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tors from Satellite S
atterometer Data 2Abstra
tThe ERS-1 Satellite was laun
hed in July 1991 by the European Spa
e Agen
y into a polar orbitat about 800 km, 
arrying a C-band s
atterometer. A s
atterometer measures the amount of radarba
k s
atter generated by small ripples on the o
ean surfa
e indu
ed by instantaneous lo
al winds.Operational methods that extra
t wind ve
tors from satellite s
atterometer data are based on thelo
al inversion of a forward model, mapping s
atterometer observations to wind ve
tors, by theminimisation of a 
ost fun
tion in the s
atterometer measurement spa
e.This report uses mixture density networks, a prin
ipled method for modelling 
onditional proba-bility density fun
tions, to model the joint probability distribution of the wind ve
tors given thesatellite s
atterometer measurements in a single 
ell (the `inverse' problem). The 
omplexity ofthe mapping and the stru
ture of the 
onditional probability density fun
tion are investigated byvarying the number of units in the hidden layer of the multi-layer per
eptron and the number ofkernels in the Gaussian mixture model of the mixture density network respe
tively. The optimalmodel for networks trained per tra
e has twenty hidden units and four kernels. Further inves-tigation shows that models trained with in
iden
e angle as an input have results 
omparable tothose models trained by tra
e. A hybrid mixture density network that in
orporates geophysi
alknowledge of the problem 
on�rms other results that the 
onditional probability distribution isdominantly bimodal.The wind retrieval results improve on previous work at Aston, but do not mat
h other neuralnetwork te
hniques that use spatial information in the inputs, whi
h is to be expe
ted given theambiguity of the inverse problem. Current work uses the lo
al inverse model for autonomousambiguity removal in a prin
ipled Bayesian framework. Future dire
tions in whi
h these modelsmay be improved are given.
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atterometer Data 71 Introdu
tionThis report investigates a parti
ular inverse modelling problem within the �eld of the geophysi
als
ien
es. It is one of inferring wind ve
tors that des
ribe wind speed and dire
tion over the o
eansurfa
e, from satellite s
atterometer data (measured from the environment), and aims to solve thisproblem using advan
ed statisti
al models 
alled neural networks.In this se
tion the work of other authors in the area is introdu
ed along with a general ba
kgroundto satellite s
atterometry.1.1 The geophysi
al problemNumeri
al Weather Predi
tion (NWP) models are tools used by o
eanographers, meterologists,geophysi
ists and many other s
ientists to fore
ast the future state of the atmosphere. Initial 
ondi-tions for the NWP model are important, as they are essential for a

urate predi
tions. The initial
ondition of the NWP model is the 
urrent state of the atmosphere des
ribed by the parametersof the model in
luding wind speed and wind dire
tion. Depending on the 
ontext, wind ve
torsmay be de�ned in polar 
oordinates (s; �) or Cartesian 
oordinates (u; v). The wind ve
tors areinferred, by an inverse model, from s
atterometer data 
olle
ted from spa
e borne satellites. Su
hs
atterometers provide fast and a

urate global 
overage of the world's o
eans, providing an upto date `pi
ture' of the 
urrent state of the winds over the o
ean. The performan
e of the NWPmodel is then dependent on the quality of the initial 
onditions whi
h are in turn dependent onthe quality of the model used to infer the model parameters, whi
h depends on the quality of themeasurements 
olle
ted by the spa
e borne s
atterometers. Therefore new or improved methodsfor solving the inverse problem are of interest to a wide range of s
ientists and add value to thequality of weather fore
asts.1.2 Measurement a
quisitionThe ERS-1 Satellite was laun
hed in July 1991 by the European Spa
e Agen
y into a polar orbitat about 800 km, 
arrying a C-band s
atterometer. The s
atterometer has a mi
rowave radaroperating at 5:3 GHz, and measures the amount of ba
k s
atter generated by small ripples on theo
ean surfa
e of about 5 
m wavelength (Robinson, 1985). The s
atterometer has three independentantenna whi
h point, on a horizontal plane, in three dire
tions, 45Æ, 90Æ, 135Æ, with respe
t to thesatellite propagation and are referred to as fore, mid and aft beam antennae respe
tively. Thesatellite samples a swathe of o
ean surfa
e approximately 500 km by 500 km. This swathe isdivided into nineteen tra
ks, where ea
h tra
k is approximately 25 km wide. Ea
h measurement
ell is approximately 50 km by 50 km and so there is some overlap between adja
ent tra
ks. Ea
htra
k is identi�ed by the in
iden
e angle of the mid beam with respe
t to the lo
al verti
al, whi
hvaries from 18Æ to 45Æ, and is numbered from 1 to 19 respe
tively (see Figure 1). The odd numberedtra
ks are referred to as tra
es, whi
h are identi�ed as tra
e 0 to tra
e 9 where tra
e 0 is the innermost tra
e with respe
t to the satellite (has the smallest in
iden
e angle). As the satellite passesover the o
ean surfa
e, ea
h 
ell is illuminated by the footprint of ea
h antenna; fore, mid andaft beam respe
tively, and a measurement ve
tor for ea
h 
ell is 
olle
ted, (�of ; �om; �oa). This isreferred to as the normalised radar 
ross subse
tion, denoted by �o and has units of de
ibels.
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Figure 1: Relationship of the ERS-1 satellite antennas and the o
ean surfa
e. For simpli
ity,only nine non-overlapping satellite tra
ks are shown.1.3 Ba
kgroundThere is a unique set of wind ve
tors, 
alled the noisy ambiguity set, whi
h is identi�able froma single s
atterometer measurement. This set shows an inverse mapping exists and is multi-valued (Long and Mendel, 1991).Mu
h e�ort has been applied to understanding the s
atterometer measurement spa
e. An empir-i
al forward model (
alled the Geophysi
al Transfer Fun
tion (GTF)) has been developed thatdes
ribes the mapping from wind speed and dire
tion to the s
atterometer spa
e. The �rst model,Cmod2, was 
alibrated by the RENE-91 
ampaign of the 
oast of Norway (OÆler, 1994). TheGTF has been further 
alibrated to the now operational model Cmod4 (Sto�elen and Anderson,1997b).Sto�elen and Anderson (1997
) show that s
atterometer measurements lie 
lose to a three di-mensional manifold de�ned by Cmod4 in measurement spa
e, and are largely dependent on twogeophysi
al parameters, wind speed and dire
tion. In general the measurements lie within 0:2 dBof the manifold (
orresponding to an un
ertainty in wind ve
tor rms error of 0:5 ms�1), whi
h is
lose to the instrumental measurement noise level.Ambiguity in wind dire
tion arises from noise on the observation and it be
omes diÆ
ult to distin-guish if winds are blowing toward or away from the antenna. This is illustrated in Figure 2, a sket
hof a two dimensional sli
e through the manifold de�ned by Cmod4 at a roughly 
onstant speed.If the observations were noiseless then they would fall on the surfa
e of the manifold, somewhereon the solid bla
k line. The areas of ambiguity would only exist where the bla
k lines 
rossed fora few wind dire
tions. Now 
onsider adding noise to the observation. The observation is pla
edsomewhere near the surfa
e of the manifold in the gray area. Theoreti
ally a noisy observation
an 
ome from one of the two surfa
es of the manifold to whi
h it is normal to. Thus, thereis no way to distinguish whi
h is the 
orre
t solution, and it follows that there are at least twopossible solutions for the wind dire
tion for that observation. Any method of inversion will havemulti-valued solutions for wind dire
tion given a single observation.
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h of the s
atterometer measurement spa
e. The two dimen-sional sli
e is taken through the measurement manifold at 
onstant wind speed. Fora noisy observation there are at least two solutions in wind dire
tion.Most inversion methods whi
h extra
t wind ve
tors from s
atterometer data are based on lo
alinversions of a GTF. These methods invert the GTF by �nding a triplet on the measurementmanifold that is 
losest to the observed measurement triplet by minimising some 
ost fun
tionthat des
ribes the distan
e between the observed and approximated measurements (Sto�elen andAnderson, 1997
). Following inversion, the `best' solutions are 
hosen by 
omparison to a NWPba
kground wind �eld. A heuristi
 �lter is then applied over the wind �eld to smooth and re-move non-geophysi
al stru
tures within the wind �eld (Sto�elen and Anderson, 1997a). Thesemethods su

essfully invert the measurements and show that s
atterometer measurements 
anprovide higher resolution wind �elds than those generated at the European Centre for Mediumrange Weather For
asting (E
mwf). These methods are not autonomous sin
e they rely on NWPwinds for sele
tion of the initial wind �elds.Thiria et al. (1993) used neural networks to model wind dire
tion and speed dire
tly from sim-ulated s
atterometer data. The model 
onsisted of two neural networks. One network modelledwind speed, the other, a 
lassi�
ation network with thirty six bins representing ten degree inter-vals, modelled wind dire
tion by interpreting the outputs of ea
h bin as probability. The inputs tothe neural network took neighbourhood information from the eight surrounding 
ells of a nine bynine grid, where the 
entre 
ell was the measurement of interest. This was found to improve theperforman
e by seventeen per
ent, showing that a spatial 
ontext may well be an important 
onsid-eration in the inverse model. Another interpretation of this improvement is that this 
on�gurationmay provide additional wind dire
tion disambiguation skill to the network.The network for modelling wind dire
tion has inputs of spatial information (the same as those usedfor the wind speed network) and the wind speed estimate. Wind speed as an input improves theposition of the solution on the measurement manifold (the shape of Figure 2 is strongly dependenton wind speed). Taking speed as an additional input was found to improve performan
e of dire
tionestimation. Simulated data was used be
ause ERS-1 was not fully operational and the resultsshowed neural networks to be a promising avenue of investigation for a solution to this inverseproblem.Cornford et al. (1997) applied a feed forward neural network to model wind speed and a mixturedensity network (see se
tion 2.1) with kernels of 
ir
ular normal densities (Bishop and Nabney,1996) to model the full 
onditional probability density of the wind dire
tion given the s
atterometermeasurements, �o. Two 
on�gurations of mixture density networks were 
onsidered for modelling



First Year Qualifying Report: Neural Networks for Extra
tingWind Ve
tors from Satellite S
atterometer Data 10wind dire
tion. In the �rst 
on�guration the kernels were free to move, while in the se
ond the
entres and varian
es of the kernels were �xed. A 
ommittee of the dire
tion networks (made upof members from the two 
on�gurations just mentioned) was also 
onsidered. Additional to thes
atterometer triplet measurement (�of ; �om; �oa), in
iden
e angle was also in
luded as an input tothe networks. The wind speed model performed within the designed spe
i�
ation of the instrumentof 2 ms�1, the results being 
omparable to the inverted Cmod4 model (Sto�elen and Anderson,1997
), although the model had some diÆ
ulty in learning the transfer fun
tion at high and lowwind speeds. For wind dire
tion, the models learnt the inherent ambiguity in the problem, but didnot perform as well as the inverted Cmod4 model. However, these results are en
ouraging, for the
ommittee of networks the solution for dire
tion (to within 20Æ) was 
orre
t roughly 75% of thetime when 
onsidering the two most likely solutions. Ambiguity removal was not addressed in thiswork.Following the methods of Thiria et al. (1993), Ri
haume et al. (1998) 
ontinued to address theinverse problem by training the networks using data 
olle
ted from the ERS-1 satellite. There is adedi
ated transfer fun
tion for wind speed and wind dire
tion for ea
h tra
e. The results reportedshow performan
e to be better than the methods proposed by wind retrieval systems based on theCmod4 GTF. Ambiguity removal is a
hieved by using a NWP ba
kground wind to initialise thesystem, and then applying a three by three 
ell spatial �lter over the wind �eld to minimise theglobal wind varian
e within the spatial �lter. The results show wind �elds that are 
onsistent, and
ompare favourably wind �elds retrieved from the same measurements by the European Centre forMedium range Weather For
asting.1.4 The NEUROSAT proje
t at the Neural ComputingResear
h Group (NCRG)The Neurosat proje
t is 
on
erned with applying neural network approa
hes to problems insatellite remote sensing to extra
t wind ve
tors from satellite s
atterometer measurements takenover the o
ean. There are three distin
t areas of resear
h, although the boundaries are not distin
t:� Solving the forward model, the mapping of (u; v)! �o, by building the probabilisti
 modelP (�o j u; v).� Solving the inverse model, the mapping of �o ! (u; v), by building the probabilisti
 modelP (u; v j �o).� Autonomous ambiguity removal. Predi
ting wind �elds without referen
e to NWP modelwinds. Both heuristi
 and Bayesian methods are applied to this problem.This report 
ontributes towards the Neurosat proje
t by investigating the feasibility of buildingthe inverse model by using the mixture density network framework of Bishop (1994). GuillaumeRamage, a fellow resear
h student, has investigated the forward model (Ramage, 1998). DanCornford and Ian Nabney oversee the proje
t, and have written several publi
ations about mod-elling wind speed/dire
tion and generating wind priors. For further information see Cornford andNabney (1998)11Available from http://www.n
rg.aston.a
.uk/Papers/
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h proje
tProbabilisti
 models provide a general model for un
ertainty in the natural world. Our aim is tobuild a lo
al (that is, for a 50 km by 50 km 
ell in a tra
e) probability model that des
ribes theprobability of a set of wind ve
tor 
omponents, (u; v), given a satellite s
atterometer observation,�o, expressed as P (u; v j�o). In geophysi
al terms this is 
alled an inverse model. The probabilitymodel is implemented using a Mixture Density Network (MDN) framework, whi
h provides aprin
ipled method for modelling 
onditional probabilities (Bishop, 1994). Furthermore, a hybridMDN will be developed that in
orporates the geophysi
al knowledge inherent in the problem,namely the relationship between ambiguous wind dire
tions. This is a
hieved by �xing the relativeambiguous wind dire
tions within the MDN framework.Mixture density networks fa
ilitate the investigation of 
omplexity of the mapping from s
atterom-eter data to wind ve
tor 
omponent spa
e (�o ! (u; v)) and the 
omplexity of the 
onditional jointprobability distribution (P (u; v j �o)) itself. This investigation attempts to answer the followingquestions:� How diÆ
ult is it to model speed and dire
tion simultaneously by dire
tly mapping to thewind 
omponent spa
e?� Can the in
iden
e angle be used as input to the MDN? That is do models trained over alltra
ks of the swathe perform as well as those models trained on ea
h tra
k within the swathe(and do not take in
ident angle as an input)?� Is the 
onditional probability distribution of the Cartesian wind ve
tors, (u; v), bimodal ormore 
omplex?� Is the noise on the Cartesian wind ve
tor 
omponents Gaussian?� How well do the hybrid MDN models 
ompare with standard MDN models of similar 
om-plexity?1.6 Report outlineIn this se
tion, the introdu
tion to the �eld has been des
ribed, and the aims of this proje
t setout.In Se
tion 2 the reader is introdu
ed to the mixture density network, and the te
hni
al details ofits 
onstru
tion. The data pre-pro
essing is des
ribed before the experimental details are outlined.The results of the experiments are presented and dis
ussed with referen
e to summary measuresused within the meteorologi
al 
ommunity.In Se
tion 3 the results are analysed and dis
ussed with referen
e to the 
omplexity of the mapping,and the 
onditional probability distribution. The results are then 
ompared with other publishedresults in the �eld.Finally, in Se
tion 4 the 
on
lusions of this proje
t are presented. On-going work is des
ribedfollowed by potential future work whi
h indi
ates how the models might be improved.
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tion the methods and results of experiments to build an inverse model that maps the satel-lite s
atterometer data dire
tly to wind ve
tor 
omponent spa
e are presented. The models employthe mixture density network framework (and in
ludes a hybrid mixture density network spe
i�-
ally designed to model the dire
tional ambiguity), whi
h is prin
ipled method to model 
ompli
ated
onditional probability density fun
tions.2.1 Theory of mixture density networksMixture Density Networks (MDNs) provide a framework for modelling 
onditional probabilitydensity fun
tions, denoted p(tjx) (Bishop, 1994; Bishop, 1995). The distribution of the outputs, t,is des
ribed by a parametri
 model whose parameters are determined by the output of a neuralnetwork, whi
h takes x as its inputs. The general model is des
ribed by the equationsp(tjx) = MXj=1 �j(x)�j(tjx) (1)and MXj=1 �j(x) = 1: (2)Here �j(x) represents the mixing 
oeÆ
ients (whi
h depend on x), �j(tjx) are the kernel distribu-tions of the mixture model (whose parameters also depend on x), and M is the number of kernelsin the mixture model. There are various 
hoi
es available for the kernel fun
tions, but for thepurposes of this report the 
hoi
e has been restri
ted to spheri
al Gaussians of the form:�j(tjx) = 1(2�) 
2�
j (xn) exp��ktn � �j(xn)k22�2j (xn) �; (3)where 
 is the dimensionality of the target spa
e t. This is a valid restri
tion be
ause in prin
iplea Gaussian Mixture Model (Gmm) with suÆ
iently many kernels of the type given by (3) 
anapproximate arbitrarily 
losely a density fun
tion of any 
omplexity providing the parametersare 
hosen 
orre
tly (M
La
hlan and Bashford, 1988). It follows then that for any given valueof x, the mixture model (1) 
an model the 
onditional density fun
tion p(tjx). To a
hieve thisthe parameters of the mixture model2 are taken to be general 
ontinuous fun
tions of x. Thesefun
tions are modelled by the outputs of a 
onventional neural network that takes x as its input.It is this 
ombination of a Gmm whose parameters are dependent on the output ofa feed forwardneural network that takes x as its inputs that is referred to as a Mixture Density Network (MDN)and is represented s
hemati
ally in Figure 3.By 
hoosing enough kernels in the mixture model and a neural network with suÆ
iently manyhidden units the MDN 
an approximate as 
losely as desired any 
onditional density, p(tjx)(Bishop, 1994). The neural network element of the MDN is implemented with a standard Multi-Layer Per
eptron (MLP) with single hidden layer of tanh units and an output layer of linear units.The output ve
tor from the MLP, Z, holds the parameters that the de�ne the Gaussian mixture2Choosing a spheri
al Gaussian kernel determines the parameters to be the mixing 
oeÆ
ients and the varian
esand 
entres (or means) of the kernel fun
tions.
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tor, for the nth pattern, takes the following form:[�1;n; �2;n; � � � ; �j;n; � � � ; �M;n| {z }M mixing 
oeÆ
ients ;�11;n; �12;n; � � � ; �1
;n| {z }1st kernel 
entre ; � � � ; �j1;n; �j2;n; � � � ; �j
;n| {z }jth kernel 
entre ; � � � ;�M1;n; �M2;n; � � � ; �M
;n| {z }Mth kernel 
entre ; � � � ;�21;n; �22;n; � � � ; �2j;n; � � � ; �2M;n| {z }M widths ℄: (4)Where the total number of outputs from the MLP is (
 + 2) �M , as 
ompared with the usual
 outputs for a MLP network used in the 
onventional manner. In the style of Bishop (1994)outputs of the MLP are denoted by zi. These outputs undergo some transformations to satisfythe 
onstraints of the mixture model. The �rst 
onstraint is thatMXj=1 �(x) = 1 (5)and 0 6 �(x) 6 1 for j = 1; : : : ;M: (6)The outputs of the MLP whi
h 
orrespond to the mixing 
oeÆ
ients, z�j , are 
onstrained usingthe `softmax' fun
tion: �j = exp(z�j )PMi=1 exp(z�i ) : (7)This mapping ensures that the mixing 
oeÆ
ients always sum to unity. The varian
e of the kernelrepresents a s
ale parameter and always takes a positive value. The varian
e parameters of thekernels are represented by exponentials of the 
orresponding outputs of the MLP, z�j :�2i = exp(z�j ): (8)The 
entres of the Gaussians represent a lo
ation in the target spa
e and 
an take any value withinthat spa
e. They are therefore taken dire
tly from the outputs from the MLP, z�jk :�jk = z�jk (9)
x

Neural
Network

P(t | x )
Mixture
Model

Z

Figure 3: The stru
ture of a Mixture Density Network. The inputs x are feed through a neuralnetwork. The outputs of the neural network, Z, de�ne the parameters of the Gmm
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tion is required that provides anindi
ation of how well the model represents the underlying generating fun
tion of the training data.The error fun
tion of the mixture density network is motivated from the prin
iple of maximumlikelihood (Bishop, 1995). The likelihood of the training data set, fx; tg, may be written as:L =Yn p(xn; tn)=Yn p(tnjxn)p(xn); (10)where the assumption has been made that ea
h data point has been drawn independently fromthe same distribution, and so the likelihood is a produ
t of probabilities. Generally one wishesto maximise the likelihood fun
tion. However, in pra
ti
e, it is usual to minimise the negativelogarithm of the likelihood fun
tion (termed the negative log likelihood). These are equivalentpro
edures, sin
e the negative log likelihood is a monotoni
 fun
tion. The error fun
tion E isde�ned as the negative log likelihood:E = � lnL = �Xn ln p(tnjxn)�Xn p(xn): (11)The se
ond term in (11) is 
onstant be
ause it is independent of the network parameters and 
anbe removed from the error fun
tion. The error fun
tion be
omes:E = �Xn ln p(tnjxn): (12)Comparing (12) with (1), we substitute (1) into (12) and derive the negative log likelihood errorfun
tion for the mixture density network:E = �Xn ln� MXj=1 �j(xn)�j(tnjxn)�: (13)In order to minimise the error fun
tion the derivatives of the error E with respe
t to the networkweights must be 
al
ulated. Providing that the derivatives 
an be 
omputed with respe
t to theoutput of the neural network, the errors at the network inputs may be 
al
ulated using the ba
k-propagation pro
edure (Bishop, 1995). By �rst de�ning the posterior probability of the jth kernel,using Bayes theorem: �j(x; t) = �j�jPml=1 �l�l (14)the analysis of the error derivatives with respe
t to the network outputs is simpli�ed. The 
ompu-tation of the error dervivative is further simpli�ed by 
onsidering the error derivatiave with respe
tto ea
h training pattern, n. The total error, E, is de�ned as a sumation of the error, En, for ea
htraining pattern: E = NXn=1En; (15)where En = � ln� mXj=1 �j(xn)�j(tnjxn)�: (16)
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h of the derivatives of En are 
onsidered with respe
t to the outputs of the networks and theirrespe
tive labels for the mixing 
oeÆ
ients, z�j , varian
e parameters, z�j and 
entres or positionparameters z�jk. The derivatives are as follows:�En�z�j = �j � �j ; (17)�En�z�j = ��j2 �ktn � �jk2�2j � 
�; (18)�En�z�jk = �j��jk � tk�2j �; (19)where a full derivation is given in Appendix A.2.2 Mixture density network implementationThis algorithm is 
onveniently implemented in the Netlab3 toolbox for Matlab. The followingtoolbox fun
tions are of interest to the readermdn 
reates a data stru
ture to model a MDN. This stru
ture 
om-prises of the feed forward network stru
ture (an MLP) and astru
ture for the mixture model parameters.mdninit initialises the weights of the network. Uses the target data t toinitialise the biases for the output units of the network after ini-tialising the other weights randomly with a Gaussian prior. Thebiases are initialised by the parameters of a model of the un
ondi-tional density of t. These parameters are 
omputed using tool boxfun
tion gmminit, whi
h uses the k-means algorithm to 
omputethe parameters of the un
onditional model of t.mdnfwd forward propagates the inputs through the model. The output isan array of stru
tures 
ontaining a mixture model for ea
h inputpattern.mdnerr 
omputes the error of the model for a set of inputs and targets.mdngrad 
omputes the error gradient of the model using the results of (17),(18) and (19) and ba
k propagating these results through the net-work using the tool box fun
tion mlpbkpmdnpak/unpak pa
ks the weights of the network into a ve
tor: this is required touse the optimisation routines.s
g implementation of the s
aled 
onjugate gradients algorithm, whi
his a general purpose optimisation algorithm.All the MDNs trained in this proje
t were optimised using the S
aled Conjugate Gardient (SCG)algorithm. A demonstration programme demmdn1 is available from the web site whi
h gives aworked example of training a MDN on the `toy problem' des
ribed by Bishop (1994).3Available from http://www.n
rg.aston.a
.uk/netlab/
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omputer) and so some time was spent during this proje
t developing a fast mdn Netlab im-plementation of MDNs. The fo
us of this work was re-engineering the 
omputation of the errorderivatives with respe
t to the neural network outputs, so that the 
omputation was 
arried outin parameter spa
e (4). The ne
essary expressions for the derivatives are 
ontained in AppendixA. The details of the software re-engineering are given in Evans (1998)4. In summary the trainingtime is de
reased by a fa
tor of sixty for the example provided in the te
hni
al report. The inversemodel training time de
reased from a few days to a few hours for networks without in
iden
e angleas input. De
reased training time means that problems with larger data sets 
an be trained ina realisti
 time frame. For this proje
t it was also possible to train networks that take in
iden
eangle as an input and have a training data set size of ten thousand examples.2.2.2 Putting mixture density networks into a geophysi
al 
ontextThe aim of this subse
tion is to show how aMDN may be employed to model the inverse mappingfrom s
atterometer data, �o, dire
tly to the wind ve
tor 
omponent spa
e, (u; v). In Subse
tion2.1 the inputs and targets of the MDN are labelled as x and t respe
tively. In the 
ontextof this appli
ation, ea
h input pattern for the MDN, x, will be s
atterometer data (the triplet(�of ; �om; �oa)), or s
atterometer data and in
iden
e angle (the input ve
tor (�0f ; �0m; �0a; �)) if theMDN is being trained over all tra
es. Modelling the wind ve
tor 
omponents dire
tly impliesthat the targets of the MDN, t, are the Cartesian wind ve
tor 
omponents (u; v). The generaldes
ription of the MDN, (1), is then re-expressed using geophysi
al parameters for a parti
ularwind ve
tor 
omponent as p(u; vj�o) = MXj=1 �j(�o)�j(u; v j �o): (20)This proje
t uses data sets generated from real world pro
esses, and so assumptions made in themodelling pro
ess need to be validated. There are three main assumptions made about the dataset in our approa
h:� The noise on the targets in (u; v) spa
e is Gaussian and spheri
ally symmetri
.� The theory in Subse
tion 2.1 assumes that the inputs, x, are noiseless. It is therefore assumedthat the inputs, �o, are noiseless. This a reasonable assumption based on the quality ofthe �o measurements 
olle
ted from the ERS-1 satellite (measurements are within 0:2dbof the Cmod4 manifold, whi
h 
orresponds to an un
ertainty in wind ve
tor rms error of0:5ms�1) (Sto�elen and Anderson, 1997
) when 
ompared to the errors on numeri
al weatherpredi
tion target winds.� For 
omputation of the error fun
tion (13) it is assumed that all data is independently drawnfrom the same distribution. The sele
tion of the data ensures that this 
ondition is met.2.3 Data pre-pro
essingBefore training the MDN the data was pre-pro
essed to 
reate training, validation and test datasets. A data set 
omprises of pairs of input and target patterns.4Available from http://www.n
rg.aston.a
.uk/Papers/
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riptionThe input data, �o, is supplied by the European Spa
e Agen
y (ESA), and is labelled by longi-tude, latitude and time. The data is then pro
essed at Ifremer where quality 
ontrol is applied(in
luding sea i
e mask �lter to remove observations taken over sea i
e) to remove low quality ob-servations. The target data is 
omputed from an E
mwf fore
ast by taking a 250 km by 250 kmgrid of 10m model winds and interpolating in spa
e and time to the satellite observation position.Philippe Ri
haume (working as part of the Neurosat team) sele
ted the data from the NorthAtlanti
 regions (1995-96). This data set was then sub-sampled to make training, validation andtest data sets. The test data set is generated to have a distribution in wind speed 
lose to adistribution of naturally o

urring wind speeds. The training and validation data sets have a windspeed distribution that are an equal 
ombination of uniform distribution over wind speed and adistribution 
lose to that of naturally o

urring wind speeds. The wind speed ranges from 4 ms�1to 24 ms�1 in
lusively. For ea
h measurement in the data set there is a 
orresponding fore, midand aft s
atterometer measurement, in
iden
e angle, azimuth angle, wind speed and meteo winddire
tion. It is this data that is referred to as `raw' data in the s
ope of this proje
t. Beforedes
ribing the pre-pro
essing applied to the raw data, some new terminology is needed for thedi�erent methods of measuring wind dire
tion (all in degrees):� Meteo wind dire
tion is the angle in whi
h the wind is 
oming from. Therefore a meteo winddire
tion of zero degrees des
ribes a wind 
oming from the north toward the south. Thiswind dire
tion will be referred to as mdir (see Figure 4).� Ve
tor wind dire
tion is the angle of the dire
tion in whi
h the wind is blowing. Therefore ave
tor wind dire
tion of zero degrees des
ribes a wind blowing toward the north. This winddire
tion will be referred to as vdir (see Figure 4).� Relative wind dire
tion is the angle of wind dire
tion relative to the antenna azimuth anglefrom the ve
tor wind dire
tion. This wind dire
tion will be referred to as rdir (see Figure4).All angles given in this do
ument are quoted in degrees, and a 
lo
kwise dire
tion from theirreferen
e point. Wind speed and dire
tion are resolved into wind ve
tor 
omponents, and theinput data is pre-pro
essed by a simple linear res
aling.For ea
h tra
e (tra
e 0 to tra
e 9) there are three data sets. The training set has three thousandexamples, whilst the test and validation set have one thousand examples ea
h. There is also a dataset that 
ontains data from all tra
es, and in
ludes in
eden
e angle as an input. This training sethas ten thousand examples whilst the validation and test set have �ve thousand examples.2.3.2 Pre-Pro
essing the wind dataThe data set des
ribes the wind in terms of wind speed and wind dire
tion. To model the windve
tor dire
tly, the data is transformed into relative wind ve
tor 
omponents (ur; vr).The wind dire
tion is transformed from meteo dire
tion, mdir, to ve
tor dire
tion , vdir, by adding180Æ, and taking the modulus with respe
t to 360Æ. This maintains the 
onvention of wind dire
tionin the range [0Æ; 360Æ). Be
ause of the nature of the orbit of the satellite, measurements are takenin two dire
tions (running from north to south, and from south to north). These dire
tions areen
oded in the satilite azimuth angle, '. The ve
tor wind dire
tion is transformed relative to theazimuth angle by subtra
ting the azimuth angle from ve
tor wind dire
tion, vdir, and taking themodulus with respe
t to 360Æ. The wind dire
tion is now relative to the azimuth angle, and the
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Figure 4: The relationship between the wind dire
tion angles, mdir, vdir, and rdir used inpre-pro
essing.relative wind ve
tor 
omponents 
an be resolved. To ensure that a geophysi
al referen
e of zerodegrees for north is maintained rdir is subtra
ted from 90Æ before either sin or 
os are applied.The transformation is summarised below:1. Compute vdir: vdir = mdir + 180Æ (mod 360Æ):2. Compute rdir: rdir = vdir � ' (mod 360Æ):3. Compute ur: ur = s 
os(90Æ � rdir):4. Compute vr: vr = s sin(90Æ � rdir):2.3.3 Pre-pro
essing the s
atterometer dataThe input data, �o, is pre-pro
essed by a linear transformation to a zero mean unit varian
eGaussian distribution. The mean and varian
e for the res
aling are taking from the whole inputdata set. For input data that also 
ontains the in
iden
e angle, �, we pre-pro
ess this input bytaking the 
osine of the in
eden
e angle. This insures that the input is in the range [�1; 1℄.2.4 Dire
t appli
ation of mixture density networksThe previous subse
tions in this se
tion have des
ribed the te
hni
al detail of how an MDN isimplemented, an overview of the implementation of the MDN framework within Netlab and howthe input and target data is pre-pro
essed. This theory is now applied to modelling the mappingof s
atterometer data to wind ve
tor 
omponents.
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tion de�ned by (13):E = � NXi=1 ln� MXj=1 �j(�oi )�j(ui; vi j �oi )� (21)where �o represents either the three or four dimensional input ve
tors, (�of ; �om; �oa) and(�of ; �om; �oa ; 
os(�)) respe
tively. The network training was regularised by the early stopping te
h-nique (Bishop, 1995).In Subse
tion 1.5 the areas of investigation were outlined. The �rst is to investigate the 
omplexityof the mapping between �o and (u; v) spa
e. This 
omplexity is modelled by the MLP withinthe MDN stru
ture. The se
ond, the 
omplexity of the (u; v) spa
e, is represented by the numberof kernels in the mixture model of the MDN. The third is to train networks with and withoutin
iden
e angle as an input to the network. The following network 
on�gurations were trained toinvestigate the areas of interest:� For models without in
iden
e angle as an input:{ Train a model for ea
h tra
k (0 to 9) and with 10; 15; 20; 25 hidden units in the MLP.{ For ea
h model train with two and four 
entres.� For models with in
iden
e angle as an input:{ Train models with 50 and 35 hidden units in the MLP.{ For ea
h model train with 2; 4; 5; and 12 
entres.The results of these experiments are presented in Subse
tion 2.6.2.5 In
orporating geophysi
al knowledgeIn this subse
tion we des
ribe a modi�
ation to the MDN stru
ture in order to in
orporate theknowledge that ambiguities in wind dire
tion exist in the mapping from �o to (u; v) spa
e. We 
allthis the hybrid mixture density network model. This is �rst and foremost of s
ienti�
 interest, butalso, if su

essful, will redu
e the model 
omplexity by redu
ing the number of model parameters.The following expression for MDN with two kernels 
an be derived from (1):p(tjx) = �(x)�1(tjx) + (1� �(x))�2(tjx): (22)As already established the ambiguity in wind dire
tion arises from the fa
t that there are aliassolutions for the wind dire
tion; that is, it is not known for 
ertain from the �o data in whi
h oftwo dire
tions the wind is blowing. This alias is at approximately 180Æ. The ambiguity is en
odedwithin theMDN framework by two spheri
al Gaussian kernels with diametri
ally opposed 
entres.One kernel is free to move (its parameters are determined during training), whilst the se
ondmirrors the �rst by taking the negative mean (whi
h is equivalent to an ambiguous dire
tion of180Æ in (u; v) spa
e). The 
entres of the kernels (whi
h 
orrespond to wind ve
tors in (u; v) spa
e)always represent the ambiguity within the mapping. The noise model for ea
h kernel is assumedto be the same; that is, the varian
e of the free Gaussian is the same as that of the mirroringGaussian. The mixing 
oeÆ
ients, then, determine the `responsibility' that ea
h kernel has for the
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omes (for the nth observation):p(tnjxn) = �(xn)�(tnjxn) + (1� �(xn)) (tnjxn); (23)where the kernels are de�ned by diametri
ally opposed spheri
al Gaussians:�(tnjxn) = 12��2(xn) exp��ktn � �(xn)k22�2(xn) �; (24) (tnjxn) = 12��2(xn) exp��ktn + �(xn)k22�2(xn) �: (25)The target data is two dimensional and therefore the dimension parameter 
 in the Gaussian model(22) is two. The error for a pattern n is de�ned as a negative log likelihood fun
tion and is derivedfrom (13): En = � ln��(xn)�(tnjxn) + (1� �(xn)) (tnjxn)�: (26)The training of the network is identi
al in prin
iple to the general Netlab MDN framework.Spe
ial modi�
ations are needed to 
ompute the fun
tion whi
h maps the outputs of the MLP tothe parameters of the mixture model and the gradient of the error fun
tion with respe
t to theMLP outputs. The mixing 
oeÆ
ients are no longer 
onstrained by the softmax rule, but by thesimpler logisti
 fun
tion: � = 11 + exp(�z�) : (27)To train the hybrid ar
hite
ture, the derivative of the gradient of the error fun
tion with respe
tto the outputs of the MLP is required. Two posterior probabilities are de�ned with respe
t toea
h kernel, for the free kernel: � = ���� + (1� �) ; (28)and for the mirrored kernel: 
 = (1� �) ��+ (1� �) : (29)Then the derivatives of the error fun
tion with respe
t to the network outputs are:�En�z� = � � �; (30)�En�z� = � ��2�ktn � �k2�2 � 
�+ 
2�ktn + �k2�2 � 
�� ; (31)�En�z�k = ���� tk � �k�2 �� 
� tk + �k�2 ��: (32)(33)This 
on�guration redu
es the number of mixture model parameters by M( 
2 +1). The full detailof the derivation is presented in Appendix B. Software for implementing this ar
hite
ture is 
odedin Matlab and designed to integrate into the Netlab toolbox (this implementation inspired thegeneral fast mdn implementation). The 
ode was tested for a

urate implementation using themethods detailed in Evans (1998).
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hite
tures with the same number of hidden units and input dimensions were trained to 
omparewith the networks trained in Subse
tion 2.4. For these experimentts the number of kernels is alwaystwo (it is possible to have multiple `
entre pairs'). The network ar
hite
tures trained are as follows:� For models without in
iden
e angle as an input:{ Train a model for ea
h tra
e (0 to 9) and with 10; 15; 20; 25 hidden units in the MLP.� For models with in
iden
e angle as an input:{ Train models with 35 and 50 hidden units in the MLP.2.6 ResultsIn total twelve networks were trained for ea
h tra
e (and so a total of one hundred and twentynetworks) and ten networks were trained over all tra
es. Ea
h network had the same seed inthe random number generator when initialised. The results are presented in tabular form, usingsummary statisti
s 
ommonly used in the meteorologi
al 
ommunity; the Figure of Merit, anevaluation of how well the predi
tions 
ompare to the instrument spe
i�
ations of �2 ms�1 forwind speed and �20Æ for wind dire
tion; ve
tor Root Mean Square (RMS) error, a measure of how
lose the predi
tions are to the target; and performan
e at 20Æ (denoted perf. � 20Æ), a measureof the per
entage of predi
ted dire
tions within 20Æ of the target wind dire
tions (Cornford etal., 1997; Ri
haume et al., 1998). The te
hni
al details of these summary measures are detailedin Appendix C. The reported results are 
omputed using the test set, whi
h was not used when
hoosing the model 
omplexity, and so the results are unbiased with respe
t to the data set. Theresults are based on wind ve
tor predi
tions that are derived from a simple ambiguity removalalgorithm. The two most likely wind ve
tors are inferred from the MDN (for models with morethan two kernels the position of the two most probable modes, found by a SCG optimisationstarting from the positions of ea
h kernel, are inferred as the two most likely wind ve
tors) andthen 
ompared to the target wind ve
tors. The predi
ted wind ve
tor 
losest to the target windve
tor is 
hosen as the disambiguated wind ve
tor. The summary methods are then applied.Tables 1, 2, and 3 present the summary results for networks trained per tra
e. Over all tables,there is a general trend of in
reasing performan
e from tra
e 0 to tra
e 9, whi
h is to be expe
tedbe
ause wind ve
tors are harder to model for the innermost tra
es of the swathe. Table 1 presentsmodel performan
e as measured by the FoM evaluation fun
tion. An FoM result greater thanone indi
ates the the model is performing to the instrument spe
i�
ations. Inspe
tion of Table1 shows that the models are 
lose to this threshold, and all the models ex
ept for one meet thespe
i�
ation for tra
e 9. The performan
e also exhibits trends over model 
omplexity, where formodels with two kernels (in
luding the hybrid 
on�guration) the measure 
ontinually improvesfor in
reasing 
omplexity, and for models with four kernels the maximum performan
e is a
hievedwith twenty hidden units in the MLP. The results in Table 2 and Table 3 are strongly 
orrelatedto the results in Table 1. For ve
tor RMS errors the 
urrent operational model Cmod4 returnswind ve
tor RMS errors of 3 ms�1 when 
ompared to E
mwf winds (Sto�elen and Anderson,1997b). The results presented here show higher values than 3 ms�1, but follow the same trendsas those in Table 1, the lowest ve
tor RMS error being 3:11 ms�1. The results in Table 3 for perf.� 20Æ show similar trends to those for FoM and ve
tor RMS error. Our results are 
omparablewith the results of Cornford et al. (1997), where the 
orre
t solution, within 20Æ, is found morethan 70% of the time from the two most probable aliases.Table 4 presents the results of networks trained over all tra
es. Model performan
e is similar to theMDNs with thirty �ve hidden units in the MLP. In addition, the model performan
e for MDNs
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on�gurations, re
e
ting that there is a limit tothe 
omplexity an MDN 
an have to model this problem.For 
omparison between networks with and without in
iden
e angle as an input, results are pre-sented by tra
e for networks that take in
iden
e angle as an input. The results are generated byusing the test sets for models trained by tra
e and adding the respe
tive in
iden
e angles to theinput patterns. Again, the summary results are presented in Tables 5, 6, 7. These tables also showa general trend of improving performan
e, whi
h is smoother than the networks trained individu-ally per tra
e. However the best model trained with in
iden
e angle is worse than those trainedby tra
e.Visualisation of the 
onditional probability density fun
tion modelled by the MDN is of interest.Mesh and 
ontour plots give a good visualisation of the probability density fun
tion. Severalmodel ar
hite
tures have been sele
ted to represent the range of models trained, and to show howthe distribution varies for 
hanging kernel 
on�gurations. An arbitrary wind ve
tor (that gives agood graphi
al visualisation of the distribution) was 
hosen from tra
e 9 test data (for informationthe 
omponents are (�14:6; 1:4)). Figures 5, 6 and 7 are for networks trained per tra
e andrepresent kernel 
on�gurations of two, two hybrid and four respe
tively. Figures 8, and 9 are fornetworks trained with in
iden
e angle as an input and are for MDNs with �ve and twelve kernelsrespe
tively. These plots show that the 
onditional probability distribution is generally bimodal,
loser inspe
tion of Figures 8 and 9 also shows that the modes are not ne
essarily Gaussian.In this se
tion the te
hni
al detail of MDNs has been explained in
luding a hybrid MDN ar
hi-te
ture that models the ambiguity inherent in the mapping from s
atterometer spa
e to wind ve
torspa
e. An overview of the software used to train the MDNs has been given by using the Netlabtoolbox for Matlab, where fast mdn was developed. The data sour
e and pre-pro
essing has beendes
ribed before it is presented to a MDN for training. Using summary tools used within the me-teorologi
al 
ommunity the results have been 
ompiled into several tables in order to 
ompare theperforman
e of the parti
ular network ar
hite
tures. In the next se
tion the results are analysedand dis
ussed with respe
t to the aims laid out in se
tion 1.5.
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(b)Figure 5: Conditional probability distribution plots, for a model with 2 kernels and 25 hidden units.
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FoM - results for networks trained per tra
eMDN ar
hite
ture tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 10 Hidden Units 0.76 0.80 0.79 0.82 0.83 0.83 0.87 0.81 0.89 1.02 0.84Two Kernels, 10 Hidden Units 0.82 0.75 0.80 0.78 0.84 0.79 0.79 0.81 0.85 0.93 0.82Four Kernels, 10 Hidden Units 0.88 0.86 0.92 0.97 0.92 0.95 0.99 1.02 1.02 1.19 0.97Two hybrid Kernels, 15 Hidden Units 0.90 0.83 0.83 0.90 0.90 0.88 0.88 0.86 0.95 1.03 0.90Two Kernels, 15 Hidden Units 0.90 0.83 0.81 0.88 0.88 0.87 0.87 0.84 0.95 1.08 0.89Four Kernels, 15 Hidden Units 0.95 0.91 0.87 1.00 0.91 0.87 1.00 0.94 1.02 1.13 0.96Two hybrid Kernels, 20 Hidden Units 0.93 0.83 0.85 0.90 0.87 0.89 0.89 0.89 0.97 1.07 0.91Two Kernels, 20 Hidden Units 0.92 0.84 0.82 0.85 0.88 0.88 0.89 0.90 0.97 1.07 0.90Four Kernels, 20 Hidden Units 0.93 0.92 0.86 0.98 0.93 0.98 1.02 1.00 0.99 1.16 0.98Two hybrid Kernels, 25 Hidden Units 0.89 0.82 0.86 0.91 0.91 0.91 0.91 0.91 0.98 1.06 0.92Two Kernels, 25 Hidden Units 0.93 0.85 0.84 0.92 0.89 0.93 0.93 0.95 0.97 1.07 0.93Four Kernels, 25 Hidden Units 0.88 0.88 0.87 0.99 0.86 0.97 1.00 0.95 0.97 1.17 0.95Table 1: FoM results - for networks trained per tra
e. Results in bold fa
e indi
ate best results per 
olumn.
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Ve
tor RMS error - results for networks trained per tra
eMDN ar
hite
ture tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 10 Hidden Units 4.71 4.29 4.36 4.29 4.27 4.14 4.09 4.26 3.90 3.50 4.18Two Centres, 10 Hidden Units 4.25 4.43 4.22 4.45 4.08 4.26 4.42 4.24 4.09 3.74 4.22Four Centres, 10 Hidden Units 4.27 4.16 3.77 3.73 4.06 3.68 3.74 3.60 3.52 3.11 3.76Two hybrid Kernels, 15 Hidden Units 3.90 4.17 4.19 3.93 3.88 3.95 4.01 4.06 3.70 3.44 3.92Two Centres, 15 Hidden Units 3.90 4.09 4.10 4.04 3.91 3.96 3.95 4.05 3.66 3.28 3.90Four Centres, 15 Hidden Units 3.86 4.00 4.16 3.66 4.00 4.31 3.54 4.01 3.52 3.25 3.83Two hybrid Kernels, 20 Hidden Units 3.83 4.17 4.03 3.96 4.04 3.95 3.96 3.98 3.63 3.34 3.89Two Centres, 20 Hidden Units 3.81 4.04 4.13 4.07 3.90 3.93 3.86 3.86 3.61 3.31 3.85Four Centres, 20 Hidden Units 3.94 3.84 4.08 3.71 3.89 3.63 3.48 3.67 3.63 3.17 3.70Two hybrid Kernels, 25 Hidden Units 3.97 4.24 3.99 3.94 3.86 3.87 3.92 3.87 3.61 3.36 3.86Two Centres, 25 Hidden Units 3.79 4.00 3.99 3.82 3.89 3.76 3.77 3.65 3.61 3.28 3.76Four Centres, 25 Hidden Units 4.20 3.97 4.16 3.67 4.24 3.70 3.63 4.14 3.94 3.15 3.88Table 2: Ve
tor RMS error results - for networks trained per tra
e. Results in bold fa
e indi
ate best results per 
olumn.



FirstYearQualifyingReport:NeuralNetworksforExtra
tingWindVe
torsfromSatelliteS
atterometerData26

Performan
e � 20Æ - results for networks trained per tra
eMDN ar
hite
ture tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 10 Hidden Units 61.60 66.30 67.40 69.90 70.10 72.90 69.60 69.60 73.60 80.30 70.13Two Centres, 10 Hidden Units 64.40 67.10 67.10 69.50 73.20 73.70 69.50 70.30 74.10 78.10 70.70Four Centres, 10 Hidden Units 71.00 70.30 72.60 74.40 74.70 75.70 75.40 75.00 77.60 81.90 74.86Two hybrid Kernels, 15 Hidden Units 66.10 68.80 67.50 72.50 72.90 74.20 71.00 72.00 74.90 79.00 71.89Two Centres, 15 Hidden Units 69.30 68.50 70.70 72.80 74.40 75.10 73.10 72.90 75.80 79.40 73.20Four Centres, 15 Hidden Units 72.50 71.00 72.30 75.00 76.20 75.10 76.00 74.80 77.40 81.10 75.14Two hybrid Kernels, 20 Hidden Units 68.30 67.20 69.20 72.60 72.50 74.00 72.20 72.10 75.70 81.20 72.50Two Centres, 20 Hidden Units 69.10 69.10 69.50 72.60 73.80 75.80 74.20 74.80 77.60 81.10 73.76Four Centres, 20 Hidden Units 72.30 71.40 71.80 74.20 76.10 75.70 75.30 74.70 76.50 81.00 74.90Two hybrid Kernels, 25 Hidden Units 67.20 67.70 69.80 72.30 73.00 75.00 72.00 71.40 75.80 80.60 72.48Two Centres, 25 Hidden Units 69.20 69.50 70.70 73.60 73.70 75.10 73.60 74.10 75.90 79.50 73.49Four Centres, 25 Hidden Units 71.60 69.10 72.50 74.40 75.40 76.50 75.70 74.80 76.90 81.70 74.86Table 3: Performan
e � 20Æ - for networks trained per tra
e. The results are 
omputed using the wind dire
tion obtained by the `perfe
t' am-biguity removal algorithm des
ribed in the text. Results in bold fa
e indi
ate best results per 
olumn.



First Year Qualifying Report: Neural Networks for Extra
tingWind Ve
tors from Satellite S
atterometer Data 27
Performan
e summary for networks trained with in
iden
e angle as an inputMDN ar
hite
ture FoM RMS Errors Perf � 20ÆTwo Hybrid Kernels, 35 Hidden Units 0.85 4.18 73.54Two Kernels, 35 Hidden Units 0.88 4.03 73.28Four Kernels, 35 Hidden Units 0.96 3.83 76.96Five Kernels, 35 Hidden Units 0.96 3.84 76.66Twelve Kernels, 35 Hidden Units 0.80 5.13 74.82Two Hybrid Kernels, 50 Hidden Units 0.82 4.33 71.10Two Kernels, 50 Hidden Units 0.89 4.02 74.58Four Kernels, 50 Hidden Units 0.96 3.86 77.08Five Kernels, 50 Hidden Units 0.97 3.84 77.14Twelve Kernels, 50 Hidden Units 0.82 4.87 75.32Table 4: Performan
e results over the whole swathe - for networks trained with in
iden
e angleas an input. These results are generated with the test data set of 5000 examples.Results in bold fa
e indi
ate best results per 
olumn.
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(b)Figure 7: Conditional probability distribution plots, for a model with 4 kernels and 25 hidden units.
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FoM - results by tra
e, for networks that take in
iden
e angle as an inputMDN ar
hite
ture tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 35 Hidden Units 0.80 0.79 0.82 0.86 0.86 0.88 0.88 0.90 0.92 0.97 0.87Two Kernels, 35 Hidden Units 0.81 0.81 0.82 0.88 0.88 0.91 0.93 0.92 0.93 0.99 0.89Four Kernels, 35 Hidden Units 0.88 0.84 0.84 0.94 0.92 0.89 0.92 0.95 0.93 1.12 0.92Five Kernels, 35 Hidden Units 0.79 0.90 0.89 0.97 0.92 0.98 0.96 0.98 1.00 1.04 0.94Twelve Kernels, 35 Hidden Units 0.60 0.71 0.79 0.92 0.85 0.81 0.80 0.85 0.90 0.99 0.82Two hybrid Kernels, 50 Hidden Units 0.79 0.77 0.79 0.84 0.85 0.87 0.88 0.87 0.90 0.97 0.85Two Kernels, 50 Hidden Units 0.80 0.81 0.83 0.89 0.88 0.92 0.91 0.94 0.95 1.02 0.90Four Kernels, 50 Hidden Units 0.85 0.85 0.87 0.99 0.91 0.96 0.98 0.97 0.99 1.04 0.94Five Kernels, 50 Hidden Units 0.84 0.89 0.84 0.98 0.95 0.97 0.99 1.00 0.99 1.05 0.95Twelve Kernels, 50 Hidden Units 0.63 0.75 0.84 0.87 0.83 0.80 0.82 0.85 0.82 0.89 0.81Table 5: FoM results - by tra
e, for networks trained with in
iden
e as angle as an input. Results in bold fa
e indi
ate best results per 
olumn.
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Ve
tor RMS error - results by tra
e, for networks that take in
iden
e angle as an inputMDN ar
hite
ture tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 35 Hidden Units 4.41 4.45 4.23 4.12 4.05 3.94 3.98 3.94 3.81 3.65 4.06Two Kernels, 35 Hidden Units 4.28 4.28 4.13 3.97 3.93 3.81 3.74 3.84 3.69 3.46 3.91Four Kernels, 35 Hidden Units 4.22 4.33 4.08 4.11 4.01 4.40 4.10 4.08 3.94 3.30 4.06Five Kernels, 35 Hidden Units 4.91 4.09 3.85 3.88 4.12 3.62 3.75 3.71 3.56 3.45 3.89Twelve Kernels, 35 Hidden Units 7.89 5.38 4.75 4.08 4.36 4.93 5.24 4.77 4.43 4.05 4.99Two hybrid Kernels, 50 Hidden Units 4.54 4.60 4.38 4.17 4.12 4.00 3.99 4.03 3.86 3.72 4.14Two Kernels, 50 Hidden Units 4.33 4.27 4.13 3.99 3.92 3.77 3.79 3.75 3.69 3.49 3.91Four Kernels, 50 Hidden Units 4.28 4.16 4.03 3.74 4.21 3.90 3.75 3.94 3.69 3.45 3.91Five Kernels, 50 Hidden Units 4.33 4.16 3.99 3.74 3.85 3.70 3.65 3.68 3.69 3.54 3.83Twelve Kernels, 50 Hidden Units 7.08 5.16 4.33 4.78 4.90 5.18 5.12 4.67 4.84 4.39 5.04Table 6: Ve
tor RMS error - by tra
e, for networks trained with in
iden
e as angle as an input. Results in bold fa
e indi
ate best results per 
olumn.
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Performan
e at 20Æ - results by tra
e, for networks that take in
iden
e angle as an inputMDN ar
hite
ture tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e tra
e average0 1 2 3 4 5 6 7 8 9 over swatheTwo hybrid Kernels, 35 Hidden Units 61.60 63.60 69.50 71.70 71.80 73.90 71.00 72.00 74.50 79.10 70.87Two Kernels, 35 Hidden Units 63.50 64.20 68.20 71.70 72.40 75.30 71.80 73.10 74.30 79.00 71.35Four Kernels, 35 Hidden Units 66.90 66.30 71.30 73.50 77.00 74.90 74.30 75.60 75.70 80.50 73.60Five Kernels, 35 Hidden Units 63.70 69.00 71.40 74.20 76.20 76.40 75.00 75.80 77.10 79.30 73.81Twelve Kernels, 35 Hidden Units 63.10 69.10 71.20 73.40 75.10 74.40 74.20 74.80 77.50 79.90 73.27Two hybrid Kernels, 50 Hidden Units 58.50 60.50 66.80 70.70 70.80 73.00 71.20 72.20 74.60 79.00 69.73Two Kernels, 50 Hidden Units 62.80 66.10 69.20 72.30 73.30 76.20 73.60 74.40 76.30 79.60 72.38Four Kernels, 50 Hidden Units 65.80 68.10 71.00 73.30 76.80 76.80 75.90 74.70 77.80 79.60 73.98Five Kernels, 50 Hidden Units 65.00 68.10 71.20 74.00 76.90 76.20 75.00 75.40 76.60 79.20 73.76Twelve Kernels, 50 Hidden Units 64.60 68.40 71.40 74.10 77.10 75.80 73.30 72.50 75.00 76.20 72.84Table 7: Performan
e � 20Æ - by tra
e, for networks trained with in
iden
e as angle as an input The results are 
omputed using the winddire
tion obtained by the `perfe
t' ambiguity removal algorithm des
ribed in the text. Results in bold fa
e indi
ate best results per
olumn.
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(b)Figure 8: Conditional probability distribution plots with in
iden
e angle, for a model with 5kernels and 50 hidden units.
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(b)Figure 9: Conditional probability distribution plots with in
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e angle, for a model with 12kernels and 50 hidden units.
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ussionThe aims of this proje
t are to investigate the underlying data generator that des
ribes the mappingfrom satellite s
atterometer data to wind ve
tors, �o ! (u; v), using a mixture density network.In Se
tion 2 the methods and results of training the MDNs, with and without in
iden
e angle asinputs, were presented. Also the stru
ture of the MDN was modi�ed to investigate modelling theinherent ambiguity in the wind dire
tion. In this se
tion the results of the experiments in Se
tions2 are analysed and dis
ussed.3.1 Analysis of the inverse modelsBoth the 
omplexity of the mapping �o ! (u; v) and of the probability density fun
tion P (u; v j�o)are of interest. These properties are represented by theMLP andGmm stru
tures within theMDNframework. The mapping �o ! (u; v) is modelled by the MLP, whose 
omplexity is 
ontrolledby the number of units in the hidden layer. The 
omplexity of P (u; v j �o) is modelled by theGmm, whose 
omplexity is 
ontrolled by number of kernels in mixture. There are two kinds ofmodel to 
ompare: those whi
h have been trained without in
iden
e angle as an input (trained fora spe
i�
 tra
e) and those that take in
iden
e angle as an input and are general models over thewhole swathe. The results are presented by plotting the FoM and ve
tor RMS results over all thetra
es. This format helps to highlight trends in the results.3.1.1 The 
omplexity of the mapping �o ! (u; v)In order to investigate the 
omplexity of the mapping �o ! (u; v) the MDN ar
hite
tures weretrained with the MLP stru
ture having ten, �fteen, twenty and twenty �ve units in the hiddenlayer. Also networks were trained with di�erent kernel 
on�gurations (to investigate the 
omplexityof P (u; v j �o)), whi
h may also a�e
t model performan
e, and so 
omparisons in this subse
tionare made by kernel 
on�guration, over the number of units in the hidden layer of the MLP.For two kernels, Figure 10 shows that in
reasing the number of hidden units improves the modelperforman
e. Figure 11, shows similar results, but for the hybrid MDN 
on�guration: Again,in
reasing the number of units in the MLP improves the performan
e of the model, but in this
ase the improvement is not as distin
t as for those 
on�gurations with two free kernels. Theresults of MDNs with four kernels are plotted in Figure 12, and show that the model performan
edoes not signi�
antly improve by in
reasing the number of units in the hidden layer of the MLPover the range trained.For models with two kernels there is a 
orrelation between in
reasing the number of units in theMLP and improving model performan
e. The best models have twenty �ve units in the hiddenlayer of the MLP. For models with four kernels the results show that the best performan
e isa
hieved by a MLP with twenty hidden units (see Figure 12). The model performan
e for a MLPwith twenty �ve hidden units is worse than that of twenty hidden units. There are two explanationsfor this. Firstly the 
omplexity of theMLP with twenty �ve hidden units is suÆ
ient to over�t thetraining data, de
reasing the models ability to generalise, or, se
ondly be
ause of the 
omplexityof the MLP, the MDN be
omes stu
k in a lo
al minima in the error surfa
e, and the network failsto �nd the weights that give optimum generalisation.ForMDNs with a hybrid kernel 
on�guration, the results suggest that theMLP is rea
hing a limitin its ability to model the mapping �o ! (u; v), given the Gmm 
on�guration. The improvementin performan
e does not 
hange signi�
antly for hidden units of twenty and twenty �ve. Comparing
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e by the number of hidden units in the MLP, for models withtwo kernels and trained per tra
e.these results with MDN 
on�gurations having two free kernels 
on�rms that the assumption thatthe inherent ambiguity in the problem is generally 180Æ holds. The slightly lower performan
e forthe hybridMDN is attributed to �xing the ambiguity to 180Æ and having equal varian
es on ea
hkernel, whi
h implies that the model is less 
exible than those with two free kernels. Generalisingto data that violates these assumptions will be more diÆ
ult for the hybrid 
on�guration (that is,if the ambiguity moves away from 180Æ, and/or the varian
e of ea
h mode is signi�
antly di�erent).The MDNs that take in
iden
e angle as an input were trained with two MLP 
on�gurations:thirty �ve, and �fty hidden units. Comparing the results of Table 5 and the graphs in Figures 13and 14, we see that the performan
e of the model is a�e
ted more by the number of kernels thanthe number of hidden units in theMLP. AMLP with thirty �ve hidden units models the mappingas well as an MLP with �fty hidden units. The MLP is also modelling the mapping of in
iden
eangle to the (u; v) spa
e. An extra ten units in the hidden layer (
ompared with models trainedper tra
e) adequately models this mapping.In summary, for MDNs trained per tra
e, with four kernels, the mapping of �o ! (u; v) isadequately approximated by an MLP having ten hidden units, although the optimal solutionrequires twenty hidden units. For MDNs trained per tra
e with two kernels (in
luding hybrids),twenty �ve hidden units in the MLP are required. The assumption that the ambiguity in theproblem is prin
ipally at 180Æ has been shown to hold by 
omparing the model performan
e ofthe MDNs with hybrid and two free kernel 
on�gurations. Models with two kernels and twenty�ve hidden units in the MLP do not perform as well as models with four kernels and ten hiddenunits in the MLP. This is attributed to the stru
ture of the probability density P (u; v j �o), andis dis
ussed subse
tion 3.1.2.For networks trained with in
iden
e angle as an input aMLP with thirty �ve hidden units satisfa
-torily models the mapping (�o; �)! (u; v). Again, the number of kernels in theMDN 
ontributesmore signi�
antly to 
hanges in model performan
e than 
hanging the number of hidden units inthe MLP.
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tor RMS errorFigure 11: Model performan
e by the number of hidden units in the MLP, for models withhybrid kernels and trained per tra
e.3.1.2 The 
omplexity of the 
onditional probabilitydistribution P (u; v j �o)The 
omplexity of the probability distribution P (u; v j �o) is re
e
ted by the number of kernelsin the MDN. If P (u; v j �o) is a highly 
omplex distribution then a larger number of kernels arerequired to model the distribution than if P (u; v j �o) is relatively simple.ConsideringMDNs trained by tra
e, the graphs in Figure 15 show a trend of in
reasing performan
efor an in
reasing number of kernels in the MDN. The plots for two kernels (red and blue) havea large varian
e whi
h indi
ates a signi�
ant dependen
e on the number of hidden units in theMLP. Furthermore the varian
e a
ross a single plot at 
onstant number of hidden units is largewhi
h suggests there is a large amount of noise in the performan
e estimate. The plots for fourkernels have less varian
e indi
ating that there is less dependen
e on the number of hidden unitsin the MLP; however the noise a
ross a single plot at 
onstant hidden units is 
onsistent with thered and blue plots. The inferen
e from these plots is that a MDN with two kernels is insuÆ
iently
omplex to model the 
onditional probability distribution, whereas a MDN with four kernels hasin
reased 
exibility and suÆ
iently models the 
onditional probability distribution. The plots inFigures 5, 6 and 7 show that the probability distribution is dominantly bimodal. The fa
t thatmodels with four kernels perform better than models with two kernels is of interest. Two possibleexplanations are o�ered; the �rst is that four 
entres provide more 
exibility when modelling aprobability distribution than two; this is shown in Figure 7 where the positions of the kernels arepla
ed in roughly four quadrants of (u; v) spa
e. Models with two kernels do not have that kind of
exibility. The se
ond is that the noise on the targets is not Gaussian or spheri
ally symmetri
al.Figure 16 shows su
h a 
ase where ea
h mode is modelled by two superimposed kernels; again, theMDNs with two kernels do not have the 
exibility to model non-Gaussian modes, only being ableto approximate ea
h mode by a symmetri
 Gaussian probability distribution fun
tion.Swit
hing attention to models that take in
iden
e angle as an input the results show an interestingrelationship with the number of kernels in the MDN. The MDNs with twelve kernels performworse than MDNs with �ve or less kernels (see Figures 17, 14 and 13).
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e by the number of hidden units in the MLP, for models withfour kernels and trained per tra
e.Why is this so? The aim of any model is to des
ribe the underlying data generator and not the noiseon the targets. The MDNs with twelve kernels are 
omplex enough to model some of the noise onthe targets, and over�t the data. The model then is not a general des
ription of the underlyingdata generator des
ribing the mapping �o ! (u; v) but a spe
i�
 des
ription of the target data,in
luding the noise. A good example is shown by the plots in Figure 18 where the probabilitydistribution has several strong peaks, re
e
ting the distribution of the target data. Comparingthe remaining 
on�gurations, performan
e is best for the MDN with �ve kernels, for both MLP
on�gurations of thirty �ve and �fty units in the hidden layer. Comparing the hybrid kernel andtwo free kernel models, it is 
lear that the free kernel model performs better than the hybrid model,again, this 
an be explained by the redu
ed 
exibility of the hybrid model, but suggests that theprobability distribution is generally bimodal but the modes are not exa
tly diametri
ally oppositeone another or are non-Gaussian.The probability density P (u; v j�o) is generally bimodal. The modes, however, are more 
omplexthan a spheri
al Gaussian model. For the networks trained for ea
h tra
e the MDN with fourkernels and twenty hidden units in the MLP is the best model, and is denoted MDNtra
e. Fornetworks trained with in
iden
e angle as an input, the best MDN has �ve kernels and �fty hiddenunits in the MLP, and is denoted MDNin
iden
e.3.2 Comparison with other neural network methodsCornford et al. (1997) give �gures for their neural network approa
h for predi
ting wind ve
tors,based on ERS-1 satellite data. They solve the inverse problem by training distin
t networks within
iden
e angle as an input to model wind speed and wind dire
tion. Considering their models onan individual basis they report that the 
orre
t solution within 20Æ is obtained more than 70% ofthe time for the �rst two aliases, whi
h is similar to the results obtained with the models in thisproje
t. They improved the performan
e by 
reating a 
ommittee of networks and then obtainedthe 
orre
t solution to within 20Æ roughly 75% of the time (averaged over the swathe). For wind



FirstYearQualifyingReport:NeuralNetworksforExtra
tingWindVe
torsfromSatelliteS
atterometerData36

Predi
ted wind dire
tion 
hosen from the �rst two most probable aliases, performan
e at 20Æ (%)MDN ar
hite
ture tra
e 0 tra
e 1 tra
e 2 tra
e 3 tra
e 4 tra
e 5 tra
e 6 tra
e 7 tra
e 8 tra
e 9 averageMDNtra
e 72.3 71.4 71.8 74.2 76.1 75.7 75.3 74.7 76.5 81.0 74.9MDNin
iden
e 63.7 69.0 71.4 74.2 76.2 76.4 75.0 75.8 77.1 79.3 73.8A-NNi 85.1 85.0 86.9 87.7 87.5 87.8 87.6 88.0 88.2 86.9 87.1Table 8: Comparing the dire
tion performan
e of the best MDNs with published results.
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(b) Ve
tor RMS errorFigure 13: Model performan
e by the number of kernels. For a network with thirty �ve unitsin the hidden layer, and trained with in
iden
e angle as an inputspeed they obtained a RMS error of 1:8 ms�1 whi
h is within the design spe
i�
ations of theinstrument (2:0 ms�1). The networks presented here have an wind speed RMS error of 2:0 ms�1when averaged over the swathe. Ri
haume et al. (1998) give results for their neural networkapproa
h to wind ve
tor retrieval based on ERS-1 data (following an initial study by Thiria et al.(1993) whi
h was based on simulated s
atterometer data). For ea
h tra
e two networks are trained,one to model wind speed, denoted S-NNi (where i 
orresponds to the tra
e), and one to modelwind dire
tion, denoted A-NNi. Results are quoted for predi
ted wind speed bias and RMS error,and wind dire
tion performan
e � 20Æ. The wind dire
tion results are quoted for the �rst, se
ond,third and forth alias predi
tions. The se
ond alias method is equivalent to the `perfe
t' ambiguityremoval method used in this proje
t, and provides a means of 
omparison. Table 8 shows the resultsfor perf. � 20Æ ofMDNtra
e, MDNin
iden
e, A-NNi. The A-NNi neural network performs betterthan both MDN networks when predi
ting dire
tion to the se
ond alias. However, we must notthat the imputs to the A-NNi network also 
ontain spatial information whi
h gives additionalambiguation skill to the A-NNi networks. The MDN networks a purely lo
al models, having nodisambiguation skill whatsoever, inverting ea
h s
atterometer measurement on a per-
ell basis.Table 9 presents the wind speed bias and RMS error results. Comparing the biases it is interestingto note that A-NNi has only negatively biased results, where as the MDN models have bothpositively and negatively biased networks, and so are less biased over the whole swathe. The RMSerror results show that A-NNi, performs within the instrument spe
i�
ation of 2 ms�1, whereasMDNin
iden
e and MDNtra
e both fall outside the measurement spe
i�
ation for several of themiddle tra
es.The superior performan
e of S-NNi and A-NNi may be attributed to:� Larger data sets (the training set 
ontains 24; 000 pairs and the test set 5; 000 pairs). Largedata sets help to regularise the network during training, making it less sus
eptible to outliersin the data set.� The spatial information presented on the inputs may provide extra disambiguation skill. The
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Predi
ted wind speed bias ( ms�1)MDN ar
hite
ture tra
e 0 tra
e 1 tra
e 2 tra
e 3 tra
e 4 tra
e 5 tra
e 6 tra
e 7 tra
e 8 tra
e 9MDNtra
e 0.0 -0.3 -0.1 0.0 -0.1 0.0 0.1 0.0 -0.1 0.1MDNin
iden
e 0.0 -0.3 -0.1 0.0 -0.1 0.0 0.1 0.0 -0.1 0.1A-NNi -0.2 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0Predi
ted wind speed RMS ( ms�1)MDN ar
hite
ture tra
e 0 tra
e 1 tra
e 2 tra
e 3 tra
e 4 tra
e 5 tra
e 6 tra
e 7 tra
e 8 tra
e 9MDNtra
e 1.9 2.1 2.1 2.0 2.1 2.1 2.1 2.0 2.0 1.8MDNin
iden
e 1.9 2.1 2.1 2.0 2.1 2.1 2.1 2.0 2.0 1.8A-NNi 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.7Table 9: Comparing the speed performan
e of the best MDNs with published results
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haume et al. (1998) is slightly greater, with a windspeed range of [3:5 ms�1; 25:0 ms�1℄. There are likely to be more training patterns in thewind speed ranges that are more diÆ
ult to learn.� TheMDN networks may be getting stu
k in lo
al minima on the error surfa
e during training.To visualise the alias results and the e�e
t of 
hoosing the two most likely solutions, four graphsare provided. The results are obtained from MDNin
iden
e, using the test set with �ve thousandexamples. The Figure 19(a) shows the most probable predi
ted dire
tion, where the true and aliassolutions 
an be seen. Figure 19(b) shows the de-aliased predi
tion. The Figure 20(a) shows themost probable predi
ted wind speed, Figure 20(b) shows the de-aliased predi
tion, in ea
h 
asethe model is biased high for wind speeds approximately less than 7 ms�1, and biased low at windspeeds approximately greater than 20 ms�1.In this se
tion the results presented in Se
tion 2 have been dis
ussed. It has been shown that MDNsmodel the mapping from s
atterometer spa
e dire
tly into wind ve
tor 
omponent spa
e with a highdegree of su

ess. The probability distribution P (u; v j�o) is generally bimodal, but the noise on thetargets is more 
omplex than the spheri
ally symmetri
 Gaussian assumption that was �rst made.It has also been shown that the mapping (�o; �) ! (u; v) performs similarly to models trained bytra
e. The best MDNs do not perform as well some other neural network methods, but they dohave the advantage of dire
tly mapping to (u; v) spa
e. In the next se
tion the 
on
lusions of thisproje
t are presented along with possible future avenues of investigation.
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(b) Ve
tor RMS errorFigure 14: Model performan
e by the number of kernels. For a network with �fty units in thehidden layer, and trained with in
iden
e angle as an input
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(b)Figure 16: An example of P (u; v j �o) where the modes are non-Gaussian
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(b)Figure 17: Model performan
e, 
omparing networks whi
h take in
iden
e angle as an input,by the number of kernels,
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lusions and future workThe pre
eding two se
tions have demonstrated that MDNs 
an be applied to dire
tly model windve
tor 
omponents from s
atterometer data. In this 
on
luding se
tion, the aims of subse
tion1.5 are re-visited, the �ndings of this proje
t reviewed, and on-going and potential future work isdes
ribed.4.1 Con
lusionsThe overall aim of this proje
t is to assess the feasibility of dire
tly modelling the wind ve
tors(u; v) from s
atterometer data �o. The results presented in Se
tion 2 
learly show that this methodis feasible. Further questions were posed 
on
erning the 
omplexity of the mapping �o ! (u; v)and the 
omplexity of P (u; v j �o).� Investigating the mapping �o ! (u; v), it has been shown that a MDN that has a MLPwith twenty units in the hidden layer, and a Gmm with four kernels su

essfully maps thisrelationship. A more 
ompli
ated model des
ribing the mapping (�o; �) ! (u; v) was 
on-sidered. This mapping is modelled using a MDN with a MLP with thirty �ve units in thehidden layer, and �ve kernels in the Gmm.� Considering P (u; v j �o), the hybrid MDN 
on�guration yields similar results to a MDNwith two free 
entres, and shows that the 
onditional probability distribution is generallybimodal with the two modes positioned diametri
ally opposite one another. The distributionof the noise on the wind ve
tors has been shown to be more 
omplex than the spheri
allysymmetri
al Gaussian noise model originally assumed. This is shown by the MDNs whi
hhave the ability to model more 
omplex (yet still dominantly bimodal) distributions thanthe one assumed by having four, �ve and twelve kernels. While the distribution is stillgenerally bimodal, it is heavier tailed than the Gaussian distribution assumed, and is notalways spheri
ally symmetri
.� Other work in the �eld solves the inverse problem by dire
tly modelling wind speed and winddire
tion with two separate models. The models of this proje
t are similar in performan
eto other lo
al methods (Cornford et al., 1997). These methods however do not 
ompare asfavourably with those methods whi
h take spatial information surrounding the 
ell of interestas part of their inputs (Ri
haume et al., 1998).� The large number of MDNs trained in this proje
t was made possible by developing fastmdn that moved the 
omputation of the error gradient into parameter spa
e (the outputs ofthe MLP). This improved training time from a few days to a few hours for MDNs trainedby tra
e, and allowed MDNs with large data sets to be trained, su
h as those that takein
iden
e angle as an input, in a realisti
 time frame.The �nal 
on
lusions of this proje
t are that mixture density networks provide a prin
ipled frame-work within whi
h to model wind ve
tors dire
tly from satellite s
atterometer data, and the qualityof the results provide an en
ouraging path of investigation for novel disambiguation te
hniques.4.2 On-going workThe ultimate aim is to build models that provide autonomous ambiguity removal from satellites
atterometer data, that is without referen
e to winds derived from numeri
al weather predi
tion
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an use either the lo
al inverse models developed in thisproje
t, or lo
al forward models (su
h as those developed by Guillaume Ramage during his MS
proje
t). Continuing the work of this proje
t, an implementation is 
urrently being developedusing the lo
al inverse models.The Bayesian method is fundamentally di�erent to that of Ri
haume et al. (1998). They expli
itlyin
orporate spatial information in the model 
onstru
tion, taking into a

ount 
orrelation betweenneighbouring 
ells. The Bayesian method has two stages. First the lo
al models are trained. Whentraining it is assumed that there is no spatial 
orrelation between the lo
al models. The se
ondstage is to apply Bayes' theorem and 
ombine the lo
al models with global wind prior models toimpose the spatial physi
al 
onstraints of wind �elds. Bayes' theorem 
an only be applied if it isassumed that for the forward model the probabilities, of the s
atterometer measurements, �oi , areindependent, 
onditional on the wind ve
tors, (ui; vi). This assumption further implies that themodels of Ri
haume et al. (1998) 
annot be used in the Bayesian 
ontext presented here.The wind �eld, U; V , is represented by a density probability over a wind �eld (U; V ) 
onditionalon the s
atterometer measurements �o: P (U; V j�o): (34)Bayes' theorem is applied to (34) to express the posterior probability in terms of a global forwardmodel: P (U; V j�o) / P (�o j U; V )P (U; V ): (35)The global forward model is expressed as a produ
t of probabilities given by a lo
al forward model,assuming that they are 
onditionally independent:P (U; V j�o) /Yi P (�oi j ui; vi)P (U; V ): (36)Bayes' theorem is applied again to express the lo
al forward model in terms of the inverse model,this is 
alled the s
alled likelihood method (Williams, 1997):P (U; V j�o) /  Yi P (ui; vi j �oi )P (�oi )P (ui; vi) !P (U; V ): (37)Finally, the the lo
al s
atterometer measurements P (�oi ) are 
onstant for a given s
ene and theposterior probability distribution is expressed as:P (U; V j�o) /  Yi P (ui; vi j �oi )P (ui; vi) !P (U; V ): (38)Equation (38) de�nes a probability density whi
h has a dimension given by the number of windve
tors in the wind �eld. The posterior is des
ribed by a 
ombination of three probability models:the lo
al 
onditional inverse model P (ui; vi j �oi ), the lo
al un
onditional model P (ui; vi) and theglobal wind prior P (U; V ). These three models are implemented inMatlab using the lo
al inversemodels developed in this proje
t, lo
al un
onditional models and the global wind prior of Cornford(1998). The parameter spa
e of the posterior distribution, the wind ve
tors (U; V ), is exploredusing Markov Chain Monte Carlo te
hniques. These te
hniques use sto
hasti
 methods to samplefrom the posterior distributions su
h as (38). On
e the stationary distribution is found inferen
eis made on the model parameters (U; V ).
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t have raised as many questions as they have answered, and there is stillmu
h to learn about the stru
ture of the inverse mapping and the behaviour of MDNs. To �nalisethis report the remainder of this subse
tion suggests possible avenues of work.4.3.1 Further investigation on the �o ! (u; v) mappingThere are many possible 
hanges to the MDN stru
ture that might help improve the performan
eof the model, two of the most promising are:� For MDNs with two free kernels and trained by tra
e. Training MDNs with an in
reasingnumber of units in the hidden layer of theMLP until optimal performan
e is a
hieved. On
ethe optimal 
on�guration is established, a 
omparison 
an be made with the 
urrent resultsfrom MDNs with four kernels to establish how the assumption that the noise in the targetsis Gaussian and spheri
ally symmetri
 a�e
ts model performan
e.� Further investigate the mapping (�o; �) ! (u; v) by redu
ing the number of hidden unitsin the MLP for MDNs taking in
iden
e angle as an input, and �nd the point where modelperforman
e signi�
antly redu
es. The extra number of hidden units in theMLP will give anindi
ation of the 
omplexity of the relationship between in
iden
e angle and the measurementmanifold for ea
h tra
e.4.3.2 Further investigation of the stru
ture of the probabilitydistribution P (u; v j �o)The results have shown that the noise on the targets in the 
urrent data set appears non-Gaussian,and dominantly bimodal. Improvements to the model stru
ture by modifying the ar
hite
ture ofthe MDN to model this distribution may be of bene�t:� Build a hybrid MDN with two free kernels and two mirroring 
entres. This will be a less
omplex model than a full model with four kernels and should be able to model the non-Gaussian modes more eÆ
iently than the hybrid MDN with two kernels.� The noise distribution on the targets appears to be heavier tailed than the Gaussian distri-bution originally assumed. This assumption 
ould be modi�ed by repla
ing the kernels witha heavier tailed distribution (su
h as a t-distribution), and retrain MDNs with two kernels.4.3.3 Further work to improve generalisationThere is also potential work in improving the generalisation performan
e of theMDNs with respe
tto the quality of the training data and the training methods employed:� Outliers in the training set will a�e
t the ability of the MDN to generatlise. By 
arefullyremoving outliers from the training set (either manually or otherwise) and retraing theMDNswe expe
t to see an in
rease in generalisation performan
e.
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ommittees of MDNs (with kernels of 
ir
ularnormal densities) to predi
ted wind dire
tion improved their results by roughly 5%. Giventhat there are severalMDNs trained in this proje
t, this method is a simple way of improvingthe results without the retraining the MDNs.� MDNs 
an get stu
k in lo
al minima on the error surfa
e. By 
hanging the starting positionon the error surfa
e (by 
hoosing a di�erent seed in the random number generators) theMDNs may �nd a better lo
ation on the error surfa
e with respe
t to generalisation.� The MDNs trained in this proje
t are unregularised. Regularisation 
ontrols the 
omplexityof neural networks during training, and making the generalisation performan
e less sensitiveto the initial model 
omplexity. Lars Hjorth, a fellowMS
 student, is developing a regularisedMDN framework. When he has 
ompleted his work, his framework 
ould be applied to thisproblem.� Little is known about the learning dynami
s of the MDN. Investigation into the evolutionof the parameter ve
tor may well provide an insight into the way MDNs learn, and lead toimprovements that in
rease the generalisation properties of these methods.In this �nal se
tion the 
on
lusions of this proje
t have been drawn: It has been shown that MDNso�er a feasible framework in whi
h to dire
tly extra
t wind ve
tor 
omponents from satellite s
at-terometer data. There is on-going work, whi
h has been des
ribed, putting the lo
al inverse modelsof this proje
t into the larger 
ontext of autonomous disambiguation methods. Finally, there arestill many more questioned to be answered, a few have been proposed here, with a hope to inspireother resear
hers, and anyone who reads this thesis, to 
ontinue on this path of dis
overy.
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tion of a MDNThis appendix is provided to show the reader the detail of the derivation of the gradient of thenegative log likelihood of a mixture density network (the error fun
tion) with respe
t to the outputsof the feed forward network (whi
h is usually a multi-layer per
eptron).A.1 The Error fun
tion and its partial derivativesThe negative log likelihood of MDN for the nth training pattern, where xn represents the nthinput pattern and tn represents the nth target pattern, is de�ned as:En = � ln� mXj=1 �j(xn)�j(tnjxn)�: (39)The jth kernel, �j , for the nth pattern, is de�ned as a spheri
al Gaussian of the form:�j = 1(2�) 
2�
j (xn) exp��ktn � �j(xn)k22�2j (xn) �: (40)The total error is the summation of the error of ea
h pattern:E = NXn=1En: (41)Be
ause of (41) the following analysis is on a per-pattern basis. For typographi
al 
larity refer-en
es to the target and training data sets are removed where possible from (39) and (40) and arerepresented in the following form: En = � ln� mXj=1 �j�j�: (42)and �j = 1(2�) 
2�
j exp��ktn � �jk22�2j �: (43)The obje
tive is to 
ompute the derivatives of En at the outputs of the MLP network. Ba
k-propagation is used to 
ompute the errors at the inputs of the MLP (Bishop, 1994; Bishop, 1995).The derivatives of interest (using the terminology of Bishop (1994)) are,� The partial derivative with respe
t to the outputs 
orresponding to the mixing 
oeÆ
ientsz�: �En�z�j : (44)
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t to the outputs 
orresponding to the varian
es or widthsz�: �En�z�j : (45)� The partial derivative with respe
t to the outputs 
orresponding to the 
entres or positionsin target spa
e z�jk: �En�z�jk : (46)In order to simplify the analysis and notation, the posterior probability of a point is de�ned. UsingBayes theorem: �j = �j�jPml=1 �l�l ; (47)where, 0 6 �j 6 1 8j; (48)MXj=1 �j = 1: (49)A.1.1 Computing the derivatives of the mixing 
oeÆ
ientsThe mapping 
onstraints from the output of theMLP to the parameters of theGmm are 
onsideredwhen 
omputing the partial derivatives. Using the 
hain rule:�En�z�j =Xk �En��k ��k�z�j ; (50)then from (42): �En��k = �� 1Pmj=1 �j�j :�k��k�k= � �k�kPmj=1 �j�j 1�k ; (51)and substituting (47): �En��k = ��k�k : (52)Some 
are is needed when deriving ��k�z�j . Ea
h �k represents a mixing 
oeÆ
ient for ea
h Gaussianin the mixture model. To ensure that the mixing 
oeÆ
ients represent probabilities they mustalways sum to one, that is PMj=1 �j = 1. This is a
hieved by using the `softmax' fun
tion on theoutput of the network su
h that: �j = exp(z�j )Pml=1 exp(z�l ) : (53)Using the quotient rule for di�erentiation and 
onsidering the two 
ases for j = k and j 6= k wehave:
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ase when j 6= k: ��k�z�j = Pml=1 exp(z�l ):0� exp(z�j ) exp(z�k )(Pml=1 exp(z�l ))2 ;= ��j�k; j 6= k: (54)� for the 
ase when j = k,��k�z�j = Pml=1 exp(z�l ): exp(z�j )� exp(z�j ) exp(z�k )(Pml=1 exp(z�l ))2= exp(z�j )Pml=1 exp(z�l ) � � exp(z�j )Pml=1 exp(z�l )�2 ;= �k � �2k; j = k: (55)
We 
an summarise (54) and (55) by��k�z�j = Æjk�k � �k�j 8><>: j = 1; 2; :::;mk = 1; 2; :::;mÆjk is the Krone
ker delta fun
tion. (56)To 
ompute the �nal derivative, substituting (52) and (56) into (50) yields��k�z�j =Xk ��k�k�Æjk � �k�j�=Xk ��k�k �kÆjk +Xk �k�k �k�j= ��j + �j : (57)
be
ause Pk �k = 1 and Pk �kÆjk = �j .Then the �nal result is �En�z�j = �j � �j : (58)A.1.2 Computing the derivatives of the varian
esThe term z�j refers to the varian
e of the Gaussian. When di�erentiating, we must be aware thatwe are di�erentiating with respe
t to the varian
e, �2j . Again, 
onsidering the mapping 
onstraintsbetween the outputs of the MLP and the model parameters, the 
hain rule is used to expand thepartial derivative: �En�z�j = �En��2j ��2j�z�j : (59)Di�erentiating (42) with respe
t to �2j yields:�En��2j = �" 1Pml=1 �j�j �(�j�j)��2j # ; (60)
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al Gaussian (43), expanding (60) gives:�j�j = �j 1(2�) 
2�
j exp��ktn � �jk22�2j �: (61)Completing the di�erentiation:�(�j�j)��2j = �j��
 12�2j 1(2�) 
2�
j exp��ktn � �jk22�2j �+ ktn � �jk22�4j 1(2�) 
2�
j exp��ktn � �jk22�2j ��= �j 1(2�) 
2 �
j exp��ktn � �jk22�2j �| {z }equation (61) �� 
2�2j + ktn � �jk22�4j �
= �j�j2 �� 
�2j + ktn � �jk2�4j :� (62)

Combining (60) and (62):�En��2j = �" �j�j2Pml=1 �l�l�� 
�2j + ktn � �jk2�4j �#= ��j2 �ktn � �jk2�4j � 
�2j �: (63)The se
ond term in expression (59) is easily 
omputed:��2j�z�j = exp(z�j )= �2j : (64)Then substituting (63) and (64) into (59) the �nal derivative be
omes�En�z�j = ��j2 �ktn � �jk2�2j � 
�: (65)A.1.3 Computing the partial derivative with respe
t to the kernel 
entresFor this derivative there is no 
onstraint (that is to say �jk = z�jk) applied on the output of theMLP as there is in the previous two 
ases. Therefore �En�z�jk is 
omputed dire
tly from (42):�En�z�jk = �" 1Pml=1 �l�l �(�j�j)�z�jk # : (66)Then di�erentiating �j (43) with respe
t to ea
h z�jk yields:
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��j�z�jk = � tk � �jk�2j � 1(2�) 
2�
j exp��ktn � �jk22�2j �= tk � �jk�2j �j : (67)Then substituting (67) into (66) yields the �nal result:�En�z�jk = �" �j�jPmj0=1 �j0�j0 tk � �jk�2j #= �j��jk � tk�2j �: (68)

A.2 Summary of resultsThe partial derivatives 
omputed with respe
t to the feed forward network outputs are summarisedbelow: �En�z�j = �j � �j ;�En�z�j = ��j2 �ktn � �jk2�2j � 
�;�En�z�jk = �j��jk � tk�2j �:
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tion of the hybrid MDNIn this appendix the derivation of the hybrid MDN framework is analysed in detail. The MDNframework is modi�ed to en
ode the ambiguous dire
tions that exist in the inverse mappingB.1 The Error fun
tion and its partial derivativesThe error fun
tion of a hybrid MDN is some what simpler than the full MDN:En = � ln��(xn)�(tnjxn) + (1� �(xn)) (tnjxn)�; (69)�(tnjxn) = 12��2(xn) exp��ktn � �(xn)k22�2(xn) �; (70) (tnjxn) = 12��2(xn) exp��ktn + �(xn)k22�2(xn) �; (71)simpli�ed thus: En = � ln���+ (1� �) �: (72)De�ne the two posterior probabilities for ea
h point:The free 
entre: � = ����+ (1� �) : (73)and the hybrid 
entre: 
 = (1� �) ��+ (1� �) : (74)B.1.1 Computing the derivatives of the mixing 
oeÆ
ientsUsing the 
hain rule: �En�z� = �En�� ���z� ; (75)taking the �rst term from (72):�En�� = �� 1��+ (1� �) (� �  )�= �� ���+ (1� �) �  ��+ (1� �) �: (76)
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(1� �)�= ���� � 
(1� �)�= �� (1� �)� � �
�(1� �) �; (77)
but as 
 = 1� �, the �nal solution is: �En�� = � � ��(1� �) : (78)The mixing 
oeÆ
ient � is a probability, and therefore is 
onstrained by 0 6 � 6 1. The logisti
fun
tion on the output of the MLP a
hives this:� = 11 + exp(�z�) : (79)Cal
ulating the se
ond term of (75),���z� = exp(�z�)(1 + exp(�z�))2= 1(1 + exp(�z�))� exp(�z�)1 + exp(�z�)�= ��1� 1(1 + exp(�z�))�= �(1� �): (80)
Combining (78) and (80) the result for the derivative with respe
t to network outputs for themixing 
oeÆ
ients gives, �En�z� = � � �: (81)B.1.2 Computing the derivatives of the kernel varian
es (widths)Using the 
hain rule: �En�z� = �En��2 ��2�z� ; (82)
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t to �2 yields:�En��2 = � � 1�� + (1� �) �(�� + (1� �) )��2 �= ������
 12�2 + ktn � �k22�4 �+ (1� �) ��
 12�2 + ktn + �k22�4 �� 1��+ (1� �) = ���2�� 
�2 + ktn � �k2�4 �+ 
2�� 
�2 + ktn + �k2�4 ��: (83)
The se
ond term in expression (82) is easily 
omputed:��2�z� = exp(z�)= �2; (84)and 
ombining (83) and (84) equation (82) is 
omplete:�En�z� = ���2�ktn � �k2�2 � 
�+ 
2�ktn + �k2�2 � 
��: (85)B.1.3 Computing the derivatives of the kernel 
entres (means)For this derivative there is no 
onstraint (that is to say �k = z�k ) applied on the output of the mlpas there is in the previous two 
ases. Therefore �En�z�jk is 
omputed dire
tly from (42):�En�z�k = � � 1��+ (1� �) �(�� + (1� �) )�z�k � ; (86)and, �(��+ (1� �) )�z�k = ��� tk � �k�2 �� (1� �) � tk + �k�2 �: (87)Combining (86) and (87) yields the �nal result:�En�z�k = ���� tk � �k�2 �� 
� tk + �k�2 ��: (88)B.2 Summary of resultsThe partial derivatives 
omputed with respe
t to the feed forward network outputs are summarisedbelow: �En�z� = � � �;�En�z� = ���2�ktn � �k2�2 � 
�+ 
2�ktn + �k2�2 � 
��;�En�z�k = ���� tk � �k�2 �� 
�tk + �k�2 ��:
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e of the inverse model,FoM and ve
tor root mean square error. These statisti
s are 
omputed after applying a simpledisambiguation pro
edure whi
h is detailed �rstC.1 Disambiguation for model appraisalThe following method of disambiguation permits the 
omparison of inverse model performan
e interms of the quality of retrieved wind ve
tors. The predi
ted dire
tion, Dpred, and predi
ted windspeed, Upred, are 
hosen using a simple de-aliasing algorithm. The observed wind ve
tor, Vobs(derived from the numeri
al weather predi
tion model, and gives the best estimate of a `true' windve
tor available), is 
ompared with the two most probable wind ve
tors inferred from the modelby measuring the Eu
lidean distan
e between ea
h inferred wind ve
tor and the observed windve
tor. The predi
ted wind ve
tor, Vpred, is 
hosen as the wind ve
tor with a minimum Eu
lideandistan
e from the observed wind ve
tor. The predi
ted wind ve
tor is then resolved to 
omputethe predi
ted dire
tion Dpred and the predi
ted wind speed Upred.C.2 Figure of MeritThis measure was proposed by David OÆler of the UK Meteorologi
al OÆ
e and is be
oming amore widely used statisti
 for 
omparing the performan
e of models within this �eld (Cornford etal., 1997; Ri
haume et al., 1998). FoM = (F1 + F2 + F3)3 ; (89)where: F1 = 40jUbiasj+ 10Usd + jDbiasj+Dsd ; (90)F2 = 12� 2Urms + 20Drms�; (91)F3 = 4Vrms : (92)where U represents wind speed, D the wind dire
tion and V the wind ve
tor (u; v). Where theparameters are de�ned: Ubias = 1N NXi=1 Ures(i); (93)Ures = Upred � Uobs; (94)Usd =vuut� 1N NXi=1(Ures(i))2�� (Ubias)2); (95)
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Urms =vuut 1N NXi=1(Ures(i))2; (96)

Vres =qU2obs + U2pred � 2UobsUpred 
os(Dres); (97)and Dres = Dpred �Dobs: (98)C.3 Predi
ted wind ve
tor root-mean-square errorThe predi
ted wind ve
tor root-mean-square error is de�ned asVrms =vuut NXi (u2res(i) + v2res(i)); (99)where the residuals of ui; vi are: u2res(i) = (upred(i) � uobs(i))2 (100)and v2res(i) = (vpred(i) � vobs(i))2; (101)where the predi
ted wind ve
tors are obtained using the method detailed in Subse
tion C.1C.4 Performan
e at 20ÆPerforman
e at 20Æ (denoted perf. � 20Æ) is a statisti
 that measures the per
entage predi
tedwind dire
tions that are within 20Æ of the target wind dire
tion. This statisti
 is used in work byThiria et al. (1993), Cornford et al. (1997) and Ri
haume et al. (1998).


