
On-Line Learning of Unrealizable TasksSilvia Scarpetta1;2 and David Saad11Department of Computer Science and Applied Mathematics, Aston University,Birmingham B4 7ET, UK.2 Dipartimento di Scienze Fisiche, Universita' di Salerno, 84081, Baronissi (SA), ItaliaINFM sezione di Salerno, ItaliaThe dynamics of on-line learning is investigated for structurally unrealizable tasks in the con-text of two-layer neural networks with an arbitrary number of hidden neurons. Within a statisticalmechanics framework, a closed set of di�erential equations describing the learning dynamics canbe derived, for the general case of unrealizable isotropic tasks. In the asymptotic regime one cansolve the dynamics analytically in the limit of large number of hidden neurons, providing an ana-lytical expression for the residual generalization error, the optimal and critical asymptotic trainingparameters, and the corresponding prefactor of the generalization error decay.02.50.-r, 05.20.-y, 87.10.+e I. INTRODUCTIONLearning in layered neural networks refers to the modi�cation of internal network parameters J, so as to bring themap implemented by the network fJ as close as possible to a desired map fB. The resulting performance is monitoredthrough the generalization error, a measure of the dissimilarity between fJ and fB. Two-layer feed-forward networksare widely used in classi�cation and regression applications mainly due to their ability to implement any input-outputmapping, in any desired accuracy, provided that the hidden layer has a su�cient number of neurons [1]. The scenariowhere the network does not have a su�cient number of neurons to implement a certain input-output mapping istermed structurally unrealizable, in any other case the task is realizable.Structural unrealizability has been examined, via statistical physics techniques examining the equilibrium distribu-tion of models, mainly for the case of the perceptron [2,3], due to the technical di�culties of examining multilayernetworks. In this paper we focus on the analysis of structurally unrealizable tasks in multilayer networks in theon-line learning scenario. On-line learning is a popular method for training multi-layer feed-forward neural networks,where network parameters are updated according to only the latest in a sequence of training examples. On-linemethods can be bene�cial in terms of both storage and computational time, and also allow for temporal changes inthe task being learned. An overview of on line learning methods in neural networks can be found in [4]. We analyzeunrealizability in soft committee machine (SCM) networks [5], in which the hidden units are connected to the outputunit with positive couplings of �xed strength, and only the input-to-hidden couplings are adaptative. The learningproblem can be formulated in a general student-teacher framework, in which a student SCM network with K hiddenneurons is trained on examples generated by a teacher network of similar con�guration, but with M hidden neurons.In unrealizable scenarios the complexity of the task M is greater then the complexity of the student network K <M ,and L =M �K measures the degree of structural unrealizability.We employ a statistical mechanics framework developed in [6] which allows us to describe analytically the learningdynamics, by means of a closed set of di�erential equations for the order parameters, with the number of examplesplaying the role of time. The e�ects of unrealizability on the evolution of the order parameters and the generalizationerror are studied numerically in all phases of learning process. We focus on the asymptotic phase, which is particularlyinteresting since here, contrary to realizable scenarios, no prior knowledge of the asymptotic solutions exists. Asymp-totically, the system converges towards a stable �xed point which corresponds to a non-zero residual generalizationerror, whose value increases with the learning rate, and is non-zero even for an asymptotically vanishing learning rate.Although asymptotic solutions cannot be obtained analytically in general, one can obtain analytical solutions in thelimit of large student network size K. The dependence of the generalization error decay on the network architectureand parameter choice is then derived, providing the optimal and critical asymptotic learning rate value as a functionof the unrealizability measure L, in both standard and normalized SCM architectures de�ned below.
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II. THE FRAMEWORK AND THE DYNAMICAL EQUATIONSConsider a mapping from an input space � 2 IRN onto a scalar �J(�) = 
PKi=1 g(JTi �), which de�nes a SCM(termed the `student' network), where J � fJig1�i�K is the set of input-to-hidden adaptable weights and the hidden-to-output weights are of �xed strength 
. We choose g(x) � erf(x=p2) to be the sigmoidal activation function ofthe hidden units. The activation of the student hidden unit i under presentation of the input pattern �� is denotedx�i = JTi ��.Let (��; ��) be the �-th input-target pair in a sequence of training examples. Components of the input vectors�� are drawn independently, at each iteration, from a zero mean Gaussian distribution with unitary variance. Thecorresponding target �� is given by a teacher network with the same architecture of the student except for a possibledi�erence in the number M of hidden units, and is de�ned by the weight vectors: B � fBng1�n�M . The targetmapping is therefore: �(��) = 
PMn=1 g(yn�), where y�n = BTn�� is the activation of the teacher hidden unit n. Wewill use indices i; j; k; l to refer to units in the student network and n;m for units in the teacher network.In standard SCM the strength of hidden-to-output weights is unitary (
 = 1). The SCM network is referred toas normalized if 
 = 1=(# hidden units); in this case the map implemented by the student and teacher networks is�J(�) = 1=K PKi=1 g(x) and �(�) = 1=M PMn=1 g (yn) respectively, so that the output of the teacher and studentnetworks will have the same range [�1; 1], even if the number of hidden units is di�erent K 6=M and they implementmaps of di�erent complexity.The case of a perfectly realizable task K =M has been analyzed in [6] (for the standard SCM) and in [7] (for thenormalized SCM). We focus here on the unrealizable scenario M > K. The error made by a student with weights Jon a given input � is provided by the quadratic deviation "(J; �) = 1=2[����J(��)]2. The most basic on line learningrule is to perform gradient descent on this quantity. Then the update of each weight in response to the presentationof the �th example (��; ��) has the form: J�+1i = J�i + �N ��i �� (1)where ��i � 
g0(x�i )��� � �J(��)� and the learning rate � has been scaled with the input size N . Performance on atypical input de�nes the generalization error "g � h"(J; �)if�g through an average over all possible input vectors �.We use a statistical mechanics description of the learning process [6] which is exact in the limit of large inputdimension N where the dynamics of gradient descent learning in the unrealizable scenario is completely described bya small set of order parameters hxixji = JTi Jk � Qik, hxiyni = JTi Bn � Rin, and hynymi = BTnBm � Tnm, measuringoverlaps between student and teacher vectors. The order parameters are necessary and su�cient to determine thegeneralization error "g = h"(J; �)if�g.If we interpret the normalized number of examples � = �=N as a continuous time variable, the update equations(1) gives rise to �rst-order coupled di�erential equations of the formdRind� = � < ��i yn > ;dQikd� = � < ��i xj��j xi > +�2 < ��i ��i > (2)where the angled brackets denote averages over inputs. Averages in (2) can be carries out analytically for arbitraryK and M = K + L, providing a closed set of equations of motion. Note that �i is slightly di�erent for standard ornormalized SCM architecture, as well as the corresponding equations of motion.III. STRUCTURE OF THE SOLUTIONS IN UNREALIZABLE SCENARIOSIn the unrealizable scenario the student does not have enough resources to imitate the teacher units accuratelyeven if an in�nite number of examples is provided, so one may expect residual generalization error and a sub-optimalmapping of the asymptotic student vectors onto the space spanned by the teacher vectors.To demonstrate learning in an unrealizable scenario, we show the evolution of the order parameters and the gener-alization error for a standard SCM with K = 3 hidden units learning an unrealizable task with L = 1 (M = 4). In theremainder of the paper, we will focus on uncorrelated isotropic teachers of unitary length Tnm = �nm. The dynamicalevolution of the overlaps Qik and Rin follows from integrating the equations of motion (2) from initial conditionsdetermined by the (random) initialization of the student weights J; we initialize Qii from uniform distributions in the[0; 0:5] interval, Qi6=k = 0 and Rin from [0; 10�12]. 2



The time evolution of the various order parameters is shown in Fig. 1a-c for � = 0:2. As for realizable scenario[6], the unrealizable dynamics is characterized by two major phases of learning. Initially, the order parameters aretrapped in an unstable �xed point characterized by a lack of di�erentiation between the hidden units of the studentwhere the overlaps of each student unit with all teacher units Rin are nearly identical. All the student overlaps Qi6=khave nearly the same value which does not di�er much from the value of the norms Qii. Trapping in the symmetricphase for unrealizable scenarios is of the same natuer as the one observed and analyzed in the realizable case [6,7].Eventually, small perturbations introduced by the random initial conditions lead to an escape from this phase andconvergence towards asymptotic (sub-optimal) regime [8].Understanding the evolution of the parameters in the asymptotic phase is particularly important in the study ofunrealizable scenarios, where no prior knowledge exists about the asymptotic solutions themselves. The sub-optimalmapping that emerges from our numerical solutions suggests that the limited student resources are used mainly tospecialize on certain teacher vectors, while retaining small correlation with the rest of the teacher vectors. Theevolution of the student norms and student-student correlations shown in Fig. 1a demonstrates that asymptotically,each one of the student units imitates one of the teacher units (R11 � T11 R24 � T44 and R33 � T33), while ignoringunits imitated by other student vectors (R13; R14; R21; R23; R31; R34 � 0), and retaining some correlation with otherteacher units, not imitated by other student units (R12; R22; R32). The corresponding evolution of the generalizationerror is shown in Fig. 1c.In structurally unrealizable cases, as for learning with noise [9], sub-optimal asymptotic performance will be obtainedfor any �xed learning rate, suggesting that an annealing schedule should be invoked asymptotically. Ideally, one wouldexpect asymptotically the student vectors to be con�ned to the M -dimensional subspace SB spanned by the set oforthogonal unit length teacher vectors, and they can be therefore represented as M(< N) dimensional vectors inthe teacher coordinate system. This is true for vanishing learning rates �. However, learning at �nite � results instudent weight vectors not completely con�ned to the subspace SB . The weight vectors of the trained student canthen be written as Ji =PMn=1Rinen + J?i , where J?i indicates the component of Ji in the orthogonal subspace. Theoptimal asymptotic solution, with the lowest asymptotic generalization error, is characterized by solutions obtainedwith a vanishing learning rate � and thus a vanishing vector J?. In the following section we present an analysis ofthe asymptotic solution when the learning rate is annealed.IV. ASYMPTOTIC REGIMEThe number of order parameters in Eq. (2) is K(K + 1)=2 +KM , so that the analysis becomes more and moredi�cult as K and M grow. However, the symmetric architecture of the teacher network Tnm = �nm lead to thegrouping of the dynamical variables. In the general case of unrealizable learning scenario and isotropic teachers thesystem's dynamics can be described in terms of only �ve variables, via the ansatz:Qik = Q �ik + C (1� �ik)Rin = R �in + S (1� �in) �(K � n) + U �(n�K) (3)for the student-student overlaps and (apart from a relabeling of the student hidden units) student-teacher overlaps,respectively, where the step function � is 0 for negative arguments and 1 otherwise. As one can see from Fig. 1,this approximation (3) is particularly good in the symmetric phase (where also R � S � U holds) and during the�nal convergence to asymptotic regime. Asymptotic solutions in the case of an isotropic teacher are characterized byspecialized student vectors of similar norms (Qii = Q for all 1 � i � K) and similar correlations among themselves( Qik = C for all 1 � i; k � K, i 6= k); each one of these vectors specializes on a certain teacher vector (Rii =R for all 1 � i � K), while all student vectors have similar correlations with all K teacher vectors imitated by otherstudent vectors (Rin = S for all 1 � i; n � K and i 6= n), as well as with the other M �K teacher vectors on whichno student vector specializes (Rin = U for all 1 � i � K and K < n �M).Therefore the system's dynamics is described asymptotically by only �ve coupled di�erential equations derivedusing the relations (3). In order to �nd the analytical expression for the optimal �xed point we solve the truncatedequations of motion, neglecting terms of order O(�2) in (2). In order to �nd the asymptotic �xed point of this systemof �ve coupled equations analytically, we exploit the geometrical constrains that holds between the order parametersto simplify the system. Since at the optimal �xed point student vectors are con�ned to SB , one may express anyvector Ji as Ji = S e1 + � � �S ei�1 + R ei + S ei+1 + � � �+ S eK + U eK+1 + � � �U eMwhere en, n = 1::M , are the orthogonal set of teacher vectors. Using this expression for the student vector one caneasily derive a constrain between the order parameters R, S, U and Q and C:3



Q = R2 + (K � 1)S2 + (M �K)U2 ;C = 2RS + (K � 2)S2 + (M �K)U2 : (4)Unfortunately, the solutions of the truncated equations of motion, even when using the geometric constraint, stillcannot be obtained analytically. However we can obtain the optimal �xed point in the limit of large network, whenthe number of student hidden neurons K � 1 is large (but still N � K). We expand both the constrain (4) andthe truncated equations of motion in the small parameter � � 1=K. In this scenario we can distinguish two cases:L �M�K � K (termed small unrealizability) when the excess of teacher hidden neurons L is small compared to thelarge number of student hidden neurons K (so that L is of O(�0)), and L ' K (termed strong unrealizability) whenthe teacher excess of resources L is of the same order of magnitude of the student resourcesK, so that L = lK = l��1,with �nite factor of proportionality l of O(1). In both cases we �nd the �xed point Q�; C�; R�; S�; U� up to O(�3) . Inthe following we discuss the standard SCM architecture. Analytical expressions for the approximated optimal �xedpoint in the small and strong unrealizability cases are given in appendix A. The dependence of the order parameters atthe �xed point from the unrealizability degree L is shown in Fig. 2. Exact numerical results are included in the �guresin order to validate our theoretical predictions. For L = 0 the realizable case �xed point Q� = R� = 1; C� = S� = 0is recovered (U is meaningless for realizable scenarios). The corresponding residual generalization error isE0sm = 16 L (�3 + �)� � 32 L (2474p3� 4291) �(�9 + 8p3)3 �+ 32 L (�859925+ 496432p3 + 18324Lp3� 31659L) �2(�9 + 8p3)4 �in the small L case, and E0st = �12 l (273� 144p3� 91� + 48p3�)� (�9 + 8p3)2 � + 12 l (�561 + 326p3)� (�9 + 8p3)2� 148 l (864 l� 273 l2 + 29658+ 144p3 l2 � 472 lp3� 17088p3) �� (�9 + 8p3)2in the strong unrealizability case (with the L = lK scaling assumption). To examine the accuracy of our approxi-mation, theoretical results are compared with values obtained numerically. Dependence of Est0 on K when L is �xedis shown in Fig. 3a. Both the theoretical predictions of the residual error, Esm0 and Est0 , are shown in Fig. 3b as afunction of the relative number of teacher units in excess l = L=K. We see that the solution obtained for L � K(dashed line) becomes more and more inaccurate as l increases, as one expects, while, the scaling assumption L = lKgives accurate results also for very small value of L, where it coincides with the L � K solution. It is interestingto note that for large K, the residual error is proportional to L only, giving a direct indication for the number ofadditional hidden units required to make the problem realizable. Indeed, all the lines for the residual generalizationerror corresponding to K = 100; 500; 1000; 10000 collapse onto one straight line if plotted as function of L, as shownin inset of Fig. 3b.In order to describe the approach of the system to the optimal �xed point we take into consideration terms of orderO(�2) in the dynamical equations (2). In this paper we will concentrate on the annealed learning rate � = �0=�,since this is the optimal annealing schedule, as in the realizable (K = M) noisy case [9]. To solve the asymptoticsof the system we expand the full equations of motion to �rst order around our estimation of the optimal �xed pointQ�; C�; R�; S�; U�. We �nd �ve linear coupled di�erential equation for the �ve order parameters represented by thevector u dd�u = ��Mu+ �2�b (5)where u = (Q�Q�; C � C�; R�R�; S � S�; U � U�)T � (q; c; r; s; u)T ; (6)�� = �0=�, and both the zero-order term b and the Jacobian matrix M are functions of the student network sizeK and of the degree of unrealizability L. The asymptotic equations of motion (5) are derived by dropping terms oforder O(��jjujj2) and higher, and terms of order O(�2�u). The latter are linear in the order parameters u, but arenegligible in comparison to the ��u and �2�b terms in Eq. (5) as �!1.4



Since as our estimation of the optimal �xed point we use an expansion around � = 0 truncated at the third order,then also the vector b and the Jacobian matrixM of the �rst derivatives computed at the �xed point are in the formof truncated series in �.Equations (5) can be exactly solved if one computes analytically the eigenvalues and eigenvectors of the matrixM.Finding analytically exact eigenvalues and eigenvectors ofM is hampered by technical di�culties. We therefore keepthe �rst two orders in the expansion M =Mo + �M1 + �2M2 + : : : (7)and use the theory of perturbation for non-symmetric matrices (e.g. as in [10,11]) in order to compute the eigenvaluesand eigenvectors. We stop at the �rst order correction in �, �i = �0i + ��1i , where the eigenvalue degeneracy whichexist in the leading order terms is removed, to �nd �ve di�erent negative eigenvalues:�1 = � 136 (�9 + 8 p3)� ; �2 = �23 (�3 + 2 p3)� ; �3 = � 1�� � 13 �3 + 2 p3� ;�4 = � 1�� � 112�21 + 8 p3� ; �5 = � 2�� � 23 �3 + 2 p3� (8)for the L� K case, and�1 = � 136�9 + 8 p3� ; �2 = �23�3 + 2 p3� ; �3 = � 1�� � 144 p3� 393444� l � �777+ 296 p3444� ;�4 = � 1�� � (36 p3� 15111� l � �111+ 74 p3111� ; �5 = � 2�� + 2 �9 + 4 p3�(�9 + 8 p3) l+ 2 �25 + 14 p3�(�9 + 8 p3) (9)for the L = l=� case. Results turns out to be in good agreement, especially for largeK, with the exact numerical valuesof eigenvalues of the Jacobian matrix evaluated around the true optimal �xed point which can be found numerically.While �1 and �2 do not depend on � and l, all other eigenvalues do. We �nd that �5 < �4 < �3 < �2 < �1 < 0 for allvalues of 0 < l < 1=� and 0 � � � 0:5 (i.e. all values of interest 0 < L < K2 and K > 2).If �i are the eigenvalues of the matrixM, and D is the matrix of the eigenvectors, such thatD�1 M D = " �1 0 0 0: : : : : :0 0 0 �4 # (10)then, following [9], the solution of Eq. (5) isu(�) = D L(�; �0) D�1 u(�0) +D �(�; �0) D�1 b (11)where L(�; �0) and �(�; �0) are diagonal matrices, whose elements take the form:Lii(�; �0) = � ��0��i�0 and �ii(�; �0) = ��201 + �i�0 [��1 � ��i�0��1��i�00 ] : (12)As the �rst contribution in Eq. (11) depends on the actual initial conditions u(�0), and since we are interested mainlyin the asymptotic regime, it will be neglected in what follows as it decays more rapidly then the second contribution.We expand the explicit expression of the generalization error, given in (B1), around the optimal �xed point to thesecond order in u, to obtain "asyg = Eo + ET1 u + uTE2u :Elements of both the vector E1 and the matrix E2 are truncated series in the small parameter �, since the optimal�xed point is known analytically up to O(�3).Using the eigenvalues of Eq. (8) or Eq. (9) and the solution (11) the generalization error can then be rewritten asa combination of the modes �ii, whose coe�cients are functions of � and L.We �nd that only two modes, �22 and �55, associated with eigenvalues �2 and �5, survive in the linear term of thegeneralization error when we truncate the expansion of Elin to the second leading order in �. We veri�ed numericallythat the modes �11;�33 and �44 are orthogonal to the �rst order term in the generalization error, and therefore donot contribute to its decay at all orders in �, but contribute only to the decay of the second order term with thecorresponding eigenvalues 2�1 2�3 and 2�4. 5



Therefore the critical learning rate �c, above which the generalization "asyg decays as 1=�, is:�c = max�� 12�1 ;� 1�2 ;� 12�3 ;� 12�4 ;� 1�5� = � 12�1 = 18��9 + 8p3in both the L� K (Eq. (8)) and L = lK (Eq. (9)) cases.For �0 > �c the generalization error decays like 1=� to the residual error Eo; neglecting second order terms, sincethey decay as 1=�2, one �nds an asymptotic error decay of the form:"asyg = E0 + �20h c1(L;K)(��5�0 � 1) + c2(L;K)(��2�0 � 1)i��1 = E0 + f(L;K; �0) 1� (13)where c1 and c2 for both the case L� K and L = lK are given in appendix B.For optimal decay of the asymptotic error one has also to minimize the prefactor f(L;K; �0) in Eq. (13). In the caseof L� K the optimal value of �o is independent of L, while in the case of L = lK it shows a rather weak dependenceon l. The values of �0opt(L;K) for l = 0:05; 0:5; 1 as a function of � are shown in Fig. 4a, where �opto (K) for the caseL � K is also included. For large K the optimal prefactor �opt0 , for both the small and strong unrealizability case,tends to the same value (�opt0 � 20:609).The sensitivity of the generalization error decay factor f(L;K; �0) to the choice of �0 is shown in inset of Fig. 4b,where f(L;K; �0)=L is plotted as a function of �0 for K = 10; 50; 100 and L = 1; 100. Curves for di�erent valuesof L collapse onto the same line, showing that f(L;K; �0)=L is a function of K and �0 only. The optimal prefactorf(L;K; �opt0 ) is shown as a function of K in inset of Fig. 4a; it seems that f(L;K; �opt0 ) can be well approximated asproportional to the product LK. V. NORMALIZED SCM ARCHITECTUREIn the standard SCM architecture the output of student and teacher network range respectively in [�K;K] and[�M;M ]. Therefore, not only the complexity of the student and teacher mapping is di�erent, but also the rangeof values that the outputs can assume. We examine in this section unrealizable scenarios for normalized SCMarchitecture, in which hidden-to-output weights are normalized, so that output values for networks of di�erent sizesalways range over the same interval [�1; 1].We look for the optimal asymptotic solution, following the procedure that we have described in the previous section.Using relations (3), we expand both the equation of motion (2) truncated at order O(�) and the constrains (4) in thesmall parameter �. We �nd the �xed point solution iteratively for the case L� K, but unfortunately solution cannotbe found analytically in the L = lK case. Therefore, in the rest of the paper we will focus on the small unrealizabilitycase (L� K). The optimal �xed point solutions up to order O(�3) are given in appendix A. The dependence of theoptimal �xed point Q�; C�; R�; S�; U� on L is shown in Fig. 5, validated by comparison with numerical solutions.Contrary to the un-normalized architecture, here the �xed point produces negative values for the order parametersC and S. Moreover Q and R decrease with L much faster then in un-normalized architecture. This con�gurationcorrespond to a residual generalization error:En0 = 16 (� � 3)L �2� + 12 (�420p3 + 750 + 48�p3� 91�)L2� (�9 + 8p3)2 + 12 (326p3� 561)L� (�9 + 8p3)2 ! �3 (14)that, apart from the 1=K2 normalization factor, is lower then the one obtained in un-normalized SCM. Numericalvalues of the residual error are compared with the theoretical results (14) in Fig. 6a. As we expect, the agreement isgood when L is much lower then K, and improves for large K.In the annealed learning rate � = �0=� schedule, the dynamics of the system in vicinity of the optimal �xed point isdescribed by the linearized equations of motion (5), whose solution is given by (11). The leading order in the Jacobianmatrix, this time, is O(�0), in contrast with the non-normalized SCM case where it was of O(��1). Keeping only the�rst two orders in the expansion of M and using the again the perturbation theory for non-symmetric matrices, oneobtains the following approximations for the �ve eigenvalues:�1 = � 136 � (�9 + 8p3)� �2 = �23 � (�3 + 2p3)��3 = � 1� + �(0:18898� 0:18192L)6



�4 = � 1� + �(�0:04912� 0:18205L)�5 = � 2� + �(�0:09842� 0:36470L)where analytical results have been replaced by the numerical equivalent for brevity, and �1 and �2 are exactly � timesthe corresponding eigenvalues in the standard SCM (Eq. (8)). It is again the case that �5 < �4 < �3 < �2 < �1 < 0for the range of values K;L in which we are interested in (all L > 0 and K > 1).Again, we �nd that only two modes, �22 and �55, survive in the linear term of the generalization error, while allothers modes contribute only to the decay of the second order term. The critical learning rate is therefore:�nc = max�� 12�1 ;� 1�2 ;� 12�3 ;� 12�4 ;� 1�5� = � 12�1 = 18�(�9 + 8p3)� ;exactly K times the critical learning rate for the standard SCM architecture. For optimal decay of the asymptoticerror one has to minimize numerically the prefactor f(�0; L;K) in Eq. (13). The value of �opt0 (L;K), shown in Fig.6b,turns out to be almost proportional to K only, with a very weak dependence to L (inset of Fig. 6b). It is to becompared with the corresponding solid line in Fig.4a for non-normalized networks and L� K.The optimal error decay prefactor f(�opt0 ; L;K) is shown in Fig.7a, it turns out to be well �tted by f(�opt0 ; L;K) =5:83L=K, i.e. about 7K2 times smaller then the optimal prefactor in the un-normalized architecture. The sensitivityof the generalization error decay factor f(L;K; �0) to the choice of �0 is shown in Fig. 7b.VI. SUMMARY AND DISCUSSIONSolving the dynamical equations numerically in unrealizable scenarios, where the student network does not haveenough resources to imitate the teacher mapping, shows that the residual generalization error increases with thelearning rate and is therefore minimal when the learning rate is annealed toward zero. The optimal �xed point of thedynamics is found analytically for large network size K. It shows a di�erent behavior in the standard and normalizedSCM architectures: In the normalized architecture the overlap R� between each student vector and the teacher vectorit imitates decreases with L much faster then in the corresponding un-normalized architecture; in addition, contraryto the un-normalized case, each student vector is anti-correlated with all the other student vectors (C� < 0), and withthe set of teacher vectors on which other student vector specialize (S� < 0). This con�guration also turns out to givea much lower generalization error then that of the un-normalized architecture. In the un-normalized architecture eachstudent vector also keeps a positive correlation with the set of teacher vector on which other student vectors specializeto make up for the disparity in output ranges. However the student network is unable to make up completely for theoutput range di�erences.Solving the asymptotic equations analytically for large system size K, one can analyze the approach of the systemto the optimal �xed point. It turns out that the generalization error decays to the asymptotic residual error like 1=�if the learning rate is annealed as �0=� and �0 > �crit0 . We found that the critical learning rate �crito is independent ofL in both the standard and normalized SCM. The optimal decay of the generalization error is achieved at an optimallearning rate value �opt0 which shows only a weak dependence on L and K in standard SCM, and is proportional to Kin the normalized SCM architecture. The optimal prefactor of the asymptotic error decay turns out to be proportionalto the product LK in standard SCM, and is signi�cantly smaller in normalized SCM where it is proportional to theratio L=K.It would be interesting to extend analysis of unrealizability to general two-layer neural networks in which thehidden-to-output parameters 
 are adaptative, and not of �xed strength as it has been considered here.AcknowledgmentThis work was supported by the EPSRC grant GR/L19232. We would like to thank Sara Solla for her contributionat early stages of this work.
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FIG. 1. Evolution of the order parameters and generalization error for the case M = 4, K = 3 is shown here for (a)the student-student overlap Qik, (b) the student-teacher overlap Rin, and (c) the generalization error. Initial conditions areQ = 0:5, R = U [0; 10�12].
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Q� = 1 + (�9 L�9 + 8p3 + L) �2 + (�64484107 Lp3 + 52041369 L) �3C � = L �2 + 2 L (16p3� 25) �3�9 + 8p3while in the strong unrealizability scenario:R� = 1� 92 l ��9 + 8p3 + (:2444 l2 + :6958 l) �2+ (:1672 l3 + :5275 l2 � :197 l) �3S� = 2 p3 l �2�9 + 8p3 + (:1778 l � :1619 l2) �3U � = �+ 12 (�9 l+ 4 lp3� 50 + 28p3) �2�9 + 8p3 + (:148 + :467 l+ :0824 l2)�3Q� = 1 + (�9 l�9 + 8p3 + l) ���:01059 (�86:9 l2� 103: l) �2 + (:09200 l3 + 1:275 l2 � :07 l) �3C � = � l+ l (�9 l+ 4 lp3� 50 + 32p3) �2�9 + 8p3 + (�:136 l2 + :2104 l3 + :678 l) �3In the normalized SCM architecture, for L� K we �nd:R� = 1� 6 L (�3 + 2p3) ��9 + 8p3 + (:526L2 � 1:336L) �2S� = �2 Lp3 �2�9 + 8p3 + :00001316L (23930:+ 80930: L) �3U� = �� (�18L+ 14Lp3� 14p3 + 25) �2�9 + 8p3 + (1:591L2 + :001L+ :149) �3Q� = 1� 12 L (�3 + 2p3) ��9 + 8p3 � :006869L (�200: L+ 243:) �2 + (�:602L3 � :533L2 � :309L) �3C � = L (4p3� 9) �2�9 + 8p3 + :00003948L (8110:+ 22380: L) �3APPENDIX B: GENERALIZATION ERROR ASYMPTOTIC DECAYExplicit expressions obtained for the generalization error "g �< "(J; �) >f�g are"g = �K arcsin� Q1 +Q�+ (K � 1)K arcsin� C1 +Q�+ 16 (L+K)�� 2 (K � 1)K arcsin� Sp2 + 2Q�� 2K arcsin� Rp2 + 2Q�� 2LK arcsin� Up2 + 2Q��=� (B1)13



for the standard SCM architecture and"g =  arcsin� Q1 +Q�K + (K � 1) arcsin� C1 +Q�K + 16 �L+K� 2 (K � 1) arcsin� Sp2 + 2Q�L+K � 2 arcsin� Rp2 + 2Q�L+K � 2 L arcsin� Up2 + 2Q�L+K ! =� (B2)for the normalized SCM network.When the learning rate is annealed as � = �o=� and �o > �c then the generalization error decays proportionally to1=�, as in Eq. (13), to the residual error E0 corresponding to the optimal �xed point.In standard SCM architecture, in the case L� K we �nd the following form for the factors c1 and c2 in Eq. (13)for the asymptotic error decay:c1 := �16 L (9744%1+ 1218� 406� + 227p3� � 681p3� 5448p3%1)�3 (131p3� 144) �� 16 L (�432 + 393p3� 131p3� + 144� + 3144p3%1� 3456%1)�3 (131p3� 144) �2%1 := arcsin(16 p3)c2 := �16L(1152 arcsin(34)� 236p3� 96p3� + 262� � 6288 arcsin(16 p3)+ 2304p3 arcsin(16 p3)� 210� 1048 arcsin(34)p3).(�3 (131p3� 144) �)while in the case L = lK it isc1 := �16 (�1017p3 + 19296%1� 804� � 8136p3%1 + 2412 + 339p3�) l2�3 (5p3 + 96) (�9 + 8p3) �2 + ��16 �29256p3%1 + 6570� 2190� + 52560%1� 3657p3 + 1219p3��3 (5p3 + 96) (�9 + 8p3) �2� 16 17352p3%1� 723p3� � 2232+ 744� � 17856%1+ 2169p3�3 (5p3 + 96) (�9 + 8p3) �3 �l%1 := arcsin(16 p3)c2 := �16�1446�� 34704 arcsin(16 p3) + 5952 arcsin(34)� 1404p3� 1362� 5784 arcsin(34)p3� 496p3� + 11904p3 arcsin(16 p3)�l.(�3 (5p3 + 96)(�9 + 8p3) �2)
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