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Abstract

The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit
at about 800 km, carrying a C-band scatterometer. A scatterometer measures the amount of radar
back scatter generated by small ripples on the ocean surface induced by instantaneous local winds.
Operational methods that extract wind vectors from satellite scatterometer data are based on the
local inversion of a forward model, mapping scatterometer observations to wind vectors, by the
minimisation of a cost function in the scatterometer measurement space.

This report uses mixture density networks, a principled method for modelling conditional proba-
bility density functions, to model the joint probability distribution of the wind vectors given the
satellite scatterometer measurements in a single cell (the ‘inverse’ problem). The complexity of
the mapping and the structure of the conditional probability density function are investigated by
varying the number of units in the hidden layer of the multi-layer perceptron and the number of
kernels in the Gaussian mixture model of the mixture density network respectively. The optimal
model for networks trained per trace has twenty hidden units and four kernels. Further inves-
tigation shows that models trained with incidence angle as an input have results comparable to
those models trained by trace. A hybrid mixture density network that incorporates geophysical
knowledge of the problem confirms other results that the conditional probability distribution is
dominantly bimodal.

The wind retrieval results improve on previous work at Aston, but do not match other neural
network techniques that use spatial information in the inputs, which is to be expected given the
ambiguity of the inverse problem. Current work uses the local inverse model for autonomous
ambiguity removal in a principled Bayesian framework. Future directions in which these models
may be improved are given.
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1 Introduction

This report investigates a particular inverse modelling problem within the field of the geophysical
sciences. It is one of inferring wind vectors that describe wind speed and direction over the ocean
surface, from satellite scatterometer data (measured from the environment), and aims to solve this
problem using advanced statistical models called neural networks.

In this section the work of other authors in the area is introduced along with a general background
to satellite scatterometry.

1.1 The geophysical problem

Numerical Weather Prediction (NWP) models are tools used by oceanographers, meterologists,
geophysicists and many other scientists to forecast the future state of the atmosphere. Initial condi-
tions for the NWP model are important, as they are essential for accurate predictions. The initial
condition of the NWP model is the current state of the atmosphere described by the parameters
of the model including wind speed and wind direction. Depending on the context, wind vectors
may be defined in polar coordinates (s,x) or Cartesian coordinates (u,v). The wind vectors are
inferred, by an inverse model, from scatterometer data collected from space borne satellites. Such
scatterometers provide fast and accurate global coverage of the world’s oceans, providing an up
to date ‘picture’ of the current state of the winds over the ocean. The performance of the NWP
model is then dependent on the quality of the initial conditions which are in turn dependent on
the quality of the model used to infer the model parameters, which depends on the quality of the
measurements collected by the space borne scatterometers. Therefore new or improved methods
for solving the inverse problem are of interest to a wide range of scientists and add value to the
quality of weather forecasts.

1.2 Measurement acquisition

The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit
at about 800 km, carrying a C-band scatterometer. The scatterometer has a microwave radar
operating at 5.3 GHz, and measures the amount of back scatter generated by small ripples on the
ocean surface of about 5 em wavelength (Robinson, 1985). The scatterometer has three independent
antenna which point, on a horizontal plane, in three directions, 45°, 90°, 135°, with respect to the
satellite propagation and are referred to as fore, mid and aft beam antennae respectively. The
satellite samples a swathe of ocean surface approximately 500 km by 500 km. This swathe is
divided into nineteen tracks, where each track is approximately 25 km wide. Each measurement
cell is approximately 50 km by 50 km and so there is some overlap between adjacent tracks. Each
track is identified by the incidence angle of the mid beam with respect to the local vertical, which
varies from 18° to 45°, and is numbered from 1 to 19 respectively (see Figure 1). The odd numbered
tracks are referred to as traces, which are identified as trace 0 to trace 9 where trace 0 is the inner
most trace with respect to the satellite (has the smallest incidence angle). As the satellite passes
over the ocean surface, each cell is illuminated by the footprint of each antenna; fore, mid and
aft beam respectively, and a measurement vector for each cell is collected, (06,08 ,02). This is
referred to as the normalised radar cross subsection, denoted by o® and has units of decibels.
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Figure 1: Relationship of the ERS-1 satellite antennas and the ocean surface. For simplicity,
only nine non-overlapping satellite tracks are shown.

1.3 Background

There is a unique set of wind vectors, called the noisy ambiguity set, which is identifiable from
a single scatterometer measurement. This set shows an inverse mapping exists and is multi-
valued (Long and Mendel, 1991).

Much effort has been applied to understanding the scatterometer measurement space. An empir-
ical forward model (called the Geophysical Transfer Function (GTF)) has been developed that
describes the mapping from wind speed and direction to the scatterometer space. The first model,
CMOD2, was calibrated by the RENE-91 campaign of the coast of Norway (Offiler, 1994). The
GTF has been further calibrated to the now operational model CMoDn4 (Stoffelen and Anderson,
1997b).

Stoffelen and Anderson (1997c) show that scatterometer measurements lie close to a three di-
mensional manifold defined by CMOD4 in measurement space, and are largely dependent on two
geophysical parameters, wind speed and direction. In general the measurements lie within 0.2 dB
of the manifold (corresponding to an uncertainty in wind vector rms error of 0.5 ms~!), which is
close to the instrumental measurement noise level.

Ambiguity in wind direction arises from noise on the observation and it becomes difficult to distin-
guish if winds are blowing toward or away from the antenna. This is illustrated in Figure 2, a sketch
of a two dimensional slice through the manifold defined by CM0OD4 at a roughly constant speed.
If the observations were noiseless then they would fall on the surface of the manifold, somewhere
on the solid black line. The areas of ambiguity would only exist where the black lines crossed for
a few wind directions. Now consider adding noise to the observation. The observation is placed
somewhere near the surface of the manifold in the gray area. Theoretically a noisy observation
can come from one of the two surfaces of the manifold to which it is normal to. Thus, there
is no way to distinguish which is the correct solution, and it follows that there are at least two
possible solutions for the wind direction for that observation. Any method of inversion will have
multi-valued solutions for wind direction given a single observation.
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Figure 2: A two dimensional sketch of the scatterometer measurement space. The two dimen-
sional slice is taken through the measurement manifold at constant wind speed. For
a noisy observation there are at least two solutions in wind direction.

Most inversion methods which extract wind vectors from scatterometer data are based on local
inversions of a GTF. These methods invert the GTF by finding a triplet on the measurement
manifold that is closest to the observed measurement triplet by minimising some cost function
that describes the distance between the observed and approximated measurements (Stoffelen and
Anderson, 1997c). Following inversion, the ‘best’ solutions are chosen by comparison to a NWP
background wind field. A heuristic filter is then applied over the wind field to smooth and re-
move non-geophysical structures within the wind field (Stoffelen and Anderson, 1997a). These
methods successfully invert the measurements and show that scatterometer measurements can
provide higher resolution wind fields than those generated at the European Centre for Medium
range Weather Forcasting (ECMWF). These methods are not autonomous since they rely on NWP
winds for selection of the initial wind fields.

Thiria et al. (1993) used neural networks to model wind direction and speed directly from sim-
ulated scatterometer data. The model consisted of two neural networks. One network modelled
wind speed, the other, a classification network with thirty six bins representing ten degree inter-
vals, modelled wind direction by interpreting the outputs of each bin as probability. The inputs to
the neural network took neighbourhood information from the eight surrounding cells of a nine by
nine grid, where the centre cell was the measurement of interest. This was found to improve the
performance by seventeen percent, showing that a spatial context may well be an important consid-
eration in the inverse model. Another interpretation of this improvement is that this configuration
may provide additional wind direction disambiguation skill to the network.

The network for modelling wind direction has inputs of spatial information (the same as those used
for the wind speed network) and the wind speed estimate. Wind speed as an input improves the
position of the solution on the measurement manifold (the shape of Figure 2 is strongly dependent
on wind speed). Taking speed as an additional input was found to improve performance of direction
estimation. Simulated data was used because ERS-1 was not fully operational and the results
showed neural networks to be a promising avenue of investigation for a solution to this inverse
problem.

Cornford et al. (1997) applied a feed forward neural network to model wind speed and a mixture
density network (see section 2.1) with kernels of circular normal densities (Bishop and Nabney,
1996) to model the full conditional probability density of the wind direction given the scatterometer
measurements, ®. Two configurations of mixture density networks were considered for modelling
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wind direction. In the first configuration the kernels were free to move, while in the second the
centres and variances of the kernels were fixed. A committee of the direction networks (made up
of members from the two configurations just mentioned) was also considered. Additional to the
scatterometer triplet measurement (of,0%,0%), incidence angle was also included as an input to
the networks. The wind speed model performed within the designed specification of the instrument
of 2 ms™!, the results being comparable to the inverted CM0oD4 model (Stoffelen and Anderson,
1997c), although the model had some difficulty in learning the transfer function at high and low
wind speeds. For wind direction, the models learnt the inherent ambiguity in the problem, but did
not perform as well as the inverted CMOD4 model. However, these results are encouraging, for the
committee of networks the solution for direction (to within 20°) was correct roughly 75% of the
time when considering the two most likely solutions. Ambiguity removal was not addressed in this
work.

Following the methods of Thiria et al. (1993), Richaume et al. (1998) continued to address the
inverse problem by training the networks using data collected from the ERS-1 satellite. There is a
dedicated transfer function for wind speed and wind direction for each trace. The results reported
show performance to be better than the methods proposed by wind retrieval systems based on the
CMmoD4 GTF. Ambiguity removal is achieved by using a NWP background wind to initialise the
system, and then applying a three by three cell spatial filter over the wind field to minimise the
global wind variance within the spatial filter. The results show wind fields that are consistent, and
compare favourably wind fields retrieved from the same measurements by the European Centre for
Medium range Weather Forcasting.

1.4 The NEUROSAT project at the Neural Computing
Research Group (NCRG)

The NEUROSAT project is concerned with applying neural network approaches to problems in
satellite remote sensing to extract wind vectors from satellite scatterometer measurements taken
over the ocean. There are three distinct areas of research, although the boundaries are not distinct:

e Solving the forward model, the mapping of (u,v) — o°, by building the probabilistic model
P(o° | u,v).

e Solving the inverse model, the mapping of ° — (u,v), by building the probabilistic model
P(u,v|o°).

e Autonomous ambiguity removal. Predicting wind fields without reference to NWP model
winds. Both heuristic and Bayesian methods are applied to this problem.

This report contributes towards the NEUROSAT project by investigating the feasibility of building
the inverse model by using the mixture density network framework of Bishop (1994). Guillaume
Ramage, a fellow research student, has investigated the forward model (Ramage, 1998). Dan
Cornford and Tan Nabney oversee the project, and have written several publications about mod-
elling wind speed/direction and generating wind priors. For further information see Cornford and
Nabney (1998)!

! Available from http://www.ncrg.aston.ac.uk/Papers/
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1.5 The aims of this research project

Probabilistic models provide a general model for uncertainty in the natural world. Our aim is to
build a local (that is, for a 50 km by 50 km cell in a trace) probability model that describes the
probability of a set of wind vector components, (u,v), given a satellite scatterometer observation,
o°, expressed as P(u,v|o?). In geophysical terms this is called an inverse model. The probability
model is implemented using a Mixture Density Network (MDN) framework, which provides a
principled method for modelling conditional probabilities (Bishop, 1994). Furthermore, a hybrid
MDN will be developed that incorporates the geophysical knowledge inherent in the problem,
namely the relationship between ambiguous wind directions. This is achieved by fixing the relative
ambiguous wind directions within the MDN framework.

Mixture density networks facilitate the investigation of complexity of the mapping from scatterom-
eter data to wind vector component space (6° — (u,v)) and the complexity of the conditional joint
probability distribution (P(u,v | 6°)) itself. This investigation attempts to answer the following
questions:

e How difficult is it to model speed and direction simultaneously by directly mapping to the
wind component space?

e Can the incidence angle be used as input to the MDN? That is do models trained over all
tracks of the swathe perform as well as those models trained on each track within the swathe
(and do not take incident angle as an input)?

e Is the conditional probability distribution of the Cartesian wind vectors, (u,v), bimodal or
more complex?

e Is the noise on the Cartesian wind vector components Gaussian?

e How well do the hybrid MDN models compare with standard MDN models of similar com-
plexity?

1.6 Report outline

In this section, the introduction to the field has been described, and the aims of this project set
out.

In Section 2 the reader is introduced to the mixture density network, and the technical details of
its construction. The data pre-processing is described before the experimental details are outlined.
The results of the experiments are presented and discussed with reference to summary measures
used within the meteorological community.

In Section 3 the results are analysed and discussed with reference to the complexity of the mapping,
and the conditional probability distribution. The results are then compared with other published
results in the field.

Finally, in Section 4 the conclusions of this project are presented. On-going work is described
followed by potential future work which indicates how the models might be improved.
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2 Methods and results

In this section the methods and results of experiments to build an inverse model that maps the satel-
lite scatterometer data directly to wind vector component space are presented. The models employ
the mizture density network framework (and includes a hybrid mizture density network specifi-
cally designed to model the directional ambiguity), which is principled method to model complicated
conditional probability density functions.

2.1 Theory of mixture density networks

Mixture Density Networks (MDNs) provide a framework for modelling conditional probability
density functions, denoted p(t|x) (Bishop, 1994; Bishop, 1995). The distribution of the outputs, ¢,
is described by a parametric model whose parameters are determined by the output of a neural
network, which takes x as its inputs. The general model is described by the equations

p(tle) = Za] z)o;(t|z) (1)

and

M
Zaj(m) =1. (2)

Here () represents the mixing coefficients (which depend on z), ¢;(t|x) are the kernel distribu-
tions of the mixture model (whose parameters also depend on x), and M is the number of kernels
in the mixture model. There are various choices available for the kernel functions, but for the
purposes of this report the choice has been restricted to spherical Gaussians of the form:

¢;j(t|x) = %exp (—WM)) )

(2m)50% (.) 2(z,)

where ¢ is the dimensionality of the target space ¢. This is a valid restriction because in principle
a Gaussian Mixture Model (GMmM) with sufficiently many kernels of the type given by (3) can
approximate arbitrarily closely a density function of any complexity providing the parameters
are chosen correctly (McLachlan and Bashford, 1988). It follows then that for any given value
of x, the mixture model (1) can model the conditional density function p(t|x). To achieve this
the parameters of the mixture model® are taken to be general continuous functions of . These
functions are modelled by the outputs of a conventional neural network that takes & as its input.
It is this combination of a GMM whose parameters are dependent on the output ofa feed forward
neural network that takes x as its inputs that is referred to as a Mizture Density Network (MDN)
and is represented schematically in Figure 3.

By choosing enough kernels in the mixture model and a neural network with sufficiently many
hidden units the MDN can approximate as closely as desired any conditional density, p(t|x)
(Bishop, 1994). The neural network element of the MDN is implemented with a standard Multi-
Layer Perceptron (MLP) with single hidden layer of tanh units and an output layer of linear units.
The output vector from the MLP, Z, holds the parameters that the define the Gaussian mixture

2Choosing a spherical Gaussian kernel determines the parameters to be the mixing coefficients and the variances
and centres (or means) of the kernel functions.
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model. A single row of the parameter vector, for the n'” pattern, takes the following form:

[al,na Q2,3 Qjn, "y QM n,
_

(.

~
M mixing coefficients

yll,n; H12,n, " :ch,rﬁ: to :yjl,n: Hi2,m, " a,ujc,ria )
15t kernel centre jth kernel centre
HEM1n;, UM2,n;s* " s MMens **
- _
M1" kernel centre
2 2 2 2
O1,m202m5" " 90505 "" vUM,n]' (4)
N — J
M widths

Where the total number of outputs from the MLP is (¢ + 2) x M, as compared with the usual
¢ outputs for a MLP network used in the conventional manner. In the style of Bishop (1994)
outputs of the MLP are denoted by z;. These outputs undergo some transformations to satisfy
the constraints of the mixture model. The first constraint is that

M
Y a@) =1 (5)

j=1
and
0<a(x) <1 for j=1,..., M. (6)

The outputs of the MLP which correspond to the mixing coefficients, 2, are constrained using
the ‘softmax’ function:

exp(22)
il exp(zf) g

This mapping ensures that the mixing coefficients always sum to unity. The variance of the kernel
represents a scale parameter and always takes a positive value. The variance parameters of the
kernels are represented by exponentials of the corresponding outputs of the MLP, 23

o? = exp(z7 ). (8)

The centres of the Gaussians represent a location in the target space and can take any value within
that space. They are therefore taken directly from the outputs from the MLP, z]‘.‘k:

Hik = Z;'Lk (9)

X zZ P(t]x)
Neural Mixture
— | Network L gy Model |———m

Figure 3: The structure of a Mixture Density Network. The inputs x are feed through a neural
network. The outputs of the neural network, Z, define the parameters of the GMM
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In order to optimise the parameters in a MDN, an error function is required that provides an
indication of how well the model represents the underlying generating function of the training data.
The error function of the mixture density network is motivated from the principle of maximum
likelihood (Bishop, 1995). The likelihood of the training data set, {zx,t}, may be written as:

L= Hp(mn:tn)
= Hp ‘mn n)a

where the assumption has been made that each data point has been drawn independently from
the same distribution, and so the likelihood is a product of probabilities. Generally one wishes
to maximise the likelihood function. However, in practice, it is usual to minimise the negative
logarithm of the likelihood function (termed the negative log likelihood). These are equivalent
procedures, since the negative log likelihood is a monotonic function. The error function E is
defined as the negative log likelihood:

E=-InL=- Zlnp(tn|mn) - Zp(mn) (11)

(10)

The second term in (11) is constant because it is independent of the network parameters and can
be removed from the error function. The error function becomes:

E=- Zlnp(tn|mn)' (12)

Comparing (12) with (1), we substitute (1) into (12) and derive the negative log likelihood error
function for the mixture density network:

—zn:ln{f ()b (tn |mn)} (13)

In order to minimise the error function the derivatives of the error E with respect to the network
weights must be calculated. Providing that the derivatives can be computed with respect to the
output of the neural network, the errors at the network inputs may be calculated using the back-
propagation procedure (Bishop, 1995). By first defining the posterior probability of the j* kernel,
using Bayes theorem:

@;¢;

Zl 1 fY¥o)

the analysis of the error derivatives with respect to the network outputs is simplified. The compu-
tation of the error dervivative is further simplified by considering the error derivatiave with respect
to each training pattern, n. The total error, E, is defined as a sumation of the error, E,, for each
training pattern:

mi(x,t) = (14)

E=) E,, (15)
where

B, =~ n{ > ()6, ()} (16)
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Each of the derivatives of E,, are considered with respect to the outputs of the networks and their
respective labels for the mixing coefficients, 2§, variance parameters, z7 and centres or position
parameters z;.‘k. The derivatives are as follows:

OE,
N 1
82}" a; — Ty, (17)
0B, i lltn— P

=My e 7 B 1
0z 2 { o3 °r (18)
0E, Wik — tk

=T; 1
asz ﬂ-J{ UJQ' }7 ( 9)

where a full derivation is given in Appendix A.

2.2 Mixture density network implementation

This algorithm is conveniently implemented in the NETLAB? toolbox for MATLAB. The following
toolbox functions are of interest to the reader

mdn creates a data structure to model a MDN. This structure com-
prises of the feed forward network structure (an MLP) and a
structure for the mixture model parameters.

mdninit initialises the weights of the network. Uses the target data ¢ to
initialise the biases for the output units of the network after ini-
tialising the other weights randomly with a Gaussian prior. The
biases are initialised by the parameters of a model of the uncondi-
tional density of t. These parameters are computed using tool box
function gmminit, which uses the k-means algorithm to compute
the parameters of the unconditional model of .

mdnfwd forward propagates the inputs through the model. The output is
an array of structures containing a mixture model for each input
pattern.

mdnerr computes the error of the model for a set of inputs and targets.

mdngrad computes the error gradient of the model using the results of (17),

(18) and (19) and back propagating these results through the net-
work using the tool box function mlpbkp

mdnpak/unpak packs the weights of the network into a vector: this is required to
use the optimisation routines.

scg implementation of the scaled conjugate gradients algorithm, which
is a general purpose optimisation algorithm.

All the MDNs trained in this project were optimised using the Scaled Conjugate Gardient (SCG)
algorithm. A demonstration programme demmdnl is available from the web site which gives a
worked example of training a MDN on the ‘toy problem’ described by Bishop (1994).

3 Available from http://www.ncrg.aston.ac.uk/netlab/
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2.2.1 Training mixture density networks with ‘fast mdn’

Initial experiments took some time to train (between a few days to one week depending on the
computer) and so some time was spent during this project developing a fast mdn NETLAB im-
plementation of MDNs. The focus of this work was re-engineering the computation of the error
derivatives with respect to the neural network outputs, so that the computation was carried out
in parameter space (4). The necessary expressions for the derivatives are contained in Appendix
A. The details of the software re-engineering are given in Evans (1998)*. In summary the training
time is decreased by a factor of sixty for the example provided in the technical report. The inverse
model training time decreased from a few days to a few hours for networks without incidence angle
as input. Decreased training time means that problems with larger data sets can be trained in
a realistic time frame. For this project it was also possible to train networks that take incidence
angle as an input and have a training data set size of ten thousand examples.

2.2.2 Putting mixture density networks into a geophysical context

The aim of this subsection is to show how a MDN may be employed to model the inverse mapping
from scatterometer data, o, directly to the wind vector component space, (u,v). In Subsection
2.1 the inputs and targets of the MDN are labelled as « and t respectively. In the context
of this application, each input pattern for the MDN, «, will be scatterometer data (the triplet
(0f,00,07)), or scatterometer data and incidence angle (the input vector (o%,0y,,07,6)) if the
MDN is being trained over all traces. Modelling the wind vector components directly implies
that the targets of the MDN, ¢, are the Cartesian wind vector components (u,v). The general
description of the MDN, (1), is then re-expressed using geophysical parameters for a particular
wind vector component as

IVE

Il
-

p(u,vjo®) = ) a;(@®)¢j(u,v|o). (20)

J

This project uses data sets generated from real world processes, and so assumptions made in the
modelling process need to be validated. There are three main assumptions made about the data
set in our approach:

e The noise on the targets in (u,v) space is Gaussian and spherically symmetric.

e The theory in Subsection 2.1 assumes that the inputs, , are noiseless. It is therefore assumed
that the inputs, o, are noiseless. This a reasonable assumption based on the quality of
the o° measurements collected from the ERS-1 satellite (measurements are within 0.2db
of the CM0OD4 manifold, which corresponds to an uncertainty in wind vector rms error of
0.5 ms™!) (Stoffelen and Anderson, 1997c) when compared to the errors on numerical weather
prediction target winds.

e For computation of the error function (13) it is assumed that all data is independently drawn
from the same distribution. The selection of the data ensures that this condition is met.

2.3 Data pre-processing

Before training the MDN the data was pre-processed to create training, validation and test data
sets. A data set comprises of pairs of input and target patterns.

4 Available from http://www.ncrg.aston.ac.uk/Papers/
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2.3.1 Data description

The input data, o°, is supplied by the European Space Agency (ESA), and is labelled by longi-
tude, latitude and time. The data is then processed at IFREMER where quality control is applied
(including sea ice mask filter to remove observations taken over sea ice) to remove low quality ob-
servations. The target data is computed from an ECMWF forecast by taking a 250 km by 250 km
grid of 10m model winds and interpolating in space and time to the satellite observation position.
Philippe Richaume (working as part of the NEUROSAT team) selected the data from the North
Atlantic regions (1995-96). This data set was then sub-sampled to make training, validation and
test data sets. The test data set is generated to have a distribution in wind speed close to a
distribution of naturally occurring wind speeds. The training and validation data sets have a wind
speed distribution that are an equal combination of uniform distribution over wind speed and a
distribution close to that of naturally occurring wind speeds. The wind speed ranges from 4 ms™!
to 24 ms—! inclusively. For each measurement in the data set there is a corresponding fore, mid
and aft scatterometer measurement, incidence angle, azimuth angle, wind speed and meteo wind
direction. It is this data that is referred to as ‘raw’ data in the scope of this project. Before
describing the pre-processing applied to the raw data, some new terminology is needed for the
different methods of measuring wind direction (all in degrees):

e Meteo wind direction is the angle in which the wind is coming from. Therefore a meteo wind
direction of zero degrees describes a wind coming from the north toward the south. This
wind direction will be referred to as mdir (see Figure 4).

o Vector wind direction is the angle of the direction in which the wind is blowing. Therefore a
vector wind direction of zero degrees describes a wind blowing toward the north. This wind
direction will be referred to as wvdir (see Figure 4).

o Relative wind direction is the angle of wind direction relative to the antenna azimuth angle
from the vector wind direction. This wind direction will be referred to as rdir (see Figure
4).

All angles given in this document are quoted in degrees, and a clockwise direction from their
reference point. Wind speed and direction are resolved into wind vector components, and the
input data is pre-processed by a simple linear rescaling.

For each trace (trace 0 to trace 9) there are three data sets. The training set has three thousand
examples, whilst the test and validation set have one thousand examples each. There is also a data
set that contains data from all traces, and includes incedence angle as an input. This training set
has ten thousand examples whilst the validation and test set have five thousand examples.

2.3.2 Pre-Processing the wind data

The data set describes the wind in terms of wind speed and wind direction. To model the wind
vector directly, the data is transformed into relative wind vector components (u,, v;).

The wind direction is transformed from meteo direction, mdir, to vector direction , vdir, by adding
180°, and taking the modulus with respect to 360°. This maintains the convention of wind direction
in the range [0°,360°). Because of the nature of the orbit of the satellite, measurements are taken
in two directions (running from north to south, and from south to north). These directions are
encoded in the satilite azimuth angle, ¢. The vector wind direction is transformed relative to the
azimuth angle by subtracting the azimuth angle from vector wind direction, vdir, and taking the
modulus with respect to 360°. The wind direction is now relative to the azimuth angle, and the
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Figure 4: The relationship between the wind direction angles, mdir, vdir, and rdir used in
pre-processing.

relative wind vector components can be resolved. To ensure that a geophysical reference of zero
degrees for north is maintained rdir is subtracted from 90° before either sin or cos are applied.
The transformation is summarised below:

1. Compute vdir: vdir = mdir + 180° (mod 360°).

2. Compute rdir: rdir = vdir — ¢ (mod 360°).

%)

. Compute uy: u, = scos(90° — rdir).

o~

. Compute v,: v, = s8in(90° — rdir).

2.3.3 Pre-processing the scatterometer data

The input data, o°, is pre-processed by a linear transformation to a zero mean unit variance
Gaussian distribution. The mean and variance for the rescaling are taking from the whole input
data set. For input data that also contains the incidence angle, 8, we pre-process this input by
taking the cosine of the incedence angle. This insures that the input is in the range [-1,1].

2.4 Direct application of mixture density networks

The previous subsections in this section have described the technical detail of how an MDN is
implemented, an overview of the implementation of the MDN framework within NETLAB and how
the input and target data is pre-processed. This theory is now applied to modelling the mapping
of scatterometer data to wind vector components.
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The networks are trained by minimising the negative log likelihood error function defined by (13):

E= —gln{éamm(ui,w | a;’)} (21)

where o represents either the three or four dimensional input vectors, (0§, 03, 02) and
(0f,02,02,cos(h)) respectively. The network training was regularised by the early stopping tech-
nique (Bishop, 1995).

In Subsection 1.5 the areas of investigation were outlined. The first is to investigate the complexity
of the mapping between o° and (u,v) space. This complexity is modelled by the MLP within
the MDN structure. The second, the complexity of the (u,v) space, is represented by the number
of kernels in the mixture model of the MDN. The third is to train networks with and without
incidence angle as an input to the network. The following network configurations were trained to
investigate the areas of interest:

e For models without incidence angle as an input:

— Train a model for each track (0 to 9) and with 10, 15, 20, 25 hidden units in the MLP.

— For each model train with two and four centres.
e For models with incidence angle as an input:

— Train models with 50 and 35 hidden units in the MLP.

— For each model train with 2,4, 5, and 12 centres.

The results of these experiments are presented in Subsection 2.6.

2.5 Incorporating geophysical knowledge

In this subsection we describe a modification to the MDN structure in order to incorporate the
knowledge that ambiguities in wind direction exist in the mapping from o° to (u,v) space. We call
this the hybrid mixture density network model. This is first and foremost of scientific interest, but
also, if successful, will reduce the model complexity by reducing the number of model parameters.

The following expression for MDN with two kernels can be derived from (1):

p(tz) = a(x)¢r () + (1 — o)) ha (t]). (22)

As already established the ambiguity in wind direction arises from the fact that there are alias
solutions for the wind direction; that is, it is not known for certain from the o° data in which of
two directions the wind is blowing. This alias is at approximately 180°. The ambiguity is encoded
within the MDN framework by two spherical Gaussian kernels with diametrically opposed centres.
One kernel is free to move (its parameters are determined during training), whilst the second
mirrors the first by taking the negative mean (which is equivalent to an ambiguous direction of
180° in (u,v) space). The centres of the kernels (which correspond to wind vectors in (u, v) space)
always represent the ambiguity within the mapping. The noise model for each kernel is assumed
to be the same; that is, the variance of the free Gaussian is the same as that of the mirroring

Gaussian. The mixing coefficients, then, determine the ‘responsibility’ that each kernel has for the
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probability mass of the given ambiguity within the model. Expressed within the MDN framework
the model becomes (for the n'" observation):

P(tn|Tn) = A(@n)d(tnlTn) + (1 — a(@n))Y(tn|Ta), (23)

where the kernels are defined by diametrically opposed spherical Gaussians:

(b(tn‘mn) = m exp<_%>a (24)
V(tn|Tn) = Ir02 () eXp(‘%)- (25)

The target data is two dimensional and therefore the dimension parameter ¢ in the Gaussian model
(22) is two. The error for a pattern n is defined as a negative log likelihood function and is derived
from (13):

B = = a@n)(talzn) + (1 - alen)i(talen) . (26)

The training of the network is identical in principle to the general NETLAB MDN framework.
Special modifications are needed to compute the function which maps the outputs of the MLP to
the parameters of the mixture model and the gradient of the error function with respect to the
MLP outputs. The mixing coefficients are no longer constrained by the softmax rule, but by the
simpler logistic function:

1

To train the hybrid architecture, the derivative of the gradient of the error function with respect
to the outputs of the MLP is required. Two posterior probabilities are defined with respect to
each kernel, for the free kernel:

g
= 28
T At 1-a) (28)
and for the mirrored kernel:
(1- )y
= 29
T asrI-a)w (29)
Then the derivatives of the error function with respect to the network outputs are:
oE,
0z¢ =T (30)
OB, _ [« [[ltn —pl Y [ ltn + pf?
020 {2{ o? °fTa o? ] (31)
OFE, T — Uk by +
n = _ = 27—~ === 32
s =) (%5 .
(33)

This configuration reduces the number of mixture model parameters by M (5 + 1). The full detail
of the derivation is presented in Appendix B. Software for implementing this architecture is coded
in MATLAB and designed to integrate into the NETLAB toolbox (this implementation inspired the
general fast mdn implementation). The code was tested for accurate implementation using the
methods detailed in Evans (1998).
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Architectures with the same number of hidden units and input dimensions were trained to compare
with the networks trained in Subsection 2.4. For these experimentts the number of kernels is always
two (it is possible to have multiple ‘centre pairs’). The network architectures trained are as follows:

e For models without incidence angle as an input:
— Train a model for each trace (0 to 9) and with 10, 15,20, 25 hidden units in the MLP.
e For models with incidence angle as an input:

— Train models with 35 and 50 hidden units in the MLP.

2.6 Results

In total twelve networks were trained for each trace (and so a total of one hundred and twenty
networks) and ten networks were trained over all traces. Each network had the same seed in
the random number generator when initialised. The results are presented in tabular form, using
summary statistics commonly used in the meteorological community; the Figure of Merit, an
evaluation of how well the predictions compare to the instrument specifications of +2 ms~! for
wind speed and £20° for wind direction; vector Root Mean Square (RMS) error, a measure of how
close the predictions are to the target; and performance at 20° (denoted perf. @ 20°), a measure
of the percentage of predicted directions within 20° of the target wind directions (Cornford et
al., 1997; Richaume et al., 1998). The technical details of these summary measures are detailed
in Appendix C. The reported results are computed using the test set, which was not used when
choosing the model complexity, and so the results are unbiased with respect to the data set. The
results are based on wind vector predictions that are derived from a simple ambiguity removal
algorithm. The two most likely wind vectors are inferred from the MDN (for models with more
than two kernels the position of the two most probable modes, found by a SCG optimisation
starting from the positions of each kernel, are inferred as the two most likely wind vectors) and
then compared to the target wind vectors. The predicted wind vector closest to the target wind
vector is chosen as the disambiguated wind vector. The summary methods are then applied.

Tables 1, 2, and 3 present the summary results for networks trained per trace. Over all tables,
there is a general trend of increasing performance from trace 0 to trace 9, which is to be expected
because wind vectors are harder to model for the innermost traces of the swathe. Table 1 presents
model performance as measured by the FoM evaluation function. An FoM result greater than
one indicates the the model is performing to the instrument specifications. Inspection of Table
1 shows that the models are close to this threshold, and all the models except for one meet the
specification for trace 9. The performance also exhibits trends over model complexity, where for
models with two kernels (including the hybrid configuration) the measure continually improves
for increasing complexity, and for models with four kernels the maximum performance is achieved
with twenty hidden units in the MLP. The results in Table 2 and Table 3 are strongly correlated
to the results in Table 1. For vector RMS errors the current operational model CMOD4 returns
wind vector RMS errors of 3 ms™! when compared to ECMWF winds (Stoffelen and Anderson,
1997b). The results presented here show higher values than 3 ms~!, but follow the same trends
as those in Table 1, the lowest vector RMS error being 3.11 ms~!. The results in Table 3 for perf.
@ 20° show similar trends to those for FoM and vector RMS error. Our results are comparable
with the results of Cornford et al. (1997), where the correct solution, within 20°, is found more
than 70% of the time from the two most probable aliases.

Table 4 presents the results of networks trained over all traces. Model performance is similar to the
MDNs with thirty five hidden units in the MLP. In addition, the model performance for MDNs



First Year Qualifying Report: Neural Networks for ExtractingWind Vectors from Satellite Scatterometer Data 22

with twelve kernels is worse than the other kernel configurations, reflecting that there is a limit to
the complexity an MDN can have to model this problem.

For comparison between networks with and without incidence angle as an input, results are pre-
sented by trace for networks that take incidence angle as an input. The results are generated by
using the test sets for models trained by trace and adding the respective incidence angles to the
input patterns. Again, the summary results are presented in Tables 5, 6, 7. These tables also show
a general trend of improving performance, which is smoother than the networks trained individu-
ally per trace. However the best model trained with incidence angle is worse than those trained
by trace.

Visualisation of the conditional probability density function modelled by the MDN is of interest.
Mesh and contour plots give a good visualisation of the probability density function. Several
model architectures have been selected to represent the range of models trained, and to show how
the distribution varies for changing kernel configurations. An arbitrary wind vector (that gives a
good graphical visualisation of the distribution) was chosen from trace 9 test data (for information
the components are (—14.6,1.4)). Figures 5, 6 and 7 are for networks trained per trace and
represent kernel configurations of two, two hybrid and four respectively. Figures 8, and 9 are for
networks trained with incidence angle as an input and are for MDNs with five and twelve kernels
respectively. These plots show that the conditional probability distribution is generally bimodal,
closer inspection of Figures 8 and 9 also shows that the modes are not necessarily Gaussian.

In this section the technical detail of MDNs has been explained including a hybrid MDN archi-
tecture that models the ambiguity inherent in the mapping from scatterometer space to wind vector
space. An overview of the software used to train the MDNs has been given by using the NETLAB
toolbox for MATLAB, where fast mdn was developed. The data source and pre-processing has been
described before it is presented to a MDN for training. Using summary tools used within the me-
teorological community the results have been compiled into several tables in order to compare the
performance of the particular network architectures. In the next section the results are analysed
and discussed with respect to the aims laid out in section 1.5.



First Year Qualifying Report: Neural Networks for ExtractingWind Vectors from Satellite Scatterometer Data 23

P((uv) | sig;= 0.5395, sigm:O.SZSS‘ siga:0.2101) P((u,v)\slg': 05395, sig,  =0.5283, slga:().zlol)
T T T T
2l + Predicted (u) = (-10.8030, 5.6613) | |
o Observed (u,v) =(-14.6148, 1.3815)
* Centres of the mixture model
001 15F 1
0.008 10- 1
20,006 5T 1
3
2
] Q
E > ok ]
£ 0004
S
ST
f (SIS sl * i
0.002 =N B
SN
< By
=39 SIS
S SN 10+ |
S5 SRS
[ N
2y (TSI
20 AN -15f J
RESLUUXKIESSSIISSIDDISIIT %0
10 EEEEESSSESIIIRIIIISS
o = -20f ]
- =
. . i . .
v 30 30 -30 -20 -10 0 10 20 20
u u

Figure 5: Conditional probability distribution plots, for a model with 2 kernels and 25 hidden units.
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Figure 6: Conditional probability distribution plots, for a hybrid model with 2 kernels and 25
hidden units.



FoM- results for networks trained per trace

MDN architecture trace | trace | trace | trace | trace | trace | trace | trace | trace | trace average
0 1 2 3 4 ) 6 7 8 9 over swathe
Two hybrid Kernels, 10 Hidden Units | 0.76 | 0.80 | 0.79 | 0.82 | 0.83 | 0.83 | 0.87 | 0.81 | 0.89 | 1.02 0.84
Two Kernels, 10 Hidden Units 0.82 | 0.75 | 0.80 | 0.78 | 0.84 | 0.79 | 0.79 | 0.81 | 0.85 | 0.93 0.82
Four Kernels, 10 Hidden Units 0.88 | 0.86 | 0.92 | 097 | 092 | 095 | 0.99 | 1.02 | 1.02 | 1.19 0.97
Two hybrid Kernels, 15 Hidden Units | 0.90 | 0.83 | 0.83 | 0.90 | 090 | 0.88 | 0.88 | 0.86 | 0.95 | 1.03 0.90
Two Kernels, 15 Hidden Units 090 | 0.83 | 0.81 | 0.88 | 0.88 | 0.87 | 0.87 | 0.84 | 0.95 | 1.08 0.89
Four Kernels, 15 Hidden Units 095 | 091 | 0.87 | 1.00 | 091 | 0.87 | 1.00 | 0.94 | 1.02 | 1.13 0.96
Two hybrid Kernels, 20 Hidden Units | 0.93 | 0.83 | 0.85 | 0.90 | 0.87 | 0.89 | 0.89 | 0.89 | 0.97 | 1.07 0.91
Two Kernels, 20 Hidden Units 092 | 0.84 | 0.82 | 0.85 | 0.88 | 0.88 | 0.89 | 0.90 | 0.97 | 1.07 0.90
Four Kernels, 20 Hidden Units 093 | 0.92 | 0.86 | 0.98 | 0.93 | 0.98 | 1.02 | 1.00 | 0.99 | 1.16 0.98
Two hybrid Kernels, 25 Hidden Units | 0.89 | 0.82 | 0.86 | 091 | 0.91 | 091 | 091 | 0.91 | 0.98 | 1.06 0.92
Two Kernels, 25 Hidden Units 093 | 0.85 | 0.84 | 092 | 0.89 | 093 | 093 | 0.95 | 0.97 | 1.07 0.93
Four Kernels, 25 Hidden Units 0.88 | 0.88 | 0.87 | 099 | 0.86 | 097 | 1.00 | 0.95 | 0.97 | 1.17 0.95

Table 1: FoM results - for networks trained per trace. Results in bold face indicate best results per column.
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Vector RMS error - results for networks trained per trace

MDN architecture trace | trace | trace | trace | trace | trace | trace | trace | trace | trace average
0 1 2 3 4 ) 6 7 8 9 over swathe
Two hybrid Kernels, 10 Hidden Units | 4.71 | 4.29 | 4.36 | 4.29 | 4.27 | 414 | 4.09 | 4.26 | 3.90 | 3.50 4.18
Two Centres, 10 Hidden Units 4.25 | 443 | 422 | 445 | 408 | 426 | 4.42 | 424 | 4.09 | 3.74 4.22
Four Centres, 10 Hidden Units 4.27 | 416 | 3.77 | 3.73 | 4.06 | 3.68 | 3.74 | 3.60 | 3.52 | 3.11 3.76
Two hybrid Kernels, 15 Hidden Units | 3.90 | 4.17 | 4.19 | 3.93 | 3.88 | 3.95 | 4.01 | 4.06 | 3.70 | 3.44 3.92
Two Centres, 15 Hidden Units 3.90 | 409 | 4.10 | 404 | 391 | 396 | 3.95 | 4.05 | 3.66 | 3.28 3.90
Four Centres, 15 Hidden Units 3.86 | 4.00 | 4.16 | 3.66 | 4.00 | 431 | 3.54 | 4.01 | 3.52 | 3.25 3.83
Two hybrid Kernels, 20 Hidden Units | 3.83 | 4.17 | 4.03 | 3.96 | 4.04 | 395 | 3.96 | 3.98 | 3.63 | 3.34 3.89
Two Centres, 20 Hidden Units 3.81 | 404 | 413 | 407 | 390 | 393 | 3.86 | 3.86 | 3.61 | 3.31 3.85
Four Centres, 20 Hidden Units 394 | 3.84 | 408 | 3.71 | 3.89 | 3.63 | 3.48 | 3.67 | 3.63 | 3.17 3.70
Two hybrid Kernels, 25 Hidden Units | 3.97 | 4.24 | 3.99 | 3.94 | 3.86 | 3.87 | 3.92 | 3.87 | 3.61 | 3.36 3.86
Two Centres, 25 Hidden Units 3.79 | 4.00 | 3.99 | 3.82 | 3.89 | 3.76 | 3.77 | 3.65 | 3.61 | 3.28 3.76
Four Centres, 25 Hidden Units 420 | 397 | 4.16 | 3.67 | 424 | 3.70 | 3.63 | 4.14 | 3.94 | 3.15 3.88

Table 2: Vector RMS error results - for networks trained per trace. Results in bold face indicate best results per column.
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Performance @ 20° - results for networks trained per trace

MDN architecture trace trace trace trace trace trace trace trace trace trace average
0 1 2 3 4 5 6 7 8 9 over swathe
Two hybrid Kernels, 10 Hidden Units | 61.60 | 66.30 | 67.40 | 69.90 | 70.10 | 72.90 | 69.60 | 69.60 | 73.60 | 80.30 70.13
Two Centres, 10 Hidden Units 64.40 | 67.10 | 67.10 | 69.50 | 73.20 | 73.70 | 69.50 | 70.30 | 74.10 | 78.10 70.70
Four Centres, 10 Hidden Units 71.00 | 70.30 | 72.60 | 74.40 | 74.70 | 75.70 | 7540 | 75.00 | 77.60 | 81.90 74.86
Two hybrid Kernels, 15 Hidden Units | 66.10 | 68.80 | 67.50 | 72.50 | 72.90 | 74.20 | 71.00 | 72.00 | 74.90 | 79.00 71.89
Two Centres, 15 Hidden Units 69.30 | 68.50 | 70.70 | 72.80 | 74.40 | 75.10 | 73.10 | 72.90 | 75.80 | 79.40 73.20
Four Centres, 15 Hidden Units 72.50 | 71.00 | 72.30 | 75.00 | 76.20 | 75.10 | 76.00 | 74.80 | 77.40 | 81.10 75.14
Two hybrid Kernels, 20 Hidden Units | 68.30 | 67.20 | 69.20 | 72.60 | 72.50 | 74.00 | 72.20 | 72.10 | 75.70 | 81.20 72.50
Two Centres, 20 Hidden Units 69.10 | 69.10 | 69.50 | 72.60 | 73.80 | 75.80 | 74.20 | 74.80 | 77.60 | 81.10 73.76
Four Centres, 20 Hidden Units 72.30 | 71.40 | 71.80 | 74.20 | 76.10 | 75.70 | 75.30 | 74.70 | 76.50 | 81.00 74.90
Two hybrid Kernels, 25 Hidden Units | 67.20 | 67.70 | 69.80 | 72.30 | 73.00 | 75.00 | 72.00 | 71.40 | 75.80 | 80.60 72.48
Two Centres, 25 Hidden Units 69.20 | 69.50 | 70.70 | 73.60 | 73.70 | 75.10 | 73.60 | 74.10 | 75.90 | 79.50 73.49
Four Centres, 25 Hidden Units 71.60 | 69.10 | 72.50 | 74.40 | 75.40 | 76.50 | 75.70 | 74.80 | 76.90 | 81.70 74.86

Table 3: Performance @ 20° - for networks trained per trace. The results are computed using the wind direction obtained by the ‘perfect’ am-

biguity removal algorithm described in the text. Results in bold face indicate best results per column.
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Performance summary for networks trained with incidence angle as an input
MDN architecture FoM | RMS Errors | Perf @ 20°
Two Hybrid Kernels, 35 Hidden Units | 0.85 4.18 73.54
Two Kernels, 35 Hidden Units 0.88 4.03 73.28
Four Kernels, 35 Hidden Units 0.96 3.83 76.96
Five Kernels, 35 Hidden Units 0.96 3.84 76.66
Twelve Kernels, 35 Hidden Units 0.80 5.13 74.82
Two Hybrid Kernels, 50 Hidden Units | 0.82 4.33 71.10
Two Kernels, 50 Hidden Units 0.89 4.02 74.58
Four Kernels, 50 Hidden Units 0.96 3.86 77.08
Five Kernels, 50 Hidden Units 0.97 3.84 77.14
Twelve Kernels, 50 Hidden Units 0.82 4.87 75.32

Table 4: Performance results over the whole swathe - for networks trained with incidence angle
as an input. These results are generated with the test data set of 5000 examples.
Results in bold face indicate best results per column.
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Figure 7: Conditional probability distribution plots, for a model with 4 kernels and 25 hidden units.



FoM- results by trace, for networks that take incidence angle as an input

MDN architecture trace | trace | trace | trace | trace | trace | trace | trace | trace | trace average
0 1 2 3 4 ) 6 7 8 9 over swathe
Two hybrid Kernels, 35 Hidden Units | 0.80 | 0.79 | 0.82 | 0.86 | 0.86 | 0.88 | 0.88 | 0.90 | 0.92 | 0.97 0.87
Two Kernels, 35 Hidden Units 0.81 | 0.81 | 0.82 | 0.88 | 0.88 | 0.91 | 0.93 | 0.92 | 0.93 | 0.99 0.89
Four Kernels, 35 Hidden Units 0.88 | 0.84 | 0.84 | 094 | 0.92 | 0.89 | 0.92 | 095 | 0.93 | 1.12 0.92
Five Kernels, 35 Hidden Units 0.79 { 0.90 | 0.89 | 097 | 092 | 0.98 | 0.96 | 0.98 | 1.00 | 1.04 0.94
Twelve Kernels, 35 Hidden Units 0.60 | 0.71 | 0.79 | 092 | 0.85 | 0.81 | 0.80 | 0.85 | 0.90 | 0.99 0.82
Two hybrid Kernels, 50 Hidden Units | 0.79 | 0.77 | 0.79 | 0.84 | 0.85 | 0.87 | 0.88 | 0.87 | 0.90 | 0.97 0.85
Two Kernels, 50 Hidden Units 080 | 0.81 | 0.83 | 0.89 | 0.8 | 0.92 | 0.91 | 094 | 095 | 1.02 0.90
Four Kernels, 50 Hidden Units 08 | 0.85 | 0.87 | 0.99 | 091 | 0.96 | 0.98 | 097 | 0.99 | 1.04 0.94
Five Kernels, 50 Hidden Units 084 | 0.89 | 0.84 | 098 | 0.95 | 0.97 | 0.99 | 1.00 | 0.99 | 1.05 0.95
Twelve Kernels, 50 Hidden Units 0.63 | 0.75 | 0.84 | 0.87 | 0.83 | 0.80 | 0.82 | 0.85 | 0.82 | 0.89 0.81

Table 5: FoM results - by trace, for networks trained with incidence as angle as an input. Results in bold face indicate best results per column.
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Vector RMS error - results by trace, for networks that take incidence angle as an input

MDN architecture trace | trace | trace | trace | trace | trace | trace | trace | trace | trace average
0 1 2 3 4 ) 6 7 8 9 over swathe
Two hybrid Kernels, 35 Hidden Units | 4.41 | 4.45 | 4.23 | 412 | 405 | 3.94 | 3.98 | 3.94 | 3.81 | 3.65 4.06
Two Kernels, 35 Hidden Units 428 | 428 | 4.13 | 397 | 393 | 3.81 | 3.74 | 3.84 | 3.69 | 3.46 3.91
Four Kernels, 35 Hidden Units 4.22 | 4.33 | 4.08 | 4.11 | 4.01 | 4.40 | 4.10 | 4.08 | 3.94 | 3.30 4.06
Five Kernels, 35 Hidden Units 491 | 4.09 | 3.85 | 3.88 | 412 | 3.62 | 3.75 | 3.71 | 3.56 | 3.45 3.89
Twelve Kernels, 35 Hidden Units 7.89 | 538 | 4.75 | 4.08 | 436 | 493 | 5.24 | 477 | 443 | 4.05 4.99
Two hybrid Kernels, 50 Hidden Units | 4.54 | 4.60 | 4.38 | 4.17 | 4.12 | 4.00 | 3.99 | 4.03 | 3.86 | 3.72 4.14
Two Kernels, 50 Hidden Units 433 | 427 | 413 | 399 | 392 | 3.77 | 3.79 | 3.75 | 3.69 | 3.49 3.91
Four Kernels, 50 Hidden Units 428 | 416 | 4.03 | 3.74 | 421 | 3.90 | 3.75 | 3.94 | 3.69 | 3.45 3.91
Five Kernels, 50 Hidden Units 433 | 416 | 3.99 | 3.74 | 3.85 | 3.70 | 3.65 | 3.68 | 3.69 | 3.54 3.83
Twelve Kernels, 50 Hidden Units 7.08 | 5.16 | 4.33 | 4.78 | 4.90 | 518 | 5.12 | 4.67 | 4.84 | 4.39 5.04

Table 6: Vector RMS error - by trace, for networks trained with incidence as angle as an input

. Results in bold face indicate best results per column.
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Performance at 20° - results by trace, for networks that take incidence angle as an input

MDN architecture trace | trace | trace | trace | trace | trace | trace | trace | trace | trace average
0 1 2 3 4 5 6 7 8 9 over swathe
Two hybrid Kernels, 35 Hidden Units | 61.60 | 63.60 | 69.50 | 71.70 | 71.80 | 73.90 | 71.00 | 72.00 | 74.50 | 79.10 70.87
Two Kernels, 35 Hidden Units 63.50 | 64.20 | 68.20 | 71.70 | 72.40 | 75.30 | 71.80 | 73.10 | 74.30 | 79.00 71.35
Four Kernels, 35 Hidden Units 66.90 | 66.30 | 71.30 | 73.50 | 77.00 | 74.90 | 74.30 | 75.60 | 75.70 | 80.50 73.60
Five Kernels, 35 Hidden Units 63.70 | 69.00 | 71.40 | 74.20 | 76.20 | 76.40 | 75.00 | 75.80 | 77.10 | 79.30 73.81
Twelve Kernels, 35 Hidden Units 63.10 | 69.10 | 71.20 | 73.40 | 75.10 | 74.40 | 74.20 | 74.80 | 77.50 | 79.90 73.27
Two hybrid Kernels, 50 Hidden Units | 58.50 | 60.50 | 66.80 | 70.70 | 70.80 | 73.00 | 71.20 | 72.20 | 74.60 | 79.00 69.73
Two Kernels, 50 Hidden Units 62.80 | 66.10 | 69.20 | 72.30 | 73.30 | 76.20 | 73.60 | 74.40 | 76.30 | 79.60 72.38
Four Kernels, 50 Hidden Units 65.80 | 68.10 | 71.00 | 73.30 | 76.80 | 76.80 | 75.90 | 74.70 | 77.80 | 79.60 73.98
Five Kernels, 50 Hidden Units 65.00 | 68.10 | 71.20 | 74.00 | 76.90 | 76.20 | 75.00 | 75.40 | 76.60 | 79.20 73.76
Twelve Kernels, 50 Hidden Units 64.60 | 68.40 | 71.40 | 74.10 | 77.10 | 75.80 | 73.30 | 72.50 | 75.00 | 76.20 72.84

Table 7: Performance @ 20° - by trace, for networks trained with incidence as angle as an input The results are computed using the wind
direction obtained by the ‘perfect’ ambiguity removal algorithm described in the text. Results in bold face indicate best results per

column.
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Figure 8: Conditional probability distribution plots with incidence angle, for a model with 5
kernels and 50 hidden units.
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Figure 9: Conditional probability distribution plots with incidence angle, for a model with 12
kernels and 50 hidden units.
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3 Analysis and discussion

The aims of this project are to investigate the underlying data generator that describes the mapping
from satellite scatterometer data to wind vectors, o® — (u,v), using a mizture density network.
In Section 2 the methods and results of training the MDNs, with and without incidence angle as
inputs, were presented. Also the structure of the MDN was modified to investigate modelling the
inherent ambiguity in the wind direction. In this section the results of the experiments in Sections
2 are analysed and discussed.

3.1 Analysis of the inverse models

Both the complexity of the mapping 0 — (u,v) and of the probability density function P(u,v|o°)
are of interest. These properties are represented by the MLP and GMM structures within the MDN
framework. The mapping 0° — (u,v) is modelled by the MLP, whose complexity is controlled
by the number of units in the hidden layer. The complexity of P(u,v | ¢°) is modelled by the
GMM, whose complexity is controlled by number of kernels in mixture. There are two kinds of
model to compare: those which have been trained without incidence angle as an input (trained for
a specific trace) and those that take incidence angle as an input and are general models over the
whole swathe. The results are presented by plotting the FoM and vector RMS results over all the
traces. This format helps to highlight trends in the results.

3.1.1 The complexity of the mapping 0° — (u,v)

In order to investigate the complexity of the mapping 0° — (u,v) the MDN architectures were
trained with the MLP structure having ten, fifteen, twenty and twenty five units in the hidden
layer. Also networks were trained with different kernel configurations (to investigate the complexity
of P(u,v|o°)), which may also affect model performance, and so comparisons in this subsection
are made by kernel configuration, over the number of units in the hidden layer of the MLP.

For two kernels, Figure 10 shows that increasing the number of hidden units improves the model
performance. Figure 11, shows similar results, but for the hybrid MDN configuration: Again,
increasing the number of units in the MLP improves the performance of the model, but in this
case the improvement is not as distinct as for those configurations with two free kernels. The
results of MDNs with four kernels are plotted in Figure 12, and show that the model performance
does not significantly improve by increasing the number of units in the hidden layer of the MLP
over the range trained.

For models with two kernels there is a correlation between increasing the number of units in the
MLP and improving model performance. The best models have twenty five units in the hidden
layer of the MLP. For models with four kernels the results show that the best performance is
achieved by a MLP with twenty hidden units (see Figure 12). The model performance for a MLP
with twenty five hidden units is worse than that of twenty hidden units. There are two explanations
for this. Firstly the complexity of the MLP with twenty five hidden units is sufficient to overfit the
training data, decreasing the models ability to generalise, or, secondly because of the complexity
of the MLP, the MDN becomes stuck in a local minima in the error surface, and the network fails
to find the weights that give optimum generalisation.

For MDNs with a hybrid kernel configuration, the results suggest that the MLP is reaching a limit
in its ability to model the mapping 0° — (u,v), given the GMM configuration. The improvement
in performance does not change significantly for hidden units of twenty and twenty five. Comparing
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Figure 10: Model performance by the number of hidden units in the MLP, for models with
two kernels and trained per trace.

these results with MDN configurations having two free kernels confirms that the assumption that
the inherent ambiguity in the problem is generally 180° holds. The slightly lower performance for
the hybrid MDN is attributed to fixing the ambiguity to 180° and having equal variances on each
kernel, which implies that the model is less flexible than those with two free kernels. Generalising
to data that violates these assumptions will be more difficult for the hybrid configuration (that is,
if the ambiguity moves away from 180°, and /or the variance of each mode is significantly different).

The MDNs that take incidence angle as an input were trained with two MLP configurations:
thirty five, and fifty hidden units. Comparing the results of Table 5 and the graphs in Figures 13
and 14, we see that the performance of the model is affected more by the number of kernels than
the number of hidden units in the MLP. A MLP with thirty five hidden units models the mapping
as well as an MLP with fifty hidden units. The MLP is also modelling the mapping of incidence
angle to the (u,v) space. An extra ten units in the hidden layer (compared with models trained
per trace) adequately models this mapping.

In summary, for MDNs trained per trace, with four kernels, the mapping of ° — (u,v) is
adequately approximated by an MLP having ten hidden units, although the optimal solution
requires twenty hidden units. For MDNs trained per trace with two kernels (including hybrids),
twenty five hidden units in the MLP are required. The assumption that the ambiguity in the
problem is principally at 180° has been shown to hold by comparing the model performance of
the MDNs with hybrid and two free kernel configurations. Models with two kernels and twenty
five hidden units in the MLP do not perform as well as models with four kernels and ten hidden
units in the MLP. This is attributed to the structure of the probability density P(u,v | o), and
is discussed subsection 3.1.2.

For networks trained with incidence angle as an input a MLP with thirty five hidden units satisfac-
torily models the mapping (°,0) — (u,v). Again, the number of kernels in the MDN contributes
more significantly to changes in model performance than changing the number of hidden units in
the MLP.
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Figure 11: Model performance by the number of hidden units in the MLP, for models with
hybrid kernels and trained per trace.

3.1.2 The complexity of the conditional probability
distribution P(u,v|o?°)

The complexity of the probability distribution P(u,v | 0°) is reflected by the number of kernels
in the MDN. If P(u,v | 0°) is a highly complex distribution then a larger number of kernels are
required to model the distribution than if P(u,v | o°) is relatively simple.

Considering MDNs trained by trace, the graphs in Figure 15 show a trend of increasing performance
for an increasing number of kernels in the MDN. The plots for two kernels (red and blue) have
a large variance which indicates a significant dependence on the number of hidden units in the
MLP. Furthermore the variance across a single plot at constant number of hidden units is large
which suggests there is a large amount of noise in the performance estimate. The plots for four
kernels have less variance indicating that there is less dependence on the number of hidden units
in the MLP; however the noise across a single plot at constant hidden units is consistent with the
red and blue plots. The inference from these plots is that a MDN with two kernels is insufficiently
complex to model the conditional probability distribution, whereas a MDN with four kernels has
increased flexibility and sufficiently models the conditional probability distribution. The plots in
Figures 5, 6 and 7 show that the probability distribution is dominantly bimodal. The fact that
models with four kernels perform better than models with two kernels is of interest. Two possible
explanations are offered; the first is that four centres provide more flexibility when modelling a
probability distribution than two; this is shown in Figure 7 where the positions of the kernels are
placed in roughly four quadrants of (u, v) space. Models with two kernels do not have that kind of
flexibility. The second is that the noise on the targets is not Gaussian or spherically symmetrical.
Figure 16 shows such a case where each mode is modelled by two superimposed kernels; again, the
MDNs with two kernels do not have the flexibility to model non-Gaussian modes, only being able
to approximate each mode by a symmetric Gaussian probability distribution function.

Switching attention to models that take incidence angle as an input the results show an interesting
relationship with the number of kernels in the MDN. The MDNs with twelve kernels perform
worse than MDNs with five or less kernels (see Figures 17, 14 and 13).
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Figure 12: Model performance by the number of hidden units in the MLP, for models with
four kernels and trained per trace.

Why is this so? The aim of any model is to describe the underlying data generator and not the noise
on the targets. The MDNs with twelve kernels are complex enough to model some of the noise on
the targets, and overfit the data. The model then is not a general description of the underlying
data generator describing the mapping 6° — (u,v) but a specific description of the target data,
including the noise. A good example is shown by the plots in Figure 18 where the probability
distribution has several strong peaks, reflecting the distribution of the target data. Comparing
the remaining configurations, performance is best for the MDN with five kernels, for both MLP
configurations of thirty five and fifty units in the hidden layer. Comparing the hybrid kernel and
two free kernel models, it is clear that the free kernel model performs better than the hybrid model,
again, this can be explained by the reduced flexibility of the hybrid model, but suggests that the
probability distribution is generally bimodal but the modes are not exactly diametrically opposite
one another or are non-Gaussian.

The probability density P(u,v | o) is generally bimodal. The modes, however, are more complex
than a spherical Gaussian model. For the networks trained for each trace the MDN with four
kernels and twenty hidden units in the MLP is the best model, and is denoted M D Nqc0e. For
networks trained with incidence angle as an input, the best MDN has five kernels and fifty hidden
units in the MLP, and is denoted M D N;p,cidence-

3.2 Comparison with other neural network methods

Cornford et al. (1997) give figures for their neural network approach for predicting wind vectors,
based on ERS-1 satellite data. They solve the inverse problem by training distinct networks with
incidence angle as an input to model wind speed and wind direction. Considering their models on
an individual basis they report that the correct solution within 20° is obtained more than 70% of
the time for the first two aliases, which is similar to the results obtained with the models in this
project. They improved the performance by creating a committee of networks and then obtained
the correct solution to within 20° roughly 75% of the time (averaged over the swathe). For wind



Predicted wind direction chosen from the first two most probable aliases, performance at 20° (%)

MDN architecture | trace O | trace 1 | trace 2 | trace 3 | trace 4 | trace 5 | trace 6 | trace 7 | trace 8 | trace 9 | average
MDNyirace 72.3 71.4 71.8 74.2 76.1 75.7 75.3 74.7 76.5 81.0 74.9
M DNpcidence 63.7 69.0 71.4 74.2 76.2 76.4 75.0 75.8 77.1 79.3 73.8
A-NN; 85.1 85.0 86.9 87.7 87.5 87.8 87.6 88.0 88.2 86.9 87.1

Table 8: Comparing the direction performance of the best MDNs with published results.

B1E(] 1919WO0J911EDG 91[|91BG WIOL) SI0103/ PUIAASUIIDBIIXT J04 SHIOMIBN |elndy :Moday Suikyient) Jeap sii4

9¢



First Year Qualifying Report: Neural Networks for ExtractingWind Vectors from Satellite Scatterometer Data

37

FoM - For networks with 35 hidden units in the mip Vector RMS Error = For networks with 35 hidden units in the mip
8
0--0 2 hybrid centres 0---0 2hybrid centres
++ 2centres A 7.5 + o+ 2centres
11+ |& - A 4centres /I A - A Acentres
*—— 5centres , 7 *+—*  5centres
e—=a 12 centres ’ 5—a 12 centres

Vector RMS error

0.7r

0 1 2 3 4 5 6 7 8 9
Trace number Trace number

(a) FoM (b) Vector RMS error

Figure 13: Model performance by the number of kernels. For a network with thirty five units
in the hidden layer, and trained with incidence angle as an input

speed they obtained a RMS error of 1.8 ms™! which is within the design specifications of the
instrument (2.0 ms~!). The networks presented here have an wind speed RMS error of 2.0 ms~!
when averaged over the swathe. Richaume et al. (1998) give results for their neural network
approach to wind vector retrieval based on ERS-1 data (following an initial study by Thiria et al.
(1993) which was based on simulated scatterometer data). For each trace two networks are trained,
one to model wind speed, denoted S-NN; (where i corresponds to the trace), and one to model
wind direction, denoted A-NN;. Results are quoted for predicted wind speed bias and RMS error,
and wind direction performance @ 20°. The wind direction results are quoted for the first, second,
third and forth alias predictions. The second alias method is equivalent to the ‘perfect’ ambiguity
removal method used in this project, and provides a means of comparison. Table 8 shows the results
for perf. @ 20° of M DNyygce, M DNincidence, A-INN;. The A-N N; neural network performs better
than both MDN networks when predicting direction to the second alias. However, we must not
that the imputs to the A-NN; network also contain spatial information which gives additional
ambiguation skill to the A-NN; networks. The MDN networks a purely local models, having no
disambiguation skill whatsoever, inverting each scatterometer measurement on a per-cell basis.

Table 9 presents the wind speed bias and RMS error results. Comparing the biases it is interesting
to note that A-NN; has only negatively biased results, where as the MDN models have both
positively and negatively biased networks, and so are less biased over the whole swathe. The RMS
error results show that A-NN;, performs within the instrument specification of 2 ms~!, whereas
MDN;ncidgence and M D Nypqce both fall outside the measurement specification for several of the
middle traces.

The superior performance of S-NN; and A-N N; may be attributed to:

e Larger data sets (the training set contains 24,000 pairs and the test set 5,000 pairs). Large
data sets help to regularise the network during training, making it less susceptible to outliers
in the data set.

e The spatial information presented on the inputs may provide extra disambiguation skill. The



Predicted wind speed bias ( ms—!)

MDN architecture | trace 0 | trace 1 | trace 2 | trace 3 | trace 4 | trace 5 | trace 6 | trace 7 | trace 8 | trace 9
M DNy, qce 0.0 -0.3 -0.1 0.0 -0.1 0.0 0.1 0.0 -0.1 0.1
M DNipeidence 0.0 -0.3 -0.1 0.0 -0.1 0.0 0.1 0.0 -0.1 0.1
A-NN; -0.2 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0
Predicted wind speed RMS ( ms™1!)
MDN architecture | trace 0 | trace 1 | trace 2 | trace 3 | trace 4 | trace 5 | trace 6 | trace 7 | trace 8 | trace 9
MDNiygce 1.9 2.1 2.1 2.0 2.1 2.1 2.1 2.0 2.0 1.8
M DN, cidence 1.9 2.1 2.1 2.0 2.1 2.1 2.1 2.0 2.0 1.8
A-NN; 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.7

Table 9: Comparing the speed performance of the best MDNs with published results
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MDNs are trained with input from a single measurement.

e The range of wind speeds used by Richaume et al. (1998) is slightly greater, with a wind
speed range of [3.5 ms~!,25.0 ms~!]. There are likely to be more training patterns in the
wind speed ranges that are more difficult to learn.

e The MDN networks may be getting stuck in local minima on the error surface during training.

To visualise the alias results and the effect of choosing the two most likely solutions, four graphs
are provided. The results are obtained from M D N;pcidence, using the test set with five thousand
examples. The Figure 19(a) shows the most probable predicted direction, where the true and alias
solutions can be seen. Figure 19(b) shows the de-aliased prediction. The Figure 20(a) shows the
most probable predicted wind speed, Figure 20(b) shows the de-aliased prediction, in each case
the model is biased high for wind speeds approximately less than 7 ms~', and biased low at wind
speeds approximately greater than 20 ms~'.

In this section the results presented in Section 2 have been discussed. It has been shown that MDN s
model the mapping from scatterometer space directly into wind vector component space with a high
degree of success. The probability distribution P(u,v|o®) is generally bimodal, but the noise on the
targets is more complex than the spherically symmetric Gaussian assumption that was first made.
It has also been shown that the mapping (6°,0) — (u,v) performs similarly to models trained by
trace. The best MDNs do not perform as well some other neural network methods, but they do
have the advantage of directly mapping to (u,v) space. In the next section the conclusions of this
project are presented along with possible future avenues of investigation.
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Figure 14: Model performance by the number of kernels. For a network with fifty units in the
hidden layer, and trained with incidence angle as an input
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Figure 15: Model performance, comparing networks which are trained by trace, by the number
of kernels
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Figure 17: Model performance, comparing networks which take incidence angle as an input,
by the number of kernels,
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Figure 18: An example of overfitting in P(u,v | °) space.
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Figure 19: Scatter plots of observed vs predicted wind directions
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Figure 20: Scatter plots of observed vs predicted wind speed
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4 Conclusions and future work

The preceding two sections have demonstrated that MDNs can be applied to directly model wind
vector components from scatterometer data. In this concluding section, the aims of subsection
1.5 are re-visited, the findings of this project reviewed, and on-going and potential future work is
described.

4.1 Conclusions

The overall aim of this project is to assess the feasibility of directly modelling the wind vectors
(u,v) from scatterometer data o°. The results presented in Section 2 clearly show that this method
is feasible. Further questions were posed concerning the complexity of the mapping o°® — (u,v)
and the complexity of P(u,v | a®).

¢ Investigating the mapping 0°® — (u,v), it has been shown that a MDN that has a MLP
with twenty units in the hidden layer, and a GMM with four kernels successfully maps this
relationship. A more complicated model describing the mapping (¢°,6) — (u,v) was con-
sidered. This mapping is modelled using a MDN with a MLP with thirty five units in the
hidden layer, and five kernels in the GMM.

e Considering P(u,v | °), the hybrid MDN configuration yields similar results to a MDN
with two free centres, and shows that the conditional probability distribution is generally
bimodal with the two modes positioned diametrically opposite one another. The distribution
of the noise on the wind vectors has been shown to be more complex than the spherically
symmetrical Gaussian noise model originally assumed. This is shown by the MDNs which
have the ability to model more complex (yet still dominantly bimodal) distributions than
the one assumed by having four, five and twelve kernels. While the distribution is still
generally bimodal, it is heavier tailed than the Gaussian distribution assumed, and is not
always spherically symmetric.

e Other work in the field solves the inverse problem by directly modelling wind speed and wind
direction with two separate models. The models of this project are similar in performance
to other local methods (Cornford et al., 1997). These methods however do not compare as
favourably with those methods which take spatial information surrounding the cell of interest
as part of their inputs (Richaume et al., 1998).

e The large number of MDNs trained in this project was made possible by developing fast
mdn that moved the computation of the error gradient into parameter space (the outputs of
the MLP). This improved training time from a few days to a few hours for MDNs trained
by trace, and allowed MDNs with large data sets to be trained, such as those that take
incidence angle as an input, in a realistic time frame.

The final conclusions of this project are that mixture density networks provide a principled frame-
work within which to model wind vectors directly from satellite scatterometer data, and the quality
of the results provide an encouraging path of investigation for novel disambiguation techniques.

4.2 On-going work

The ultimate aim is to build models that provide autonomous ambiguity removal from satellite
scatterometer data, that is without reference to winds derived from numerical weather prediction
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models. On-going work at Aston is investigating autonomous ambiguity removal within a Bayesian
framework. Within this framework, we can use either the local inverse models developed in this
project, or local forward models (such as those developed by Guillaume Ramage during his MSc
project). Continuing the work of this project, an implementation is currently being developed
using the local inverse models.

The Bayesian method is fundamentally different to that of Richaume et al. (1998). They explicitly
incorporate spatial information in the model construction, taking into account correlation between
neighbouring cells. The Bayesian method has two stages. First the local models are trained. When
training it is assumed that there is no spatial correlation between the local models. The second
stage is to apply Bayes’ theorem and combine the local models with global wind prior models to
impose the spatial physical constraints of wind fields. Bayes’ theorem can only be applied if it is
assumed that for the forward model the probabilities, of the scatterometer measurements, o2, are
independent, conditional on the wind vectors, (u;,v;). This assumption further implies that the
models of Richaume et al. (1998) cannot be used in the Bayesian context presented here.

The wind field, U, V, is represented by a density probability over a wind field (U, V') conditional
on the scatterometer measurements 3°:

P(U,V|X°). (34)

Bayes’ theorem is applied to (34) to express the posterior probability in terms of a global forward
model:

P(U,V|%°) « P(X°|U,V)P(U,V). (35)

The global forward model is expressed as a product of probabilities given by a local forward model,
assuming that they are conditionally independent:

P(U,V | X°) HP(U;’ | wi, i) P(U, V). (36)

Bayes’ theorem is applied again to express the local forward model in terms of the inverse model,
this is called the scalled likelihood method (Williams, 1997):

P(ui,v; | al)P(0?)
P(U,V | X° : L = | P(U,V). 37
V| )“@ P V) (37)
Finally, the the local scatterometer measurements P(o{) are constant for a given scene and the
posterior probability distribution is expressed as:

o P(uj,vi | a7)
P(U,V | £°) x (H Pl ) P(U,V). (38)
Equation (38) defines a probability density which has a dimension given by the number of wind
vectors in the wind field. The posterior is described by a combination of three probability models:
the local conditional inverse model P(u;,v; | ¢2), the local unconditional model P(u;,v;) and the
global wind prior P(U, V). These three models are implemented in MATLAB using the local inverse
models developed in this project, local unconditional models and the global wind prior of Cornford
(1998). The parameter space of the posterior distribution, the wind vectors (U, V), is explored
using Markov Chain Monte Carlo techniques. These techniques use stochastic methods to sample
from the posterior distributions such as (38). Once the stationary distribution is found inference
is made on the model parameters (U, V).
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4.3 Potential future work

The results of this project have raised as many questions as they have answered, and there is still
much to learn about the structure of the inverse mapping and the behaviour of MDNs. To finalise
this report the remainder of this subsection suggests possible avenues of work.

4.3.1 Further investigation on the ¢° — (u,v) mapping

There are many possible changes to the MDN structure that might help improve the performance
of the model, two of the most promising are:

e For MDNs with two free kernels and trained by trace. Training MDNs with an increasing
number of units in the hidden layer of the MLP until optimal performance is achieved. Once
the optimal configuration is established, a comparison can be made with the current results
from MDNs with four kernels to establish how the assumption that the noise in the targets
is Gaussian and spherically symmetric affects model performance.

e Further investigate the mapping (o°,0) — (u,v) by reducing the number of hidden units
in the MLP for MDNs taking incidence angle as an input, and find the point where model
performance significantly reduces. The extra number of hidden units in the MLP will give an
indication of the complexity of the relationship between incidence angle and the measurement
manifold for each trace.

4.3.2 Further investigation of the structure of the probability
distribution P(u,v|o°)

The results have shown that the noise on the targets in the current data set appears non-Gaussian,
and dominantly bimodal. Improvements to the model structure by modifying the architecture of
the MDN to model this distribution may be of benefit:

e Build a hybrid MDN with two free kernels and two mirroring centres. This will be a less
complex model than a full model with four kernels and should be able to model the non-
Gaussian modes more efficiently than the hybrid MDN with two kernels.

e The noise distribution on the targets appears to be heavier tailed than the Gaussian distri-
bution originally assumed. This assumption could be modified by replacing the kernels with
a heavier tailed distribution (such as a t-distribution), and retrain MDNs with two kernels.

4.3.3 Further work to improve generalisation

There is also potential work in improving the generalisation performance of the MDNs with respect
to the quality of the training data and the training methods employed:

e QOutliers in the training set will affect the ability of the MDN to generatlise. By carefully
removing outliers from the training set (either manually or otherwise) and retraing the MDN's
we expect to see an increase in generalisation performance.
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e Cornford et al. (1997) showed that using committees of MDNs (with kernels of circular
normal densities) to predicted wind direction improved their results by roughly 5%. Given
that there are several MDNs trained in this project, this method is a simple way of improving
the results without the retraining the MDNs.

e MDNs can get stuck in local minima on the error surface. By changing the starting position
on the error surface (by choosing a different seed in the random number generators) the
MDNs may find a better location on the error surface with respect to generalisation.

e The MDNs trained in this project are unregularised. Regularisation controls the complexity
of neural networks during training, and making the generalisation performance less sensitive
to the initial model complexity. Lars Hjorth, a fellow MSc student, is developing a regularised
MDN framework. When he has completed his work, his framework could be applied to this
problem.

e Little is known about the learning dynamics of the MDN. Investigation into the evolution
of the parameter vector may well provide an insight into the way MDNs learn, and lead to
improvements that increase the generalisation properties of these methods.

In this final section the conclusions of this project have been drawn: It has been shown that MDNs
offer a feasible framework in which to directly extract wind vector components from satellite scat-
terometer data. There is on-going work, which has been described, putting the local inverse models
of this project into the larger context of autonomous disambiguation methods. Finally, there are
still many more questioned to be answered, a few have been proposed here, with a hope to inspire
other researchers, and anyone who reads this thesis, to continue on this path of discovery.
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A The gradient of the error function of a MDN

This appendiz is provided to show the reader the detail of the derivation of the gradient of the
negative log likelihood of a mizture density network (the error function) with respect to the outputs
of the feed forward network (which is usually a multi-layer perceptron).

A.1 The Error function and its partial derivatives

The negative log likelihood of MDN for the nt" training pattern, where x,, represents the n**

input pattern and ¢,, represents the n*" target pattern, is defined as:

By = - 1n{§aj<xn>¢j ()} (39)

The j* kernel, ¢;, for the n'" pattern, is defined as a spherical Gaussian of the form:

D N el
¢J_(27r)§a]¢(mn) p( 203 (xn) )

The total error is the summation of the error of each pattern:

N
E=) E,. (41)

Because of (41) the following analysis is on a per-pattern basis. For typographical clarity refer-
ences to the target and training data sets are removed where possible from (39) and (40) and are
represented in the following form:

B, = —1n{§aj¢j}. (42)

and

¢; =

(27) 20§

exp <_M> . (43)

3
20].

The objective is to compute the derivatives of E, at the outputs of the MLP network. Back-
propagation is used to compute the errors at the inputs of the MLP (Bishop, 1994; Bishop, 1995).
The derivatives of interest (using the terminology of Bishop (1994)) are,

e The partial derivative with respect to the outputs corresponding to the mixing coefficients

ZC!.

oF,
0z% "

J

(44)
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e The partial derivative with respect to the outputs corresponding to the variances or widths
z2%:
oE,

029"

J

(45)

e The partial derivative with respect to the outputs corresponding to the centres or positions

in target space 2%,
oFE,
IEn (46)
0zj,

In order to simplify the analysis and notation, the posterior probability of a point is defined. Using
Bayes theorem:

@;p;
T = —=m————, 47
! Zgl al¢l i ( )
where,

0<m <l Vi, (48)

M
» om=1. (49)

j=1

A.1.1 Computing the derivatives of the mixing coefficients

The mapping constraints from the output of the MLP to the parameters of the GMM are considered
when computing the partial derivatives. Using the chain rule:

5= G )
J & J
then from (42):
O0E, 1 y
da [Z}n—l a;¢; 'qﬂ ag (51)
ok 1
iy iy o’
and substituting (47):
gf: = —2—2. (52)
Some care is needed when deriving gj}’; . Each oy represents a mixing coefficient for each Gaussian

in the mixture model. To ensure that the mixing coefficients represent probabilities they must
always sum to one, that is Zj\il a; = 1. This is achieved by using the ‘softmax’ function on the
output of the network such that:

exp(=2)

) (53)

aj

Using the quotient rule for differentiation and considering the two cases for j = k and j # k we
have:
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e for the case when j # k:

day, _ oy exp(z).0 — exp(2$) exp(zf)
023 (222, exp(2f))? ’ (54)
=-—wajag,  jFEk

e for the case when j = k,

day Sy exp(zf'). exp(2§) — exp(z]) exp(zf})

925 (320L exp(z))?
_ exp(zf) B { exp(zf) r (55)
>oiL exp(zf) Yimyexp(z)]

=ay —aj, Jj=k.

We can summarise (54) and (55) by

j=12,...m
=00 — QR k=1,2,...m (56)
d;r is the Kronecker delta function.

Oax
0z¢

To compute the final derivative, substituting (52) and (56) into (50) yields

80ék Tk
Zk E kS — aras
82}1 ay, ( ik akaj)

k
Tk Tk (57)
= = O + R X
= -7 + ;.

because ), 7 = 1 and ), mpdjp = 7).
Then the final result is

o8,

A.1.2 Computing the derivatives of the variances

The term 27 refers to the variance of the Gaussian. When differentiating, we must be aware that
we are differentiating with respect to the variance, crf.. Again, considering the mapping constraints
between the outputs of the MLP and the model parameters, the chain rule is used to expand the
partial derivative:

OE, _OE, 00}

T =55 59
929 o} 027 (59)
Differentiating (42) with respect to o3 yields:
aEn 1 a(aj¢j)
A %) |, (60)
805 [Zl—l a;jd; 805
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the kernel, ¢;, is defined as a Spherical Gaussian (43), expanding (60) gives:

1 [tn — a;l1?
J

Completing the differentiation:

A ;) { 1 1 ( ltn — “j||2>
S = —Cr—5 ——=—eXp| ————5"—
605 @ 0205 (27r)§gjc. *p 202

J

tn_ i 2 ]. tn_ i 2
L . fjll Cexp<_|| . gyll )}
oj (2m)2 05 7

1 t, — .2 ty, — ;2 62
SO S Y P T (62
(2m)2 0% 2073 2073 207

-~

equation (61)

2
@;¢; c It — wyll
el e ol
J

a O'j

Combining (60) and (62):

O, _ _ [L@{_;M}

do3 2 g | o3 oy (63)
_ T ||tn - ld”j”2 _ ¢
2 cr? crjz. '
The second term in expression (59) is easily computed:
%) — expl)
= exp(z]
9z~ TPV (64)
=]
Then substituting (63) and (64) into (59) the final derivative becomes
0En _  m; | lItn — I
Y LA L 65
0z7 2 { o3 ¢ (65)

A.1.3 Computing the partial derivative with respect to the kernel centres

For this derivative there is no constraint (that is to say pr = z;‘k) applied on the output of the

MLP as there is in the previous two cases. Therefore gZE,I' is computed directly from (42):
ik

(66)

T m I
azjk Zl:l al¢l szk

aEn _ [ 1 8(0&j¢j)]

Then differentiating ¢; (43) with respect to each z;‘k yields:
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0y _ (ti=p 1 M=l
az;.‘k o2 (27)20¢ P 202

)

J J J (67)
e — Yk
=—— ¢
9j
Then substituting (67) into (66) yields the final result:
OB, _ ¢ bk~ Wk
Oz A (68)

_ L Hie — b
=TT [
J

A.2 Summary of results

The partial derivatives computed with respect to the feed forward network outputs are summarised
below:

oE,,
922 A
j
0B, __myflti -yl
0z 2 a? ’

0E, _ S —ty,
asz J sz. '



First Year Qualifying Report: Neural Networks for ExtractingWind Vectors from Satellite Scatterometer Data 54

B The gradient of the error function of the hybrid MDN

In this appendix the derivation of the hybrid MDN framework is analysed in detail. The MDN
framework is modified to encode the ambiguous directions that exist in the inverse mapping

B.1 The Error function and its partial derivatives

The error function of a hybrid MDN is some what simpler than the full MDN:

By = = {a@n)d(talan) + (1 - alan)(talon) . (69)
bltnken) = g exp Ll (70)
Y(tn|Tn) = o2 (@) exp <—W> ; (71)

simplified thus:

E, :—1n{a¢+(1—a)¢}. (72)

Define the two posterior probabilities for each point:
The free centre:

T ag+ 8¢— )’ 7
and the hybrid centre:
S
B.1.1 Computing the derivatives of the mixing coefficients
Using the chain rule:
taking the first term from (72):
2 = |agraaw Y -

B _[a¢+<f—a>w - a¢+<@f—a>w}
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Then simplifying by using posterior distributions

_ ) a Y (1-a)
- |ag+(—a)pa ap+(1—a)y(1-a)
N }

o (1-a)

. 7
T (77)
e (1-a)

[ =a)mr—ay
- a(l — a) }
but as v = 1 — 7, the final solution is:
0E, 7m—a«
b a(l—a) (78)

The mixing coefficient « is a probability, and therefore is constrained by 0 < a < 1. The logistic
function on the output of the MLP achives this:

1

a= 1T oxp(—27)’ (79)
Calculating the second term of (75),
Oa _ exp(—z%)
0z% (14 exp(—2%))?
_ 1 ( exp(—2%) )
(1 +exp(—22)) \ 1+ exp(—22) (80)
1
(1~ o)
=a(l - a).

Combining (78) and (80) the result for the derivative with respect to network outputs for the
mixing coefficients gives,

— =7 —a. (81)

B.1.2 Computing the derivatives of the kernel variances (widths)

Using the chain rule:

0B, _OF, 00’
820 Qo2 9z’
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and differentiating (72) with respect to o? yields:

0E, _ 1 Aagp + (1 — a)y)
do? ad + (1 —a)y do?
_ L tn = pl?
e [“‘ﬁ{‘CF Tt
1w plP? 1 (8
+(1_a)¢{_cﬁ+ 204 }:| a¢-|—(]_—a)w
_[rf e Ma—plPY oy it tplP
B [2{ 02+ ot +2 02+ ot '
The second term in expression (82) is easily computed:
do? — exp(2”)
§zr PV (84)

and combining (83) and (84) equation (82) is complete:
OE, _ [ [|ltn — pl v [ ltn + pl®
aza——[E{T—C + = T—C . (85)

B.1.3 Computing the derivatives of the kernel centres (means)

[\

For this derivative there is no constraint (that is to say px = zj,) applied on the output of the mlp

as there is in the previous two cases. Therefore gf;" is computed directly from (42):
9E, _ _ 1 d(ag + (1 — )y (86)
oz |lag+ (1—a)y e ’
and,
d(a¢ + (1 — a)y) tk — g te + Bk
R = ag¢ = -1-a)y = . (87)

Combining (86) and (87) yields the final result:
OE, _ th — Mk th + g
ozl N [W< o? v o? ' (88)

B.2 Summary of results

The partial derivatives computed with respect to the feed forward network outputs are summarised
below:

OF,
FIC

O0En _ _[7 [ |tn — pl® v [t + pl®

027 {2{ o? 4ty o? ‘I
0E,

_:_ﬂ_tk_llk otk
o2k o? 7 o? '

=
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C Definitions of the summary measures used in the results

This appendiz gives the details of the tools used to analyse the performance of the inverse model,
FoM and vector root mean square error. These statistics are computed after applying a simple
disambiguation procedure which is detailed first

C.1 Disambiguation for model appraisal

The following method of disambiguation permits the comparison of inverse model performance in
terms of the quality of retrieved wind vectors. The predicted direction, D,,.q, and predicted wind
speed, Upred, are chosen using a simple de-aliasing algorithm. The observed wind vector, Vops
(derived from the numerical weather prediction model, and gives the best estimate of a ‘true’ wind
vector available), is compared with the two most probable wind vectors inferred from the model
by measuring the Euclidean distance between each inferred wind vector and the observed wind
vector. The predicted wind vector, Vj,eq, is chosen as the wind vector with a minimum Euclidean
distance from the observed wind vector. The predicted wind vector is then resolved to compute

the predicted direction D,,.q and the predicted wind speed Ujpeq.

C.2 Figure of Merit

This measure was proposed by David Offiler of the UK Meteorological Office and is becoming a
more widely used statistic for comparing the performance of models within this field (Cornford et
al., 1997; Richaume et al., 1998).

(F1+ F2 + F3)

FoM = 3 ) (89)
where:
Fl= \Ubias| + 10Usd43- \Dyias| + Dsa’ (50)
2= %<Ur2ms - %) =
4
F3=3—. (92)

where U represents wind speed, D the wind direction and V' the wind vector (u,v). Where the
parameters are defined:

1 N
Ubias = N Zl Ures(i): (93)
Upes = Upred - U0b37 (94)
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N
1
Urms = N ;(Ures(i))Qa (96)
Vyes = \/Ug,,s + U2y — 2UobsUpred €0S(Dres ) (97)
and
Dyes = Dpred — Dps. (98)

C.3 Predicted wind vector root-mean-square error

The predicted wind vector root-mean-square error is defined as

N
Vims = Z(uies(') + v?es(')) (99)
where the residuals of u;,v; are:
u?ﬂes(i) = (Upred(i) — uobs(z’))2 (100)
and
Ufes(i) = (Upred(i) - Uobs(z’))2: (101)

where the predicted wind vectors are obtained using the method detailed in Subsection C.1

C.4 Performance at 20°

Performance at 20° (denoted perf. @ 20°) is a statistic that measures the percentage predicted
wind directions that are within 20° of the target wind direction. This statistic is used in work by
Thiria et al. (1993), Cornford et al. (1997) and Richaume et al. (1998).



