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Abstract

We investigate the performance of parity check codes using the mapping onto

Ising spin systems proposed by Sourlas� We study codes where each parity

check comprises products of K bits selected from the original digital message

with exactly C checks per message bit� We show� using the replica method�

that these codes saturate Shannon�s coding bound for K �� when the code

rate K�C is �nite� We then examine the �nite temperature case to asses the

use of simulated annealing methods for decoding� study the performance of the

�nite K case and extend the analysis to accommodate di�erent types of noisy

channels� The connection between statistical physics and belief propagation

decoders is discussed and the dynamics of the decoding itself is analyzed�

Further insight into new approaches for improving the code performance is

given�
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I� INTRODUCTION

Error�correction is required whenever information has to be reliably transmitted through

a noisy environment� The theoretical grounds for classical error�correcting codes were �rst

presented in ���� by Shannon 	�
� He showed that it is possible to transmit information

trough a noisy channel with a vanishing error probability by encoding up to a given crit�

ical rate Rc equivalent to the channel capacity� However� Shannon�s arguments were non�

constructive and devising such codes turned out to be a major practical problem in the area

of information transmission�

In ���� Sourlas 	��
 proposed that� due to the equivalence between addition over the

�eld f�� �g and multiplication over f��g� many error�correcting codes can be mapped onto

many�body spin�glasses with appropriately de�ned couplings� This observation opened the

possibility of applying techniques from statistical physics to study coding systems� in par�

ticular� these ideas were applied to the study of parity check codes� These linear block codes

can be represented by matrices of N columns and M rows that transform N �bit messages

to M �� N� parity checks� Each row represents bits involved in a particular check and each

column represents checks involving the particular bit� The number of bits used in each check

and the number of checks per bit depends on the code construction� We concentrate on the

case where exactly C checks are performed for each bit and exactly K bits compose each

check�

The code rate R is de�ned as the information conveyed per channel use R �

H��fs�N�M � H��fs�K�C� where H��fs� � ��� � fs� log��� � fs� � fs log��fs� is the

binary entropy of the message with bias fs�

In the mapping proposed by Sourlas a message is represented by a binary vector

� � f��gN encoded to a higher dimensional vector J� � f��gM de�ned as J�
hi��i����iKi �

�i��i� � � � �iK � where M sets of K indices are randomly chosen� A corrupted version J of the

encoded message J� has to be decoded for retrieving the original message� The decoding

process can be viewed as a statistical Bayesian process 	�
 �see Fig���� Decoding focuses





on producing an estimate b� to the original message that minimizes a given expected loss

hhL��� b��ip�Jj��ip��� averaged over the indicated probability distributions� The de�nition of

the loss depends on the particular task� the simple Hamming distance L��� b�� �
P

j �j
b�j can

be used for decoding binary messages� An optimal estimator for this particular loss function

is b�j � signhSjip�SjJ� 	�
� where S is a N dimensional binary vector representing outcomes

of the decoding process� Using Bayes� theorem� the posterior probability can be written as

ln p�S j J� � ln p�J j S� � ln p�S� � const� Sourlas has shown 	�
 that for parity check

codes this posterior can be written as a many�body Hamiltonian�

ln p�S j J� � �� H�S�

� �
X
�

A� J�
Y
i��

Si � �Hprior�S�� �����

where � � hi�� � � � iKi is a set of indices and A is a tensor with the properties A� � f�� �g

and
P

�niA� � C �i� which determines the M components of the codeword J�� The second

term Hprior�S� stands for the prior knowledge on the actual messages� it can be chosen as

Hprior�S� � F
PN

j�� Sj to represent the expected bias in the message bits� For the simple case

of a memoryless binary symmetric channel �BSC�� J is a corrupted version of the transmitted

message J� where each bit is independently �ipped with probability p during transmission�

The hyper�parameter �� that reaches an optimal value at Nishimori�s temperature 	���
�

is related to the channel corruption rate� The decoding procedure translates to �nding

the thermodynamical spin averages for the system de�ned by the Hamiltonian ����� at a

certain temperature �Nishimori�s temperature for optimal decoding�� as the original message

is binary� the retrieved message bits are given by the signs of the corresponding averages�

In the statistical physics framework the performance of the error�correcting process can

be measured by the overlap between actual message and estimate for a given scenario charac�

terized by a code rate� corruption process and information content of the message� To asses

the typical properties we average this overlap over all possible codes A and noise realizations

�possible corrupted vectors J� given the message � and then over all possible messages�

�



m �
�

N

�
NX
i��

�i hsignhSiiiA�J j�

�
�

����

Here signhSii is the sign of the spins thermal average corresponding to the Bayesian optimal

decoding� The average error per bit is then given by pe � �� � m��� Although this

performance measure is not the usual physical magnetization �it can be better described

as a measure of misalignment of the decoded message�� for brevity� we will refer to it as

magnetization�

From the statistical physics point of view� the number of checks per bit is analogous

to the spin system connectivity and the number of bits in each check is analogous to the

number of spins per interaction� Sourlas� code has been studied in the case of extensive

connectivity � where the number of bonds C�

�
N � �

K � �

�
scales with the system size� In this

case it can be mapped onto known problems in statistical physics such as the SK 	�
 �K��

and Random Energy �REM� 	�
 �K��� models� It has been shown that the REM saturates

Shannon�s bound 	
� However� it has a rather limited practical relevance as the choice of

extensive connectivity corresponds to a vanishingly small code rate�

Here we present an analysis of Sourlas� code for the case of �nite connectivity where

the code rate is non�vanishing� detailing and extending our previous brief reports 	����
� We

show that Shannon�s bound can also be attained at �nite code rates� We study the decoding

dynamics and discuss the connections between statistical physics and belief propagation

methods�

This paper is organized as follows� in Section II we introduce a naive mean��eld model

that contains all the necessary ingredients to understand the system qualitatively� Section

III describes the statistical physics treatment of Sourlas� code showing that Shannon�s bound

can be attained for �nite code rates if K ��� The �nite K case and the Gaussian noise are

also discussed in Section III� The decoding dynamics is analyzed in Section IV� Concluding

remarks are given in Section V� Appendices with detailed calculations are also provided�

�



II� NAIVE MEAN FIELD THEORY

A� Equilibrium

To gain some insight into the code behavior one can start by considering that the original

message is �j � � for all j �so m � � will correspond to perfect decoding� and use Weiss�

mean��eld theory as a �rst �naive� approximation� The idea is to consider an e�ective �eld

given by �for unbiased messages with F � ���

he�j �
X

f��j��g
J�

Y
i��nj

Si ����

acting in every site� The �rst strong approximation here consists in disregarding the reaction

�elds that describe the in�uence of site j back over the system� The local magnetization

can then be calculated�

mj �
D
tanh

�
�he�j

�E
J�S
	 tanh�

D
he�j
E
J�S

� ���

where we introduced a further approximation taking averages inside the function that can

be seen as a high temperature approximation� Disregarding correlations among spins and

computing the proper averages one can write�

m � tanh
�
� C��� p� mK��� � ����

where p is the noise level in the channel� An alternative way to derive the above equation

is by considering the free�energy�

f�m� � ���� p�
C

K
mK �

s�m�

�
� ����

The entropic term s�m� is�

s�m� � �
� � m


ln
�

� � m



	
�

��m


ln
�

��m



	
� ����

Minimizing this free�energy one can obtain Eq����� whose solutions give the possible phases

after the decoding process� In Fig�  we show the maximum magnetization solutions m for

�



Eq����� as a function of the �ip rate p at code rate R � �� and K � � �� �� For K �  the

performance degrades faster with the noise level than in the K �  case� The dashed line

indicates coexistence between paramagnetic �PARA� m � � and ferromagnetic �FERRO�

m � � phases�

B� Decoding Dynamics

In a naive mean��eld framework the decoding process can be seen as an iterative solution

for ���� starting from a magnetization value that depends on the prior knowledge about the

original message� The �xed points of this dynamics correspond to the minima of the free�

energy� a speci�c minimum is reached depending on the initial condition� In the insets of

Fig� we show� as a measure for the basin of attraction� the maximal deviation between the

initial condition and the original message 	 � ��m� that allows convergence to a FERRO

solution� At the bottom inset we show the deviation 	 at code rate R � ��� increasing

values of K and noise level p � ��� � An increasing initial magnetization is needed when K

increases� decoding without prior knowledge is only possible for K � � The top inset shows

	 for K � �� p � ���� as C increases �code rate decreases�� the basin of attraction increases�

One can understand intuitively how the basin of attraction depends on the connectivities

by representing the code in a graph with bit and check nodes and looking at the mean��eld

behavior of a single bit node �see Fig���� The corrupted checks contribute wrong ��� for

the �all ones� message case� values to the bit nodes �m 
 � in the mean �eld�� Since check

node values correspond to a product of K � � bit values� the probability of updating these

nodes to the wrong values increases with K� degrading the overall performance� On the

other hand� if C increases for a �xed K the bit nodes gather more information and are less

sensitive to the presence of �a limited amount of � wrong bits �

Although this naive picture indicates some of the qualitative features of real codes� one

certainly cannot rely in its numerical predictions� In the following sections we will study

Sourlas� codes using more sophisticated techniques that will substantially re�ne the analysis�

�



III� EQUILIBRIUM

A� Replica Theory

In the following subsections we will develop the replica symmetric theory for Sourlas�

codes and show that� in addition to providing a good description of the equilibrium� it

describes the typical decoding dynamics using belief propagation methods�

The previous naive �all ones� messages assumption can be formally translated to the

gauge transformation 	��
 Si
�Si�i and J�
�J�
Q
i�� �i that maps any general message to the

FERRO con�guration de�ned as ��i � � �i� One can then rewrite the Hamiltonian in the

form�

H�S� � �
X
�

A� J�
Y
i��

Si � F
X
k

�kSk � �����

With this transformation� the bits of the uncorrupted encoded message are J�
i � � �i

and� for a BSC� the corrupted bits are random variables with probability�

P �J�� � ���p� � �J���� � p � �J���� � ����

where p is the channel �ip rate� For deriving typical properties of these codes one has obtain

an expression for the free�energy by invoking the replica approach where the free�energy is

de�ned as�

f � �
�

�
lim
N��

�

N

�

�n







n��

hZniA���J� �����

where hZniA���J represents an analytical continuation in the interval n � 	�� �
 of the repli�

cated partition function de�ned as�

hZniA���J � TrfS�
j
g

��De�FP��k
�kS

�
k

E
�

�
exp

���X
���

A� J�
Y
i��

S�
i

�A�
A�J

��� � �����

The magnetization can be rewritten in the gauged variables as �

m �
D
hsignhSiiiA�Jj��

E
�
� �����

�



where �� denotes the transformation of a message � into the FERRO con�guration� The

usual magnetization per site can be easily obtained by calculating

hhSiiiA�J�� � �

�
�f

���F �

�
� �����

From this derivative one can �nd the distribution of the e�ective local �elds hj that can be

used to asses the magnetization m� since sign �hSji� � sign�hj� �

To compute the replicated partition function we closely follow Ref� 	�
� We average

uniformly over all codes A such that
P

�niA� � C �i to �nd�

hZniA���J � exp

���N Extrq�bq
�C � C

K
�

C

K

�� nX
l��

Tl
X

h������li
qK������l

�A
� C

�� nX
l��

X
h������li

q������l bq������l
�A

� ln TrfS�g
D
e�F�

P
�
S�
E
�

�� nX
l��

X
h������li

bq������lS�� � � � S�l

�AC
���
����� � �����

where Tl � htanhl��J�iJ � as in 	��
� and q� � �� We give details of this calculation in the

Appendix A� At the extremum the order parameters acquire expressions similar to those of

Ref� 	�
�

bq��������l � Tl q
K��
��������l

q��������l �

��
lY

i��

S�i

��� nX
l��

X
h������li

bq������lS�� � � � S�l

�A���
X
� �����

where

X �
D
e�F�

P
�
S�
E
�

�� nX
l��

X
h������li

bq������lS�� � � � S�l

�AC

� �����

and h���iX � TrfS�g 	�����X 
 �TrfS�g 	�����
� The term bp�S� �
Pn

l��

P
h������li bq������lS�� � � � S�l

represents a probability distribution over the space of replicas and p��S� �
D
e�F�

P
�
S�
E
�

is

a prior distribution over the same space� For reasons that will become clear in Section IV�

q��������l represents one l�th momentum of the equilibrium distribution of a bit�check edge

in a belief network during the decoding process and bq������l represents l�th moments of a

�



check�bit edge equilibrium distribution � The distribution X represents the probability of

a certain site �bit node� con�guration subjected to exactly C interactions and with prior

probability given by p��

B� Replica Symmetric Solution

The replica symmetric �RS� ansatz can be introduced via the auxiliary �elds �x� and

b�y� in the following way �see also 	�
��

bq������l �
Z

dy b�y� tanhl��y��

q������l �
Z

dx �x� tanhl��x� ������

for l � �� � � � ��

Plugging it into the replicated partition function ������ performing the limit n� � and

using Eq������ �see Appendix B for details� one obtains�

f � �
�

�
Extr��b� f� ln cosh � ������

� �
Z � KY

l��

dxl �xl�

��
ln

�� � tanh �J
KY
j��

tanh �xj

���
J

� C
Z
dx dy �x� b�y� ln 	� � tanh �x tanh �y


� C
Z
dy b�y� ln cosh �y

�
Z � CY

l��

dyl b�yl�

��
ln

� cosh �

�� CX
j��

yj � F�

�A���
�

����� �

where � � C�K� The saddle�point equations� obtained by varying Eq������� with respect

to the probability distributions� provide a set of relations between �x� and b�y�

�x� �
Z �C��Y

l��

dyl b�yl�

� �
�

�x� C��X
j��

yj � F�

���
�

�����

b�y� �
Z �K��Y

l��

dxl �xl�

� �
�

�y � �

�
tanh��

��tanh �J
K��Y
j��

tanh �xj

�A���
J

�

Later we will show that this self�consistent pair of equations can be seen as a mean��eld

version for the belief propagation decoding�

�



Using Eq������ one �nds that the local �eld distribution is �

P �h� �
Z � CY

l��

dyl b�yl�

� �
�

�h� CX
j��

yj � F�

���
�

� ������

where b�y� is given by the saddle point equations above�

The magnetization ���� can then be calculated using�

m �
Z
dh sign�h�P �h�� ������

The code performance can be assessed by assuming a particular prior distribution for

the message bits� solving the saddle�point equations ����� numerically and then computing

the magnetization�

Instabilities in the solution within the space of symmetric replicas can be probed looking

at second derivatives of the functional whose extremum de�nes the free�energy ������� The

simplest necessary condition for stability is having non�negative second functional derivatives

in relation to �x� �and b�y�� �

�

�

Z �K��Y
l��

dxl �xl�

��
ln

�� � tanh �J tanh� �x
K��Y
j��

tanh �xj

���
J

� �� ������

for all x� The replica symmetric solution is expected to be unstable for su�ciently low

temperatures �large ��� For high temperatures we can expand the above expression around

small � to �nd the stability condition�

hJiJhxi
K��
� � � ������

We expect the average hxi� �
R
dx �x� x to be zero in PARA phase and positive in FERRO

phase� satisfying the stability condition� This result is still generally inconclusive� but pro�

vides some evidence that can be examined numerically� In Section III D we will test the

stability of our solutions using condition �������

In the next sections we restrict our study to the unbiased case �F � ��� which is of

practical relevance� since it is always possible to compress a biased message to an unbiased

one�

��



C� Case K ��� C � �K

For this case one can obtain solutions to the saddle�point equations for arbitrary tem�

peratures� In the �rst saddle�point equation ����� one can write�

x �
C��X
l��

yl � �C � ��hyib� � �C � ��
Z
dy y b�y�� ������

It means that if hyib� � � �as it is the in PARA and spin glass �SG� phases� then �x� must

be concentrated at x � � implying that �x� � ��x� and b�y� � ��y� are the only possible

solutions� Moreover� Eq������� implies that in FERRO phase one can expect x � O�K��

Using Eq������� and the second saddle�point equation ����� one can �nd a self�consistent

equation for the mean��eld hyib��

hyib� �

�
�

�
tanh��

h
tanh��J� �tanh���C � ��hyib���K��

i�
J

� ������

For a BSC the above average is over distribution ����� Computing the average� using

C � �K and rescaling the temperature as � � ���lnK��K� in the limit K �� one obtains�

hyib� � ��� p�
h
tanh� ���hyib� ln�K��

iK
� ������

where p is the channel �ip probability� The mean��eld hyib� � � is always a solution to this

equation �either PARA or SG�� at �c � ln�K����K��� p�� an extra non�trivial FERRO

solution emerges with hyib� � �� p� As the connection with the magnetization m is given

by Eq� ������ and Eq� ������� it is not di�cult to see that it implies m � � for FERRO

solution� One remarkable point is that the temperature were the FERRO solution emerges

is �c � O�ln�K��K�� it means that in a simulated annealing process PARA�FERRO barriers

emerge quite early for large K values implying metastability and� consequently� a very slow

convergence� It seems to advocate the use of small K values in practical applications� This

case is analyzed in Section III E� For � � �c both PARA and FERRO solutions exist�

The FERRO free�energy can be obtained from Eq������� using Eq�������� being fFERRO �

���� � p�� The corresponding entropy is sFERRO � � indicating a single solution� The

PARA free�energy is obtained by plugging �x� � ��x� and b�y� � ��y� into Eq� �������

��



fPARA � �
�

�
�� ln�cosh �� � ln �� �����

sPARA � ��ln�cosh ��� � tanh �� � ln � �����

PARA solutions are unphysical for � � �ln ���� tanh �� ln ch ��� since the corresponding

entropy is negative� To complete the phase diagram picture we have to assess the spin�

glass free�energy and entropy� We have seen in the beginning of this section that replica

symmetric SG and PARA solutions consist of the same �eld distributions for K � ��

implying unphysical behavior� In order to produce a solution with non�negative entropy one

has to break the replica symmetry� We use here a pragmatic way to build this solution�

using the simplest one�step replica symmetry breaking known as frozen spins�

It was observed in Ref� 	��
 that for the REM a one�step symmetry breaking scheme gives

the exact solution� In this scheme the n replicas� space is divided to groups of m identical

solutions� It was shown that an abrupt transition in the order parameter from a unique

solution �Edwards�Anderson parameter q � �� SG phase� to a completely uncorrelated set of

solutions �q � �� PARA phase� occurs� This transition takes place at a critical temperature

�g that can be found by solving the appropriate saddle�point equations� this temperature

is given by the root of the replica symmetric entropy �sRS � �� meaning that the RS�RSB

transition occurs at the same point as the PARA�SG in this model� The symmetry breaking

parameter was found to be mg � �g��� indicating that this kind of solution is physical only

for � � �g� since mg  � 	��
� indicating a PARA�SG phase transition� The free�energy can

be computed by plugging the order parameters in the e�ective Hamiltonian� obtained after

averaging over the disorder and taking the proper limits� It shows no dependence on the

temperature� since for � � �g the system is completely frozen in a single con�guration�

For the Sourlas� code� in the regime we are interested in� SG solutions to the saddle�

point equations are given by �x� � ��x� and b�y� � ��y�� The RSB�SG free�energy that

guaranties continuity in the SG�PARA transition is identical to fPARA� since the SG and

PARA solutions have exactly the same structure� to say�

�



fRSB	SG � �
�

�g
�� ln �cosh �g� � ln �� ����

where �g is a solution for sRS	SG � � �ln �cosh ��� � tanh �� � ln  � ��

In Fig�� we show the phase diagram for a given code rate R in the temperature T versus

noise level p plane�

D� Shannon�s Limit

Shannon�s analysis shows that up to a critical code rate Rc� which equals the channel

capacity� it is possible to recover information with arbitrarily small error probability for a

given noise level� For the BSC �

Rc �
�

�c
� � � p log� p � ��� p� log� ��� p�� �����

Sourlas� code� in the case where K � � and C � O�NK� can be mapped onto the

REM and has been shown to be capable of saturating Shannon�s bound in the limit R� �

	
� In this section we extend the analysis to show that Shannon�s bound can be attained

by Sourlas� code at zero temperature also for K �� limit but with connectivity C � �K�

In this limit the model is analogous to the diluted REM analyzed by Saakian in 	��
� The

errorless phase is manifested in a FERRO phase with perfect alignment �m � �� �condition

that is only possible for in�nite K� up to a certain critical noise level� a further noise level

increase produces frustration leading to a SG phase where the misalignment is maximal

�m � ��� The FERRO�SG transition is analogous to the transition from errorless decoding

to decoding with errors described by Shannon� A PARA phase is also present when the

transmitted information is insu�cient to recover the original message �R � ���

At zero temperature saddle�point equations ����� can be rewritten as�

�x� �
Z �C��Y

l��

dyl b�yl�

�
�

�x� C��X
j��

yj

�� �����

b�y� �
Z �K��Y

l��

dxl �xl�

� �
�

�
y � sign�J

K��Y
l��

xl�min�j J j� ���� j xK�� j�

��
J

�

��



The solutions for these saddle�point equations may� in general� result in probability

distributions with singular and regular parts� As a �rst approximation we choose the simplest

self�consistent family of solutions which are� since J � ��� given by�

b�y� � p
��y � �� � p���y� � p���y � �� �����

�x� �
C��X
l���C

T�p��p��C���l� ��x� l�� �����

with

T�p��p��p��C���l� �
�X

fk�h�mg

�C � �� 

k h m 
pk
 ph� p

m
� � �����

where the prime indicates that k� h�m are such that k�h � l� k�h�m � C��� Evidence

for this simple ansatz comes from Monte�carlo integration of Equation ����� at very low

temperatures� that shows solutions comprising three dominant peaks and a relatively weak

regular part� Inside FERRO and PARA phases a more complex singular solution comprising

�ve peaks b�y� � p
���y� �� � p
��y� ���� � p���y� � p���y � ���� � p����y � �� collapses

back to the simpler three peak solution� In Fig�� we show a typical result of a Monte�carlo

integration for the �eld b�y�� The two peak that emerge by using either the three peak

ansatz or the �ve peak ansatz are shown as dotted lines� In the inset we show the weak

regular part of the Monte�carlo solution�

Plugging the above ansatz in the saddle�point equations one can write a closed set of

equations in p� and p� that can be solved numerically �see appendix D for details��

The three peak solution can be of three types� FERRO �p
 � p��� PARA �p� � �� or

SG �p� � p
�� Computing free�energies and entropies enables one to construct the phase

diagram� At zero temperature the PARA free�energy is fPARA � �� and the entropy is

sPARA � �� � �� ln � this phase is physical only for � 
 �� what is expected since it

corresponds exactly to the regime where the transmitted information is not su�cient to

recover the actual message �R � ���

The FERRO free�energy does not depend on the temperature� having the form fFERRO �

���� � p� with entropy sFERRO � �� One can �nd the FERRO�SG coexistence line that

��



corresponds to the maximum performance of a Sourlas� code by equating Eq����� and

fFERRO� Observing that �g � �N�pc� �as seen in Fig�� � we found that this transition

coincides with Shannon�s bound Eq������� It is interesting to note that in the large K

regime both RS�FERRO and RSB�SG free�energies �for T 
 Tg� do not depend on the

temperature� it means that Shannon�s bound is valid also for �nite temperatures up to Tg�

In Fig�� we give the complete zero temperature phase diagram�

The stability of replica symmetric FERRO and PARA solutions used to obtain Shannon�s

bound can be checked using Eq������� at zero temperature�

lim
���

�

�

Z �K��Y
l��

dxl �xl�

��
ln

�� � tanh �J tanh� �x
K��Y
j��

tanh�xj

���
J

� �� �����

for all x�

For PARA solutions the above integral vanishes� trivially satisfying the condition� while

for FERRO solution in the K large regime� xl � O�K� and the integral becomes

�p 	��� ! �x � ��� � jxj �! �x � ���! �x� ��� � ! �x� ��
 � �����

where !�x� � � for x � � and � otherwise� indicating instability for p � �� For the noiseless

case p � � the stability condition is satis�ed� The instability of FERRO phase opens the

possibility that Sourlas� code does not saturate Shannon�s bound� since a correction to the

FERRO solution could change FERRO�SG transition line� However� it was shown in Section

III B that this instability vanishes for large temperatures� what supports� to some extent�

the FERRO�SG line obtained and the saturation of Shannon�s bound in some region� as

long as the temperature is lower than Nishimori�s temperature� For �nite temperatures the

stability condition for FERRO solution can be rewritten as�

�
� � tanh���tanh���x�

����p� �
�� tanh���tanh���x�

�p
� � �x� ������

For p � � the condition is clearly satis�ed� For �nite p a critical temperature above which

the stability condition is ful�lled can be found numerically� In Fig�� we show this critical

temperature in the phase diagram� one can see that there is a considerable region in which our

��



result that Sourlas� code can saturate Shannon�s bound is supported� Conclusive evidence

to that will be given by simulations presented in Section IV�

E� Finite K Case

Although Shannon�s bound only can be attained in the limit K � �� it was shown in

the Section III C that there are some possible drawbacks� mainly in the decoding of messages

encoded by large K codes� due to large barriers which are expected to occur between PARA

and FERRO states� In this section we consider the �nite K case� for which we can solve the

RS saddle�point equations ����� for arbitrary temperatures using Monte�carlo integration�

We can also obtain solutions for the zero temperature case using the simple iterative method

described in Section III D�

We expect the FERRO�SG transition for K �  to be properly described by the frozen

spins RSB solution� It has been shown that K �  extensively connected models 	��
 exhibit

Parisi�type order functions with similar discontinuous structure as found in the K �� case�

it was also shown that the PARA�like solution� employed to describe PARA and SG phases�

is locally stable within the complete replica space and zero �eld �unbiased messages case�

at all temperatures�

At the top of Fig�� we show the zero temperature magnetization m as a function of the

noise level p at code rate R � ��� These curves were obtained by using the three peak

ansatz of the Section III D� It can be seen that the transition is of second order for K �  and

�rst order for K � � similarly to extensively connected models� The transition as described

by the RS solution tends to p � ��� as K grows� Note that this does not correspond to

perfect retrieval since the RSB spin glass phase dominates for p � pc �see bottom of Fig����

In the bottom �gure we plot RS free�energies and RSB frozen spins free�energy� from which

we determine the critical probability pc where the transition occurs �pointed by an arrow��

After the transition� free�energies for K � �� �� � and � acquire values that are lower than the

SG free�energy� nevertheless� the entropy is negative and these free�energies are therefore

��



unphysical� It is remarkable that this critical value does not change signi�cantly for �nite

K in comparison to in�nite K� Observe that Shannon�s bound cannot be attained for �nite

K� since m � � exactly only if K ���

The K �  model with extensive connectivity �SK� is known to be somewhat special� a

full Parisi solution is needed to recover the concavity of the free�energy and the Parisi order

function has a continuous behavior 	��
� No stable solution is known for the intensively

connected model �Viana�Bray model�� In order to check the theoretical result obtained one

relies on simulations of the decoding process at low temperatures� In Section VIII we show

that the simulations are in good agreement with the theoretical results�

F� Gaussian Noise

Using the replica symmetric free�energy ������ and the frozen spins RSB free�energy

���� one can easily extend the analysis to other noise types� The general PARA free�

energy and entropy can be written�

fPARA � �
�

�
�� hln �ch �J�iJ � ln �

sPARA � � �hln �ch �J�iJ � �hJ tanh ��J�iJ� � ln � ������

The SG�RSB free�energy is given by �

fSG	RSB � �
�

�g
�� hln �ch �gJ�iJ � ln � � �����

with �g de�ned as the solution of

� �hln �ch �gJ�iJ � �ghJ tanh ��gJ�iJ� � ln  � �� ������

The FERRO free�energy is in general given by fFERRO � �� hJiJ � �� hJ tanh ��NJ�iJ

�see Appendix D�� The maximum performance of the code is de�ned by the critical line �

� �hln�ch �gJ�iJ � �ghJ tanh��NJ�iJ� � ln  � �� ������

��



obtained by equating free�energies in PARA and FERRO phases� Comparing this expression

with entropy ������ it can be seen that �g � �N at the critical line� the same behavior

observed in the BSC case� From Eq������� one can write�

Rc � ��
N

�

��

�
�

�
hlog� cosh��J�iJ

�
���N

� ������

that can be used to compute the performance of the code for arbitrary symmetric noise�

Supposing that the encoded bits can acquire totally unconstrained values Shannon�s

bound for Gaussian noise is given by Rc � �
�

log����S�N�� where S�N is the signal to noise

ratio� de�ned as the ratio of source energy per bit �squared amplitude� over the spectral

density of the noise �variance�� If one constrains the encoded bits to binary values f��g the

capacity of a Gaussian channel is�

Rc �
Z
dJ P �J j �� log�P �J j ���

Z
dJ P �J� log�P �J�� ������

where P �J j J�� � �p
��	�

exp�� �J�J���
�	�

��

In Fig�� we show the performance of Sourlas� code in a Gaussian channel together with

the capacities of the unconstrained and binary Gaussian channels� We show that K ���

C � �K Sourlas� code saturates Shannon�s bound for the binary Gaussian channel as well�

The signi�cantly lower performance in the unconstrained Gaussian channel can be trivially

explained by the binary coding scheme while signal and noise are allowed to acquire real

values�

IV� DECODING DYNAMICS

A� Belief Propagation

The decoding process of an error�correcting code relies on computing averages over the

marginal posterior probability P �Sj j J� for each one of the N message bits Sj given the

corrupted encoded bits J� �checks�� where � � hi� � � � iKi is one of the M sets chosen by

the tensor A�� The probabilistic dependencies existing in the code can be represented as

��



a bipartite graph known as a belief network where nodes in one layer correspond to the M

checks J� while nodes in the other to the N bits Sj� Each check is connected to exactly K

bits and each bit is connected exactly to C checks �see Fig��a��

Pearl 	��
 proposed an iterative algorithm for computation of marginal probabilities in

belief networks� These algorithms operate by updating beliefs �conditional probabilities�

locally and propagating them� Generally the convergence of these iterations depends on the

absence of loops in the graph� As can be seen in Fig��a� networks that de�ne error�correcting

codes may include loops and convergence problems may occur� Recently it was shown that

in some cases Pearl�s algorithm works even in the presence of loops 	��
�

The particular use of belief networks as decoding algorithms for error�correcting codes

based on sparse matrices was discussed by MacKay in 	�
� In this work a loop�free ap�

proximation for the graph in Fig��a was proposed �see 	��
 for a general discussion on such

approximations�� In fact� it was shown in 	�
 that the probability of �nite length loops in

these graphs vanishes with the system size�

In this framework the network is decomposed in a way to avoid loops and the conditional

probabilities q
�S�
�j and r

�S�
�j are computed� The set of bits in a check � is de�ned as L��� and

the set of checks over the bit j as M�j�� The probability that Sj � S given information

on all checks other than � is denoted q
�S�
�j � P �Sj � S j fJ
 � � � M�j� n �g� and

r
�S�
�j � TrfSl�l�L���njgP �J� j Sj � S� fSl � l � L��� n jg�

Q
l�L���nl q

�Sl�
�l is the probability of the

check J� if the bit j is �xed to Sj � S and the other bits involved are supposed to have

distributions given by q
�Si�
�i � In Fig��b one can see a graphical representation of r

�S�
�j that can

be interpreted as the in�uence of the bit Sj and the mean��eld
Q
l�L���nl q

�Sl�
�l �representing

bits in L��� over than l� over the check J�� In the Fig��c we see that each �eld q
�S�
�l represents

the in�uence of the checks in M�l�� excluding �� over each bit Sl� this setup excludes the

loops that may exist in the actual network�

Employing Bayes theorem� q
�S�
�j can be rewritten as�

q
�S�
�j � a�j P �fJ
 � � � M�j� n �g j Sj� p

�S�
j � �����

��



where a�j is a normalization constant such that q
�
��
�j � q

����
�j � � and p

�S�
j is the prior

probability over the bit j� The distribution P �fJ
 � � � M�j� n �g j Sj� can be replaced by

a mean��eld approximation by factorizing dependencies using �elds r
�S�
�j �

q
�S�
�j � a�jp

�S�
j

Y

�M�j�n�

r
�S�

j

r
�S�
�j � TrfSl�l�L���njgP �J� j Sj � S� fSi � i � L��� n jg�

Y
i�L���nj

q
�Si�
�i � ����

A message estimate b�j � sign
�
hSjiq�S�

j

	
can be obtained by solving the above equations

and computing the pseudo�posterior�

q
�S�
j � ajp

�S�
j

Y

�M�j�

r
�S�

j � �����

where aj is a normalization constant�

By taking advantage of the normalization conditions for the distributions q
�
��
�j �q

����
�j � �

and r
�
��
�j � r

����
�j � � one can change variables and reduce the number of equations ���� to

the couple �q�j � q
�
��
�j � q

����
�j and �r�j � r

�
��
�j � r

����
�j � Solving these equations� one can

�nd back r
�S�
�j � �

�
�� � �r�jSj� and the pseudo�posterior can be calculated to obtain the

estimate�

B� Connection with Statistical Physics

The belief propagation algorithm was shown in 	�
 to outperform other methods such

as simulated annealing� In 	�
 it was proposed that this framework can be reinterpreted

using statistical physics� The main ideas behind the approximations contained in ���� are

somewhat similar to the Bethe 	
 approximation to diluted two�body spin glasses� Actu�

ally� for systems involving two�body interactions it is known that the Bethe approximation

is equivalent to solving exactly a model de�ned on a Cayley tree and that this is a good ap�

proximation for �nitely connected systems in the thermodynamical limit 	�
� In fact� loops

in the connections become rare as the system size grows and can be neglected without intro�

�



ducing signi�cant errors� The belief propagation can be seen as a Bethe�like approximation

for multiple bodies interaction systems�

The mean��eld approximations used here are also quite similar to the TAP approach

	�
� The �elds q
�S�
�j correspond to the mean in�uence of other sites other the site j and the

�elds r
�S�

j represent the in�uence of j back over the system �reaction �elds��

The analogy can be exposed by observing that the likelihood p�J� j S� is proportional

to the Boltzmann weight�

wB�J� j fSj � j � L���g� � exp

����J� Y
i��

Si

�A � �����

That can be also written in the more convenient form�

wB�J� j fSj � j � L���g� �
�


cosh��J��

��� � tanh��J��
Y

j�L���
Sj

�A � �����

The variable r
�Sj�
�j can then be seen as proportional to the e�ective Boltzmann weight

obtained by �xing the bit Sj�

we��J� j Sj� � TrfSl � l�L���njg wB�J� j fSl � l � L���g�
Y

l�L���nj
q
�Sl�
�l � �����

Plugging Eq������ for the likelihood in equations ����� using the fact that the prior proba�

bility is given by p
�S�
j � �

�
�� � tanh��SF �� and computing �q�j and �r�j�

�r�j � tanh��J��
Y

l�L���nj
�q�l

�q�j � tanh

�� X

�M�l�n�

tanh����r
j� � �F

�A � �����

The pseudo�posterior can then be calculated�

�qj � tanh

�� X

�M�l�

tanh����r
j� � �F

�A � �����

providing Bayes� optimal decoding b�j � sign��qj�� It is important at this point to support the

mean��eld assumptions used here by methods of statistical physics 	�
� The factorizability

of the probability distributions can be explained by weak correlations between connections

�checks� and by the cluster property�

�



lim
N��

�

N�

X
i	�j

�
hSiSjip�SjJ� � hSiip�SjJ�hSjip�SjJ�

��
� � �����

that bits Sj obey within a pure state 	��
�

One can push the above connections even further� Eqs������� of course� depend on the

particular received message J � In order to make the analysis message independent� one can

use a gauge transformation �r�j 
� �j�r�j and �q�j 
� �j�q�j to write�

�r�j � tanh��J�
Y

l�L���nj
�q�l

�q�j � tanh

�� X

�M�l�n�

tanh����r
j� � ��jF

�A � ������

In this form a success in the decoding process correspond to �r�j � � and �q�j � � for all �

and j� For a large number of iterations� one can expect the ensemble of belief networks to

converge to an equilibrium distribution where �r and �q are random variables sampled from

distributions b��y� and ��x� respectively� By transforming these variables as �r � tanh��y�

and �q � tanh��x� and considering the actual message and noise as quenched disorder�

Eqs������� can be rewritten as�

y �
�

�

�
tanh��

��tanh��J�
K��Y
j��

tanh��xj�

�A�
J

x �

�
C��X
j��

yj � �F

�
�

� ������

The above relations lead to a dynamics on the distributions b��y� and ��x�� that is exactly

the same obtained when solving iteratively RS saddle�point equations ������ The probability

distributions b��y� and ��x� can be �therefore� identi�ed with b�y� and �x� respectively and

the RS solutions correspond to decoding a generic message using belief propagation averaged

over an ensemble of di�erent codes� noise and signals�

Eqs������ are now used to show the agreement between the simulated decoding and

analytical calculations� For each run� a �xed code is used to generate ���� bit codewords

from ����� bit messages� corrupted versions of the codewords are then decoded using ������

Numerical solutions for �� individual runs are presented in Figs��� and ��� initial conditions





are chosen as �r�l � � and �q�l � tanh��F � re�ecting prior beliefs� In Fig��� we show results

for K �  and C � � in the unbiased case� at code rate R � �� �prior probability p
���
j �

f � ���� at a low temperature T � ��� �we avoided T � � due to numerical di�culties��

Solving saddle�point equations ����� numerically using Monte�carlo integration methods we

obtain solutions with good agreement to simulated decoding� In the same �gure we show the

performance for the case of biased messages �p
���
j � fs � ����� at code rate R � ���� Also

here the agreement with Monte�carlo integrations is rather convincing� The third curve

in Fig��� shows the performance for biased messages at Nishimori�s temperature TN � as

expected� it is far superior compared to low temperature performance and the agreement

with Monte�carlo results is even better�

In Fig��� we show the results obtained for K � � and C � ��� For unbiased messages

the system is extremely sensitive to the choice of initial conditions and does not perform

well in average even at Nishimori�s temperature� For biased messages �fs � ���� R � ����

results are far better and in agreement with Monte�carlo integration of the RS saddle�point

equations�

The experiments show that belief propagation methods may be used successfully for

decoding Sourlas�type codes in practice� and provide solutions that are well described by

RS analytical solutions�

C� Basin of Attraction

To asses the size of the basin of attraction we consider the decoding process as a dynamics

in the graphs space where edges �q�j are considered as dynamical variables� In gauged

transformed equations ������ � the perfect decoding of a message correspond to �q�j � � � To

analyse the basin of attraction we start with random initial values with a given normalized

deviation from the perfect decoding 	 � �
NC

P
�j�� � �q��j�� It is analogous to the �nite

magnetizations used in the naive mean��eld of Section II� since a given �q��j corresponds to

a given magnetization value by using Eq�������

�



In Fig�� we show the maximal deviation in initial conditions required for successful

decoding� Top �gure shows an average over �� di�erent codes with N � ��� �circles� for

a �xed code rate R � ���� �xed noise level p � ��� and increasing K� Bottom �gure

shows the maximal deviation in initial conditions for a �xed number of spins per interaction

K � �� noise level p � ��� and increasing C� We con�rm the �delity of the RS description

by comparing the experimental results with the basin of attraction predicted by saddle�

point equations ������ One can interpret these equations as a dynamics in the space of

distributions �x�� Performing the transformation X � tanh��x�� one can move to the

space of distributions "�X� with support over 	�����
� The initial conditions can then be

described simply as "��X� � ��� �
�
���X � �� � �

�
��X � ��� In Fig�� we show the basin of

attraction of this dynamics as lines and ��s�

The K �  case is the only practical code from a dynamical point of view� since it

has the largest basin of attraction and no prior knowledge on the message is necessary for

decoding� Nevertheless� this code�s performance degrades faster than the K �  case as

shown in Section III� which points to a compromise between good dynamical properties in

one side and good performance in the other� One idea could be having a code with changing

K� starting with K �  to guarantee convergence and progressively increasing its values to

improve the performance 	�
�

On the other hand� the basin of attraction increases with C� Again it points to a trade

o� between good equilibrium properties �small C and large code rates� and good dynamical

properties �large C� large basin of attraction�� Mixing small and large C values in the same

code seems to be a way to take advantage of this trade�o� 	���
�

V� CONCLUDING REMARKS

In this paper we studied� using the replica approach� a �nite connectivity many�body

spin glass that corresponds to Sourlas� codes for �nite code rates� We have shown� using a

simpli�ed one step RSB solution for spin glass phase� that for K �� and C � �K regime

�



at low temperatures the system exhibits a FERRO�SG phase transition that corresponds to

Shannon�s bound� However� we have also shown that the decoding problem for large K has

bad convergence properties when simulated annealing strategies are used�

We were able to �nd replica symmetric solutions for �nite K and found good agree�

ment with practical decoding performance using belief networks� Moreover� we have shown

that RS saddle�point equations actually describe the mean behavior of belief propagation

algorithms�

We studied the dynamical properties of belief propagation and compared to statistical

physics predictions� con�rming the validity of the description� The basin of attraction was

shown to depend on K and C� Strategies for improving the performance were discussed�

The same methodology has been recently employed successfully 	�
 to state�of�the�art

algorithms as the recent rediscovered Gallager codes 	��
 and its variations 	���
� We

believe that the connections found between belief networks and statistical physics can be

further developed to provide deeper insights into the typical performance of general error�

correcting codes�
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APPENDIX A� FREE ENERGY

In order to compute free�energies one needs to calculate the replicated partition function

������ One can start from Eq� ������

hZniA���J � TrfS�
j
g
�D

exp
�
��H�n��fS� g�

�E
A�J��

�
� �A��

�



where H�n��fS�g� represents the replicated Hamiltonian and � the replica indices� First

one averages over the parity check tensors A� for that an appropriate distribution has to be

introduced� denoting � � hi�� ���� iKi for a speci�c set of indices�

hZni �

�
�

N

X
fAg

Y
i

�

��X
�ni
A� � C

�ATrfS�
j
gexp

�
�� H�n��fS�g�

��
J��

� �A�

where the � distribution imposes a restriction on the connectivity per spin� N is a normal�

ization coe�cient and the notation �n i means the set � minus the element i� Using integral

representations for the delta functions and rearranging�

hZni � TrfS�
j
g

�
�

N

�Y
i

I dzi
i

�

zC
�i

�X
fAg

��Y
�

�
Y
i��

zi�
A�

�A exp
�
��H�n��fS�g�

��
J��

� �A��

Remembering that A � f�� �g� and using the expression ����� for the Hamiltonian one can

change the order of the summation and the product above and sum over A�

hZni � TrfS�
j
g

�
�

N

�Y
i

I dzi
i

�

zC
�i

�
e�F

P
��i

�iS�i

�
Y
�

�� � �
Y
i��

zi�exp

���J�X
�

Y
i��

S�
i

�A���
J��

� �A��

Using the identity exp��J�
Q
i�� S

�
i � � cosh���

h
� �

�Q
i�� S

�
i

�
tanh��J��

i
one can perform

the product over � to write�

hZni � TrfS�
j
g

�

N

�Y
i

I dzi
i

�

zC
�i

�D
e�F

P
��i

�iS�i
E
�

�A��

�
Y
�

�� �

��Y
i��

zi

�A coshn���

��� � htanh��J�iJ
X
�

Y
i��

S�
i

� htanh���J�iJ
X

h����i

Y
i��

S��
i

Y
j��

S��
j � ���

�A�� �
De�ning h��� ��� ���� �li as an ordered set of sets� and observing that for large N �P

h������li����� � �
l�

�P
������

�l
one can perform the product over the sets � and replace the

series that appears by an exponential�

hZni � TrfS�
j
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�
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�Y
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e�F
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E
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i S��

i � ���

�A�� �
Observing that

P
� � ��K 

P
i�����iK � de�ning Tl � hcoshn��J�tanhl��J�iJ and introduc�

ing auxiliary variables q������m � �
N

P
i ziS

��
i ���S�m

i one �nds�
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�

N

�Y
i

I dzi
i

�
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�i
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�
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The normalization constant is given by�

N �
X
fAg

Y
i

�

��X
�ni
A� � C

�A � �A��

and can be computed using exactly the same methods as above� resulting in�

N �

�Y
i

I dzi
i

�

zC
�i

��Z dq�dbq�
i

�
exp

�
NK

K 
qK� �Nq� bq� � bq�X

i

zi

�
� �A��

Computing the integrals over zi�s and using Laplace�s method to compute the integrals

over q� and bq� one get�

N � exp

�
Extrq��bq�

�
NK

K 
qK� �Nq� bq� � N ln

� bqC�
C 

�� 
� �A���

The extremum point is given by q� � N ���K��K 	�K � �� C
��K and bq� �

�C N��K���K� 	�K � �� 
���K � Replacing the auxiliary variables in Eq��A�� using

q������m�q� � q������m and bq������m�q� � bq������m� computing the integrals over zi and using

Laplace�s method to evaluate the integrals one �nally �nds Eq�������
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APPENDIX B� REPLICA SYMMETRIC SOLUTION

The replica symmetric free�energy ������ can be obtained by plugging the ansatz ������

into Eq��A��� After computing the normalization N and using Laplace�s method one has�

hZniA���J � exp
!
N Extr��b� �CKG� � C G� � G�

�"
� �B��

where�

G� � T� � T�
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Z KY
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Z KY
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�
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�
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X
�

Z
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�
X
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Z
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N
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X
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Z
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The equation for G� can be worked out by using the de�nition of Tm and the fact that

�
P
h������li �� �

�BB� n

l

�CCAto write�

G� �

�
coshn��J�

Z �� KY
j��

dxj �xj�

�A��� � tanh��J�
KY
j��

tanh��xj�

�An�
J

� �B��

Following exactly the same steps one obtains�

G� �
Z

dx dy�x� b�y� �� � tanh��x� tanh��y��n � �B��
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and

G� � ln

���TrfS�g

��exp

�
�F�

X
�

S�
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�

�
I dz

i

�

zC
�
exp

�bq� z Z dy b�y�
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���

�� � S�tanh��y��
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Computing the integral over zi and the trace one �nally �nds�

G� � ln

��� bq�
C 

Z CY
l��

dylb�yl�

� X
	���

D
e	�F�

E
�

CY
l��

�� � �tanh��yl��

��n��� � �B��

Putting everything together� using Eq������ and some simple manipulation one �nds

Eq��������

APPENDIX C� ZERO TEMPERATURE SELF�CONSISTENT EQUATIONS

In this appendix we describe how one can write a set of self�consistent equations to solve

the zero temperature saddle�point equations ������ Supposing a three peaks ansatz given

by�

b�y� � p
��y � �� � p���y� � p���y � �� �C��

�x� �
C��X
l���C

T�p��p��C���l� ��x� l�� �C�

with

T�p��p��p��C�l� �
X

fk�h�m � k�h�l � k
h
m�C��g

�C � �� 

k h m 
pk
 ph� p

m
� � �C��

One can consider the problem as a random walk� where b�y� describes the probability of

one step of length y �y � � means one step to the right� and �x� describes the probability

of being at distance x from the origin after C � � steps� With this idea in mind it is

relatively easy to understand T�p��p��p��C���l� as the probability of walking the distance l

after C � � steps with the probabilities p
� p� and p� of respectively moving right� left

and staying at the same position� We de�ne the probabilities of walking right#left as �� �PC��
l T�p��p��p��C����l�� Using second saddle�point equations ������

�



p
 �
Z �K��Y

l��

dxl �xl�

��
�

�
�� sign�J

K��Y
l��

xl�min�j J j� j x� j� � � � � j xK�� j

��
J

�C��

The left side of the above equality can be read as the probability of making K � �

independent walks such that after C � � steps all of them are not in the origin and an even

�forJ � ��� or odd �for J � ��� number of walks are at the left side� Using this reasoning

for p� and p� one can �nally write �

p
 � ��� p�

bK��
�

cX
j��

�
K � �

�j

�
��j
� �

K��j��
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���� p��K��
� odd�K � ��� �C��

where odd�x� � ���� if x is odd �even�� Using that p
 � p� � p� � � one can obtain p��

A similar set of equations can be obtained for a �ve peaks ansatz leading to the same set

of solutions for the FERRO and PARA phases� The PARA solution p� � � is always a

solution� for C � K a FERRO solution with p
 � p� � � emerges�

APPENDIX D

In this appendix we establish the identity hJiJ � hJ tanh��NJ�iJ for symmetric chan�

nels� It was shown in 	�
 that �

�N J �
�


ln

�
p�J j ��

p�J j ���

�
� �D��

where �N is the Nishimori�s temperature and p�J j J�� are the probabilities that a trans�

mitted bit J� is received as J � From this we can easily �nd�

tanh ��N J� �
p�J j ��� p�J j ���

p�J j �� � p�J j ���
� �D�

In a symmetric channel �p�J j �J�� � p��J j J���� it is also represented as

��



tanh ��N J� �
p�J j ��� p��J j ��

p�J j �� � p��J j ��
� �D��

Therefore�

hJ tanh ��N J�iJ � TrJ p�J j ��
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�TrJ p�J j ��
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FIGURES

FIG� �� The encoding� message corruption in the noisy channel and decoding can be represented

as a Markovian process� The aim is to obtain a good estimative b� for the original message ��

FIG� 	� Code performance measured by the magnetization m as a function of the noise level

p as given by the naive mean
�eld theory at code rate R � ��	 and K � 	� �� � respectively from

the bottom� The long
dashed line indicates PARA
FERRO coexistence� Insets Maximum initial

deviation � for convergence at a noise level p � ���� Top inset K � � and increasing C� Bottom

inset Code rate R � ��	 and increasing K�

FIG� �� Graph representation of the code�

FIG� �� Phase diagram in the plane temperature T versus noise level p for K � � and

C � �K� with � � �� The dotted line indicates Nishimori�s temperature TN � Full lines represent

coexistence� The critical noise level is pc� The necessary condition for stability in the FERRO

phase is satis�ed above the dashed line�

FIG� �� Histogram representing the mean
�eld distribution b��y� obtained by Monte
carlo inte


gration at low temperature �	 � ��� K � ��C � � and p � ����� Dotted lines represent solutions

obtained by iterating self
consistent equations both with �ve peak and three peak ans�atze� Inset

detailed view of the weak regular part arising in the Monte
carlo integration�

FIG� �� Phase diagram in the plane code rate R versus noise level p for K �� and C � �K

at zero temperature� The FERRO
SG coexistence line corresponds to the Shannon�s bound�

��



FIG� �� Top zero temperature magnetization m as a function of the noise level p for various

K values at code rate R � ��	� as obtained by the iterative method � Notice that the RS theory

predicts a transition of second order for K � 	 and �rst order for K 
 	� Bottom RS
FERRO

free
energies �white circles forK � 	 and from the left K � �� �� � and �� and RSB
SG free
energy

�dotted line� as functions of the noise level p� The arrow indicates the region where the RSB
SG

phase starts to dominate� Inset a detailed view of the RS
RSB transition region�

FIG� �� Critical code rate Rc and channel capacity for a binary Gaussian channel as a function

of the signal to noise rate S�N �solid line�� Sourlas� code saturates Shannon�s bound� Channel

capacity of the unconstrained Gaussian channel �dashed line��

FIG� �� �a� Belief network representing an error
correcting code� Each bit Sj �white circles�

is linked to exactly C checks and each check �black circles� J� is linked to exactly K bits� �b�

Graphical representation of the �eld r�j � The grey box represents the mean �eld contributionQ
l�L���nj q�l of the other bits on the check J�� �c� Representation of one of the �elds q�l�

FIG� ��� Magnetization as a function of the �ip probability p for decoding using TAP equations

for K � 	� From the bottom Monte
carlo solution of the RS saddle
point equations for unbiased

messages �fs � ���� at T � ��	� �line� and �� independent runs of TAP decoding for each �ip

probability �plus signs�� T � ��	� and biased messages �fs � ���� at Nishimori�s temperature TN �

FIG� ��� Magnetization as a function of the �ip probability p for decoding using TAP equations

for K � �� The dotted line is the replica symmetric saddle
point equations Monte
carlo integration

for unbiased messages �fs � ���� at the Nishimori�s temperature TN � The bottom error bars corre


spond to �� simulations using the TAP decoding� The decoding performs badly on average in this

scenario� The upper curves are for biased messages �fs � ���� at the Nishimori�s temperature TN �

The simulations agree with results obtained using the replica symmetric ansatz and Monte
carlo

integration�

��



FIG� �	� Top Maximum initial deviation � for decoding� Top � as function of the number

of interactions K� Circles are averages over �� di�erent codes with N � ���� R � ��� and noise

level p � ���� Bottom � as function of the connectivity C� Circles are averages over �� codes with

N � ���� K � � and noise level p � ���� Lines and ��s correspond to the RS dynamics described

by the saddle
point equations�
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