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AbstractThis technical report builds on previous reports to derive the likelihood and its derivatives for aGaussian process with a modi�ed Bessel function based covariance function. The full derivation isshown. The likelihood (with gradient information) can be used in maximum likelihood procedures(i.e. gradient based optimisation) and in Hybrid Monte Carlo sampling (i.e. within a Bayesianframework).
Keywords: Gaussian process, wind �eld, modi�ed Bessel function, Helmholtz' theorem, maximumlikelihood.1 IntroductionThis section brie
y outlines the the reasons for investigating the modi�ed Bessel covariance functionbased Gaussian processes. More details on the overall aims of the NEUROSAT project can befound in Cornford and Nabney (1998) and details of the reasons for using Gaussian process priorstogether with some background on Gaussian process models can be found in Cornford (1997) orAbrahamsen (1997). We shall provide a brief re-cap here.
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2 Flexible Gaussian Process Wind Field Models1.1 Bayes theorem and wind �eldsRecall Bayes theorem, which states:posterior = likelihood� priornormalising factor (1)If we observed a wind �eld Duv, then given that we have a probabilistic model for wind �elds wecan assess the data likelihood under that model. Let us assume that we have formulated a random�eld model for U; V (that is a (spatial) wind �eld made up of several local wind measurements(u; v)) which depends on hyper-parameters � 1. We can use Bayes theorem in the form:P (� jDuv) / P (Duv j �)P (�) (2)to examine and sample from the posterior distribution of � given a wind �eld Duv . In the �rstinstance this will be useful to assess suitable hyper-priors on �.In the general problem of obtaining wind vectors from the scatterometer measurements we mustbe able to develop realistic wind �elds from our model for U; V . In the general problem of windretrieval from scatterometer measurements we obtain local so called sigma nought measurements(denoted �o = (�of ; �om; �oa)) for a series of cells covering a small region of the ocean's surface,which we together denote by �o. We wish to infer the wind �eld, U; V , from these measurementsand we do so using Bayes theorem again:P (U; V j�o) /  Yi P (�oi j ui; vi)!P (U; V ) (3)where P (�oi jui; vi) is a local `forward' model (that is a probabilistic sensor model), P (U; V ) is ourprior (Gaussian process) model for wind �elds and P (U; V j�o) is the posterior distribution of thewind �eld given the scatterometer measurements. Thus the prior model P (U; V ), which dependson hyper-parameters �, will be critically important in the NEUROSAT project.Thus we use historical data to set the hyper-priors on the hyper-parameters � which will producethe most realistic prior wind �eld models, P (U; V ). However, care must be taken since these hyper-priors will vary in space and time. In the �nal formulation we can use Monte Carlo integration toremove the dependence on the hyper-parameters.1.2 Posterior over �Although in earlier sections we call � the hyper-parameters (as they are in the context of Equa-tion (3)) from now on we will refer to them simply as parameters since this report deals exclusivelywith the prior wind �eld model in Equation (3). The aim initially will be to sample from the pos-terior distribution of � (Equation (2)) in order to produce simulated wind �elds (using a generativeversion of the Gaussian process model) and visually assess their adequacy (and hence that of theunderlying model). It may also be necessary to determine a unique (most probable) parameter setso that we remove the need to integrate these parameters out from the �nal model (the `correct'thing to do) and simply use the maximum a posteriori probability values for � in order to makethe implementation su�ciently fast for operational use.1.3 Likelihood of the data given �In order to compute the posterior distribution of � we need to be able to compute the likelihoodof the random �eld model given the data. Consider the log likelihood (Neal, 1997):log (P (Duv j �)) = �n2 log (2�)� 12 log (det (Kuv))� 12D0uvK�1uv Duv (4)1We assume that given � the model form is also completely speci�ed, and later we drop the dependence on �totally to clarify the notation.



Flexible Gaussian Process Wind Field Models 3where Duv = (u1; u2; : : : ; un; v1; v2; : : : ; vn)0 with n the number of observations and:Kuv = �Cuu CuvCvu Cvv� (5)where the Cuu's are the (cross)-covariance matrices of the wind components (u; v) (see Cornford(1997)). In this report we assume a zero mean Gaussian process since we are more interested inpriors which mainly embody the local structure in the wind �elds, rather than the mean structure.We are also concerned to ensure that we do not bias our satellite derived winds preferentially inthe prevailing direction, since it is often those winds not in the prevailing direction which are mostimportant to identify. Later work will include non-zero means.1.4 Prior over �Initially the prior over the parameters � will be uninformative since we want to examine theinformation in the data, rather than con�rm our prejudices. The prior will, however restrict theparameters in � to sensible values which could be physically justi�ed2. In the full analysis thepriors used are not uninformative, but introduce very `weak' information. These are discussedlater.1.5 ApplicationIn order to implement the above methodology we have to select a suitable model for the wind�elds. We have already stated that it will be a random �eld model, thus our remaining choice willbe on the functional form of the covariance function we use. We assume a stationary random �eld,and following developments outlined in Cornford (1997) we apply Helmholtz theorem to split thewind into divergent and rotational components, thus allowing us to control the ratio of vorticityto divergence. We shall try to encompass as broad a range of processes as possible by using a very
exible covariance function based on Bessel functions. The details of the computations are givenbelow.2 The Bessel Based CovarianceTo start we shall re-cap the implications of using Helmholtz' theorem to model the vector windsas the combination of two scalar �elds. Then we introduce the modi�ed Bessel covariance functionand show how it can be used.2.1 Helmholtz' theoremThe Helmholtz theorem allows us to separate a vector 
ow �eld into two scalar components - anon-divergent (rotational) component and an irrotational (divergent) component (Daley, 1991).Then if we de�ne 	 (stream function) and � (velocity potential) using:u = �@	@y + @�@xv = @	@x + @�@y2This is a bene�t of the Gaussian process model, since the parameters all have a physical interpretation.



4 Flexible Gaussian Process Wind Field ModelsHelmholtz theorem is useful because it allows us to manipulate the covariance function for thevector winds into two scalar covariances for 	 and �. Here we follow the derivation of Daley (1991).If we consider two wind vectors (u1; v1) and (u2; v2) at locations separated by r = (x1�x2; y1�y2)then if the 	 and �'s are continuous and di�erentiable, thus using the de�nitions of expectationsand derivatives we can express the wind covariances Cuu etc. in terms of the velocity potentialand stream function covariances C�� etc.. This may not appear to have brought very much tothe problem, however we now �nd that we need not assume isotropic covariances on the windcomponents, but we can maintain the simplicity of isotropic covariances on the velocity potentialand stream function covariances. Furthermore assuming that the covariances of the stream functionand velocity potential are isotropic (that is depend only on r) and that the cross covariance C	�is zero - that is the velocity potential and stream function are uncorrelated - we obtain a simpleform for the (u; v) covariances. We de�ne longitudinal (along 
ow) and transverse (across 
ow)velocity components: l = u cos (�) + v sin (�)t = �u sin (�) + v cos (�) (6)where � is the angle between the x-axis and l. The covariances for l and t are given by:�Cll CltCtl Ctt� = � cos (�) sin (�)� sin (�) cos (�)��Cuu CuvCvu Cvv��cos (�) � sin (�)sin (�) cos (�) � (7)If we work in radial coordinates we can now write:Cll (r) = �1r @@rC		 � @2@r2C��Ctt (r) = � @2@r2C		 � 1r @@rC�� (8)Clt = Ctl = 0Thus given C		 and C�� we can compute the wind covariances - which are not isotropic in general- based on simple scalar isotropic covariance models for the stream function and velocity potential.Computing the covariances in this way ensures that the joint covariance matrix of (u; v) is positivede�nite. In practice we tend to work with correlation functions rather than covariances3 giving:Cll (r) = �E2	L2e	 1r @@r �		 �E2�L2e� @2@r2 ��� (9)Ctt (r) = �E2	L2e	 @2@r2 �		 �E2�L2e� 1r @@r���where E2	 and E2� are the variances of the rotational and divergent components of the windrespectively. We choose this parameterisation because this maintains the independence of theparameters (where possible) in the model. This can be expressed using:v2 = E2�E2	 +E2� ; E2u = E2	 +E2�where v2 gives the ratio of the kinetic energy in the divergent 
ow (as given by �) to that inthe total wind 
ow given by E2u. This allows us to explicitly control the ratio of divergence andvorticity in the resulting 
ow �elds. L2e� is the squared (e�ective) length scale associated with thecorrelation function ��� and is de�ned as:L2e� = � 2���r2��� ���r=0where: r2 = 1r @@r r @@r + 1r2 @2@�23The correlation function is simply the covariance divided by the variance (i.e. covariance at r = 0).



Flexible Gaussian Process Wind Field Models 5Finally we can compute the (u; v) covariances using:Cuu (r; �) = cos2 (�)Cll (r) + sin2 (�)Ctt (r)Cuv (r; �) = Cvu (r; �) = cos (�) sin (�) (Cll (r)� Ctt (r)) (10)Cvv (r; �) = sin2 (�)Cll (r) + cos2 (�)Ctt (r)This gives us a very general method for constructing covariance functions for wind �elds, althoughwe must take care that the correlation functions for the velocity potential and stream functionsatisfy several conditions - largely on the continuity of their derivatives at the origin (see (Cornford,1997)). We shall now illustrate the above using the modi�ed Bessel covariance function.It is worth noting at this point that in general for observed winds in the atmosphere (as we arestudying), rather than analysis corrections4, the stream function and velocity potential are oftenstrongly correlated. This is due to vorticity and divergence generally attaining their maxima atfronts and near the centre of cyclones. Thus one improvement to this formulation would be toallow correlation between the velocity potential and stream function, although this would furthercomplicate the implementation.2.2 The modi�ed Bessel covariance functionThe correlation function which we shall use is based on a modi�ed Bessel function of the secondkind with a distance growth factor. This form of correlation function was chosen because it hasa form which is more likely to give a good wind �eld model prior due to its 
exibility. In thefollowing we drop the distinction between �		 and ��� since these will have identical forms, withdi�erent parameters. The modi�ed Bessel correlation function is given by:� (r;L; �) = 12��1� (�) � rL�� K� � rL� (11)where � � 0 and L > 0 and an example can be seen in Figure (1). This form of correlationfunction does not permit negative correlations and produces realisations which are d�e times meansquare di�erentiable. In order to use the function in practice we require � � 1 to ensure that thederivatives of � (r;L; �) exist (and thus the wind correlations exist).
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Figure 1: An example of the modi�ed Bessel covariance function with E2 = 50 m2s�2, L = 400km, � = 2:5 and �2 = 0 m2s�2.4Analysis corrections are the observed minus the forecast winds in the context of numerical weather predictiondata assimilation.



6 Flexible Gaussian Process Wind Field Models
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Figure 2: Examples of realisations simulated from the modi�ed Bessel covariance functionbased Gaussian process with various physically motivated parameter settings. Thetop left �gure is based on physically realistic parameters, the top right has very shortlength scales (150 km), the bottom left is purely rotational 
ow and the bottom rightis purely divergent 
ow.In order to compute �ll and �tt we need:1r @� (r)@r = � 1� (�) 2��1L2 � rL�(��1)K��1 � rL� (12)@2� (r)@r2 = � 1� (�) 2��1L2 �� rL���1K��1 � rL�� � rL�� K��2 � rL�� (13)These derivatives are obtained using the identity:@@z (z�K� (z)) = �z(�)K��1 (z)(see (Abramowitz and Stegun, 1972)) and the chain rule:@�@r = @�@z @z@r ; z = rL:When using the formulae for the derivatives care must be taken when r ! 0 and a modi�ed formmust be used: limr!0�1r @� (r)@r � = � 12 (� � 1)L2limr!0�@2� (r)@r2 � = � 12 (� � 1)L2



Flexible Gaussian Process Wind Field Models 7using: K� (z)! 12 (z)�� 2��1� (�) ; z ! 0and: � (�) = (� � 1) � (� � 1) :Thus we can now compute �ll and �tt using (9) with:L2e = � 2� (r)r2� (r) ���r=0 = 2 (� � 1)L2which can in turn be used to compute �uu, �uv and �vv using (10) . We then �nally combinethese correlations with the wind variance to produce the desired covariance matrix using (14). Inpractice it is also useful to add a certain amount of `noise' or `jitter' (Neal, 1997) to the diagonalof the covariance matrix to stabilise the computations and to represent the real noise in the datasuch that: Kuv = �Cuu CuvCvu Cvv�+ �2I (14)where I is the 2n� 2n identity matrix and �2 is the noise variance5.Figure (2) show several realisations (i.e. wind �elds) produced using the modi�ed Bessel covariancefunction based Gaussian process as a generative model. All plots have �2 = 0:1m2s�2 and �� = 2:5.The top left plot has L� = 500 km and E2	 = 70 m2s�2 and E2� = 7 m2s�2, while the top right hasL� = 150 km and E2	 = 40 m2s�2 and E2� = 4 m2s�2. The bottom plots both have L� = 200 km,with the left plot having E2	 = 50 m2s�2 and E2� = 0 m2s�2 and the right E2	 = 0 m2s�2 andE2� = 50 m2s�2 to illustrate the di�erence between purely rotational 
ow and purely divergent
ow respectively.2.3 LikelihoodAs we have seen earlier, once we have computed Kuv, then the likelihood is straightforward tocompute using (4). If we wish to sample from the posterior with a general prior, then we will haveto use some form of Markov Chain Monte Carlo (MCMC) sampling procedure (Gilks et al., 1996)since the posterior will generally not have a tractable analytical form. The most sensible methodto sample from the posterior seems to be Hybrid Monte Carlo (HMC) sampling (Duane et al.,1987), which is already implemented in Netlab 6 and samples preferentially from regions wherethe posterior has greater mass and includes a momentum term that should minimise random walksand allow us to e�ciently explore the posterior. Unfortunately to use HMC we need the derivativesof the likelihood with respect to all the parameters. Note that:P (Duv j �) = P (Duv jE2	; E2�; L	; L�; �	; ��; �2) (15)There is no general reason why the length scales and smoothness for the stream function andvelocity potential should be di�erent, however initially both will be allowed to vary independentlyand thus the data can `speak for itself'. In addition to sampling from the posterior, we may wellwish to compute the maximum likelihood estimates or maximum a posteriori probability estimatesof the parameters, �, and to do this we shall also require derivative information.5Also referred to as the nugget variance or jitter.6The Netlab tool-box for Matlab is available from http://www.ncrg.aston.ac.uk/netlab/index.html.



8 Flexible Gaussian Process Wind Field Models2.4 Derivative of the LikelihoodIn the general setting, for any one parameter � the derivative of the log likelihood can be written(Neal, 1997): @ log (P (Duv j �))@� = �12tr�K�1uv @Kuv@� �+ 12D0uvK�1uv @Kuv@� K�1uv Duv (16)where everything is de�ned as before and tr means trace. Unfortunately this derivative is notsimple to compute since each parameter has a di�erent derivative and thus must be computedseparately. @Kuv@E2	 @Kuv@E2� see later@Kuv@L	 @Kuv@L� see later@Kuv@�	 @Kuv@�� no closed form@Kuv@�2 = IWorse still for the smoothness parameters there is no closed form for the derivatives. The nextfew sections deal with computation of the derivatives not speci�ed above.2.4.1 Variance component derivativesThe variance parameters appear in (9) and the derivatives are easy to compute:@Cll (r)@E2	 = �L2e	 @2@r2 �		@Ctt (r)@E2	 = �L2e	 1r @@r�		@Cll (r)@E2� = �L2e� 1r @@r ���@Ctt (r)@E2� = �L2e� @2@r2 ���and the derivative of the full covariance matrix is formed using the equations as before using (10)to give: @Kuv@E2	 =  @Cuu@E2	 @Cuv@E2	@Cvu@E2	 @Cvv@E2	 ! @Kuv@E2� =  @Cuu@E2� @Cuv@E2�@Cvu@E2� @Cvv@E2� !2.4.2 Length scale derivativesThe length scale L appears twice in the computations of the wind covariances, in equation (9)indirectly and explicitly in (11). In (9):@Cll (r)@L� = �E2� @L2e�@L� @2@r2 ��� �E2�L2e� @@L� @2@r2 ���@Ctt (r)@L� = �E2� @L2e�@L� 1r @@r ��� �E2�L2e� @@L� 1r @@r���@Cll (r)@L	 = �E2	 @L2e	@L	 1r @@r �		 �E2	L2e	 @@L	 1r @@r�		@Ctt (r)@L	 = �E2	 @L2e	@L	 @2@r2 �		 �E2	L2e	 @@L	 @2@r2 �		:



Flexible Gaussian Process Wind Field Models 9Now: @�@L� = @�@z @z@L� ; z = rL� ; @z@L� = � rL2�so that:@@L 1r @�@r = 1� (�) 2��1L3 �2� rL���1K��1 � rL�� � rL�� K��2 � rL��@@L @2�@r2 = 1� (�) 2��1L3 ��2 + � rL�2�� rL���1K��1 � rL�� (2� + 1)� rL�� K��2 � rL��where we used the identity (Abramowitz and Stegun, 1972):K��1 (z)�K�+1 (z) = �2�z K� (z)Also: dL2e�dL� = 4 (�� � 1)L�Care must be again taken as r ! 0 when:limr!0� @@L �1r @�@r�� = 1(� � 1)L3limr!0� @@L �@2�@r2�� = 1(� � 1)L3Thus we can explicitly compute the derivatives with respect to the length parameters computingonly two modi�ed Bessel functions (which is a good thing because (in Matlab) the evaluation ofthe modi�ed Bessel functions takes a large proportion of the time to compute the likelihood).2.4.3 Smoothness parameter derivativesThere is no closed form derivative of the likelihood with respect to �. Thus we use a �rst ordercentred �nite di�erence approximation to the derivative which requires �uv to be computed fortwo very similar values of �: � ��� and � +��. Thus:@Kuv@� � Kuv (� +��)�Kuv (� ���)2��which has approximation error of the order (��)2, thus so long as �� is small enough (but notso small as to cause round o� errors) the approximation will be reasonable. We take �� = 10�4.These derivatives can be e�ciently evaluated simultaneously with those for the length scale whichreduces the number of modi�ed Bessel function evaluations.The derivative of the likelihood can then be evaluated using (16) for each parameter in turn togive a vector of the derivatives with respect to each of the parameters. Note that e�ciency couldbe further improved by calculating Kuv at the same time as its derivatives.3 Likelihood for Several Wind �eldsIn the �rst instance we are trying to establish sensible values for the parameters in the covariancefunction by sampling from their posterior distribution with uninformative priors. Thus we willbe interested in sampling from a posterior that is representative of the broad range of weatherconditions that can generate wind �elds. In this work we will focus on the north Atlantic region



10 Flexible Gaussian Process Wind Field Modelsbetween 40� and 60� N. Since there is likely to be strong temporal variability in the covarianceparameters, we will derive the posterior for each month7. Initially we will use only one year ofEuropean Centre for Medium range Weather Forecasting 10 m wind analyses. These have a gridspacing of approximately 250 km with 18 � 9 observations every 6 hours. The evolution of theatmosphere in the north Atlantic is rather fast and thus we regard each times wind �eld as beingindependent of all other wind �elds.8The negative log likelihood for several datasets D1; D2; : : : ; DN can be written:� log NYi=1 p (Dij�)! = � NXi=1 log p (Dij�) (17)if the datasets are independent (as they are here). If we consider each data set to have n obser-vations and we have N datasets, then if the observations are made at the same locations in everydataset we have:NXi=1 log p (Dij�) = NXi=1 ��n2 log (2�)� 12 log (det (Kuv))� 12D0iK�1uv Di�= �nN2 log (2�)� N2 log (det (Kuv))� 12tr �D0K�1uv D�where D is the data matrix made up of the columns Di and tr stands for the trace as usual. Forthe derivatives of the likelihood we obtain:@P (D j �)@� = NXi=1 ��12tr�K�1uv @Kuv@� �+ 12D0iK�1uv @Kuv@� K�1uv Di�= �N2 tr�Kuv @Kuv@� �+ 12tr�D0K�1uv @Kuv@� K�1uv D�Thus we can quickly compute the likelihood over a series of wind �elds, and this can then be usedto �nd the maximum likelihood solution or sample from the posterior (for a given month).4 ConclusionsThis technical report has shown exactly how derive the necessary components to construct, optimiseand sample from a Gaussian process model using a modi�ed Bessel covariance function. This hasbeen implemented in Matlab (software is available from the author on request). It is also shownhow the modi�ed Bessel covariance function �ts in with the larger NEUROSAT project goals.5 AcknowledgementsI would like to thank Ian Nabney and Chris Williams for their help and advice during the writingof this report. The work was carried out as part of the NEUROSAT project.ReferencesAbrahamsen, P. 1997. A Review of Gaussian Random Fields and Correlation Functions, SecondEdition. Technical Report 917, Norwegian Computing Center.7It may be su�cient to have seasonal parameters, indeed future work could consider a space-time model.8This approximation would be considerably improved taking wind �elds every 24 hours; however this could causeproblems because these wind-�elds would be for a �xed time (e.g. 12 Greenwich Mean Time) and we wish to capturethe full range of behaviour including the weak diurnal signal.
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