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Abstract

We study the dynamics of on-line learning in multilayer neural networks
where training examples are sampled with repetition and where the number of
examples scales with the number of network weights. The analysis is carried
out using the dynamical replica method aimed at obtaining a closed set of
coupled equations for a set of macroscopic variables from which both training
and generalization errors can be calculated. We focus on scenarios whereby
training examples are corrupted by additive Gaussian output noise and regu-
larizers are introduced to improve the network performance. The dependence
of the dynamics on the noise level, with and without regularizers, is exam-
ined, as well as that of the asymptotic values obtained for both training and
generalization errors. We also demonstrate the ability of the method to ap-
proximate the learning dynamics in structurally unrealizable scenarios. The
theoretical results show good agreement with those obtained from computer

simulations.
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I. INTRODUCTION

Artificial neural networks provide an important tool for tackling non-linear problems
complementary to existing statistical methods (for review see [1,2]). The optimal selection
of the network parameters on the basis of examples is termed learning and may be carried
out in a variety of methods and techniques. The efficiency and success of the training process
are in the heart of the method itself and play a significant part in determining the usefulness
of artificial neural networks as a whole.

Significant effort has been invested over the years in optimizing the training methods
as well as the choice of training parameters and regularization methods. These have been
successfully used in practice, although most of the training methods used as well as the
setting of the training coefficients are based on heuristic observations.

One of the most powerful and commonly used approaches to training large layered net-
works is that of on-line learning of continuous functions via gradient descent. On-line learn-
ing refers to the iterative modification of the network parameters according to a prede-
termined training rule, following successive presentations of single training examples, each
representing a specific input vector and the corresponding output. This approach has been
widely and successfully used for training large networks [3] and is arguably the most efficient
technique for these tasks.

Significant progress has been made in analyzing the dynamics of supervised on-line learn-
ing in multilayer networks via methods of statistical physics (reviews can be found in [4]
and [5]). Most of the analyses (e.g. [6-8]) concentrate on the case of infinite training sets,
where training examples are sampled without repetition and in which there is no correla-
tion between the the network parameters and the examples presented at each training step.
They successfully explain the various training phases and the emergence of generalization
abilities but lack a vital aspect of the learning process, which may seem insignificant at first
sight, assuming that the training set is large. However, the emerging correlations between

successive training steps give rise to some of the most harmful effects in neural networks



training, such as overfitting, to which the above theory is oblivious.

A more realistic scenario is that where the number of training examples scales with the
number of free parameters, and the examples are sampled with repetition. This gives rise
to correlations between the network parameters and the training examples, which clearly
affect the learning process. One of the most significant aspects of having a fixed example set
is the distinction between the two key performance measures: the training error, measuring
network performance with respect to the restricted training set, and the test (generalization)
error, calculated for all possible inputs sampled from the true distribution. The former may
be monitored in practical training scenarios, while the latter (the minimization of which is
the true aim the learning process) can only be assessed up to some confidence level.

The analyses of learning from fixed example sets introduced so far [9-13] have mostly
considered single layer systems, focusing on specific (usually simple) learning rules. In
addition, most of these studies have been restricted to batch learning, where the network
parameters are modified only after the complete example set has been presented.

The current paper builds upon a new approach we recently presented for the case of single
layer networks [14], based on the dynamical replica method, which enables one to analyze
a broad range of training rules and network configurations which can treat both on-line
and batch learning scenarios. Preliminary analysis of noiseless, realizable and unrealizable
learning scenarios in multilayer networks were briefly described in [15]. Here, we extend
the analysis to the case where training examples are corrupted by additive Gaussian output
noise and examine the effect of regularization on the training dynamics. We also study the
dependence of the asymptotic training and generalization errors on the size of the example
set provided, with and without regularization. For brevity we will restrict the analysis to
the case of on-line learning and not consider here the case of batch learning at all.

The paper is organized as follows: Section II provides the general framework and the
theoretical basis for the analysis. In section 11T we present results obtained for the noiseless
realizable case, followed by results obtained for an unrealizable training scenario where the

model network is incapable of realizing the underlying rule due to structural limitations



in section IV. Section V looks at cases where training examples are corrupted by output
Gaussian noise, while section VI examines the impact of regularization on the network
performance. We summarize our results and discuss the advantages and drawbacks of the

current analysis in section VII.

II. THE FRAMEWORK

We concentrate on information processing tasks in the form of maps from an N-
dimensional input space €& € IRY onto a scalar ( € IR, realized through a parametrized
function o (J,€) = YK, ¢ (J; - €). This function can be viewed as a two layer neural
network, where ¢ is the activation function of the hidden units, taken here to be the error
function g(x) = erf(x/v2); J = {J;}i<ick is the set of input-to-hidden adaptive weights
for the K hidden nodes, and the hidden-to-output weights are set to 1. The activation of
hidden node ¢ under presentation of the input pattern &€" is denoted z! = J; - €. This
general configuration, usually referred to as the ‘soft committee machine’ [7,8], encompasses
most of the properties of general multilayer networks. Training examples are drawn from
a finite set D and are of the form (£*,¢*) where u = 1,2,..,p. The components of the
independently drawn input vectors & are uncorrelated random variables with zero mean
and unit variance. The scenarios examined so far [15] focused on realizable and structurally
unrealizable cases, where the corresponding output (* for the various examples is given by
a deterministic teacher of an architecture similar to the student, except for a possible dif-
ference in the number M of hidden units: ¢* = 32 g (B,, - £"), where B = {B,,}1<n<um
is the set of input-to-hidden adaptive weights for teacher hidden nodes. In this paper we
will also consider the case of noisy examples, where the teacher output is corrupted by ad-
ditive Gaussian output noise, denoted as p*, the components of which are independently

2 corrupting the differ-

drawn uncorrelated random variables of zero mean and variance o
ent examples. In this more general case the corresponding teacher output is of the form

(=M g (B, £&")+ p". The activation of hidden node n under presentation of the



input pattern &" is denoted y# = B,, - £". We will use indices i, j, k, ... to refer to units in
the student network and n,m, ... for units in the teacher network. The contribution to the
local field due to the noise variable will be denoted as z. Sums over the various indices will
be considered from 1 to K or to M respectively. The general framework [14,15] allows for

the analysis of any training rule G of the form

JH =J + %s(l) g;l¢', o'l - %Jﬁ 1)

where [ represents the current time step in which a single example is randomly drawn
from D and invokes the parameter update. The last term on the right corresponds to a
simple quadratic regularization term parametrized by v, commonly used in regression tasks
where examples are corrupted by noise, the usefulness of which will be examined in the
current manuscript. Here we concentrate on the most common on-line learning scenario for
regression tasks, where the function G together with the last term in Eq.(1) is the gradient

with respect to the parameters J of the quadratic error measure (per example)

E(J,f) =

DO | —

1 K
[U(Jaf)—C]2+§%ZJi'J¢ (2)
1[&E M 1y K
Z—lzg(l‘i)—zg(yn)—z] +=-L5 T J
2 =1 n=1 2#2.:1
and G is of the explicit form

Gi(Tj=1..K, Yn=1..M, 2) = \/%6—%910? [._19(%‘) - Z 9(yn) — Z] . (3)

n=1

In the case of an infinite training set there is no correlation between the current example
and those presented previously. As a consequence of that, no correlation between the student
vectors and the examples is building up, and the joint probability distribution for the student
and teacher node activations ¢ and y (and the noise z) takes a multivariate Gaussian form.
This is no longer the case here, when such correlations do exist and the joint probability
distribution takes a more general form, which depends on the training patterns and changes
dynamically throughout the learning process. In the case of corrupted training examples

one should also consider the emerging correlations between the student vectors and the noise



corrupting the examples. Due to the pivotal role played by this joint probability distribution
it seems natural to define it as one of the macroscopic variables [14],
K

S IL6— 7i-€ T o~ Bu-€) 6z = %) (4)

=1

P(x,y,z,J) =

Q=

together with the overlaps R;,(J) = J; - B, (between student and teacher weight vectors)
and Qi (J) = J; - Jy (between student weight vectors). An additional macroscopic variable
that is worthwhile mentioning, although it is invariant with respect to the learning dynamics,
is T,,,, = B,, - B,,,, representing the overlap between the various teacher weight vectors. To
simplify the calculation we will only examine here the case of orthogonal teacher vectors of
unit length T,,,,, = 0,,,; extending the results to the general teacher case is straightforward.
For convenience we will also introduce the vector r = (x,y, z) of dimensionality K + M + 1,
representing student and teacher local fields and the noise contribution.

The main motivation in choosing these macroscopic variables is that in the thermody-
namic limit, N — oo, they are sufficient for calculating the two main performance measures:
the generalization error, which corresponds to averaging E(J,¢) = slo(J, € —¢ ]* over

the Gaussian input distribution [§]

1 g Qi . Tom
E, = — sin™! + Y sin™!
o [% V1I+Qiuv1+ Qs ,;1 V1+ T /1T+ T
R; 1
— 2 Sinil n + —0'2 5
Zn: \/1+Qz~z~\/1+Tnn] 2 (5)

and the training error

-

using the abbreviation (f(r)) = [dr P(r)f(r). The regularization term has been omitted

2

[ ig(rm) - f)g(yn) - z] > : (6)

1
2 i—=1 n=1
in both measures as its contribution is limited to the learning dynamics and does not play
any role in measuring the success of the training process.

To solve the dynamics, one straightforwardly derives a set of coupled differential equa-

tions [14,15] describing the evolution of the macroscopic variables in the limit N — oc:
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and
P _ ! dx' P(x' 4] gi( d(z
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N 22 2,270 a(x: (8)

n/dr'gi(r')A(r; r') — *ya:iP(r)}

using a matrix representation for () and R and defining the matrices
= <QXT>, W = <gyT>, and 7 = <QQT> . 9)

This set of equations cannot be closed in general; the difficulties originate in the Green’s

function

Ar;r') = <[ [d1 pt<J|QRP>}1 [ 43 p(JIQRP) 6(x—T - €) 5(y—B -£) 6(z — p)
X (1-0gg)(€-€) 6(x'~T -€) 6(y'~B - €) 6~ ) )_ (10

where p;(J|QRP) is the weight probability density conditioned on the values of the macro-
scopic observables {Q, R, P} at time t (the microscopic measure in macroscopic sub-shells
of the ensemble), and (-)- represents averaging over all realizations of the training set. The
Kronecker delta comes to filter out the case in which both vectors & and &' are identical
((5551 = 1). We follow the derivation of [14] and employ the dynamical replica theory [16]
to close the equations (7,8) by making two key assumptions:

(1) For N — oo the macroscopic observables obey closed dynamic equations; we may thus

assume equipartitioning of probability (or maximum entropy) in the macroscopic sub-shells:
p(TIQRP) ~ TT01Qu = Qu(DITT 8l — RN TOPE) - PG (1)

(77) The macroscopic equations are self-averaging with respect to the specific realization

of D; this allows for the averaging of the macroscopic variables over all training sets.
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Both assumptions can be regarded as good approximations in general and will be val-
idated against simulation results. They may become exact in some cases (e.g., Hebbian
learning); we believe the second assumption to be exact in general. Following the calcula-

tion of [14] and employing the replica identity

() o rafioins)

a=1
one obtains, under the further assumption of replica symmetry (for details see Appendix A

and [14]), a closed form for Eq.(8)

gtp /dX P(x,y,z lH(S[% —; —1Gi(x.y, 2 H(S ] -
- ai [(nWy +U(x = Ry) + X(Q — RR")®(x)]; — ya;) P(r)]
n? 0*P(r)
+? % Zik a$za$k ,

where we have introduced the matrices B = (Q—q)"'L, X = (V-WR")(Q—RR")™'-U,
LLT = ¢—RRT and U = <gq>T> , and where

01) = g [ DV ((Q =0 (e =)L), (3(x =), (14

using the notation Dv = [T, 1/v27 e~2% duv; (used throughout the paper) and

[dx' M(x')y,z2) e"’TB"f(X,X’)
[dx' M(x',y,z) eX" BV '

(f(6,x), = (15)

The K x K matrix ¢ and the function M (x',y, z) are derived from the replica symmetric
calculation; the former is related to the cross-replica overlap matrix ) while the latter is an
effective measure derived from the conjugate variable to the conditional probability P(r).
This closed set of equations can be solved iteratively by calculating ¢ and M (x',y, z) at each
step by solving a set of saddle-point equations (for details see Appendix A and [14]).
However, obtaining such a solution is extremely expensive computationally since a large
set of nonlinear saddle-point equations, Eqs.(A16,A18), should be solved at each time step

to obtain a solution to Eqgs.(7) and (13). The computation which was just possible in the



case of single layer networks, is clearly infeasible in the case of multilayer networks. We
therefore resort to the large a approximation which was shown to provide highly accurate
approximated solutions in the single layer case even for low « values (as low as o = 0.5),
and enables one to obtain a simple form for Eq.(13) without solving a set of saddle-point

equations at each time step

0
8tp /dx P(xX,y,z [Hé i — T —nGi(x,y, 2 H5
n’ 0*P(r)
V%)P( )] + ?gzzkm ; (16)
where
T —1
Vv Q R
Iir) = |~ 165" (y,2)) - WRTI(Q — RET)'[X(y, 2) — Ry
W R T y

i
in which x(y, 2) = [dx x P[x|y, z]. The large o approximation is particularly suitable to
the model examined here, since the main features of learning in multilayer networks, such
as the breaking of internal symmetries and the asymptotic convergence, can be observed at
sensible time scales only for relatively high o values.

The dynamical equations (7,16) can be solved in principle to provide rather accurate
approximated solutions. However, obtaining the solutions in the case of multi-layer neural
networks is still difficult, especially when the network size increases, as one should moni-
tor numerically the evolution of a general multivariate probability distribution; and solve
numerically the differential equations (16) and (7). Using the methods used in the single
layer case would require monitoring tens of thousands of variables already in the case of
K = M = 2. To make the calculation feasible in the case of multilayer networks we look for
a parametric approximated representation of the probability distribution. We have consid-
ered two different possibilities: a mixture of multivariate Gaussian distributions (described
briefly in Appendix B) and the local Gaussian approximation (derived in Appendix C),
where the conditional probability P[x|y, z| is replaced by a Gaussian one with y and z-

dependent mean x(y, z) and covariance matrix {¥;;(y, z)}. The first representation can in
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principle model any given probability distribution to the desired accuracy, given a sufficient
number of Gaussian bases, and provides simple expressions to the equations (7) as most of
the integrals can be carried out analytically; however, the solution of equation (16) requires
the continuous update of the various parameters in the representation used which can be
done in principle but may be computationally difficult due to the variability in sensitivity of
the various parameters. The second representation is more limited and assumes a Gaussian
distribution with respect to x for each given (y, z) vector; however, it can be solved ana-
lytically and is therefore easier to handle as long as the approximation used is satisfactory.

Here we present solutions based on the second representation

1
VRmXIS(y, 2)]

Using the representation (17) in Eq.(16) results (after some tedious algebra) in the following

Plxly.2] = exp |5l %y, 2T My D - x(r, 2] - (17)

dynamical equations for x(y, z) and for ¥;;(y, 2)

d

Zi(y.2) = 10i(y.2) + n[Wy + Y (R(y, =) - Ry, (18)
%Ezk(y, = é [n(Vit(y 2) + Vai(y, 2) = Gily, 2)x(y, 2) = Gely 2)2:(y, 2) + 1 Zu(y, 2)|

+n[(ST(y, 2))ik + (SE(Y, 2))ri] + 0° Zir

with the matrices S = (V — WR")(Q — RR")™" and Y = (V — (Gx"))(Q — RR")™!
and with G;(y, z) = [dx G;(v)P[x|y, 2], Vie(y,2) = [dx Gi(r)z,P[x|y, 2] and Zy(y,2) =
Jdx Gi(r)Gy(r) P[x]y, z].

Equations (18) and (7) are solved numerically from appropriate initial conditions, pro-
viding the theoretical prediction for the evolution of the macroscopic variables, and both

generalization (5) and training errors. The latter takes the expression
] 2
E, = 3 /dydzP(y, z) /de[x|y, 2] [Z 9(yn) + 2 — Zg(a:l)]
/dydzP Y2 {Zg y)g(yn) =23 9(0:)9(yn) + 3 Jg(i,j)] (19)

ij
with 01 = fi/\/ 14 E“ and
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To(i, ) = /Da: p <\/§ T+ x) p (\/zzﬁ 1 gj_)—%z?]) (20)

III. THE NOISELESS REALIZABLE CASE

Equations (18) and (7) form the basis to our numerical solutions in the various learning
scenarios. Firstly, we validate the analysis in the noiseless realizable scenario by comparing
the results to those obtained from numerical simulations. In this section we do not consider
the case of noise (i.e, 0 = 0) or regularization (i.e., 7 = 0).

For brevity we will restrict our experiments in this section to the case of K = M = 2
and orthogonal unit teacher vectors, Ty, = dmp (the Kronecker tensor). To facilitate the
comparison between the analytical solutions and the simulation results we introduce fixed
initial conditions, breaking the inherent symmetries in the system macroscopically. This
is essential for investigating the learning dynamics beyond the symmetric phase as it may
take a prohibitively long time to escape the symmetric plateau otherwise, as in the case
of infinite training sets [17]. We use the following initial conditions for both theory and
simulations: Q% = Q% = 0.5, QY, = Q%, = 0, R}, = 0.001, RY, = R}, = R, = 0. The
initial joint probability P(r) is assumed Gaussian, with the corresponding parameters. The
initial conditions for equation (18) are X(y, 2)|;—o = Q° — R°(R%)" and x(y, 2)|;—0 = R'y;
the learning rate used is n = 0.5. We first investigate the accuracy of our approximation
in the case of low « values, where the accuracy of the approximation is expected to be
the worst due to the (large «) approximation used. However, in these cases we cannot
observe the breaking of the symmetric phase for computationally feasible system sizes. We
will therefore concentrate on the prediction accuracy within the symmetric phase, where all
vectors of the student system emulate the various vectors in the teacher system with equal
success. Figure 1 shows the numerical solutions of the analytical equations in comparison
to simulation results obtained for various a values (v = 1,2,5). The theoretical values are

represented by solid lines and the simulation results by symbols. Simulation results were
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obtained for a similar system of size N = 500, initialized at random, restricting the overlap
values to the ones used for the analytical solutions. Simulation results were averaged over
20 trials and the figure shows both mean values and error-bars for all cases (a = 1,2,5).
Figure 1a shows the generalization errors as a functions of time, with the training error for
the case of @ = 5 added for comparison (dashed line); in all of our experiments, each unit of
time corresponds to the presentation of a/N examples selected at random. Figure 1b focuses
on the evolution of the training errors, where the generalization error (o = 5) is added for
comparison. The insets show the evolution of the various overlaps for the case of &« = 5 in
comparison to the results obtained from simulations (@) values in figure 1la and R values in
figure 1b). We see that the results obtained are in good agreement with the simulations, even
at these low « values. It is only fair to mention that the discrepancy between the theoretical
results and simulations will increase at later times due to the accumulating errors.

However, the main interest of the neural networks community, in the case of multilayer
networks, is in the symmetry breaking process, whereby specific vectors of the student
system specialize, each learning to imitate a specific teacher vector. In addition, one would
also like to gain insight into the convergence phase and its dependence on the value of a.
In figure 2a we show the evolution of both the generalization and training errors for the
case of a = 20 which is sufficiently high for observing the symmetry breaking phenomena;
the initial conditions and learning rate used are similar to those of Fig.1. The theoretical
values for the training (lower) and generalization (higher) errors are represented by the solid
lines; the simulation results for system size of N = 5000 are represented by symbols (mean
values and error-bars) and were averaged over 10 trials. In figure 2b we examine the finite
size effects, comparing the theoretical results obtained for the generalization error to the
simulation results for N = 500, 1000 and 5000. Simulation results for lower N values are
represented by dashed (N = 1000) and dotted (N = 500) lines and were averaged over
30 trials. For brevity, only mean results are presented for smaller N values; error-bars are
generally similar to those of N = 5000.

To examine the decay rate of the training and generalization errors in the asymptotic
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regime we plotted in the inset of Fig.1a the decay of both errors on a logarithmic scale with
respect to the number of training iterations for ¢ = 350...1000; theoretical results for the
decay of E,(ov = oo) are also shown for comparison (dashed dotted line). All three graphs
decay exponentially to their asymptotic values although the prefactors and the decay rates
seem to differ and probably depend on a. The decay rate for the finite o case is clearly

slower than that of the o — oc case as expected.

IV. STRUCTURAL UNREALIZABILITY

While interesting academically, realizable training scenarios are very rare in practical
on-line learning applications. We therefore turn to the arguably more interesting case of
structural unrealizability, where the number of student vectors is smaller than that of the
teacher vectors. It would be particularly important to examine this case due to the approx-
imations taken along the way; we should verify the validity of the theoretical results in this
case, which may result in quite different probability distributions to those obtained in the
realizable scenario. Also in this section we do not consider the case of noise (i.e, 0 = 0) or
regularization (y = 0).

We demonstrate the efficacy of our approach in the case of a two node system (K = 2)
trained on examples provided by a three node teacher system (M = 3), all orthogonal and
of unit length. The equations used are similar to those of the realizable case (18) and (7)
but with a modified M = 3 value. The initial conditions used are R?, = 0.05, Q% = 0.4,
Q5 = 0.6, with all other overlaps are set to zero; the learning rate is n = 1, the number of
examples is a/N, where a = 20, and the system size used in simulations is N = 1000. The
results presented in Fig.3a show a good agreement between theory and simulations and a
qualitatively similar results to the infinite training set case. The insets in figures 3a and 3b
show the corresponding () and R values.

Figure 3b describes the asymptotic values of generalization and training errors for dif-

ferent o values, monitored at ¢ = 1000, once the systems had stabilized (notice that the
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equilibration of the system at ¢ = 1000 is not guaranteed due to the spin-glass dynamics).
The learning rate used is n = 1. It is easy to see that the agreement between theory and
simulations is generally good but deteriorates as « decreases. It is difficult to find the exact
manner in which both generalization and training errors decay to their asymptotic values
(i.e. Eyj(a = 00) = Ey(av = o0)), as a function of «, due to its sensitivity to the inherent

numerical errors.

V. ADDITIVE OUTPUT NOISE

Finite a training scenarios are of particular interest in cases where the training data is
corrupted by some type of noise, being the most common case in practical training scenarios.
This is a particularly important aspect of the current study as it enables one to assess existing
methods for alleviating the effect of noise on the model’s generalization performance. Similar
scenarios have already been examined in the single layer case [18] and discrete learning rules;
we will focus here on the multilayer case representing a continuous mapping, trained by
gradient descent.

The equations used are similar to those of the realizable case, (18) and (7), except for
the re-activation of the noise term. No regularization is used in the current section, setting
7 to zero.

In figure 4 we demonstrate the effect of additive output noise. We see that the effect
is mainly in the length of the symmetric phase and in the convergence to a suboptimal
asymptotic solution (a constant learning rate of n = 1 is used). We examine the case of
K = M = 2, using initial conditions of the form: Q% = 0.5; QV,; and R}, are set to
values samples uniformly U[0,1/v/N] according to the system size N used in simulations.
The number of examples used is aN with ov = 20 and the noise level (standard deviation
of the Gaussian distribution) is ¢ = 0.2. The system size used in simulations is N = 1000.
Figure 4a shows the evolution of the generalization (higher) and training errors as a function

of time, while figure 4b and the inset show the evolution of the order parameters ) and R
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respectively. The upper ) and R curves correspond to the diagonal overlaps while the
lower curves represent the off-diagonal parameters. We see that the analysis is in general
consistent with results obtained from simulations, although inconsistencies occur around the
transition point between the symmetric and asymptotic regimes.

Next we examine the efficacy of our approximations as the noise level changes, shown
in figure 5a. We plotted the evolution of the generalization and training (inset) errors
as a function of time, comparing them to simulation results averaged over 10 trials each.
Initial condition, learning rate and the ratio of examples a are similar to those of the
previous figure. We see that our approximation becomes less accurate as the noise level
increases, especially around the breaking of the symmetric phase. This is probably due to
the deteriorating accuracy of the local Gaussian approximation as the noise level increases.
For low a values, when the inherent system symmetries do not break, our method provides
a good approximation to the results obtained in simulations, as shown in figure 5b for the
case of @ = 12. In both cases, the theoretical asymptotic results are in good agreement with
the simulations.

In principle, one could obtain from the analytical solutions an estimate to the improve-
ment in performance that can be obtained from employing the early stopping technique as
well as an estimate for the optimal point in which early stopping should be applied. However,
the disagreement between the results obtained analytically and the simulations is mainly
around the point in which the internal symmetries break (and mainly at high noise levels),
making such an estimate inaccurate. We assume that employing a refined representation of
the conditional probability distribution would enable one to make accurate estimations of
this type.

In figure 6a we examine the dependence of the asymptotic values (measured at ¢t = 1000,
once the system has stabilized) of both generalization and training errors on the value of «,
having a fixed noise level 0 = 0.3 (in the inset ¢ = 0.1). We see that our approximation
provides a good description for large o values, becoming less accurate for low values as

one might expect. In addition, we see that, as expected, the gap between training and
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generalization errors, for a given «, increases with the noise level. The dependence of
generalization error on « for different noise levels, 0 = 0.1 (lower curve) and 0.3 (higher
curve) is shown in figure 6b. As expected, the difference between the asymptotic values
decreases as a grows.

To examine the decay of the generalization error to its asymptotic value we plotted in
the inset of figure 6b the dependence of AE, = E,(a) — E,(c0) on o !, for a values high
enough for the system to escape the symmetric phase. The decay seems to be proportional

to a~ !

(e.g., the power values obtained from regression in the case of o = 0.1 are 1.0(1) and
0.9(3) from the theoretical results and simulations respectively), and depends linearly on o?;
dividing the residual error for the noise levels presented in the figure 0.3 (higher curve) and
o = 0.1 (lower curve) gives, approximately, a constant value of 9.

To examine the dependence of both training and generalization errors on the noise level o
we plotted in figure 7 the asymptotic values of generalization and training errors (measured
once the system has stabilized) for different additive Gaussian output noise levels with fixed
a = 20. Using conventional regression methods we find the following dependence of E, and
E; on the noise level o: E, ~ 1.060%*() (theory) and E, ~ 0.9402%2®) (simulations) and

E; ~ 0.630"%°7®) (theory) and E; ~ 0.646020"9%%(3) (simulations). This is in agreement

with our assumption of a quadratic o dependence.

VI. REGULARIZATION

One of the main problems facing practitioners in the field of neural networks is the
improvement of generalization ability in trained networks, especially when noisy training
data are provided. This is typically done by imposing constraints on the space of solutions
(for a general introduction to the problem and the methods used see [2]), reflecting our
prior belief in the type of solution we are looking for. One of the most common mechanisms
for adding such constraints is the introduction of a quadratic regularization term, as in the

last term on the right of Eq.(2), which leads to a modification of the dynamical training
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equation (1).

Most of the analyses linking the regularization to the noise level corrupting the data are
based on single layer systems or on linearizing the system in the asymptotic regime. Ideally,
we would have liked to exploit the current analysis to obtain an analytical expression for
the optimal regularization term to be used for data corrupted by additive Gaussian noise
of a certain variance. However, the current framework, based on equations (18) and (7), is
solved numerically, making it difficult to provide the desired link analytically. We therefore
demonstrate the effect of regularization through numerical solutions obtained in specific
cases.

Firstly, to examine the effect of regularization on the both training and generalization
errors in the symmetric plateau, we present the training scenario where K = M = 2,
a = 12 and where training examples are corrupted by additive Gaussian output noise of
standard deviation ¢ = 0.6. Simulations were carried out using a system of size N = 1000,
and simulation results were averaged over 10 trials. Figure 8a shows the evolution of the
generalization and training errors for different v values, where generalization errors are for
v = 0.01, v = 0.001 and v = 0.0 from the bottom up, while training errors from the top
down. Lines represent the theoretical results, while symbols represent simulation results. It
is clear that while regularization has little effect on the training error in that phase it clearly
reduces the generalization error. It should be noted that, although the main significance of
regularization is in the asymptotic regime, its effect on the symmetric phase is also important
as many practical training sessions are effectively terminated at some sub-optimal symmetric
plateau.

To examine the effect of regularization asymptotically we plotted in figure 8b the depen-
dence of the asymptotic generalization error on o, measured at ¢ = 1000 for fixed o = 0.3 and
regularization value of v = 0.005 (lower curve); the upper curve represent values obtained
with no regularization.

One should note that in the case of infinite training sets it has been shown that there

is no advantage in using a quadratic regularization term with a constant prefactor in the

17



asymptotic regime [19], and in fact, introducing such a term always results in a higher
asymptotic (in training steps - t) generalization error. Therefore, there must be a value of
a, for a given noise level and regularization prefactor, above which the introduction of a
quadratic regularization term is detrimental to the asymptotic performance. This critical
value of a can be determined in principle for a specific scenario using our analysis; however,
in practice the numerical inaccuracies reduce the reliability of such a prediction.

The inset of figure 8b shows the dependence of AE, = E,(a) — E,(cc) on a~!, for
sufficiently large a such that the system escapes the symmetric plateaus. The theoretical
results are in agreement with the simulations, indicating (approximately) a 1/a decay in
the generalization error to the asymptotic values (the regression power figures obtained
numerically from both theory and simulations are generally around the decay power of 1,

but have significant error-bars).

VII. SUMMARY

We presented a theoretical framework for the analysis of on-line learning scenarios in
multi-layer networks, where the training examples are sampled with repetition from a fixed
example set. The framework is then used for studying realizable and unrealizable scenarios
as well as scenarios whereby the data is corrupted by additive Gaussian output noise and
where regularizers are employed for improving the networks generalization performance.

To obtain the set of equations representing the network dynamics we employ the dynam-
ical replica method; the conditional probability distribution of teacher and student local
fields, P[x|y, z], is then approximated by the local Gaussian distribution in order to facil-
itate the computation. The theoretical results are compared with simulation results and
show good agreement in most cases.

The results obtained support heuristic methods used by practitioners, such as early stop-
ping and regularization, and enable us to derive some general asymptotic dependencies of

both training and generalization errors on the noise level introduced and on «. Unfortu-
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nately, due to the complexity of dynamical equations and the computational difficulties we
have experienced in solving them, our ability to provide generic analytical solutions is lim-
ited. These would have been highly desirable for deriving analytically relations between the
training and generalization conditions in noisy scenarios, in both the symmetric phase and
asymptotically, and to make a quantitative link between the noise level and the optimal
regularization to be used.

Other questions that are of interest are to do with the length of the symmetric phase
and its dependence on the ratio «, the learning rate, the architecture chosen and the initial
conditions. In addition, it would be desirable to define optimal training parameters and
learning rules in a principled manner, similarly to the studies carried out in the case of
infinite training sets [20]- [24].

The current paper prepares the basis for future studies along these lines, which will

clearly be of great interest to practitioners.
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APPENDIX A: REPLICA CALCULATION OF THE GREEN FUNCTION

The main objective of this appendix is to provide a rough derivation of the Green’s
function AJ...], using the dynamic replica theory and following [14] and [15], from which
we obtain the macroscopic dynamical equations (13) in an explicit form. We first carry
out the disorder averages, leading to an effective single-spin problem. The integrations are
carried out using saddle-point methods for the replicated order parameters at each time

step, employing the replica symmetry (RS) ansatz.

1. Disorder Averaging

Following the dynamic replica theory in [16], we write the Green function as

n—0 N—oc

A(r;r') = lim lim <</Hde‘ pi(JY|QRP) Hé(mz —J O I6(yn— By &) 0(z - p)
(661 - 9ge) TToGaL ~ 1) TT60% - B €) 66/~ ) ) 1 (A

noting that the averages over the data sets already include the noise distribution as well,
and that (-)- represents averaging over all realizations of the data set. Using the definition

of P(r;J) and the integral representations for the J-distributions involving P(r), we obtain

A(r;r') = lim lim. H dP°(x") ngf‘ 1‘£ 0(Qu — IO - JY) H 3(Rin — JO - By)

A N Y]
w @iV [ dr P Py(x") / drdr itr

(2m)2(K+NI+1)
1 vy —4i B a g A
% <—2 S (& g)e v Lan P BE
uFtv
Xeiziii‘];{uiZnQ”B“'gﬂifp“iZii;J:-ﬁyiZn%Bn.&iz'p"> (A2)

with the conjugate function P(r).
We first define some relevant functions to facilitate the calculation
D(i:€, p) = et Lo P EBEN-i% 2 £=i T, inBu iz
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D(t) = (D(t;€,0))

£1(F) = (D€ ) = <%f”)> . (A3)

By using the permutation invariance of the integrations and summations with the pattern
labels, we evaluate the training-set average of the expression for A[...] in Eq.(A2) in the
thermodynamic limit

(pEieee) = (e )
:1’_1§< ) Jang,p>

p
Xge i pJ EBEp)-iY, i €= 5B, €- wp>

D

D
i PJEBE )iy o €Y, @%B"'giélm>

D

' A4
with L(8;#') = X £;(¥)€;(¢'). We can then write the Green function in an integral form,

dominated by saddle points

A(r;r') :/—dfdfl i(Er+i )

(27 ) 2(K+M+1)

N
X lim lim /dqudqudR/ H dpa H) N‘I’[quQR{P}}'C(r:r)

n—0 N— ar DQ(O) (A5)
with
1 A Aa «
)= [ZMQQQ% 23R R) + 3T ﬂ)]
+i2/dr P2(r)P(r) + aln D(0)
,l ) o a. aii o Bn ~af3 8
+ lim _ln/HdJa [ Con @S T B T Bt Dot ITIL] g
Similarly, the joint probability distribution can be obtained
dr irr
P(r) = / @R
th% lim /dqudqudR/ H dPa II) N‘I’[QQQQR{P}}D(I') ) (A?)
n—

D(0)
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Using the normalized expression for P(r) we see that no overall prefactors in the expression

of A[r;r’] or P(r) are to be taken into account. Then we have

df'df', i(Brtdp E(f‘, f',)
A(r;r') :/WE( + ) D2(0) ) (AS)

with the order parameter values defined at the saddle point, and

_ dt e D(1)
P(r) = / (QW)K+M+16 D(0) )

(A9)

Firstly, we calculate the explicit expression for D(0).

2T 2T

x/Df/ D(p/o) eI (T 80 IG+ 3, dn By )& =it
- [1I BT 1 D Bn 1y 1y f D254 5 inin & PO 9.2)

2

0= [Tl dff A2 [ Bnln 22 557 stapti 3 dutize=t 5, P09

n

-1 [Zaﬁlk ay x?xﬁ—I—Q Y onin RindCin+y yn]

xe : (A10)

where Duv is the Gaussian measure as defined before, and where the spin-glass order param-

eters and the overlaps Rj;, between the student and teacher weights are defined as
W=Jr-J;, R,=J' B All
Qe =i " Sk in = i n (Al1)

We now employ the replica symmetric (RS) ansatz: ¢’ = {Qu(a = B),qx(a # B)},
R® = Ry, and P(r) = ix(r). Then D(0) can be further simplified

_ /H di‘zadfﬁ;l H dg;dyn D(Z/O') ei Zmif‘zf‘+z Zn gnyn‘}'é Za x(x%,y,2)
] ™

n

X eié[zaik(Qlk sz Iz Ik: +sz¢ dik Za 7 )(Za i%)+2 Zain Ri”i?gn+zn g%]

_/dead:c H dyn D(z/0) ol D B[ —(RY)i]+ 5 30 x(x°y 2
Xeié[ztxik 22 (Q—q) ikaJfZik Za ?)(Q*RRT)ik(Za i‘i>+2nyi]

W/DyDz/a /H

> / H %675 Zaik EX(Q—q)indy +i ZM. T (2 +ui7(Ry)i}+é Za x(x*,y,2)
. m

d'Ul _ q RRT)
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dv 1.,T Ty—1
_ vt _—=v'(¢g—RR")
— - /DyD z/a)/ |l| _27Te 3

n
dTi 1) xRy v)T(Q g)~'(x Ryv)

[m/“m
:/DyD z/o) /Dv [/der;vr (A12)

with

Qr;v) = 1 eaX(r)—3(x—Ry—Lv)T(Q—q)~ ! (x—Ry—Lv) (A13)

LLT =¢—RRT and B=(Q —q) 'L.
Secondly, the integration on J' can be carried out and the corresponding expression can

be evaluated explicitly using the RS ansatz (in the limit n — 0)

lim — ln
N—)oo

/HdJa —3 Zaik Q?kJ?'J?_QiZain R?nJ Bn"'z Bik qaﬂJa JB]
1 ) . ) o
~ -3 [(n=1)In|Q— [ +In|Q+ (n—1)d + nTx[R"(Q - §)~'RI+ O(n?)]  (Al4)
Together with the rest of the terms in the W[...], we have

hm—=%Pﬂ@w—%ﬂﬂm%fM@%JMQ—ﬂ—TwQ—Q*ﬂ (A15)

~Tr[RT(Q - } /dr )—i—a/DyD(z/a)/Dv In /dx Q(r;v)}

2. Derivation of the RS Saddle-point Equations

~

We then work out the saddle-point equations with respect to @, R,d

~

F=Q-4=(Q-q ", R=—i(Q@—q) 'R, §=—(Q—q) '"(¢—RR")(Q—q) " (AI6)
which allow us to eliminate most variational parameters. Then the ¥ can be simplified as

W= ST(Q - RET)@— ) ']+ 51n1Q — g — [ drx(r)P(r)

+oz/DyD(z/a)/Dvln /dx Q(x,y,z;v)} (A17)
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The saddle-point equation for y(r) results in

22

e 2 eT2? Q(r;v) _
P(r) = \/T 27TU/DV lfdx’ Q(X’,y,z;v)] = P(y,2)P[xy, 2] (A18)

where we have defined P(y, z) and conditional probability P[x|y, z| respectively

22

RELA M (r)ex" BY
Py, =z Plxly, /Dv A19
(v:2) = \/T 210 xly. 2 [fdx’ M(x')y, z)e x'T Bv ( )
with
M(r) = ewX(r)—3(x—Ry)T(Q—q)~ ' (x—Ry) (A20)

3. Explicit Expression for the Green Function

In order to work out the explicit expression for the Green function (A8) we need to
calculate the function £(#;#'). First we take the n — 0 limit of D(t, €, p) (A3), and simplify

the result using the saddle-point equation (A18)
n—1
D(r, €&, p —hm/DyDz/a/Dv{/derv —iF }[/dx@rv)}

- [owotn [ >[5 1G]

— / dr P(r) e=** (A21)

Next we evaluate the &;(f) by working out the partial derivative on ; and separating the

summation over replica indices into two groups: a =1 and a > 1

. 1 o 1o 1 o A
B <[EZ&M’X Jz’j"’azaanx an_zzxi‘]ib_zzy” "] ( E p)>
i an i D

[Z]—' L+ Zf B,j+ Y Ki(#)Jg+ > K.(#)B (A22)
i,a>1 n,a>1
where the RS ansatz is used,
FP(E) = 0 FilE) + (1 = 61) Ki(8) (A23)
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with

Fi(E) = = ([0 (1) D%, €, p))

(10X (0)]D(E: €, p)) (A24)

— i&/D(¢)

O

~

Ki(t) =

Rl

and the index [ runs through all student and teacher indices. We express L(r; ') in terms of
Eq.(A22), performing the summation over the replica indices and taking the limit of n — 0.

We then obtain

A A A

E(f'Q f") = Z {73-7:/2 - /az’@;g] (Qik - Qik) + Z(j}z - ’éz)(ﬁl; - ’C;c)%‘k
ik ik
[

~

(Fo = Ka)(F, = K3) (A25)

~

+

+

2
The Green function becomes

A(r;r') = Z (FiFy, — Kk ] (Qir — qik) + Z(ﬂ — Ki)(Fp — K1) ain
+2_[(Fi = K)(F, = K) + (F = K)(Fo = Kn)] Rin

+ 3 (F = Ka)(Fp = K3) (A26)

using the inverse Fourier transforms of F(#) and K;(¥)

Fi) = [ s A (A27)
K(r) = / (%)i% Ko()eir | (A28)

Making use of saddle-point equation for x(r) (A18) and the expression for D(r, &, p)

(A21), we can work out the explicit expressions of the functions F(r) and KC;(r):

Fi(r) = éP(r)[azX(r)] —[0P(r)] (A29)

(A30)

Ki(r) = éP(y,z) /Dv lfdx' Q(r; v) ] lf dx' Q(x',y, 2 v) [0 (r)]

Qx'y,z;v) [dx' Q(x',y, z;V)
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Separating the index [ to the student (labelled by ¢) and teacher (labelled by n) indices, we

obtain four different functions

Fi(r) = (@ — @)~ (x — Ry)liP(r) + [ In M(x)]P(r) — 9,P(r)
Fa(r) = =[R"(Q — )~ (x = Ry)|nP(r) + [0, In M (r)]P(r) — 9, P(r)
= —[R"(Q — ¢)7'(x = Ry)]|,P(r) + y. P(r)
+P(y, 2) / Dv[ M(r) &= ]

[dx' [0, M(x,y,z)] e BY
[dx' M(x',y,z) ex'"BY

[dx' M(x',y,z) ex"BY

(A31)

Kir) = ~[(Q - ¢) ' RyiP(x) — 8,P(x) + [0 In M(x)]P(x)

M(r) X Bv _fdxl (Q - q) "X, M(x,y, 2) ox' T Bv
+ P(y, z) /DV lfdx’ M(X’7 Y7 z) e)(/71B‘,‘| fdx’ M(X’7 y7 Z) eXlTBv ]
Kn(r) = [R"(Q — )" Ry, P(r)

- P(y.2) [ Dv[ Ve ] [ dx [RT(Q = q) XMy, ]

[dx' M(x',y,z) e BV [dx' M(x',y,z) e BV

P z)/DV M X" Bv -fdx’ 0,M(x,y, z)] e B
Y [dx' M(x',y,z) eX” BV [dx' M(x',y,z) e BV

(A32)

Rescaling the above functions by P(r): F(r) = Fi(r)/P(r), and K;(r) = Ki(r)/P(r),

and defining the function

Br) = Fi(x) = Kilo) = g [ Dv (@ = 0) e =x))), (=), (459

xly, 2 *

with the abbreviation

o Jdx M(X,y, 2) ex'TB"f(X,X’)
(), = LN A E R0 (A34)

we obtain compact forms for F(r) and K(r)

Fir) =@ - ¢)7'(x = Ry)li = [(Q = ¢) ' (¢ = RR")®(r)];
(A35)
Inserting (A33) and (A35) into (A26), we finally obtain the rescaled Green function
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A(r;r') = Pf(‘f; ‘22) (A36)
=y'y' + (x - Ry)"®(r') + ®' (r)(x' - Ry') — ' (r)(Q — RR")®(r')
with @(r) given in (A33). Working out the integration

/ dr' A(r; ') / dr' P(r')G (r') A(r; r') = P(r)[(r) (A37)

with
[(r)=Wy+U(x— Ry)+ X(Q — RRT)®(r) (A38)

and
X=(V-WR)Q-RR")"'-U, U=(g®") (A39)

we finally obtain equation for probability distribution under RS ansatz, that is Eq.(13).

4. The Large o Approximation

In the large o limit, the order parameter matrix ¢ takes the value RRT and the elements
of matrix B are very small. We can therefore use the cumulant expansion up to the second

order to obtain
M(I‘) _ P[X‘y, Z]efé(xfic(y,z))TBl(xffc(y z))+%[xTB/x X (Y,Z)B’X(Y,Z)] 4+ (A40)

overline denotes averages with respect to P[x|y, z] and the matrix B’ is of the form B’ =
(Q —q) g — RRT)(Q — q)!. Furthermore, we have (Q — ¢) ~ (Q — RRT), the function
®(r) in Eq.(A33) and the matrix U in Eq.(A39) become

®(r) = (Q -~ RR") ' (x — %),

U=[V-(gx"(y,2)l(Q— RR")™ (Ad1)

Finally, equation for probability distribution in Eq.(13) becomes to Eq.(16) with the explicit
form of I'(r).
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APPENDIX B: THE MIXTURE OF GAUSSIANS REPRESENTATIONS

A mixture of Gaussians can represent an arbitrary probability distribution given a suf-
ficient number of basis functions. Using a mixture of Gaussians representation for the

probability distribution (in the noiseless case)

T

_1 X=T A_l X—=T)

L
Z exp p
ot / 27T)K+M‘ Al 2 y y
and the parameter set § = [w,, T,, A,], from which the equations for R and @) follow directly:

dRzn _

(B1)

pr [ng i,n,m) =3 I5(i,n,j)| = 7Rin . (B2)
and J
dQlk = pr (Z (i k,m) + 5 (k, i, m)] = 3 (1300, k. ) +I§’(k,i,j)])
+1 pr = 27Quk ] (B3)
where

Zh = 214 ik, g 1) — 2> Ja(isk,j,m) + > Ku(i, k,m,n)
jm mn

The integrals I3, 14, J4 and K, are defined in Appendix C.

The difficulty is in obtaining a set of equations for the evolution of the parameter set
0. This can be done in principle by minimizing some distance measure between the up-
dated distribution P(x,y) and the approximation Q(x,y). We experienced computational
difficulties in carrying it out using a quadratic distance measure, mainly due to the differ-
ent sensitivities of the various parameters. Nevertheless, being capable of representing any

probability distribution, we believe that this representation may allow one to obtain more

accurate results where the local Gaussian approximation breaks down.

APPENDIX C: LOCAL GAUSSIAN REPRESENTATION FOR THE CASE OF

OUTPUT NOISE AND REGULARIZER

For locally-Gaussian approximation, the conditional probability has a form
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1 1
Plxly, z| = exp |—=|x — x(y, 3T x — x(y, . C1
xly. 2] JE 0. P =5l (v, 2)]" =7 (v, 2)] (¥, 2)] (C1)

The main advantages of this approximation are that the integration over the student field x

can be carried out analytically and the partial differential equation for P(r) in Eq.(16) can
be simplified to a set of differential equations for the parameters X(y, z), X(y, z) as described
in Eq.(18).

1. The Equations for the Parameters () and R

Under this approximation, the equations for the macroscopic parameters ) and R in

Eqs.(7) become
dR

— = n/dydzP y,2)W(y,z) — 7R,
dQ = [ dyd=P(y. 2)[V(y.2) + VI(y.2)] + 0 [ dydzP(y. ) Z(y.2) ~ 2@ (C2)
with
2) = zljfg(z‘, ko) =3 Jali b, )
z) = leKg(z',n, ) —]ZLg(i,n,j)
z) = zl: Li(i,k, j,1) — ; > Ju(isk,j.m) + ; Ky(i, k,m,n) (C3)

jm

where the integrals on the right hand side depend on y and z through X(y, z) and x(y, 2).

2. Three Dimensional Integrals

The three-dimensional integrals in Eq.(C3) are given by

2 1
13(1;2a3) = \/;<6 271 29(y3)> = IIFIQQ(yS)a

9 .
J5(1,2,3) = \/i< 37 To g(z3 > =1 [Fug(@l:s) + \/iAce%@ﬂ] )
T T
K;3(1,2,3) = \/§< —37 Y2 9(ys > = T1y29(ys3),
T
2, i
L ]-a27 \/;< 2 1y29 T3 > = 11929(913), (04)
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with (...) = [dx P[x|y,z]... and

BN

T

21

I, = ;<e_21>— ;\/ae ,

D=
e|s
—~
Q
Ot

~—

-~

O13 = (T3¢91 — T1213) P13, A= (91203 — X13512) 013

i =144, ¢13= 1/\/¢1(¢1¢3 —¥%), T =22 — Tt /dy

3. Four Dimensional Integrals

The four-dimensional integrals in Eq.(C3) are given by

2 1,2 1,
L(1,2,3,4) = = (e 71 g (pa)g(na)) = Io(1, 2)9(4)9 (4a).
2 _ly2_ 1.9
Ji(1,2,3,4) = ;<e 23 (23)g(ya) ) = Ia(1,2)g(O123)g ()
2 1,2 1.2
Ky(1,2,3,4) = — (e 271 2%2
1(1,2,3,4) = = (e =1 =g (z3)g(x4))
o Appxr + A1 O
= ]2(1,2)/D$g< Aua:—l—@g) q ( 127 ‘A| 1 4) s (06)
where the two-dimensional integral is defined as
T
2 21 2 1 1|17 z
I(1,2) = <—6_%x%_%‘”5> = ————exp |—= o e : (C7)
T Rvie 2\ z T
with the matrix
o ¢1 Y12 |
Yia P2
and the arguments are defined as
O3 I A (Z1D11 + T2 Do)
Oy Ty — (T1D1g + T2 Dyy)
O123 Ty — (0111 + 2.T5) ith h =C! s ;
\/¢3 — (T1%13 + TpX3) T, Yo3



and

A =
E =
1
D=—
Cl

Yiaz — Fi1, Yaq — Enp
Yizg — Eo1, ¢4 — En
Y13Di1 + X93 Doy Xi3Dig + Yoz Doy
Y14D11 + Yoa Doy, Y14D1g + Yog Do

P2Xii3 — Li12Xa3, PaXig — Yiadoy
P1393 — L1oX3, P1X0s — LioXiy
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FIG. 1. The evolution of the generalization (a) and training errors (b) as a function of time
for @« = 1,2,5. Solid lines represent analytical results while simulation experiments are presented
by symbols; both were initialized in a similar manner. Simulation results were averaged over 20
trials; both mean values and error-bars are presented. Theoretical results for the training and
generalization errors in the case of & = 5 are presented in (a) and (b) respectively for comparison
(dashed line). The insets in both figures show the evolution of the various overlaps (@ and R
respectively, different symbols represent the various overlaps) in the case of a = 5, comparing
theoretical results and simulations (mean values). The upper @ lines and symbols correspond to

the diagonal values while the lower lines correspond to the off-diagonal overlaps
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FIG. 2. The evolution of the training and generalization errors in comparison to those obtained
from simulations for the case of K = M = 2, @ = 20. (a) The theoretical values for the training
(lower) and generalization (higher) errors are represented by the solid lines; the training error
simulation results for system size of N = 5000 are represented by symbols (mean values and
error-bars for 10 trials). The inset shows the semilog plot of Fy (solid and circles) and F; (dashed
and crosses) for ¢ = 350...500; theoretical results for the decay of E (o = o) are also shown
for comparison (dashed dotted line). The regression values obtained for the various curves are
E,(a = 20) = 60.88e~29()x102L (theory), Ey(a = 20) = 151.34¢~29(D)x107*1 (simulations),
Ey(o = 20) = 181.08¢~3116()x107*t (theory), Ey(a = 20) = 97.65¢~3-1(1)*107°t (gimulations), and
Ej(a = o0) = 224.51e +4144(1)x107%t  Digits in parenthesis indicate the regression error in the
last digit; regression has been carried out on the mean values. (b) Finite size effects by plotting
simulation results for the generalization error for systems of size N = 1000 (dashed) and N = 500

(dotted) lines.
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FIG. 3. An unrealisable scenario; a system comprising two student vectors K = 2, is trained
on examples provided by a system comprising three orthonormal teacher vectors M = 3. The
initial conditions used are R}, = 0.05, Q% = 0.4, @3, = 0.6, with all other overlaps set to zero,
the learning rate is = 1 and the system size used for simulations is N = 1000. Simulation results
were averaged over 10 trials, presenting both mean values and error bars. (a) The dependence
of generalization and training errors on time with a = 20; the inset shows the corresponding Q)
values. Lines represent theoretical values and symbols represent simulation results, upper lines
correspond to diagonal @) values and the lower lines to off-diagonal values). The inset of (b)
shows the corresponding R values, the upper curves represent student vectors that emulate specific
teacher vectors while the lower curves represent cross overlaps between student vectors and teacher
vectors emulated by other student vectors; the middle curves represent overlaps between student
vectors and the teacher vector that is not emulated by any of the student vectors in particular. (b)
The asymptotic (¢ = 1000) values of the generalization (dashed line and circles) and training errors
(dotted lines and x) for different @ values, comparing theoretical (lines) and simulation (symbols)

results.
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FIG. 4. The effect of additive Gaussian output noise on the evolution of the training and
generalization errors and on the macroscopic variables in the case of K = M = 2. The initial
conditions used for the student vector length are QY = 0.5; ng‘;&j and R are set to values
sampled uniformly in the range [0, 1/v/N], corresponding to the system size N used in simulations.
The learning rate is n = 1, the examples ratio is @ = 20 and the noise level 0 = 0.2. The system

size used in simulations is N = 1000 and the results were averaged over 10 trials each.
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FIG. 5. Additive Gaussian output noise in the case of K = M = 2; the learning rate used
and the initial conditions are as in Fig.4. The system used for simulations is of size N = 1000
and results were averaged over 10 trials for each point. (a) The dependence of generalization and
training (inset) errors on time for different noise levels o = 0.1,0.2,0.3 (from the bottom up) in

the case of @ = 20. (b) The same for the case of « = 12 and ¢ = 0.1,0.3,0.5.
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FIG. 6. The asymptotic values of generalization and training errors (measured at ¢ = 1000)
for different o values with a fixed additive Gaussian output noise level; the case considered, the
learning rate used and the initial conditions are as in Fig.4. The system used for simulations
is of size N = 1000 and results were averaged over 10 trials for each point. (a) generalization
(higher curve) and training (lower curve) errors for 0 = 0.3, where the dotted line represents the
asymptotic value of both training and generalization errors as a becomes infinite and to which
both errors converge. The inset shows for comparison the corresponding generalization (higher
curve) and training (lower curve) errors for ¢ = 0.1. (b) The dependence of generalization error
on « for different noise levels, o = 0.1 (lower curve) and 0.3 (higher curve). The inset shows the
corresponding dependence of AE, = Ey(a) — Ey(c0) on a~!, for a values high enough for the
system to escape the symmetric phase; the noise levels used are o = 0.1 (lower curve) and 0.3

(higher curve).
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FIG. 7. The asymptotic values of generalization and training errors (measured at ¢ = 1000)
for different additive Gaussian output noise levels o with a fixed @ = 20; the case considered, the
learning rate used and the initial conditions are as in Fig.4. The system used for simulations is
of size N = 1000 and results were averaged over 10 trials for each point. Using simple regression
techniques we find that the asymptotic values of both E, and E; depend approximately on o2 (for
both theory and simulations). The inset shows the log-log-plot of the asymptotic values of Fy and

E; on a.
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FIG. 8. Training with regularizers. The case considered, the learning rate, the system size used
for simulation and the initial conditions are as in Fig.4. (a) The dependence of generalization and
training errors on time for different regularizer () values, where generalization errors (the upper
three) are for v = 0.01, v = 0.001, v = 0.0 from the bottom to the top and training errors (the
lower three) are from the top to the bottom; symbols show the simulation results for v = 0.01
and v = 0.0 (simulations for the case of v = 0.001 have been omitted for brevity). The noise level
used is 0 = 0.6 and o = 12. (b) The asymptotic values of the generalization error (measured at
t = 1000) for different o values and fixed noise level o = 0.3. The upper curve represents the case
of no regularization while the lower curve is for v = 0.005. The inset shows the corresponding
dependence of AE = E,(a) — E4(c0) on a~!, where the simulation results are shown by symbols

with no error bars for brevity.
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