombined fore- and aft-beam statistis.
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()Figure 6. The residuals Æ�o = �opredited��oobserved plotted for every tenth point in the validation set as a funtionof retrieved wind speed for a) Cmod4, b)Nn2Cmod and ) Nn3Cmod. The solid line gives the running mean, thedotted line � one standard deviation. All beams are onsidered together.
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()Figure 7. The residuals Æ�o = �opredited��oobserved plotted for every tenth point in the validation set as a funtionof retrieved wind diretion (losest to NWP diretion) for a) Cmod4, b) Nn2Cmod and ) Nn3Cmod. The solidline gives the running mean, the dotted line � one standard deviation. All beams are onsidered together.
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Figure 8. The vetor RMSE as a funtion of retrieved wind speed, forCmod4+5% and three versions ofNn3Cmodtrained using a mixed (mix.), atmospheri (atm.) and uniform (uni.) distribution of wind speed in the training set.


