
Noise, Regularizers and Unrealizable S
enarios in On-lineLearning From Restri
ted Training SetsYuan-Sheng Xiong and David SaadThe Neural Computing Resear
h Group, Aston University, Birmingham B4 7ET, UK.Abstra
t
We study the dynami
s of on-line learning in multilayer neural networkswhere training examples are sampled with repetition and where the number ofexamples s
ales with the number of network weights. The analysis is 
arriedout using the dynami
al repli
a method aimed at obtaining a 
losed set of
oupled equations for a set of ma
ros
opi
 variables from whi
h both trainingand generalization errors 
an be 
al
ulated. We fo
us on s
enarios wherebytraining examples are 
orrupted by additive Gaussian output noise and regu-larizers are introdu
ed to improve the network performan
e. The dependen
eof the dynami
s on the noise level, with and without regularizers, is exam-ined, as well as that of the asymptoti
 values obtained for both training andgeneralization errors. We also demonstrate the ability of the method to ap-proximate the learning dynami
s in stru
turally unrealizable s
enarios. Thetheoreti
al results show good agreement with those obtained from 
omputersimulations.
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I. INTRODUCTIONArti�
ial neural networks provide an important tool for ta
kling non-linear problems
omplementary to existing statisti
al methods (for review see [1,2℄). The optimal sele
tionof the network parameters on the basis of examples is termed learning and may be 
arriedout in a variety of methods and te
hniques. The eÆ
ien
y and su

ess of the training pro
essare in the heart of the method itself and play a signi�
ant part in determining the usefulnessof arti�
ial neural networks as a whole.Signi�
ant e�ort has been invested over the years in optimizing the training methodsas well as the 
hoi
e of training parameters and regularization methods. These have beensu

essfully used in pra
ti
e, although most of the training methods used as well as thesetting of the training 
oeÆ
ients are based on heuristi
 observations.One of the most powerful and 
ommonly used approa
hes to training large layered net-works is that of on-line learning of 
ontinuous fun
tions via gradient des
ent. On-line learn-ing refers to the iterative modi�
ation of the network parameters a

ording to a prede-termined training rule, following su

essive presentations of single training examples, ea
hrepresenting a spe
i�
 input ve
tor and the 
orresponding output. This approa
h has beenwidely and su

essfully used for training large networks [3℄ and is arguably the most eÆ
ientte
hnique for these tasks.Signi�
ant progress has been made in analyzing the dynami
s of supervised on-line learn-ing in multilayer networks via methods of statisti
al physi
s (reviews 
an be found in [4℄and [5℄). Most of the analyses (e.g. [6{8℄) 
on
entrate on the 
ase of in�nite training sets,where training examples are sampled without repetition and in whi
h there is no 
orrela-tion between the the network parameters and the examples presented at ea
h training step.They su

essfully explain the various training phases and the emergen
e of generalizationabilities but la
k a vital aspe
t of the learning pro
ess, whi
h may seem insigni�
ant at �rstsight, assuming that the training set is large. However, the emerging 
orrelations betweensu

essive training steps give rise to some of the most harmful e�e
ts in neural networks2



training, su
h as over�tting, to whi
h the above theory is oblivious.A more realisti
 s
enario is that where the number of training examples s
ales with thenumber of free parameters, and the examples are sampled with repetition. This gives riseto 
orrelations between the network parameters and the training examples, whi
h 
learlya�e
t the learning pro
ess. One of the most signi�
ant aspe
ts of having a �xed example setis the distin
tion between the two key performan
e measures: the training error, measuringnetwork performan
e with respe
t to the restri
ted training set, and the test (generalization)error, 
al
ulated for all possible inputs sampled from the true distribution. The former maybe monitored in pra
ti
al training s
enarios, while the latter (the minimization of whi
h isthe true aim the learning pro
ess) 
an only be assessed up to some 
on�den
e level.The analyses of learning from �xed example sets introdu
ed so far [9{13℄ have mostly
onsidered single layer systems, fo
using on spe
i�
 (usually simple) learning rules. Inaddition, most of these studies have been restri
ted to bat
h learning, where the networkparameters are modi�ed only after the 
omplete example set has been presented.The 
urrent paper builds upon a new approa
h we re
ently presented for the 
ase of singlelayer networks [14℄, based on the dynami
al repli
a method, whi
h enables one to analyzea broad range of training rules and network 
on�gurations whi
h 
an treat both on-lineand bat
h learning s
enarios. Preliminary analysis of noiseless, realizable and unrealizablelearning s
enarios in multilayer networks were brie
y des
ribed in [15℄. Here, we extendthe analysis to the 
ase where training examples are 
orrupted by additive Gaussian outputnoise and examine the e�e
t of regularization on the training dynami
s. We also study thedependen
e of the asymptoti
 training and generalization errors on the size of the exampleset provided, with and without regularization. For brevity we will restri
t the analysis tothe 
ase of on-line learning and not 
onsider here the 
ase of bat
h learning at all.The paper is organized as follows: Se
tion II provides the general framework and thetheoreti
al basis for the analysis. In se
tion III we present results obtained for the noiselessrealizable 
ase, followed by results obtained for an unrealizable training s
enario where themodel network is in
apable of realizing the underlying rule due to stru
tural limitations3



in se
tion IV. Se
tion V looks at 
ases where training examples are 
orrupted by outputGaussian noise, while se
tion VI examines the impa
t of regularization on the networkperforman
e. We summarize our results and dis
uss the advantages and drawba
ks of the
urrent analysis in se
tion VII. II. THE FRAMEWORKWe 
on
entrate on information pro
essing tasks in the form of maps from an N -dimensional input spa
e � 2 IRN onto a s
alar � 2 IR, realized through a parametrizedfun
tion �(J ; �) = PKi=1 g (J i � �). This fun
tion 
an be viewed as a two layer neuralnetwork, where g is the a
tivation fun
tion of the hidden units, taken here to be the errorfun
tion g(x) � erf(x=p2); J � fJ ig1�i�K is the set of input-to-hidden adaptive weightsfor the K hidden nodes, and the hidden-to-output weights are set to 1. The a
tivation ofhidden node i under presentation of the input pattern �� is denoted x�i = J i � ��. Thisgeneral 
on�guration, usually referred to as the `soft 
ommittee ma
hine' [7,8℄, en
ompassesmost of the properties of general multilayer networks. Training examples are drawn froma �nite set ~D and are of the form (��; ��) where � = 1; 2; ::; p. The 
omponents of theindependently drawn input ve
tors �� are un
orrelated random variables with zero meanand unit varian
e. The s
enarios examined so far [15℄ fo
used on realizable and stru
turallyunrealizable 
ases, where the 
orresponding output �� for the various examples is given bya deterministi
 tea
her of an ar
hite
ture similar to the student, ex
ept for a possible dif-feren
e in the number M of hidden units: �� = PMn=1 g (Bn � ��), where B � fBng1�n�Mis the set of input-to-hidden adaptive weights for tea
her hidden nodes. In this paper wewill also 
onsider the 
ase of noisy examples, where the tea
her output is 
orrupted by ad-ditive Gaussian output noise, denoted as ��, the 
omponents of whi
h are independentlydrawn un
orrelated random variables of zero mean and varian
e �2, 
orrupting the di�er-ent examples. In this more general 
ase the 
orresponding tea
her output is of the form�� = PMn=1 g (Bn � ��) + ��. The a
tivation of hidden node n under presentation of the4



input pattern �� is denoted y�n = Bn � ��. We will use indi
es i; j; k; : : : to refer to units inthe student network and n;m; : : : for units in the tea
her network. The 
ontribution to thelo
al �eld due to the noise variable will be denoted as z. Sums over the various indi
es willbe 
onsidered from 1 to K or to M respe
tively. The general framework [14,15℄ allows forthe analysis of any training rule G of the formJ l+1j = J lj + �N �(l)Gj[� l;�l℄� 
N J lj (1)where l represents the 
urrent time step in whi
h a single example is randomly drawnfrom ~D and invokes the parameter update. The last term on the right 
orresponds to asimple quadrati
 regularization term parametrized by 
, 
ommonly used in regression taskswhere examples are 
orrupted by noise, the usefulness of whi
h will be examined in the
urrent manus
ript. Here we 
on
entrate on the most 
ommon on-line learning s
enario forregression tasks, where the fun
tion G together with the last term in Eq.(1) is the gradientwith respe
t to the parameters J of the quadrati
 error measure (per example)E(J ; �) = 12 [ �(J ; �)� � ℄2 + 12 
� KXi=1 J i � J i (2)= 12 " KXi=1 g(xi)� MXn=1 g(yn)� z #2 + 12 
� KXi=1 J i � J i ;and G is of the expli
it formGi(xj=1:::K ; yn=1:::M ; z) = s 2�e� 12x2i 24 KXj=1 g(xj)� MXn=1 g(yn)� z35 : (3)In the 
ase of an in�nite training set there is no 
orrelation between the 
urrent exampleand those presented previously. As a 
onsequen
e of that, no 
orrelation between the studentve
tors and the examples is building up, and the joint probability distribution for the studentand tea
her node a
tivations x and y (and the noise z) takes a multivariate Gaussian form.This is no longer the 
ase here, when su
h 
orrelations do exist and the joint probabilitydistribution takes a more general form, whi
h depends on the training patterns and 
hangesdynami
ally throughout the learning pro
ess. In the 
ase of 
orrupted training examplesone should also 
onsider the emerging 
orrelations between the student ve
tors and the noise5




orrupting the examples. Due to the pivotal role played by this joint probability distributionit seems natural to de�ne it as one of the ma
ros
opi
 variables [14℄,P (x;y; z;J) = 1pX� KYi=1 Æ(xi � J i � ��) MYn=1 Æ(yn �Bn � ��) Æ(z � ��) ; (4)together with the overlaps Rin(J) = J i �Bn (between student and tea
her weight ve
tors)and Qik(J) = J i �Jk (between student weight ve
tors). An additional ma
ros
opi
 variablethat is worthwhile mentioning, although it is invariant with respe
t to the learning dynami
s,is Tnm = Bn �Bm, representing the overlap between the various tea
her weight ve
tors. Tosimplify the 
al
ulation we will only examine here the 
ase of orthogonal tea
her ve
tors ofunit length Tnm = Æmn; extending the results to the general tea
her 
ase is straightforward.For 
onvenien
e we will also introdu
e the ve
tor r = (x;y; z) of dimensionality K +M +1,representing student and tea
her lo
al �elds and the noise 
ontribution.The main motivation in 
hoosing these ma
ros
opi
 variables is that in the thermody-nami
 limit, N !1, they are suÆ
ient for 
al
ulating the two main performan
e measures:the generalization error, whi
h 
orresponds to averaging ~E(J ; �) = 12 [ �(J ; �)� � ℄2 overthe Gaussian input distribution [8℄Eg = 1� 24Xi;k sin�1 Qikp1 +Qiip1 +Qkk +Xn;m sin�1 Tnmp1 + Tnnp1 + Tmm� 2Xi;n sin�1 Rinp1 +Qiip1 + Tnn# + 12�2 (5)and the training error Et = *12 " KXi=1 g(xi)� MXn=1 g(yn)� z #2+ ; (6)using the abbreviation hf(r)i = R dr P (r)f(r). The regularization term has been omittedin both measures as its 
ontribution is limited to the learning dynami
s and does not playany role in measuring the su

ess of the training pro
ess.To solve the dynami
s, one straightforwardly derives a set of 
oupled di�erential equa-tions [14,15℄ des
ribing the evolution of the ma
ros
opi
 variables in the limit N !1:6



ddtQ = �(V + V T ) + �2Z � 2
Q ;ddtR = �W � 
R (7)and ��tP (r) = 1� Z dx0 P (x0;y; z) "Yi Æ[xi � x0i � � Gi(x0;y; z)℄�Yi Æ(xi � x0i)#�Xi ��xi �� Z dr0Gi(r0)A(r; r0)� 
xiP (r)�+�22 Xi;k Zik �2P (r)�xi�xk ; (8)using a matrix representation for Q and R and de�ning the matri
esV = DGxTE ; W = DGyTE ; and Z = DGGTE : (9)This set of equations 
annot be 
losed in general; the diÆ
ulties originate in the Green'sfun
tionA(r; r0) = *�Z dJ pt(J jQRP )��1 Z dJ pt(J jQRP ) Æ(x�J � �) Æ(y�B � �) Æ(z � �)� (1�Æ��0)(� � �0) Æ(x0�J � �0) Æ(y0�B � �0) Æ(z0 � �0)�� (10)where pt(J jQRP ) is the weight probability density 
onditioned on the values of the ma
ro-s
opi
 observables fQ;R; Pg at time t (the mi
ros
opi
 measure in ma
ros
opi
 sub-shellsof the ensemble), and h�i� represents averaging over all realizations of the training set. TheKrone
ker delta 
omes to �lter out the 
ase in whi
h both ve
tors � and �0 are identi
al(Æ��0 = 1). We follow the derivation of [14℄ and employ the dynami
al repli
a theory [16℄to 
lose the equations (7,8) by making two key assumptions:(i) For N !1 the ma
ros
opi
 observables obey 
losed dynami
 equations; we may thusassume equipartitioning of probability (or maximum entropy) in the ma
ros
opi
 sub-shells:pt(J jQRP ) �Yi;k Æ[Qik �Qik(J)℄Yi;n Æ[Rin � Rin(J)℄Yr Æ[P (r)� P (rjJ)℄ (11)(ii) The ma
ros
opi
 equations are self-averaging with respe
t to the spe
i�
 realizationof ~D; this allows for the averaging of the ma
ros
opi
 variables over all training sets.7



Both assumptions 
an be regarded as good approximations in general and will be val-idated against simulation results. They may be
ome exa
t in some 
ases (e.g., Hebbianlearning); we believe the se
ond assumption to be exa
t in general. Following the 
al
ula-tion of [14℄ and employing the repli
a identity*R dJW [J ; v℄G[J ; v℄R dJW [J ; v℄ +v = limn!0 Z dJ1 � � �dJn *G[J1; v℄ nY�=1W [J�; v℄+v ; (12)one obtains, under the further assumption of repli
a symmetry (for details see Appendix Aand [14℄), a 
losed form for Eq.(8)��tP (r) = 1� Z dx0 P (x0;y; z) "Yi Æ[xi � x0i � �Gi(x0;y; z)℄�Yi Æ(xi � x0i)# (13)�Xi ��xi h��[Wy + U(x�Ry) +X(Q� RRT )�(r)℄i � 
xi�P (r)i+�22 Xik Zik �2P (r)�xi�xk ;where we have introdu
ed the matri
es B = (Q�q)�1L; X = (V �WRT )(Q�RRT )�1�U ,LLT = q�RRT and U = DG�TE ; and where�i(r) = 1P [xjy; z℄ Z Dv D[(Q� q)�1(x� x0)℄iE� hÆ(x� x0)i� (14)using the notation Dv � QKi=1 1=p2� e� 12v2i dvi (used throughout the paper) andhf(x;x0)i� = R dx0 M(x0;y; z) ex0TBvf(x;x0)R dx0 M(x0;y; z) ex0TBv : (15)The K � K matrix q and the fun
tion M(x0;y; z) are derived from the repli
a symmetri

al
ulation; the former is related to the 
ross-repli
a overlap matrix Q while the latter is ane�e
tive measure derived from the 
onjugate variable to the 
onditional probability P (r).This 
losed set of equations 
an be solved iteratively by 
al
ulating q andM(x0;y; z) at ea
hstep by solving a set of saddle-point equations (for details see Appendix A and [14℄).However, obtaining su
h a solution is extremely expensive 
omputationally sin
e a largeset of nonlinear saddle-point equations, Eqs.(A16,A18), should be solved at ea
h time stepto obtain a solution to Eqs.(7) and (13). The 
omputation whi
h was just possible in the8




ase of single layer networks, is 
learly infeasible in the 
ase of multilayer networks. Wetherefore resort to the large � approximation whi
h was shown to provide highly a

urateapproximated solutions in the single layer 
ase even for low � values (as low as � = 0:5),and enables one to obtain a simple form for Eq.(13) without solving a set of saddle-pointequations at ea
h time step��tP (r) = 1� Z dx0 P (x0;y; z) "Yi Æ[xi � x0i � �Gi(x0;y; z)℄�Yi Æ(xi � x0i)#�Xi ��xi [(��i(r)� 
xi)P (r)℄ + �22 Xi;k Zik �2P (r)�xi�xk ; (16)where�i(r) = 26640BB� VW 1CCAT 0BB� Q RRT T 1CCA�1 0BB� xy 1CCA� [hG�xT (y; z)i �WRT ℄(Q�RRT )�1[�x(y; z)� Ry℄3775i :in whi
h �x(y; z) = R dx x P [xjy; z℄. The large � approximation is parti
ularly suitable tothe model examined here, sin
e the main features of learning in multilayer networks, su
has the breaking of internal symmetries and the asymptoti
 
onvergen
e, 
an be observed atsensible time s
ales only for relatively high � values.The dynami
al equations (7,16) 
an be solved in prin
iple to provide rather a

urateapproximated solutions. However, obtaining the solutions in the 
ase of multi-layer neuralnetworks is still diÆ
ult, espe
ially when the network size in
reases, as one should moni-tor numeri
ally the evolution of a general multivariate probability distribution; and solvenumeri
ally the di�erential equations (16) and (7). Using the methods used in the singlelayer 
ase would require monitoring tens of thousands of variables already in the 
ase ofK =M = 2. To make the 
al
ulation feasible in the 
ase of multilayer networks we look fora parametri
 approximated representation of the probability distribution. We have 
onsid-ered two di�erent possibilities: a mixture of multivariate Gaussian distributions (des
ribedbrie
y in Appendix B) and the lo
al Gaussian approximation (derived in Appendix C),where the 
onditional probability P [xjy; z℄ is repla
ed by a Gaussian one with y and z-dependent mean �x(y; z) and 
ovarian
e matrix f�ij(y; z)g. The �rst representation 
an in9



prin
iple model any given probability distribution to the desired a

ura
y, given a suÆ
ientnumber of Gaussian bases, and provides simple expressions to the equations (7) as most ofthe integrals 
an be 
arried out analyti
ally; however, the solution of equation (16) requiresthe 
ontinuous update of the various parameters in the representation used whi
h 
an bedone in prin
iple but may be 
omputationally diÆ
ult due to the variability in sensitivity ofthe various parameters. The se
ond representation is more limited and assumes a Gaussiandistribution with respe
t to x for ea
h given (y; z) ve
tor; however, it 
an be solved ana-lyti
ally and is therefore easier to handle as long as the approximation used is satisfa
tory.Here we present solutions based on the se
ond representationP [xjy; z℄ = 1q(2�)Kj�(y; z)j exp ��12[x� �x(y; z)℄T��1(y; z)[x� �x(y; z)℄� : (17)Using the representation (17) in Eq.(16) results (after some tedious algebra) in the followingdynami
al equations for �x(y; z) and for �ij(y; z)ddt �xi(y; z) = �� �Gi(y; z) + � [Wy + Y (�x(y; z)� Ry)℄i (18)ddt�ik(y; z) = 1� h�( �Vik(y; z) + �Vki(y; z)� �Gi(y; z)�xk(y; z)� �Gk(y; z)�xi(y; z) + �2 �Zik(y; z)i+�[(S�(y; z))ik + (S�(y; z))ki℄ + �2Zik ;with the matri
es S = (V � WRT )(Q � RRT )�1 and Y = (V � hG�xT i)(Q � RRT )�1,and with �Gi(y; z) = R dx Gi(r)P [xjy; z℄, �Vik(y; z) = R dx Gi(r)xkP [xjy; z℄ and �Zik(y; z) =R dx Gi(r)Gk(r)P [xjy; z℄.Equations (18) and (7) are solved numeri
ally from appropriate initial 
onditions, pro-viding the theoreti
al predi
tion for the evolution of the ma
ros
opi
 variables, and bothgeneralization (5) and training errors. The latter takes the expressionEt = 12 Z dydzP (y; z) Z dxP [xjy; z℄ "Xn g(yn) + z �Xi g(xi)#2= 12 Z dydzP (y; z) 24Xln g(yl)g(yn)� 2Xin g(�i)g(yn) +Xij J2(i; j)35 (19)with �i = �xi=p1 + �ii and 10



J2(i; j) = Z Dx g �q�ii x + �xi� g0� �ijx+p�ii �xjq�ii(1 + �jj)� �2ij1A (20)III. THE NOISELESS REALIZABLE CASEEquations (18) and (7) form the basis to our numeri
al solutions in the various learnings
enarios. Firstly, we validate the analysis in the noiseless realizable s
enario by 
omparingthe results to those obtained from numeri
al simulations. In this se
tion we do not 
onsiderthe 
ase of noise (i.e, � = 0) or regularization (i.e., 
 = 0).For brevity we will restri
t our experiments in this se
tion to the 
ase of K = M = 2and orthogonal unit tea
her ve
tors, Tmn = Æmn (the Krone
ker tensor). To fa
ilitate the
omparison between the analyti
al solutions and the simulation results we introdu
e �xedinitial 
onditions, breaking the inherent symmetries in the system ma
ros
opi
ally. Thisis essential for investigating the learning dynami
s beyond the symmetri
 phase as it maytake a prohibitively long time to es
ape the symmetri
 plateau otherwise, as in the 
aseof in�nite training sets [17℄. We use the following initial 
onditions for both theory andsimulations: Q011 = Q022 = 0:5, Q012 = Q021 = 0, R011 = 0:001, R022 = R012 = R021 = 0. Theinitial joint probability P (r) is assumed Gaussian, with the 
orresponding parameters. Theinitial 
onditions for equation (18) are �(y; z)jt=0 = Q0 � R0(R0)T and �x(y; z)jt=0 = R0y;the learning rate used is � = 0:5. We �rst investigate the a

ura
y of our approximationin the 
ase of low � values, where the a

ura
y of the approximation is expe
ted to bethe worst due to the (large �) approximation used. However, in these 
ases we 
annotobserve the breaking of the symmetri
 phase for 
omputationally feasible system sizes. Wewill therefore 
on
entrate on the predi
tion a

ura
y within the symmetri
 phase, where allve
tors of the student system emulate the various ve
tors in the tea
her system with equalsu

ess. Figure 1 shows the numeri
al solutions of the analyti
al equations in 
omparisonto simulation results obtained for various � values (� = 1; 2; 5). The theoreti
al values arerepresented by solid lines and the simulation results by symbols. Simulation results were11



obtained for a similar system of size N = 500, initialized at random, restri
ting the overlapvalues to the ones used for the analyti
al solutions. Simulation results were averaged over20 trials and the �gure shows both mean values and error-bars for all 
ases (� = 1; 2; 5).Figure 1a shows the generalization errors as a fun
tions of time, with the training error forthe 
ase of � = 5 added for 
omparison (dashed line); in all of our experiments, ea
h unit oftime 
orresponds to the presentation of �N examples sele
ted at random. Figure 1b fo
useson the evolution of the training errors, where the generalization error (� = 5) is added for
omparison. The insets show the evolution of the various overlaps for the 
ase of � = 5 in
omparison to the results obtained from simulations (Q values in �gure 1a and R values in�gure 1b). We see that the results obtained are in good agreement with the simulations, evenat these low � values. It is only fair to mention that the dis
repan
y between the theoreti
alresults and simulations will in
rease at later times due to the a

umulating errors.However, the main interest of the neural networks 
ommunity, in the 
ase of multilayernetworks, is in the symmetry breaking pro
ess, whereby spe
i�
 ve
tors of the studentsystem spe
ialize, ea
h learning to imitate a spe
i�
 tea
her ve
tor. In addition, one wouldalso like to gain insight into the 
onvergen
e phase and its dependen
e on the value of �.In �gure 2a we show the evolution of both the generalization and training errors for the
ase of � = 20 whi
h is suÆ
iently high for observing the symmetry breaking phenomena;the initial 
onditions and learning rate used are similar to those of Fig.1. The theoreti
alvalues for the training (lower) and generalization (higher) errors are represented by the solidlines; the simulation results for system size of N = 5000 are represented by symbols (meanvalues and error-bars) and were averaged over 10 trials. In �gure 2b we examine the �nitesize e�e
ts, 
omparing the theoreti
al results obtained for the generalization error to thesimulation results for N = 500; 1000 and 5000. Simulation results for lower N values arerepresented by dashed (N = 1000) and dotted (N = 500) lines and were averaged over30 trials. For brevity, only mean results are presented for smaller N values; error-bars aregenerally similar to those of N = 5000.To examine the de
ay rate of the training and generalization errors in the asymptoti
12



regime we plotted in the inset of Fig.1a the de
ay of both errors on a logarithmi
 s
ale withrespe
t to the number of training iterations for t = 350 : : : 1000; theoreti
al results for thede
ay of Eg(� = 1) are also shown for 
omparison (dashed dotted line). All three graphsde
ay exponentially to their asymptoti
 values although the prefa
tors and the de
ay ratesseem to di�er and probably depend on �. The de
ay rate for the �nite � 
ase is 
learlyslower than that of the �!1 
ase as expe
ted.IV. STRUCTURAL UNREALIZABILITYWhile interesting a
ademi
ally, realizable training s
enarios are very rare in pra
ti
alon-line learning appli
ations. We therefore turn to the arguably more interesting 
ase ofstru
tural unrealizability, where the number of student ve
tors is smaller than that of thetea
her ve
tors. It would be parti
ularly important to examine this 
ase due to the approx-imations taken along the way; we should verify the validity of the theoreti
al results in this
ase, whi
h may result in quite di�erent probability distributions to those obtained in therealizable s
enario. Also in this se
tion we do not 
onsider the 
ase of noise (i.e, � = 0) orregularization (
 = 0).We demonstrate the eÆ
a
y of our approa
h in the 
ase of a two node system (K = 2)trained on examples provided by a three node tea
her system (M = 3), all orthogonal andof unit length. The equations used are similar to those of the realizable 
ase (18) and (7)but with a modi�ed M = 3 value. The initial 
onditions used are R011 = 0:05, Q011 = 0:4,Q022 = 0:6, with all other overlaps are set to zero; the learning rate is � = 1, the number ofexamples is �N , where � = 20, and the system size used in simulations is N = 1000. Theresults presented in Fig.3a show a good agreement between theory and simulations and aqualitatively similar results to the in�nite training set 
ase. The insets in �gures 3a and 3bshow the 
orresponding Q and R values.Figure 3b des
ribes the asymptoti
 values of generalization and training errors for dif-ferent � values, monitored at t = 1000, on
e the systems had stabilized (noti
e that the13



equilibration of the system at t = 1000 is not guaranteed due to the spin-glass dynami
s).The learning rate used is � = 1. It is easy to see that the agreement between theory andsimulations is generally good but deteriorates as � de
reases. It is diÆ
ult to �nd the exa
tmanner in whi
h both generalization and training errors de
ay to their asymptoti
 values(i.e. Eg(� = 1) = Et(� = 1)), as a fun
tion of �, due to its sensitivity to the inherentnumeri
al errors. V. ADDITIVE OUTPUT NOISEFinite � training s
enarios are of parti
ular interest in 
ases where the training data is
orrupted by some type of noise, being the most 
ommon 
ase in pra
ti
al training s
enarios.This is a parti
ularly important aspe
t of the 
urrent study as it enables one to assess existingmethods for alleviating the e�e
t of noise on the model's generalization performan
e. Similars
enarios have already been examined in the single layer 
ase [18℄ and dis
rete learning rules;we will fo
us here on the multilayer 
ase representing a 
ontinuous mapping, trained bygradient des
ent.The equations used are similar to those of the realizable 
ase, (18) and (7), ex
ept forthe re-a
tivation of the noise term. No regularization is used in the 
urrent se
tion, setting
 to zero.In �gure 4 we demonstrate the e�e
t of additive output noise. We see that the e�e
tis mainly in the length of the symmetri
 phase and in the 
onvergen
e to a suboptimalasymptoti
 solution (a 
onstant learning rate of � = 1 is used). We examine the 
ase ofK = M = 2, using initial 
onditions of the form: Q0ii = 0:5; Q08i6=j and R0in are set tovalues samples uniformly U [0; 1=pN ℄ a

ording to the system size N used in simulations.The number of examples used is �N with � = 20 and the noise level (standard deviationof the Gaussian distribution) is � = 0:2. The system size used in simulations is N = 1000.Figure 4a shows the evolution of the generalization (higher) and training errors as a fun
tionof time, while �gure 4b and the inset show the evolution of the order parameters Q and R14



respe
tively. The upper Q and R 
urves 
orrespond to the diagonal overlaps while thelower 
urves represent the o�-diagonal parameters. We see that the analysis is in general
onsistent with results obtained from simulations, although in
onsisten
ies o

ur around thetransition point between the symmetri
 and asymptoti
 regimes.Next we examine the eÆ
a
y of our approximations as the noise level 
hanges, shownin �gure 5a. We plotted the evolution of the generalization and training (inset) errorsas a fun
tion of time, 
omparing them to simulation results averaged over 10 trials ea
h.Initial 
ondition, learning rate and the ratio of examples � are similar to those of theprevious �gure. We see that our approximation be
omes less a

urate as the noise levelin
reases, espe
ially around the breaking of the symmetri
 phase. This is probably due tothe deteriorating a

ura
y of the lo
al Gaussian approximation as the noise level in
reases.For low � values, when the inherent system symmetries do not break, our method providesa good approximation to the results obtained in simulations, as shown in �gure 5b for the
ase of � = 12. In both 
ases, the theoreti
al asymptoti
 results are in good agreement withthe simulations.In prin
iple, one 
ould obtain from the analyti
al solutions an estimate to the improve-ment in performan
e that 
an be obtained from employing the early stopping te
hnique aswell as an estimate for the optimal point in whi
h early stopping should be applied. However,the disagreement between the results obtained analyti
ally and the simulations is mainlyaround the point in whi
h the internal symmetries break (and mainly at high noise levels),making su
h an estimate ina

urate. We assume that employing a re�ned representation ofthe 
onditional probability distribution would enable one to make a

urate estimations ofthis type.In �gure 6a we examine the dependen
e of the asymptoti
 values (measured at t = 1000,on
e the system has stabilized) of both generalization and training errors on the value of �,having a �xed noise level � = 0:3 (in the inset � = 0:1). We see that our approximationprovides a good des
ription for large � values, be
oming less a

urate for low values asone might expe
t. In addition, we see that, as expe
ted, the gap between training and15



generalization errors, for a given �, in
reases with the noise level. The dependen
e ofgeneralization error on � for di�erent noise levels, � = 0:1 (lower 
urve) and 0:3 (higher
urve) is shown in �gure 6b. As expe
ted, the di�eren
e between the asymptoti
 valuesde
reases as � grows.To examine the de
ay of the generalization error to its asymptoti
 value we plotted inthe inset of �gure 6b the dependen
e of �Eg = Eg(�) � Eg(1) on ��1, for � values highenough for the system to es
ape the symmetri
 phase. The de
ay seems to be proportionalto ��1 (e.g., the power values obtained from regression in the 
ase of � = 0:1 are 1:0(1) and0:9(3) from the theoreti
al results and simulations respe
tively), and depends linearly on �2;dividing the residual error for the noise levels presented in the �gure 0:3 (higher 
urve) and� = 0:1 (lower 
urve) gives, approximately, a 
onstant value of 9.To examine the dependen
e of both training and generalization errors on the noise level �we plotted in �gure 7 the asymptoti
 values of generalization and training errors (measuredon
e the system has stabilized) for di�erent additive Gaussian output noise levels with �xed� = 20. Using 
onventional regression methods we �nd the following dependen
e of Eg andEt on the noise level �: Eg ' 1:06�2:14(1) (theory) and Eg ' 0:94�2:082(8) (simulations) andEt ' 0:63�1:957(5) (theory) and Et ' 0:64602�1:968(3) (simulations). This is in agreementwith our assumption of a quadrati
 � dependen
e.VI. REGULARIZATIONOne of the main problems fa
ing pra
titioners in the �eld of neural networks is theimprovement of generalization ability in trained networks, espe
ially when noisy trainingdata are provided. This is typi
ally done by imposing 
onstraints on the spa
e of solutions(for a general introdu
tion to the problem and the methods used see [2℄), re
e
ting ourprior belief in the type of solution we are looking for. One of the most 
ommon me
hanismsfor adding su
h 
onstraints is the introdu
tion of a quadrati
 regularization term, as in thelast term on the right of Eq.(2), whi
h leads to a modi�
ation of the dynami
al training16



equation (1).Most of the analyses linking the regularization to the noise level 
orrupting the data arebased on single layer systems or on linearizing the system in the asymptoti
 regime. Ideally,we would have liked to exploit the 
urrent analysis to obtain an analyti
al expression forthe optimal regularization term to be used for data 
orrupted by additive Gaussian noiseof a 
ertain varian
e. However, the 
urrent framework, based on equations (18) and (7), issolved numeri
ally, making it diÆ
ult to provide the desired link analyti
ally. We thereforedemonstrate the e�e
t of regularization through numeri
al solutions obtained in spe
i�

ases.Firstly, to examine the e�e
t of regularization on the both training and generalizationerrors in the symmetri
 plateau, we present the training s
enario where K = M = 2,� = 12 and where training examples are 
orrupted by additive Gaussian output noise ofstandard deviation � = 0:6. Simulations were 
arried out using a system of size N = 1000,and simulation results were averaged over 10 trials. Figure 8a shows the evolution of thegeneralization and training errors for di�erent 
 values, where generalization errors are for
 = 0:01, 
 = 0:001 and 
 = 0:0 from the bottom up, while training errors from the topdown. Lines represent the theoreti
al results, while symbols represent simulation results. Itis 
lear that while regularization has little e�e
t on the training error in that phase it 
learlyredu
es the generalization error. It should be noted that, although the main signi�
an
e ofregularization is in the asymptoti
 regime, its e�e
t on the symmetri
 phase is also importantas many pra
ti
al training sessions are e�e
tively terminated at some sub-optimal symmetri
plateau.To examine the e�e
t of regularization asymptoti
ally we plotted in �gure 8b the depen-den
e of the asymptoti
 generalization error on �, measured at t = 1000 for �xed � = 0:3 andregularization value of 
 = 0:005 (lower 
urve); the upper 
urve represent values obtainedwith no regularization.One should note that in the 
ase of in�nite training sets it has been shown that thereis no advantage in using a quadrati
 regularization term with a 
onstant prefa
tor in the17



asymptoti
 regime [19℄, and in fa
t, introdu
ing su
h a term always results in a higherasymptoti
 (in training steps - t) generalization error. Therefore, there must be a value of�, for a given noise level and regularization prefa
tor, above whi
h the introdu
tion of aquadrati
 regularization term is detrimental to the asymptoti
 performan
e. This 
riti
alvalue of � 
an be determined in prin
iple for a spe
i�
 s
enario using our analysis; however,in pra
ti
e the numeri
al ina

ura
ies redu
e the reliability of su
h a predi
tion.The inset of �gure 8b shows the dependen
e of �Eg = Eg(�) � Eg(1) on ��1, forsuÆ
iently large � su
h that the system es
apes the symmetri
 plateaus. The theoreti
alresults are in agreement with the simulations, indi
ating (approximately) a 1=� de
ay inthe generalization error to the asymptoti
 values (the regression power �gures obtainednumeri
ally from both theory and simulations are generally around the de
ay power of 1,but have signi�
ant error-bars). VII. SUMMARYWe presented a theoreti
al framework for the analysis of on-line learning s
enarios inmulti-layer networks, where the training examples are sampled with repetition from a �xedexample set. The framework is then used for studying realizable and unrealizable s
enariosas well as s
enarios whereby the data is 
orrupted by additive Gaussian output noise andwhere regularizers are employed for improving the networks generalization performan
e.To obtain the set of equations representing the network dynami
s we employ the dynam-i
al repli
a method; the 
onditional probability distribution of tea
her and student lo
al�elds, P [xjy; z℄, is then approximated by the lo
al Gaussian distribution in order to fa
il-itate the 
omputation. The theoreti
al results are 
ompared with simulation results andshow good agreement in most 
ases.The results obtained support heuristi
 methods used by pra
titioners, su
h as early stop-ping and regularization, and enable us to derive some general asymptoti
 dependen
ies ofboth training and generalization errors on the noise level introdu
ed and on �. Unfortu-18



nately, due to the 
omplexity of dynami
al equations and the 
omputational diÆ
ulties wehave experien
ed in solving them, our ability to provide generi
 analyti
al solutions is lim-ited. These would have been highly desirable for deriving analyti
ally relations between thetraining and generalization 
onditions in noisy s
enarios, in both the symmetri
 phase andasymptoti
ally, and to make a quantitative link between the noise level and the optimalregularization to be used.Other questions that are of interest are to do with the length of the symmetri
 phaseand its dependen
e on the ratio �, the learning rate, the ar
hite
ture 
hosen and the initial
onditions. In addition, it would be desirable to de�ne optimal training parameters andlearning rules in a prin
ipled manner, similarly to the studies 
arried out in the 
ase ofin�nite training sets [20℄- [24℄.The 
urrent paper prepares the basis for future studies along these lines, whi
h will
learly be of great interest to pra
titioners.
A
knowledgementsDS and YX a
knowledge support by EPSRC Grant GR/L52093 and the British Coun
ilgrant: British-German A
ademi
 Resear
h Collaboration Programme proje
t 1037. Wewould like to thank Ton Coolen for his 
ontribution to this work as well as for 
arefulreading of the manus
ript.

19



APPENDIX A: REPLICA CALCULATION OF THE GREEN FUNCTIONThe main obje
tive of this appendix is to provide a rough derivation of the Green'sfun
tion A[: : :℄, using the dynami
 repli
a theory and following [14℄ and [15℄, from whi
hwe obtain the ma
ros
opi
 dynami
al equations (13) in an expli
it form. We �rst 
arryout the disorder averages, leading to an e�e
tive single-spin problem. The integrations are
arried out using saddle-point methods for the repli
ated order parameters at ea
h timestep, employing the repli
a symmetry (RS) ansatz.1. Disorder AveragingFollowing the dynami
 repli
a theory in [16℄, we write the Green fun
tion asA(r; r0) = limn!0 limN!1**Z Yi� dJ�i pt(J�jQRP )Yi Æ(xi � J1i � �)Yn Æ(yn �Bn � �) Æ(z � �)�(� � �0)(1� Æ��0)Yi Æ(x0i � J1i � �0)Yn Æ(y0n �Bn � �0) Æ(z0 � �0)+ ~D ~D0+� ; (A1)noting that the averages over the data sets already in
lude the noise distribution as well,and that h�i� represents averaging over all realizations of the data set. Using the de�nitionof P (r;J) and the integral representations for the Æ-distributions involving P (r), we obtainA(r; r0) = limn!0 limN!1 Z Y�;r00 dP̂ �(r00)Y�i dJ�i Y�ik Æ(Qik � J�i � J�k )Y�in Æ(Rin � J�i �Bn)�eiN R dr00P̂ (r00)Pt(r00) Z dr̂dr̂0(2�)2(K+M+1) eir̂�r�* 1p2 X�6=�(�� � ��)e� i�P�� P̂ (J����;B���;��)�e�iPi x̂iJ 1i ����iPn ŷnBn����iẑ���iPi x̂0iJ 1i ����iPn ŷ0nBn����iẑ0���� (A2)with the 
onjugate fun
tion P̂ (r).We �rst de�ne some relevant fun
tions to fa
ilitate the 
al
ulationD(r̂; �; �) = e� i�P� P̂ (J���;B��;�)�iPi x̂iJ 1i ���iPn ŷnBn���iẑ�20



D(r̂) = hD(r̂; �; �)i ~DEj(r̂) = h�jD(r̂; �; �)i ~D = *�D(r̂; �; �)��j + ~D : (A3)By using the permutation invarian
e of the integrations and summations with the patternlabels, we evaluate the training-set average of the expression for A[: : :℄ in Eq.(A2) in thethermodynami
 limit* 1p2 X�6=�(�� � ��)e���+� = *p� 1p (�1 � �2)e���+�= p� 1p NXj �e� i�P� P̂ (J���;B��;�)�p�2~D��e� i�P� P̂ (J���;B��;�)�iPi x̂iJ 1i ���iPn ŷnBn���iẑ�� ~D��e� i�P� P̂ (J���;B��;�)�iPi x̂0iJ 1i ���iPn ŷ0nBn���iẑ0�)� ~D= ep ln[D(0;0)℄L(r̂; r̂0)D2(0) (A4)with L(r̂; r̂0) = PNj Ej(r̂)Ej(r̂0). We 
an then write the Green fun
tion in an integral form,dominated by saddle pointsA(r; r0) = Z dr̂dr̂0(2�)2(K+M+1) ei(r̂�r+r̂0�r0)� limn!0 limN!1 Z dqdQdq̂dQ̂dR̂ Z Y�;r00 dP̂ �(r00) eN	[q;Q;q̂;Q̂;R̂;fP̂g℄L(r̂; r̂0)D2(0) (A5)with	[: : :℄ = 12 24X� Tr(Q̂�Q�)� 2iX� (TrR̂�R�) +X�� Tr(q̂��q��)35+iX� Z dr P̂ �(r)P (r) + � lnD(0)+ limN!1 1N ln Z Y�i dJ�i e� 12hP�ik Q̂�ikJ�i �J�k�2iP�in R̂�inJ�i �Bn+P��ik q̂��ik J�i �J�ki (A6)Similarly, the joint probability distribution 
an be obtainedP (r) = Z dr̂(2�)K+M+1eir̂�r� limn!0 limN!1 Z dqdQdq̂dQ̂dR̂ Z Y�;r00 dP̂ �(r00) eN	[q;Q;q̂;Q̂;R̂;fP̂g℄D(r̂)D(0) : (A7)21



Using the normalized expression for P (r) we see that no overall prefa
tors in the expressionof A[r; r0℄ or P (r) are to be taken into a

ount. Then we haveA(r; r0) = Z dr̂dr̂0(2�)2(K+M+1) ei(r̂�r+r̂0�r0)L(r̂; r̂0)D2(0) ; (A8)with the order parameter values de�ned at the saddle point, andP (r) = Z dr̂(2�)K+M+1eir̂�rD(r̂)D(0) : (A9)Firstly, we 
al
ulate the expli
it expression for D(0).D(0) = Z Y�i dx̂�i dx�i2� Yn dŷndyn2� dẑdz2� eiP�i x̂�i x�i +iPn ŷnyn+iẑz� i�P� P̂ (x�;y;z)� Z D� Z D(�=�) e�iPNj (P�i x̂�i J�ij+Pn ŷnBnj)�j�iẑ�= Z Y�i dx̂�i dx�i2� Yn dŷndyn2� D(z=�) eiP�i x̂�i x�i +iPn ŷnyn� i�P� P̂ (x�;y;z)�e� 12hP��ik q��ik x̂�i x̂�k+2P�in Rinx̂�i ŷn+Pn ŷ2ni ; (A10)where Dv is the Gaussian measure as de�ned before, and where the spin-glass order param-eters and the overlaps R�in between the student and tea
her weights are de�ned asq��ik = J�i � J�k ; R�in = J�i �Bn (A11)We now employ the repli
a symmetri
 (RS) ansatz: q��ik = fQik(� = �); qik(� 6= �)g,R�in = Rin and P̂ �(r) = i�(r). Then D(0) 
an be further simpli�edD(0) = Z Y�i dx̂�i dx�i2� Yn dŷndyn2� D(z=�) eiP�i x̂�i x�i +iPn ŷnyn+ 1�P� �(x�;y;z)�e� 12 [P�ik(Qik�qik)x̂�i x̂�k+Pik qik(P� x̂�i )(P� x̂�k )+2P�in Rinx̂�i ŷn+Pn ŷ2n℄= Z Y�i dx̂�i dx�i2� Yn dynp2�D(z=�) eiP�i x̂�i [x�i �(Ry)i℄+ 1�P� �(x�;y;z)�e� 12 [P�ik x̂�i (Q�q)ikx̂�k+Pik(P� x̂�i )(q�RRT )ik(P� x̂�k )+Pn y2n℄= 1qjq � RRT j Z DyD(z=�) Z Yi dvip2�e� 12vT (q�RRT )�1v� Z Y�i dx̂�i dx�i2� e� 12P�ik x̂�i (Q�q)ikx̂�k+iP�i x̂�i [x�i +ui�(Ry)i ℄+ 1�P� �(x�;y;z)22



= 1qjq � RRT j Z DyD(z=�) Z Yi dvip2�e� 12vT (q�RRT )�1v� 24 1qjQ� qj Z Yi dxip2�e 1��(r)� 12 (x�Ry�v)T (Q�q)�1(x�Ry�v)35n= Z DyD(z=�) Z Dv �Z dx 
(r;v)�n (A12)with 
(r;v) = 1qjQ� qj(2�)K e 1��(r)� 12 (x�Ry�Lv)T (Q�q)�1(x�Ry�Lv) ; (A13)LLT = q � RRT and B = (Q� q)�1L.Se
ondly, the integration on J�i 
an be 
arried out and the 
orresponding expression 
anbe evaluated expli
itly using the RS ansatz (in the limit n! 0)limN!1 1N ln Z Y�i dJ�i e� 12hP�ik Q̂�ikJ�i �J�i �2iP�in R̂�inJ�i �Bn+P��ik q̂��ik J�i �J�ki� �12 h(n� 1) ln jQ̂� q̂j+ ln jQ̂+ (n� 1)q̂j+ nTr[R̂T (Q̂� q̂)�1R̂℄ +O(n2)i (A14)Together with the rest of the terms in the 	[: : :℄, we havelimn!0 	n = 12�Tr(Q̂Q)� 2iTr(R̂R)� Tr(q̂q)� ln jQ̂� q̂j � Tr[(Q̂� q̂)�1q̂℄ (A15)�Tr[R̂T (Q̂� q̂)�1R̂℄�� Z dr �(r)P (r) + � Z DyD(z=�) Z Dv ln �Z dx 
(r;v)�2. Derivation of the RS Saddle-point EquationsWe then work out the saddle-point equations with respe
t to Q̂; R̂; q̂r̂ = Q̂� q̂ = (Q� q)�1; R̂ = �i(Q� q)�1R; q̂ = �(Q� q)�1(q � RRT )(Q� q)�1 (A16)whi
h allow us to eliminate most variational parameters. Then the 	 
an be simpli�ed as	 = 12Tr[(Q� RRT )(Q� q)�1℄ + 12 ln jQ� qj � Z dr�(r)P (r)+� Z DyD(z=�) Z Dv ln �Z dx 
(x;y; z;v)� (A17)23



The saddle-point equation for �(r) results inP (r) = e� 12y2q(2�)M e� z22�2p2�� Z Dv " 
(r;v)R dx0 
(x0;y; z;v)# � P (y; z)P [xjy; z℄ (A18)where we have de�ned P (y; z) and 
onditional probability P [xjy; z℄ respe
tivelyP (y; z) = e� 12y2q(2�)M e� z22�2p2�� ; P [xjy; z℄ = Z Dv " M(r)exTBvR dx0 M(x0;y; z)ex0TBv # (A19)with M(r) = e 1��(r)� 12 (x�Ry)T (Q�q)�1(x�Ry) (A20)3. Expli
it Expression for the Green Fun
tionIn order to work out the expli
it expression for the Green fun
tion (A8) we need to
al
ulate the fun
tion L(r̂; r̂0). First we take the n! 0 limit of D(r̂; �; �) (A3), and simplifythe result using the saddle-point equation (A18)D(r̂; �; �) = limn!0 Z DyD(z=�) Z Dv �Z dx 
(r;v)e�ir̂�r� �Z dx 
(r;v)�n�1= Z DyD(z=�) Z Dv "R dx 
(r;v)e�ir̂�rR dx 
(r;v) #= Z dr P (r) e�ir̂�r (A21)Next we evaluate the Ej(r̂) by working out the partial derivative on �j and separating thesummation over repli
a indi
es into two groups: � = 1 and � > 1Ej(r̂) = *" 1�X�i ��i��J�ij + 1�X�n ��n��Bnj �Xi ix̂iJ1ij �Xn iŷnBnj#D(r̂; �; �)+ ~D= 24Xi F̂i(r̂)J1ij +Xn F̂n(r̂)Bnj + Xi;�>1 K̂i(r̂)J�ij + Xn;�>1 K̂n(r̂)Bnj35 (A22)where the RS ansatz is used,F̂�l (r̂) = Æ�1F̂l(r̂) + (1� Æ�1)K̂l(r̂) (A23)24



with F̂l(r̂) = 1� D[�1;l�(1)(r)℄D(r̂; �; �)E ~D � ix̂lD(r̂)K̂l(r̂) = 1� D[�2;l�(2)(r)℄D(r̂; �; �)E ~D (A24)and the index l runs through all student and tea
her indi
es. We express L(r̂; r̂0) in terms ofEq.(A22), performing the summation over the repli
a indi
es and taking the limit of n! 0.We then obtainL(r̂; r̂0) =Xik hF̂iF̂ 0k � K̂iK̂0ki (Qik � qik) +Xik (F̂i � K̂i)(F̂ 0k � K̂0k)qik+Xin h(F̂i � K̂i)(F̂ 0n � K̂0n) + (F̂ 0i � K̂0i)(F̂n � K̂n)iRin+Xn (F̂n � K̂n)(F̂ 0n � K̂0n) (A25)The Green fun
tion be
omesA(r; r0) =Xik [FiF 0k � KiK0k℄ (Qik � qik) +Xik (Fi � Ki)(F 0k � K0k)qik+Xin [(Fi �Ki)(F 0n � K0n) + (F 0i � K0i)(Fn �Kn)℄Rin+Xn (Fn �Kn)(F 0n �K0n) ; (A26)using the inverse Fourier transforms of F̂l(r̂) and K̂l(r̂)Fl(r) = Z dr(2�)K+M+1 F̂l(r̂)eir̂�r (A27)Kl(r) = Z dr(2�)K+M+1 K̂l(r̂)eir̂�r : (A28)Making use of saddle-point equation for �(r) (A18) and the expression for D(r̂; �; �)(A21), we 
an work out the expli
it expressions of the fun
tions Fl(r) and Kl(r):Fl(r) = 1�P (r)[�l�(r)℄� [�lP (r)℄ (A29)Kl(r) = 1�P (y; z) Z Dv " 
(r;v)R dx0 
(x0;y; z;v)# "R dx0 
(x0;y; z;v)[�l�(r)℄R dx0 
(x0;y; z;v) # : (A30)25



Separating the index l to the student (labelled by i) and tea
her (labelled by n) indi
es, weobtain four di�erent fun
tionsFi(r) = [(Q� q)�1(x�Ry)℄iP (r) + [�i lnM(r)℄P (r)� �iP (r)Fn(r) = �[RT (Q� q)�1(x� Ry)℄nP (r) + [�n lnM(r)℄P (r)� �nP (r)= �[RT (Q� q)�1(x� Ry)℄nP (r) + ynP (r)+P (y; z) Z Dv " M(r) exTBvR dx0 M(x0;y; z) ex0TBv # 24R dx0 [�nM(x0;y; z)℄ ex0TBvR dx0 M(x0;y; z) ex0TBv 35 (A31)Ki(r) = �[(Q� q)�1Ry℄iP (r)� �iP (r) + [�i lnM(r)℄P (r)+ P (y; z) Z Dv " M(r) exTBvR dx0 M(x0;y; z) ex0TBv # 24R dx0 [(Q� q)�1x0℄iM(x0;y; z) ex0TBvR dx0 M(x0;y; z) ex0TBv 35Kn(r) = [RT (Q� q)�1Ry℄nP (r)� P (y; z) Z Dv " M(r) exTBvR dx0 M(x0;y; z) ex0TBv # 24R dx0 [RT (Q� q)�1x0℄nM(x0;y; z) ex0TBvR dx0 M(x0;y; z) ex0TBv 35+ P (y; z) Z Dv " M exTBvR dx0 M(x0;y; z) ex0TBv # 24R dx0 [�nM(x0;y; z)℄ ex0TBvR dx0 M(x0;y; z) ex0TBv 35 (A32)Res
aling the above fun
tions by P (r): ~Fl(r) = Fl(r)=P (r), and ~Kl(r) = Kl(r)=P (r),and de�ning the fun
tion�i(r) = ~Fi(r)� ~Ki(r) = 1P [xjy; z℄ Z Dv D[(Q� q)�1(x� x0)℄iE� hÆ(x� x0)i� ; (A33)with the abbreviationhf(x;x0)i� = R dx0 M(x0;y; z) ex0TBvf(x;x0)R dx0 M(x0;y; z) ex0TBv ; (A34)we obtain 
ompa
t forms for ~F(r) and ~K(r)~Fi(r) = [(Q� q)�1(x� Ry)℄i � [(Q� q)�1(q �RRT )�(r)℄i~Ki(r) = ~Fi(r)� �i(r)~Fn(r)� ~Kn(r) = yn � [RT�(r)℄n (A35)Inserting (A33) and (A35) into (A26), we �nally obtain the res
aled Green fun
tion26



~A(r; r0) = A(r; r0)P (r)P (r0) (A36)= yTy0 + (x�Ry)T�(r0) +�T (r)(x0 � Ry0)��T (r)(Q�RRT )�(r0)with �(r) given in (A33). Working out the integrationZ dr0A(r; r0)G(r0) = P (r) Z dr0P (r0)G(r0) ~A(r; r0) = P (r)�(r) (A37)with �(r) = Wy + U(x� Ry) +X(Q� RRT )�(r) (A38)and X = (V �WRT )(Q�RRT )�1 � U; U = DG�TE (A39)we �nally obtain equation for probability distribution under RS ansatz, that is Eq.(13).4. The Large � ApproximationIn the large � limit, the order parameter matrix q takes the value RRT and the elementsof matrix B are very small. We 
an therefore use the 
umulant expansion up to the se
ondorder to obtainM(r) = P [xjy; z℄e� 12 (x��x(y;z))TB0(x��x(y;z))+ 12 [xTB0x��xT (y;z)B0�x(y;z)℄ + � � � ; (A40)overline denotes averages with respe
t to P [xjy; z℄ and the matrix B0 is of the form B0 =(Q � q)�1(q � RRT )(Q � q)�1. Furthermore, we have (Q � q) ' (Q � RRT ), the fun
tion�(r) in Eq.(A33) and the matrix U in Eq.(A39) be
ome�(r) ' (Q�RRT )�1(x� �x);U = [V � DG�xT (y; z)E℄(Q� RRT )�1 (A41)Finally, equation for probability distribution in Eq.(13) be
omes to Eq.(16) with the expli
itform of �(r). 27



APPENDIX B: THE MIXTURE OF GAUSSIANS REPRESENTATIONSA mixture of Gaussians 
an represent an arbitrary probability distribution given a suf-�
ient number of basis fun
tions. Using a mixture of Gaussians representation for theprobability distribution (in the noiseless 
ase)Q(x;y) = LX�=1 w�q(2�)K+M jA�j exp 2664�12 0BB� x� �x�y 1CCAT A�1� 0BB� x� �x�y 1CCA3775 (B1)and the parameter set � = [w�; �x�; A�℄, from whi
h the equations for R and Q follow dire
tly:dRindt = �X� w� 24Xm I�3 (i; n;m)�Xj I�3 (i; n; j)35� 
Rin ; (B2)and dQikdt = �X� w�0�Xm [I�3 (i; k;m) + I�3 (k; i;m)℄�Xj [I�3 (i; k; j) + I�3 (k; i; j)℄1A+ �2X� w�Z�ik � 2
Qik ; (B3)where Z�ik = Xjl I4(i; k; j; l)� 2Xjm J4(i; k; j;m) +Xmn K4(i; k;m; n)The integrals I3, I4, J4 and K4 are de�ned in Appendix C.The diÆ
ulty is in obtaining a set of equations for the evolution of the parameter set�. This 
an be done in prin
iple by minimizing some distan
e measure between the up-dated distribution P (x;y) and the approximation Q(x;y). We experien
ed 
omputationaldiÆ
ulties in 
arrying it out using a quadrati
 distan
e measure, mainly due to the di�er-ent sensitivities of the various parameters. Nevertheless, being 
apable of representing anyprobability distribution, we believe that this representation may allow one to obtain morea

urate results where the lo
al Gaussian approximation breaks down.APPENDIX C: LOCAL GAUSSIAN REPRESENTATION FOR THE CASE OFOUTPUT NOISE AND REGULARIZERFor lo
ally-Gaussian approximation, the 
onditional probability has a form28



P [xjy; z℄ = 1q(2�)Kj�(y; z)j exp ��12[x� �x(y; z)℄T��1(y; z)[x� �x(y; z)℄� : (C1)The main advantages of this approximation are that the integration over the student �eld x
an be 
arried out analyti
ally and the partial di�erential equation for P (r) in Eq.(16) 
anbe simpli�ed to a set of di�erential equations for the parameters �(y; z); �x(y; z) as des
ribedin Eq.(18). 1. The Equations for the Parameters Q and RUnder this approximation, the equations for the ma
ros
opi
 parameters Q and R inEqs.(7) be
omedRdt = � Z dydzP (y; z) �W (y; z)� 
R;dQdt = � Z dydzP (y; z)[ �V (y; z) + �V T (y; z)℄ + �2 Z dydzP (y; z) �Z(y; z)� 2
Q (C2)with �Vik(y; z) =Xl I3(i; k; l)�Xj J3(i; k; j)�Win(y; z) =Xl K3(i; n; l)�Xj L3(i; n; j)�Zik(y; z) =Xjl I4(i; k; j; l)� 2Xjm J4(i; k; j;m) +XmnK4(i; k;m; n) (C3)where the integrals on the right hand side depend on y and z through �(y; z) and �x(y; z).2. Three Dimensional IntegralsThe three-dimensional integrals in Eq.(C3) are given byI3(1; 2; 3) = s 2� De� 12x21 x2 g(y3)E = I1�12g(y3);J3(1; 2; 3) = s 2� De� 12x21 x2 g(x3)E = I1 24�12g(�13) +s 2��
e� 12�21335 ;K3(1; 2; 3) = s 2� De� 12x21 y2 g(y3)E = I1y2g(y3);L3(1; 2; 3) = s 2� De� 12x21 y2 g(x3)E = I1y2g(�13); (C4)29



with h: : :i = R dx P [xjy; z℄ : : : andIi = s 2� De� 12x2i E = s 2� 1p�i e� 12 �x2i�i ; (C5)�13 = (�x3�1 � �x1�13)�13; �
 = (�1�23 � �13�12)�13�i = 1 + �ii; �13 = 1=q�1(�1�3 � �213); �12 = �x2 � �12�x1=�13. Four Dimensional IntegralsThe four-dimensional integrals in Eq.(C3) are given byI4(1; 2; 3; 4) = 2� De� 12x21� 12x22g(y3)g(y4)E = I2(1; 2)g(y3)g(y4);J4(1; 2; 3; 4) = 2� De� 12x21� 12x22g(x3)g(y4)E = I2(1; 2)g(�123)g(y4);K4(1; 2; 3; 4) = 2� De� 12x21� 12x22g(x3)g(x4)E ;= I2(1; 2) Z Dxg �q�11 x +�3� g0��12x +p�11�4qj�j 1A ; (C6)where the two-dimensional integral is de�ned asI2(1; 2) = � 2�e� 12x21� 12x22� = 2� 1qjCj exp 2664�12 0BB� �x1�x2 1CCAT C�10BB� �x1�x2 1CCA3775 ; (C7)with the matrix C = 0BB� �1 �12�12 �2 1CCA ;and the arguments are de�ned as0BB� �3�4 1CCA = 2664 �x3 � (�x1D11 + �x2D21)�x4 � (�x1D12 + �x2D22) 3775�123 = �x3 � (�x1T1 + �x2T2)q�3 � (T1�13 + T2�23) with0BB� T1T2 1CCA = C�10BB� �13�23 1CCA ;30



and � = 0BB� �33 � E11; �34 � E12�34 � E21; �4 � E22 1CCA ;E = 0BB� �13D11 + �23D21; �13D12 + �23D22�14D11 + �24D21; �14D12 + �24D22 1CCA ;D = 1jCj 0BB� �2�13 � �12�23; �2�14 � �12�24�1�23 � �12�13; �1�24 � �12�14 1CCA : (C8)
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FIG. 1. The evolution of the generalization (a) and training errors (b) as a fun
tion of timefor � = 1; 2; 5. Solid lines represent analyti
al results while simulation experiments are presentedby symbols; both were initialized in a similar manner. Simulation results were averaged over 20trials; both mean values and error-bars are presented. Theoreti
al results for the training andgeneralization errors in the 
ase of � = 5 are presented in (a) and (b) respe
tively for 
omparison(dashed line). The insets in both �gures show the evolution of the various overlaps (Q and Rrespe
tively, di�erent symbols represent the various overlaps) in the 
ase of � = 5, 
omparingtheoreti
al results and simulations (mean values). The upper Q lines and symbols 
orrespond tothe diagonal values while the lower lines 
orrespond to the o�-diagonal overlaps
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t tFIG. 2. The evolution of the training and generalization errors in 
omparison to those obtainedfrom simulations for the 
ase of K = M = 2, � = 20. (a) The theoreti
al values for the training(lower) and generalization (higher) errors are represented by the solid lines; the training errorsimulation results for system size of N = 5000 are represented by symbols (mean values anderror-bars for 10 trials). The inset shows the semilog plot of Eg (solid and 
ir
les) and Et (dashedand 
rosses) for t = 350 : : : 500; theoreti
al results for the de
ay of Eg(� = 1) are also shownfor 
omparison (dashed dotted line). The regression values obtained for the various 
urves areEg(� = 20) = 60:88e�2:759(1)�10�2 t (theory), Eg(� = 20) = 151:34e�2:9(1)�10�2 t (simulations),Et(� = 20) = 181:08e�3:116(1)�10�2 t (theory), Et(� = 20) = 97:65e�3:1(1)�10�2 t (simulations), andEg(� = 1) = 224:51e�4:4144(1)�10�2 t. Digits in parenthesis indi
ate the regression error in thelast digit; regression has been 
arried out on the mean values. (b) Finite size e�e
ts by plottingsimulation results for the generalization error for systems of size N = 1000 (dashed) and N = 500(dotted) lines.
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FIG. 3. An unrealisable s
enario; a system 
omprising two student ve
tors K = 2, is trainedon examples provided by a system 
omprising three orthonormal tea
her ve
tors M = 3. Theinitial 
onditions used are R011 = 0:05, Q011 = 0:4, Q022 = 0:6, with all other overlaps set to zero,the learning rate is � = 1 and the system size used for simulations is N = 1000. Simulation resultswere averaged over 10 trials, presenting both mean values and error bars. (a) The dependen
eof generalization and training errors on time with � = 20; the inset shows the 
orresponding Qvalues. Lines represent theoreti
al values and symbols represent simulation results, upper lines
orrespond to diagonal Q values and the lower lines to o�-diagonal values). The inset of (b)shows the 
orresponding R values, the upper 
urves represent student ve
tors that emulate spe
i�
tea
her ve
tors while the lower 
urves represent 
ross overlaps between student ve
tors and tea
herve
tors emulated by other student ve
tors; the middle 
urves represent overlaps between studentve
tors and the tea
her ve
tor that is not emulated by any of the student ve
tors in parti
ular. (b)The asymptoti
 (t = 1000) values of the generalization (dashed line and 
ir
les) and training errors(dotted lines and �) for di�erent � values, 
omparing theoreti
al (lines) and simulation (symbols)results.
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FIG. 4. The e�e
t of additive Gaussian output noise on the evolution of the training andgeneralization errors and on the ma
ros
opi
 variables in the 
ase of K = M = 2. The initial
onditions used for the student ve
tor length are Q0ii = 0:5; Q08i6=j and R0in are set to valuessampled uniformly in the range [0; 1=pN ℄, 
orresponding to the system size N used in simulations.The learning rate is � = 1, the examples ratio is � = 20 and the noise level � = 0:2. The systemsize used in simulations is N = 1000 and the results were averaged over 10 trials ea
h.
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FIG. 5. Additive Gaussian output noise in the 
ase of K = M = 2; the learning rate usedand the initial 
onditions are as in Fig.4. The system used for simulations is of size N = 1000and results were averaged over 10 trials for ea
h point. (a) The dependen
e of generalization andtraining (inset) errors on time for di�erent noise levels � = 0:1; 0:2; 0:3 (from the bottom up) inthe 
ase of � = 20. (b) The same for the 
ase of � = 12 and � = 0:1; 0:3; 0:5.
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FIG. 6. The asymptoti
 values of generalization and training errors (measured at t = 1000)for di�erent � values with a �xed additive Gaussian output noise level; the 
ase 
onsidered, thelearning rate used and the initial 
onditions are as in Fig.4. The system used for simulationsis of size N = 1000 and results were averaged over 10 trials for ea
h point. (a) generalization(higher 
urve) and training (lower 
urve) errors for � = 0:3, where the dotted line represents theasymptoti
 value of both training and generalization errors as � be
omes in�nite and to whi
hboth errors 
onverge. The inset shows for 
omparison the 
orresponding generalization (higher
urve) and training (lower 
urve) errors for � = 0:1. (b) The dependen
e of generalization erroron � for di�erent noise levels, � = 0:1 (lower 
urve) and 0:3 (higher 
urve). The inset shows the
orresponding dependen
e of �Eg = Eg(�) � Eg(1) on ��1, for � values high enough for thesystem to es
ape the symmetri
 phase; the noise levels used are � = 0:1 (lower 
urve) and 0:3(higher 
urve).
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 values of generalization and training errors (measured at t = 1000)for di�erent additive Gaussian output noise levels � with a �xed � = 20; the 
ase 
onsidered, thelearning rate used and the initial 
onditions are as in Fig.4. The system used for simulations isof size N = 1000 and results were averaged over 10 trials for ea
h point. Using simple regressionte
hniques we �nd that the asymptoti
 values of both Eg and Et depend approximately on �2 (forboth theory and simulations). The inset shows the log-log-plot of the asymptoti
 values of Eg andEt on �.
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FIG. 8. Training with regularizers. The 
ase 
onsidered, the learning rate, the system size usedfor simulation and the initial 
onditions are as in Fig.4. (a) The dependen
e of generalization andtraining errors on time for di�erent regularizer (
) values, where generalization errors (the upperthree) are for 
 = 0:01, 
 = 0:001, 
 = 0:0 from the bottom to the top and training errors (thelower three) are from the top to the bottom; symbols show the simulation results for 
 = 0:01and 
 = 0:0 (simulations for the 
ase of 
 = 0:001 have been omitted for brevity). The noise levelused is � = 0:6 and � = 12. (b) The asymptoti
 values of the generalization error (measured att = 1000) for di�erent � values and �xed noise level � = 0:3. The upper 
urve represents the 
aseof no regularization while the lower 
urve is for 
 = 0:005. The inset shows the 
orrespondingdependen
e of �E = Eg(�) � Eg(1) on ��1, where the simulation results are shown by symbolswith no error bars for brevity.
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