View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Aston Publications Explorer

Finite-connectivity systems as error-correcting codes

Renato Vicente and David Saad

The Neural Computing Research Group, Aston University, Birmingham B4 TET, UK

Yoshiyuki Kabashima
Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology,

Yokohama 226, Japan

Abstract

We investigate the performance of parity check codes using the mapping onto
Ising spin systems proposed by Sourlas. We study codes where each parity
check comprises products of K bits selected from the original digital message
with exactly C' checks per message bit. We show, using the replica method,
that these codes saturate Shannon’s coding bound for K — co when the code
rate K/C is finite. We then examine the finite temperature case to asses the
use of simulated annealing methods for decoding, study the performance of the
finite K case and extend the analysis to accommodate different types of noisy
channels. The connection between statistical physics and belief propagation
decoders is discussed and the dynamics of the decoding itself is analyzed.
Further insight into new approaches for improving the code performance is

given.
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I. INTRODUCTION

Error-correction is required whenever information has to be reliably transmitted through
a noisy environment. The theoretical grounds for classical error-correcting codes were first
presented in 1948 by Shannon [1]. He showed that it is possible to transmit information
trough a noisy channel with a vanishing error probability by encoding up to a given crit-
ical rate R, equivalent to the channel capacity. However, Shannon’s arguments were non-
constructive and devising such codes turned out to be a major practical problem in the area
of information transmission.

In 1989 Sourlas [2,3] proposed that, due to the equivalence between addition over the
field {0, 1} and multiplication over {41}, many error-correcting codes can be mapped onto
many-body spin-glasses with appropriately defined couplings. This observation opened the
possibility of applying techniques from statistical physics to study coding systems, in par-
ticular, these ideas were applied to the study of parity check codes. These linear block codes
can be represented by matrices of N columns and M rows that transform IN-bit messages
to M (> N) parity checks. Each row represents bits involved in a particular check and each
column represents checks involving the particular bit. The number of bits used in each check
and the number of checks per bit depends on the code construction. We concentrate on the
case where exactly C' checks are performed for each bit and exactly K bits compose each
check.

The code rate R is defined as the information conveyed per channel use R =
Hy(fs)N/M = Hy(fs)K/C, where Hy(fs) = —(1 — fs) logo(1 — fs) — fs logy(fs) is the
binary entropy of the message with bias f;.

In the mapping proposed by Sourlas a message is represented by a binary vector
& € {£1}" encoded to a higher dimensional vector J® € {£1}" defined as Jj ; ;=
i, iy - - - Eige, where M sets of K indices are randomly chosen. A corrupted version J of the
encoded message J° has to be decoded for retrieving the original message. The decoding

process can be viewed as a statistical Bayesian process [4] (see Fig.1). Decoding focuses



on producing an estimate E to the original message that minimizes a given expected loss
(<£(§,§)>p(J|§)>p(§) averaged over the indicated probability distributions. The definition of
the loss depends on the particular task; the simple Hamming distance £(£, E) =2 Q{Aj can
be used for decoding binary messages. An optimal estimator for this particular loss function
is & = sign(S;)p(s|s) (4], where S is a N dimensional binary vector representing outcomes
of the decoding process. Using Bayes’ theorem, the posterior probability can be written as

Inp(S|J)=Inp(J | S)+Inp(S)+ const. Sourlas has shown [3] that for parity check

codes this posterior can be written as a many-body Hamiltonian:

Inp(S| J) = -6 H(S)

=8> A, J, [I Si + BHpwior(S), (1.1)
N

iEp
where p1 = (i1,...1k) is a set of indices and A is a tensor with the properties A4, € {0,1}
and 3 ,,; A, = C Vi, which determines the M components of the codeword J°. The second
term Hprior(S) stands for the prior knowledge on the actual messages; it can be chosen as
Horior(S) = F Z;-V:l S; to represent the expected bias in the message bits. For the simple case
of a memoryless binary symmetric channel (BSC), J is a corrupted version of the transmitted
message J° where each bit is independently flipped with probability p during transmission.
The hyper-parameter (3, that reaches an optimal value at Nishimori’s temperature [4-6],
is related to the channel corruption rate. The decoding procedure translates to finding
the thermodynamical spin averages for the system defined by the Hamiltonian (1.1) at a
certain temperature (Nishimori’s temperature for optimal decoding); as the original message
is binary, the retrieved message bits are given by the signs of the corresponding averages.
In the statistical physics framework the performance of the error-correcting process can
be measured by the overlap between actual message and estimate for a given scenario charac-
terized by a code rate, corruption process and information content of the message. To asses
the typical properties we average this overlap over all possible codes A and noise realizations

(possible corrupted vectors J) given the message € and then over all possible messages:
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i= 3
Here sign(.S;) is the sign of the spins thermal average corresponding to the Bayesian optimal
decoding. The average error per bit is then given by p. = (1 — m)/2. Although this
performance measure is not the usual physical magnetization (it can be better described
as a measure of misalignment of the decoded message), for brevity, we will refer to it as
magnetization.

From the statistical physics point of view, the number of checks per bit is analogous
to the spin system connectivity and the number of bits in each check is analogous to the
number of spins per interaction. Sourlas’ code has been studied in the case of extensive
connectivity , where the number of bonds C'~ <Zi ) scales with the system size. In this
case it can be mapped onto known problems in statistical physics such as the SK [7] (K=2)
and Random Energy (REM) [8] (K—00) models. It has been shown that the REM saturates
Shannon’s bound [2]. However, it has a rather limited practical relevance as the choice of
extensive connectivity corresponds to a vanishingly small code rate.

Here we present an analysis of Sourlas’ code for the case of finite connectivity where
the code rate is non-vanishing, detailing and extending our previous brief reports [9,10]. We
show that Shannon’s bound can also be attained at finite code rates. We study the decoding
dynamics and discuss the connections between statistical physics and belief propagation
methods.

This paper is organized as follows: in Section II we introduce a naive mean-field model
that contains all the necessary ingredients to understand the system qualitatively. Section
IIT describes the statistical physics treatment of Sourlas’ code showing that Shannon’s bound
can be attained for finite code rates if K — oco. The finite K case and the Gaussian noise are
also discussed in Section ITI. The decoding dynamics is analyzed in Section IV. Concluding

remarks are given in Section V. Appendices with detailed calculations are also provided.



II. NAIVE MEAN FIELD THEORY
A. Equilibrium

To gain some insight into the code behavior one can start by considering that the original
message is £ = 1 for all j (so m = 1 will correspond to perfect decoding) and use Weiss’
mean-field theory as a first (naive) approximation. The idea is to consider an effective field
given by (for unbiased messages with F' = 0):

G P | I (2.1)

{wijep}  iep\j
acting in every site. The first strong approximation here consists in disregarding the reaction
fields that describe the influence of site j back over the system. The local magnetization

can then be calculated:

m; = <tanh (ﬂh;ﬂ))},s ~ tanh( <h§.ﬂ‘>J,S , (2.2)

where we introduced a further approximation taking averages inside the function that can
be seen as a high temperature approximation. Disregarding correlations among spins and

computing the proper averages one can write:
m = tanh (ﬂ C(1-2p) mK_l) : (2.3)

where p is the noise level in the channel. An alternative way to derive the above equation

is by considering the free-energy:

f(m) = —(1 = 2p)—mf — ==, (2.4)
The entropic term s(m) is:

s(m):—l—;m1n<1—;m>—1_2m1n<1_2m>. (2.5)

Minimizing this free-energy one can obtain Eq.(2.3) whose solutions give the possible phases

after the decoding process. In Fig. 2 we show the maximum magnetization solutions m for



Eq.(2.3) as a function of the flip rate p at code rate R = 1/2 and K = 2,3,4. For K = 2 the
performance degrades faster with the noise level than in the K > 2 case. The dashed line
indicates coexistence between paramagnetic (PARA) m = 0 and ferromagnetic (FERRO)

m > 0 phases.

B. Decoding Dynamics

In a naive mean-field framework the decoding process can be seen as an iterative solution
for (2.3) starting from a magnetization value that depends on the prior knowledge about the
original message. The fixed points of this dynamics correspond to the minima of the free-
energy; a specific minimum is reached depending on the initial condition. In the insets of
Fig.2 we show, as a measure for the basin of attraction, the maximal deviation between the
initial condition and the original message A = 1 — my that allows convergence to a FERRO
solution. At the bottom inset we show the deviation A at code rate R = 1/2, increasing
values of K and noise level p = 0.1 . An increasing initial magnetization is needed when K
increases, decoding without prior knowledge is only possible for K = 2. The top inset shows
Afor K =3, p=0.1; as C increases (code rate decreases), the basin of attraction increases.

One can understand intuitively how the basin of attraction depends on the connectivities
by representing the code in a graph with bit and check nodes and looking at the mean-field
behavior of a single bit node (see Fig.3). The corrupted checks contribute wrong (—1 for
the “all ones” message case) values to the bit nodes (m < 1 in the mean field). Since check
node values correspond to a product of K — 1 bit values, the probability of updating these
nodes to the wrong values increases with K, degrading the overall performance. On the
other hand, if C' increases for a fixed K the bit nodes gather more information and are less
sensitive to the presence of (a limited amount of ) wrong bits .

Although this naive picture indicates some of the qualitative features of real codes, one
certainly cannot rely in its numerical predictions. In the following sections we will study

Sourlas’ codes using more sophisticated techniques that will substantially refine the analysis.



III. EQUILIBRIUM
A. Replica Theory

In the following subsections we will develop the replica symmetric theory for Sourlas’
codes and show that, in addition to providing a good description of the equilibrium, it
describes the typical decoding dynamics using belief propagation methods.

The previous naive “all ones” messages assumption can be formally translated to the
gauge transformation [11] S;—S;&; and Ju—J, [1;c, & that maps any general message to the
FERRO configuration defined as £ = 1 Vi. One can then rewrite the Hamiltonian in the
form:

HS) == A, [ISi = F> &Sk, (3.1)
1 icp k
With this transformation, the bits of the uncorrupted encoded message are J? = 1 Vi

and, for a BSC, the corrupted bits are random variables with probability:
P(Ju)=010-p) 6(Ju,=1) +pd(J,+1), (3.2)

where p is the channel flip rate. For deriving typical properties of these codes one has obtain
an expression for the free-energy by invoking the replica approach where the free-energy is

defined as:

1. 19
TG NS N on

f= (Z™) ae0, (3.3)

n=0

where (Z™) 4¢,; represents an analytical continuation in the interval n € [0, 1] of the repli-

cated partition function defined as:
S

(2™ pes = Trisey <65F Do £k5£‘>§ <exp (ﬁ S AL T Sf‘) > : (3.4)
L AJ

The magnetization can be rewritten in the gauged variables as :

m = ((sign(S) a e ), (3.5)

7



where &* denotes the transformation of a message ¢ into the FERRO configuration. The

usual magnetization per site can be easily obtained by calculating

(S are = — (%) . (36)

From this derivative one can find the distribution of the effective local fields h; that can be
used to asses the magnetization m, since sign ((S;)) = sign(h;) .
To compute the replicated partition function we closely follow Ref. [12]. We average

uniformly over all codes A such that = (C' Vi to find:

u\@

(Z") a¢,0 =exp {N Extr, >

022@72%0

(a1...0q)

- C(Z Z Qa;.. alqal a,)

1=0 (o1...0q)

c
+ lnTr{Sa}<eBF§EaSa> (Z > Goyoay 1...5""’) , (3.7)

1=0 (o1...04)

where 7; = (tanh’(3.J));, as in [13], and gy = 1. We give details of this calculation in the

Appendix A. At the extremum the order parameters acquire expressions similar to those of

Ref. [12]:
q\al,...,al Tqal, SO
l n -
qal,...,al - < <H Sal> (Z Z l’]\al...alsal . e Sal) > . (38)
=1 =0 (al...al> X
where

X:<65F’52a5°‘> (Z Y G 1...5%) , (3.9)

1=0 (e1...oq)

and (...)x = Tregay [(...)X] /Trysey [(-..)]. The term p(S) = Yilg iay..ap) Gar.a S -+ - S
represents a probability distribution over the space of replicas and py(S) = <65F DN Sa>§ is
a prior distribution over the same space. For reasons that will become clear in Section IV,

Ja1,..,0; Tepresents one [-th momentum of the equilibrium distribution of a bit-check edge

in a belief network during the decoding process and @,,..o, represents [-th moments of a
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check-bit edge equilibrium distribution . The distribution A represents the probability of
a certain site (bit node) configuration subjected to exactly C' interactions and with prior

probability given by pyg.

B. Replica Symmetric Solution

The replica symmetric (RS) ansatz can be introduced via the auxiliary fields 7(z) and

7(y) in the following way (see also [12]):
Qorvoco = [ dy 7(y) tank'(By),
Qor..0 :/ dz 7(z) tanh'(Bz) (3.10)

forl=1,2,....
Plugging it into the replicated partition function (3.7), performing the limit n — 0 and

using Eq.(3.3) (see Appendix B for details) one obtains:

f= —% Eztr_=~{alncosh 8 (3.11)

, T

K
1+ tanh 8J [] tanh ﬂxj] >
j=1

)

where « = C//K. The saddle-point equations, obtained by varying Eq.(3.11) with respect

+ a/ Lﬁ1 dz 7'('(.’131)] <ln
_ C/dgj dy m(z) 7(y) In[l + tanh Sz tanh By

_C / dy #(y) Incosh By

n / L:ﬁl dy, %(y,)l <1n lz cosh 3 (]Z: Y +F£)

J

to the probability distributions, provide a set of relations between 7 (z) and 7(y)

w(o) = [ [H R [ - zy - F&} ) (312)

3

#(y) = / [Iﬁldxl w(x,)] <5 [y— %tanhl (tanhﬂj Iﬁltanhﬂxj)]> .

=1 j=1

Later we will show that this self-consistent pair of equations can be seen as a mean-field

version for the belief propagation decoding.



Using Eq.(3.6) one finds that the local field distribution is :

P(h)Z/[lg[dyz ﬁ(yz)] <5 lh—gyj—Ff

=1

> , (3.13)

3

where 7(y) is given by the saddle point equations above.

The magnetization (1.2) can then be calculated using:
m = / dh sign(h) P(h). (3.14)

The code performance can be assessed by assuming a particular prior distribution for
the message bits, solving the saddle-point equations (3.12) numerically and then computing
the magnetization.

Instabilities in the solution within the space of symmetric replicas can be probed looking
at second derivatives of the functional whose extremum defines the free-energy (3.11). The
simplest necessary condition for stability is having non-negative second functional derivatives

in relation to 7(z) (and 7(y)) :

1 p[E=2 K—2
5/ lH dx; 71'(.’17[)] <ln 1+ tanh 3J tanh® Bz [] tanh Bz, > >0, (3.15)
=1 Jj=1 J

for all x. The replica symmetric solution is expected to be unstable for sufficiently low
temperatures (large ). For high temperatures we can expand the above expression around

small § to find the stability condition:
(J)s(z)E2 >0 (3.16)

We expect the average (z), = [dx m(z) z to be zero in PARA phase and positive in FERRO
phase, satisfying the stability condition. This result is still generally inconclusive, but pro-
vides some evidence that can be examined numerically. In Section IIID we will test the
stability of our solutions using condition (3.15).

In the next sections we restrict our study to the unbiased case (F' = 0), which is of
practical relevance, since it is always possible to compress a biased message to an unbiased

one.

10



C. Case K — o0, C = aK

For this case one can obtain solutions to the saddle-point equations for arbitrary tem-

peratures. In the first saddle-point equation (3.12) one can write:

= un (€)= (C 1) [dyyr) (3.17)

It means that if (y)~ = 0 (as it is the in PARA and spin glass (SG) phases) then 7(z) must

be concentrated at # = 0 implying that 7(z) = é(x) and 7(y) = §(y) are the only possible

solutions. Moreover, Eq.(3.17) implies that in FERRO phase one can expect z ~ O(K).
Using Eq.(3.17) and the second saddle-point equation (3.12) one can find a self-consistent

equation for the mean-field (y)=:

()~ = <% tanh™" [tanh(3.7) (tanh(B3(C — 1)<y>;))K_1]> : (3.18)

For a BSC the above average is over distribution (3.2). Computing the average, using

C = oK and rescaling the temperature as 3 = G(InK)/K, in the limit K — oo one obtains:

()7 = (1 — 2p) [tanh(Baly); In(K))] ", (3.19)

where p is the channel flip probability. The mean-field (y)~ = 0 is always a solution to this
equation (either PARA or SG); at . = In(K)/(2aK (1 — 2p)) an extra non-trivial FERRO
solution emerges with (y)~ =1 — 2p. As the connection with the magnetization m is given
by Eq. (3.13) and Eq. (3.14); it is not difficult to see that it implies m = 1 for FERRO
solution. One remarkable point is that the temperature were the FERRO solution emerges
is B, ~ O(In(K)/K); it means that in a simulated annealing process PARA-FERRO barriers
emerge quite early for large K values implying metastability and, consequently, a very slow
convergence. It seems to advocate the use of small K values in practical applications. This
case is analyzed in Section IIIE. For 8 > (3. both PARA and FERRO solutions exist.

The FERRO free-energy can be obtained from Eq.(3.11) using Eq.(3.17), being frrrro =
—a(1 — 2p). The corresponding entropy is spgrro = 0 indicating a single solution. The

PARA free-energy is obtained by plugging 7(z) = d(x) and 7(y) = 6(y) into Eq. (3.11):

11



fPARA = —%(a In(cosh ) + In 2), (3.20)

spara = a(In(cosh B) — B tanh 3) + In 2. (3.21)

PARA solutions are unphysical for a > (In 2)/(8 tanh 8 —1In ch 3), since the corresponding
entropy is negative. To complete the phase diagram picture we have to assess the spin-
glass free-energy and entropy. We have seen in the beginning of this section that replica
symmetric SG and PARA solutions consist of the same field distributions for K — o0,
implying unphysical behavior. In order to produce a solution with non-negative entropy one
has to break the replica symmetry. We use here a pragmatic way to build this solution,
using the simplest one-step replica symmetry breaking known as frozen spins.

It was observed in Ref. [14] that for the REM a one-step symmetry breaking scheme gives
the exact solution. In this scheme the n replicas’ space is divided to groups of m identical
solutions. It was shown that an abrupt transition in the order parameter from a unique
solution (Edwards-Anderson parameter ¢ = 1, SG phase) to a completely uncorrelated set of
solutions (¢ = 0, PARA phase) occurs. This transition takes place at a critical temperature
B, that can be found by solving the appropriate saddle-point equations; this temperature
is given by the root of the replica symmetric entropy (sgs = 0) meaning that the RS-RSB
transition occurs at the same point as the PARA-SG in this model. The symmetry breaking
parameter was found to be my, = (3,/0, indicating that this kind of solution is physical only
for 5 > f3,, since m, < 1 [15], indicating a PARA-SG phase transition. The free-energy can
be computed by plugging the order parameters in the effective Hamiltonian, obtained after
averaging over the disorder and taking the proper limits. It shows no dependence on the
temperature, since for 3 > (3, the system is completely frozen in a single configuration.

For the Sourlas’ code, in the regime we are interested in, SG solutions to the saddle-
point equations are given by 7(z) = §(z) and 7(y) = 6(y). The RSB-SG free-energy that
guaranties continuity in the SG-PARA transition is identical to fpara, since the SG and

PARA solutions have exactly the same structure, to say:
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frsB.sa = _ﬂl (aln(cosh B,)+1n 2), (3.22)
g

where , is a solution for sgs.s¢ = a (In(cosh ) — Ftanh ) +1In 2 =0.
In Fig.4 we show the phase diagram for a given code rate R in the temperature 7" versus

noise level p plane.

D. Shannon’s Limit

Shannon’s analysis shows that up to a critical code rate R., which equals the channel
capacity, it is possible to recover information with arbitrarily small error probability for a
given noise level. For the BSC :

1
Rcza— =1+plog, p+ (1 —p) log, (1 —p). (3.23)

c

Sourlas’ code, in the case where K — co and C ~ O(N¥) can be mapped onto the
REM and has been shown to be capable of saturating Shannon’s bound in the limit R — 0
[2]. In this section we extend the analysis to show that Shannon’s bound can be attained
by Sourlas’ code at zero temperature also for K — oo limit but with connectivity C = oK.
In this limit the model is analogous to the diluted REM analyzed by Saakian in [16]. The
errorless phase is manifested in a FERRO phase with perfect alignment (m = 1) (condition
that is only possible for infinite K') up to a certain critical noise level; a further noise level
increase produces frustration leading to a SG phase where the misalignment is maximal
(m = 0). The FERRO-SG transition is analogous to the transition from errorless decoding
to decoding with errors described by Shannon. A PARA phase is also present when the
transmitted information is insufficient to recover the original message (R > 1).

At zero temperature saddle-point equations (3.12) can be rewritten as:
c-1 |' c-1 '|
() :/ [H dyi 7?(1/1)] 0 |_37 - ij (3.24)
=1 j=1

#(y) :/ ﬁ—[ldxl w(x,)] <5 [y—sign(JIhlxl)minﬂ Ty | 25 |)]>J ,

=1 =1
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The solutions for these saddle-point equations may, in general, result in probability
distributions with singular and regular parts. As a first approximation we choose the simplest

self-consistent family of solutions which are, since J = +1, given by:

7(y) =p+0(y — 1) + pod(y) + p—6(y + 1) (3.25)
c-1
(@) = Y Tpypoc-1(l) d(z = 1), (3.26)
=1-C
with
' (C = 1) -
Tpspopsc—u(l) = . 7;! o nzl i pg P, (3.27)

{k,h,m}

where the prime indicates that k, h, m are such that k —h =1; k+h+m = C' — 1. Evidence
for this simple ansatz comes from Monte-carlo integration of Equation (3.12) at very low
temperatures, that shows solutions comprising three dominant peaks and a relatively weak
regular part. Inside FERRO and PARA phases a more complex singular solution comprising
five peaks 7(y) = p420(y — 1) +p46(y — 0.5) + pod(y) + p_d(y + 0.5) + p_26(y + 1) collapses
back to the simpler three peak solution. In Fig.5 we show a typical result of a Monte-carlo
integration for the field 7(y). The two peak that emerge by using either the three peak
ansatz or the five peak ansatz are shown as dotted lines. In the inset we show the weak
regular part of the Monte-carlo solution.

Plugging the above ansatz in the saddle-point equations one can write a closed set of
equations in py and py that can be solved numerically (see appendix D for details).

The three peak solution can be of three types: FERRO (py > p_), PARA (py = 1) or

SG (p- = py). Computing free-energies and entropies enables one to construct the phase
diagram. At zero temperature the PARA free-energy is fpara = —a and the entropy is
spara = (1 — ) In 2, this phase is physical only for a < 1, what is expected since it

corresponds exactly to the regime where the transmitted information is not sufficient to
recover the actual message (R > 1).
The FERRO free-energy does not depend on the temperature, having the form frgrro =

—a(1 — 2p) with entropy spgrro = 0. One can find the FERRO-SG coexistence line that

14



corresponds to the maximum performance of a Sourlas’ code by equating Eq.(3.22) and
frerro. Observing that 5, = Bn(p.) (as seen in Fig.4 ) we found that this transition
coincides with Shannon’s bound Eq.(3.23). It is interesting to note that in the large K
regime both RS-FERRO and RSB-SG free-energies (for T < Tj) do not depend on the
temperature, it means that Shannon’s bound is valid also for finite temperatures up to Tj.
In Fig.6 we give the complete zero temperature phase diagram.
The stability of replica symmetric FERRO and PARA solutions used to obtain Shannon’s
bound can be checked using Eq.(3.15) at zero temperature:
y 1 K—2 |' \ K—2 '|
im —/ lH dz; 7r(a:l)] <1n 1+ tanh 8J tanh® Bz [] tanh Sz, > >0, (3.28)
pree B g [ =1 I/,
for all z.
For PARA solutions the above integral vanishes, trivially satisfying the condition, while

for FERRO solution in the K large regime, z; ~ O(K) and the integral becomes
-2p[(1-0O0(zx+1)+|z|](©(x+1)—O(x—1))+ 0O (z —1)], (3.29)

where ©(z) = 1 for £ > 0 and 0 otherwise, indicating instability for p > 0. For the noiseless
case p = 0 the stability condition is satisfied. The instability of FERRO phase opens the
possibility that Sourlas’ code does not saturate Shannon’s bound, since a correction to the
FERRO solution could change FERRO-SG transition line. However, it was shown in Section
ITI B that this instability vanishes for large temperatures, what supports, to some extent,
the FERRO-SG line obtained and the saturation of Shannon’s bound in some region, as
long as the temperature is lower than Nishimori’s temperature. For finite temperatures the

stability condition for FERRO solution can be rewritten as:
(1 + tanh(ﬂ)tanh%ﬂx))(lip) (1 - tanh(ﬂ)tanhz(ﬂx))p > 1Vez. (3.30)

For p = 0 the condition is clearly satisfied. For finite p a critical temperature above which
the stability condition is fulfilled can be found numerically. In Fig.4 we show this critical

temperature in the phase diagram; one can see that there is a considerable region in which our
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result that Sourlas’ code can saturate Shannon’s bound is supported. Conclusive evidence

to that will be given by simulations presented in Section IV.

E. Finite K Case

Although Shannon’s bound only can be attained in the limit K — oo, it was shown in
the Section III C that there are some possible drawbacks, mainly in the decoding of messages
encoded by large K codes, due to large barriers which are expected to occur between PARA
and FERRO states. In this section we consider the finite K case, for which we can solve the
RS saddle-point equations (3.12) for arbitrary temperatures using Monte-carlo integration.
We can also obtain solutions for the zero temperature case using the simple iterative method
described in Section IIID.

We expect the FERRO-SG transition for K > 2 to be properly described by the frozen
spins RSB solution. It has been shown that K > 2 extensively connected models [14] exhibit
Parisi-type order functions with similar discontinuous structure as found in the K — oo case;
it was also shown that the PARA-like solution, employed to describe PARA and SG phases,
is locally stable within the complete replica space and zero field (unbiased messages case)
at all temperatures.

At the top of Fig.7 we show the zero temperature magnetization m as a function of the
noise level p at code rate R = 1/2. These curves were obtained by using the three peak
ansatz of the Section III D. It can be seen that the transition is of second order for K = 2 and
first order for K > 3 similarly to extensively connected models. The transition as described
by the RS solution tends to p = 0.5 as K grows. Note that this does not correspond to
perfect retrieval since the RSB spin glass phase dominates for p > p. (see bottom of Fig.7).
In the bottom figure we plot RS free-energies and RSB frozen spins free-energy, from which
we determine the critical probability p. where the transition occurs (pointed by an arrow).
After the transition, free-energies for K = 3,4, 5 and 6 acquire values that are lower than the

SG free-energy; nevertheless, the entropy is negative and these free-energies are therefore
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unphysical. It is remarkable that this critical value does not change significantly for finite
K in comparison to infinite K. Observe that Shannon’s bound cannot be attained for finite
K, since m = 1 exactly only if K — oo.

The K = 2 model with extensive connectivity (SK) is known to be somewhat special, a
full Parisi solution is needed to recover the concavity of the free-energy and the Parisi order
function has a continuous behavior [17]. No stable solution is known for the intensively
connected model (Viana-Bray model). In order to check the theoretical result obtained one
relies on simulations of the decoding process at low temperatures. In Section VIII we show

that the simulations are in good agreement with the theoretical results.

F. Gaussian Noise

Using the replica symmetric free-energy (3.11) and the frozen spins RSB free-energy
(3.22) one can easily extend the analysis to other noise types. The general PARA free-

energy and entropy can be written:

frara = —% (a (In(ch BJ));+1n 2)

spara = @ ({In(ch B8J)); — B(J tanh (8.J));) + In 2. (3.31)
The SG-RSB free-energy is given by :
fsa-rsB = _ﬂig (a (In (ch By J)); +1n 2), (3.32)
with 3, defined as the solution of
a ((In (ch ByJ))s — By(J tanh (5,J))s) +1n 2 = 0. (3.33)

The FERRO free-energy is in general given by frrrro = —a (J); = —a (J tanh (GyJ))s

(see Appendix D). The maximum performance of the code is defined by the critical line :

a ((In(ch BgJ))s — By(J tanh(ByxJ))s) +1n 2 =0, (3.34)
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obtained by equating free-energies in PARA and FERRO phases. Comparing this expression
with entropy (3.33) it can be seen that 8, = By at the critical line; the same behavior
observed in the BSC case. From Eq.(3.34) one can write:
R, = ﬁ%v% %(logz cosh(BT)s| (3.35)
B=BnN
that can be used to compute the performance of the code for arbitrary symmetric noise.
Supposing that the encoded bits can acquire totally unconstrained values Shannon’s
bound for Gaussian noise is given by R, = 3 log,(1+S/N), where S/N is the signal to noise
ratio, defined as the ratio of source energy per bit (squared amplitude) over the spectral
density of the noise (variance). If one constrains the encoded bits to binary values {£1} the

capacity of a Gaussian channel is:

R, = /dJ P(J| 1) log,P(J | 1) — /dJ P(J) log,P(.J), (3.36)

where P(J | J%) = -l exp(— U250,

In Fig.8 we show the performance of Sourlas’ code in a Gaussian channel together with
the capacities of the unconstrained and binary Gaussian channels. We show that K — oo,
C = aK Sourlas’ code saturates Shannon’s bound for the binary Gaussian channel as well.
The significantly lower performance in the unconstrained Gaussian channel can be trivially

explained by the binary coding scheme while signal and noise are allowed to acquire real

values.

IV. DECODING DYNAMICS
A. Belief Propagation

The decoding process of an error-correcting code relies on computing averages over the
marginal posterior probability P(S; | J) for each one of the N message bits S; given the
corrupted encoded bits J, (checks), where pr = (iy...ix) is one of the M sets chosen by

the tensor A,. The probabilistic dependencies existing in the code can be represented as
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a bipartite graph known as a belief network where nodes in one layer correspond to the M
checks J, while nodes in the other to the NV bits S;. Each check is connected to exactly K
bits and each bit is connected exactly to C checks (see Fig.9a).

Pearl [18] proposed an iterative algorithm for computation of marginal probabilities in
belief networks. These algorithms operate by updating beliefs (conditional probabilities)
locally and propagating them. Generally the convergence of these iterations depends on the
absence of loops in the graph. As can be seen in Fig.9a, networks that define error-correcting
codes may include loops and convergence problems may occur. Recently it was shown that
in some cases Pearl’s algorithm works even in the presence of loops [19].

The particular use of belief networks as decoding algorithms for error-correcting codes
based on sparse matrices was discussed by MacKay in [20]. In this work a loop-free ap-
proximation for the graph in Fig.9a was proposed (see [18] for a general discussion on such
approximations). In fact, it was shown in [21] that the probability of finite length loops in
these graphs vanishes with the system size.

In this framework the network is decomposed in a way to avoid loops and the conditional
) and 7";(5)

probabilities q(s are computed. The set of bits in a check u is defined as £(u) and

I
the set of checks over the bit j as M(j). The probability that S; = S given information
on all checks other than p is denoted ql(jj) =PS; =S| {J :ve M(G)\p}t) and
7";(5) = Trysuec\iyP(Ju | S;= S, {Si: 1€ L{p) \ j}) Thiecu ql(jl) is the probability of the
check J, if the bit j is fixed to S; = S and the other bits involved are supposed to have
distributions given by qui) . In Fig.9b one can see a graphical representation of rfg) that can
be interpreted as the influence of the bit S; and the mean-field [[;c )\ ql(j’) (representing
bits in £() over than [) over the check J,. In the Fig.9c we see that each field ql(j) represents
the influence of the checks in M(l), excluding p, over each bit S;, this setup excludes the

loops that may exist in the actual network.

(5)

i can be rewritten as:

Employing Bayes theorem, ¢
S . S
055 = au Py v e M)\ i} | 7)1, (4.1)
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(=1

Kj

= 1 and p(-S)

"’ s the prior

where a,; is a normalization constant such that ql(;-rl) +q

probability over the bit j. The distribution P({J, : v € M(j) \ i} | Sj) can be replaced by

a mean-field approximation by factorizing dependencies using fields rl(g):

(s) _ (S) (S)
Quj = QujPj II Tvj
veM(j)\p

S . . S;
P = Trrguec iy PJu | S5 =S, {Siie L)\ 4}) I ¢ (4.2)
i€L(p)\j

A message estimate fAj = sign <<Sj>q(5)> can be obtained by solving the above equations
j
and computing the pseudo-posterior:
q( - a]p] H rl/] ) (43)
veM(j
where a; is a normalization constant.

By taking advantage of the normalization conditions for the distributions q(J-rl) +q(_-1) =1

% %
+1) (-1)

and r/(Lj +7,; = 1 one can change variables and reduce the number of equations (4.2) to
the couple dq,; = qujrl) — q;(ul and dr,; = r(H) r,ﬁ;”. Solving these equations, one can

find back 7";(5) = %(1 + 0r,;S;) and the pseudo-posterior can be calculated to obtain the

estimate.

B. Connection with Statistical Physics

The belief propagation algorithm was shown in [20] to outperform other methods such
as simulated annealing. In [9] it was proposed that this framework can be reinterpreted
using statistical physics. The main ideas behind the approximations contained in (4.2) are
somewhat similar to the Bethe [22] approximation to diluted two-body spin glasses. Actu-
ally, for systems involving two-body interactions it is known that the Bethe approximation
is equivalent to solving exactly a model defined on a Cayley tree and that this is a good ap-
proximation for finitely connected systems in the thermodynamical limit [23]. In fact, loops

in the connections become rare as the system size grows and can be neglected without intro-
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ducing significant errors. The belief propagation can be seen as a Bethe-like approximation
for multiple bodies interaction systems.

The mean-field approximations used here are also quite similar to the TAP approach
[24]. The fields ql(g) correspond to the mean influence of other sites other the site j and the
fields r,(,?) represent the influence of j back over the system (reaction fields).

The analogy can be exposed by observing that the likelihood p(J, | S) is proportional
to the Boltzmann weight:

wp(J, | {Sj:7€ L(n)}) =exp (—ﬂJu HSZ) : (4.4)
ST
That can be also written in the more convenient form:

ws(J | {8; 1 € £(w)}) = seosh(3],) (1 + tanh(8J,) ] S) (4.5)

JEL(W)

The variable rl(jj ) can then be seen as proportional to the effective Boltzmann weight

obtained by fixing the bit Sj:

wegt(Jy | S5) = Tres, ciecquiy wa(Ju [ {S1 : Te L(w)}) I q - (4.6)
leL(p)\j

Plugging Eq.(4.5) for the likelihood in equations (4.2), using the fact that the prior proba-

bility is given by pg-s) = 1 (1 + tanh(3SF)) and computing dg,; and 67,

ér,; = tanh(8J,) H 8quu
lel(p)\j

dq,; = tanh ( > tanh '(0r,;) + BF) : (4.7)

veM(l)\p

The pseudo-posterior can then be calculated:
dg; = tanh ( > tanh™'(r,;) + ﬁF) (4.8)
veM(l)
providing Bayes’ optimal decoding fAj = sign(dg;). It is important at this point to support the
mean-field assumptions used here by methods of statistical physics [9]. The factorizability
of the probability distributions can be explained by weak correlations between connections

(checks) and by the cluster property:
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lim — 3" ((SiS;)pisia) — (Silp(siny(Sietsin) — 0 (4.9)

that bits S; obey within a pure state [17].

One can push the above connections even further. Eqs.(4.7), of course, depend on the
particular received message J. In order to make the analysis message independent, one can
use a gauge transformation 0r,; — &;0r,; and 6q,; — &;0q,; to write:

dr,; = tanh(B8J) H 0qu
leL(p)\j

dq,; = tanh ( > tanh™'(dry;) + ﬂij) . (4.10)

veM()\n
In this form a success in the decoding process correspond to d7,; > 0 and dq,; = 1 for all p
and j. For a large number of iterations, one can expect the ensemble of belief networks to
converge to an equilibrium distribution where 67 and dq are random variables sampled from
distributions p(y) and p(z) respectively. By transforming these variables as 6r = tanh(S3y)
and d¢ = tanh(fBz) and considering the actual message and noise as quenched disorder,
Eqs.(4.10) can be rewritten as:

K—
y = % <tanh—1 (tanh BJ) 1:[ tanh(Bz; )>

J

= <CZ_1 y; + §F> . (4.11)

j=1 ¢

The above relations lead to a dynamics on the distributions p(y) and p(z), that is exactly
the same obtained when solving iteratively RS saddle-point equations (3.12). The probability
distributions p(y) and p(x) can be ,therefore, identified with 7(y) and 7(x) respectively and
the RS solutions correspond to decoding a generic message using belief propagation averaged
over an ensemble of different codes, noise and signals.

Eqgs.(4.7) are now used to show the agreement between the simulated decoding and
analytical calculations. For each run, a fixed code is used to generate 20000 bit codewords
from 10000 bit messages, corrupted versions of the codewords are then decoded using (4.7).

Numerical solutions for 10 individual runs are presented in Figs.10 and 11, initial conditions
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are chosen as 0r,; = 0 and dg,; = tanh(BF) reflecting prior beliefs. In Fig.10 we show results

(1) _

for K = 2 and C = 4 in the unbiased case, at code rate R = 1/2 (prior probability p;’ =

f =0.5) at a low temperature 7' = 0.26 (we avoided 7' = 0 due to numerical difficulties).
Solving saddle-point equations (3.12) numerically using Monte-carlo integration methods we
obtain solutions with good agreement to simulated decoding. In the same figure we show the
performance for the case of biased messages (pg-l) = fs = 0.1), at code rate R = 1/4. Also
here the agreement with Monte-carlo integrations is rather convincing. The third curve
in Fig.10 shows the performance for biased messages at Nishimori’s temperature Ty, as
expected, it is far superior compared to low temperature performance and the agreement
with Monte-carlo results is even better.

In Fig.11 we show the results obtained for K = 5 and C' = 10. For unbiased messages
the system is extremely sensitive to the choice of initial conditions and does not perform
well in average even at Nishimori’s temperature. For biased messages (f; = 0.1, R = 1/4)
results are far better and in agreement with Monte-carlo integration of the RS saddle-point
equations.

The experiments show that belief propagation methods may be used successfully for

decoding Sourlas-type codes in practice, and provide solutions that are well described by

RS analytical solutions.

C. Basin of Attraction

To asses the size of the basin of attraction we consider the decoding process as a dynamics
in the graphs space where edges dg,; are considered as dynamical variables. In gauged
transformed equations (4.10) , the perfect decoding of a message correspond to dg,; =1 . To
analyse the basin of attraction we start with random initial values with a given normalized
deviation from the perfect decoding A = 5= > ,;(1 — dgp;)- It is analogous to the finite
magnetizations used in the naive mean-field of Section II, since a given 5q2]- corresponds to

a given magnetization value by using Eq.(4.8).

23



In Fig.12 we show the maximal deviation in initial conditions required for successful
decoding. Top figure shows an average over 10 different codes with N = 300 (circles) for
a fixed code rate R = 1/3, fixed noise level p = 0.1 and increasing K. Bottom figure
shows the maximal deviation in initial conditions for a fixed number of spins per interaction
K = 3, noise level p = 0.1 and increasing C'. We confirm the fidelity of the RS description
by comparing the experimental results with the basin of attraction predicted by saddle-
point equations (3.12). One can interpret these equations as a dynamics in the space of
distributions 7(z). Performing the transformation X = tanh(fz), one can move to the
space of distributions II(X) with support over [—1,+1]. The initial conditions can then be
described simply as II°(X) = (1 — 3)6(X — 1) + 36(X +1). In Fig.12 we show the basin of
attraction of this dynamics as lines and x’s.

The K = 2 case is the only practical code from a dynamical point of view, since it
has the largest basin of attraction and no prior knowledge on the message is necessary for
decoding. Nevertheless, this code’s performance degrades faster than the K > 2 case as
shown in Section III, which points to a compromise between good dynamical properties in
one side and good performance in the other. One idea could be having a code with changing
K, starting with K = 2 to guarantee convergence and progressively increasing its values to
improve the performance [25].

On the other hand, the basin of attraction increases with C. Again it points to a trade
off between good equilibrium properties (small C' and large code rates) and good dynamical
properties (large C, large basin of attraction). Mixing small and large C values in the same

code seems to be a way to take advantage of this trade-off [26-28].

V. CONCLUDING REMARKS

In this paper we studied, using the replica approach, a finite connectivity many-body
spin glass that corresponds to Sourlas’ codes for finite code rates. We have shown, using a

simplified one step RSB solution for spin glass phase, that for K — oo and C' = aK regime
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at low temperatures the system exhibits a FERRO-SG phase transition that corresponds to
Shannon’s bound. However, we have also shown that the decoding problem for large K has
bad convergence properties when simulated annealing strategies are used.

We were able to find replica symmetric solutions for finite K and found good agree-
ment with practical decoding performance using belief networks. Moreover, we have shown
that RS saddle-point equations actually describe the mean behavior of belief propagation
algorithms.

We studied the dynamical properties of belief propagation and compared to statistical
physics predictions, confirming the validity of the description. The basin of attraction was
shown to depend on K and C'. Strategies for improving the performance were discussed.

The same methodology has been recently employed successfully [29] to state-of-the-art
algorithms as the recent rediscovered Gallager codes [30] and its variations [25,28]. We
believe that the connections found between belief networks and statistical physics can be
further developed to provide deeper insights into the typical performance of general error-

correcting codes.
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APPENDIX A: FREE ENERGY

In order to compute free-energies one needs to calculate the replicated partition function

(3.7). One can start from Eq. (3.4):

(2") a0 = Trise [<6XP (—BH™M({S° }))>A,M] , (A1)
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where (™ ({§°}) represents the replicated Hamiltonian and o the replica indices. First
one averages over the parity check tensors A, for that an appropriate distribution has to be
introduced, denoting p = (i1, ..., ix) for a specific set of indices:
2= (§ S5 (Sa-0) mmn (ounas))
{4y i\ s
where the § distribution imposes a restriction on the connectivity per spin, N is a normal-
ization coefficient and the notation u\ ¢ means the set u minus the element i. Using integral
representations for the delta functions and rearranging:
n dz; 1 A (n)( f Qo
(Z") = Trism Hf . S TIAT 20 ) exp (~BHM{S2)) ) . (A3)
iz o i icu -
Remembering that A € {0, 1}, and using the expression (1.1) for the Hamiltonian one can

change the order of the summation and the product above and sum over A:

n dz; 1 FS  £Se
(2 >:Tr{5"‘ < <H?{ c+1> OF 2 i 6081

2T 2

1+ (J] 2i)exp (BJ ZHS"‘)]> : (A4)
Ji€

<11

1EN [CASYT}

)

Using the identity exp(8J, [1;c, S§*) = cosh(3) [1 + (Hie” Sia) tanh(ﬁJu)] one can perform

the product over a to write:

dz 1 £.52
(Z") = Tr{sa}N <H}£ 2; ZC’+1> PF D0, 58 >§ (A5)
xI] |1+ (H zi) cosh™(3) (1 (tanh(8J))s > TI S¢
© 7 a qep

+ (tanh?(BJ)); > [ISM II S5 + )

(araz) icp JEM

Defining (p1, ft2, ..., ;) as an ordered set of sets, and observing that for large N,
!
Sy () = % (Zu()) one can perform the product over the sets 1 and replace the

series that appears by an exponential:

(2") = Trgsy o7 (H fo— ) AR (A6)

211 z
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[T a  poiep

X exp lcosh”(ﬂ) (Z(H z;) + (tanh(8J)); > Y ] 2S¢
+ (tanh*(BJ)); > D J[#zSfS: + )

(a1a2) M i€p

Observing that 3>, = 1/K!Y,; defining 7; = (cosh™(3.J)tanh'(8.J)); and introduc-

,...iK7

ing auxiliary variables qu, o = ~ 3; 2:5%...5%™ one finds:
ai..om N £ui ©iMg i

n 4 dz; 1 dqodqo dqadqa
(2 a6 = <H}£2mzc+1> (/ 2 )(H/ 2 ) (A7)
N
XeXp (%q(] +T2qa +73 Z Q(xlag )

(araz)

xexp | —N (QOQO + Z Gala + Z Qalazqguag + .. )

(araz)

xTr{SJq} [<6BFZQJ§"S¢ > expz < 02 + anzzSo‘ )] )

The normalization constant is given by:

N=2H%Z&—Q, (A9

{A} @ p\i

and can be computed using exactly the same methods as above, resulting in:

dZi 1 qudq\O NK K R R
- (H}{ i zC“) (/ o )eXp [ﬁq" _Nq°q°+q°zi:z" ‘ (49)

Computing the integrals over z;’s and using Laplace’s method to compute the integrals

over qo and gp one get:
N - a@
N =exp {Extrqo% [ﬁ% — Ngogo + Nln <a>] } : (A10)
The extremum point is given by ¢ = NOK/E(K — DICIYE and G =
(C N)E-YE) (K — 1) YK, Replacing the auxiliary variables in Eq.(A7) using
Qor.om/ 0 — Qag.con A Ty /00 — Tay...am> cOmputing the integrals over z; and using

Laplace’s method to evaluate the integrals one finally finds Eq.(3.7).
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APPENDIX B: REPLICA SYMMETRIC SOLUTION

The replica symmetric free-energy (3.11) can be obtained by plugging the ansatz (3.10)

into Eq.(AT7). After computing the normalization N and using Laplace’s method one has:

(2" aga = exp {N Extr, ~ [%gl ~CG, + 93] } (B1)
where:
Gi=To+Th Z/ﬁ (da; w(x;) tanh(Be;))
4T (aza: / H(da:] m(z;) tanh®(Bz;)) + ..., (B2)
G =1+ / dz dyw(2) 7 (y) tanh(Bz) tanh(By)
+<§> | dedy(2) 7(y) tanh? (Bz) tank?(By) + .. (B3)
and

w0 I i) 1 | fow o)

Q,t §

<o (¥ 5+ T 55t [ dytaann(iy

} . (B4)

The equation for G; can be worked out by using the definition of 7, and the fact that

+ Z Z ziS?le"?/ dy 7 (y)tanh®(By) + .. )

(araz) i

n
(Xaranl) = to write:

l

G, = <Cosh" (BJ) / (H dz;7( ) (1 + tanh(5J) ﬁ tanh(ﬂxj))n> . (B5)

J=1

Following exactly the same steps one obtains:
Gy = / dz dyr(z) 7 (y) (1 + tanh(Bz) tanh(8y))" , (B6)

28



and

Gs = In {Tf{sa l<exp (ﬂFé‘ZSa) >€
2d7fl C:’l+leXp (qoz/ dy7(y f[ 1 + S%tanh( ﬁy)))]} (BT7)

Computing the integral over z; and the trace one finally finds:

Gz = In {C" /H dyim(yr) [Z <eUﬂF£>£H(1 —i—atanh(ﬂyl))] } (B8)

Putting everything together, using Eq.(3.3) and some simple manipulation one finds

Eq.(3.11).

APPENDIX C: ZERO TEMPERATURE SELF-CONSISTENT EQUATIONS

In this appendix we describe how one can write a set of self-consistent equations to solve

the zero temperature saddle-point equations (3.24). Supposing a three peaks ansatz given

by:
T(y) = po(y — 1) + pod(y) +p-o(y + 1) (C1)
c-1
(@)= Y Tpspoc1(l) 6z —1), (C2)
I=1-C
with
c—1)! m
T[p+,po,p—;0] (l) = Z W pli pg pb_. (03)

{k,h,m ; k—h=1 ; k+h+m=C—1}
One can consider the problem as a random walk, where 7(y) describes the probability of
one step of length y (y > 0 means one step to the right) and m(x) describes the probability
of being at distance x from the origin after C' — 1 steps. With this idea in mind it is
relatively easy to understand Ti,, p,p_;c-1](l) as the probability of walking the distance I
after C' — 1 steps with the probabilities p, p_ and py of respectively moving right, left
and staying at the same position. We define the probabilities of walking right/left as 1. =

¥ Ty, pop_.c-11(£l). Using second saddle-point equations (3.24):
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Py :/lljﬂ:dwm(x,)] <5 [I—sign(JIﬁlxl)minﬂ Tzl | k1 |]>J (C4)

1=1

The left side of the above equality can be read as the probability of making K — 1
independent walks such that after C' — 1 steps all of them are not in the origin and an even
(forJ = +1) or odd (for J = —1) number of walks are at the left side. Using this reasoning

for p_ and py one can finally write :

e _ _ = _ .
py=(1-p) Y B 2 s e S B IV A
pr 27 pr 27+1
+ppEtodd(K — 1) (C5)
K—1|_ K—-1,
SE e K—-1 2j+1  K—2j-2 S K-1 2j  K—2j—1
p=(0-p > R i s +p Y I Kl
=0 \ %+l i=0 2
+(1 —p) ¥ todd(K — 1), (C6)

where odd(z) = 1(0) if = is odd (even). Using that py + p_ + py = 1 one can obtain py.
A similar set of equations can be obtained for a five peaks ansatz leading to the same set
of solutions for the FERRO and PARA phases. The PARA solution py = 1 is always a

solution, for C' > K a FERRO solution with p, > p_ > 0 emerges.

APPENDIX D

In this appendix we establish the identity (J); = (J tanh(BxJ)); for symmetric chan-

nels. It was shown in [3] that :

_ L (rU11)
e = g (1575) .

where By is the Nishimori’s temperature and p(J | J°) are the probabilities that a trans-

mitted bit JO is received as J. From this we can easily find:

p(J 1) —p(J|-1)
p(J[1) +p(J [ —1)

tanh (By J) = (D2)

In a symmetric channel (p(J | —J°) = p(—J | J?)), it is also represented as
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Cp(J 1) —p(=T| 1)
tanh (Oy J) = p(J 1) +p(—J]|1)
Therefore,
- Jp(J|1)
(7 tanh (B J))s = Tes p(T 1) Sy =5y
(=) p(=J 1)
+Try p(J | 1) p(J 1) +p(=J]|1)
o Jp(J|1)
=Ty p(J [ 1) p(J 1) +p(=J]|1)
Jp(J|1)

+Try p(—J | 1) ’

=Tr; Jp(J|1) = (J),.
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FIGURES

FIG. 1. The encoding, message corruption in the noisy channel and decoding can be represented

as a Markovian process. The aim is to obtain a good estimative é for the original message £.

FIG. 2. Code performance measured by the magnetization m as a function of the noise level
p as given by the naive mean-field theory at code rate R = 1/2 and K = 2, 3,4 respectively from
the bottom. The long-dashed line indicates PARA-FERRO coexistence. Insets: Maximum initial
deviation A for convergence at a noise level p = 0.1. Top inset: K = 3 and increasing C. Bottom

inset: Code rate R = 1/2 and increasing K.

FIG. 3. Graph representation of the code.

FIG. 4. Phase diagram in the plane temperature 7' versus noise level p for K — oo and
C = aK, with a = 4. The dotted line indicates Nishimori’s temperature T . Full lines represent
coexistence. The critical noise level is p.. The necessary condition for stability in the FERRO

phase is satisfied above the dashed line.

FIG. 5. Histogram representing the mean-field distribution 7(y) obtained by Monte-carlo inte-
gration at low temperature (8 = 10, K = 3,C = 6 and p = 0.1). Dotted lines represent solutions
obtained by iterating self-consistent equations both with five peak and three peak ansatze. Inset:

detailed view of the weak regular part arising in the Monte-carlo integration.

FIG. 6. Phase diagram in the plane code rate R versus noise level p for K — oo and C = aK

at zero temperature. The FERRO-SG coexistence line corresponds to the Shannon’s bound.
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FIG. 7. Top: zero temperature magnetization m as a function of the noise level p for various
K values at code rate R = 1/2, as obtained by the iterative method . Notice that the RS theory
predicts a transition of second order for K = 2 and first order for K > 2. Bottom: RS-FERRO
free-energies (white circles for K = 2 and from the left: K = 3,4,5 and 6) and RSB-SG free-energy
(dotted line) as functions of the noise level p. The arrow indicates the region where the RSB-SG

phase starts to dominate. Inset: a detailed view of the RS-RSB transition region.

FIG. 8. Critical code rate R, and channel capacity for a binary Gaussian channel as a function
of the signal to noise rate S/N (solid line). Sourlas’ code saturates Shannon’s bound. Channel

capacity of the unconstrained Gaussian channel (dashed line).

FIG. 9. (a) Belief network representing an error-correcting code. Each bit S; (white circles)
is linked to exactly C' checks and each check (black circles) J, is linked to exactly K bits. (b)
Graphical representation of the field r,;. The grey box represents the mean field contribution

Hleﬁ(u)\j qu of the other bits on the check J,. (c) Representation of one of the fields g,;.

FIG. 10. Magnetization as a function of the flip probability p for decoding using TAP equations
for K = 2. From the bottom: Monte-carlo solution of the RS saddle-point equations for unbiased
messages (fs = 0.5) at T' = 0.26 (line) and 10 independent runs of TAP decoding for each flip

probability (plus signs), 7' = 0.26 and biased messages (fs = 0.1) at Nishimori’s temperature Ty .

FIG. 11. Magnetization as a function of the flip probability p for decoding using TAP equations
for K = 5. The dotted line is the replica symmetric saddle-point equations Monte-carlo integration
for unbiased messages (fs = 0.5) at the Nishimori’s temperature Tl. The bottom error bars corre-
spond to 10 simulations using the TAP decoding. The decoding performs badly on average in this
scenario. The upper curves are for biased messages (fs = 0.1) at the Nishimori’s temperature T .
The simulations agree with results obtained using the replica symmetric ansatz and Monte-carlo

integration.
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FIG. 12. Top: Maximum initial deviation A for decoding. Top: A as function of the number
of interactions K. Circles are averages over 10 different codes with N = 300, R = 1/3 and noise
level p = 0.1. Bottom: A as function of the connectivity C'. Circles are averages over 10 codes with
N = 300, K = 3 and noise level p = 0.1. Lines and X’s correspond to the RS dynamics described

by the saddle-point equations.
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