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Abstract 
Most traditional methods for extracting 
the relationships between two time series 
are based on cross-correlation. In a non- 
linear non-stationary environment, these 
techniques are not sufficient. We show 
in this paper how to use hidden Markov 
models (HMMs) to  identify the lag (or de- 
lay) between different variables for such 
data. Adopting an information-theoretic 
approach, we develop a procedure for train- 
ing HMMs to maximise the mutual infor- 
mation (MMI) between delayed time series. 
The method is used to  model the oil drilling 
process. We show that cross-correlation 
gives no information and that the MMI ap- 
proach outperforms maximum likelihood. 

1 Introduction 
A key part of multivariate time series anal- 
ysis is identifying the lags or delays between 
different variables. This differs from charac- 
terising the order or degree of freedom of 
a single time series, where the goal is to  
estimate the intrinsic dimensionality of the 
data in order to  determine the window of 
past samples needed to  map the determin- 
istic component of the data generator. In 
the latter case, the correlation of past values 
usually tails off gradually, so that the most 
recent samples have the largest impact on 
the current value. This is not the case where 
two time series X t  and Yt are related by a 
lag 6. There will be no relationship between 
Xt -d  and Yt for d < 6. 

Under the assumption of stationarity, 
cross-correlation is a powerful tool for mea- 
suring and modelling linear relationships be- 
tween variables. They are often used as the 
basis for identifying the order of non-linear 

models as it is fast to  compute. However, 
in many real-world applications the assump- 
tions of linear dependencies and stationarity 
are not valid. 

In this paper, we consider the problem 
of modelling processes which manifest a se- 
quentially changing behaviour: the process 
variables usually remain constant, except 
for minor fluctuations, and then, a t  certain 
times, change to  another set of values. Our 
approach is based on using hidden Markov 
models in order to  model the distribution of 
the time series. More precisely, given two 
time series X t  and Yt, related by.a lag b and 
generated from a non-stationary underlying 
process which exhibits different regimes, we 
show how HMMs can be used to  estimate 
the value of 6. In [l] we proposed a proce- 
dure based on maximum likelihood estima- 
tion in order to  estimate the lag. We adopt 
here an information-theoretic approach and 
develop a procedure for training HMMs to  
maximise the mutual information between 
X t  and Yt. 

, 

We apply this approach to  the analysis 
of the oil well drilling process, which ex- 
hibits complex time relationships between 
variables and a highly non-stationary be- 
haviour. A fluid called ‘mud’ carries the 
drilling cuttings up the hole to  the surface. 
The time it takes for the cuttings to  come 
up to  the surface is called the lag for return 
and is a crucial parameter for modelling the 
process. This time-varying parameter de- 
pends not only on the depth of the hole and 
the pressure of the drilling fluid, but also on 
the geology of the surrounding rock forma- 
tion and the drilling mode. In section 4 we 
analyse drilling data and compare our re- 
sults with numerical models based on fluid 
mechanics. 
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2 Modelling time series . 
with HMMs 

A multivariate continuous time series is a 
sequence of continuous m-dimensional ran- 
dom variable 0, such that at for each time 
t ,  Ot ranges over a continuous space. For 
simplicity, suppose that m = 2 so that at 
time T we have seen a sequence of such ob- 
servations oT = [ol , .  . . , ot,. . . , OT] ' where 
ot = ( z t , y t )  is the observed data at time t .  
Given a sequence, the task is to  model the 
probability distribution from which the time 
series was generated. 

Let S be a discrete random variable tak- 
ing values in the set (q1,. . . , q N }  and as- 
sume that the system at any time t is in 
one and only one of the N states 41, .  . . , q N .  
The random variable Ot can be considered 
to  be a probabilistic function of the under- 
lying states, i.e. ot is an observed mea- 
surement from the system but the under- 
lying states are not themselves directly ob- 
servable. Assuming that the state variable 
St is a stationary discrete-time first-order 
Markov process, the resulting model is a 
doubly stochastic process and is called a 
first-order hidden Markov model (HMM). 
It is called hidden because the state of the 
underlying process is not observable, but 
can only be observed through another set 
of stochastic processes that produce the se- 
quence of observations. Thus the model as- 
sumes two sets of conditional independence 
relations: that  Ot is independent of all other 
random variables given St and that St is in- 
dependent of 5'1,. . . , St-2 given St-1 (the 
Markov property). Using these indepen- 
dence relations, the joint probability for the 
sequence of states and observations can be 
written as 

In general, the parameters of a specific 
model are referred as 0 = { A ,  B ,  n}, where 
A denotes the state transition matrix, B = 
{bi(ot)}  the observation probability distri- 
butions in each state and 11 the initial state 

lWe use the notation 0; to denote the sequence 
of random variables from time i to time j, i.e. 0:: = 
[O,, Oi+l, . . . I Oj]. A sequence of observations will 
be denoted 4 = [o;, o;+l,. . . ,o j ] .  

distribution. For time series modelling, the 
probability distributions B are often chosen 
to  be a finite mixture of Gaussians, as it can 
approximate, arbitrarily closely, any finite, 
continuous density function, provided that 
enough components are used2. HMMs have 
been successfully applied in speech recogni- 
tion [8], cryptography, and more recently in 
other areas such computational biology [2]. 

3 Delay estimation 
Consider the following problem: a sequence 
of observations o r  = [ ( z ~ , y l ) ,  . . . , (ZT, Y T ) ]  
is being generated by an underlying sys- 
tem. Unfortunately, we do not see the 
true sequence oT but a modified version 
where one variable is delayed: or(&) = 
[ ( z 1 - 6 , y 1 ) ,  . . . , (zT-~,~T)]. Our task is to  
estimate the value of 6. Given a two 
dimensional time series vector OT(6) = 
(Xt-g,Yt)t=l...T, we say that yt leads X t  
by an unknown lag 6. For convenience 
and clarity, we define X d  E X F ( d )  = 
[Xl-d,. . . , X T - ~ ]  to be the time series Xt 
delayed by d steps, omitting time indexes 
and Od E ( X d , Y )  . The problem can be 
viewed as a synchronisation problem, where 
the goal is to recover the correct sequence 
of hidden states. Figure 1 shows the under- 
lying sequence S ( d )  corresponding to  differ- 
ent delayed time series (in this example, the 
system can switch between two states q1 and 
q2). The value 6 corresponds to  a true se- 
quence of hidden states and the task is to  
recover this sequence by identifying the cor- 
responding observation sequence 06. 

3.1 Maximum likelihood 
The usual procedure for training HMMs is 
to find the parameter values of 0 that  max- 
imise the likelihood or the log-likelihood of 
the observed sequence of training data OF 

O* = argmax logp(oT 1 0 )  (2) e 

The standard approach for doing this is to  
use the Baum-Welch algorithm, which is the 
relevant version of the EM algorithm [3]. In 

2Although continuous density HMMs are appli- 
cable to a large number of problems, autoregressive 
HMMs, where the observation vectors are drawn 
from a state-dependent autoregressive process, have 
been investigated for time series modelling [6]. 
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Figure 1: The synchronisation problem: we as- 
sume an underlying true state sequence Strue. 
This sequence is not observable but can be re- 
covered by identifying the corresponding obser- 
vation sequence 06, i.e. when xt and yt are prop- 
erly synchronised. 

[l], we proposed a delay estimation proce- 
dure based on MLE. First, an HMM Od is 
trained with the delayed sequence od and 
the likelihood of each model Od is estimated. 
The lag is then obtained by finding the most 
likely model, 

s = arg max log cd (3) 
d 

where Cd = p ( 0 6 )  denotes the likelihood of 
the delayed sequence od given the model Od. 
The approach is motivated by the fact that 
the sequence od corresponds to  a specific se- 
quence of hidden states representing the dy- 
namics of the process (Figure 1) .  Intuitively, 
we expect that Cd will always be less than 
Cb (d  # 6 ) .  Indeed, assuming that for each 
time step t , 'Xt-a and yt have been gener- 
ated by a specific state S;, the system will 
not be able to  enter that true state if X t  and 
Yt are not properly synchronised. 

3.2 Mutual information 

There are many very important proper- 
ties of the Maximum Likelihood Estimate 
(MLE) but most of them stem from an im- 
plicit assumption of model correctness. The 
justifications for using MLE to estimate the 
mean and the variance of a Gaussian distri- 
bution, for example, assume that the sample 
has indeed been generated by a Gaussian. If, 
however, we do not know the 'correct' model 
which has generated the data and if there 
is no reason to  believe that the sample has 
been generated from any particular model 
then we can ask ourselves whether the use 
of MLE is appropriate. 

In previous work [4], [8] ,  the maximum 
mutual information (MMI) criterion for dis- 
criminative training of multiple HMMs has 
been introduced in order to  alleviate prob- 
lems that may occur when several HMMs 
are to  be designed at the same time. This 
leads to  an algorithm where the goal is to  
choose a correct model m amongst a set of 
M models that maximises the following ex- 
pression: 

In contrast, the motivation of our ap- 
proach is not to  maximise the mutual infor- 
mation between observation sequence and a 

.complete set of models 0 = (01,. . . , O M ) ,  
instead we are trying to  estimate the pa- 
rameters of a single HMM that maximises 
the mutual information between two ran- 
dom variables. 

In order to  measure the amount of infor- 
mation with respect to  Y we may expect to  
obtain by observing X d ,  it  is useful to  in- 
troduce the concept of mutual information 
I ( X d , Y  IO) between X d  and Y :  

I ( X d ,  Y )  = H ( X d )  + H ( Y )  - H ( X d ,  Y )  (5) 

where H ( X )  = -Ex[logP(X)]  is the en- 
tropy of the random variable X .  As the 
joint probability P ( X d ,  Y )  can be rewritten 
as P ( X d ,  Y )  = P(Y I X d ) P ( X d ) ,  we have 

I ( X d ,  Y )  = H ( Y )  - H ( Y  I X d )  ( 6 )  

In our problem, the goal is to  maximise the 
information with respect to  Y we may get by 
observing a delayed time series X d .  We no- 
tice however that the first term of Equation 
6 does not depend on d and can be discarded 
in the optimisation procedure. Indeed, for 
two different values of d, i.e. for two dif- 
ferent time series X d l  and X d 2 ,  the en- 
tropy of Y does not affect the change in the 
mutual information I ( x ~ ~ ,  Y )  - I ( x ~ ~ ,  Y ) .  
Thus, maximising the conditional distribu- 
tion P ( Y  I X d )  is equivalent to  maximising 
the mutual information between Y and X d .  

1 arg max l (xd ,  Y )  = arg max log P(Y I xd)  (7) 
d d 

Comparing Equation 7 to  Equation 3, we see 
that MLE and MMIE differ in the objective 
function. In MLE, we are interested in esti- 
mating parameters that maximise the joint 
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probability. The MMIE approach leads to 
maximising the conditional probability. In 
terms of previous work, our approach resem- 
bles that of [9] who used mutual information 
for image matching. 

3.3 Learning algorithm 
The Baum-Welch algorithm is a hill- 
climbing algorithm for maximum likelihood 
estimation, which does not require the 
model gradient. The procedure iterates 
between a step that fixes the current pa- 
rameters and computes the posterior prob- 
abilities over. the hidden states (E step) 
and a step that re-estimates the param- 
eters given these conditional distributions 
over the hidden states (M step) [8]. Un; 
fortunately, no such method is known for 
MMI estimation and we must therefore re- 
sort to the use of traditional minimisation 
techniques, with the objective function E = 
- logP(Y I X, 0). Suppose that the sam- 
ple vector Ot is composed of two vectors 
Ot = (Xt,yt) with mean p = (p1,pz)  and 

covariance matrix C = (E:: giz) then 

the conditional density f(yt  I z t )  is Gaussian 
with mean p2 + C2l C;: (zt - p1) and covari- 
ance ~ 2 2  - ~ 2 1 ~ ; , l ~ 1 2 .  

For an HMM with Gaussian observation 
densities, the output density of each hidden 
state i is parameterised by a mean vector 
and a covariance matrix. The derivatives 
of the density function with respect to the 
parameters of each hidden state can be eas- 
ily found. The derivatives of the objective 
function E with respect to the parameters 
@ = { A , B , I I }  are obtained using the for- 
ward and backward variables of the Baum- 
Welch algorithm (E step). They can then be 
used either in a simple gradient descent algo- 
rithm or a nonlinear optimisation algorithm 
like conjugate gradients, which uses the gra- 
dient of the objective function. Such meth- 
ods may require a line search which involves 
many evaluations of the objective function. 
Evaluating the objective function requires 
the computation of the forward variables, 
whereas the derivative of the function needs 
both forward and backward variables. Each 
forward and backward recursion requires on 
the order of N 2 T  calculations, where N is 
the number of hidden states and T is the 
length of the sequence. This can lead to a 
computationally expensive algorithm, espe- 

cially if the HMM contains a large number 
of parameters. This is not a big issue for the 
problem we are interested in as the models 
we consider are relatively small. 

4 Results on drilling data 
A significant difficulty during exploration 
drilling is ensuring the drilling debris is ef- 
fectively removed from the bore; this is 
known as the ‘hole cleaning’ problem [5, 71. 
In the case of vertical wells, an adequate 
velocity in the mud circulation is generally 
sufficient to guarantee that most debris are 
brought to the surface. The problem is more 
complicated when drilling deviated wells3 
since gravity settlement can occur. The 
gradual build up of low gravity solids in- 
creases the torque required to  turn the drill 
string. In extreme cases, the drill pipe may 
get stuck or even fracture off. 

The time it takes for the cuttings to  come 
to the surface is called the lag for return and 
is a crucial parameter in early stuck pipe de- 
tection and modelling the drilling process. 
The algorithms currently used on rigs to es- 
timate the lag for return are physical models 
based on fluid mechanics but are believed 
to  have a precision in the order of several 
minutes, mainly because of the poor under- 
standing of downhole conditions. As our 
analysis will show, even this level of accu- 
racy may be optimistic compared to reality. 

At present, no equipment exists to mon- 
itor the status of hole cleaning. Recently a 
new device, capable of detecting fine partic- 
ulate solids in drilling fluids, has been de- 
veloped by Thule Rigtech Ltd. Our aim is 
to use this device to  monitor trends in the 
volumes of drilled solids in order to obtain a 
better picture of downhole conditions with 
regard to drilled solids than has ever been 
possible before. 

A drilling engineer has gathered a large 
dataset of drilling variables and low gravity 
solid information from a rig in Holland. As 
all the data are collected on the surface, if 
6 represents the lag, then Yt, which is the 
amount of low gravity solids (LGS) mea- 
sured at time t ,  is effectively the amount of 
solids that has been generated by the bit at 

Whenever possible, wells are drilled vertically, 
but sometimes, especially offshore, it is necessary to 
deviate from vertical in order to reach a wide spread 
of targets from a single platform. 
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time t - 6. Thus assuming that Yt is related 
to  other drilling parameters Xt-6,  it makes 
sense to  use the procedure described in Sec- 
tion 3 in order to  estimate the lag for return, 
as we believe that 6 remains relatively con- 
stant over a 2 hour time scale. Typically 
X t  represents one relevant drilling parame- 
ter (although we have also considered mod- 
els with more than one parameter): for in- 
stance, the pressure of the circulating fluid 
inside the pipe or the torque of the pipe, 
as the drill pipe is subjected to  both tor- 
sion and tension. The total force applied 
(hook load) on the drilling system in order 
to  hold the drill pipe in the rig and the rate 
of progress (ROP), are other important pa- 
rameters. 

Figure 2 .shows our results on a data 
set representing 'normal' drilling conditions, 
as no special event was identified by the 
drilling engineers. The data contains 450 
data points and represents a period of 4 
hours of drilling. The numerical models sug- 
gest a value of 31 min for the lag for re- 
turn. Figure 2a plots the cross-correlogram 
between LGS and two important drilling pa- 
rameters, namely the pipe pressure and the 
pipe 'hook load. No correlation significantly 
different from zero can be detected. For each 
value of d, 100 HMMs with different initial 
parameters have been trained using MLE 
and MMI approaches. Figures 2b and 2c 
plot the mean and the two standard devia- 
tion error bars computed around the global 
maximum4. The MLE approach suggests a 
value between 36 and 40 min whereas the 
MMIE approach is more confident and sug- 
gests a sharper peak at 37 min, which is sta- 
tistically significant. The results have been 
obtained by training 3 state HMMs using 
the pipe hook load for the time series Xt. 

We have successfully applied our proce- 
dure to  other datasets corresponding to  dif- 
ferent drilling situations. Table 1 reports 
the results of our simulations on different 
data  sets and shows how they differ from 
MLE and the ones obtained from the fluid 
mechanics model. In no case was it pos- 
sible to  identify the lag from the cross- 
correlogram. The MMI approach always 
suggests a sharper peak than MLE. It should 

4The likelihood may have different maxima. We 
have therefore discarded non interesting local max- 
ima and computed the mean and the variance 
around the 'global' maximum we obtained over the 
100 HMMs. 

cross-correlogram 
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Figure 2: Cross-correlogram (top) and log- 
likelihood of the observation sequences od given 
the model HMMd for MLE (middle) and MMI 
(bottom) approaches. 
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be noticed that for dataset D it is possible to  
estimate the lag for return by visually com- 
paring two parameters, since a transition 
occurred between two geological formations 
which significantly affected ROP and LGS. 
This gave a value around 23 min, confirming 
the superiority of our HMM approach. 

43 

Table 1: Our results (in min) compared to the 
ones obtained by fluid mechanics models. 

5 Conclusion 
In this paper, we have shown how hid- 
den Markov models can be used to  identify 
relationships .between variables. We pro- 
posed a novel mutual information estima- 
tion approach, which maximises the condi- 
tional probability of one variable with re- 
spect to  the other. The method was tested 
on data  from a real-world process and it 
is clear that  relationships between variables 
can be identified using HMMs. Our pro- 
cedure also outperforms numerical models 
based on fluid mechanics used in the oil in- 
dustry. When compared to  MLE, the MMIE 
approach seems consistently to  estimate the 
lag more precisely. However, the MMIE im- 
plementation is time consuming: a typical 
MMIE procedure needs roughly 20 times 
more forward-backward passes than MLE. 
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