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Abstract 
The deficiencies of stationary models applied to financial time series 

are well documented. A special form of non-stationarity, where the un- 
derlying generator switches between (approximately) stationary regimes, 
seems particularly appropriate for financial markets. We use a dynamic 
switching (modelled by a hidden Markov model) combined with a linear 
dynamical system in a hybrid switching state space model (SSSM) and 
discuss the practical details of trainiig such models with a variational 
EM algorithm due to [Ghahramani and Hinton, 19981. The performance 
of the SSSM is evaluated on several financial data sets and it is shown to 
improve on a number of existing benchmark methods. 

1 Introduction 
Most traditional time series models are based on the assumption of stationarity: 
the underlying generator of the data is assumed to be globally time invariant. 
However, it is well known that for many financial time series this assumption 
breaks down. For instance, one of the obstacles to the effective forecasting of 
exchange rates is a non-constant conditional variance, known as heteroscedastic- 
ity. GARCH models have been developed to estimate a time-dependent variance 
[Bollerslev, 19861. 

A local assumption of stationarity is nevertheless acceptable if the system 
switches between different regimes but each regime is (approximately) locally 
stationary. In fields from econometrics to control engineering, hybrid approaches 
have been developed in order to model this behaviour. One example is the mix- 
ture of experts [Jacobs et al., 19911, [Weigend et al., 19951 which decomposes the 
global model into several (linear or non-linear) local models (known as experts 
as each specialises in modelliig a small region of input space). One limitation of 
these models is that the gating network which combines the local models has no 
dynamics. It is controlled only by the current value of the time series. One way 
to address this limitation is to use a hidden Markov model (which does have dy- 
namics) to switch between local models. Autoregressive hidden Markov models 
(ARHMMs) switch between autoregressive models, where the predictions are 
a linear combination of past values. ARHMMs have been applied to financial 
engineering in order to model high frequency foreign exchange data and have 
shown promising results [Shi and Weigend, 19971. 
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Switching state space models (SSSMs) consist of multiple linear state space 
models with controlled by a dynamic switch. These models assume that the 
behaviour of the system can be characterised by a finite number of linear dy- 
namical systems with hidden states, each of which tracks the dynamics in a 
different regime. A long-standing limitation of these models is that the com- 
plexity of the exact training algorithm grows exponentially with order M T ,  
where M is the number of models and T is the length of the time sequence. 
Various not completely satisfactory approximations have been proposed during 
the last decade [Bar-Shalom and Li, 19931. Recently, [Ghahramani and Hinton, 
19981 reintroduced the SSSM and proposed an efficient and principled approx- 
imate algorithm for training these models in a maximum likelihood approach. 
In this paper we propose to use switching state space models for modelling fi- 
nancial data. The approach is motivated by the fact that market behaviour at 
different time periods might be explained by different underlying regimes. Using 
an SSSM allows us both to create a predictive model and to discover at what 
times transitions occur between regimes (i.e. to segment the time series), based 
purely on price data. 

The paper is structured as follows. In Section 2 we introduce switching state 
space models and show how the parameters can be learned by using variational 
methods. We review the problems of learning and inference and show how these 
models can be used for time series segmentation, probabilistic density prediction 
and risk estimation. In Section 3, we apply them to currency exchange rate data 
and compare the results with other standard techniques. 

2 The model 
Due to their flexibility and to the simplicity and efficiency of their parameter 
estimation algorithm, hidden Markov models (HMMs) and linear dynamical 
systems (LDS) have been the most widely used tools for learning probabilistic 
models of time series data. Both models represent the information about the 
past through a random variable: the hidden state. Conditioned on this state, 
the past and the future observation are independent. 

In the case of HMMs, the state variable is discrete and can be viewed as 
a switching variable between different process regimes. For LDS, the hidden 
state is continuous and is specified by a linear dynamical equation (Equation 
1). Both HMMs and LDSs can be trained efficiently in a maximum likelihood 
framework using the EM algorithm. The variant of the E-step for the HMM is 
known as the forward-backward algorithm and that for the LDS is the Kalman 
smoother. 

Switching state space models (SSSMs) are a generalisation of both HMM and 
LDS: the dynamics can transition in a discrete manner from one linear regime 
to another. They can be regarded as a generalisation of mixture of experts and 
autoregressive HMMs [Poritz, 19881 (every autoregressive model can be indeed 
rewritten in a state space model form). 

In an SSSM, M different linear dynamical systems (or Kalman filters) com- 
pete in order to describe the observation yt. Each state vector Xr evolves 
between time steps according to the system equation: 
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where Fm is the state transition matrix and Qm is the process covariance matrix 
associated with the state vector Xy. If we assume that the initial state vector 
has a Gaussian distribution P ( X p )  N N ( p m , X m ) ,  Equation 1 ensures that 
P ( X r )  is Gaussian at each time step t .  A discrete variable St E (1, .  . . , M} 
plays the role of a gate. When the system enters a specific mode rn, i.e. St = rn, 
the observation is Gaussian and is given by: 

where & is the output noise covariance matrix associated to the model (or 
state) m. The discrete state variable St evolves according to Markov dynamics 
and can be represented by a discrete transition matrix A = {aij} 

ajj = P(St = j I St-1 = i )  (3) 

Therefore, an SSSM is essentially a mixture model, in which information about 
the past is conveyed through two types of random variable: one continuous and 
one discrete. Using the Markov dependence relations, the joint probability for 
the sequence of states and observations can be written as1: 

T 

P(S,T, X T l , .  . . , x y ,  Y?) = P(S1) P(StISt-1) 

m=l t=2 t=l 

2.1 Learning algorithm 
Given a sequence of observations ylTT = [yl,. . . , YT], the learning problem con- 
sists Of estimating the parameters 0 = {Fm, &,, Gm, Rm, pm, Xm}l<m<M Of 
each Kalman filter and the transition matrix A of the discrete state Markov 
process in order to maximise the likelihood. An efficient procedure to solve this 
maximum likelihood estimation can be derived from the Expectation - Maximi- 
sation algorithm [Dempster et al., 19771. The Estep (also called inference step) 
consists of computing the posterior probabilities P(ST, XT', . . . , XTMIYy ,  0) 
of the hidden states St and Xt .  The M-step uses the expected values to re- 
estimate the parameters of the model. 

Unfortunately, it can be shown that exact inference is not computation- 
ally tractable, since it scales as MT. Indeed, even if P(XrIY1) is Gaussian, 
P ( X T l y t )  is in general a mixture of Gaussians with an exponential number of 
terms. Several approximations have been proposed to circumvent the inference 
problem [Bar-Shalom and Li, 19931, [Shumway and Stoffer, 19911. Recently 
[Ghahramani and Hinton, 19981 proposed a generalised EM algorithm. The 
posterior distribution over the hidden states is approximated by a tractable 
distribution &. The method maximises a lower bound on the likelihood by ap- 
proximating the posterior probabilities with a parameterised distribution, called 
a variational upprozimution [Parisi, 19881. Indeed, it can be shown that a ju- 
dicious choice for Q can render the inference step tractable [Saul and Jordan, 

lWe use the notation O r  to denote the sequence of random variables Ot from time 1 to 
t i e  T. 
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19961. The authors show that the E-step can be approximated by decoupling 
into forward-backward recursions on a HMM [Baum et al., 19701 and Kalman 
smoothing recursion [Rauch, 19631 on each statespace model, which are the 
relevant versions of the Estep for hidden Markov models and linear dynamical 
systems2. 

Once the posterior probabilities have been approximated, it is easy to de- 
rive reestimations of the parameters @. The parameters of the HMM are re- 
estimated using Baum-Welch equations and the parameters of each Kalman 
filter are re-estimated separately by weighting the observation yt by the respon- 
sibility assigned to each of them [Shumway and Stoffer, 19821. 

2.2 Initialisation 
Mixture models trained using the EM algorithm are guaranteed to reach a lo- 
cal maximum likelihood solution. Because there are many local maxima, such 
models are sensitive to how they are initialised. Therefore, the choice of initial 
conditions is crucial and we prefer to initialise the model carefully rather than 
a simple random initialisation. 

For switching state space models, the initialisation is an important part of 
the learning algorithm, as both the HMM and the linear dynamical systems 
must be initialised. The key point is to start with a good segmentation of the 
data set, where by segmentation we mean a partition of the data, each being 
modelled by an LDS. [Ghahramani and Hinton, 19981 mentioned in their pa- 
per the importance of good methods for initialisation and modified the training 
algorithm so that the approximation distribution Q is broadened with a param- 
eter that is annealed over time. However, a large portion of training runs can 
converge to poor local maxima. 

The initialisation algorithm we propose is the following: we first train an 
autoregressive hidden Markov model with as many discrete states as our SSSM 
on the data set and run the Viterbi algorithm in order to obtain the most likely 
path, i.e. the sequence of hidden states which ‘best’ explains the observation 
sequence [Rabiner, 19891. Each data point is assigned to the most probable 
hidden state and thus gives us a segmentation of the data. A simple linear 
dynamical system is then initialised for each segment. 

The parameters aij of the discrete transition matrix A can also be initialised 
by counting the number of transitions from state i to state j and dividing it by 
the number of transitions from state i to any other state. For financial data, 
we have noticed problems with this method as it underestimates the number of 
samples the HMM remains in each state i. During the proper learning phase, 
this can lead to a model where some linear dynamical systems never update 
their parameters and so some LDSs are never responsible for data points. We 
therefore prefer to make an ad hoc adjustment where the diagonal entries are 
initialised to values closed to 0.90. 

For synthetic data and the sleep apnea data set used in [Ghahramani and 
Hinton, 19981, we have shown elsewhere that our approach is a significant im- 
provement (technical report in preparation). 

recommend [Rabiner, 19891 and [Anderson and Moore, 19791 for a good overview of 
these models. 
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2.3 Making predictions 
One-step ahead predictions on new data can be made by noting that each model 
contributes to the prediction of the observation y t :  

M 
P(K I st, x;, . * . , X,") = [P(& I Xl")l"7 (5)  

m=l 

where we have rewritten the switch variable St as a vector St = [ s t , .  . . , S?] 

with s r  E (0,l). Thus on-line estimations for each model decouple naturally 
with the only modification that the likelihood of the observation yt is weighted 
by the responsibility sr: Therefore the Kalman filter recursive equations hold 
for each model m with the output covariance matrix R,,,, weighted by l/sT. 

In Equation 5 ,  the responsibility s r  is unfortunately not known in advance 
but an expected value can be obtained by using Bayed theorem: 

The first term in the numerator is given by Equation 2. The second term 
represents the predicted probability of the model m at time t .  As the discrete 
state St is a Markov process, this probability is given by: 

M 
P(St = m I Y:-'> = anmP(St-1= 12 I Y,"-'> (7) 

n=l 

The denominator is the normalising term and is given by: 

M 
P(K I Y:-'> = P(Y, I Y:-', St = m)P(St = m I Y,"-'> (8) 

m=l 

Hard or soft competition can be implemented. In hard competition, only 
the K h a n  filter m with the highest predicted probability is running. In 
that case, sy = 1 and SF = 0 for the other models. In soft competition, 
s r  = P(St = m I Yf) and each model is allowed to adapt its parameters. Hence 
it is possible to estimate at each time t the responsibility of each model and 
therefore detect mode transitions. 

These recursion equations have been used in the control system community 
and are known as the multiple model algorithm. [Mazor et al., 19981. 

3 Simulations 
We propose to model financial time series in this probabilistic framework. Be- 
cause of the capability of a Kalman filter to track quasi-stationary data and 
the power of HMMs for uncovering the hidden switching between regimes, we 
believe that such models are appropriate for financial time series. An advantage 
of viewing the model in a probabilistic framework is that we can also attach 
confidence intervals to the predictions, as the covariance matrix of the random 
variable Xt is also estimated at each time step t. One immediate and important 
application for financial engineering concerns risk estimation. In addition, the 
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value of the gate variable St can be viewed as indicating the regime that the 
market is in at time t: this gives us a segmentation of the data, which is of value 
in its own right. 

We have trained the model on several data sets of foreign exchange rates. We 
first present results of our simulations on DEM/USD foreign exchange rate daily 
returns. The training set contains 3000 points from 29/09/1977 to 15/09/1989. 
The test set contains 1164 points from 16/09/1989 to 05/11/1994. The first 
application of the model is to uncover underlying regimes: as an example, Figure 
1 plots the segmentation obtained on the test set with a simple 2 state space 
model (M = 2). Because each Kalman filter learns the dynamics of a specific 
regime, the model is capable of detecting abrupt changes in the time series. For 
instance, we can see that each Kalman filter is activated for a certain range of 
volatility. Soft competition has been used and we clearly see segments where 
the two linear dynamical systems are used to explain the observation. 

1 - 1 . .  

00 600 800 1000 
Time 

Figure 1: The top figure plots the DEM/USD absolute returns for the test set. The 
bottom figure shows the responsibility of one linear dynamical system for each time 
step. 

As mentioned above, the model allows us to have an on-line estimate of the 
covariance of our prediction. Figure 2 plots the predictive distribution for a small 
window of time where a mode transition occurred at time t = 35. The figure 
shows how the confidence intervals change with respect to the mode. Indeed, the 
time window has been selected in order to show how the prediction are affected 
by a change of the volatility: the model moves from a high volatility region to 
a low volatility region: the predictions are of course affected by this change and 
we clearly see how the confidence intervals are sensitive to this transition. 

We have also evaluated the performance of SSSMs with objective measures 
and compared them with other models. We trained autoregressive models (AR), 
GARCH models, MLP neural networks (NN) and autoregressive hidden Markov 
models (ARHMM) on three data sets: DEM/USD, GBP/USD and YEN/USD. 
The training GBP/USD and YEN/USD data sets contain 2000 points from 
01/06/73 to 29/01/81 and the test sets contain 1164 points from 30/01/81 to 
21/05/87. 

Figure 3 shows the profit and loss curve of three models for a time window of 
350 points of the DEM/USD test data set. For illustrative purposes, we assume 
no transaction cost. The SSSM has the highest profit in comparison with the 
ARHMM and neural networks. The other models do not give better results and 

245 

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 15, 2009 at 08:44 from IEEE Xplore.  Restrictions apply. 



-30 IO 20 M 40 J 60 
Time 

AR 
-3.47% 

0 
4 
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13.35% 10.28% 7.03% 23.45% -16.15% 16.15% 

Figure 2: Contour plot and predictive distribution P(yt1Xt-I). The model switches 
from one state to another one, corresponding to a change of volatility. 

to retain clarity we do not report the corresponding curves. Table 1 gives also 

Time 

Figure 3: Profit and Loss of switching state space models (solid line) compared to 
autoregressive hidden Markov models (dashed line) and neural networks (dash dotted 
line). 

Table 1: Profits of the different models compared to ‘short and hold’ and ‘buy and 
hold’ strategies at the end of the selected time window. 

Table 3 compares the average performance of each model on each test data 
set. In this purpose, we have computed the likelihood, the normal mean squared 
error (NMSE) and the percentage accuracy (correct target sign prediction). For 
each model, 10 models initialised with different seeds have been trained. 

Compared to other models, we clearly see that SSSM behave well on unseen 
data. Although exact computation of the likelihood is not tractable, the bound 
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likelihood I NMSE Hits 
I 

AR f -2.3957 
GARCH I -1.1488 

- 1.0002 I - I 49.52 - 
- 1.0000 I - I 35.04 - 

1 

NN -1.1950 0.0149 1.0190 0.0094 49.79 1.3500 
ARHMM -1.0456 0.0020 0.9998 0.0000 49.32 0.1200 
SSSM -1.1045 0.0154 0.9995 0.0004 53.30 0.0080 

Model 

AR 
GARCH 

Table 2: Average log-likelihood, normalised mean squared errors and hits on the test 
set over 10 runs. For AR, NN and ARHMM models, the input dimension has been 
simply taken to be 5. The neural network contains 10 hidden non-linear nodes and 
both ARHMM and SSSM have 3 hidden states. For SSSM, we give a lower bound on 
the likelihood. 

likelihood NMSE Hits 
mean std mean std mean std 

-2.5268 - 1.0020 - 47.04 - 
-1.2174 - 0.9994 - 49.09 - 

is comparable to the best value (obtained with ARHMMs). When comparing 
the NMSE and the percentage accuracy, SSSMs always give the best results. 

NN 
ARHMM 

4 Conclusions 

-1.2191 0.0316 1.0720 0.0188 47.91 0.8500 
-1.0730 0.0000 1.0030 0.0000 45.46 0.0001 

Switching state space models are powerful probabilistic models for modelling 
time series and their application in finance is new. In this paper, we showed 
how to train and initialise the models and how to use them for prediction. 
Because we model both the mean and variance of the conditional distribution, an 
interesting application for these models in financial engineering is risk estimation 
and building trading models. One promising extension of these models is to 
model the interaction of different currencies, by using them, either as inputs to 
the dynamical system or as multivariate output time series. We also intend to 
remove restriction of the Kalman filters to linear state space models in future 
work. 

likelihood 
mean std Model 

AR -2.4508 - 
GARCH -1.1243 - 
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NMSE Hits 
mean std mean std 
1.0080 - 46.18 - 
1.0020 - 47.63 - 

NN 
ARHMM 
SSSM 

-1.1253 0.03 1.0970 0.0120 47.54 0.8600 
-0.8930 0.00 1.0030 0.0000 46.55 0.0000 
-1.0436 0.03 0.9996 0.0000 52.40 0.0020 
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