
The Dynamics of Matrix Momentum

Magnus Rattray and David Saad
Neural Computing Research Group, Aston University, Birmingham B4 7ET, UK.

Abstract

We analyse the matrix momentum algorithm, which provides anefficient approx-
imation to on-line Newton’s method, by extending a recent statistical mechan-
ics framework to include second order algorithms. We study the efficacy of this
method when the Hessian is available and also consider a practical implementa-
tion which uses a single example estimate of the Hessian. Themethod is shown
to provide excellent asymptotic performance, although thesingle example imple-
mentation is sensitive to the choice of training parameters. We conjecture that
matrix momentum could provide efficient matrix inversion for other second order
algorithms.

1 Introduction

On-line learning is a popular method for training multilayer feed-forward neural net-
works in which the network parameters are updated according to only the latest in a
sequence of training examples. Second order methods, which incorporate information
about the curvature of the mean error surface, have been shown to be asymptotically
optimal (e.g., [1, 2]) but they are often expensive both computationally and in terms of
storage space; for example, they may require averaging over the entire dataset to de-
termine the Hessian followed by a matrix inversion. Orr & Leen [3, 4] have recently
proposed a novel on-line algorithm which uses a momentum term with an adaptive
matrix momentum parameter to approximate on-line Newton’s method. They claim
that this algorithm is asymptotically optimal and insensitive to thechoice of external
parameters.

The aim of this paper is twofold. We first employ a theoretical framework, recently
developed for studying the dynamics of on-line learning [5], to study the performance
of an idealized version of matrix momentum in which the exact Hessian is available. In
practice, the Hessian is not available on-line and we therefore use the same theoretical
framework to examine the performance using a single example approximation to the
Hessian, as suggested by Orr & Leen [3], and consider its limitations. There are
several advantages in conducting a theoretical study in the manner described here
over a numerical one. Studying the average behaviour, using modest computational
means, we perform an unbiased assessment of the algorithm which is insensitive to the
choice of training examples. Moreover, having an analytical description ofthe system
enables us to determine the optimal achievable asymptotic performance, which can
then be used to assess the above algorithms. Combining these results with recent
work on the asymptotic dynamics of gradient descent could provide analytical results
for optimal and maximal learning parameters [6].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78877713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 General framework

We consider a map from anN -dimensional input space� 2 <N onto a scalar, realized
through a model�(J; �) =PKi=1 g(Ji � �), which can be viewed as a soft committee
machine, whereg(x) � erf(x=p2), is the activation function of the hidden units,J � fJig1�i�K is the set of input to hidden adaptive weights for theK hidden nodes
and the hidden to output weights are set to one. The activation of hidden node i
under presentation of the input pattern�� is denotedx�i = Ji � ��. Training examples
are input-output pairs of the form(��; ��) where� labels each example in a sequence.
The components of the independently drawn input vectors�� are uncorrelated random
variables with zero mean and unit variance. The corresponding output�� is given
by a corrupted teacher of a similar configuration to the student except for apossible
difference in the numberM of hidden units:�� = PMn=1 g(Bn � ��) + ��, whereB � fBng1�n�M is the set of input to hidden adaptive weights for teacher hidden
nodes and�� is zero-mean Gaussian output noise with variance�2. The activation of
hidden noden under presentation of the input pattern�� is denotedy�n = Bn � ��.

The error made by a student with weightsJ on a given input� is given by the
quadratic deviation�(J; �) = 12 [�(J; �)� �]2. The most basic learning rule is then
to perform gradient descent on this quantity. Performance on a typical input in the
absence of noise defines the generalization error�g(J) � h�(J; �)if�gj�=0 through an
average over all possible input vectors�.

The activations are distributed according to a multivariate Gaussian with covari-
ances:hxixki = Ji � Jk � Qik, hxiyni = Ji �Bn � Rin, andhynymi = Bn �Bm �Tnm, measuring overlaps between student and teacher vectors. Angled brackets de-
note averages over inputs and the covariance matrix completely describes the mean
state of the system. In the limit of largeN we define a continuous time variable� = �=N and a coupled set of ordinary differential equations describes the overlap
evolution under standard gradient descent [5]. These equations, representing an exact
analytical solution for the average case, can be integrated numerically to obtain a solu-
tion of the dynamics. The generalization error can be written in terms of the overlaps
and can thus be calculated once the dynamics have been solved. We will show that
including an extra set of overlaps allows equations of motion to be determined for the
matrix momentum learning algorithm.

3 Matrix momentum

A heuristic which is sometimes useful in batch learning is to include a momentum
term in the basic gradient descent algorithm proportional to the previous change in the
student’s weights. For on-line momentum the weight update each iteration is given by,J�+1i = J�i + �N ��i �� + �(J�i � J��1i) ; (1)

where��i � g0(x�i)[PMn=1 g(y�n) �PKj=1 g(x�j) + ��], � is a momentum parameter
(which we consider to be scalar for now) and� is the learning rate which is scaled by
the input dimension for convenience. Standard on-line momentum has been consid-
ered previously and has not been shown to be particularly useful (e.g. [4,7, 8]) but

it is instructive to consider this case first. We define a Markov process equivalent to
equation (1) by introducing a new set of variables
�i = N(J�i � J��1i),J�+1i = J�i + �N ��i �� + �N
�i ;
�+1i = �
�i + � ��i �� : (2)

We can now proceed along the lines of [5] in order to derive a set of first order differ-
ential equations describing the evolution of a set of overlaps. In thiscase we need a
new Gaussian fieldz�i =
i � �� and a new set of overlaps:hzizki =
i �
k � Cik ,hziyni =
i � Bn � Din, andhxizki = Ji �
k � Eik . We identify two possible
scalings for� and� which result in different dynamical behaviour.� If we choose� � O(1) and� � O(1=N) the above prescription results in an

increasingly fast time scale for the new order parameters asN increases. This
can be incorporated as an adiabatic elimination and we find that the dynamics
of R andQ is simply equivalent to gradient descent with an effective learning
rate of�e� = �=(1� �) in this case.� More interesting dynamics is observed if we choose� � O(1=N) and1� � �O(1=N) [8]. In this case the overlaps all evolve on the same time-scale. If
we define� = k=N and� = 1 � =N then taking ! 1 andk ! 1
simultaneously while keeping their ratio finite results in dynamics equivalent to
gradient descent with an effective learning rate of�e� = k=.

The above limits are related to those discussed in [7] and their results are consistent
with the above observations. The latter scaling proves most appropriate for matrix
momentum and is rigorously justified without resorting to adiabaticelimination. This
is therefore the scaling discussed in the following two sections.

3.1 Idealized matrix momentum

Orr & Leen suggest the use of a matrix momentum parameter� so that the learning
rate rescaling described in the previous section results in on-line Newton’s method, in
which the gradient is pre-multiplied by the inverse Hessian. If the Hessian is known
this can be achieved by setting,� = I� kHN ; � = k��N ; (3)

where�� is a scalar which may depend on� (recall that� = �=N). Makingk large
one might then expect an effective matrix learning rate for gradient descent�e� =��H�1, as required for on-line Newton’s method. Choosing�� = 1=� is known
to provide optimal asymptotic performance in this case. However, it hasnot been
shown that the limiting behaviour described for standard momentum holds for a matrix
momentum parameter.

Substituting the above definitions into equations (2) and following the methods
in [5] we find a set of differential equations for the overlaps asN !1,dQikd� = Eik +Eki ; dRind� = Din ;

dCikd� = k��h�izk + �kzii+ k2�2�h�i�ki � kXm (cimDkm + ckmDim)�kXj (aijCkj + akjCij + bijEjk + bkjEji) ;dDind� = k��h�iyni � kXj (aijDjn + bijRjn)� kXm cimTnm ;dEikd� = Cik + k��h�kxii � kXj (akjEij + bkjQij)� kXm ckmRim ; (4)

where angled brackets denote averages over inputs, or equivalently averages over the
field variablesfxig, fyng andfzig. We have defined,aij = (1 + �ij) @�g@Qij ;bij = (1 + �ij)�Xlk (1 + �lk)Elk @2�g@Qij@Qkl +Xkn Dkn @2�g@Qij@Rkn � ;cin = Xlk (1 + �lk)Elk @2�g@Rin@Qkl +Xkm Dkm @2�g@Rin@Rkm ;
where�ij (with two indices) represents a Kronecker delta. The fields are distributed
according to a multivariate Gaussian with the overlaps as covariances and all averages
and generalization error derivatives can be calculated in closed form [5].

Matrix momentum, as defined above, is not particularly useful during the tran-
sients of learning in multilayer neural networks with over-lapping receptive fields,
since both on-line Newton’s method and matrix momentum can become trapped in a
suboptimal fixed point of the dynamics [9]. This fixed point is an unstable transient
fixed point for gradient descent [5] and it is therefore better to use gradient descent
initially and to only switch on matrix momentum after escaping this fixed point. Other
second order algorithms exist, such as natural gradient learning [2], which overcome
this problem and provide improved transient performance over gradient descent [10].
Matrix momentum may also provide an efficient matrix inversion method forthese
algorithms.

In fig. 1(a) we compare the asymptotic performance of idealized matrix momen-
tum to on-line Newton’s method for a two-node network learning an isotropic task
in the presence of output noise with�2 = 0:01 (The dynamics for on-line Newton’s
method is solved in [9]). We use gradient descent initially, until afterthe transient
fixed point described above, and then we use matrix momentum with�� gradually
reduced from0:1 to the1=� decay which is known to be asymptotically optimal. The
dashed lines show results fork = 0:01, k = 0:1 andk = 2, in descending order
of height (the final dashed line is almost obscured by the solid line). As k increases,
the trajectory converges onto the on-line Newton’s method result (solid line), as de-
sired, and we approach the optimal asymptotic decay law (dot-dashed line) which is
determined in [9]. Matrix momentum therefore provides an efficient approximation to
on-line Newton’s method when the Hessian is known.

10
1

10
2

10
3

10
410

−6

10
−4

10
−2

10
1

10
2

10
3

10
410

−6

10
−4

10
−2

10
0

(a)�g
� (b)�g

�
Figure 1: Solid lines show the generalization error for on-line Newton’s method started
after� = 180, with gradient descent before this point, for a two hidden node network
learning from a two node teacher (Tnm = �nm, �2 = 0:01). (a) shows the result
for idealized matrix momentum (dashed lines) fork = 0:01, k = 0:1 andk = 2 (in
descending order of height). The dot-dashed line gives the optimal asymptotic decay.
(b) shows the result for matrix momentum using the single exampleestimate withk = 0:1 (dashed),k = 0:5 (dot-dashed) andk = 3 (dotted). Initial conditions areQii 2 U [0; 0:5],Qi6=k; Rin 2 U [0; 10�3].
3.2 Single example approximation

In order to define a practical algorithm we need some approximation to the Hessian
which can be determined on-line. The simplest such approximation is to use a single
training example in order to estimate the Hessian [3]. The equations ofmotion for
matrix momentum using this approximation can also be determined by the methods
in [5] and the equations forQ andR are as in (4), while the equations for the other
overlaps are,dCikd� = kh(���i � �i)zk + (���k � �k)zii+ k2h(���i � �i)(���k � �k)i ;dDind� = kh(���i � �i)yni ; dEikd� = Cik + kh(���k � �k)xii : (5)

Again, the brackets denote averages over inputs, or fields, and we have defined�i =zig00(xi) hPj g(xj)�Pn g(yn)� �i+g0(xi)Pj zjg0(xj). All averages can be car-

ried out analytically to provide a closed set of equations of motion. In fig. 1(b) we
show asymptotic performance withk = 0:1, k = 0:5 andk = 3 and�� annealed as in
fig. 1(a) after� = 180. Ideally, we want the curves to approach the on-line Newton’s
method result (solid line) for largek. However, ask increases fluctuations in the Hes-
sian estimate (due to randomness in the inputs and noise in the teacher output) become
important and the weight vector norms diverge, leading to divergence of the general-
ization error (dotted line). For intermediatek (dot-dashed line) the performance is
asymptotically close to optimal and certainly provides a significant improvement over
gradient descent. Further work is required to determine the optimal and maximal val-
ues ofk and�� analytically, using methods from [6], but we have shown here that
performance is certainly strongly dependent on parameter choice.

4 Conclusion and future work

In this paper we extend a recently developed theoretical framework to accommodate
on-line second order methods and in particular we solve the dynamics of matrix mo-
mentum [3]. This algorithm provides a very efficient approximation to on-line New-
ton’s method by avoiding explicit inversion of the Hessian and we show that the two
methods are very close, if not equivalent, when the Hessian is known. The method
is also reasonably stable to fluctuations caused by using a very crude single example
approximation to the Hessian, as long as the algorithm parameters are chosenwell. It
should be reasonably straightforward to apply the results of [6] in order to determine
optimal and maximal parameters in this case, in terms of task complexity and non-
linearity. However, to obtain more robust performance a better on-line approximation
to the Hessian should probably be used.

Hessian based methods are not appropriate during the transients of learning be-
cause there is a possibility of trapping in suboptimal fixed points [9]. It would there-
fore make sense to use other matrix pre-multipliers which are guaranteed positive def-
inite, such as the Fisher information matrix used in natural gradient learning [2, 10] or
the linearized Hessian [4] used in Gauss-Newton methods. Matrix momentum could
easily provide an efficient inversion method in order to approximate the resulting al-
gorithms.

Acknowledgement This work was supported by the EPSRC grant GR/L19232.

References

[1] V. Fabian.Ann. Math. Statist., 39, 1327 (1968).

[2] S. AmariNeural Computation 10(2) 251 (1998).

[3] G. B. Orr, T. K. LeenAdvances in Neural Information Processing Systems vol 9, ed M.
C. Mozer, M. I. Jordan and T. Petsche (Cambridge, MA: MIT Press, 1997) p 606

[4] G. B. Orr, Ph.D. Dissertation, Oregon Graduate Institute of Science & Technology (1995).

[5] D. Saad, S. A. Solla,Phys. Rev. Lett. 74, 4337 (1995);Phys. Rev. E 52 4225 (1995).

[6] T. K. Leen, B. Schottky, D. SaadAdvances in Neural Information Processing Systems vol
10, ed M. I. Jordan, M. J. Kearns and S. A. Solla (Cambridge, MA: MIT Press, 1998).

[7] W. Weigerinck, A. Komoda, T .HeskesJ. Phys. A 27, 4425 (1994).

[8] A. Prügel-Bennett, unpublished notes, (1996).

[9] M. Rattray, D. Saad, ‘Incorporating curvature information into on-line learning’Proc. of
the On-line Learning Themed Week, (Isaac Newton Institute, Cambridge, 1997).

[10] M. Rattray, D. Saad, S. A. Solla, S. Amari ‘Natural gradient descent for on-line learning’
(in preparation, 1998).

