
Neural Computing Research GroupDept of Computer Science & Applied MathematicsAston UniversityBirmingham B4 7ETUnited KingdomTel: +44 (0)121 333 4631Fax: +44 (0)121 333 4586http://www.ncrg.aston.ac.uk/
Non-Zero Mean Gaussian ProcessPrior Wind Field ModelsDan CornfordTechnical Report NCRG/98/020 September 16, 1998

AbstractThis report outlines the derivation and application of a non-zero mean, polynomial-exponentialcovariance function based Gaussian process which forms the prior wind �eld model used in `au-tonomous' disambiguation. It is principally used since the non-zero mean permits the computationof realistic local wind vector prior probabilities, P (ui; vi), which are required when applying thescaled-likelihood trick , as the marginals of the full wind �eld prior P (U; V ). As P (U; V ) is multi-variate normal, these marginals are very simple to compute.
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2 Non-Zero Mean Gaussian Process Prior Wind Field Models1 IntroductionPrior models for wind �elds, P (U; V ), are required for the disambiguation methodology proposedat the Ncrg at Aston (Cornford and Nabney, 1998); either `forward' disambiguation:P (U; V j�o) =  Yi P (�oi j ui; vi)!P (U; V ) (1)or `inverse' disambiguation:P (U; V j�o) =  Yi P (ui; vi j �oi )P (ui; vi) !P (U; V ): (2)A non-zero mean Gaussian process is chosen to capture useful information such as, typical lengthscales, magnitudes, degrees of smoothness and noise variance1. A non-zero mean is particularlyimportant when implementing the `inverse' disambiguation where the P (ui; vi) term, which is anunconditional prior probability of the local wind vector, will in general be far from zero mean. Thereason for this is that almost all regions of the Earth have dominant wind directions, related tothe global climate system (Cornford, 1997b; Wallace and Hobbs, 1977).2 Data

  60 o
W 

  45oW   30oW 
  15

oW 

   0
o   

  32 o
N 

  40 o
N 

  48 o
N 

  56 o
N 

  64 o
N 

Figure 1: The area of the North Atlantic over which the prior model is de�ned together withan example of the ECMWF model winds for midnight 25/04/95This work considers a sector of the North Atlantic from 52:5�W; 40�N to 10�W; 60�N (Figure 1)and �ts a non-zero mean Gaussian process over this region. This prior model can only be applied(for disambiguation) in the North Atlantic. In principle there is no reason why it could not beapplied elsewhere, the only problem is one of data collection and determination of a suitable formfor the mean function. Additionally it would become necessary to allow the parameters in thecovariance function to adapt, since these are unlikely to remain stationary over the whole globe(as they are assumed to be over the region considered).In order to set the parameters in the wind �eld prior a large amount of European Centre forMedium range Weather Forecasting (ECMWF) data is used, which consists of gridded analysis1For a spatial Gaussian process this is often referred to as the nugget variance and also encapsulates sub-samplingscale 
uctuations.



Non-Zero Mean Gaussian Process Prior Wind Field Models 3(AS) data on a regular 2.5 degree latitude-longitude grid. The surface wind �eld2 for a small regionof the North Atlantic is extracted from the global, gridded data set. The British AtmosphericData Centre (BADC) performed the interpolation from the model grid to the regular grid usingsoftware provided by ECMWF. An example wind �eld is shown in Figure 1. In order to obtainreliable climatological estimates of the parameters in the wind �eld model (in particular the meanparameter) three complete years of data from 1995, 1996 and 1997 were used.A smaller data set was chosen to take advantage of the revisions made to the ECMWF modelsurface wind parameterisations in 1994, which increased model 10 m wind speeds. Thus themore reliable, recent data (which also includes scatterometer derived winds which were assimilatedduring the period for which the data is extracted) are considered.yieldThe wind patterns in the North Atlantic show strong seasonal periodicity. Generally, windsare stronger during the winter season than during the summer season. It is also possible that thecharacteristic length scales of features change through the seasons. In order to account for thisa separate prior wind �eld model is developed for each month, using the three years data. SinceECMWF analyse the incoming synoptic data (including wind observations) every six hours, thereare roughly 360 sample wind �elds for each month, which are used to estimate (or sample) theparameters of the prior wind �eld models.Since only a small region of the North Atlantic is considered, local Cartesian co-ordinates (x; y)are used rather than latitude and longitude, although this is purely a modelling decision and canbe changed. Due to errors in data transmission or translation some of the wind �elds are foundto be highly un-meteorological, in that they consisted of purely divergent 
ow. All the data usedwas visually examined and the very few cases where bad wind �elds were identi�ed were removed.3 ModelsTo implement the Bayesian methodology a 
exible, realistic and computationally e�cient priormodel for wind �elds is required. Starting with a very general model, data is used to determinewhether parameters could be �xed to a simpli�ed model.3.1 Modi�ed Bessel function based wind �eldsA modi�ed Bessel covariance function based zero mean Gaussian process is the starting model(which actually places prior models over the stream function and velocity potential { see Cornford(1997a)). This covariance function has the general form:C (r) = E2� 12��1� (�) � rL�� K� � rL��+ �2 (3)where r is the separation distance of two points, L is a characteristic length scale parameter, E2gives the energy (variance) in the wind, � gives the order of the Bessel function which controlsthe di�erentiability (smoothness) of the wind �elds and �2 is the so called `nugget' variance whichrepresents the noise and the sub-sampling scale variability. For an applied discussion of Gaussianprocess see Abrahamsen (1997) or Cornford (1997a). Further details of the use of modi�ed Besselcovariance function based Gaussian processes can be found in Cornford (1998).Essentially a modi�ed Bessel covariance function based Gaussian process is applied to both thestream function (	) and velocity potential (�) rather than directly to the wind vector compo-nents. This allows control over the ratio of divergence to vorticity in the resulting wind �eld,and automatically produces valid, positive de�nite, joint covariance matrices. By controlling thelength scales, variance, smoothness and nugget variance a very 
exible model for wind �elds is2By this is meant the standard 10 m vector component wind �eld



4 Non-Zero Mean Gaussian Process Prior Wind Field Modelsproduced with the additional bene�t of being able to control the ratio of divergence to vorticitythrough the relative magnitudes of the variances of the stream function and velocity potential.Using Helmholtz' theorem: u = �@	@y + @�@xv = @	@x + @�@yHelmholtz' theorem produces a separation of the vector wind �eld into two scalar components, thestream function which represents purely rotational 
ow and the velocity potential which de�nesthe divergent 
ow (Daley, 1991).
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φFigure 2: A graphical description of the the conversion of velocity components from (u; v) to(l; t). Note that this is with reference to vector pairs.Considering two wind vectors (u1; v1) and (u2; v2) at locations separated by r = (x1 � x2; y1 �y2) where the 	 and �'s are continuous and di�erentiable, the de�nitions of expectations andderivatives permit the computation of the wind component covariances in terms of the velocitypotential and stream function covariances. This may not appear to have brought very much to theproblem, however the simple isotropic covariances on the stream function and velocity potentialproduce anisotropic, 
ow dependent covariances on the wind components. Furthermore assumingthat the covariances of the stream function and velocity potential are isotropic (that is depend onlyon r) and that the cross covariance C	� is zero, that is the velocity potential and stream functionare uncorrelated, a simple form for the (u; v) covariances is obtained. De�ning longitudinal (along
ow) and transverse (across 
ow) velocity components (Figure 2):l = u cos (�) + v sin (�)t = �u sin (�) + v cos (�) (4)where � is the angle between the x-axis and l. The covariances for l and t are given by:�Cll CltCtl Ctt� = � cos (�) sin (�)� sin (�) cos (�)��Cuu CuvCvu Cvv��cos (�) � sin (�)sin (�) cos (�) � (5)Working in radial coordinates gives:Cll (r) = �1r @@rC		 � @2@r2C��Ctt (r) = � @2@r2C		 � 1r @@rC�� (6)Clt = Ctl = 0:Thus given C		 and C�� the wind covariances - which are not isotropic in general can be computedfrom simple scalar isotropic covariance models for the stream function and velocity potential.Working with correlation functions rather than covariances3 gives:Cll (r) = �E2	L2e	 1r @@r �		 �E2�L2e� @2@r2 ��� (7)Ctt (r) = �E2	L2e	 @2@r2 �		 �E2�L2e� 1r @@r���3The correlation function is simply the covariance divided by the variance (i.e. covariance at r = 0).



Non-Zero Mean Gaussian Process Prior Wind Field Models 5where E2	 and E2� are the variances of the rotational and divergent components of the windrespectively. This is a sensible parameterisation because it maintains the independence of theparameters (as much as possible) in the model. This can be expressed using:v2 = E2�E2	 +E2� ; E2u = E2	 +E2�where v2 gives the ratio of the kinetic energy in the divergent 
ow (as given by �) to that inthe total wind 
ow given by E2u allowing control over the ratio of divergence and vorticity in theresulting 
ow �elds. L2e� is the squared (e�ective)4 length scale associated with the correlationfunction ��� and is de�ned as: L2e� = � 2���r2��� ���r=0where: r2 = 1r @@r r @@r + 1r2 @2@�2Finally, the (u; v) covariances are given by:Cuu (r; �) = cos2 (�)Cll (r) + sin2 (�)Ctt (r)Cuv (r; �) = Cvu (r; �) = cos (�) sin (�) (Cll (r)� Ctt (r)) (8)Cvv (r; �) = sin2 (�)Cll (r) + cos2 (�)Ctt (r)with the full joint covariance matrix being:Kuv = �Cuu CuvCvu Cvv� : (9)This gives a very general method for constructing covariance functions for wind �elds, althoughcare must be taken to ensure that the correlation functions for the velocity potential and streamfunction satisfy several conditions - largely on the continuity of their derivatives at the origin, seeCornford (1997a).In order to estimate the parameters of the covariance function a maximum a posteriori probabilityestimate was found to determine the parameters which are most likely given the data. Writing theparameter vector as � and the dataset as Duv then the likelihood of the data is:P (Duv j �) = 1(2�)n2 det (Kuv) 12 exp��12D0uvK�1uv Duv� (10)where Kuv is the joint covariance matrix of both wind components and n is the sample size5. Thegradient of this likelihood with respect to the parameters can be computed, and the parameters areoptimised using a scaled conjugate gradient algorithm (Bishop, 1995). More details can be foundin Cornford (1998). A Bayesian approach (O'Hagan, 1994) is adopted throughout the projectthus when implementing the procedure in its most general form we sample over (or optimise) theposterior distribution of the parameters � given the data Duv :P (� jDuv) = P (Duv j �)P (�)P (Duv) / P (Duv j �)P (�) (11)where P (�) is a prior6 distribution over the Gaussian process parameters and P (Duv) is thenormalising constant of the posterior probability, which we can ignore since Markov Chain MonteCarlo (MCMC) (Neal, 1996) methods are used to draw samples from the posterior distribution,P (� jDuv) or P (� jDuv) is optimised in which case multiplication by a constant make no di�erenceto the minimum determined.4The length scale L is the parameter in the correlation function while the e�ective length scale Le gives the givesthe true correlation length scale, that is the distance at which the correlation function has fallen to 0.05.5n will be twice the number of observations, since each observation comprises a pair of wind components.6This raises a notational issue. Strictly these distributions are hyper-priors, since these are priors on hyper-parameters in our prior wind �eld model. The di�erence is not made explicit in the text since it is felt that thecontext will clearly show which prior model is being referenced.



6 Non-Zero Mean Gaussian Process Prior Wind Field ModelsThe modi�ed Bessel covariance function based Gaussian process is a very 
exible model but israther slow to compute due to the necessity of recomputing a non-integer order Bessel function(Press et al., 1992). Figure 3 shows cross sections through the maximum a posteriori probabilityvalues of the individual parameters in the modi�ed Bessel covariance function based Gaussianprocess. These show that the maximum (= minimum negative log probability) is well de�ned forall parameters, although this is less marked for the smoothness parameters. Note that to ensurethat the vorticity is continuous, the smoothness parameter must be at least two. These pro�les aresimilar in appearance to those obtained by using maximum likelihood methods using the likelihoodin (11) without any priors (not shown).The prior distributions are Weibull (since all parameters must be positive) and are shown in Figure4. These prior distributions have the general form:P (�) = g � d � ��g�1� exp (�d � �g) (12)where the parameters g; d are determined using expert knowledge (Dan Cornford) since the param-eters of the Gaussian process all have physical interpretations. Note identical priors on the lengthand smoothness scales of the stream function and velocity potential were imposed. The nuggetvariance, in particular, is strongly constrained since it is not well identi�ed from the data, otherthan having small magnitude. Thus the constraint imposed by the priors produces a reasonable,well de�ned maximum a posteriori probability value, which is consistent with the data.Figure 5 shows the maximum a posteriori probability values for the parameters of the modi�edBessel covariance function based Gaussian process and how they vary over the course of the year.This brings out several features of the data. The same prior distributions are used as shown inFigure 4. The annual cycle is clear, notably in the variance of the wind �eld. This corresponds tomid-latitude winds being driven largely (and indirectly) by the pole-equator temperature gradientwhich is largest in winter, and thus the winds have most energy during this season. The energyin the rotational wind (top right, Figure 5) can be seen to be more than ten times greater thanthe energy in the divergent wind (top left, Figure 5). Note that characteristic length scales ofapproximately 500 km which correspond to e�ective correlation scales of � 850 km are consistentwith the scale of meteorological features such as cyclones, fronts and anticyclones.The bottom two plots of Figure 5 show the smoothness scale maximum a posteriori probabilityvalues. These can be seen to be roughly 2.5. If these are set to 2.5 exactly then the modi�ed Besselcovariance function simpli�es to a polynomial-exponential covariance function and the time spentin the computation of the covariance matrix can be reduced by a factor of 4.817. The bottomtwo graphs of Figure 3 indicate that the posterior distribution of the smoothness parameters isrelatively 
at around the maximum a posteriori probability values, so this simpli�cation is nearthe maximum a posteriori probability values. Setting the smoothness parameters of the streamfunction and velocity potential to 2.5 is consistent with the data, the physics (that is it ensuresthat the vorticity and divergence are continuous) and greatly improves modelling speed.3.2 Polynomial-exponential based wind �eldsBy �xing the smoothness parameters to 2.5 the covariance function is given by:C (r) = E2�1 + rL + r23L2� exp�� rL�+ �2 (13)where, as before, r is the separation distance of two points, L is a characteristic length scaleparameter, E2 is the energy (variance) in the wind and �2 is the so called `nugget' variance. Usingthis form of covariance in exactly the same way as the previous covariance was applied, gives a
exible yet fast wind �eld model. The maximum a posteriori probability values of the parametersof the zero mean polynomial-exponential covariance function based Gaussian process are shown inFigure 6.7This �gure is computed averaging ten runs of the profile command in Matlab on a Silicon Graphics IndyR5000.



Non-Zero Mean Gaussian Process Prior Wind Field Models 7So far all the Gaussian processes considered have been zero mean. Since there are generallypredominant wind directions at every location on the Earth's surface a zero mean model may beimproved by the addition of a location dependent mean term.3.3 Adding a non-zero meanIn order to improve the model and to produce meaningful marginal probabilities of the wind in eachcell a non-zero mean component (on the wind components) is added to the Gaussian process model.Since only a small region of the North Atlantic is being considered a second order polynomial isused: mu(x; y) = a0 + a1x+ a2y + a3x2 + a4y2 + a5xy (14)and: mv(x; y) = b0 + b1x+ b2y + b3x2 + b4y2 + b5xy (15)where (x,y) are the (Cartesian) co-ordinates and the coe�cients (ai and bi) are determined bymaximising their a posteriori probability jointly with the parameters of the polynomial-exponentialcovariance function. Weakly informative, proper, Gaussian priors are put on the coe�cients,corresponding to ridge regression (O'Hagan, 1994). In all cases the variance of the Gaussian is 100while the mean is zero for all but a0 for which it is 4 ms�1. This corresponds to a very vague,realistic prior belief that the mean winds are light westerlies in the North Atlantic.The likelihood of the non-zero mean Gaussian process wind �eld model is given by:P (Duv j �) = 1(2�)n2 det (Kuv) 12 exp��12 (Duv �muv)0K�1uv (Duv �muv)� (16)where: muv = �mu(x; y)mv(x; y)� (17)and � now also includes the mean coe�cients. Together with the priors over the parameters (asdescribed above) samples from the posterior distribution of the parameters can be taken or theirmaximum a posteriori probability values can be found (given the derivatives which are straight-forward to compute). The mean parameters are initialised to the least squares �t of the polyno-mials, (14) and (15), to the monthly mean wind vector for the region considered. The covarianceparameters are initialised to the good guess values determined using geophysical knowledge.Figure 7 shows the maximum a posteriori probability values of the covariance parameters forthe non-zero mean Gaussian process. This can be contrasted with Figure 6. The mean functionincluded in the results displayed in Figure 7 has the expected e�ect on the covariance parameters.Some of the energy in the winds is included in the mean component and thus the variances of thedivergent and rotational winds are reduced. The length scale is also somewhat reduced as the morepersistent, larger scale features are present in the mean. The nugget variance remains essentiallyunchanged.Figure 8 shows the maximum a posteriori probability mean wind �elds computed for four monthsof the year. These use three years of data and thus still contain `non-mean' features (that is long-lived, yet nevertheless transitory, features) but the wind �elds are consistent with climatologicalexpectations. The wind �eld for April is probably less representative of the true mean and re
ectsthe dominance of blocking anticyclones over Western Europe in recent years during the springmonths.88This is an interesting point, since there really is not such thing as a stable (temporally stationary) climate thusit could be argued that a three year average is appropriate in the current scenario of potentially rapid global climatechange.



8 Non-Zero Mean Gaussian Process Prior Wind Field ModelsFigure 9 shows some example wind �elds simulated from the non-zero mean polynomial-exponentialcovariance function based Gaussian process for four months. These simulated wind �elds capturemany of the features typical of real wind �elds (although they lack fronts). Since these models willform the prior models for wind �elds in the next stage of processing where wind �elds are determinedon the basis of scatterometer observations and prior wind �eld models it is important to have goodprior models. Visual assessment indicates that the proposed models meet the requirement.3.4 Determination of the marginal probabilitiesWhen using the inverse model in disambiguation (2) the local (marginal) probabilities P (ui; vi)of the wind vectors in each cell are required. These are obtained as the marginal probabilitiesof the full joint wind �eld model P (U; V ). Since P (U; V ) is multivariate normal, the marginalprobabilities are simply given by:P (ui; vi) = 1(2�) 12 det (Kuv;ii) 12 exp��12 ((ui; vi)�muv;i)0K�1uv;ii ((ui; vi)�muv;i)� (18)where the subscript i indicates that only to the value of the i'th cell is being referred to. Since astationary covariance function is being used the variance-covariance matrix Kuv;ii will be the samefor all cells, however the mean will change. This prior local model then gives a good estimate ofthe unconditional local distribution of wind vectors for any cell.4 Sampling or Optimisation?When the Neurosat project was proposed a fully Bayesian approach was envisaged where theintegral over the parameters in the Gaussian process (whether it be zero or non-zero mean) would beapproximated using Monte Carlo methods - that is averaging over the wind �elds computed usingsamples from the posterior distribution of the Gaussian process parameters of the wind �eld priormodel. This will be extremely time consuming since it would necessitate repeated computation (orstorage) of the inverse covariance matrices for all samples (that is covariance parameters) at eachstep in the computation of the posterior probability (or log probability = energy in the MarkovChain Monte Carlo context) of the wind �elds given the scatterometer data.Thus, operationally, it may be more e�ective to �x the Gaussian process parameters at theirmaximum a posteriori probability values which means that the inverse covariance matrix needonly be computed once and stored leaving each sampling step with a (large) matrix multiplicationrather than inversion and multiplication over many duplicate chains. Storage of multiple inversecovariance matrices is impractical due to their size (722 � 722 for a full scene, even larger for aswathe).5 Potential Model ImprovementsAlthough the model �ts the data well and produces realistic wind �elds when used in a generativesense, there are several improvements that could be envisaged in future work. Fronts are notrepresented in the model, but are common features in the atmosphere. Other work addressesfronts and will not be discussed here.The model has a parametric mean which has a �xed functional form. This implicitly de�nes the(unknowable and arbitrary) split between the mean component and the stochastic component.Since we cannot know whether such a split is justi�ed by the data we must accept a level ofarbitrariness here. The second order polynomial was chosen to represent the mean since it wasfelt that the climatological mean (which this is to some extent representing) has a simple and



Non-Zero Mean Gaussian Process Prior Wind Field Models 9smooth form in the North Atlantic. However the exact functional form is arbitrary and so couldbe changed.Currently a small region of the North Atlantic is considered, however, operationally all of theEarth's oceans must be included. This is a highly complex task. The mean function could bede�ned piece-wise over regions of the Earth's surface, or a more 
exible form based on sphericalgeometry (spherical harmonics) could be used.The covariance function would be still more complicated since there are compelling reasons tobelieve that it would not be stationary. For example, the mid-latitudes experience signi�cantlydi�erent weather patterns from the sub-tropics, and thus the covariance functions will change fromregion to region. There is no existing theory that could produce such non-stationary covariancefunctions in a principled framework.6 ConclusionsA 
exible Gaussian process wind �eld model based on a modi�ed Bessel covariance function wasintroduced. This was shown to be a good model of assimilated ECMWF winds and the maximuma posteriori probability values for the parameters were shown. These physically interpretable pa-rameters agree with a priori beliefs. Fixing the smoothness parameters in the modi�ed Besselcovariance function to 2.5, close to their maximum a posteriori probability values, allows a simpli-�cation of the covariance function, resulting in the polynomial-exponential covariance function.Introducing a non-zero mean to the polynomial-exponential covariance function based Gaussianprocess allows a more sensible application of the model when using the scaled-likelihood trick tocompute the posterior distribution of the wind �elds using the inverse scatterometer model. Thenon-zero mean allows the calculation of the local probability of the wind vector in each cell asthe marginal probability of the Gaussian process for that cell alone. The maximum a posterioriprobability values of the parameters have been computed for both zero and non-zero mean Gaussianprocesses using the polynomial-exponential covariance function.The posterior distribution of the Gaussian process parameters has also been sampled from usingboth Metropolis and hybrid Monte Carlo samplers (Neal, 1996). However practical considerationssuggest the use of the maximum a posteriori probability parameters rather than implementing afully Bayesian method. Possible improvements to the model are also noted.ReferencesAbrahamsen, P. 1997. A Review of Gaussian Random Fields and Correlation Functions, SecondEdition. Technical Report 917, Norwegian Computing Center.Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford University Press.Cornford, D. 1997a. Random FieldModels and Priors onWind. Technical Report NCRG/97/023,Neural Computing Research Group, Aston University, Aston Triangle, Birmingham, UK.Cornford, D. 1997b. Surface Wind Fields (on Earth). Technical Report NCRG/97/022, NeuralComputing Research Group, Aston University, Aston Triangle, Birmingham, UK.Cornford, D. 1998. Flexible Gaussian Process Wind Field Models. Technical ReportNCRG/98/017, Neural Computing Research Group, Aston University, Aston Triangle, Birm-ingham, UK.Cornford, D. and I. T. Nabney 1998. NEUROSAT: An Overview. Technical ReportNCRG/98/011, Neural Computing Research Group, Aston University, Aston Triangle, Birm-ingham, UK.Daley, R. 1991. Atmospheric Data Analysis. Cambridge: Cambridge University Press.



10 Non-Zero Mean Gaussian Process Prior Wind Field ModelsNeal, R. M. 1996. Bayesian Learning for Neural Networks. Springer. Lecture Notes in Statistics118.O'Hagan, A. 1994. Kendall's Advanced Theory of Statistics, Volume 2B: Bayesian Inference.London: Edward Arnold.Press, W. H., S. A. Teukolsky, W. T. Vettering, and B. P. Flannery 1992. Numerical Recipes inC (2nd Edition ed.). Cambridge, UK: Cambridge University Press.Wallace, J. M. and P. V. Hobbs 1977. Atmospheric Science - An Introductory Survey. London:Academic Press.
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Figure 3: Cross sections through the posterior probability of the variance, length scale andsmoothness parameters of the modi�ed Bessel covariance function based Gaussianprocess respectively from top to bottom at the maximum a posteriori probabilityvalues of the other parameters for the month of January. Parameters for the velocitypotential (divergent 
ow) are on the left and stream function (rotational 
ow) onthe right.



12 Non-Zero Mean Gaussian Process Prior Wind Field Models
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Figure 4: The prior distributions of the variance in the divergent and rotational winds (top),the length scale and smoothness scale (middle) and the nugget variance (bottom).
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Figure 5: The maximum a posteriori probability values of the variance, length scale andsmoothness parameters of the modi�ed Bessel covariance function based Gaussianprocess respectively from top to bottom. Parameters for the velocity potential (di-vergent 
ow) are on the left and stream function (rotational 
ow) on the right. Each�gure shows the maximum a posteriori probability value of the respective parameterfor the 12 months of the year. The dotted line in the bottom two �gures gives thevalue of the smoothness parameters for which the modi�ed Bessel covariance functioncan be simpli�ed to a polynomial-exponential covariance function.
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Figure 6: The maximum a posteriori probability values of the variance, length scale and thenugget variance of the polynomial-exponential covariance function based Gaussianprocess respectively from top to bottom. Parameters for the velocity potential (di-vergent 
ow) are on the left and stream function (rotational 
ow) on the right. Each�gure shows the maximum a posteriori probability value of the respective parameterfor the 12 months of the year.
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Figure 7: The maximum a posteriori probability values of the variance, length scale and thenugget variance of the non-zero mean polynomial-exponential covariance functionbased Gaussian process respectively from top to bottom. Parameters for the velocitypotential (divergent 
ow) are on the left and stream function (rotational 
ow) on theright. Each �gure shows the maximum a posteriori probability value of the respectiveparameter for the 12 months of the year.
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Figure 8: The maximum a posteriori probability values of the mean for January (top left), April(top right), July (bottom left) and October (bottom right) for the North Atlantic.
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Figure 9: Simulated wind �elds using maximum a posteriori probability values for all the pa-rameters of the non-zero mean polynomial-exponential covariance function basedGaussian process for January (top left), April (top right), July (bottom left) andOctober (bottom right) for the North Atlantic.


