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We study the dynamis of on-line learning in multilayer neural networkswhere training examples are sampled with repetition and where the number ofexamples sales with the number of network weights. The analysis is arriedout using the dynamial replia method aimed at obtaining a losed set ofoupled equations for a set of marosopi variables from whih both trainingand generalization errors an be alulated. We fous on senarios wherebytraining examples are orrupted by additive Gaussian output noise and regu-larizers are introdued to improve the network performane. The dependeneof the dynamis on the noise level, with and without regularizers, is exam-ined, as well as that of the asymptoti values obtained for both training andgeneralization errors. We also demonstrate the ability of the method to ap-proximate the learning dynamis in struturally unrealizable senarios. Thetheoretial results show good agreement with those obtained from omputersimulations.
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I. INTRODUCTIONArti�ial neural networks provide an important tool for takling non-linear problemsomplementary to existing statistial methods (for review see [1,2℄). The optimal seletionof the network parameters on the basis of examples is termed learning and may be arriedout in a variety of methods and tehniques. The eÆieny and suess of the training proessare in the heart of the method itself and play a signi�ant part in determining the usefulnessof arti�ial neural networks as a whole.Signi�ant e�ort has been invested over the years in optimizing the training methodsas well as the hoie of training parameters and regularization methods. These have beensuessfully used in pratie, although most of the training methods used as well as thesetting of the training oeÆients are based on heuristi observations.One of the most powerful and ommonly used approahes to training large layered net-works is that of on-line learning of ontinuous funtions via gradient desent. On-line learn-ing refers to the iterative modi�ation of the network parameters aording to a prede-termined training rule, following suessive presentations of single training examples, eahrepresenting a spei� input vetor and the orresponding output. This approah has beenwidely and suessfully used for training large networks [3℄ and is arguably the most eÆienttehnique for these tasks.Signi�ant progress has been made in analyzing the dynamis of supervised on-line learn-ing in multilayer networks via methods of statistial physis (reviews an be found in [4℄and [5℄). Most of the analyses (e.g. [6{8℄) onentrate on the ase of in�nite training sets,where training examples are sampled without repetition and in whih there is no orrela-tion between the the network parameters and the examples presented at eah training step.They suessfully explain the various training phases and the emergene of generalizationabilities but lak a vital aspet of the learning proess, whih may seem insigni�ant at �rstsight, assuming that the training set is large. However, the emerging orrelations betweensuessive training steps give rise to some of the most harmful e�ets in neural networks2



training, suh as over�tting, to whih the above theory is oblivious.A more realisti senario is that where the number of training examples sales with thenumber of free parameters, and the examples are sampled with repetition. This gives riseto orrelations between the network parameters and the training examples, whih learlya�et the learning proess. One of the most signi�ant aspets of having a �xed example setis the distintion between the two key performane measures: the training error, measuringnetwork performane with respet to the restrited training set, and the test (generalization)error, alulated for all possible inputs sampled from the true distribution. The former maybe monitored in pratial training senarios, while the latter (the minimization of whih isthe true aim the learning proess) an only be assessed up to some on�dene level.The analyses of learning from �xed example sets introdued so far [9{13℄ have mostlyonsidered single layer systems, fousing on spei� (usually simple) learning rules. Inaddition, most of these studies have been restrited to bath learning, where the networkparameters are modi�ed only after the omplete example set has been presented.The urrent paper builds upon a new approah we reently presented for the ase of singlelayer networks [14℄, based on the dynamial replia method, whih enables one to analyzea broad range of training rules and network on�gurations whih an treat both on-lineand bath learning senarios. Preliminary analysis of noiseless, realizable and unrealizablelearning senarios in multilayer networks were briey desribed in [15℄. Here, we extendthe analysis to the ase where training examples are orrupted by additive Gaussian outputnoise and examine the e�et of regularization on the training dynamis. We also study thedependene of the asymptoti training and generalization errors on the size of the exampleset provided, with and without regularization. For brevity we will restrit the analysis tothe ase of on-line learning and not onsider here the ase of bath learning at all.The paper is organized as follows: Setion II provides the general framework and thetheoretial basis for the analysis. In setion III we present results obtained for the noiselessrealizable ase, followed by results obtained for an unrealizable training senario where themodel network is inapable of realizing the underlying rule due to strutural limitations3



in setion IV. Setion V looks at ases where training examples are orrupted by outputGaussian noise, while setion VI examines the impat of regularization on the networkperformane. We summarize our results and disuss the advantages and drawbaks of theurrent analysis in setion VII. II. THE FRAMEWORKWe onentrate on information proessing tasks in the form of maps from an N -dimensional input spae � 2 IRN onto a salar � 2 IR, realized through a parametrizedfuntion �(J ; �) = PKi=1 g (J i � �). This funtion an be viewed as a two layer neuralnetwork, where g is the ativation funtion of the hidden units, taken here to be the errorfuntion g(x) � erf(x=p2); J � fJ ig1�i�K is the set of input-to-hidden adaptive weightsfor the K hidden nodes, and the hidden-to-output weights are set to 1. The ativation ofhidden node i under presentation of the input pattern �� is denoted x�i = J i � ��. Thisgeneral on�guration, usually referred to as the `soft ommittee mahine' [7,8℄, enompassesmost of the properties of general multilayer networks. Training examples are drawn froma �nite set ~D and are of the form (��; ��) where � = 1; 2; ::; p. The omponents of theindependently drawn input vetors �� are unorrelated random variables with zero meanand unit variane. The senarios examined so far [15℄ foused on realizable and struturallyunrealizable ases, where the orresponding output �� for the various examples is given bya deterministi teaher of an arhiteture similar to the student, exept for a possible dif-ferene in the number M of hidden units: �� = PMn=1 g (Bn � ��), where B � fBng1�n�Mis the set of input-to-hidden adaptive weights for teaher hidden nodes. In this paper wewill also onsider the ase of noisy examples, where the teaher output is orrupted by ad-ditive Gaussian output noise, denoted as ��, the omponents of whih are independentlydrawn unorrelated random variables of zero mean and variane �2, orrupting the di�er-ent examples. In this more general ase the orresponding teaher output is of the form�� = PMn=1 g (Bn � ��) + ��. The ativation of hidden node n under presentation of the4



input pattern �� is denoted y�n = Bn � ��. We will use indies i; j; k; : : : to refer to units inthe student network and n;m; : : : for units in the teaher network. The ontribution to theloal �eld due to the noise variable will be denoted as z. Sums over the various indies willbe onsidered from 1 to K or to M respetively. The general framework [14,15℄ allows forthe analysis of any training rule G of the formJ l+1j = J lj + �N �(l)Gj[� l;�l℄� N J lj (1)where l represents the urrent time step in whih a single example is randomly drawnfrom ~D and invokes the parameter update. The last term on the right orresponds to asimple quadrati regularization term parametrized by , ommonly used in regression taskswhere examples are orrupted by noise, the usefulness of whih will be examined in theurrent manusript. Here we onentrate on the most ommon on-line learning senario forregression tasks, where the funtion G together with the last term in Eq.(1) is the gradientwith respet to the parameters J of the quadrati error measure (per example)E(J ; �) = 12 [ �(J ; �)� � ℄2 + 12 � KXi=1 J i � J i (2)= 12 " KXi=1 g(xi)� MXn=1 g(yn)� z #2 + 12 � KXi=1 J i � J i ;and G is of the expliit formGi(xj=1:::K ; yn=1:::M ; z) = s 2�e� 12x2i 24 KXj=1 g(xj)� MXn=1 g(yn)� z35 : (3)In the ase of an in�nite training set there is no orrelation between the urrent exampleand those presented previously. As a onsequene of that, no orrelation between the studentvetors and the examples is building up, and the joint probability distribution for the studentand teaher node ativations x and y (and the noise z) takes a multivariate Gaussian form.This is no longer the ase here, when suh orrelations do exist and the joint probabilitydistribution takes a more general form, whih depends on the training patterns and hangesdynamially throughout the learning proess. In the ase of orrupted training examplesone should also onsider the emerging orrelations between the student vetors and the noise5



orrupting the examples. Due to the pivotal role played by this joint probability distributionit seems natural to de�ne it as one of the marosopi variables [14℄,P (x;y; z;J) = 1pX� KYi=1 Æ(xi � J i � ��) MYn=1 Æ(yn �Bn � ��) Æ(z � ��) ; (4)together with the overlaps Rin(J) = J i �Bn (between student and teaher weight vetors)and Qik(J) = J i �Jk (between student weight vetors). An additional marosopi variablethat is worthwhile mentioning, although it is invariant with respet to the learning dynamis,is Tnm = Bn �Bm, representing the overlap between the various teaher weight vetors. Tosimplify the alulation we will only examine here the ase of orthogonal teaher vetors ofunit length Tnm = Æmn; extending the results to the general teaher ase is straightforward.For onveniene we will also introdue the vetor r = (x;y; z) of dimensionality K +M +1,representing student and teaher loal �elds and the noise ontribution.The main motivation in hoosing these marosopi variables is that in the thermody-nami limit, N !1, they are suÆient for alulating the two main performane measures:the generalization error, whih orresponds to averaging ~E(J ; �) = 12 [ �(J ; �)� � ℄2 overthe Gaussian input distribution [8℄Eg = 1� 24Xi;k sin�1 Qikp1 +Qiip1 +Qkk +Xn;m sin�1 Tnmp1 + Tnnp1 + Tmm� 2Xi;n sin�1 Rinp1 +Qiip1 + Tnn# + 12�2 (5)and the training error Et = *12 " KXi=1 g(xi)� MXn=1 g(yn)� z #2+ ; (6)using the abbreviation hf(r)i = R dr P (r)f(r). The regularization term has been omittedin both measures as its ontribution is limited to the learning dynamis and does not playany role in measuring the suess of the training proess.To solve the dynamis, one straightforwardly derives a set of oupled di�erential equa-tions [14,15℄ desribing the evolution of the marosopi variables in the limit N !1:6



ddtQ = �(V + V T ) + �2Z � 2Q ;ddtR = �W � R (7)and ��tP (r) = 1� Z dx0 P (x0;y; z) "Yi Æ[xi � x0i � � Gi(x0;y; z)℄�Yi Æ(xi � x0i)#�Xi ��xi �� Z dr0Gi(r0)A(r; r0)� xiP (r)�+�22 Xi;k Zik �2P (r)�xi�xk ; (8)using a matrix representation for Q and R and de�ning the matriesV = DGxTE ; W = DGyTE ; and Z = DGGTE : (9)This set of equations annot be losed in general; the diÆulties originate in the Green'sfuntionA(r; r0) = *�Z dJ pt(J jQRP )��1 Z dJ pt(J jQRP ) Æ(x�J � �) Æ(y�B � �) Æ(z � �)� (1�Æ��0)(� � �0) Æ(x0�J � �0) Æ(y0�B � �0) Æ(z0 � �0)�� (10)where pt(J jQRP ) is the weight probability density onditioned on the values of the maro-sopi observables fQ;R; Pg at time t (the mirosopi measure in marosopi sub-shellsof the ensemble), and h�i� represents averaging over all realizations of the training set. TheKroneker delta omes to �lter out the ase in whih both vetors � and �0 are idential(Æ��0 = 1). We follow the derivation of [14℄ and employ the dynamial replia theory [16℄to lose the equations (7,8) by making two key assumptions:(i) For N !1 the marosopi observables obey losed dynami equations; we may thusassume equipartitioning of probability (or maximum entropy) in the marosopi sub-shells:pt(J jQRP ) �Yi;k Æ[Qik �Qik(J)℄Yi;n Æ[Rin � Rin(J)℄Yr Æ[P (r)� P (rjJ)℄ (11)(ii) The marosopi equations are self-averaging with respet to the spei� realizationof ~D; this allows for the averaging of the marosopi variables over all training sets.7



Both assumptions an be regarded as good approximations in general and will be val-idated against simulation results. They may beome exat in some ases (e.g., Hebbianlearning); we believe the seond assumption to be exat in general. Following the alula-tion of [14℄ and employing the replia identity*R dJW [J ; v℄G[J ; v℄R dJW [J ; v℄ +v = limn!0 Z dJ1 � � �dJn *G[J1; v℄ nY�=1W [J�; v℄+v ; (12)one obtains, under the further assumption of replia symmetry (for details see Appendix Aand [14℄), a losed form for Eq.(8)��tP (r) = 1� Z dx0 P (x0;y; z) "Yi Æ[xi � x0i � �Gi(x0;y; z)℄�Yi Æ(xi � x0i)# (13)�Xi ��xi h��[Wy + U(x�Ry) +X(Q� RRT )�(r)℄i � xi�P (r)i+�22 Xik Zik �2P (r)�xi�xk ;where we have introdued the matries B = (Q�q)�1L; X = (V �WRT )(Q�RRT )�1�U ,LLT = q�RRT and U = DG�TE ; and where�i(r) = 1P [xjy; z℄ Z Dv D[(Q� q)�1(x� x0)℄iE� hÆ(x� x0)i� (14)using the notation Dv � QKi=1 1=p2� e� 12v2i dvi (used throughout the paper) andhf(x;x0)i� = R dx0 M(x0;y; z) ex0TBvf(x;x0)R dx0 M(x0;y; z) ex0TBv : (15)The K � K matrix q and the funtion M(x0;y; z) are derived from the replia symmetrialulation; the former is related to the ross-replia overlap matrix Q while the latter is ane�etive measure derived from the onjugate variable to the onditional probability P (r).This losed set of equations an be solved iteratively by alulating q andM(x0;y; z) at eahstep by solving a set of saddle-point equations (for details see Appendix A and [14℄).However, obtaining suh a solution is extremely expensive omputationally sine a largeset of nonlinear saddle-point equations, Eqs.(A16,A18), should be solved at eah time stepto obtain a solution to Eqs.(7) and (13). The omputation whih was just possible in the8



ase of single layer networks, is learly infeasible in the ase of multilayer networks. Wetherefore resort to the large � approximation whih was shown to provide highly aurateapproximated solutions in the single layer ase even for low � values (as low as � = 0:5),and enables one to obtain a simple form for Eq.(13) without solving a set of saddle-pointequations at eah time step��tP (r) = 1� Z dx0 P (x0;y; z) "Yi Æ[xi � x0i � �Gi(x0;y; z)℄�Yi Æ(xi � x0i)#�Xi ��xi [(��i(r)� xi)P (r)℄ + �22 Xi;k Zik �2P (r)�xi�xk ; (16)where�i(r) = 26640BB� VW 1CCAT 0BB� Q RRT T 1CCA�1 0BB� xy 1CCA� [hG�xT (y; z)i �WRT ℄(Q�RRT )�1[�x(y; z)� Ry℄3775i :in whih �x(y; z) = R dx x P [xjy; z℄. The large � approximation is partiularly suitable tothe model examined here, sine the main features of learning in multilayer networks, suhas the breaking of internal symmetries and the asymptoti onvergene, an be observed atsensible time sales only for relatively high � values.The dynamial equations (7,16) an be solved in priniple to provide rather aurateapproximated solutions. However, obtaining the solutions in the ase of multi-layer neuralnetworks is still diÆult, espeially when the network size inreases, as one should moni-tor numerially the evolution of a general multivariate probability distribution; and solvenumerially the di�erential equations (16) and (7). Using the methods used in the singlelayer ase would require monitoring tens of thousands of variables already in the ase ofK =M = 2. To make the alulation feasible in the ase of multilayer networks we look fora parametri approximated representation of the probability distribution. We have onsid-ered two di�erent possibilities: a mixture of multivariate Gaussian distributions (desribedbriey in Appendix B) and the loal Gaussian approximation (derived in Appendix C),where the onditional probability P [xjy; z℄ is replaed by a Gaussian one with y and z-dependent mean �x(y; z) and ovariane matrix f�ij(y; z)g. The �rst representation an in9



priniple model any given probability distribution to the desired auray, given a suÆientnumber of Gaussian bases, and provides simple expressions to the equations (7) as most ofthe integrals an be arried out analytially; however, the solution of equation (16) requiresthe ontinuous update of the various parameters in the representation used whih an bedone in priniple but may be omputationally diÆult due to the variability in sensitivity ofthe various parameters. The seond representation is more limited and assumes a Gaussiandistribution with respet to x for eah given (y; z) vetor; however, it an be solved ana-lytially and is therefore easier to handle as long as the approximation used is satisfatory.Here we present solutions based on the seond representationP [xjy; z℄ = 1q(2�)Kj�(y; z)j exp ��12[x� �x(y; z)℄T��1(y; z)[x� �x(y; z)℄� : (17)Using the representation (17) in Eq.(16) results (after some tedious algebra) in the followingdynamial equations for �x(y; z) and for �ij(y; z)ddt �xi(y; z) = �� �Gi(y; z) + � [Wy + Y (�x(y; z)� Ry)℄i (18)ddt�ik(y; z) = 1� h�( �Vik(y; z) + �Vki(y; z)� �Gi(y; z)�xk(y; z)� �Gk(y; z)�xi(y; z) + �2 �Zik(y; z)i+�[(S�(y; z))ik + (S�(y; z))ki℄ + �2Zik ;with the matries S = (V � WRT )(Q � RRT )�1 and Y = (V � hG�xT i)(Q � RRT )�1,and with �Gi(y; z) = R dx Gi(r)P [xjy; z℄, �Vik(y; z) = R dx Gi(r)xkP [xjy; z℄ and �Zik(y; z) =R dx Gi(r)Gk(r)P [xjy; z℄.Equations (18) and (7) are solved numerially from appropriate initial onditions, pro-viding the theoretial predition for the evolution of the marosopi variables, and bothgeneralization (5) and training errors. The latter takes the expressionEt = 12 Z dydzP (y; z) Z dxP [xjy; z℄ "Xn g(yn) + z �Xi g(xi)#2= 12 Z dydzP (y; z) 24Xln g(yl)g(yn)� 2Xin g(�i)g(yn) +Xij J2(i; j)35 (19)with �i = �xi=p1 + �ii and 10



J2(i; j) = Z Dx g �q�ii x + �xi� g0� �ijx+p�ii �xjq�ii(1 + �jj)� �2ij1A (20)III. THE NOISELESS REALIZABLE CASEEquations (18) and (7) form the basis to our numerial solutions in the various learningsenarios. Firstly, we validate the analysis in the noiseless realizable senario by omparingthe results to those obtained from numerial simulations. In this setion we do not onsiderthe ase of noise (i.e, � = 0) or regularization (i.e.,  = 0).For brevity we will restrit our experiments in this setion to the ase of K = M = 2and orthogonal unit teaher vetors, Tmn = Æmn (the Kroneker tensor). To failitate theomparison between the analytial solutions and the simulation results we introdue �xedinitial onditions, breaking the inherent symmetries in the system marosopially. Thisis essential for investigating the learning dynamis beyond the symmetri phase as it maytake a prohibitively long time to esape the symmetri plateau otherwise, as in the aseof in�nite training sets [17℄. We use the following initial onditions for both theory andsimulations: Q011 = Q022 = 0:5, Q012 = Q021 = 0, R011 = 0:001, R022 = R012 = R021 = 0. Theinitial joint probability P (r) is assumed Gaussian, with the orresponding parameters. Theinitial onditions for equation (18) are �(y; z)jt=0 = Q0 � R0(R0)T and �x(y; z)jt=0 = R0y;the learning rate used is � = 0:5. We �rst investigate the auray of our approximationin the ase of low � values, where the auray of the approximation is expeted to bethe worst due to the (large �) approximation used. However, in these ases we annotobserve the breaking of the symmetri phase for omputationally feasible system sizes. Wewill therefore onentrate on the predition auray within the symmetri phase, where allvetors of the student system emulate the various vetors in the teaher system with equalsuess. Figure 1 shows the numerial solutions of the analytial equations in omparisonto simulation results obtained for various � values (� = 1; 2; 5). The theoretial values arerepresented by solid lines and the simulation results by symbols. Simulation results were11



obtained for a similar system of size N = 500, initialized at random, restriting the overlapvalues to the ones used for the analytial solutions. Simulation results were averaged over20 trials and the �gure shows both mean values and error-bars for all ases (� = 1; 2; 5).Figure 1a shows the generalization errors as a funtions of time, with the training error forthe ase of � = 5 added for omparison (dashed line); in all of our experiments, eah unit oftime orresponds to the presentation of �N examples seleted at random. Figure 1b fouseson the evolution of the training errors, where the generalization error (� = 5) is added foromparison. The insets show the evolution of the various overlaps for the ase of � = 5 inomparison to the results obtained from simulations (Q values in �gure 1a and R values in�gure 1b). We see that the results obtained are in good agreement with the simulations, evenat these low � values. It is only fair to mention that the disrepany between the theoretialresults and simulations will inrease at later times due to the aumulating errors.However, the main interest of the neural networks ommunity, in the ase of multilayernetworks, is in the symmetry breaking proess, whereby spei� vetors of the studentsystem speialize, eah learning to imitate a spei� teaher vetor. In addition, one wouldalso like to gain insight into the onvergene phase and its dependene on the value of �.In �gure 2a we show the evolution of both the generalization and training errors for thease of � = 20 whih is suÆiently high for observing the symmetry breaking phenomena;the initial onditions and learning rate used are similar to those of Fig.1. The theoretialvalues for the training (lower) and generalization (higher) errors are represented by the solidlines; the simulation results for system size of N = 5000 are represented by symbols (meanvalues and error-bars) and were averaged over 10 trials. In �gure 2b we examine the �nitesize e�ets, omparing the theoretial results obtained for the generalization error to thesimulation results for N = 500; 1000 and 5000. Simulation results for lower N values arerepresented by dashed (N = 1000) and dotted (N = 500) lines and were averaged over30 trials. For brevity, only mean results are presented for smaller N values; error-bars aregenerally similar to those of N = 5000.To examine the deay rate of the training and generalization errors in the asymptoti12



regime we plotted in the inset of Fig.1a the deay of both errors on a logarithmi sale withrespet to the number of training iterations for t = 350 : : : 1000; theoretial results for thedeay of Eg(� = 1) are also shown for omparison (dashed dotted line). All three graphsdeay exponentially to their asymptoti values although the prefators and the deay ratesseem to di�er and probably depend on �. The deay rate for the �nite � ase is learlyslower than that of the �!1 ase as expeted.IV. STRUCTURAL UNREALIZABILITYWhile interesting aademially, realizable training senarios are very rare in pratialon-line learning appliations. We therefore turn to the arguably more interesting ase ofstrutural unrealizability, where the number of student vetors is smaller than that of theteaher vetors. It would be partiularly important to examine this ase due to the approx-imations taken along the way; we should verify the validity of the theoretial results in thisase, whih may result in quite di�erent probability distributions to those obtained in therealizable senario. Also in this setion we do not onsider the ase of noise (i.e, � = 0) orregularization ( = 0).We demonstrate the eÆay of our approah in the ase of a two node system (K = 2)trained on examples provided by a three node teaher system (M = 3), all orthogonal andof unit length. The equations used are similar to those of the realizable ase (18) and (7)but with a modi�ed M = 3 value. The initial onditions used are R011 = 0:05, Q011 = 0:4,Q022 = 0:6, with all other overlaps are set to zero; the learning rate is � = 1, the number ofexamples is �N , where � = 20, and the system size used in simulations is N = 1000. Theresults presented in Fig.3a show a good agreement between theory and simulations and aqualitatively similar results to the in�nite training set ase. The insets in �gures 3a and 3bshow the orresponding Q and R values.Figure 3b desribes the asymptoti values of generalization and training errors for dif-ferent � values, monitored at t = 1000, one the systems had stabilized (notie that the13



equilibration of the system at t = 1000 is not guaranteed due to the spin-glass dynamis).The learning rate used is � = 1. It is easy to see that the agreement between theory andsimulations is generally good but deteriorates as � dereases. It is diÆult to �nd the exatmanner in whih both generalization and training errors deay to their asymptoti values(i.e. Eg(� = 1) = Et(� = 1)), as a funtion of �, due to its sensitivity to the inherentnumerial errors. V. ADDITIVE OUTPUT NOISEFinite � training senarios are of partiular interest in ases where the training data isorrupted by some type of noise, being the most ommon ase in pratial training senarios.This is a partiularly important aspet of the urrent study as it enables one to assess existingmethods for alleviating the e�et of noise on the model's generalization performane. Similarsenarios have already been examined in the single layer ase [18℄ and disrete learning rules;we will fous here on the multilayer ase representing a ontinuous mapping, trained bygradient desent.The equations used are similar to those of the realizable ase, (18) and (7), exept forthe re-ativation of the noise term. No regularization is used in the urrent setion, setting to zero.In �gure 4 we demonstrate the e�et of additive output noise. We see that the e�etis mainly in the length of the symmetri phase and in the onvergene to a suboptimalasymptoti solution (a onstant learning rate of � = 1 is used). We examine the ase ofK = M = 2, using initial onditions of the form: Q0ii = 0:5; Q08i6=j and R0in are set tovalues samples uniformly U [0; 1=pN ℄ aording to the system size N used in simulations.The number of examples used is �N with � = 20 and the noise level (standard deviationof the Gaussian distribution) is � = 0:2. The system size used in simulations is N = 1000.Figure 4a shows the evolution of the generalization (higher) and training errors as a funtionof time, while �gure 4b and the inset show the evolution of the order parameters Q and R14



respetively. The upper Q and R urves orrespond to the diagonal overlaps while thelower urves represent the o�-diagonal parameters. We see that the analysis is in generalonsistent with results obtained from simulations, although inonsistenies our around thetransition point between the symmetri and asymptoti regimes.Next we examine the eÆay of our approximations as the noise level hanges, shownin �gure 5a. We plotted the evolution of the generalization and training (inset) errorsas a funtion of time, omparing them to simulation results averaged over 10 trials eah.Initial ondition, learning rate and the ratio of examples � are similar to those of theprevious �gure. We see that our approximation beomes less aurate as the noise levelinreases, espeially around the breaking of the symmetri phase. This is probably due tothe deteriorating auray of the loal Gaussian approximation as the noise level inreases.For low � values, when the inherent system symmetries do not break, our method providesa good approximation to the results obtained in simulations, as shown in �gure 5b for thease of � = 12. In both ases, the theoretial asymptoti results are in good agreement withthe simulations.In priniple, one ould obtain from the analytial solutions an estimate to the improve-ment in performane that an be obtained from employing the early stopping tehnique aswell as an estimate for the optimal point in whih early stopping should be applied. However,the disagreement between the results obtained analytially and the simulations is mainlyaround the point in whih the internal symmetries break (and mainly at high noise levels),making suh an estimate inaurate. We assume that employing a re�ned representation ofthe onditional probability distribution would enable one to make aurate estimations ofthis type.In �gure 6a we examine the dependene of the asymptoti values (measured at t = 1000,one the system has stabilized) of both generalization and training errors on the value of �,having a �xed noise level � = 0:3 (in the inset � = 0:1). We see that our approximationprovides a good desription for large � values, beoming less aurate for low values asone might expet. In addition, we see that, as expeted, the gap between training and15



generalization errors, for a given �, inreases with the noise level. The dependene ofgeneralization error on � for di�erent noise levels, � = 0:1 (lower urve) and 0:3 (higherurve) is shown in �gure 6b. As expeted, the di�erene between the asymptoti valuesdereases as � grows.To examine the deay of the generalization error to its asymptoti value we plotted inthe inset of �gure 6b the dependene of �Eg = Eg(�) � Eg(1) on ��1, for � values highenough for the system to esape the symmetri phase. The deay seems to be proportionalto ��1 (e.g., the power values obtained from regression in the ase of � = 0:1 are 1:0(1) and0:9(3) from the theoretial results and simulations respetively), and depends linearly on �2;dividing the residual error for the noise levels presented in the �gure 0:3 (higher urve) and� = 0:1 (lower urve) gives, approximately, a onstant value of 9.To examine the dependene of both training and generalization errors on the noise level �we plotted in �gure 7 the asymptoti values of generalization and training errors (measuredone the system has stabilized) for di�erent additive Gaussian output noise levels with �xed� = 20. Using onventional regression methods we �nd the following dependene of Eg andEt on the noise level �: Eg ' 1:06�2:14(1) (theory) and Eg ' 0:94�2:082(8) (simulations) andEt ' 0:63�1:957(5) (theory) and Et ' 0:64602�1:968(3) (simulations). This is in agreementwith our assumption of a quadrati � dependene.VI. REGULARIZATIONOne of the main problems faing pratitioners in the �eld of neural networks is theimprovement of generalization ability in trained networks, espeially when noisy trainingdata are provided. This is typially done by imposing onstraints on the spae of solutions(for a general introdution to the problem and the methods used see [2℄), reeting ourprior belief in the type of solution we are looking for. One of the most ommon mehanismsfor adding suh onstraints is the introdution of a quadrati regularization term, as in thelast term on the right of Eq.(2), whih leads to a modi�ation of the dynamial training16



equation (1).Most of the analyses linking the regularization to the noise level orrupting the data arebased on single layer systems or on linearizing the system in the asymptoti regime. Ideally,we would have liked to exploit the urrent analysis to obtain an analytial expression forthe optimal regularization term to be used for data orrupted by additive Gaussian noiseof a ertain variane. However, the urrent framework, based on equations (18) and (7), issolved numerially, making it diÆult to provide the desired link analytially. We thereforedemonstrate the e�et of regularization through numerial solutions obtained in spei�ases.Firstly, to examine the e�et of regularization on the both training and generalizationerrors in the symmetri plateau, we present the training senario where K = M = 2,� = 12 and where training examples are orrupted by additive Gaussian output noise ofstandard deviation � = 0:6. Simulations were arried out using a system of size N = 1000,and simulation results were averaged over 10 trials. Figure 8a shows the evolution of thegeneralization and training errors for di�erent  values, where generalization errors are for = 0:01,  = 0:001 and  = 0:0 from the bottom up, while training errors from the topdown. Lines represent the theoretial results, while symbols represent simulation results. Itis lear that while regularization has little e�et on the training error in that phase it learlyredues the generalization error. It should be noted that, although the main signi�ane ofregularization is in the asymptoti regime, its e�et on the symmetri phase is also importantas many pratial training sessions are e�etively terminated at some sub-optimal symmetriplateau.To examine the e�et of regularization asymptotially we plotted in �gure 8b the depen-dene of the asymptoti generalization error on �, measured at t = 1000 for �xed � = 0:3 andregularization value of  = 0:005 (lower urve); the upper urve represent values obtainedwith no regularization.One should note that in the ase of in�nite training sets it has been shown that thereis no advantage in using a quadrati regularization term with a onstant prefator in the17



asymptoti regime [19℄, and in fat, introduing suh a term always results in a higherasymptoti (in training steps - t) generalization error. Therefore, there must be a value of�, for a given noise level and regularization prefator, above whih the introdution of aquadrati regularization term is detrimental to the asymptoti performane. This ritialvalue of � an be determined in priniple for a spei� senario using our analysis; however,in pratie the numerial inauraies redue the reliability of suh a predition.The inset of �gure 8b shows the dependene of �Eg = Eg(�) � Eg(1) on ��1, forsuÆiently large � suh that the system esapes the symmetri plateaus. The theoretialresults are in agreement with the simulations, indiating (approximately) a 1=� deay inthe generalization error to the asymptoti values (the regression power �gures obtainednumerially from both theory and simulations are generally around the deay power of 1,but have signi�ant error-bars). VII. SUMMARYWe presented a theoretial framework for the analysis of on-line learning senarios inmulti-layer networks, where the training examples are sampled with repetition from a �xedexample set. The framework is then used for studying realizable and unrealizable senariosas well as senarios whereby the data is orrupted by additive Gaussian output noise andwhere regularizers are employed for improving the networks generalization performane.To obtain the set of equations representing the network dynamis we employ the dynam-ial replia method; the onditional probability distribution of teaher and student loal�elds, P [xjy; z℄, is then approximated by the loal Gaussian distribution in order to fail-itate the omputation. The theoretial results are ompared with simulation results andshow good agreement in most ases.The results obtained support heuristi methods used by pratitioners, suh as early stop-ping and regularization, and enable us to derive some general asymptoti dependenies ofboth training and generalization errors on the noise level introdued and on �. Unfortu-18



nately, due to the omplexity of dynamial equations and the omputational diÆulties wehave experiened in solving them, our ability to provide generi analytial solutions is lim-ited. These would have been highly desirable for deriving analytially relations between thetraining and generalization onditions in noisy senarios, in both the symmetri phase andasymptotially, and to make a quantitative link between the noise level and the optimalregularization to be used.Other questions that are of interest are to do with the length of the symmetri phaseand its dependene on the ratio �, the learning rate, the arhiteture hosen and the initialonditions. In addition, it would be desirable to de�ne optimal training parameters andlearning rules in a prinipled manner, similarly to the studies arried out in the ase ofin�nite training sets [20℄- [24℄.The urrent paper prepares the basis for future studies along these lines, whih willlearly be of great interest to pratitioners.
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APPENDIX A: REPLICA CALCULATION OF THE GREEN FUNCTIONThe main objetive of this appendix is to provide a rough derivation of the Green'sfuntion A[: : :℄, using the dynami replia theory and following [14℄ and [15℄, from whihwe obtain the marosopi dynamial equations (13) in an expliit form. We �rst arryout the disorder averages, leading to an e�etive single-spin problem. The integrations arearried out using saddle-point methods for the repliated order parameters at eah timestep, employing the replia symmetry (RS) ansatz.1. Disorder AveragingFollowing the dynami replia theory in [16℄, we write the Green funtion asA(r; r0) = limn!0 limN!1**Z Yi� dJ�i pt(J�jQRP )Yi Æ(xi � J1i � �)Yn Æ(yn �Bn � �) Æ(z � �)�(� � �0)(1� Æ��0)Yi Æ(x0i � J1i � �0)Yn Æ(y0n �Bn � �0) Æ(z0 � �0)+ ~D ~D0+� ; (A1)noting that the averages over the data sets already inlude the noise distribution as well,and that h�i� represents averaging over all realizations of the data set. Using the de�nitionof P (r;J) and the integral representations for the Æ-distributions involving P (r), we obtainA(r; r0) = limn!0 limN!1 Z Y�;r00 dP̂ �(r00)Y�i dJ�i Y�ik Æ(Qik � J�i � J�k )Y�in Æ(Rin � J�i �Bn)�eiN R dr00P̂ (r00)Pt(r00) Z dr̂dr̂0(2�)2(K+M+1) eir̂�r�* 1p2 X�6=�(�� � ��)e� i�P�� P̂ (J����;B���;��)�e�iPi x̂iJ 1i ����iPn ŷnBn����iẑ���iPi x̂0iJ 1i ����iPn ŷ0nBn����iẑ0���� (A2)with the onjugate funtion P̂ (r).We �rst de�ne some relevant funtions to failitate the alulationD(r̂; �; �) = e� i�P� P̂ (J���;B��;�)�iPi x̂iJ 1i ���iPn ŷnBn���iẑ�20



D(r̂) = hD(r̂; �; �)i ~DEj(r̂) = h�jD(r̂; �; �)i ~D = *�D(r̂; �; �)��j + ~D : (A3)By using the permutation invariane of the integrations and summations with the patternlabels, we evaluate the training-set average of the expression for A[: : :℄ in Eq.(A2) in thethermodynami limit* 1p2 X�6=�(�� � ��)e���+� = *p� 1p (�1 � �2)e���+�= p� 1p NXj �e� i�P� P̂ (J���;B��;�)�p�2~D��e� i�P� P̂ (J���;B��;�)�iPi x̂iJ 1i ���iPn ŷnBn���iẑ�� ~D��e� i�P� P̂ (J���;B��;�)�iPi x̂0iJ 1i ���iPn ŷ0nBn���iẑ0�)� ~D= ep ln[D(0;0)℄L(r̂; r̂0)D2(0) (A4)with L(r̂; r̂0) = PNj Ej(r̂)Ej(r̂0). We an then write the Green funtion in an integral form,dominated by saddle pointsA(r; r0) = Z dr̂dr̂0(2�)2(K+M+1) ei(r̂�r+r̂0�r0)� limn!0 limN!1 Z dqdQdq̂dQ̂dR̂ Z Y�;r00 dP̂ �(r00) eN	[q;Q;q̂;Q̂;R̂;fP̂g℄L(r̂; r̂0)D2(0) (A5)with	[: : :℄ = 12 24X� Tr(Q̂�Q�)� 2iX� (TrR̂�R�) +X�� Tr(q̂��q��)35+iX� Z dr P̂ �(r)P (r) + � lnD(0)+ limN!1 1N ln Z Y�i dJ�i e� 12hP�ik Q̂�ikJ�i �J�k�2iP�in R̂�inJ�i �Bn+P��ik q̂��ik J�i �J�ki (A6)Similarly, the joint probability distribution an be obtainedP (r) = Z dr̂(2�)K+M+1eir̂�r� limn!0 limN!1 Z dqdQdq̂dQ̂dR̂ Z Y�;r00 dP̂ �(r00) eN	[q;Q;q̂;Q̂;R̂;fP̂g℄D(r̂)D(0) : (A7)21



Using the normalized expression for P (r) we see that no overall prefators in the expressionof A[r; r0℄ or P (r) are to be taken into aount. Then we haveA(r; r0) = Z dr̂dr̂0(2�)2(K+M+1) ei(r̂�r+r̂0�r0)L(r̂; r̂0)D2(0) ; (A8)with the order parameter values de�ned at the saddle point, andP (r) = Z dr̂(2�)K+M+1eir̂�rD(r̂)D(0) : (A9)Firstly, we alulate the expliit expression for D(0).D(0) = Z Y�i dx̂�i dx�i2� Yn dŷndyn2� dẑdz2� eiP�i x̂�i x�i +iPn ŷnyn+iẑz� i�P� P̂ (x�;y;z)� Z D� Z D(�=�) e�iPNj (P�i x̂�i J�ij+Pn ŷnBnj)�j�iẑ�= Z Y�i dx̂�i dx�i2� Yn dŷndyn2� D(z=�) eiP�i x̂�i x�i +iPn ŷnyn� i�P� P̂ (x�;y;z)�e� 12hP��ik q��ik x̂�i x̂�k+2P�in Rinx̂�i ŷn+Pn ŷ2ni ; (A10)where Dv is the Gaussian measure as de�ned before, and where the spin-glass order param-eters and the overlaps R�in between the student and teaher weights are de�ned asq��ik = J�i � J�k ; R�in = J�i �Bn (A11)We now employ the replia symmetri (RS) ansatz: q��ik = fQik(� = �); qik(� 6= �)g,R�in = Rin and P̂ �(r) = i�(r). Then D(0) an be further simpli�edD(0) = Z Y�i dx̂�i dx�i2� Yn dŷndyn2� D(z=�) eiP�i x̂�i x�i +iPn ŷnyn+ 1�P� �(x�;y;z)�e� 12 [P�ik(Qik�qik)x̂�i x̂�k+Pik qik(P� x̂�i )(P� x̂�k )+2P�in Rinx̂�i ŷn+Pn ŷ2n℄= Z Y�i dx̂�i dx�i2� Yn dynp2�D(z=�) eiP�i x̂�i [x�i �(Ry)i℄+ 1�P� �(x�;y;z)�e� 12 [P�ik x̂�i (Q�q)ikx̂�k+Pik(P� x̂�i )(q�RRT )ik(P� x̂�k )+Pn y2n℄= 1qjq � RRT j Z DyD(z=�) Z Yi dvip2�e� 12vT (q�RRT )�1v� Z Y�i dx̂�i dx�i2� e� 12P�ik x̂�i (Q�q)ikx̂�k+iP�i x̂�i [x�i +ui�(Ry)i ℄+ 1�P� �(x�;y;z)22



= 1qjq � RRT j Z DyD(z=�) Z Yi dvip2�e� 12vT (q�RRT )�1v� 24 1qjQ� qj Z Yi dxip2�e 1��(r)� 12 (x�Ry�v)T (Q�q)�1(x�Ry�v)35n= Z DyD(z=�) Z Dv �Z dx 
(r;v)�n (A12)with 
(r;v) = 1qjQ� qj(2�)K e 1��(r)� 12 (x�Ry�Lv)T (Q�q)�1(x�Ry�Lv) ; (A13)LLT = q � RRT and B = (Q� q)�1L.Seondly, the integration on J�i an be arried out and the orresponding expression anbe evaluated expliitly using the RS ansatz (in the limit n! 0)limN!1 1N ln Z Y�i dJ�i e� 12hP�ik Q̂�ikJ�i �J�i �2iP�in R̂�inJ�i �Bn+P��ik q̂��ik J�i �J�ki� �12 h(n� 1) ln jQ̂� q̂j+ ln jQ̂+ (n� 1)q̂j+ nTr[R̂T (Q̂� q̂)�1R̂℄ +O(n2)i (A14)Together with the rest of the terms in the 	[: : :℄, we havelimn!0 	n = 12�Tr(Q̂Q)� 2iTr(R̂R)� Tr(q̂q)� ln jQ̂� q̂j � Tr[(Q̂� q̂)�1q̂℄ (A15)�Tr[R̂T (Q̂� q̂)�1R̂℄�� Z dr �(r)P (r) + � Z DyD(z=�) Z Dv ln �Z dx 
(r;v)�2. Derivation of the RS Saddle-point EquationsWe then work out the saddle-point equations with respet to Q̂; R̂; q̂r̂ = Q̂� q̂ = (Q� q)�1; R̂ = �i(Q� q)�1R; q̂ = �(Q� q)�1(q � RRT )(Q� q)�1 (A16)whih allow us to eliminate most variational parameters. Then the 	 an be simpli�ed as	 = 12Tr[(Q� RRT )(Q� q)�1℄ + 12 ln jQ� qj � Z dr�(r)P (r)+� Z DyD(z=�) Z Dv ln �Z dx 
(x;y; z;v)� (A17)23



The saddle-point equation for �(r) results inP (r) = e� 12y2q(2�)M e� z22�2p2�� Z Dv " 
(r;v)R dx0 
(x0;y; z;v)# � P (y; z)P [xjy; z℄ (A18)where we have de�ned P (y; z) and onditional probability P [xjy; z℄ respetivelyP (y; z) = e� 12y2q(2�)M e� z22�2p2�� ; P [xjy; z℄ = Z Dv " M(r)exTBvR dx0 M(x0;y; z)ex0TBv # (A19)with M(r) = e 1��(r)� 12 (x�Ry)T (Q�q)�1(x�Ry) (A20)3. Expliit Expression for the Green FuntionIn order to work out the expliit expression for the Green funtion (A8) we need toalulate the funtion L(r̂; r̂0). First we take the n! 0 limit of D(r̂; �; �) (A3), and simplifythe result using the saddle-point equation (A18)D(r̂; �; �) = limn!0 Z DyD(z=�) Z Dv �Z dx 
(r;v)e�ir̂�r� �Z dx 
(r;v)�n�1= Z DyD(z=�) Z Dv "R dx 
(r;v)e�ir̂�rR dx 
(r;v) #= Z dr P (r) e�ir̂�r (A21)Next we evaluate the Ej(r̂) by working out the partial derivative on �j and separating thesummation over replia indies into two groups: � = 1 and � > 1Ej(r̂) = *" 1�X�i ��i��J�ij + 1�X�n ��n��Bnj �Xi ix̂iJ1ij �Xn iŷnBnj#D(r̂; �; �)+ ~D= 24Xi F̂i(r̂)J1ij +Xn F̂n(r̂)Bnj + Xi;�>1 K̂i(r̂)J�ij + Xn;�>1 K̂n(r̂)Bnj35 (A22)where the RS ansatz is used,F̂�l (r̂) = Æ�1F̂l(r̂) + (1� Æ�1)K̂l(r̂) (A23)24



with F̂l(r̂) = 1� D[�1;l�(1)(r)℄D(r̂; �; �)E ~D � ix̂lD(r̂)K̂l(r̂) = 1� D[�2;l�(2)(r)℄D(r̂; �; �)E ~D (A24)and the index l runs through all student and teaher indies. We express L(r̂; r̂0) in terms ofEq.(A22), performing the summation over the replia indies and taking the limit of n! 0.We then obtainL(r̂; r̂0) =Xik hF̂iF̂ 0k � K̂iK̂0ki (Qik � qik) +Xik (F̂i � K̂i)(F̂ 0k � K̂0k)qik+Xin h(F̂i � K̂i)(F̂ 0n � K̂0n) + (F̂ 0i � K̂0i)(F̂n � K̂n)iRin+Xn (F̂n � K̂n)(F̂ 0n � K̂0n) (A25)The Green funtion beomesA(r; r0) =Xik [FiF 0k � KiK0k℄ (Qik � qik) +Xik (Fi � Ki)(F 0k � K0k)qik+Xin [(Fi �Ki)(F 0n � K0n) + (F 0i � K0i)(Fn �Kn)℄Rin+Xn (Fn �Kn)(F 0n �K0n) ; (A26)using the inverse Fourier transforms of F̂l(r̂) and K̂l(r̂)Fl(r) = Z dr(2�)K+M+1 F̂l(r̂)eir̂�r (A27)Kl(r) = Z dr(2�)K+M+1 K̂l(r̂)eir̂�r : (A28)Making use of saddle-point equation for �(r) (A18) and the expression for D(r̂; �; �)(A21), we an work out the expliit expressions of the funtions Fl(r) and Kl(r):Fl(r) = 1�P (r)[�l�(r)℄� [�lP (r)℄ (A29)Kl(r) = 1�P (y; z) Z Dv " 
(r;v)R dx0 
(x0;y; z;v)# "R dx0 
(x0;y; z;v)[�l�(r)℄R dx0 
(x0;y; z;v) # : (A30)25



Separating the index l to the student (labelled by i) and teaher (labelled by n) indies, weobtain four di�erent funtionsFi(r) = [(Q� q)�1(x�Ry)℄iP (r) + [�i lnM(r)℄P (r)� �iP (r)Fn(r) = �[RT (Q� q)�1(x� Ry)℄nP (r) + [�n lnM(r)℄P (r)� �nP (r)= �[RT (Q� q)�1(x� Ry)℄nP (r) + ynP (r)+P (y; z) Z Dv " M(r) exTBvR dx0 M(x0;y; z) ex0TBv # 24R dx0 [�nM(x0;y; z)℄ ex0TBvR dx0 M(x0;y; z) ex0TBv 35 (A31)Ki(r) = �[(Q� q)�1Ry℄iP (r)� �iP (r) + [�i lnM(r)℄P (r)+ P (y; z) Z Dv " M(r) exTBvR dx0 M(x0;y; z) ex0TBv # 24R dx0 [(Q� q)�1x0℄iM(x0;y; z) ex0TBvR dx0 M(x0;y; z) ex0TBv 35Kn(r) = [RT (Q� q)�1Ry℄nP (r)� P (y; z) Z Dv " M(r) exTBvR dx0 M(x0;y; z) ex0TBv # 24R dx0 [RT (Q� q)�1x0℄nM(x0;y; z) ex0TBvR dx0 M(x0;y; z) ex0TBv 35+ P (y; z) Z Dv " M exTBvR dx0 M(x0;y; z) ex0TBv # 24R dx0 [�nM(x0;y; z)℄ ex0TBvR dx0 M(x0;y; z) ex0TBv 35 (A32)Resaling the above funtions by P (r): ~Fl(r) = Fl(r)=P (r), and ~Kl(r) = Kl(r)=P (r),and de�ning the funtion�i(r) = ~Fi(r)� ~Ki(r) = 1P [xjy; z℄ Z Dv D[(Q� q)�1(x� x0)℄iE� hÆ(x� x0)i� ; (A33)with the abbreviationhf(x;x0)i� = R dx0 M(x0;y; z) ex0TBvf(x;x0)R dx0 M(x0;y; z) ex0TBv ; (A34)we obtain ompat forms for ~F(r) and ~K(r)~Fi(r) = [(Q� q)�1(x� Ry)℄i � [(Q� q)�1(q �RRT )�(r)℄i~Ki(r) = ~Fi(r)� �i(r)~Fn(r)� ~Kn(r) = yn � [RT�(r)℄n (A35)Inserting (A33) and (A35) into (A26), we �nally obtain the resaled Green funtion26



~A(r; r0) = A(r; r0)P (r)P (r0) (A36)= yTy0 + (x�Ry)T�(r0) +�T (r)(x0 � Ry0)��T (r)(Q�RRT )�(r0)with �(r) given in (A33). Working out the integrationZ dr0A(r; r0)G(r0) = P (r) Z dr0P (r0)G(r0) ~A(r; r0) = P (r)�(r) (A37)with �(r) = Wy + U(x� Ry) +X(Q� RRT )�(r) (A38)and X = (V �WRT )(Q�RRT )�1 � U; U = DG�TE (A39)we �nally obtain equation for probability distribution under RS ansatz, that is Eq.(13).4. The Large � ApproximationIn the large � limit, the order parameter matrix q takes the value RRT and the elementsof matrix B are very small. We an therefore use the umulant expansion up to the seondorder to obtainM(r) = P [xjy; z℄e� 12 (x��x(y;z))TB0(x��x(y;z))+ 12 [xTB0x��xT (y;z)B0�x(y;z)℄ + � � � ; (A40)overline denotes averages with respet to P [xjy; z℄ and the matrix B0 is of the form B0 =(Q � q)�1(q � RRT )(Q � q)�1. Furthermore, we have (Q � q) ' (Q � RRT ), the funtion�(r) in Eq.(A33) and the matrix U in Eq.(A39) beome�(r) ' (Q�RRT )�1(x� �x);U = [V � DG�xT (y; z)E℄(Q� RRT )�1 (A41)Finally, equation for probability distribution in Eq.(13) beomes to Eq.(16) with the expliitform of �(r). 27



APPENDIX B: THE MIXTURE OF GAUSSIANS REPRESENTATIONSA mixture of Gaussians an represent an arbitrary probability distribution given a suf-�ient number of basis funtions. Using a mixture of Gaussians representation for theprobability distribution (in the noiseless ase)Q(x;y) = LX�=1 w�q(2�)K+M jA�j exp 2664�12 0BB� x� �x�y 1CCAT A�1� 0BB� x� �x�y 1CCA3775 (B1)and the parameter set � = [w�; �x�; A�℄, from whih the equations for R and Q follow diretly:dRindt = �X� w� 24Xm I�3 (i; n;m)�Xj I�3 (i; n; j)35� Rin ; (B2)and dQikdt = �X� w�0�Xm [I�3 (i; k;m) + I�3 (k; i;m)℄�Xj [I�3 (i; k; j) + I�3 (k; i; j)℄1A+ �2X� w�Z�ik � 2Qik ; (B3)where Z�ik = Xjl I4(i; k; j; l)� 2Xjm J4(i; k; j;m) +Xmn K4(i; k;m; n)The integrals I3, I4, J4 and K4 are de�ned in Appendix C.The diÆulty is in obtaining a set of equations for the evolution of the parameter set�. This an be done in priniple by minimizing some distane measure between the up-dated distribution P (x;y) and the approximation Q(x;y). We experiened omputationaldiÆulties in arrying it out using a quadrati distane measure, mainly due to the di�er-ent sensitivities of the various parameters. Nevertheless, being apable of representing anyprobability distribution, we believe that this representation may allow one to obtain moreaurate results where the loal Gaussian approximation breaks down.APPENDIX C: LOCAL GAUSSIAN REPRESENTATION FOR THE CASE OFOUTPUT NOISE AND REGULARIZERFor loally-Gaussian approximation, the onditional probability has a form28



P [xjy; z℄ = 1q(2�)Kj�(y; z)j exp ��12[x� �x(y; z)℄T��1(y; z)[x� �x(y; z)℄� : (C1)The main advantages of this approximation are that the integration over the student �eld xan be arried out analytially and the partial di�erential equation for P (r) in Eq.(16) anbe simpli�ed to a set of di�erential equations for the parameters �(y; z); �x(y; z) as desribedin Eq.(18). 1. The Equations for the Parameters Q and RUnder this approximation, the equations for the marosopi parameters Q and R inEqs.(7) beomedRdt = � Z dydzP (y; z) �W (y; z)� R;dQdt = � Z dydzP (y; z)[ �V (y; z) + �V T (y; z)℄ + �2 Z dydzP (y; z) �Z(y; z)� 2Q (C2)with �Vik(y; z) =Xl I3(i; k; l)�Xj J3(i; k; j)�Win(y; z) =Xl K3(i; n; l)�Xj L3(i; n; j)�Zik(y; z) =Xjl I4(i; k; j; l)� 2Xjm J4(i; k; j;m) +XmnK4(i; k;m; n) (C3)where the integrals on the right hand side depend on y and z through �(y; z) and �x(y; z).2. Three Dimensional IntegralsThe three-dimensional integrals in Eq.(C3) are given byI3(1; 2; 3) = s 2� De� 12x21 x2 g(y3)E = I1�12g(y3);J3(1; 2; 3) = s 2� De� 12x21 x2 g(x3)E = I1 24�12g(�13) +s 2��e� 12�21335 ;K3(1; 2; 3) = s 2� De� 12x21 y2 g(y3)E = I1y2g(y3);L3(1; 2; 3) = s 2� De� 12x21 y2 g(x3)E = I1y2g(�13); (C4)29



with h: : :i = R dx P [xjy; z℄ : : : andIi = s 2� De� 12x2i E = s 2� 1p�i e� 12 �x2i�i ; (C5)�13 = (�x3�1 � �x1�13)�13; � = (�1�23 � �13�12)�13�i = 1 + �ii; �13 = 1=q�1(�1�3 � �213); �12 = �x2 � �12�x1=�13. Four Dimensional IntegralsThe four-dimensional integrals in Eq.(C3) are given byI4(1; 2; 3; 4) = 2� De� 12x21� 12x22g(y3)g(y4)E = I2(1; 2)g(y3)g(y4);J4(1; 2; 3; 4) = 2� De� 12x21� 12x22g(x3)g(y4)E = I2(1; 2)g(�123)g(y4);K4(1; 2; 3; 4) = 2� De� 12x21� 12x22g(x3)g(x4)E ;= I2(1; 2) Z Dxg �q�11 x +�3� g0��12x +p�11�4qj�j 1A ; (C6)where the two-dimensional integral is de�ned asI2(1; 2) = � 2�e� 12x21� 12x22� = 2� 1qjCj exp 2664�12 0BB� �x1�x2 1CCAT C�10BB� �x1�x2 1CCA3775 ; (C7)with the matrix C = 0BB� �1 �12�12 �2 1CCA ;and the arguments are de�ned as0BB� �3�4 1CCA = 2664 �x3 � (�x1D11 + �x2D21)�x4 � (�x1D12 + �x2D22) 3775�123 = �x3 � (�x1T1 + �x2T2)q�3 � (T1�13 + T2�23) with0BB� T1T2 1CCA = C�10BB� �13�23 1CCA ;30



and � = 0BB� �33 � E11; �34 � E12�34 � E21; �4 � E22 1CCA ;E = 0BB� �13D11 + �23D21; �13D12 + �23D22�14D11 + �24D21; �14D12 + �24D22 1CCA ;D = 1jCj 0BB� �2�13 � �12�23; �2�14 � �12�24�1�23 � �12�13; �1�24 � �12�14 1CCA : (C8)
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FIG. 1. The evolution of the generalization (a) and training errors (b) as a funtion of timefor � = 1; 2; 5. Solid lines represent analytial results while simulation experiments are presentedby symbols; both were initialized in a similar manner. Simulation results were averaged over 20trials; both mean values and error-bars are presented. Theoretial results for the training andgeneralization errors in the ase of � = 5 are presented in (a) and (b) respetively for omparison(dashed line). The insets in both �gures show the evolution of the various overlaps (Q and Rrespetively, di�erent symbols represent the various overlaps) in the ase of � = 5, omparingtheoretial results and simulations (mean values). The upper Q lines and symbols orrespond tothe diagonal values while the lower lines orrespond to the o�-diagonal overlaps
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FIG. 3. An unrealisable senario; a system omprising two student vetors K = 2, is trainedon examples provided by a system omprising three orthonormal teaher vetors M = 3. Theinitial onditions used are R011 = 0:05, Q011 = 0:4, Q022 = 0:6, with all other overlaps set to zero,the learning rate is � = 1 and the system size used for simulations is N = 1000. Simulation resultswere averaged over 10 trials, presenting both mean values and error bars. (a) The dependeneof generalization and training errors on time with � = 20; the inset shows the orresponding Qvalues. Lines represent theoretial values and symbols represent simulation results, upper linesorrespond to diagonal Q values and the lower lines to o�-diagonal values). The inset of (b)shows the orresponding R values, the upper urves represent student vetors that emulate spei�teaher vetors while the lower urves represent ross overlaps between student vetors and teahervetors emulated by other student vetors; the middle urves represent overlaps between studentvetors and the teaher vetor that is not emulated by any of the student vetors in partiular. (b)The asymptoti (t = 1000) values of the generalization (dashed line and irles) and training errors(dotted lines and �) for di�erent � values, omparing theoretial (lines) and simulation (symbols)results.
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FIG. 4. The e�et of additive Gaussian output noise on the evolution of the training andgeneralization errors and on the marosopi variables in the ase of K = M = 2. The initialonditions used for the student vetor length are Q0ii = 0:5; Q08i6=j and R0in are set to valuessampled uniformly in the range [0; 1=pN ℄, orresponding to the system size N used in simulations.The learning rate is � = 1, the examples ratio is � = 20 and the noise level � = 0:2. The systemsize used in simulations is N = 1000 and the results were averaged over 10 trials eah.
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FIG. 5. Additive Gaussian output noise in the ase of K = M = 2; the learning rate usedand the initial onditions are as in Fig.4. The system used for simulations is of size N = 1000and results were averaged over 10 trials for eah point. (a) The dependene of generalization andtraining (inset) errors on time for di�erent noise levels � = 0:1; 0:2; 0:3 (from the bottom up) inthe ase of � = 20. (b) The same for the ase of � = 12 and � = 0:1; 0:3; 0:5.
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FIG. 6. The asymptoti values of generalization and training errors (measured at t = 1000)for di�erent � values with a �xed additive Gaussian output noise level; the ase onsidered, thelearning rate used and the initial onditions are as in Fig.4. The system used for simulationsis of size N = 1000 and results were averaged over 10 trials for eah point. (a) generalization(higher urve) and training (lower urve) errors for � = 0:3, where the dotted line represents theasymptoti value of both training and generalization errors as � beomes in�nite and to whihboth errors onverge. The inset shows for omparison the orresponding generalization (higherurve) and training (lower urve) errors for � = 0:1. (b) The dependene of generalization erroron � for di�erent noise levels, � = 0:1 (lower urve) and 0:3 (higher urve). The inset shows theorresponding dependene of �Eg = Eg(�) � Eg(1) on ��1, for � values high enough for thesystem to esape the symmetri phase; the noise levels used are � = 0:1 (lower urve) and 0:3(higher urve).
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FIG. 8. Training with regularizers. The ase onsidered, the learning rate, the system size usedfor simulation and the initial onditions are as in Fig.4. (a) The dependene of generalization andtraining errors on time for di�erent regularizer () values, where generalization errors (the upperthree) are for  = 0:01,  = 0:001,  = 0:0 from the bottom to the top and training errors (thelower three) are from the top to the bottom; symbols show the simulation results for  = 0:01and  = 0:0 (simulations for the ase of  = 0:001 have been omitted for brevity). The noise levelused is � = 0:6 and � = 12. (b) The asymptoti values of the generalization error (measured att = 1000) for di�erent � values and �xed noise level � = 0:3. The upper urve represents the aseof no regularization while the lower urve is for  = 0:005. The inset shows the orrespondingdependene of �E = Eg(�) � Eg(1) on ��1, where the simulation results are shown by symbolswith no error bars for brevity.
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