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8 Gaussian Processes and SVM: Mean FieldResults and Leave-One-Out
Manfred OpperDepartment of Computer Science and Applied Mathematics,Aston University, Birmingham B4 7ET, United Kingdomm.opper@aston.ac.ukhttp://neural-server.aston.ac.uk/People/opperm/Ole WintherTheoretical Physics II, Lund UniversityS�olvegatan 14 A, S-223 62 Lund, Swedenwinther@thep.lu.sehttp://www.thep.lu.se/tf2/sta�/winther/In this chapter, we elaborate on the well-known relationship between Gaussianprocesses (GP) and Support Vector Machines (SVM). Secondly, we present ap-proximate solutions for two computational problems arising in GP and SVM. The�rst one is the calculation of the posterior mean for GP classi�ers using a `naive'mean �eld approach. The second one is a leave-one-out estimator for the gener-alization error of SVM based on a linear response method. Simulation results ona benchmark dataset show similar performances for the GP mean �eld algorithmand the SVM algorithm. The approximate leave-one-out estimator is found to bein very good agreement with the exact leave-one-out error.8.1 IntroductionIt is well-known that Gaussian Processes (GP) and Support Vector Machines(SVM) are closely related, see e.g. Wahba (1999); Williams (1998). Both approachesare non-parametric. This means that they allow (at least for certain kernels) forin�nitely many parameters to be tuned, but increasing with the amount of data,only a �nite number of them are active. Both types of models may be understood asgeneralizations of single layer perceptrons, where each input node to the perceptron
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44 Gaussian Processes and SVM: Mean Field Results and Leave-One-Outcomputes a distinct nonlinear feature of the original inputs to the machine. Inprinciple, the number of such features (and of the corresponding perceptron weights)can be arbitrarily large. However, by the speci�c training method, such vast increasein complexity does not necessarily result in over�tting.For the support vector machine (in its simplest version), a quadratic optimiza-tion algorithm maximizes the gap between positive and negative examples. A sim-ple mathematical analysis of this optimization problem shows that all the weightsbecome just linear combinations of the input feature vectors. Hence, the corre-sponding coe�cients in this combination are the new parameters to be calculated.Their number never exceeds the number of examples. Moreover, it is not neces-sary to evaluate the many nonlinear feature vectors during the calculations, butall calculations are expressed by the kernel function which is the inner product oftwo vectors of features at di�erent input points. In fact, one need not even specifythe non-linear features explicitly, but any positive semide�nite kernel function willimplicitly de�ne such features (see the Chapter 1 for details).A second way to regularize this problem comes from the Bayesian approach. Here,one introduces a prior distribution over the perceptron weights, which puts a smallerweight on the more complex features. If the prior distribution is a multivariateGaussian (in the simplest case, just a product of univariate ones), the activationfunction of the single layer perceptron becomes a Gaussian process. Although aderivation of covariance functions based on a limiting process of multilayer networksis possible Neal (1996); Williams (1997), one often simply uses a parameterizedcovariance function instead. Besides the simple fact that any kernel function usedin the SVM approach can be used as a covariance function of the Gaussian processapproach and vice versa, there are more striking mathematical relations betweenthe two approaches as we will discuss in following.This chapter deals with two subjects. First, we will show how SVM can beunderstood as the maximum a posteriori (MAP) prediction from GP using acertain non-normalized likelihood. The second part deals with two approximationtechniques that are useful in performing calculations for SVM or GP which wouldotherwise be intractable or time consuming. We will discuss a linear responsemethod to derive an approximate leave-one-out estimator for the generalizationerror of SVM. Mean �eld methods (which have been originally developed withinstatistical mechanics) can be used to cope with posterior averages for GP whichare not analytically tractable.The rest of the chapter is organized as follows. Section 8.2 reviews the Gaussianprocess approach to noise-free classi�cation. In section 8.3, we discuss how to extendthis to modeling with noise. Section 8.4 deals with the relation of SVM to themaximum a posteriori prediction of GP. In section 8.5, we derive a leave-one-outestimator for the generalization error using linear response theory and a (mean�eld) assumption. Section 8.6 reviews the `naive' mean �eld approach to Gaussianprocess classi�cation. SVM and the naive mean �eld algorithm are compared insimulations in section 8.7. The chapter is concluded in section 8.8.
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8.2 Gaussian Process Classi�cation 458.2 Gaussian Process Classi�cationGaussian processes give a natural formulation of Bayesian learning in terms of priordistributions over functions. Here, we give a short summary of the basic conceptsof Bayesian learning as applied to Gaussian Processes.We consider a binary classi�er with output g(x) = sgnf(x), where f(x) called(using neural network terminology) the `activation' at input point x. In a Bayesianapproach, all information about f(x), when example data are known, is encodedin a posterior distribution of activations functions. The �rst ingredient to such anLikelihood approach is the Likelihood of f(x) which for noise-free classi�cation and outputlabel y isp(yjf(x)) = �( y f(x)) = ( 1 y f(x) > 00 y f(x) < 0 : (8.1)The second ingredient needed to form the posterior is the prior distribution overactivations. A simple choice is a Gaussian process prior. This means that any �niteGaussian Processprior set of function valuesf = (f(x1); : : : ; f(xm)) (8.2)at arbitrary points x1; : : : ;xm of the input space have a joint Gaussian distributionp(f) = 1p(2�)m detke� 12 (f�m)Tk�1(f�m) (8.3)where m = (m(x1); : : : ;m(xm)) is the mean andk � E(�T )�mmT (8.4)is the covariance matrix having elementsk(xi;xj); i; j 2 1; : : : ;m : (8.5)The so-called covariance function, k(x;x0) is an explicit function of the paircovariance func-tion (kernel) of input points and determines correlations of activations at di�erent points. Apopular choice is the radial basis covariance function eq. (1.73), but any functionthat gives rise to a positive semide�nite covariance matrix can be used. Thecovariance function reects our prior beliefs about the variability of the functionf(x). The mean function m(x) is usually set to a constant. The covariance functionis completely equivalent to the Kernel function in the SVM approach as will beshown below.8.2.1 Statistical inference for Gaussian ProcessesGiven the training setDm = f(xi; yi)ji = 1; : : : ;mg; (8.6)
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46 Gaussian Processes and SVM: Mean Field Results and Leave-One-Outthe inference task is to predict the correct label y on a new point x. In the Bayesianframework, this is done by using the posterior distribution of f(x) (which in thefollowing will also be abbreviated by f). To calculate the posterior, the newposterior activation is included in the prior: p(f ; f(x)). The posterior is then given byp(f ; f(x)jy) = 1p(y) p(yjf)| {z }Likelihood p(f ; f(x))| {z }Prior ; (8.7)where we have denoted the training set outputs by y = y1; : : : ; ym and theLikelihood of the training set activations isp(yjf) = mYi=1 p(yijf(xi)) = mYi=1�(yi f(xi)) : (8.8)Finally the normalization constant isp(y) = Z df p(yjf) p(f) : (8.9)The predictive distribution isp(f(x)jy) = Z df p(f ; f(x)jy) : (8.10)Using this distribution we can calculate the probability for output y: p(yjy) =R df p(yjf)p(f jy). In the ideal case, (Bayes) optimal predictions are obtained byBayes optimalprediction choosing the output with highest probability. For binary�1-classi�cation, the Bayesclassi�er may be written asyBayes(Dm;x) = sgn Z df p(f jy) sgn f : (8.11)The mean �eld approach{discussed in section 8.6{aims at calculating an approxi-mation to the Bayes classi�er.8.3 Modeling the NoiseSo far we have only considered noise-free classi�cation. In real situations, noise orambiguities will almost always be present and are{in the Bayesian framework{atleast conceptually straightforward to model.We will consider two noise models: `input' (or additive) noise and output (mul-tiplicative) noise. Input noise is de�ned as a random term added to the activationinput noise function in the likelihood:p(yjf(x); �(x)) = �(y (f(x) + �(x)) ) (8.12)The output noise is ip noise, i.e.output noise p(yjf(x); �(x)) = �(y �(x) f(x)) (8.13)where � 2 f�1;+1g.
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8.4 From Gaussian Processes to SVM 47There are two ways to incorporate the input noise in the Gaussian Processframework: either to average it out by directly modifying the Likelihood accordingtop(yjf) = Z d� p(yjf; �)p(�) (8.14)or to change variables to the `noisy' process f + � with a modi�ed prior andunchanged Likelihood eq. (8.1).The simplest example is Gaussian noise with zero mean and variance v: The �rstapproach gives the modi�ed Likelihoodp(yjf) = �� yfpv� ; (8.15)where �(x) = R x�1 dyp2� e�y22 is an error-function. This Likelihood corresponds toprobit regression Neal (1997). In the second approach, we use the fact that theprocess f + �{due to the Gaussianity of the noise{is also a Gaussian process withthe following covariance matrixknoisy = E �(f + �)(f + �)T ��E [f + �]E �(f + �)T � = k+ vI : (8.16)For output noise, we take an iid ip process which ips the classi�cation label witha probability given by �, thusp(yjf) = X�=�1 p(�)p(yjf; �)= ��(�yf) + (1� �)�(yf)= �+ (1� 2�)�(yf) : (8.17)Such a noise process could model the e�ects of outliers, i.e. examples whichare wrongly classi�ed independently of the corresponding value of the activationfunction. Usually, we expect that the probability of a ip is small, when f(x) is largeand we have high con�dence on the label. However, there may be some fraction ofoutliers in the data which may not be treated well by such a model. For those, weinclude the possibility that the probability of ip is independent of the location.In the following, we will show 1. how SVM can be obtained from Gaussianprocesses with a modi�ed (non-normalized) Likelihood and 2. the slack variablefor SVM corresponds to the realization of the input noise � in the GP framework.8.4 From Gaussian Processes to SVMWe will start by discussing the additive noise model and in the end of this sectionshortly consider the multiplicative noise model.To obtain support vector machines from Gaussian processes, we may �rst look atthe maximum a posteriori (MAP) values for activations and noise variables which
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48 Gaussian Processes and SVM: Mean Field Results and Leave-One-Outcan be obtained by maximizing the joint distributionp(y; �; f) =Yi [p(yijfi; �i)p(�i)] p(f) ; (8.18)where we have suppressed the explicit x dependence. Equivalently, we may minimizethe negative log posterior, L = � log p(y; �; f). Shifting the activation variables to azero mean Gaussian process, i.e. f(x)! f(x)+m(x) with constant mean m(x) = band enforcing the inequality constraints of the Likelihood p(yjf; �) = �(y(f+b+�))by non-negative Lagrange multipliers �, we arrive atL = �Xi log p(�i)� log p(f)�Xi �i [yi(fi + b+ �i)] : (8.19)The MAP-parameters are obtained from the saddlepoint of L. A straightforwardoptimization @L@fi = 0 leads to the well known SVM expressionfSVMi =Xj kijyj�j (8.20)and the MAP prediction is given byySVM(x) = sgn(Xj k(x;xj)yj�j + b) : (8.21)Unfortunately, if the noise distribution has zero mean, the variation with respectto the other variables gives the trivial solution f = � = 0. To obtain the SVMsolution, a further ad hoc modi�cation (equivalent to the introduction of a margin)is necessary. The �nal expression readsL = �Xi log p(�i)� log p(f)�Xi �i [yi(fi + b+ �i)� 1] : (8.22)The expression for �i and �i obtained by a variation of this expression dependsexplicitly on the noise model. For Laplace noise p(�) = C2 exp(�Cj�j), we obtainthe Kuhn-Tucker conditions corresponding to the linear slack penalty CPi �i (with�i � 0) and Gaussian noise leads to the Kuhn-Tucker conditions corresponding tothe quadratic slack penalty 12v Pi �2i Cortes and Vapnik (1995), Note that themean of the Gaussian process b plays the role of the threshold (or bias) in the SVMframework.1The ad hoc introduction of the extra margin destroys the probabilistic in-terpretation of the corresponding 'Likelihood' p(yjf; �) = �(y(f + b + �) � 1)which does not correspond to a true probability, because it is not normalized, i.e.Py=�1 p(yjf; �) � 1. Hence, a direct Bayesian probabilistic interpretation of SVMis not fully possible (at least in the simple MAP approach that we have sketched).So if we want to associate probabilities with output predictions, it is most naturalto work in the Gaussian process framework (but see also Chapter 7). In practice1. It is also possible to include a (e.g Gaussian) prior over b. The usual choice for SVMcorresponds to a at prior.
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8.5 Leave-One-Out Estimator 49however, it turns out that often the predictions made by both approaches are verysimilar when the same covariance function (kernel) and noise (slack) model areused.It is not possible to follow the same scheme for the output noise realization� = �1 because this leads to a combinatorial optimization problem which cannotbe solved easily. Alternatively, one could use the Likelihood eq. (8.17) where thenoise realization has been averaged out. However, eq. (8.17) is not a 0-1 probabilitycorresponding to a simple inequality constraint that in the optimization may beenforced using a Lagrange multiplier. For inference with Gaussian processes{on theother hand{this is not a problem, since formally and practically, it is straightforwardto deal with the Likelihood eq. (8.17) as we will see in section 8.6.8.5 Leave-One-Out EstimatorIn this section, we derive an approximate leave-one-out (loo) estimator for thegeneralization error of the SVM-classi�er. Although we do not know if our leave-one-out estimator can be cast into a bound on the true loo error (for boundssee Jaakkola and Haussler (1999) and Chapters 1, it seems to be at an excellentapproximation (at least in the cases that we have applied it). 6). Previously, we havegiven a derivation based on a limiting procedure of the TAP-mean �eld equationsin Opper and Winther (1999a). The derivation given here is based on a linearresponse approach which is similar to the one derived by Wahba (1999), however fora di�erent loss function. For a similar approach in the framework of neural networks,see Larsen and Hansen (1996). The approximation made in this approach is similarto an assumption which is also hidden in mean �eld theories: For systems whichare composed of a large number of interacting degrees of freedom, a perturbationof a single one of them will change the remaining ones only slightly. To keep thederivation as simple as possible, we consider zero bias, b = 0. At the end of thissection, we briey sketch how to generalize the result to b 6= 0.The basic idea is to calculate the change of the solution fi for input i in responseto removing example l. We will denote the solution at i without the lth exampleby fnli . Before and after the removal of example l, we have the following solutionsfi =Xj kij yj �j (8.23)fnli =Xj 6=l kij yj �nlj (8.24)or�fi = �fnli � fnli � fi =Xj 6=l kij yj ��j � kil yl �l : (8.25)There are two basic contributions to the change �fi. The �rst term above is theindirect change due to the change of �j in response to removing l and the second
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50 Gaussian Processes and SVM: Mean Field Results and Leave-One-Outterm is the direct contribution. The leave-one-out error is obtained as a simple errorcount�SVMloo = 1mXi ���yifnii � : (8.26)Unfortunately, the �rst term in eq. (8.25) cannot be calculated without making aspeci�c approximation. The following derivation is for the SVM framework withlinear slack penalty.The Kuhn-Tucker conditions of SVM learning distinguishes between three di�er-leave-one-out ap-proximation ent groups of examples. We make the assumption that example j 2 1; : : : ; l� 1; l+1; : : : ;m, remains in the same group after retraining the SVM when example l(6= j)is removed. Explicitly,1. Non-support vectors (yjfj > 1 and �j = 0), will remain non-support vectors:��j = 0.2. Margin support vectors (yjfj = 1 and �j 2 [0; C]), will remain margin supportvectors: �fj = 0.3. Misclassi�ed patterns (yjfj < 1 and �j = C), will remain misclassi�ed patterns:��j = 0.It is easy to construct a set of examples for which this assumption is not valid. Weexpect the approximation to be typically quite good when the number of supportvectors is large because then upon removal of a support vector, the new solution willmainly be expressed as a (small) reorganization of the remaining margin supportvectors. With this simplifying assumption, we may now solve eq. (8.25) in the formmSVXj 6=l kij yj ��j � kil yl �l = 0 (8.27)to �nd ��j for the margin support vectors (the non-support vectors and misclassi�edpatterns are assumed to have ��j = 0).It is necessary to consider explicitly the group to which the removed examplebelongs. We see immediately that if example l is a non-support vector then ��j = 0.If example l is a margin support vector, we get��i = mSVXj 6=l h(knlmSV)�1iij kjl yl �l ; (8.28)where knlmSV is the covariance matrix of the margin support sector patterns exclud-ing the lth pattern. Inserting the result in �fi and setting l = i, we �nd�fi = 8<:mSVXj;j0 6=i kij h(knimSV)�1ijj0 kj0i � kii9=; yi �i= � 1�k�1mSV�ii yi �i : (8.29)
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8.5 Leave-One-Out Estimator 51In the last equality a matrix identity for the partitioned inverse matrix has beenused.For example l being a misclassi�ed pattern, the sum in eq. (8.27) runs over allmargin support vectors, thus��i = mSVXj �k�1mSV�ij kjl yl �l ; (8.30)and�fi = 8<:mSVXj;j0 kij �k�1mSV�jj0 kj0i � kii9=; yi �i : (8.31)We see that the reaction �fi is proportional to a direct change term through thefactor �i. We have now obtained the leave-one-out estimator eq. (8.26) for SVMwith yi fnii = yi fi + yi �fi and �fi given by eqs. (8.29) and (8.31) for respectivelymargin support vectors and misclassi�ed patterns. Note that the sum over patternswill only run over support vectors since the reaction is estimated to be zero fornon-support vectors.One may argue that it is computationally expensive to invert kmSV. However,we expect that the computational cost of this operation is comparable to �ndingthe solution to the optimization problem since it{on top of identifying the supportvectors{also requires the inverse of kSV. This is also observed in simulations. Usingthis leave-one-out estimator is thus much cheaper than the exact leave-one-outestimate that requires running the algorithm N times (although each run willprobably only take a few iterations if one uses an iterative learning scheme like theAdatron algorithm Anlauf and Biehl (1989) with the full training set solution as thestarting point). Another possible way of decreasing the computational complexityof the estimator is to use methods in the spirit of Wahba's randomized GACVWahba (1999).These results may easily be generalized non-zero threshold: To include thresholdfi should be substituted with fi + b. The Kuhn-Tucker condition for the marginsupport vectors therefore changes to yi(fi + bi) = 1 which implies �fi = ��b. E.g.for l being a margin support vector, we now have��i = mSVXj 6=l h(knlmSV)�1iij (kjl yl �l � �b) : (8.32)The saddlepoint condition for b, @L@b = 0, givesPi yi�i = 0. This condition impliesPmSVi yi��i = 0 which together with the expression for ��i above determines �b.
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52 Gaussian Processes and SVM: Mean Field Results and Leave-One-Out8.6 Naive Mean Field AlgorithmThe aim of the mean �eld approach is to compute an approximation to the Bayesprediction yBayes(x) = sgnhsgnf(x)i for the GP classi�er, where we have introducedthe notation h: : :i to denote a posterior average. We will only discuss a 'naive' mean�eld algorithm with the aim of stressing the similarities and di�erences betweenthe SVM and Gaussian process approach. We will follow the derivation given inOpper and Winther (1999a) based on the so-called Callen identity Parisi (1988).An independent derivation is given in Opper and Winther (1999b).We will use the simpli�ed prediction y(x) = sgnhf(x)i which the Bayes classi�erreduces to when the posterior is symmetric around its mean. We �rst give exactexpressions for the posteriorhf(x)i = 1p(y) Z dfdf f p(yjf)p(f ; f(x)) : (8.33)Using the following identity fj p(f) = �Pi k(xj ;xi) @@fi p(f) (or rather its extensionto p(f ; f)), which is easily derived from (8.3) setting m = 0, we can writehf(x)i = � 1p(y) Z dfdf p(yjf)Xi k(x;xi) @@fi p(f ; f(x)) (8.34)We may now use integration by parts to shift the di�erentiation from the prior tothe Likelihood:hf(x)i =Xi k(x;xi) 1p(y) Z dfdf p(f ; f(x)) @@fi p(yjf)= mXi=1 k(x;xi) yi �i : (8.35)Remarkably, this has the same form as the prediction of the SVM eq. (1.80).While for the SVM, the corresponding representation follows directly from therepresentation theorem of Kimeldorf and Wahba (1971), we can not use thisargument for the mean �eld method, because (8.35) is not derived from minimizinga cost function. For the mean �eld approach, the `embedding strength' �i of examplei is given by�i = yip(y) Z dfp(f) @@fi p(yjf) (8.36)Note that the �i's will always be non-negative when p(yijf(xi)) is an increasingfunction of yif(xi).We give now a mean �eld argument for the approximate computation of the�i. There are di�erent ways of de�ning a mean �eld theory. The present one hasthe advantage over other approaches Opper and Winther (1999a), that no matrixinversions are needed in the �nal algorithm. To proceed, auxiliary variables t are
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8.6 Naive Mean Field Algorithm 53introduced using a standard Gaussian transformation�i = yip(y) Z dfdt(2�)m exp��12tTkt+ itT f� @@fi p(yjf) (8.37)= yip(y) Z dfdt(2�)m (�iti) exp��12tTkt+ itT f� p(yjf) = �iyihitii ;where the i not appearing as an index is the imaginary unit i = p�1. In thesecond equality integration by parts is applied. In the last equality the bracket isunderstood as a formal average over the joint complex measure of the variables fand t. Next, we separate the integrations over fi and ti from the rest of the variablesto get�i = yi*R dfidti exp�� 12kii(ti)2 + (�iti)(Pj 6=i kij(�itj)� fi))� @p(yijfi)@fiR dfidti exp�� 12kii(ti)2 + (�iti)(Pj 6=i kij(�itj)� fi))� p(yijfi)+ :(8.38)This identity can be proved by noting that the average over fi and ti in h: : :i exactlycancels the denominator given us back the original expression for �i.We may now carry out the explicitly written integrals over fi and ti. Using theLikelihood for output noise eq. (8.17), we �nd�i = yi*R dfi exp�� (fi�Pj 6=i kij(�itj ))22kii � @p(yijfi)@fiR dfi exp�� (fi�Pj 6=i kij (�itj))22kii � p(yijfi) += 1pkii * (1� 2�)D �Pj 6=i kij(�itj )pkii ��+ (1� 2�)��yiPj 6=i kij (�itj)pkii �+ ; (8.39)where D(z) = e�z2=2=p2� is the Gaussian measure. So far everything is exact.The `naive' mean �eld approximation amounts to neglecting the uctuations of the`naive' mean �eldapproximation variable Pj 6=i kij(�itj) and substituting it with its expectation Pj 6=i kijh�itji =Pj 6=i kij�j . This corresponds to moving the expectation through the nonlinearities.One should however keep in mind, that the integrations are over a complex measureand that the tj are not random variables in a strict sense. The result of thisapproximation is a self-consistent set of equations for �i = �iyihtii. The explicitexpression for �i becomes�i = 1pkii (1� 2�)D (zi)�+ (1� 2�)� (zi) ; zi = yi hfii � kiiyi�ipkii : (8.40)In �gure 8.1, �i is plotted as function of zi (with kii = 1). The shape of the`embedding'-function depends crucially upon whether we model with or withoutnoise. For the noise-free case, � = 0, �i is a decreasing function of yihfii � kii�i =zipkii which may be thought of as a naive approximation to (y times) the activationfor input i trained without the ith example. The result is intuitively appealingbecause it says that the harder it is to predict an example's label, the larger weight
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54 Gaussian Processes and SVM: Mean Field Results and Leave-One-Out�i(� = 0)�
zi-�i(� > 0)Figure 8.1 The `embedding strength' �i plotted as a function of zi with kii = 1.�i it should have.2 In the noisy case, �i is a decreasing function of zi down to certainpoint at which the algorithm tends to consider the example as being corrupted bynoise and consequently gives it a smaller weight. This illustrates the di�erencebetween ip noise and using the linear slack penalty for support vectors where the`hardest' patterns are given the largest weight, �i = C.It is interesting to note that for the mean �eld algorithm �i, in contrast toSVM, is an explicit function of other variables of the algorithm. The fact thatthe function is non-linear makes it impossible to solve the equations analyticallyand we have to resort to numerical methods. In Table 8.1, we give pseudo-codefor a parallel iterative scheme for the solution of the mean �eld equations. Animportant contributing factor to ensure (and to get fast) convergence is the use ofan adaptable learning rate: We set � := 1:1� if `the error' Pi j��ij2 decreases inthe update step and � := �=2 otherwise. Clearly, the algorithm does not convergefor all values of the hyperparameters.3 However,if the SVM has a solution for acertain choice of hyperparameters, the mean �eld algorithm will almost alwaysconverge to a solution and vice versa. The important question of how to tune thehyperparameters is discussed in the following.For comparison, we also give the leave-one-out estimator for the naive mean �eldleave-one-out es-timator algorithm. It is derived from the mean �eld equations using linear response theoryOpper and Winther (1999a) in completely the same fashion as the leave-one-out2. In the more advanced TAP (named after Thouless, Anderson & Palmer) mean �eldtheory zi is proportional to the `unlearned' mean activation Opper and Winther (1999a).3. In Bayesian modeling hyperparameters refer to `higher level' parameters which are notdetermined directly in the algorithm (in contrast to e.g. �). The hyperparameters forthis algorithm are the output ip probability �, the input noise variance v and the inputlengthscale(s) in the kernel, e.g. � in the radial basis kernel eq. (1.73). The algorithmdepends on the two latter hyperparameters only through the covariance matrix eq. (8.16).
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8.7 Simulation Results 55Initialization:Start from tabula rasa, � := 0.Learning rate, � := 0:05.Fault tolerance, ftol := 10�5.Iterate:while maxi j��ij2 > ftol do:for all i:hfii :=Xj kijyj�j��i := 1pkii (1� 2�)D(zi)�+ (1� 2�)�(zi) � �i; zi � yi hfii � kiiyi�ipkiiendforfor all i:�i := �i + ���iendwhileTable 8.1 Pseudo-code for the naive mean �eld algorithm.estimator for SVM�naiveloo = 1m SVXi ���yihfii+� 1[(
+ k)�1]ii �
i��i� ; (8.41)where 
 is a diagonal matrix with elements
i = kii � 1yi�ihfii � 1� : (8.42)We thus have the same basic structure as for the SVM estimator. However, thisestimator requires the inversion of the full covariance matrix. In the next section,we will demonstrate on a benchmark dataset that the leave-one-out estimators arein very good agreement with the exact leave-one-out errors. This has also beenobserved previously on other benchmarks Opper and Winther (1999b,a). We alsoshow that despite the fact that this algorithm looks very di�erent from SVM, thesolution obtained and the performance is quite similar. The mean �eld approachwill tend to produce a smaller minimal margin, however we have not observed thatthis has any e�ect on performance.8.7 Simulation ResultsThe two algorithms have been tested on theWisconsin breast cancer dataset, whichis a binary classi�cation task (tumor is malignant or benign) based on 9 attributes,see e.g. Ster and Dobnikar (1996). We have removed the 16 examples with missingvalues and used standard preprocessing as to set the mean for every input equal tozero and the variance to unity across the dataset of 683 examples. The performanceis{as in previous studies{accessed using 10-fold cross validation Ster and Dobnikar
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56 Gaussian Processes and SVM: Mean Field Results and Leave-One-Out(1996).For SVM, we used the parallel version of the Adatron algorithm of Anlauf andBiehl (1989) which, extended to general covariance functions, has turned out to be afast iterative algorithm Frie�et al. (1998). For naive mean �eld theory, we solved themean �eld equations using the iterative scheme described in the previous section.We chose to work with the radial basis covariance function eq. (1.73). TheGaussian noise model is used in noisy process formulation thus adding the inputnoise variance v to the diagonal of the covariance matrix as in eq. (8.16). Forthe mean �eld algorithm, we have the additional output noise parameter �. Thesetwo(three) parameters are chosen as to minimize the leave-one-out (loo) error forone of the 10 training sets by scanning through a number of parameter values. Wefound the values �2 = 0:15=N and v = 1:3 for both algorithms and � = 0. Thetrue minimum is probably not found by this very rough procedure, however, theperformance turned out to be quite insensitive to the choice of hyperparameters.Since we use the training set to assess the performance through the 10-fold crossvalidation scheme, the loo estimate and test error are not independent. However,our main emphasis is not on generalization performance but rather on learningspeed and on the precision of the loo estimators. The 10-fold cross validation errorfor respectively SVM and naive mean �eld theory is � = 0:0307 (21) and � = 0:0293(20), where the numbers in parentheses indicates the number of misclassi�cations.The loo errors are �loo = 0:0293 and �loo = 0:0270. The more advanced TAP mean�eld algorithm Opper and Winther (1999b,a) �nds a solution very similar to theone of the naive mean �eld algorithm. In another study using the SVM-algorithm,Frie�et al. (1998) �nd � = 0:0052. The di�erence may be due to a number of reasons:the di�erent splitting of the data set, a di�erent way of parameter selection, use ofbias and/or handling of missing values. With other methods the following error ratesare found: multi-layer neural networks � = 0:034 , linear discriminant � = 0:040,RBF neural networks � = 0:041 and CART � = 0:058 Ster and Dobnikar (1996).In table 8.2, we compare the learning speed of the two algorithms{trained on oneof the 10 training sets (with 614 examples){both with and without evaluating theloo estimator (in CPU seconds on an Alpha 433au) and the number of iterationsrequired to achieve the required precision, maxi j��ij2 < ftol = 10�5. We alsocompare the leave-one-out estimator �loo with the exact loo estimator �exactloo for bothalgorithms. In this case the loo estimators for both algorithms are in accordancewith the exact values. Apart from the case where the value of � is very smallcorresponding closely to a nearest-neighbor classi�er, we have always observed thatthe leave-one-out estimators are very precise, deviating at most one classi�cationfrom the correct value Opper and Winther (1999a).Without evaluating the loo estimators, the naive mean �eld algorithm is about4 times faster than the Adatron algorithm. With the leave-one-out estimator, theSVM is about 4 times faster than the naive mean �eld algorithm. This is due tothe fact that for �SVMloo , eq. (8.26), we only need to invert the covariance matrixfor the margin support vector examples, which in this example is 272-dimensional,whereas �naiveloo , eq. (8.41) requires the inversion of the full covariance matrix (614-
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8.7 Simulation Results 57Table 8.2 Results for the Wisconsin dataset.Algorithm �exactloo �loo CPU w. loo CPU wo. loo It.SVM 0.0261 0.0261 5 4 195Naive Mean Field 0.0293 0.0293 16 1 31dimensional). If the linear slack penalty had been used, the number of supportvectors would have been smaller and the advantage of using �SVMloo would have beeneven greater.In �gure 8.2, we compare the solutions found by the two algorithms. The solutionsfor the `embedding strengths' �i are quite similar. However, the small di�erencesin embedding strength give rise to di�erent distributions of margins. The mean�eld algorithm achieves both smaller and larger margins than SVM. We have alsoindicated which of the examples are predicted as wrongly classi�ed by the looestimators. Interestingly, these are almost exclusively all the examples with thehighest �i starting around the point where the �i-curve's slope increases. Thisobservation suggests that a heuristic cut-o� for small �i could be introduced tomake the loo estimators faster without signi�cantly deteriorating the quality ofthe estimators. Simple heuristics could be developed like e.g. only considering thecovariance matrix for the 10% of the examples with highest �i, if one expects theerror rate to be around 5%.
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58 Gaussian Processes and SVM: Mean Field Results and Leave-One-Out8.8 ConclusionThis contribution discusses two aspects of classi�cation with Gaussian Processesand Support Vector Machines (SVM). The �rst one deals with the relation betweenthe two approaches. We show that the SVM can be derived as a maximum posteriorprediction of a GP model. However, the corresponding likelihood is not normalizedand a fully satisfactory probabilistic interpretation is not possible.The second aspect deals with approximate approaches for treating two di�erentcomputational problems arising in GP and SVM learning. We show how to derivean approximate leave-one-out estimator for the generalization error for SVM usinglinear response theory. This estimator requires only the inversion of the covariancematrix of the margin support vector examples. As the second problem we discussthe computation of the Bayes prediction for a GP classi�er. We give a derivation ofan algorithm based on a 'naive' mean �eld method. The leave-one-out estimator forthis algorithm requires the inversion of the covariance matrix for the whole trainingset. This underlines a di�erence between SVM and GP which may have importantpractical consequences when working with large data sets: the GP solution lacksthe sparseness property of SVM.We have presented simulations for the Wisconsin breast cancer dataset, with themodel hyperparameters determined by minimizing the approximate leave-one-outestimator. The performance of both algorithms was found to be very similar. Theapproximate leave-one-out estimators were in perfect agreement with the exactleave-one-out estimators.An important problem for future research is to �nd e�cient ways for tuning alarger number of hyperparameters in the kernel automatically. This will be neces-sary e.g., in order to adapt the length-scales of the input components individually.The minimization of a leave-one-out estimator is only one possible technique for�nding reasonable values for such parameters. Bayesian approaches to model se-lection such as the evidence (or MLII) method could be interesting alternativesBerger (1985); Mackay (1992). They are obviously well suited for the Bayesian GPapproach. But they may also be interesting for an application to SVM. However,in order to implement such approaches properly, it will be necessary to understandthe quantitative relations and di�erences between GP and SVM in more detail.AcknowledgmentsWe are thankful to Thilo-Thomas Frie�, P�al Ruj�an, Sara A. Solla, Peter Sollich andGrace Wahba for discussions. This research is supported by the Swedish Foundationfor Strategic Research.
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