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Abstract

This technical report builds on previous reports to derive the likelihood and its derivatives for a
Gaussian process with a modified Bessel function based covariance function. The full derivation is
shown. The likelihood (with gradient information) can be used in maximum likelihood procedures
(i.e. gradient based optimisation) and in Hybrid Monte Carlo sampling (i.e. within a Bayesian
framework).

Keywords: Gaussian process, wind field, modified Bessel function, Helmholtz’ theorem, maximum
likelihood.

1 Introduction

This section briefly outlines the the reasons for investigating the modified Bessel covariance function
based Gaussian processes. More details on the overall aims of the NEUROSAT project can be
found in Cornford and Nabney (1998) and details of the reasons for using Gaussian process priors
together with some background on Gaussian process models can be found in Cornford (1997) or
Abrahamsen (1997). We shall provide a brief re-cap here.
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1.1 Bayes theorem and wind fields

Recall Bayes theorem, which states:

likelihood X prior

(1)

If we observed a wind field D,,,, then given that we have a probabilistic model for wind fields we
can assess the data likelihood under that model. Let us assume that we have formulated a random
field model for U,V (that is a (spatial) wind field made up of several local wind measurements
(u,v)) which depends on hyper-parameters £ 1. We can use Bayes theorem in the form:

P(&| Duy) o< P(Duy | §)P() (2)

to examine and sample from the posterior distribution of £ given a wind field D,,. In the first
instance this will be useful to assess suitable hyper-priors on &.

posterior = —
normalising factor

In the general problem of obtaining wind vectors from the scatterometer measurements we must
be able to develop realistic wind fields from our model for U, V. In the general problem of wind
retrieval from scatterometer measurements we obtain local so called sigma nought measurements
(denoted o© = (0%,07,,07)) for a series of cells covering a small region of the ocean’s surface,
which we together denote by ¥°. We wish to infer the wind field, U, V, from these measurements
and we do so using Bayes theorem again:

P(U,V | 2°) (H P(o? | ui,vi)> P(U,V) 3)

where P(o¢|u;,v;) is a local ‘forward’ model (that is a probabilistic sensor model), P(U, V) is our
prior (Gaussian process) model for wind fields and P(U,V | X£°) is the posterior distribution of the
wind field given the scatterometer measurements. Thus the prior model P(U, V), which depends
on hyper-parameters &, will be critically important in the NEUROSAT project.

Thus we use historical data to set the hyper-priors on the hyper-parameters £ which will produce
the most realistic prior wind field models, P(U, V). However, care must be taken since these hyper-
priors will vary in space and time. In the final formulation we can use Monte Carlo integration to
remove the dependence on the hyper-parameters.

1.2 Posterior over &

Although in earlier sections we call £ the hyper-parameters (as they are in the context of Equa-
tion (3)) from now on we will refer to them simply as parameters since this report deals exclusively
with the prior wind field model in Equation (3). The aim initially will be to sample from the pos-
terior distribution of £ (Equation (2)) in order to produce simulated wind fields (using a generative
version of the Gaussian process model) and visually assess their adequacy (and hence that of the
underlying model). It may also be necessary to determine a unique (most probable) parameter set
so that we remove the need to integrate these parameters out from the final model (the ‘correct’
thing to do) and simply use the maximum a posteriori probability values for £ in order to make
the implementation sufficiently fast for operational use.

1.3 Likelihood of the data given &

In order to compute the posterior distribution of £& we need to be able to compute the likelihood
of the random field model given the data. Consider the log likelihood (Neal, 1997):

n 1 1 _
log (P(Dyy | §)) = ) log (2m) — ) log (det (Kuy)) — ED;vKuleuv (4)

IWe assume that given & the model form is also completely specified, and later we drop the dependence on &
totally to clarify the notation.
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where Dy, = (uy,uz2,...,Up,V1,Va,...,0,) with n the number of observations and:

C C
K — uu uv
w ((Jw Cw) (5)
where the C,,,’s are the (cross)-covariance matrices of the wind components (u,v) (see Cornford
(1997)). In this report we assume a zero mean Gaussian process since we are more interested in
priors which mainly embody the local structure in the wind fields, rather than the mean structure.
We are also concerned to ensure that we do not bias our satellite derived winds preferentially in

the prevailing direction, since it is often those winds not in the prevailing direction which are most
important to identify. Later work will include non-zero means.

1.4 Prior over £

Initially the prior over the parameters & will be uninformative since we want to examine the
information in the data, rather than confirm our prejudices. The prior will, however restrict the
parameters in £ to sensible values which could be physically justified?. In the full analysis the
priors used are not uninformative, but introduce very ‘weak’ information. These are discussed
later.

1.5 Application

In order to implement the above methodology we have to select a suitable model for the wind
fields. We have already stated that it will be a random field model, thus our remaining choice will
be on the functional form of the covariance function we use. We assume a stationary random field,
and following developments outlined in Cornford (1997) we apply Helmholtz theorem to split the
wind into divergent and rotational components, thus allowing us to control the ratio of vorticity
to divergence. We shall try to encompass as broad a range of processes as possible by using a very
flexible covariance function based on Bessel functions. The details of the computations are given
below.

2 The Bessel Based Covariance

To start we shall re-cap the implications of using Helmholtz’ theorem to model the vector winds
as the combination of two scalar fields. Then we introduce the modified Bessel covariance function
and show how it can be used.

2.1 Helmholtz’ theorem

The Helmholtz theorem allows us to separate a vector flow field into two scalar components - a
non-divergent (rotational) component and an irrotational (divergent) component (Daley, 1991).
Then if we define ¥ (stream function) and ® (velocity potential) using:

L _ov e
9y Oz
,_ 0V, 08
Oz Oy

2This is a benefit of the Gaussian process model, since the parameters all have a physical interpretation.
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Helmholtz theorem is useful because it allows us to manipulate the covariance function for the
vector winds into two scalar covariances for ¥ and ®. Here we follow the derivation of Daley (1991).
If we consider two wind vectors (u,v1) and (us2,v2) at locations separated by r = (z1 — z2,y1 — y2)
then if the ¥ and ®’s are continuous and differentiable, thus using the definitions of expectations
and derivatives we can express the wind covariances Cy, etc. in terms of the velocity potential
and stream function covariances Cp4 etc.. This may not appear to have brought very much to
the problem, however we now find that we need not assume isotropic covariances on the wind
components, but we can maintain the simplicity of isotropic covariances on the velocity potential
and stream function covariances. Furthermore assuming that the covariances of the stream function
and velocity potential are isotropic (that is depend only on r) and that the cross covariance Cya
is zero - that is the velocity potential and stream function are uncorrelated - we obtain a simple
form for the (u,v) covariances. We define longitudinal (along flow) and transverse (across flow)
velocity components:

I = wucos(¢)+ vsin(g)
t = —usin(¢@) + vcos (@) (6)

where ¢ is the angle between the x-axis and [. The covariances for [ and ¢ are given by:

Cn Cu _ Cos (¢) sin (¢) Cuu  Cuy COS (¢) —sin (¢) (7)
Cy Cyu) \—sin(d) cos(9) Cou  Cuo sin(¢)  cos(¢)
If we work in radial coordinates we can now write:
10 0?2
Cu (7“) = _;EC‘N’ - wcqxb
0?2 10
Cu (r) = —wc\w - ;EO@} (8)
Cy = Cu=0

Thus given Cgy and Cgs we can compute the wind covariances - which are not isotropic in general
- based on simple scalar isotropic covariance models for the stream function and velocity potential.
Computing the covariances in this way ensures that the joint covariance matrix of (u,v) is positive
definite. In practice we tend to work with correlation functions rather than covariances® giving:

190 0?

Cu (r) = —E\%ng;aﬂww —~E3L% 52 Pee (9)
0? 10

O (r) = —E3 L% 52 Pre ~ Eiﬁ@;aﬂw

where E2 and E2 are the variances of the rotational and divergent components of the wind
respectively. We choose this parameterisation because this maintains the independence of the
parameters (where possible) in the model. This can be expressed using:

2
2 E<I>

— E2:E2 E2
E\2I;+E<%’ U \II+ L]

v

where v? gives the ratio of the kinetic energy in the divergent flow (as given by ®) to that in
the total wind flow given by E2. This allows us to explicitly control the ratio of divergence and
vorticity in the resulting flow fields. L2 is the squared (effective) length scale associated with the
correlation function pge and is defined as:

2

5 _ 2p33

e® V2pps Ir=0
where:

10 0 1 92

= o or T rog

3The correlation function is simply the covariance divided by the variance (i.e. covariance at r = 0).
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Finally we can compute the (u,v) covariances using:

uy (7‘, ¢)) = 0082 (¢) Cll (T) + Sin2 (¢)) Ctt (T)
Cuy (r,0) = Cou (r,¢) = cos(§)sin(§) (Cu (r) — Cy (1)) (10)
va (7‘, ¢)) Sin2 (¢)) Cll (T) + COS2 (¢)) Ctt (T)

This gives us a very general method for constructing covariance functions for wind fields, although
we must take care that the correlation functions for the velocity potential and stream function
satisfy several conditions - largely on the continuity of their derivatives at the origin (see (Cornford,
1997)). We shall now illustrate the above using the modified Bessel covariance function.

It is worth noting at this point that in general for observed winds in the atmosphere (as we are
studying), rather than analysis corrections?®, the stream function and velocity potential are often
strongly correlated. This is due to vorticity and divergence generally attaining their maxima at
fronts and near the centre of cyclones. Thus one improvement to this formulation would be to
allow correlation between the velocity potential and stream function, although this would further
complicate the implementation.

2.2 The modified Bessel covariance function

The correlation function which we shall use is based on a modified Bessel function of the second
kind with a distance growth factor. This form of correlation function was chosen because it has
a form which is more likely to give a good wind field model prior due to its flexibility. In the
following we drop the distinction between pgg and pge since these will have identical forms, with
different parameters. The modified Bessel correlation function is given by:

b1 = ey (5) K () w

where v > 0 and L > 0 and an example can be seen in Figure (1). This form of correlation
function does not permit negative correlations and produces realisations which are [v] times mean
square differentiable. In order to use the function in practice we require v > 1 to ensure that the
derivatives of p (r; L, v) exist (and thus the wind correlations exist).

w
(=]

Covariance (m?s™2)
N
U1

N
(=}

0 500 1000 1500 2000 2500
Separation Distance (km)

Figure 1: An example of the modified Bessel covariance function with E* = 50 m?s™2, L = 400
km, v =25 and n® = 0 m?s™ 2.

4 Analysis corrections are the observed minus the forecast winds in the context of numerical weather prediction
data assimilation.
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Figure 2: Examples of realisations simulated from the modified Bessel covariance function
based Gaussian process with various physically motivated parameter settings. The
top left figure is based on physically realistic parameters, the top right has very short
length scales (150 km), the bottom left is purely rotational flow and the bottom right
is purely divergent flow.

In order to compute p; and pi; we need:

P = rawen (D) R () @

20 o () () - R ()

These derivatives are obtained using the identity:

0
2 (K () = K ()
(see (Abramowitz and Stegun, 1972)) and the chain rule:
o0 _op0: _r
or  0z0r’ L

When using the formulae for the derivatives care must be taken when » — 0 and a modified form

must be used:
. (19p(r) 1
lim | — = ———
r—0\r Or 2(v—1)L2

hm (2P0 1
r—0 \  Or2 B 2(v—1)L2
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using:

and:
Fw)=w-1)T(v-1).
Thus we can now compute p; and py using (9) with:

2p(r)
2 _
Le= V2p (r) lr=0

=2(v-1)L?

which can in turn be used to compute pyu, pur and p,, using (10) . We then finally combine
these correlations with the wind variance to produce the desired covariance matrix using (14). In
practice it is also useful to add a certain amount of ‘noise’ or ‘jitter’ (Neal, 1997) to the diagonal
of the covariance matrix to stabilise the computations and to represent the real noise in the data
such that:

_ Cuu Cuv 2
Ko = ((Jw Cw) Tl (14)

where T is the 2n x 2n identity matrix and n? is the noise variance®.

Figure (2) show several realisations (i.e. wind fields) produced using the modified Bessel covariance
function based Gaussian process as a generative model. All plots have n? = 0.1 m?s~2 and v. = 2.5.
The top left plot has L. = 500 km and E2 = 70 m*s~2 and E3 = 7 m?s~2, while the top right has
L. =150 km and E2 = 40 m®*s~2 and E2 = 4 m®s~2. The bottom plots both have L. = 200 km,
with the left plot having E3 = 50 m?s~2 and E2 = 0 m?s~2 and the right E2 = 0 m?s~2 and
E2 = 50 m?s™2 to illustrate the difference between purely rotational flow and purely divergent
flow respectively.

2.3 Likelihood

As we have seen earlier, once we have computed K,,, then the likelihood is straightforward to
compute using (4). If we wish to sample from the posterior with a general prior, then we will have
to use some form of Markov Chain Monte Carlo (MCMC) sampling procedure (Gilks et al., 1996)
since the posterior will generally not have a tractable analytical form. The most sensible method
to sample from the posterior seems to be Hybrid Monte Carlo (HMC) sampling (Duane et al.,
1987), which is already implemented in NETLAB ¢ and samples preferentially from regions where
the posterior has greater mass and includes a momentum term that should minimise random walks
and allow us to efficiently explore the posterior. Unfortunately to use HMC we need the derivatives
of the likelihood with respect to all the parameters. Note that:

P(Dyy | €) = P(Dy, | E3, E}, Ly, L, vy, vs,n°) (15)

There is no general reason why the length scales and smoothness for the stream function and
velocity potential should be different, however initially both will be allowed to vary independently
and thus the data can ‘speak for itself’. In addition to sampling from the posterior, we may well
wish to compute the maximum likelihood estimates or maximum a posteriori probability estimates
of the parameters, £, and to do this we shall also require derivative information.

5Also referred to as the nugget variance or jitter.
6The NETLAB tool-box for MATLAB is available from http://www.ncrg.aston.ac.uk/netlab/index.html.
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2.4 Derivative of the Likelihood

In the general setting, for any one parameter £ the derivative of the log likelihood can be written
(Neal, 1997):
Olog (P(Dyy | £)) _ —1tr K_laKm, 0Ky
o0& 2 w9 0¢
where everything is defined as before and tr means trace. Unfortunately this derivative is not
simple to compute since each parameter has a different derivative and thus must be computed

1
) + gDszu_vl KJUIDUU (16)

separately.

Worse still for the smoothness parameters there is no closed form for the derivatives. The next

8Kuv 8Kuv
9EZ L%
8Kuv 8Kuv
0Ly OLg
OK OK
8%1; 8V<1>
0Ky

on?

see later

see later

no closed form

I

few sections deal with computation of the derivatives not specified above.

2.4.1

The variance parameters appear in (9) and the derivatives are easy to compute:

and the derivative of the full covariance matrix is formed using the equations as before using (10)

g

to give:

OK
9E?,

Variance component derivatives

8011 (7‘)
oE2
8Ctt (T‘)
OE2,
(9011 (7‘)
dE2
0Cy (r)
OF2

9C
OE2

9Cun
o)

9Cu.
952
8Co,

9E3

2.4.2 Length scale derivatives

The length scale L appears twice in the computations of the wind covariances, in equation (9)

indirectly and explicitly in (11). In (9):

aCy (r)
OLg
8Ctt (T‘)
OLg
(9011 (7‘)
0Ly
0C4 ()
0Ly

2
—qu: Wﬂ\w

10
Y o
e, Brp‘wl

10
)
ey 8rp(M>
) 2
_LE<I> 87‘2 P2

0Cuu 0Cu»

0K yy _ [ 9E2 0E2
O9EF2 | %Cux 0Cu,
® PEL  OE%

= -E2 %If: aa_;péé - EgL§¢%%p¢¢

= —E3 %If: %%P@D - E(%LQ%%%PM
- el om0,
= -Ej %LL?E; g—:gﬂww - E@ng%%/"lﬂl’
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Now:

0- 0. 0z T 0z r
A r=—,

OLa ~ 029Ls’ I’ 0Ls I3

so that:
010 ry\v—1 r r\Y r
8_L%8_ﬁ = W(Q(z) Ko (7) = (3) Kor (z))
s = e (0 ()) () e (B - v (7) K (7))

where we used the identity (Abramowitz and Stegun, 1972):

2v
K, 4 (Z) - Ky (Z) = —7K,, (z)
Also:
AL 4( 1)L
Z2e® g (ye —
iLs ] &

Care must be again taken as r — 0 when:

i (2 (190)) _
r50 \ L \r ar - (v-1)1IL3

lim i & S
r—0 \ 0L \ Or? - (v-1)1IL3

Thus we can explicitly compute the derivatives with respect to the length parameters computing
only two modified Bessel functions (which is a good thing because (in MATLAB) the evaluation of
the modified Bessel functions takes a large proportion of the time to compute the likelihood).

2.4.3 Smoothness parameter derivatives

There is no closed form derivative of the likelihood with respect to v. Thus we use a first order
centred finite difference approximation to the derivative which requires X,,, to be computed for
two very similar values of v: v — Av and v 4+ Av. Thus:

0Ky _ Ku (v+ Av) — Ky (v — Av)
o 2Av

which has approximation error of the order (Av)?, thus so long as Av is small enough (but not
so small as to cause round off errors) the approximation will be reasonable. We take Av = 10~%.
These derivatives can be efficiently evaluated simultaneously with those for the length scale which
reduces the number of modified Bessel function evaluations.

The derivative of the likelihood can then be evaluated using (16) for each parameter in turn to
give a vector of the derivatives with respect to each of the parameters. Note that efficiency could
be further improved by calculating K, at the same time as its derivatives.

3 Likelihood for Several Wind fields

In the first instance we are trying to establish sensible values for the parameters in the covariance
function by sampling from their posterior distribution with uninformative priors. Thus we will
be interested in sampling from a posterior that is representative of the broad range of weather
conditions that can generate wind fields. In this work we will focus on the north Atlantic region
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between 40° and 60° N. Since there is likely to be strong temporal variability in the covariance
parameters, we will derive the posterior for each month”. Initially we will use only one year of
European Centre for Medium range Weather Forecasting 10 m wind analyses. These have a grid
spacing of approximately 250 km with 18 x 9 observations every 6 hours. The evolution of the
atmosphere in the north Atlantic is rather fast and thus we regard each times wind field as being
independent of all other wind fields.®

The negative log likelihood for several datasets Dy, Ds, ..., Dy can be written:
N N
—log (HMQI&)) = - logp(D;l¢) (17)
=1 i=1

if the datasets are independent (as they are here). If we consider each data set to have n obser-
vations and we have NV datasets, then if the observations are made at the same locations in every
dataset we have:

N N
Sotogp(Dile) = 3 (= tou(2m) - 5 log (det (K)) — 3 DI

i=1 i=1

N N 1
_ _”T log (2r) — = log (det (K..,)) — 5tr (D'K., D)

where D is the data matrix made up of the columns D; and tr stands for the trace as usual. For
the derivatives of the likelihood we obtain:

OP(D|&) o[ 1 1 0Kuw) 1 1 0Kuw oy

5 = ; St (Ko 5% + 5 DK, 5 K;!D;
3 N OK 1 11 0Ky 4

= 2tr<Km, 5 >+2tr(DKm, 5 KWD>

Thus we can quickly compute the likelihood over a series of wind fields, and this can then be used
to find the maximum likelihood solution or sample from the posterior (for a given month).

4 Conclusions

This technical report has shown exactly how derive the necessary components to construct, optimise
and sample from a Gaussian process model using a modified Bessel covariance function. This has
been implemented in MATLAB (software is available from the author on request). It is also shown
how the modified Bessel covariance function fits in with the larger NEUROSAT project goals.
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