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Upper and lower bounds on the learning curve for Gaussian processes 21 IntroductionA fundamental problem for systems learning from examples is to estimate the amount of trainingsamples needed to guarantee satisfactory generalisation capabilities on new data. This is of the-oretical interest but also of vital practical importance; for example, algorithms which learn fromdata should not be used in safety-critical systems until a reasonable understanding of their gener-alisation capabilities has been obtained. In recent years several authors have carried out analysison this issue and the results presented depend on the theoretical formalisation of the learningproblem.Approaches to the analysis of generalisation include those based on asymptotic expansions aroundoptimal parameter values (e.g. AIC [Akaike 1974], NIC [Murata, Yoshizawa, and Amari 1994]); theProbably Approximately Correct (PAC) framework [Valiant 1984]; uniform convergence approaches(e.g. Vapnik, 1995); and Bayesian methods.The PAC and uniform convergence methods are concerned with frequentist-style con�dence inter-vals derived from randomness introduced with respect to the distribution of inputs and noise onthe target function. A central concern in these results is to identify the exibility of the hypothesisclass F to which approximating functions belong, for example, through the Vapnik-Chervonenkisdimension of F . Note that these bounds are independent of the input and noise densities, assumingonly that the training and test samples are drawn from the same distribution.The problem of understanding the generalisation capability of systems can also be addressed in aBayesian framework, where the fundamental assumption concerns the kinds of function our systemis required to model. In other words, from a Bayesian perspective we need to put priors over targetfunctions. In this context learning curves and their bounds can be analysed by an average overthe probability distribution of the functions. In this paper we use Gaussian priors over functionswhich have the advantage of being more general than simple linear regression priors, but they aremore analytically tractable than priors over functions obtained from neural networks.Neal (1996) has shown that for �xed hyperparameters, a large class of neural network models willconverge to Gaussian process priors over functions in the limit of an in�nite number of hidden units.The hyperparameters of the Bayesian neural network de�ne the parameters of the correspondingGaussian Process (GP). Williams (1997) calculated the covariance functions of GPs correspondingto neural networks with certain weight priors and transfer functions.The investigation of GP predictors is motivated by the results of Rasmussen (1996), who comparedthe performances obtained by GPs to those obtained by Bayesian neural networks on a range oftasks. He concluded that GPs were at least as good as neural networks. Although the presentstudy deals with regression problems, GPs have also been applied to classi�cation problems (e.g.Barber and Williams, 1997).In this paper we are mainly concerned with the analysis of upper and lower bounds on the learningcurve of GPs. A plot of the expected generalisation error against the number of training sam-ples n is known as a learning curve. There are many results available concerning leaning curvesunder di�erent theoretical scenarios. However, many of these are concerned with the asymptoticbehaviour of these curves, which is not usually of great practical importance as it is unlikely thatwe will have enough data to reach the asymptotic regime. Our main goal is to explain some of theearly behaviour of learning curves for Gaussian processes.The structure of the paper is as follows. GPs for regression problems are introduced in Section 2.As will be shown, the whole theory of GPs is based on the choice of the prior covariance functionCp (x;x0): in Section 3 we present the covariance functions we have been using in this study. InSection 4 the learning curve of a GP is introduced. We present some properties of the learningcurve of GPs as well as some problems may arise in evaluating it. Upper and lower bounds on thelearning curve of a GP in a non-asymptotic regime are presented in Section 5. These bounds havebeen derived from two di�erent approaches: one makes use of main properties of the generalisation



Upper and lower bounds on the learning curve for Gaussian processes 3error, whereas the other is derived from an eigenfunction decomposition of the covariance function.The asymptotic behaviour of the upper bounds is also discussed.A set of experiments have been run in order to assess the upper and lower bounds of the learningcurve. In Section 6 we present the results obtained and investigate the link between tightness ofthe bounds and the smoothness of the stochastic process modelled by a GP. A summary of theresults and some open questions are presented in the last Section.2 Gaussian ProcessesA collection of random variables fY (x) jx 2 Xg indexed by a set X de�nes a stochastic process. Ingeneral the domain X might be Rd for some dimension d although it could be even more general. Ajoint distribution characterising the statistics of the random variables gives a complete descriptionof the stochastic process.A GP is a stochastic process whose joint distribution is Gaussian; it is fully de�ned by giving aGaussian prior distribution for every �nite subset of variables.In the following we concentrate to the regression problem assuming that the value of the targetfunction t (x) is generated from an underlying function y (x) corrupted by Gaussian noise withmean 0 and variance �2� . Given a collection of n training data Dn = ��xi; ti� ; i = 1 : : : n	 (whereeach ti is the observed output value at the input point xi), we would like to determine the posteriorprobability distribution p (yjx;Dn).In order to set up a statistical model of the stochastic process, the set of n random variablesy = �y1; y2; : : : yn�T modelling the function values at x1;x2; : : :xn respectively, is introduced.Similarly t is the collection of target values t = �t1; : : : tn�T. We also denote with ~y the vectorwhose components are y and the test value y at the point x. The distribution p (~yjx;Dn) can beinferred using Bayes' theorem. In order to do so, we need to specify a prior over functions as wellas evaluate the likelihood of the model and the evidence for the data.A choice for a prior distribution of the stochastic vector ~y is a Gaussian prior distribution:p �~yjx;x1; : : :xn� / exp ��12 ~yT��1~y�:This is a prior as it describes the distribution of the true underlying values without any referenceto the target values t. The covariance matrix � can be partitioned as� = � Kp k (x)kT (x) Cp (x;x) � :The element (Kp)ij is the covariance between the i-th and the j-th training points, i.e. (Kp)ij =E ��y �xi�� � �xi�� �y �xj�� � �xj���. The components of the vector k (x) are the covariances ofthe test point with all the training data �ki (x) = Cp �x;xi��; Cp (x;x) is the covariance of thetest point with itself.A GP is fully speci�ed by its mean E [y (x)] = � (x) and covariance functionCp (x;x0) = E [(y (x)� � (x)) (y (x0)� � (x0))] :Below we set � (x) = 0; this is a valid assumption provided that any known o�set or trend in thedata has been removed. We can also deal with � (x) 6= 0, but this introduces some extra notationalcomplexity. A discussion about the possible choices of the covariance function Cp (x;x0) is givenin Section 3. For the moment we note that the covariance function is assumed to depend uponthe input variables (x;x0). Thus the correlation between function values depends upon the spatial



Upper and lower bounds on the learning curve for Gaussian processes 4position of the input vectors; usually this will be chosen so that the closer the input vectors, thehigher the correlation of the function values.The likelihood relates the underlying values of the function to the target data. Assuming a Gaussiannoise corrupting the data, we can write the likelihood asp (tjy) / exp ��12(y � t)T
�1(y � t)�where 
 = �2�I. The likelihood refers to the stochastic variables representing the data; so t;y 2 Rnand 
 is an n� n matrix.Given the prior distribution over the values of the function p �~yjx;x1; : : :xn�, Bayes' rule speci�esthe distribution p (~yjx;Dn) in terms of the likelihood of the model p (tjy) and the evidence of thedata p (Dn) as p (~yjx;Dn) = p (tjy) p �~yjx;x1; : : :xn�p (Dn) :Given such assumptions, it is a standard result (e.g. Whittle, 1963) to derive the analytic formof the predictive distribution marginalising over y. The predictive distribution turns out to bey (x) � N �ŷ (x) ; �2̂y;n (x)� where the mean and the variance of the Gaussian function areŷ (x) = kT (x)K�1t (1)�2̂y;n (x) = Cp (x;x) � kT (x)K�1k (x) : (2)The most probable value ŷ (x) is regarded as the prediction of the GP on the test point x; K isthe covariance matrix of the targets t: K = Kp+�2�I. The estimate of the variance �2̂y;n (x) of theposterior distribution is considered as the error bar of ŷ (x). In the following, we always omit thesubscript ŷ in �2̂y;n, taking it as understood. Since the estimate 1 is a linear combination of thetraining targets, GPs are regarded as linear smoother [Hastie and Tibshirani 1990].3 Covariance functionsThe choice of the covariance function is a crucial one. The properties of two GPs, which di�eronly in the choice of the covariance function, can be remarkably diverse. This is due to the rôleof the covariance function which has to incorporate in the statistical model the prior belief aboutthe underlying function. In other words the covariance function is the analytical expression of theprior knowledge about the function being modelled. A misspeci�ed covariance function a�ects themodel inference as it has inuence on the evaluation of Equations 1 and 2.Formally every function which produces a symmetric, positive semi-de�nite covariance matrix Kfor any set of the input space X can be chosen as covariance function. From an applicative pointof view we are interested only in functions which contain information about the structure of theunderlying process being modelled.The choice of the covariance function is linked to the a priori knowledge about the smoothness ofthe function y (x) for there is a connection between the di�erentiability of the covariance functionand the mean-square di�erentiability of the process. The relation between smoothness of a pro-cess and its covariance function is guaranteed by the following theorem (see e.g. Adler, 1981): if@2Cp (x;x0) =@xi@x0i exists and is �nite at (x;x), then the stochastic process y (x) is mean squaredi�erentiable in the i-th Cartesian direction at x. This theorem is relevant as it links the di�er-entiability properties of the covariance function with the smoothness of the random process andjusti�es the choice of a covariance function depending upon the prior belief about the degree ofsmoothness of y (x).In this work we are mainly concerned with stationary covariance functions. A stationary covari-ance function is translation invariant (i.e. Cp (x;x0) = Cp (x� x0)) and depends only upon the



Upper and lower bounds on the learning curve for Gaussian processes 5distance between two data points. In the following, the covariance functions we have been usingare presented. In order to simplify the notation, we consider the case X = R.The stationary covariance function squared exponential (SE) is de�ned asCp (x� x0) = exp"� (x� x0)22�2 # (3)where � is the lengthscale of the process. The parameter � de�nes the characteristic length ofthe process, estimating the distance in the input space in which the function y (x) is expected tovary signi�cantly. A large value of � indicates that the function is almost constant over the inputspace, whereas a small value of the lengthscale designates a function which varies rapidly. Thegraph of this covariance function is shown by the continuous line in Figure 1. As the SE functionhas in�nitely many derivatives it gives rise to smooth random processes (y (x) posses mean-squaredi�erentiability up to order 1).It is possible to tune the di�erentiability of a process, introducing the modi�ed Bessel covariancefunction of order r (MBr). It is de�ned asCp (x� x0) = �� � jx� x0j� �� K� � jx� x0j� � = �� r�1Xk=0 ak � jx� x0j� �k exp ��jx� x0j� � ; (4)where K� (�) is the modi�ed Bessel function of order � (see e.g. Equation 8:468 in Gradshteyn andRyzhik, 1993), with � = r � 1=2 for integral r. In what follows, we set the constant �� such thatCp (0) = 1. The factors ak are constants depending on the order � of the Bessel function. Mat�ern(1980) shows that the functions MBr de�ne a proper covariance. Stein (1989) also noted that theprocess with covariance function MBr is r � 1 times mean-square di�erentiable.In this study we deal with modi�ed Bessel covariance function of orders r = 1; 2; 3; their explicitanalytic form isr = 1; Cp (x� x0) = exp ��jx� x0j� �r = 2; Cp (x� x0) = exp ��jx� x0j� ��1 + jx� x0j� �r = 3; Cp (x� x0) = exp ��jx� x0j� � 1 + jx� x0j� + 13 � jx� x0j� �2! :We note that MB1 corresponds to the Ornstein-Uhlenbeck covariance function which describes aprocess which is not mean square di�erentiable.If r !1, the MBr behaves like the SE covariance function; this can be easily shown by consideringthe power spectra of MBr and SE which areSr (!) / �(1 + !2�2)r and Sse (!) / � exp ��!2�22 � :Since limr!1�1 + !2�22r ��r = exp ��!2�22 � ;the MBr behaves like SE for large r, provided that � is rescaled accordingly.Modi�ed Bessel covariance functions are also interesting because they describe Markov processesof order r. Ihara (1991) de�nes Y (x) to be a strict sense Markov process of order r if it isr � 1 times mean-square di�erentiable at every x 2 R and if P (Y (t+ s) <= yjY (u) ; u <= t) =



Upper and lower bounds on the learning curve for Gaussian processes 6P (Y (t+ s) <= yjY (t) ; Y 0 (t) ; :::Y r�1 (t)) 1. Ihara also states that a Gaussian process is a Markovprocess of order r in the strict sense if and only if it is an autoregressive model of order r (AR(r))with a power spectrum (in the Fourier domain) of the formS (!) / rYk=1 1ji! + �kj2 :As the power spectrum of MBr has the same form of the power spectrum of an AR(r) model, thestochastic process whose covariance function is MBr is a strict sense r-ple Markov process. Thischaracteristic of the MBr covariance functions is important as it ultimately a�ects the evaluationof the generalisation error (as we shall see in Section 6).Figure 2 shows the graphs of four (discretised) random functions generated using the MBr covari-ance functions (with r = 1; 2; 3) and the SE function. We note how the smoothness of the randomfunction speci�ed is dependent of the choice of the covariance function. In particular, the roughestfunction is generated by the Ornstein-Uhlenbeck covariance function (Figure 2(a)) whereas thesmoothest one is produced by the SE (Figure 2(d)). An intermediate level of regularity charac-terises the functions of �gures 2(b) and 2(c), whose covariance function are the MB2 and MB3respectively.4 Learning curve for Gaussian processesA learning curve of a model is a function which relates the generalisation error to the amount oftraining data; it is independent of the test points as well as the locations of the training data anddepends only upon the amount of data in the training set. The learning curve for a GP is evaluatedfrom the estimation of the generalisation error averaged over the distribution of the training andtest data.For regression problems, a measure of the generalisation capabilities of a GP is the squared dif-ference EgDn (x; t) between the target value on a test point x and the prediction made by usingEquation 1: EgDn (x; t) = �t� kT (x)K�1t�2 :The Bayesian generalisation error at a point x is de�ned as the expectation of EgDn (x; t) over theactual distribution of the stochastic process t: EgDn (x) = Et �EgDn (x; t)�. Under the assumptionthat the data set is actually generated from a GP, it is possible to read Equation 2 as the Bayesiangeneralisation error at x given training data Dn. To see this, let us consider the (n+ 1)-dimensionaldistribution of the target values at x1;x2; : : :xn and x. This is a zero-mean multivariate Gaussian.The prediction at the test point x is ŷ (x) = kT (x)K�1t, whereK = Kp+�2�I. Hence the expectedgeneralisation error at x is given byEgDn (x) = E h�t� kT (x)K�1t�2i= E �t2�� 2kT (x)K�1E [tt] + E �kT (x)K�1ttTK�1k (x)�= Cp (0) + �2� � 2kT (x)K�1k (x) + Tr �K�1k (x)kT (x)K�1E �ttT��= Cp (0) + �2� � kT (x)K�1k (x) (5)where we have used E [tt] = k (x) and E �ttT� = K. Equation 5 is identical to �2n (x) as given inEquation 2 with the addition of the noise variance �2� (since we are dealing with noisy data). Thevariance of (t� kT (x)K�1t)2 can also be calculated [Vivarelli 1998].1Note that the de�nition of a Markov process in discrete and continuous time is rather di�erent. In discrete time,a Markov process of order r depends only on the previous r times, but in continuous time the dependence is on thederivatives at the last time. However, function values at previous times clearly allow approximate computation ofderivatives (e.g. via �nite di�erences) and thus one would expect that in the continuous-time situation the previousr process values will contain most of the information needed for prediction at the next time. Note that for theOrnstein-Uhlenbeck process Y (t+ s) depends only on the previous observation (t).



Upper and lower bounds on the learning curve for Gaussian processes 7The covariance matrix pertinent for these calculations is the true prior; if a GP predictor with adi�erent covariance function is used, this increases the expected error [Vivarelli 1998].Another property of the generalisation error can be derived from the following observation: addingmore data points never increases the size of the error bars on prediction (�2n+1 (x) � �2n (x)).This can be proved using standard results on the conditioning of a multivariate Gaussian (seeVivarelli, 1998). It can also be understood by the information theoretic argument that conditioningon additional variables never increases the entropy of a random variable. Considering t (x) to bethe random variable, we observe that its distribution is Gaussian, with variance independent of t(although the mean does depend on t). The entropy of a Gaussian is 12 log �2�e�2 (x)�. As log ismonotonic, the assertion is proved.Since �2n (x) = EgDn (x), a similar inequality applies also to the Bayesian generalisation errors andhence EgDn+1 (x) � EgDn (x) : (6)This remark will be applied in Section 5 for evaluating upper bounds on the learning curve.Equation 5 calculates the generalisation error at a point x. Averaging EgDn (x) over the densitydistribution of the test points p (x), the expected generalisation error EgDn isEgDn = Z �Cp (0) + �2� � kT (x)K�1k (x)� p (x) dx: (7)For particular choices of p (x) and Cp (x) the computation of this expression can be reduced to an�n matrix computation as Ex �kT (x)K�1k (x)� = Tr �K�1Ex �k (x)kT (x)��. We also note thatEquation 7 is independent of the test point x but still depends upon the choice of the training dataDn. In order to obtain a proper learning curve for GP, EgDn needs to be averaged2 over the possiblechoices of the training data Dn. However, it is very di�cult to obtain the analytical form of Egfor a GP as a function of n. Because of the presence of the kT (x)K�1k (x) term in Equation 5,the matrix K and vector k (x) depend on the location of the training points: the calculations ofthe averages with respect to the data points seems very hard. This motivates looking for upperand lower bounds on the learning curve for GP.5 Bounds on the learning curveFor the noiseless case, a lower bound on the generalisation error after n observations is due toMichelli and Wahba (1981). Let �1; �2; : : : be the ordered eigenvalues of the covariance function onsome domain of the input space X . They showed that Eg (n) �P1k=n+1 �k. Plaskota (1996) givesa bound on the learning curve for the noisy case; since the bound again considers the projectionof the random function onto the �rst N eigenfunctions, it is not expected that it will be tight forobservations which consist of function evaluations.Other results that we are aware of pertain to asymptotic properties of Eg (n). Ritter (1996) hasshown that for an optimal sampling of the input space, the asymptotics of the generalisation erroris O �n�(2s+1)=(2s+2)� for a random process which obeys to the Sacks-Ylvisaker 3 conditions oforder s (see Ritter et al. , 1995 for more details on Sacks-Ylvisaker conditions). In general, theSacks-Ylvisaker order of the MBr covariance function is s = r � 1. For example an MB1 processhas s = 0 and hence the generalisation error shows a n�1=2 asymptotic decay. In the case thatX � R, the asymptotically optimal design of the input space is the uniform grid.2Hansen (1993) showed that for linear regression models it is possible to average over the distribution of thetraining sets.3Loosely speaking, a stochastic process possessing s mean-square derivatives but not s+ 1 is said to satisfy theSacks-Ylvisaker conditions of order s.



Upper and lower bounds on the learning curve for Gaussian processes 8Silverman (1985) proved a similar result for random designs. Haussler and Opper (1997) havedeveloped general (asymptotic) bounds for the expected log-likelihood of a test point after seeingn training points.In the following we introduce upper and lower bounds on the learning curve of a GP in a non-asymptotic regime. An upper bound is particularly useful in practice as it provides an (over)estimateof the number of examples needed to give a certain level of performance. A lower bound is similarlyimportant because it contributes to �x the limit which can not be outperformed by the model.The bounds presented are derived from two di�erent approaches. The �rst approach makes use ofthe particular form assumed by the generalisation error at x (EgDn (x) = �2n (x)). As the error bargenerated by one data point is greater than that generated by n data points, the former can beconsidered as an upper bound of the latter. Since this observation holds for the variance due toeach one the data points, the envelope of the surfaces generated by the variances due to each datapoint is also an upper bound of �2n (x). In particular as �2n (x) = EgDn (x) (cf. Equation 5), theenvelope is an upper bound of the generalisation error of the GP. Following this argument, we canassert that an upper bound on EgDn (x) is the one generated by every GP trained with a subset ofDn. The larger the subset of Dn the tighter the bound.The two upper bounds we present di�er in the number of training points considered in the eval-uation of the covariance: the derivation of the one-point upper bound Eu1 (n) and the two-pointupper bound Eu2 (n) are presented in Section 5.1 and Section 5.2 respectively. Section 5.3 reportsthe asymptotic expansion of Eu1 (n) in terms of � and �2� .The second approach is based on the expansion of the stochastic process in terms of the eigenfunc-tions of the covariance function. Within this framework, Opper proposed bounds on the trainingand generalisation error [Opper and Vivarelli 1998] in terms of the eigenvalues of Cp (x;x0); thelower bound El (n) obtained is presented in Section 5.4.In order to have tractable analytical expressions, all the bounds have been derived by introducingthree assumptions:i The input space X is restricted to the interval [0; 1];ii The probability density distribution of the input points is uniform: p (x) = 1; x 2 [0; 1];iii The prior covariance function Cp (x; x0) is stationary.5.1 The one-point upper bound Eu1 (n)For the derivation of the one-point upper bound, let us consider the error bar generated by onedata point xi. Since C (0) = Cp �xi; xi�+ �2� = K, Equation 2 becomes�21 (x) = C (0)� C2p �x� xi�C (0) :For x far away from the training point xi, �21 (x) � C (0): the con�dence on the prediction for atest point lying far apart from the data point xi is quite low as the error bar is large. The closer xto xi, the smaller the error bar on ŷ (x). When x = xi, �21 (x) = �2� (1 + r) where r = Cp (0) =C (0).Irrespective of the value of Cp (0), r varies from 0 to 1. As normally Cp (0)� �2� , r � 1 and thus�21 (x) � 2�2� . So far we have not used any hypothesis concerning the dimension of the variable x,thus this observation holds regardless the dimension of the input space.The e�ect of just one data point helps in introducing the �rst upper bound. The interval [0; 1] issplit up in n subintervals �ai; bi� ; i = 1 : : : n (where ai = �xi + xi�1� =2 and bi = �xi+1 + xi� =2)centred around the i-th data point xi, with a1 = 0 and bn = 1.



Upper and lower bounds on the learning curve for Gaussian processes 9Let us consider the i-th training point and the error bar �21 (x) generated by xi. When x 2 �ai; bi�,EgDn (x) � �21 (x); this relation is illustrated in Figure 3, where the envelope of the surfaces of theerrors due to each datapoint (denoted by EgD1 (x)) is an upper bound of the overall generalisationerror. Since we are dealing with positive functions, an upper bound of the expected generalisationerror on the interval �ai; bi� can be written asZ biai EgDn (x) p (x) dx � Z biai �21 (x) p (x) dx (8)where p (x) is the distribution of the test points. Summing up the contributions coming from eachtraining datapoint in both sides of Equation 8 and setting p (x) = 1, we obtainEgDn = nXi=1 Z biai EgDn (x) dx � nXi=1 Z biai �21 (x) dx (9)The interval where the contribution of the variance due to xi contributes to Equation 8 is alsoshown in Figure 3.Under the assumption of the stationarity of the covariance function, integrals such as those inthe right hand side of Equation 9 depend only upon di�erences of adjacent training points (i.e.xi � xi�1 and xi+1 � xi). The right hand side of Equation 9 can be rewritten asEgDn � nXi=1 Z biai �21 (x) dx = C (0) nXi=1 �bi � ai� (10)� 1C (0) nXi=1 "Z xiai C2p �xi � x� dx + Z bixi C2p �x� xi� dx#= C (0)� 1C (0) "I �x1�+ 2 nXi=2 I �xi � xi�12 �+ I (1� xn)# (11)where I (�) = Z �0 C2p(�)d�: (12)Equation 11 can be derived changing the variables in the two integrals of Equation 10 as � = xi�xand � = x� xi, respectively. Equation 11 is an upper bound on Eg1;Dn and still depends upon thechoice of the training data Dn through the interval of integration. We note that the arguments ofthe integrals I (�) in Equation 11 are the di�erences between adjacent training points. Denotingthose di�erences with !i = xi+1 � xi, we can model their probability density distribution byusing the theory of order statistics [David 1970]. Given an uniform distribution of n trainingdata over the interval [0; 1], the density distribution of the di�erences between adjacent points isp (!) = n (1� !)n�1. Since this is true for all the di�erences !i we can omit the superscript i andthus the expectation of the integrals in Equation 11 over p (!) isE! "I �!0�+ 2 nXi=2 I �!i2 �+ I (!n)# = 2(n� 1)E! [I (!=2)] + 2E! [I (!)] ; (13)where !0 = x1 and !n = 1 � xn. Both the integrals E! [I (!=2)] and E! [I (!)] can be calculatedfollowing a similar procedure. Let us consider E! [I (!)]:E! [I (!)] = Z 10 I (!)n (1� !)n�1 d!= � [I (!) (1� !)n]10 + Z 10 C2p (!) (1� !)n d!= Z 10 C2p (!) (1� !)n d!;



Upper and lower bounds on the learning curve for Gaussian processes 10where the second line has been obtained integrating by parts. The last line follows from the factthat [I (!) (1� !)n]10 = 0.We are now able to write an upper bound on the learning curve asEg (n) � Eu1 (n) := C (0)� 1C (0) �(n� 1) Z 10 C2p �!2 � (1� !)n d! + 2 Z 10 C2p (!) (1� !)n d!� :(14)The calculations of the integrals in the above expression are straightforward though they involve theevaluation of hyper-geometric functions (because of the term (1� !)n). As the evaluation of suchfunctions is computationally intensive, we found preferable to evaluate Equation 14 numerically.5.2 The two-points upper bound Eu2 (n)The second bound we introduce is the natural extension of the previous idea: it uses the inequalityof Equation 6 by using two data points. By construction, we expect that it will be tighter thanthe one introduced in Section 5.1.Let us consider two adjacent data points xi and xi+1 of the interval [0; 1], with xi < xi+1. By thesame argument presented in the previous section, the following inequality holds:Z xi+1xi EgDn (x) p (x) dx � Z xi+1xi �22 (x) p (x) dx (15)where �22 (x) is the variance on the prediction ŷ (x) generated by the data points xi and xi+1.Similarly to Equation 9, summing up the contributions of both sides of Equation 15 we get anupper bound on the generalisation error:EgDn = nXi=0 Z xi+1xi EgDn (x) dx � nXi=0 Z xi+1xi �22 (x) dx; (16)where we have de�ned x0 = 0 and xn+1 = 1. As the covariance matrix generated by two datapoints is a 2�2 matrix, it is straightforward to evaluate Equation 16. Considering the two trainingdata xi and xi+1, the covariance matrix of the GP isK = � C (0) Cp �xi+1 � xi�Cp �xi+1 � xi� C (0) � :From the evaluation of the determinant of K as � �xi+1 � xi� = (C (0))2 � �Cp �xi+1 � xi��2follows that K�1 = 1� (xi+1 � xi) � C (0) �Cp �xi+1 � xi��Cp �xi+1 � xi� C (0) � :As the covariance vector for the test point x is k (x) = �Cp �x� xi� ; Cp �xi+1 � x��T, the varianceassumes the form�22 (x) = C (0)� C (0) �C2p �xi+1 � x�+ C2p �x� xi��� 2Cp �xi+1 � xi�Cp �x� xi�Cp �xi+1 � x��(xi+1 � xi) :Changing variables in the covariancesCp �xi+1 � xi� and Cp �x� xi� (as � = xi+1�x and � = x�xirespectively), it turns out that the upper bound generated by �22 (x) in the interval �xi; xi+1� (wheni 6= 0; n), is Z xi+1xi �22 (x) dx = C (0) �xi+1 � xi�� 2 �I1 �xi+1 � xi�� I2 �xi+1 � xi���(xi+1 � xi)where I1 (�) = C (0) Z �0 C2p (�) d� and I2 (�) = Cp (�) Z �0 Cp (�)Cp (� � �) d�:



Upper and lower bounds on the learning curve for Gaussian processes 11It is noticeable that, similarly to Equation 11, also the integrals I1 (�), I2 (�) and the determinant� �xi+1 � xi� depend upon the length of the interval of integration !i = xi+1�xi. We evaluate thecontributions to the upper bound over the intervals �0; x1� and [xn; 1] by integrating the variance�21 (x) generated by x1 and xn over �0; x1� and [xn; 1] respectively. Hence the right hand side ofEquation 16 can be rewritten asEgDn � C (0)� 2 n�1Xi=2 I1 �!i�� I2 �!i��(!i) � 1C (0) �I �!1�+ I (!n)� (17)where I (�) is de�ned in Equation 12.Equation 17 is still dependent on the distribution of the training data because it is a function ofthe distances between adjacent training points !i. Similarly to Equation 11, we obtain an upperbound independent of the training data by integrating Equation 13 over the distribution of thedi�erences p (!) = n (1� !)n�1:Eg (n) � Eu2 (n) := C (0)� 2 (n� 1) E! �(I1 (!)� I2 (!))� (!) �� 2C (0)E! [I (!)] : (18)The calculation of the integrals with respect to ! in Eu2 (n) are complicated by the determinant� (!) in the denominator and by the distribution n (1� !)n�1, so we preferred to evaluate themnumerically as we did for Eu1 (n).5.3 Asymptotics of the upper boundsFrom Equation 14, an expansion of Eu1 (n) in terms of � and �2� in the limit of a large amount oftraining data can be obtained. The expansion depends upon the covariance function we are dealingwith. Expanding the covariance function around 0, the asymptotic form of Eu1 (n) for MB1 isEu1 (n) � C (0) �1� r2 + r2n��+O �n�2� (19)whereas for the functions MB2, MB3 and SE it isEu1 (n) � C (0)�1� r2 + r2n2�2 �+O �n�3� (20)where r = Cp (0) =C (0) [Vivarelli 1998].The asymptotic value of Eu1 (n) depends neither on the lengthscale of the process nor on thecovariance function but is a function of the ratio r:limn!1Eu1 (n) = C (0) �1� r2� = �2� (1 + r) : (21)As we pointed out in Section 5.1, this is the minimum generalisation error achievable by a GPwhen it is trained with just one datapoint. The n ! 1 scenario corresponds to the situation inwhich every test point is close to a datapoints. As mentioned at the beginning of this Section, theasymptotics of the learning curve for the MBr and SE covariance functions are O �n(2r�1)=2r� andO �n�1 logn� respectively. Although the expansions of Eu1 (n) decay asymptotically faster thanthe learning curves, they reach an asymptotic plateau �2� (1 + r) � �2� . We also note that theasymptotic values Eg1 (n) get closer to the true noise level when r � 1, i.e. for the unrealistic case�2� � Cp (0).The smoothness of the process enters into the asymptotics through a factor O �r2= (�n)� for MB1and O �r2= ��2n2�� for MB2, MB3 and SE. This factor a�ects the rate of approach to the asymptoticvalue �2� (1 + r) of Eu1 (n). We notice that larger lengthscales and noise levels increase the rate ofdecay of Eu1 (n) to the asymptotic plateau.



Upper and lower bounds on the learning curve for Gaussian processes 12The asymptotic form of Eu2 (n) for the MB1, MB2, MB3 and SE covariance functions is [Vivarelli1998] Eu2 (n) � C (0)�1� 2r21 + r�+ an+ 1 +O �n�2� ; (22)where the value of a depends upon the choice of the covariance function and r = Cp (0) =C (0).Similarly to the expansion of Eu1 (n), the decay rate of Eu2 (n) is faster than the asymptotic decayof the actual learning curves but it reaches an asymptotic plateau oflimn!1Eu2 (n) = C (0)�1� 2r21 + r� = �2� �1 + r1 + r� : (23)It is straightforward to verify that the asymptotic plateau of Eu2 (n) is lower than the one of Eu1 (n)and that it corresponds to the error bar estimated by a GP with two observations located at thetest point.5.4 The lower bound El (n)Opper [Opper and Vivarelli 1998] proposed a bound on the learning curve and on the trainingerror based on the decomposition of the stochastic process y (x) in terms of the eigenfunctions ofthe covariance Cp (x;x0).Denoting with 'k (x) ; k = 1 : : :1 a complete set of functions satisfying the integral equationZ Cp (x;x0)'k (x) p (x) dx = �k'k (x) ;the Bayesian generalisation error Eg (x;Dn) = Ey h(y (x)� ŷ (x))2i (where y (x) is the true under-lying stochastic function and ŷ (x) is the GP prediction) can be written in terms of the eigenvaluesof Cp (x;x0). In particular, after an average over the distribution of the input data, Eg (Dn) can bewritten as Eg (Dn) = �2�Tr �� ��2�I+�V ��, where � is the in�nite dimension diagonal matrix ofthe eigenvalues and V is a matrix depending on the training data, i.e. Vkl =Pni=1 'k �xi�'l �xi�.By using Jensen's inequality, it is possible to show that a lower bound of the learning curve andan upper bound of the training error is [Opper and Vivarelli 1998]Ely (n) := �2� 1Xk=1 �k(�2� + n�k) : (24)In this paper we mean to compare this lower bound to the actual learning curve of a GP. As ourbounds are on t rather than y, we must add �2� to the expression obtained in Equation 24 givingan actual lower bound of El (n) := �2�  1 + 1Xk=1 �k(�2� + n�k)! : (25)6 ResultsAs we pointed out in Section 4, the analytic calculation of the learning curve of a GP is infeasible.Since the generalisation errorEgDn = Z �Cp (0) + �2� � kT (x)K�1k (x)� p (x) dx (26)is a complicated function of the training data (which are inside the elements of k (x) andK�1), it isproblematic to perform an integration over the distribution of the training points. For comparing



Upper and lower bounds on the learning curve for Gaussian processes 13the learning curve of the GP with the bounds we found, we need to evaluate the expectation ofthe integral in Equation 26 over the distribution of the data: Eg (n) = EDn �EgDn�. An estimateof Eg (n) can be obtained using a Monte Carlo approximation of the expectation. We used 50generations of training data, sampling uniformly the input space [0; 1]. For each generation, theexpected generalisation error for a GP has been evaluated using up to 1000 datapoints. Using the50 generations of training data, we can obtain an estimate of the learning curve Eg (n) and its95% con�dence interval.Since this study is focused on the behaviour of bounds on learning curve on GP, we assume thetrue values of the parameters of the GP are known. So we chose the value of the constant �� forthe covariance functions MB1, MB2 and MB3 (see Equation 4) such that Cp (0) = 1 and we allowedthe lengthscale � and the noise level �2� to assume several values (� = 10�4; 10�3; 10�2; 10�1; 1 and�2� = 10�4; 10�3; 10�2; 10�1; 1).To begin with, we study how the smoothness of a process a�ects the behaviour of the learningcurve. The empirical learning curves of Figure 4 have been obtained for processes whose covariancefunctions are MB1, MB2 and MB3, with � = 0:01 and �2� = 0:1. We can notice that all the learningcurves exhibit an initial linear decrease. This can be explained considering that without anytraining data, the generalisation error is the maximum allowable by the model (C (0) = Cp (0)+�2�).The introduction of a training point x1 creates a hole on the error surface: the volume of the hole isproportional to the value of the lengthscale and depends on the covariance function. The additionof a new data point x2 will have the e�ect of generating a new hole in the surface. With such afew data points it is likely that the two data lie down far apart one from the other, giving rise totwo distinct holes. Thus the e�ect that a small dataset exerts to pull down the error surface isproportional to the amount of training points and explains the initial linear trend.Concerning the asymptotic behaviour of the learning curves, we have veri�ed that they agree withthe theoretical analysis carried out by Ritter (1996). In particular, a log-log plot of the learningcurves with a MBr covariance function shows an asymptotic behaviour as O �n�(2r�1)=2r�. Asimilar remark applies to the SE covariance function, with an asymptotic decay rate of O �n�1 logn�[Opper 1997]. We have also noted that the smoother the process described by the covariancefunction the smaller the the amount of training data needed to reach the asymptotic regime.The behaviour of the learning curves is a�ected also by the value of the lengthscale of the processand by the noise level and this is illustrated in Figure 5. The learning curves shown in Figure 5(a)have been obtained for the MB1 covariance function setting the noise level �2� = 0:1 and varyingthe values of the parameters � = 10�2; 10�1. Intuitively, Figure 5(a) suggests that decreasing thelengthscale stretches the early behaviour of the learning curve and the approach to the asymptoticplateau lasts longer; this is due to the e�ect induced by di�erent values of the lengthscale whichstretch or compress the input space. We have veri�ed that rescaling the amount of data n by theratio of the two lengthscales, the two curves of Figure 5(a) lay on top of each other.The variation of the noise level shifts the learning curves from the prior value Cp (0) by an o�setequal to the noise level itself (cf. Equation 5); in order to see any signi�cant e�ect of the noiseon the learning curve, Figure 5(b) shows a log-log graph of Eg (n)� �2� obtained for a stochasticprocess with MB3 covariance function, setting � = 0:1 and noise variance �2� = 10�4; 10�1. Wecan notice two main e�ects. The noise variance a�ects the actual values of the generalisation errorsince the learning curve obtained with high noise level is always above the one obtained with alow noise level. A second e�ect concerns the amount of data necessary to reach the asymptoticregime. The learning curve characterised by an high noise level needs fewer datapoints to attainto the asymptotic regime.Stochastic processes with di�erent covariance functions and di�erent values of lengthscales andnoise variance behave in a similar way.In the following we discuss the results in two main subsections: results about the bounds Eu1 (n)and Eu2 (n) are presented in Section 6.1, whereas the lower bound of Section 5.4 is shown in Section6.2. As the results we obtained for these experiments show common characteristics, we show the



Upper and lower bounds on the learning curve for Gaussian processes 14bounds of the learning curve obtained by setting � = 0:01 and �2� = 0:1.6.1 The upper bounds Eu1 (n) and Eu2 (n)Each graph in Figure 6 shows the empirical learning curve with its con�dence interval and thetwo upper bounds Eu1 (n) and Eu2 (n). The curves are shown for the MB1, MB2, MB3 and the SEcovariance functions.For a limited amount of training data it is possible to notice that the upper error bar associatedto EDn [Eg (n)] lies above the actual upper bounds. This e�ect is due to the variability of thegeneralisation error for small data sets and suggests that the bounds are quite tight for small n.The e�ect disappears for large n, when the estimate of the generalisation error is less sensitive tothe composition of the training set.As expected, the two-point upper bound Eu2 (n) is tighter than the one-point upper bound Eu1 (n).We note that the tightness of the upper bound depends upon the covariance function, beingtighter for rougher processes (such as MB1) and getting worse for smoother processes. This can beexplained by recalling that covariance functions such as the MBr correspond to Markov processesof order r (cf. Section 3). Although the Markov process is actually hidden by the presence ofthe noise, Eg (n) is still more dependent on training data lying close to the test point x than onmore distant points. Since the bounds Eu1 (n) and Eu2 (n) have been calculated by using only localinformation (namely the closest datapoint to the test point, or the closest datapoints to the leftand right, respectively), it is natural that the more the variance at x depends on local data points,the tighter the bounds become.For instance, let us consider MB1, the covariance function of a �rst order Markov process. For thenoise-free process, knowledge of data-points lying beyond the the left and right neighbours of xdoes not reduce the generalisation error at x4. Although in the noisy case more distant data-pointsreduce the generalisation error (because of the term �2� in the covariance matrix K), it is likelythat local information is still the most important.The bounds on the learning curves computed for MB2 and MB3 con�rm this remark, as they arelooser than for MB1. For the SE covariance function, this e�ect still holds and is actually enlarged.In Section 5.3 we have shown that the asymptotic behaviour of the bound Eu1 (n) depends on thecovariance function, being O �n�1� for MB1 and O �n�2� for MB2 and MB3. Log-log plots of theupper bounds con�rm the analysis carried out in Section 5.3, where we showed that Eu1 (n) andEu2 (n) approach asymptotic plateaux. In particular, Eu1 (n) tends to �2� (1 + r) as O �n�1� forMB1 and O �n�2� for MB2 and MB3, whereas Eu2 (n) tends to �2� (1 + r= (1 + r)) as O �n�1�.The quality of the bounds for processes characterised by di�erent lengthscales and di�erent noiselevels are comparable to the ones described so far: the tightness of Eu1 (n) and Eu2 (n) still dependon the smoothness of the process. As explained at the beginning of this section, a variation of thelengthscale has the same e�ect of a rescaling in the number of training data.For a �xed covariance function, we note that the bounds are tighter for lower noise variance; this isdue to the fact that the lower the noise level the better the hidden Markov process manifests itself.For smaller noise levels the learning curve becomes closer to the bounds because the generalisationerror relies on the local behaviour of the processes around the test data; on the contrary, a largernoise level hides the underlying Markov Process thus loosening the bounds.4This is because the process values at the training points and test point form a Markov chain, and knowledge ofthe process values to the left and right of the test point "blocks" the inuence of more remote observations.



Upper and lower bounds on the learning curve for Gaussian processes 156.2 The bound El (n)We have also run experiments computing the lower bound we obtained from Equation 25 forprocesses generated by the covariance priors MB1, MB2, MB3 and SE .Equation 25 shows that the evaluation of El (n) involves the computation of an in�nite sum ofterms; we truncated the series considering only those terms which add a signi�cant contributionto the sums, i.e. �k=�2� � ", where " is the machine precision. Since each contribution in the seriesis positive, the quantity computed is still a lower bound of the learning curve.Figure 7 shows the results of the experiment in which we set � = 0:01 and �2� = 0:1. The graphsof the lower bound lies below the empirical learning curve, being tighter for large amount of data;in particular for the smoothest processes with large amount of data, the 95% con�dence intervalslay below the actual lower bound.For n ! 1, the lower bound tends to the noise level �2� . As with the empirical learning curve,log-log plots of Ely (n) show an asymptotic decay to zero as O(n�(2r�1)=2r) and O �n�1 logn� forthe MBr and the SE covariance functions, respectively.The graphs of Figure 7 show also that the tightness of the bound depends on the smoothness ofthe stochastic process; in particular smooth processes are characterised by a tight lower bound onthe learning curve Eg (n). This can be explained by observing that El (n) is a lower bound onthe learning curve and an upper bound of the training error. The values of smooth functions donot have large variation between training points and thus the model can infer better on test data;this reduces the generalisation error pulling it closer to the training error. Since the two errorssandwich the bound of Equation 25, El (n) becomes tight for smooth processes.We can also notice that the tightness of the lower bound depends on the noise level, becomingtight for high the noise level and loose for small noise level. This is consistent with a generalcharacteristic of El (n) which is monotonically decreasing function of the noise variance [Opperand Vivarelli 1998].7 DiscussionIn this paper we have presented non-asymptotic upper and lower bounds for the learning curveof GPs. The theoretical analysis has been carried out for one-dimensional GPs characterised byseveral covariance functions and has been supported by numerical simulations.Starting from the observation that increasing the amount of training data never worsens theBayesian generalisation error, an upper bound on the learning curve can be estimated as thegeneralisation error of a GP trained with a reduced dataset. This means that for a given trainingset the envelope of the generalisation errors generated by one and two datapoints is an upper boundof the actual learning curve of the GP. Since the expectation of the generalisation error over thedistribution of the training data is not analytically tractable, we introduced the two upper boundsEu1 (n) and Eu2 (n) which are amenable to average over the distribution of the test and trainingpoints. In this study we have evaluated the expected value of the bounds; future directions ofresearch should also deal with the evaluation of the variances.In order to highlight the behaviour of the bounds with respect to the smoothness of the stochasticprocess, we investigated the bounds for the modi�ed Bessel covariance function of order r (de-scribing stochastic processes r � 1 times mean-square di�erentiable) and the squared exponentialfunction (describing processes mean square-di�erentiable up to the order 1).The experimental results have shown that the learning curves and their bounds are characterisedby an early, linearly decreasing behaviour; this is due to the e�ect exerted by each datapoint in



Upper and lower bounds on the learning curve for Gaussian processes 16pulling down the surface of the prior generalisation error. We also noticed that the tightness ofthe bounds depends on the smoothness of the stochastic processes. This is due to the facts thatthe bounds rely on subsets of the training data (i.e. one or two datapoints) and the modi�edBessel covariance functions describe Markov processes of order r; although in our simulations theMarkovian processes were hidden by noise, the learning curves depend mainly on local informationand our bounds become tighter for rougher processes.We also investigated the behaviour of the curves with respect to the variation of the correlationlengthscale of the process and the variance of the noise corrupting the stochastic process. Wenoticed that the lengthscale stretches the behaviour of the curves e�ectively rescaling the numberof training data. As the noise level has the e�ect of hiding the underlying Markov process, theupper bounds become tighter for smaller noise variance.The expansion of the bounds in the limit of large amount of data highlights an asymptotic behaviourdepending upon the covariance function; Eu1 (n) approaches the asymptotic plateau as O �n�1�(for the MB1 covariance function) and as O �n�2� for smoother processes; the rate of decay to theplateau of Eu2 (n) is O �n�1�. Numerical simulations supported our analysis.One limitation of our analysis is the dimension of the input space; the bounds have been madeanalytically tractable by using order statistics results after splitting up the one dimensional inputspace of the GP. In higher dimensional spaces the partition of the input space can be replaced bya Voronoi tessellation that depends on the data Dn but averaging over this distribution appearsto be di�cult. One can suggest an approximate evaluation of the upper bounds by an integrationover a ball whose radius depends upon the number of examples and the volume of the input spacein which the bound holds. In any case we expect that the e�ect due to larger input dimension isto loosen the upper bounds.We also ran some experiments by using the lower bound proposed by Opper, based on the knowl-edge of the eigenvalues of the covariance function of the process. Since the bound El (n) is alsoan upper bound on the training error, we observed that the bound is tighter for smooth processes,when the learning curve becomes closer to the training error. Also the noise can vary the tightnessof El (n); a low noise level loosens the lower bound. Unlike the upper bounds, the lower bound canbe applied also in multivariate problems, as it is easily extended to high dimension input space;however it has been veri�ed [Opper and Vivarelli 1998] that the bound becomes less tight in inputspace of higher dimension.8 AcknowledgmentsThis research forms part of the \Validation and Veri�cation of Neural Network Systems" projectfunded jointly by EPSRC (GR/K 51792) and British Aerospace. We thank Dr. Manfred Opperand Dr. Andy Wright of BAe for helpful discussions. F. V. was supported by a studentship ofBritish Aerospace.
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(d)Figure 6: Figures 6(a), 6(b), 6(c) and 6(d) show the graphs of the learning curves and theirupper bounds computed for the covariance functions MB1, MB2, MB3 and the SErespectively. In all the graphs, the learning curve is drawn by the solid line and its95% con�dence interval is indicated by the dotted curves. The upper bounds Eu1 (n)and Eu2 (n) are indicated by the dash dotted and the dashed lines, respectively.
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(d)Figure 7: Figures 7(a), 7(b), 7(c) and 7(d) show the graphs of the learning curves and theirlower bounds computed for the covariance functions MB1, MB2, MB3 and the SErespectively. In all the graphs, the learning curve is drawn by the solid line and its95% con�dence interval is signed by the dotted curves. The lower bound El (n) isindicated by the dashed lines.


