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Abstract

This report outlines the derivation and application of a non-zero mean, polynomial-exponential
covariance function based Gaussian process which forms the prior wind field model used in ‘au-
tonomous’ disambiguation. It is principally used since the non-zero mean permits the computation
of realistic local wind vector prior probabilities, P(u;,v;), which are required when applying the
scaled-likelihood trick, as the marginals of the full wind field prior P(U,V). As P(U,V) is multi-
variate normal, these marginals are very simple to compute.
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1 Introduction

Prior models for wind fields, P(U, V), are required for the disambiguation methodology proposed
at the Ncra at Aston (Cornford and Nabney, 1998); either ‘forward’ disambiguation:

P(U,V| %) = (H P(o? ui,vi)> P(U,V) (1)

or ‘inverse’ disambiguation:

P(U,V|E°) = (H %) P(U,V). 2)

A non-zero mean Gaussian process is chosen to capture useful information such as, typical length
scales, magnitudes, degrees of smoothness and noise variance!. A non-zero mean is particularly
important when implementing the ‘inverse’ disambiguation where the P(u;,v;) term, which is an
unconditional prior probability of the local wind vector, will in general be far from zero mean. The
reason for this is that almost all regions of the Earth have dominant wind directions, related to
the global climate system (Cornford, 1997b; Wallace and Hobbs, 1977).

2 Data
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Figure 1: The area of the North Atlantic over which the prior model is defined together with
an example of the ECMWF model winds for midnight 25/04/95

This work considers a sector of the North Atlantic from 52.5°W,40°N to 10°W,60°N (Figure 1)
and fits a non-zero mean Gaussian process over this region. This prior model can only be applied
(for disambiguation) in the North Atlantic. In principle there is no reason why it could not be
applied elsewhere, the only problem is one of data collection and determination of a suitable form
for the mean function. Additionally it would become necessary to allow the parameters in the
covariance function to adapt, since these are unlikely to remain stationary over the whole globe
(as they are assumed to be over the region considered).

In order to set the parameters in the wind field prior a large amount of European Centre for
Medium range Weather Forecasting (ECMWF) data is used, which consists of gridded analysis

IFor a spatial Gaussian process this is often referred to as the nugget variance and also encapsulates sub-sampling
scale fluctuations.
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(AS) data on a regular 2.5 degree latitude-longitude grid. The surface wind field? for a small region
of the North Atlantic is extracted from the global, gridded data set. The British Atmospheric
Data Centre (BADC) performed the interpolation from the model grid to the regular grid using
software provided by ECMWF. An example wind field is shown in Figure 1. In order to obtain
reliable climatological estimates of the parameters in the wind field model (in particular the mean
parameter) three complete years of data from 1995, 1996 and 1997 were used.

A smaller data set was chosen to take advantage of the revisions made to the ECMWF model
surface wind parameterisations in 1994, which increased model 10 m wind speeds. Thus the
more reliable, recent data (which also includes scatterometer derived winds which were assimilated
during the period for which the data is extracted) are considered.

yieldThe wind patterns in the North Atlantic show strong seasonal periodicity. Generally, winds
are stronger during the winter season than during the summer season. It is also possible that the
characteristic length scales of features change through the seasons. In order to account for this
a separate prior wind field model is developed for each month, using the three years data. Since
ECMWF analyse the incoming synoptic data (including wind observations) every six hours, there
are roughly 360 sample wind fields for each month, which are used to estimate (or sample) the
parameters of the prior wind field models.

Since only a small region of the North Atlantic is considered, local Cartesian co-ordinates (z,y)
are used rather than latitude and longitude, although this is purely a modelling decision and can
be changed. Due to errors in data transmission or translation some of the wind fields are found
to be highly un-meteorological, in that they consisted of purely divergent flow. All the data used
was visually examined and the very few cases where bad wind fields were identified were removed.

3 Models

To implement the Bayesian methodology a flexible, realistic and computationally efficient prior
model for wind fields is required. Starting with a very general model, data is used to determine
whether parameters could be fixed to a simplified model.

3.1 Modified Bessel function based wind fields

A modified Bessel covariance function based zero mean Gaussian process is the starting model
(which actually places prior models over the stream function and velocity potential — see Cornford
(1997a)). This covariance function has the general form:

0 =8 (g (5) 5o (7)) 47 ©

where r is the separation distance of two points, L is a characteristic length scale parameter, E?2
gives the energy (variance) in the wind, v gives the order of the Bessel function which controls
the differentiability (smoothness) of the wind fields and n? is the so called ‘nugget’ variance which
represents the noise and the sub-sampling scale variability. For an applied discussion of Gaussian
process see Abrahamsen (1997) or Cornford (1997a). Further details of the use of modified Bessel
covariance function based Gaussian processes can be found in Cornford (1998).

Essentially a modified Bessel covariance function based Gaussian process is applied to both the
stream function (¥) and velocity potential (®) rather than directly to the wind vector compo-
nents. This allows control over the ratio of divergence to vorticity in the resulting wind field,
and automatically produces valid, positive definite, joint covariance matrices. By controlling the
length scales, variance, smoothness and nugget variance a very flexible model for wind fields is

2By this is meant the standard 10 m vector component wind field
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produced with the additional benefit of being able to control the ratio of divergence to vorticity
through the relative magnitudes of the variances of the stream function and velocity potential.
Using Helmholtz’ theorem:

oV N 0d
- 9y Oz

oV n 0P
Oz Oy
Helmholtz’ theorem produces a separation of the vector wind field into two scalar components, the

stream function which represents purely rotational flow and the velocity potential which defines
the divergent flow (Daley, 1991).

v

Figure 2: A graphical description of the the conversion of velocity components from (u,v) to
(I,t). Note that this is with reference to vector pairs.

Considering two wind vectors (u1,v1) and (u2,v2) at locations separated by r = (1 — z2,y1 —
y2) where the ¥ and ®’s are continuous and differentiable, the definitions of expectations and
derivatives permit the computation of the wind component covariances in terms of the velocity
potential and stream function covariances. This may not appear to have brought very much to the
problem, however the simple isotropic covariances on the stream function and velocity potential
produce anisotropic, flow dependent covariances on the wind components. Furthermore assuming
that the covariances of the stream function and velocity potential are isotropic (that is depend only
on r) and that the cross covariance Cys is zero, that is the velocity potential and stream function
are uncorrelated, a simple form for the (u,v) covariances is obtained. Defining longitudinal (along
flow) and transverse (across flow) velocity components (Figure 2):

I = wucos(¢)+ vsin ()

t = —usin(¢)+ vcos(¢) (4)
where ¢ is the angle between the x-axis and [. The covariances for [ and ¢ are given by:
Cu i\ _ (cos(@)  sin(9)) (Cuu Cuv) (cos(6) —sin(g) )
Cu Cu —sin (@) cos(p)) \Cou Cuy/) \sin(¢) cos(¢)
Working in radial coordinates gives:
10 0?
Cu(r) = —;EC\D\IJ - wcéé
0? 10
Cu (r) = _WC\N’ - ;EC@D (6)
Ci = Cuy=0.

Thus given Cgy and Cp4 the wind covariances - which are not isotropic in general can be computed
from simple scalar isotropic covariance models for the stream function and velocity potential.
Working with correlation functions rather than covariances® gives:
19 0?
Cy(r)=—-E3L - —poy — B3 L2~ 7
u (r) el BTP\I/\I/ ®Med 59 Ped (7)
0? 10
Cu (r) = —E3 L g ——=pyy — E3 L2~ —
1 () el g5 pPow @ Med 8TPM>

3The correlation function is simply the covariance divided by the variance (i.e. covariance at r = 0).
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where E2 and E2 are the variances of the rotational and divergent components of the wind
respectively. This is a sensible parameterisation because it maintains the independence of the
parameters (as much as possible) in the model. This can be expressed using;:

2
2 E<I>

U T E T EY

E,=E} +Ej

where v? gives the ratio of the kinetic energy in the divergent flow (as given by ®) to that in
the total wind flow given by E2 allowing control over the ratio of divergence and vorticity in the
resulting flow fields. L2; is the squared (effective)* length scale associated with the correlation
function pgss and is defined as:

o _ _ 2pas
ed V2p<1><1> r=0

where:
, 10 0 1 92
V=ioor T eag
Finally, the (u,v) covariances are given by:
Cuu (7‘, ¢)) 0082 (¢) Cll (T‘) + Sin2 (¢)) Ctt (T‘)
Cuw (7‘, ¢)) = Cyu (7‘, ¢)) cos (¢)) sin (¢)) (Cll (T) - Cy (T‘)) (8)
Cyy (r,¢) = sin® (¢) Cy (r) + cos? (¢) Cy (1)

with the full joint covariance matrix being:

Ouu CU'U
Fu= (G @) ©)

This gives a very general method for constructing covariance functions for wind fields, although
care must be taken to ensure that the correlation functions for the velocity potential and stream
function satisfy several conditions - largely on the continuity of their derivatives at the origin, see
Cornford (1997a).

In order to estimate the parameters of the covariance function a maximum a posteriori probability
estimate was found to determine the parameters which are most likely given the data. Writing the
parameter vector as £ and the dataset as D, then the likelihood of the data is:

P(Duv |£) = n ! T €Xp (_ED:“;K;leuv> (10)
(27)2 det (Kyy)2 2

where K, is the joint covariance matrix of both wind components and n is the sample size®. The
gradient of this likelihood with respect to the parameters can be computed, and the parameters are
optimised using a scaled conjugate gradient algorithm (Bishop, 1995). More details can be found
in Cornford (1998). A Bayesian approach (O’Hagan, 1994) is adopted throughout the project
thus when implementing the procedure in its most general form we sample over (or optimise) the
posterior distribution of the parameters £ given the data D,,:

P& D) = D0 S8 o P, )P0 (11)
where P(£) is a prior® distribution over the Gaussian process parameters and P(D,,) is the
normalising constant of the posterior probability, which we can ignore since Markov Chain Monte
Carlo (MCMC) (Neal, 1996) methods are used to draw samples from the posterior distribution,
P(&|Dyy) or P(&|Dyy) is optimised in which case multiplication by a constant make no difference
to the minimum determined.

4The length scale L is the parameter in the correlation function while the effective length scale L. gives the gives
the true correlation length scale, that is the distance at which the correlation function has fallen to 0.05.

5n will be twice the number of observations, since each observation comprises a pair of wind components.

6This raises a notational issue. Strictly these distributions are hyper-priors, since these are priors on hyper-
parameters in our prior wind field model. The difference is not made explicit in the text since it is felt that the
context will clearly show which prior model is being referenced.
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The modified Bessel covariance function based Gaussian process is a very flexible model but is
rather slow to compute due to the necessity of recomputing a non-integer order Bessel function
(Press et al., 1992). Figure 3 shows cross sections through the maximum a posteriori probability
values of the individual parameters in the modified Bessel covariance function based Gaussian
process. These show that the maximum (= minimum negative log probability) is well defined for
all parameters, although this is less marked for the smoothness parameters. Note that to ensure
that the vorticity is continuous, the smoothness parameter must be at least two. These profiles are
similar in appearance to those obtained by using maximum likelihood methods using the likelihood
in (11) without any priors (not shown).

The prior distributions are Weibull (since all parameters must be positive) and are shown in Figure
4. These prior distributions have the general form:

P(§) =gxdx (£27") exp (—d* €%) (12)

where the parameters g, d are determined using expert knowledge (Dan Cornford) since the param-
eters of the Gaussian process all have physical interpretations. Note identical priors on the length
and smoothness scales of the stream function and velocity potential were imposed. The nugget
variance, in particular, is strongly constrained since it is not well identified from the data, other
than having small magnitude. Thus the constraint imposed by the priors produces a reasonable,
well defined maximum a posteriori probability value, which is consistent with the data.

Figure 5 shows the maximum a posteriori probability values for the parameters of the modified
Bessel covariance function based Gaussian process and how they vary over the course of the year.
This brings out several features of the data. The same prior distributions are used as shown in
Figure 4. The annual cycle is clear, notably in the variance of the wind field. This corresponds to
mid-latitude winds being driven largely (and indirectly) by the pole-equator temperature gradient
which is largest in winter, and thus the winds have most energy during this season. The energy
in the rotational wind (top right, Figure 5) can be seen to be more than ten times greater than
the energy in the divergent wind (top left, Figure 5). Note that characteristic length scales of
approximately 500 km which correspond to effective correlation scales of ~ 850 km are consistent
with the scale of meteorological features such as cyclones, fronts and anticyclones.

The bottom two plots of Figure 5 show the smoothness scale maximum a posteriori probability
values. These can be seen to be roughly 2.5. If these are set to 2.5 exactly then the modified Bessel
covariance function simplifies to a polynomial-exponential covariance function and the time spent
in the computation of the covariance matrix can be reduced by a factor of 4.817. The bottom
two graphs of Figure 3 indicate that the posterior distribution of the smoothness parameters is
relatively flat around the maximum a posteriori probability values, so this simplification is near
the maximum a posteriori probability values. Setting the smoothness parameters of the stream
function and velocity potential to 2.5 is consistent with the data, the physics (that is it ensures
that the vorticity and divergence are continuous) and greatly improves modelling speed.

3.2 Polynomial-exponential based wind fields

By fixing the smoothness parameters to 2.5 the covariance function is given by:

cr=r (14247 e (T)+2 (13)
r) = —+ —|exp|(——
L 3r2)P\UT) T

where, as before, r is the separation distance of two points, L is a characteristic length scale
parameter, E? is the energy (variance) in the wind and n? is the so called ‘nugget’ variance. Using
this form of covariance in exactly the same way as the previous covariance was applied, gives a
flexible yet fast wind field model. The maximum a posteriori probability values of the parameters
of the zero mean polynomial-exponential covariance function based Gaussian process are shown in
Figure 6.

"This figure is computed averaging ten runs of the profile command in MATLAB on a Silicon Graphics Indy
R5000.
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So far all the Gaussian processes considered have been zero mean. Since there are generally
predominant wind directions at every location on the Earth’s surface a zero mean model may be
improved by the addition of a location dependent mean term.

3.3 Adding a non-zero mean

In order to improve the model and to produce meaningful marginal probabilities of the wind in each
cell a non-zero mean component (on the wind components) is added to the Gaussian process model.
Since only a small region of the North Atlantic is being considered a second order polynomial is
used:

my(z,y) = ag + a1z + a2y + asz® + asy® + aszy (14)
and:
My (2,y) = by + brz + bay + bzz® + bay® + bszry (15)

where (x,y) are the (Cartesian) co-ordinates and the coefficients (a; and b;) are determined by
maximising their a posterior: probability jointly with the parameters of the polynomial-exponential
covariance function. Weakly informative, proper, Gaussian priors are put on the coefficients,
corresponding to ridge regression (O’Hagan, 1994). In all cases the variance of the Gaussian is 100
while the mean is zero for all but ag for which it is 4 ms~!. This corresponds to a very vague,
realistic prior belief that the mean winds are light westerlies in the North Atlantic.

The likelihood of the non-zero mean Gaussian process wind field model is given by:

1 1 11 —m
P(Duv |£) - (277_)% det (Kuv)% exp (—— (Duv - muv) Kuv (Duv uv)) (16)

where:

M = [m"(m’yi] (17)

mv(zay

and & now also includes the mean coefficients. Together with the priors over the parameters (as
described above) samples from the posterior distribution of the parameters can be taken or their
maximum a posteriori probability values can be found (given the derivatives which are straight-
forward to compute). The mean parameters are initialised to the least squares fit of the polyno-
mials, (14) and (15), to the monthly mean wind vector for the region considered. The covariance
parameters are initialised to the good guess values determined using geophysical knowledge.

Figure 7 shows the maximum a posteriori probability values of the covariance parameters for
the non-zero mean Gaussian process. This can be contrasted with Figure 6. The mean function
included in the results displayed in Figure 7 has the expected effect on the covariance parameters.
Some of the energy in the winds is included in the mean component and thus the variances of the
divergent and rotational winds are reduced. The length scale is also somewhat reduced as the more
persistent, larger scale features are present in the mean. The nugget variance remains essentially
unchanged.

Figure 8 shows the maximum a posteriori probability mean wind fields computed for four months
of the year. These use three years of data and thus still contain ‘non-mean’ features (that is long-
lived, yet nevertheless transitory, features) but the wind fields are consistent with climatological
expectations. The wind field for April is probably less representative of the true mean and reflects
the dominance of blocking anticyclones over Western Europe in recent years during the spring
months.?

8This is an interesting point, since there really is not such thing as a stable (temporally stationary) climate thus
it could be argued that a three year average is appropriate in the current scenario of potentially rapid global climate
change.
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Figure 9 shows some example wind fields simulated from the non-zero mean polynomial-exponential
covariance function based Gaussian process for four months. These simulated wind fields capture
many of the features typical of real wind fields (although they lack fronts). Since these models will
form the prior models for wind fields in the next stage of processing where wind fields are determined
on the basis of scatterometer observations and prior wind field models it is important to have good
prior models. Visual assessment indicates that the proposed models meet the requirement.

3.4 Determination of the marginal probabilities

When using the inverse model in disambiguation (2) the local (marginal) probabilities P(u;, v;)
of the wind vectors in each cell are required. These are obtained as the marginal probabilities
of the full joint wind field model P(U,V). Since P(U,V) is multivariate normal, the marginal
probabilities are simply given by:

1 1
P(uia vi) = 1 T €Xp (__ ((uiavi) - muv,i)l K@Ivlz'i ((’U,l, Ui) - muv,i)) (18)
(27)? det (Kyp i) 2 ’

where the subscript ¢ indicates that only to the value of the i’th cell is being referred to. Since a
stationary covariance function is being used the variance-covariance matrix K, ;; will be the same
for all cells, however the mean will change. This prior local model then gives a good estimate of
the unconditional local distribution of wind vectors for any cell.

4 Sampling or Optimisation?

When the NEUROSAT project was proposed a fully Bayesian approach was envisaged where the
integral over the parameters in the Gaussian process (whether it be zero or non-zero mean) would be
approximated using Monte Carlo methods - that is averaging over the wind fields computed using
samples from the posterior distribution of the Gaussian process parameters of the wind field prior
model. This will be extremely time consuming since it would necessitate repeated computation (or
storage) of the inverse covariance matrices for all samples (that is covariance parameters) at each
step in the computation of the posterior probability (or log probability = energy in the Markov
Chain Monte Carlo context) of the wind fields given the scatterometer data.

Thus, operationally, it may be more effective to fix the Gaussian process parameters at their
maximum a posteriori probability values which means that the inverse covariance matrix need
only be computed once and stored leaving each sampling step with a (large) matrix multiplication
rather than inversion and multiplication over many duplicate chains. Storage of multiple inverse
covariance matrices is impractical due to their size (722 x 722 for a full scene, even larger for a
swathe).

5 Potential Model Improvements

Although the model fits the data well and produces realistic wind fields when used in a generative
sense, there are several improvements that could be envisaged in future work. Fronts are not
represented in the model, but are common features in the atmosphere. Other work addresses
fronts and will not be discussed here.

The model has a parametric mean which has a fixed functional form. This implicitly defines the
(unknowable and arbitrary) split between the mean component and the stochastic component.
Since we cannot know whether such a split is justified by the data we must accept a level of
arbitrariness here. The second order polynomial was chosen to represent the mean since it was
felt that the climatological mean (which this is to some extent representing) has a simple and
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smooth form in the North Atlantic. However the exact functional form is arbitrary and so could
be changed.

Currently a small region of the North Atlantic is considered, however, operationally all of the
Earth’s oceans must be included. This is a highly complex task. The mean function could be
defined piece-wise over regions of the Earth’s surface, or a more flexible form based on spherical
geometry (spherical harmonics) could be used.

The covariance function would be still more complicated since there are compelling reasons to
believe that it would not be stationary. For example, the mid-latitudes experience significantly
different weather patterns from the sub-tropics, and thus the covariance functions will change from
region to region. There is no existing theory that could produce such non-stationary covariance
functions in a principled framework.

6 Conclusions

A flexible Gaussian process wind field model based on a modified Bessel covariance function was
introduced. This was shown to be a good model of assimilated ECMWF winds and the maximum
a posteriori probability values for the parameters were shown. These physically interpretable pa-
rameters agree with a priori beliefs. Fixing the smoothness parameters in the modified Bessel
covariance function to 2.5, close to their maximum a posteriori probability values, allows a simpli-
fication of the covariance function, resulting in the polynomial-exponential covariance function.

Introducing a non-zero mean to the polynomial-exponential covariance function based Gaussian
process allows a more sensible application of the model when using the scaled-likelihood trick to
compute the posterior distribution of the wind fields using the inverse scatterometer model. The
non-zero mean allows the calculation of the local probability of the wind vector in each cell as
the marginal probability of the Gaussian process for that cell alone. The maximum a posteriori
probability values of the parameters have been computed for both zero and non-zero mean Gaussian
processes using the polynomial-exponential covariance function.

The posterior distribution of the Gaussian process parameters has also been sampled from using
both Metropolis and hybrid Monte Carlo samplers (Neal, 1996). However practical considerations
suggest the use of the maximum a posteriori probability parameters rather than implementing a
fully Bayesian method. Possible improvements to the model are also noted.
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Figure 6: The maximum a posteriori probability values of the variance, length scale and the
nugget variance of the polynomial-exponential covariance function based Gaussian
process respectively from top to bottom. Parameters for the velocity potential (di-
vergent flow) are on the left and stream function (rotational flow) on the right. Each
figure shows the maximum a posteriori probability value of the respective parameter

for the 12 months of the year.
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Figure 7: The maximum a posteriori probability values of the variance, length scale and the
nugget variance of the non-zero mean polynomial-exponential covariance function
based Gaussian process respectively from top to bottom. Parameters for the velocity
potential (divergent flow) are on the left and stream function (rotational flow) on the
right. Each figure shows the maximum a posteriori probability value of the respective
parameter for the 12 months of the year.
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Figure 8: The maximum a posteriori probability values of the mean for January (top left), April
(top right), July (bottom left) and October (bottom right) for the North Atlantic.
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Figure 9: Simulated wind fields using maximum a posteriori probability values for all the pa-
rameters of the non-zero mean polynomial-exponential covariance function based

Gaussian process for January (top left), April (top right), July (bottom left) and
October (bottom right) for the North Atlantic.



